WO2021027245A1 - 一种复杂面零件的多机器人加工装备 - Google Patents
一种复杂面零件的多机器人加工装备 Download PDFInfo
- Publication number
- WO2021027245A1 WO2021027245A1 PCT/CN2020/070475 CN2020070475W WO2021027245A1 WO 2021027245 A1 WO2021027245 A1 WO 2021027245A1 CN 2020070475 W CN2020070475 W CN 2020070475W WO 2021027245 A1 WO2021027245 A1 WO 2021027245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- servo motor
- robot
- support
- complex surface
- supporting
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/003—Programme-controlled manipulators having parallel kinematics
- B25J9/0054—Programme-controlled manipulators having parallel kinematics with kinematics chains having a spherical joint at the base
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1682—Dual arm manipulator; Coordination of several manipulators
Definitions
- the invention relates to the technical field of multi-robot intelligent processing equipment, in particular to a multi-robot processing equipment of complex surface parts.
- the purpose of the present invention is to provide a multi-robot processing equipment for complex surface parts.
- the overall equipment has a compact structure, high rigidity, good movement flexibility, and high processing accuracy; it can realize the use of multiple robots to interact and share
- the purpose of fusion and collaborative work for the processing of complex surface parts has effectively improved the efficiency and intelligence of parts processing equipment.
- the present invention adopts the following technical solutions:
- the invention provides a multi-robot processing equipment for complex surface parts, including an equipment support frame, a series processing robot, a parallel support robot, and an inclusive control detection system, and is characterized in that: the series processing robot includes fixed on the equipment support frame The first servo motor at the upper end, a first rotary joint connected to the output of the first servo motor and provided with a second servo motor, and a second rotary joint connected to the output of the second servo motor and provided with a third servo motor A rotary joint, a third rotary joint connected to the output end of the third servo motor and provided with a fourth servo motor, and a processing tool system connected to the output end of the fourth servo motor;
- the parallel support robot includes a support base fixed at the lower end of the equipment support frame, a support platform set above the support base, and several evenly arranged between the support base and the peripheral edge of the support platform and both The connected PUS drive chain and the PU restraint chain which is arranged in the middle of the supporting base and the supporting platform and connects the two.
- the supporting platform is provided with a plurality of supporting cylinders arranged in a ring around the center and evenly distributed.
- the output ends of the supporting cylinders are all connected to the bottom of a pneumatic supporting table, the upper end of the pneumatic supporting table is rotatably connected with a rotating supporting table through an annular slide rail, and a rotating servo motor is fixed at the bottom of the supporting platform through a servo motor sleeve.
- the rotating servo motor The output end passes through the supporting platform and the pneumatic supporting platform and is connected to the center of the rotating supporting platform.
- the supporting base includes an upper plate and a lower plate which are arranged coaxially, and the circumferential edges of the lower plate and the upper plate are connected together by a plurality of inclined plates, the inclined plate and the upper plate
- the central axis forms an angle of 15° ⁇ 50°.
- the PUS drive chain includes a connecting rod, one end of the connecting rod is connected to a ball hinge through a connecting head, the other end of the connecting rod is connected to a Hooke hinge A, and the ball hinge is fixed to the On the supporting platform, the Hooke hinge A is connected to the slider through the Hooke hinge mounting seat, the PUS drive chain also includes a linear module, and the linear module includes a guide rail fixed on the inclined plate, the guide rail The upper slide is connected to the slider, the bottom of the slider is rotatably connected with a screw rod through a bearing seat, one end of the swash plate is fixed with a driving servo motor, and the output end of the driving servo motor is connected to the wire through a coupling Rod connection.
- the PU restraint chain includes a Hooke hinge B fixed at the bottom of the servo motor sleeve, an adapter sleeve, and a ball spline pair
- the ball spline pair includes a ball spline and a ball spline adapted to it
- the lower end of the Hooke hinge B is connected with the ball spline through the adapter sleeve, and the ball spline sleeve is fixedly connected with the upper plate.
- the Hooke hinge A can be replaced by a ball hinge.
- the PUS drive chain can install two PUS branch chains side by side to form a 3-2PUS+PU type parallel mechanism as a whole.
- the co-fusion control detection system includes an industrial computer, a servo driver, a number of displacement sensors, a number of attitude gyroscopes, and an encoder; each linear module is provided with a displacement sensor, and the receiving end of the displacement sensor And the transmitting end are respectively installed on one end of the corresponding swash plate and the slider, the attitude gyroscope is evenly arranged on the upper end of the pneumatic support table, the first servo motor, the second servo motor, the third servo motor, and the second
- the input and output shafts of four servo motors, rotating servo motors, and driving servo motors are respectively connected to the servo drive and the encoder, the processing tool system, the servo drive, the support cylinder, and the encoder ,
- the displacement sensor and the attitude gyroscope are respectively connected to the industrial control electromechanically; the industrial control computer integrates a motion control board, and the control output of the motion control board must reach at least eight axes.
- the number of the swash plate, the PUS drive chain, the linear module, the displacement sensor and the attitude gyroscope are all three.
- the present invention uses multi-robots for precision machining of complex curved parts, and has the advantages of compact structure, high overall system rigidity, flexible processing motion, and good interaction between the robots; the serial processing robot and the parallel supporting robot share the advantages
- the integration and collaboration takes full advantage of the respective advantages of series robots and parallel robots, and expands the equipment form for precision machining of parts; the motion control of the entire equipment forms a closed-loop feature, which greatly improves the machining accuracy of parts on the one hand, and achieves
- the system abnormality protection during processing improves the safety of the system; the entire equipment system realizes the inclusive interaction of multiple robots, realizes the intelligent processing of parts, and improves the shortcomings of traditional single-robot processing or single-form robot collaboration. It is of great significance to promote the development of the intelligent manufacturing industry.
- Figure 1 is a schematic structural diagram of a multi-robot processing equipment for complex surface parts provided by an embodiment of the present invention
- Figure 2 is a schematic structural diagram of a tandem processing robot provided by an embodiment of the present invention.
- FIG. 3 is a schematic diagram of the structure of a parallel support robot provided by an embodiment of the present invention.
- FIG. 4 is a schematic diagram of the structure of a supporting base of a parallel robot provided by an embodiment of the present invention.
- FIG. 5 is a schematic diagram of the structure of a parallel robot supporting platform provided by an embodiment of the present invention.
- FIG. 6 is a schematic diagram of the connection of an inclusive control detection system provided by an embodiment of the present invention.
- Tandem processing robot 2-1, the first servo motor, 2-2, the first rotary joint, 2-3, the second rotary joint, 2-4, the third rotary joint, 3.
- Processing tool system 4. Machining samples of complex curved surface parts, 5.
- Parallel support robot 5-1, Rotating support table, 5-2, Pneumatic support table, 5-3, Support cylinder, 5-4, Support platform, 5 -5, PUS drive chain, 5-5-1, spherical hinge mounting wedge, 5-5-2, spherical hinge, 5-5-3, connecting head, 5-5-4, connecting rod, 5-5- 5.
- a multi-robot processing equipment for complex surface parts includes an equipment support frame 1, a series processing robot 2, a parallel support robot 5, and an inclusive control detection system, characterized in that: the series processing
- the robot 2 includes a first servo motor 2-1 fixed at the upper end of the equipment support frame 1, a first rotary joint 2-2 connected to the output end of the first servo motor 2-1 and provided with a second servo motor.
- a second rotary joint 2-3 connected to the output terminal of the second servo motor and provided with a third servo motor, and a third rotary joint 2 connected to the output terminal of the third servo motor and provided with a fourth servo motor 4 and a machining tool system 3 connected to the output end of the fourth servo motor.
- the tandem machining robot 2 has four rotational degrees of freedom, can reach any desired position in its joint space, and provides a machining tool system 3 Required posture
- the parallel support robot 5 includes a support base 5-7 fixed at the lower end of the equipment support frame 1, a support platform 5-4 arranged above the support base 5-7, and several evenly arranged on the support base 5. -7 and the support platform 5-4 between the peripheral edge of the PUS drive chain 5-5 and connect the two and the PU restraint located in the middle of the support base 5-7 and the support platform 5-4 and connect the two Chain 5-6, the supporting base 5-7 forms a tetrahedral structure in space, the PUS drive chain 5-5 is used to provide the spatial position and posture required by the supporting platform 5-4, the PU restraint chain 5-6 is used to constrain some degrees of freedom of the support platform 5-4.
- the entire parallel robot can realize the freedom of movement in one direction and the freedom of rotation in two directions in space.
- the supporting platform 5-4 is provided with a plurality of supporting cylinders 5-3 arranged in a ring around its center and evenly distributed.
- the output ends of the supporting cylinders 5-3 are all connected to the bottom of a pneumatic supporting platform 5-2.
- the supporting cylinders 5-3 can move independently. At least 12 cylinders must be evenly arranged around the center of the supporting platform 5-4 to achieve point-to-point
- the movement form is used to compensate the deformation error of the support platform 5-4 during the processing.
- the upper end of the pneumatic support platform 5-2 is rotatably connected with a rotary support platform 5-1 through an annular slide rail, and the bottom of the support platform 5-4 passes
- the servo motor sleeve 5-6-2 is fixed with a rotating servo motor 5-6-1, and the output end of the rotating servo motor 5-6-1 passes through the support platform 5-4 and the pneumatic support platform 5-2.
- the center of the rotating support platform 5-1 is connected by a coupling for providing rotational movement during processing, and the processing sample 4 of the complex curved surface part is clamped on the rotating support platform 5-2.
- the support base 5-7 includes an upper plate 5-7-2 and a lower plate 5-7-1 arranged coaxially.
- the lower plate 5-7-1 and the upper plate 5-7-2 surround the The facing edges are connected together by a plurality of inclined plates 5-7-3, and the inclined plates 5-7-3 and the central axis of the upper plate 5-7-2 form an included angle of 15°-50°.
- the PUS drive chain 5-5 includes a connecting rod 5-5-4, one end of the connecting rod 5-5-4 is connected to a ball hinge 5-5-2 through a connecting head 5-5-3, and the connecting rod 5- The other end of 5-4 is connected with Hooke hinge A 5-5-5, and the spherical hinge 5-5-2 is fixed on the supporting platform 5-4 by a spherical hinge mounting wedge 5-5-1.
- the PUS drive chain 5-5 also includes a linear module 5-5-7
- the linear module 5-5 -7 includes a guide rail fixed on the inclined plate 5-7-3, and the sliding block is slidably connected to the guide rail, a screw rod is rotatably connected to the bottom of the sliding block through a bearing seat, the inclined plate 5-7
- a drive servo motor is fixed at one end of -3, and the output end of the drive servo motor is connected to the screw rod through a coupling;
- the Hooke hinge A 5-5-5 can realize two directions around its own rotation axis
- the spherical hinge 5-5-2 can realize three degrees of freedom of rotation, so that the entire PUS drive branch chain can provide spatial unconstrained six degrees of freedom movement.
- the spherical hinge mounting wedges are arranged at an angle of 15 degrees to 50 degrees, which can compensate for the small rotation angle of the spherical hinge 5-5-2 itself, and expand the movement posture space of the entire parallel support robot
- the PU restraint chain 5-6 includes a Hooke hinge B5-6-3 fixed at the bottom of the servo motor sleeve 5-6-2, an adapter sleeve 5-6-4 and a ball spline pair.
- the ball flower The key pair includes a ball spline 5-6-5 and a ball spline sleeve 5-6-6 adapted to it.
- the lower end of the Hooke hinge B5-6-3 is connected to the socket through the adapter sleeve 5-6-4.
- the ball spline 5-6-5 is connected, and the ball spline sleeve 5-6-6 is fixedly connected to the upper plate 5-7-2; the entire PU constraining chain 5-6 can move freely in two directions of constraining space
- the support platform 5-4 of the entire parallel supporting robot 5 can realize one space movement and two rotation freedoms under the drive of the linear module 5-5-7. degree.
- the Hooke hinge A 5-5-5 can be replaced by a ball hinge.
- the PUS drive chain can be installed side by side with two PUS branch chains to form a 3-2PUS+PU type parallel mechanism as a whole.
- the inclusive control detection system includes an industrial computer, a servo driver, a number of displacement sensors 6-2, a number of attitude gyroscopes 6-1, and an encoder; each linear module 5-5-7 A displacement sensor 6-2 is provided on each of the two, the receiving end and the transmitting end of the displacement sensor 6-2 are respectively installed on one end and the slider corresponding to the inclined plate 5-7-3, and the attitude gyroscope 6 -1 is evenly arranged on the upper end of the pneumatic support table 5-2, and the input and output shafts of the first servo motor, the second servo motor, the third servo motor, the fourth servo motor, the rotating servo motor, and the driving servo motor are respectively connected to The servo driver and the encoder are connected, the machining tool system 3, the servo driver, the supporting cylinder 5-3, the encoder, the displacement sensor, and the attitude gyroscope 6-1 Respectively connected to the industrial control electromechanically; the industrial control computer integrates
- the numbers of the inclined plate 5-7-3, the PUS drive chain 5-5, the linear module 5-5-7, the displacement sensor 6-2 and the attitude gyroscope 6-1 are all Three.
- the embodiment of the present invention also provides a processing method based on the multi-robot processing equipment of the complex surface part, which specifically includes the following steps:
- step b Input the three-dimensional parameters of the finished product scanned in step a into the industrial computer, and the industrial computer can automatically compare the scanning result with the blank according to the surface shape detection and then automatically generate the part processing program, through the industrial computer servo controller and processing tools System 3 performs motion control, and the motion of the series processing robot 2 and the parallel support robot 5 are coordinated with each other to realize the position and posture adjustment of the parts in the processing process;
- the encoder performs real-time detection and comparison of the output value and theoretical value of each servo motor output terminal and feedbacks the detection signal to the industrial computer in real time; at the same time, the displacement sensor 6-2 detects the position of each linear module , And feedback the detection signal to the industrial computer in real time.
- the same attitude gyroscope 6-1 detects the attitude of the multi-point pneumatic support 5-2 in real time and feeds it back to the industrial computer; after the industrial computer compares the feedback signal with the theoretical value, Real-time correction of each motion error to ensure the accuracy of parts processing; at the same time, the threshold of each error is set through the intelligent interactive display, when the encoder, displacement sensor 6-2 and attitude gyroscope 6-1 detect that the signal reaches the preset threshold , Stop the equipment movement in time, and give an alarm through the intelligent interactive display to ensure the safety and reliability of the processing process; in addition, during the processing, the movement of the supporting cylinder 5-3 is controlled in real time according to the feedback result of the attitude gyroscope 6-1. Compensate for deformation of parts during processing;
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
一种复杂面零件的多机器人加工装备,包括装备支撑架(1)、串联加工机器人(2)、并联支撑机器人(5)以及共融控制检测系统,串联加工机器人(2)包括第一旋转关节(2-2)、第二旋转关节(2-3)、第三旋转关节(2-4)以及加工刀具系统(3);并联支撑机器人(5)包括支撑底座(5-7)、支撑平台(5-4)、PUS驱动链(5-5)以及PU约束链(5-6),支撑平台(5-4)上设有支撑气缸(5-3),支撑气缸(5-3)输出端连接气动支撑台(5-2),气动支撑台(5-2)上通过环形滑轨转动连接旋转支撑台(5-1),支撑平台(5-4)底部设有转动伺服电机(5-6-1),转动伺服电机(5-6-1)输出端穿过支撑平台(5-4)、气动支撑台(5-2)与旋转支撑台(5-1)连接;本设备结构紧凑,运动灵活性好,加工精度高;可以实现利用多个机器人交互共融、协同作业对复杂面型零件加工的目的。
Description
本发明涉及多机器人智能加工装备技术领域,具体涉及一种复杂面零件的多机器人加工装备。
为满足经济社会发展和国防建设对重大技术装备的需求,我国制定了以加快新一代信息技术与制造业深度融合为主线,以推动智能制造为主攻方向的发展线路,机器人与智能制造是国家技术创新的重点领域。在复杂面型零件的加工领域,传统的数控机床或者多自由度串联机械臂的加工方式存在着加工精度低,加工装备笨重,加工灵活性差的诸多问题,不能满足现有技术要求的发展需要。串联机械臂虽然加工精度不高,但具有工作空间大,灵活性高的优点;并联机器人具有整体机构紧凑,高度高,运动误差校的优点,已经在很多高精密加工领域得到了很好的应用。结合串联机器人和并联机器人的优缺点和共融机器人技术的发展需要,多加工装备相互交互,协同作业是未来智能制造行业的发展方向之一。
发明内容
针对上述存在的技术不足,本发明的目的是提供一种复杂面零件的多机器人加工装备,其整体装备结构紧凑,刚度大,运动灵活性好,加工精度高;可以实现利用多个机器人交互共融、协同作业对复杂面型零件加工的目的,有效地提高了零件加工装备的效率和智能化。
为解决上述技术问题,本发明采用如下技术方案:
本发明提供一种复杂面零件的多机器人加工装备,包括装备支撑架、串联加工机器人、并联支撑机器人以及共融控制检测系统,其特征在于:所述串联加工机器人包括固定在所述装备支撑架上端的第一伺服电机、与所述第一伺服电机输出端连接并设有第二伺服电机的第一旋转关节、与所述第二伺服电机输出端连接并设有第三伺服电机的第二旋转关节、与所述第三伺服电机输出端连接并设有第四伺服电机的第三旋转关节以及与所述第四伺服电机输出端连接的加工刀具系统;
所述并联支撑机器人包括固定在所述装备支撑架下端的支撑底座、设在所述支撑底座上方的支撑平台、若干个均匀布置在所述支撑底座和支撑平台周向边缘之间并将两者连接的PUS驱动链以及设在所述支撑底座和支撑平台中部并将两者连接的PU约束链,所述支撑平台上设有若干个绕其中心呈环形陈列且均匀分布的支撑气缸,所述支撑气缸输出端均连接在一个气动支撑台底部,所述气动支撑台上端通过环形滑轨转动连接有旋转支撑台,所述支撑平台底部通过伺服电机套固定有转动伺服电机,所述转动伺服电机输出端穿过所述支撑平台、所述气动支撑台后与所述旋转支撑台中心连接。
优选地,所述支撑底座包括同轴线设置的上板和下板,所述下板与所述上板的周向边缘通过若干个斜板连接在一起,所述斜板与所述上板中轴线成15°~50°夹角。
优选地,所述PUS驱动链包括连接杆,所述连接杆一端通过连接头连接球铰链,所 述连接杆另一端连接虎克铰A,所述球铰链通过球铰安装楔块固定在所述支撑平台上,所述虎克铰A通过虎克铰链安装座连接滑块,所述PUS驱动链还包括直线模组,所述直线模组包括固定在所述斜板上的导轨,所述导轨上滑动连接所述滑块,所述滑块底部通过轴承座转动连接有丝杆,所述斜板的其中一端固定有驱动伺服电机,所述驱动伺服电机输出端通过联轴器与所述丝杆连接。
优选地,所述PU约束链包括固定在所述伺服电机套底部的虎克铰B、转接套以及滚珠花键副,所述滚珠花键副包括滚珠花键和与其适配的滚珠花键套,所述虎克铰B下端通过所述转接套与所述滚珠花键连接,所述滚珠花键套与上板固定连接。
优选地,所述虎克铰A能够通过球铰链进行代替。
优选地,所述PUS驱动链可以并排安装2个PUS支链,整体形成3-2PUS+PU型并联机构。
优选地,所述的共融控制检测系统包括工控机、伺服驱动器、若干个位移传感器、若干个姿态陀螺仪以及编码器;每个直线模组上设置一个位移传感器,所述位移传感器的接收端和发射端分别安装在对应所述斜板的其中一端和滑块上,所述姿态陀螺仪均匀设置在所述气动支撑台上端,第一伺服电机、第二伺服电机、第三伺服电机、第四伺服电机、转动伺服电机以及驱动伺服电机的输入端和输出轴分别与所述伺服驱动器、所述编码器连接,所述加工刀具系统、所述伺服驱动器、所述支撑气缸、所述编码器、所述位移传感、所述姿态陀螺仪分别与所述工控机电性连接;所述工控机内集成运动控制板卡,且该运动控制板卡控制输出至少要达到八轴。
优选地,所述斜板、所述PUS驱动链、所述直线模组、所述位移传感器以及所述姿态陀螺仪的数量均为3个。
本发明的有益效果在于:本发明将多机器人用于复杂曲面零件的精密加工,具有结构紧凑,系统整体刚度大,加工运动灵活,机器人之前交互性好的优点;串联加工机器人和并联支撑机器人共融协作,充分发挥了串联机器人和并联机器人各自的优点,拓阔了零件精密加工的装备形式;整个装备的运动控制形成闭环特点,一方面极大提高了零件的加工精度,另一方面做到了加工过程中的系统异常保护,提高了系统的安全性;整个装备系统实现了多机器人的共融交互,实现了零件的智能化加工,改善了传统单机器人加工或者单一形式机器人协作的缺点,对于推动智能制造行业的发展具有重要意义。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种复杂面零件的多机器人加工装备的结构示意图;
图2为本发明实施例提供的串联加工机器人结构示意图;
图3为本发明实施例提供的并联支撑机器人结构示意图;
图4为本发明实施例提供的并联机器人支撑底座结构示意图;
图5为本发明实施例提供的并联机器人支撑平台结构示意图;
图6为本发明实施例提供的共融控制检测系统连接示意图。
附图标记说明:
1、装备支撑架,2、串联加工机器人,2-1、第一伺服电机,2-2、第一旋转关节,2-3、第二旋转关节,2-4、第三旋转关节,3、加工刀具系统,4、复杂曲面零件加工试样,5、并联支撑机器人,5-1、旋转支撑台,5-2、气动支撑台,5-3、支撑气缸,5-4、支撑平台,5-5、PUS驱动链,5-5-1、球铰安装楔块,5-5-2、球铰链,5-5-3、连接头,5-5-4、连接杆,5-5-5、虎克铰A,5-5-6、虎克铰链安装座,5-5-7、直线模组,5-6、PU约束链,5-6-1、转动伺服电机,5-6-2、伺服电机套,5-6-3、虎克铰B,5-6-4、转接套,5-6-5、滚珠花键,5-6-6、滚珠花键套,5-7、支撑底座,5-7-1、下板,5-7-2、上板,5-7-3、斜板,6-1、姿态陀螺仪,6-2、位移传感器。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1至图5所述,一种复杂面零件的多机器人加工装备,包括装备支撑架1、串联加工机器人2、并联支撑机器人5以及共融控制检测系统,其特征在于:所述串联加工机器人2包括固定在所述装备支撑架1上端的第一伺服电机2-1、与所述第一伺服电机2-1输出端连接并设有第二伺服电机的第一旋转关节2-2、与所述第二伺服电机输出端连接并设有第三伺服电机的第二旋转关节2-3、与所述第三伺服电机输出端连接并设有第四伺服电机的第三旋转关节2-4以及与所述第四伺服电机输出端连接的加工刀具系统3,所述串联加工机器人2具有四个转动自由度,在其关节空间内可以达到任意需要的位置,并提供加工刀具系统3所需要的姿态;
所述并联支撑机器人5包括固定在所述装备支撑架1下端的支撑底座5-7、设在所述支撑底座5-7上方的支撑平台5-4、若干个均匀布置在所述支撑底座5-7和支撑平台5-4周向边缘之间并将两者连接的PUS驱动链5-5以及设在所述支撑底座5-7和支撑平台5-4中部并将两者连接的PU约束链5-6,所述支撑底座5-7在空间上成一个四面体结构,所述PUS驱动链5-5用于提供支撑平台5-4所需的空间位置和姿态,所述PU约束链5-6用于约束支撑平台5-4的部分自由度。整个并联机器人可以实现空间1个方向的移动自由度和2个方向的转动自由度,所述支撑平台5-4上设有若干个绕其中心呈环形陈列且均匀分布的支撑气缸5-3,所述支撑气缸5-3输出端均连接在一个气动支撑台5-2底部,所述支撑气缸5-3能够单独运动,至少要12只绕支撑平台5-4的中心均匀布置,实现点对点的运动形式,用于加工过程中补偿支撑平台5-4的变形误差,所述气动支撑台5-2上端通过环形滑轨转动连接有旋转支撑台5-1,所述支撑平台5-4底部通过伺服电机套5-6-2固定有转动伺服电机5-6-1,所述转动伺服电机5-6-1输出端穿过所述支撑平台5-4、所述气动支撑台5-2后与所述旋转支撑台5-1中心通过联轴器连接,用于提供加工过程中的转动运动,所述复杂曲面零件加工试样4装夹在旋转支撑台5-2上。
所述支撑底座5-7包括同轴线设置的上板5-7-2和下板5-7-1,所述下板5-7-1与所述上板5-7-2的周向边缘通过若干个斜板5-7-3连接在一起,所述斜板5-7-3与所述上板5- 7-2中轴线成15°~50°夹角。
所述PUS驱动链5-5包括连接杆5-5-4,所述连接杆5-5-4一端通过连接头5-5-3连接球铰链5-5-2,所述连接杆5-5-4另一端连接虎克铰A 5-5-5,所述球铰链5-5-2通过球铰安装楔块5-5-1固定在所述支撑平台5-4上,所述虎克铰A 5-5-5通过虎克铰链安装座5-5-6连接滑块,所述PUS驱动链5-5还包括直线模组5-5-7,所述直线模组5-5-7包括固定在所述斜板5-7-3上的导轨,所述导轨上滑动连接所述滑块,所述滑块底部通过轴承座转动连接有丝杆,所述斜板5-7-3的其中一端固定有驱动伺服电机,所述驱动伺服电机输出端通过联轴器与所述丝杆连接;所述虎克铰A 5-5-5可以绕其自身旋转轴实现两个方向的转动自由度,所述球铰链5-5-2可以实现三个转动自由度,从而整个PUS驱动支链可以提供空间无约束的六自由度运动。所述球铰链安装楔块呈15度到50度角度布置,可以弥补球铰链5-5-2自身旋转角度较小的缺陷,拓展整个并联支撑机器人5的运动姿态空间。
所述PU约束链5-6包括固定在所述伺服电机套5-6-2底部的虎克铰B5-6-3、转接套5-6-4以及滚珠花键副,所述滚珠花键副包括滚珠花键5-6-5和与其适配的滚珠花键套5-6-6,所述虎克铰B5-6-3下端通过所述转接套5-6-4与所述滚珠花键5-6-5连接,所述滚珠花键套5-6-6与上板5-7-2固定连接;整个所述PU约束链5-6可以约束空间两个方向移动自由度和一个方向的转动自由度,结合PUS驱动链5-5,整个并联支撑机器人5的支撑平台5-4可以在直线模组5-5-7的驱动下实现空间一个移动和两个转动自由度。
所述虎克铰A 5-5-5能够通过球铰链进行代替。
所述PUS驱动链可以并排安装2个PUS支链,整体形成3-2PUS+PU型并联机构。
参照图6所示,所述共融控制检测系统包括工控机、伺服驱动器、若干个位移传感器6-2、若干个姿态陀螺仪6-1以及编码器;每个直线模组5-5-7上均设置一个位移传感器6-2,所述位移传感器6-2的接收端和发射端分别安装在对应所述斜板5-7-3的其中一端和滑块上,所述姿态陀螺仪6-1均匀设置在所述气动支撑台5-2上端,第一伺服电机、第二伺服电机、第三伺服电机、第四伺服电机、转动伺服电机以及驱动伺服电机的输入端和输出轴分别与所述伺服驱动器、所述编码器连接,所述加工刀具系统3、所述伺服驱动器、所述支撑气缸5-3、所述编码器、所述位移传感、所述姿态陀螺仪6-1分别与所述工控机电性连接;所述工控机内集成运动控制板卡,且该运动控制板卡控制输出至少要达到八轴;所述编码器用于检测各个伺服电机输出端输出值和理论值之间的误差,并将其检测信号传递到工控机,工控机发出误差补偿指令,对各个伺服电机运动误差进行补偿;位移传感器6-2、姿态陀螺仪6-1均用于执行部件的运动检测,同时将检测信号反馈到工控机,对整个机器人的运动误差进行实时检测与补偿;编码器、位移传感器6-2、姿态陀螺仪6-1反馈信号均设置有阈值,当检测信号与理论值相差超过阈值时,工控机及时停止机器人的运动,保证整个装备的安全;在加工过程中,待加工件可能会出现变形的情况,导致加工精度降低,工控机可以通过控制支撑气缸5-3的运动对加工过程中工件的变形误差进行补偿。
所述斜板5-7-3、所述PUS驱动链5-5、所述直线模组5-5-7、所述位移传感器6-2以及所述姿态陀螺仪6-1的数量均为3个。
本发明实施例还提供一种基于该复杂面零件多机器人加工装备的加工方法,具体包括以下步骤:
a.利用三维成像扫描仪对复杂曲面零件加工试样4进行面型检测扫描,扫描完成 后将毛坯件装夹到旋转支撑台5-1上;
b.将步骤a中扫描得到的加工成品三维参数输入到工控机内,工控机可自动的根据面型检测扫描结果与毛坯件对比然后自动生成零件加工程序,通过工控机伺服控制器和加工刀具系统3进行运动控制,串联加工机器人2和并联支撑机器人5运动相互配合,实现零件在加工过程中的各位置姿态调整;
c.在加工的过程中,编码器对各个伺服电机输出端的输出值和理论值进行实时检测对比并将检测信号实时反馈到工控机;同时位移传感器6-2对各个直线模组的位置进行检测,并将检测信号实时反馈到工控机,同样的姿态陀螺仪6-1对多点气动支撑台5-2的姿态进行实时检测并反馈到工控机;工控机通过反馈信号与理论值对比后,对各运动误差进行实时修正,保证零件加工的精度;同时,通过智能交互显示器设置各误差的阈值,当编码器、位移传感器6-2和姿态陀螺仪6-1检测到信号达到预设阈值时,及时停止装备运动,并通过智能交互显示器报警,保证加工过程的安全可靠;此外,在加工的过程中,根据姿态陀螺仪6-1的反馈结果实时对支撑气缸5-3的运动进行控制,补偿零件加工过程中的变形;
d.加工完成后,控制串联加工机器人2和并联支撑机器人5回到初始位置。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (8)
- 一种复杂面零件的多机器人加工装备,包括装备支撑架、串联加工机器人、并联支撑机器人以及共融控制检测系统,其特征在于:所述串联加工机器人包括固定在所述装备支撑架上端的第一伺服电机、与所述第一伺服电机输出端连接并设有第二伺服电机的第一旋转关节、与所述第二伺服电机输出端连接并设有第三伺服电机的第二旋转关节、与所述第三伺服电机输出端连接并设有第四伺服电机的第三旋转关节以及与所述第四伺服电机输出端连接的加工刀具系统;所述并联支撑机器人包括固定在所述装备支撑架下端的支撑底座、设在所述支撑底座上方的支撑平台、若干个均匀布置在所述支撑底座和支撑平台周向边缘之间并将两者连接的PUS驱动链以及设在所述支撑底座和支撑平台中部并将两者连接的PU约束链,所述支撑平台上设有若干个绕其中心呈环形陈列且均匀分布的支撑气缸,所述支撑气缸输出端均连接在一个气动支撑台底部,所述气动支撑台上端通过环形滑轨转动连接有旋转支撑台,所述支撑平台底部通过伺服电机套固定有转动伺服电机,所述转动伺服电机输出端穿过所述支撑平台、所述气动支撑台后与所述旋转支撑台中心连接。
- 如权利要求1所述的一种复杂面零件的多机器人加工装备,其特征在于:所述支撑底座包括同轴线设置的上板和下板,所述下板与所述上板的周向边缘通过若干个斜板连接在一起,所述斜板与所述上板中轴线呈15°~50°夹角。
- 如权利要求2所述的一种复杂面零件的多机器人加工装备,其特征在于:所述PUS驱动链包括连接杆,所述连接杆一端通过连接头连接球铰链,所述连接杆另一端连接虎克铰A,所述球铰链通过球铰安装楔块固定在所述支撑平台上,所述虎克铰A通过虎克铰链安装座连接滑块,所述PUS驱动链还包括直线模组,所述直线模组包括固定在所述斜板上的导轨,所述导轨上滑动连接所述滑块,所述滑块底部通过轴承座转动连接有丝杆,所述斜板的其中一端固定有驱动伺服电机,所述驱动伺服电机输出端通过联轴器与所述丝杆连接。
- 如权利要求2所述的一种复杂面零件的多机器人加工装备,其特征在于:所述PU约束链包括固定在所述伺服电机套底部的虎克铰B、转接套以及滚珠花键副,所述滚珠花键副包括滚珠花键和与其适配的滚珠花键套,所述虎克铰B下端通过所述转接套与所述滚珠花键连接,所述滚珠花键套与上板固定连接。
- 如权利要求2所述的一种复杂面零件的多机器人加工装备,其特征在于:所述虎克铰A能够通过球铰链进行代替。
- 如权利要求2所述的一种复杂面零件的多机器人加工装备,其特征在于:所述PUS驱动链可以并排安装2个PUS支链,整体形成3-2PUS+PU型并联机构。
- 如权利要求1所述的一种复杂面零件的多机器人加工装备,其特征在于:所述的共融控制检测系统包括工控机、伺服驱动器、若干个位移传感器、若干个姿态陀螺仪以及编码器;每个直线模组上设置一个位移传感器,所述位移传感器的接收端和发射端分别安装在对应所述斜板的其中一端和滑块上,所述姿态陀螺仪均匀设置在所述气动支撑台上端,第一伺服电机、第二伺服电机、第三伺服电机、第四伺服电机、转动伺服电机以及驱动伺服电机的输入端和输出轴分别与所述伺服驱动器、所述编码器连接,所述加工刀具系统、所述伺服驱动器、所述支撑气缸、所述编码器、所述位移传感、所述姿态陀螺仪分别与所述工控机电性连接;所述工控机内集成运动控制板卡,且该运动控制板卡控制输出至少要达到八轴。
- 如权利要求7所述的一种复杂面零件的多机器人加工装备,其特征在于:所述斜板、 所述PUS驱动链、所述直线模组、所述位移传感器以及所述姿态陀螺仪的数量均为3个。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910733114.X | 2019-08-09 | ||
CN201910733114.XA CN110421567A (zh) | 2019-08-09 | 2019-08-09 | 一种复杂面零件的多机器人加工装备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021027245A1 true WO2021027245A1 (zh) | 2021-02-18 |
Family
ID=68413518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/070475 WO2021027245A1 (zh) | 2019-08-09 | 2020-01-06 | 一种复杂面零件的多机器人加工装备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110421567A (zh) |
WO (1) | WO2021027245A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110421567A (zh) * | 2019-08-09 | 2019-11-08 | 中国矿业大学 | 一种复杂面零件的多机器人加工装备 |
CN113119065A (zh) * | 2021-06-17 | 2021-07-16 | 中国人民解放军国防科技大学 | 一种多自由度机械臂、移动平台及救援机器人 |
CN113798870A (zh) * | 2021-11-18 | 2021-12-17 | 浙江大学杭州国际科创中心 | 一种加工设备以及加工方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19841243A1 (de) * | 1998-09-09 | 2000-03-23 | Siegfried Mache | Industrieroboter |
DE19840886C2 (de) * | 1998-09-08 | 2003-03-13 | Juergen Hesselbach | Bewegungsvorrichtung mit Parallelstruktur |
US20070253799A1 (en) * | 2006-04-27 | 2007-11-01 | Genesis Systems Group Llc | Nut runner and hexabot robot |
CN104149096A (zh) * | 2014-07-30 | 2014-11-19 | 华南理工大学 | 一种可精密三维移动的Delta结构并联机械手 |
CN204397504U (zh) * | 2015-01-23 | 2015-06-17 | 长安大学 | 一种并联机床 |
CN106695767A (zh) * | 2017-03-03 | 2017-05-24 | 合肥工业大学 | 基于Delta机构的并联装置及采用其的3D打印机 |
CN107855791A (zh) * | 2017-11-16 | 2018-03-30 | 中国矿业大学 | 一种多并联柔索式光学镜面加工装置 |
CN208117847U (zh) * | 2018-01-24 | 2018-11-20 | 深圳市智能机器人研究院 | 一种模块化结构的机器人 |
CN109333547A (zh) * | 2018-10-16 | 2019-02-15 | 中国矿业大学 | 一种多并联共融的大曲面零件加工装备和加工方法 |
CN109352459A (zh) * | 2018-10-15 | 2019-02-19 | 山东中衡光电科技有限公司 | 一种大口径光学自由曲面加工装置 |
CN110421567A (zh) * | 2019-08-09 | 2019-11-08 | 中国矿业大学 | 一种复杂面零件的多机器人加工装备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201579789U (zh) * | 2009-12-15 | 2010-09-15 | 汕头大学 | 三转动自由度并联机器人 |
CN102350699A (zh) * | 2011-09-30 | 2012-02-15 | 汕头大学 | 一种少支链六自由度并联机器人 |
CN103801839A (zh) * | 2012-11-15 | 2014-05-21 | 扬州市邗江扬子汽车内饰件有限公司 | 一种车辆内饰激光切割机床 |
CN106956191B (zh) * | 2016-01-11 | 2018-11-20 | 中国科学院沈阳自动化研究所 | 一种曲面自动研抛设备 |
CN107932522B (zh) * | 2017-11-28 | 2019-09-03 | 中国矿业大学 | 五自由度光学镜面加工设备及其工作方法 |
CN207696235U (zh) * | 2017-12-06 | 2018-08-07 | 天津宏辉创意科技有限公司 | 一种瓷砖生产用抛光装置 |
CN108608063B (zh) * | 2018-04-02 | 2019-07-19 | 中国矿业大学 | 一种并联五轴光学镜面加工装备 |
CN108705410B (zh) * | 2018-04-20 | 2019-07-19 | 中国矿业大学 | 一种多并联共融机器人大型光学镜面加工装备 |
-
2019
- 2019-08-09 CN CN201910733114.XA patent/CN110421567A/zh active Pending
-
2020
- 2020-01-06 WO PCT/CN2020/070475 patent/WO2021027245A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19840886C2 (de) * | 1998-09-08 | 2003-03-13 | Juergen Hesselbach | Bewegungsvorrichtung mit Parallelstruktur |
DE19841243A1 (de) * | 1998-09-09 | 2000-03-23 | Siegfried Mache | Industrieroboter |
US20070253799A1 (en) * | 2006-04-27 | 2007-11-01 | Genesis Systems Group Llc | Nut runner and hexabot robot |
CN104149096A (zh) * | 2014-07-30 | 2014-11-19 | 华南理工大学 | 一种可精密三维移动的Delta结构并联机械手 |
CN204397504U (zh) * | 2015-01-23 | 2015-06-17 | 长安大学 | 一种并联机床 |
CN106695767A (zh) * | 2017-03-03 | 2017-05-24 | 合肥工业大学 | 基于Delta机构的并联装置及采用其的3D打印机 |
CN107855791A (zh) * | 2017-11-16 | 2018-03-30 | 中国矿业大学 | 一种多并联柔索式光学镜面加工装置 |
CN208117847U (zh) * | 2018-01-24 | 2018-11-20 | 深圳市智能机器人研究院 | 一种模块化结构的机器人 |
CN109352459A (zh) * | 2018-10-15 | 2019-02-19 | 山东中衡光电科技有限公司 | 一种大口径光学自由曲面加工装置 |
CN109333547A (zh) * | 2018-10-16 | 2019-02-15 | 中国矿业大学 | 一种多并联共融的大曲面零件加工装备和加工方法 |
CN110421567A (zh) * | 2019-08-09 | 2019-11-08 | 中国矿业大学 | 一种复杂面零件的多机器人加工装备 |
Also Published As
Publication number | Publication date |
---|---|
CN110421567A (zh) | 2019-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109333547B (zh) | 一种多并联共融的大曲面零件加工装备和加工方法 | |
WO2021027245A1 (zh) | 一种复杂面零件的多机器人加工装备 | |
CN107253084B (zh) | 飞机数字化装配中的高效高精机器人自动铣削系统 | |
CN106238969B (zh) | 基于结构光视觉的非标件自动化焊接加工系统 | |
CN104308859B (zh) | 基于行车的重载精密冗余三臂机械手 | |
CN209407870U (zh) | 一种对称布置的双机器人螺栓自动拧紧系统 | |
KR20200006287A (ko) | 비전유닛 | |
CN205650975U (zh) | 基于结构光视觉的非标件自动化焊接加工系统 | |
CN109129158B (zh) | 基于并联工具系统的精密铣磨成形机床及其控制方法 | |
CN214558930U (zh) | 一种基于高精度测量技术用于圆筒对接的调姿设备 | |
CN105313119B (zh) | 工业机器人的5 轴6 轴混合控制方法及其系统 | |
CN103149880A (zh) | 加工装置 | |
CN110757035A (zh) | 一种工业过滤器自动焊接生产线系统 | |
KR20150059486A (ko) | 리스폿 지그 | |
CN115369223B (zh) | 一种双侧超声滚压协同强化系统及其控制方法 | |
CN113021017A (zh) | 随形自适应智能3d检测与加工系统 | |
CN108068122A (zh) | 一种大型船舶槽面加工装置及定位方法 | |
CN113579766B (zh) | 一种六自由度串并混联数控机床及其后处理方法 | |
US11185991B2 (en) | Surface-machining assembly comprising an effector to be mounted on a robot arm and at least one effector bearing element by means of which the effector bears on the surface and/or on the tools with a ball joint provided therebetween | |
CN108788576A (zh) | 大型罐体机器人自动化焊接工作站及利用该装置焊接的方法 | |
CN108788577A (zh) | 一种大型罐体机器人自动化焊接工作站 | |
CN113359614B (zh) | 一种并联机器人及其圆弧运动轨迹插补方法 | |
CN114453641B (zh) | 一种六轴联动机床弱电控制系统及六轴联动机床和铣削加工方法 | |
KR20210011420A (ko) | 로봇 제어 시스템 | |
CN206356905U (zh) | 一种法兰盘类零件的数字化加工系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20852833 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20852833 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20852833 Country of ref document: EP Kind code of ref document: A1 |