WO2016029812A1 - 光纤光栅解调仪及其温度控制方法 - Google Patents

光纤光栅解调仪及其温度控制方法 Download PDF

Info

Publication number
WO2016029812A1
WO2016029812A1 PCT/CN2015/087489 CN2015087489W WO2016029812A1 WO 2016029812 A1 WO2016029812 A1 WO 2016029812A1 CN 2015087489 W CN2015087489 W CN 2015087489W WO 2016029812 A1 WO2016029812 A1 WO 2016029812A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
working chamber
fiber grating
grating demodulator
temperature control
Prior art date
Application number
PCT/CN2015/087489
Other languages
English (en)
French (fr)
Inventor
姚锴
毛献辉
赵宗雷
姜婷
肖航
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to EP15834980.3A priority Critical patent/EP3187833B1/en
Priority to JP2016570156A priority patent/JP6340089B2/ja
Publication of WO2016029812A1 publication Critical patent/WO2016029812A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/028Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure
    • G01D3/036Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves
    • G01D3/0365Indicating or recording apparatus with provision for the special purposes referred to in the subgroups mitigating undesired influences, e.g. temperature, pressure on measuring arrangements themselves the undesired influence being measured using a separate sensor, which produces an influence related signal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/1928Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperature of one space

Definitions

  • Embodiments of the present application relate to fiber grating demodulators, and in particular, to fiber grating demodulators that operate over a range of temperatures and methods of temperature control thereof.
  • Fiber Bragg Grating Sensor is a kind of fiber optic sensor widely used in structural health monitoring, temperature monitoring and railway rockfall monitoring.
  • the fiber Bragg grating sensor reflects the magnitude of the measured physical quantity by the change of the central wavelength of the reflected light.
  • the fiber grating demodulator can convert the optical signal of the fiber grating sensor into an electrical signal that can be recognized by the computer system.
  • fiber grating demodulators mainly include diffraction grating type (such as: CN201425690) and scanning filter type (such as: CN203083585U).
  • diffraction grating type such as: CN201425690
  • scanning filter type such as: CN203083585U
  • Optoelectronic devices and pure optics are inevitably used in both diffraction grating and scanning filter fiber grating demodulators. Due to the limitations of existing processes and the principle characteristics of optoelectronic devices, optoelectronic devices and pure optics have a narrow operating temperature range. Taking a pure optical passive device fiber circulator as an example, the commercially available fiber circulators have an operating temperature range of -5 ° C to 70 ° C, and very few products can reach -20 ° C to 70 ° C.
  • the embodiments of the present application provide a fiber grating demodulator and a temperature control method thereof, and the working temperature of the fiber grating demodulator The range is extended to -40 ° C ⁇ 70 ° C.
  • an embodiment of the present application provides a fiber Bragg grating demodulator, including: a temperature control system; a working cavity, including an optical device of a fiber grating demodulator; an insulation layer, enclosing the working cavity, Heat exchange between the isolation optics and the exterior of the working chamber; wherein the temperature control system is coupled to the working chamber to regulate the temperature within the working chamber.
  • an embodiment of the present application provides a temperature control method for a fiber Bragg grating demodulator, including:
  • the output power of the temperature control circuit of the temperature control system is adjusted such that the temperature within the working chamber satisfies the temperature threshold.
  • Embodiments of the present application can greatly extend the operating temperature range of a fiber Bragg grating demodulator. By selecting a more efficient heating and cooling device, the operating temperature of the instrument can even be extended to -40 ° C ⁇ 70 ° C.
  • the embodiment of the present application can also improve the performance of the photoelectric component through more precise temperature control, improve the demodulation precision of the fiber grating demodulator, extend the service life of the instrument, and enhance the reliability.
  • FIG. 1 is a block diagram showing the structure of a fiber grating demodulator according to an exemplary embodiment of the present application.
  • FIG. 2 is a block diagram showing the structure of a fiber grating demodulator according to an exemplary embodiment of the present application.
  • FIG. 3 is a flow chart of a method of temperature control of a fiber Bragg grating demodulator, in accordance with an exemplary embodiment of the present application.
  • FIG. 1 shows a block diagram of a fiber grating demodulator according to an exemplary embodiment of the present application.
  • the fiber grating demodulator can be applied, for example, to a diffraction grating type fiber grating demodulator.
  • the temperature control circuit is labeled 101; the optical switch is labeled 102; the light source is labeled 103; the photoelectric conversion module is labeled 104; the optical fiber connected to the optical switch 102 is labeled 105; and the data line connected to the upper computer is labeled 106; working chamber marked 107; temperature sensor power and data line marked 108; refrigeration heater control and power line marked 109; insulation layer marked 110; fiber mark 111; circulator marked 112; refrigeration heater Marked as 113; temperature sensor is labeled 114; FBG demodulator chassis is labeled 115.
  • the fiber grating demodulator includes a working chamber 107 and a temperature control system.
  • the working chamber 107 and temperature control system can be disposed in the fiber grating demodulator housing 115.
  • the fiber grating demodulator also includes optics housed in the working chamber 107, such as a light source 103, an optical switch 102, a photoelectric conversion module 104, and a circulator 112.
  • the optical switch 112 is connected to one end of the optical fiber 105, and the other end of the optical fiber 105 is connected to a fiber grating sensor (not shown).
  • the optical fiber 111 connects the optical switch 102 and the circulator 112. Both the light source 103 and the photoelectric conversion module 104 are coupled to the circulator 112, respectively.
  • the working chamber 107 can be made of a heat conductive material, for example, a material having a good thermal conductivity such as metal.
  • the outside of the working chamber 107 may be tightly wrapped with the insulating layer 110 such that heat exchange between the inside and the outside of the working chamber 107 is minimized.
  • the optical fiber 105 connected to the optical switch 102 and the data line 106 connected to the upper computer are introduced into the fiber grating demodulator through a small hole opened in the side wall of the working chamber 107 and taken out to the upper computer. The opened apertures are as small as possible to reduce heat exchange between the interior and exterior of the working chamber 107.
  • the fiber grating demodulator receives optical signals from the fiber grating sensor through the optical fiber 105, and diffracts the received optical signal through the light source 103, the optical switch 102, the optical fiber 111, the circulator 112, and the photoelectric conversion module 104.
  • the wavelengths of the received optical signals are spatially separated to effect conversion of the optical signals.
  • the converted electrical signal is transmitted to a host computer, such as a computer, through a data line 106 connected to the host computer for further analysis and processing.
  • a temperature control system included in the fiber grating demodulator for adjusting the working chamber 107 The temperature allows the optics in the working chamber to operate within the proper temperature range.
  • the temperature range may be 30 ° C to 45 ° C. Since the temperature within the working chamber can be adjusted to an appropriate temperature, the optics within the working chamber can operate stably. Thereby, the fiber grating demodulator can be operated in a wide range of working environments, for example, the fiber grating demodulator can still operate normally even if the fiber grating demodulator chassis 115 is in a temperature range of -40 ° C to 70 ° C. .
  • the temperature control system may include a temperature control circuit 101, a heating refrigerator 113, and a temperature sensor 114.
  • the heating chiller 113 may include a semiconductor chiller 113.
  • the semiconductor refrigerator 113 may be equipped with a heat sink and a fan, for example, may have a hot and cold surface heat sink and a heat dissipation fan.
  • the working surface of the semiconductor refrigerator 113 can be in close contact with the outer surface of the working chamber 107.
  • the semiconductor cooler 113 can be coupled to the temperature control circuit 101 via a power supply and control line 109.
  • Temperature sensor 114 can be coupled to temperature control circuit 101 via temperature sensor power and data line 108.
  • Temperature sensor 114 can include a set of temperature sensors comprised of a plurality of temperature sensors. The temperature sensor groups can be arranged at various locations within the working chamber 107, for example, at locations where the optics of the working chamber 107 are relatively dense. The temperature sensor 114 can obtain the temperature within the working chamber 107 in real time or periodically, and transmits it to the temperature control circuit 101 through the temperature sensor power supply and data line 108 as a basis for the temperature control circuit 101 to control the temperature within the working chamber 107.
  • the semiconductor refrigerator 113 includes at least one pair of N-type semiconductor material and P-type semiconductor material which are coupled into a galvanic pair.
  • a semiconductor refrigerator is capable of not only cooling but also heating. For example, when the semiconductor refrigerator 113 is turned on with a direct current, if current flows from the N-type element to the P-type element (this is called a forward current), the semiconductor refrigerator 113 absorbs heat to achieve a cooling effect; if the current flows from the P-type When the component flows to the N-type component (this is called reverse current), heat is released to achieve the effect of temperature rise.
  • Temperature control circuit 101 receives a temperature signal from temperature sensor 114. For example, when the signal fed back by the temperature sensor 114 indicates that the lowest temperature is below 30 ° C or close to 30 ° C, the temperature control circuit 101 Signals to the semiconductor cooler 113 may be signaled to increase the output (e.g., output power or duration) of the semiconductor cooler 113 to thereby raise the temperature within the working chamber 107 accordingly. In this manner, the temperature in the working chamber 107 is maintained within a suitable temperature range of not lower than 30 ° C to stabilize the operational performance of the respective optical devices in the working chamber 107. In order to increase the temperature in the working chamber 107, the temperature control circuit 101 can apply a reverse current to the semiconductor refrigerator 113 and can increase the magnitude of the applied current.
  • the output e.g., output power or duration
  • the temperature control circuit 101 can signal the semiconductor refrigerator 113 to increase the output of the semiconductor refrigerator 113, thereby correspondingly reducing the operation.
  • the temperature inside the chamber 107 In this manner, the temperature in the working chamber 107 is maintained within a suitable temperature range of not higher than 45 ° C to stabilize the operational performance of the respective optical devices in the working chamber 107.
  • the temperature control circuit 101 can apply a forward current to the semiconductor refrigerator 113 and can increase the magnitude of the applied current.
  • the temperature control circuit 101 can operate in the manner described above until the temperature fed back by the temperature sensor group 114 is in a suitable range, for example, 30 ° C to 45 ° C, or otherwise capable of ensuring stable performance of the optical devices in the working chamber 107. temperature range.
  • a fixed threshold T can be set based on actual ambient temperature conditions. For example, if the outside of the fiber grating demodulator chassis 115 is relatively cold, the threshold T may be set to be 45 ° C, for example 44 ° C; and if the outside of the fiber grating demodulator chassis 115 is hot, the threshold T may be set to a tendency At 30 ° C, for example 31 ° C. The threshold can also be set to other temperature values depending on actual work considerations.
  • the temperature control circuit 101 can signal the semiconductor refrigerator 113 to increase the output of the semiconductor cooler 113, The temperature inside the working chamber 107 is correspondingly lowered. In this manner, the temperature within the working chamber 107 is maintained at no higher than the set threshold T to stabilize the operational performance of the optical devices within the working chamber 107. In order to make the highest temperature in the working chamber 107 not higher than the set threshold T, the temperature control circuit 101 can apply a forward current to the semiconductor refrigerator 113 and can increase the magnitude of the applied current.
  • the temperature control circuit 101 can signal the semiconductor refrigerator 113, increase the output of the semiconductor refrigerator 113, and accordingly raise the temperature in the working chamber 107. . In this manner, the temperature in the working chamber 107 is maintained at not lower than the set threshold T to stabilize the operational performance of the respective optical devices in the working chamber 107. In order to make the lowest temperature in the working chamber 107 not lower than the set threshold T, the temperature control circuit 101 can apply a reverse current to the semiconductor refrigerator 113 and can increase the magnitude of the applied current.
  • the magnitude of the current applied by the temperature control circuit 101 to the semiconductor refrigerator 113 may also increase as the logarithm of the semiconductor material increases to further increase the temperature rise. Or the speed of cooling.
  • FIG. 2 is a block diagram showing the structure of a fiber Bragg grating demodulator according to an exemplary embodiment of the present application.
  • the fiber grating demodulator can be used, for example, for a scanning filter type fiber grating demodulator.
  • the temperature control circuit is labeled 201; the optical fiber connected to the circulator is labeled 205; the data line connected to the upper computer is labeled 206; the working cavity is labeled 207; the temperature sensor power supply and data line are labeled 208;
  • the layer is labeled 210; the fiber is labeled 211; the circulator is labeled 212; the temperature sensor is labeled 214; the fiber grating demodulator chassis is labeled 215; the scanning source control circuit and the photodetection circuit is labeled 216; the cooler is labeled 217;
  • the heater is labeled 218; the scanning source is labeled 219; the photodetector is labeled 220; the refrigeration heater control and power lines are labeled 221; and the signal source and power line of the scanning source and photodetector are labeled 222.
  • the fiber grating demodulator includes a working chamber 207 and a temperature control system.
  • the working chamber 207 and temperature control system can be disposed in a fiber grating demodulator housing 215.
  • the fiber grating demodulator further includes optics housed in the working chamber 107, such as a scanning source 219, a circulator 212, a photodetector 220, a scanning source control circuit, and a photodetection circuit 216.
  • the working chamber 207 can be made of a heat conductive material, for example, a material having a good thermal conductivity such as metal.
  • the outside of the working chamber 207 may be tightly wrapped with the insulating layer 210 so that the heat exchange between the inside of the working chamber 207 and the outside is minimized.
  • the power line 222 is introduced into the working chamber 207 through an aperture formed in the side wall of the working chamber 207 and is led out to the scanning light source control circuit and the photodetecting circuit 216.
  • the opened apertures are as small as possible to reduce heat exchange between the interior and exterior of the working chamber 207.
  • the fiber Bragg grating demodulator receives optical signals from a fiber Bragg grating sensor (not shown) through an optical fiber 205, scans the light source 219 and the photodetector 220 through the laser, and filters the received optical signal into an electrical signal, and then It is sent to the scanning light source control circuit and the photodetection circuit 216 for further processing.
  • the scanning light source control circuit and the photoelectric detecting circuit 216 can control the frequency and power of the laser light of the laser scanning light source 219, and transmit the processed electrical signal to the upper computer, such as a computer, through the data line 206 connected to the upper computer for further processing. Analysis and processing.
  • the scanning light source control circuit and the photodetection circuit 216 can also be disposed within the working chamber 207 to reduce openings in the sidewalls of the working chamber 207.
  • the fiber Bragg grating demodulator includes a temperature control system for regulating the temperature in the working chamber 207 such that the optics in the working chamber operate within a suitable temperature range.
  • the temperature range may be 30 ° C to 45 ° C.
  • the temperature control system may include a temperature control circuit 201, a chiller 217 (eg, a small refrigeration compressor), and a heater 218 (eg, a positive temperature coefficient (PTC) thermistor heater).
  • the refrigerator 217 and the heater 218 are actuators of the temperature control system, and are coupled to the temperature control circuit 201 via control lines and power lines 221 of the refrigeration heating device, respectively.
  • the temperature control circuit 201 can obtain the temperature in the working chamber through the temperature sensor 214, and based on this, control the temperature in the working chamber through a certain control strategy.
  • Temperature sensor 214 can be coupled to temperature control circuit 201 via temperature sensor power and data line 208. Temperature sensor power and data lines 208 may be coupled to temperature control circuit 201 through apertures in the sidewalls of working chamber 207. The opened apertures are as small as possible to reduce heat exchange between the interior and exterior of the working chamber 207.
  • the temperature sensor 214 is comprised of a temperature sensor set consisting of a plurality of temperature sensors. The temperature sensor groups can be arranged at various locations within the working chamber 107, for example, at locations where the optics of the working chamber 207 are relatively dense. The temperature sensor 214 can obtain the temperature within the working chamber in real time or periodically, and is transmitted to the temperature via the temperature sensor data line 208.
  • the control circuit 201 serves as a basis for the temperature control circuit 201 to control and regulate the temperature within the working chamber 207.
  • a refrigerator 217 may be embedded in the working chamber 207 and the insulating layer 210 that surrounds the working chamber 207.
  • the refrigerator 217 can accept an indication from the temperature control circuit 201 that the temperature within the working chamber 207 is lowered.
  • the refrigerator 217 can be powered by the temperature control circuit 201.
  • the heater 218 can be disposed within the working chamber 207, for example, its heat generating component can be completely disposed within the working chamber 207.
  • the heater 218 can accept an indication from the temperature control circuit 201 that the temperature within the working chamber 207 rises.
  • the heater 218 can be powered by the temperature control circuit 201.
  • Temperature control circuit 201 receives the temperature signal from temperature sensor group 214. For example, when the lowest temperature indicated by temperature sensor 214 is below 30 ° C or near 30 ° C, temperature control circuit 201 can signal heater 218 to increase the output of heater 218 to raise the temperature within working chamber 207 accordingly. In this manner, the temperature in the working chamber 207 is maintained at a suitable temperature range of not lower than 30 ° C to stabilize the operational performance of the respective optical devices in the working chamber 207.
  • the temperature control circuit 201 can signal the cooler 217 to increase the output of the refrigerator 217, thereby correspondingly reducing the working chamber 207.
  • the temperature control circuit 201 can continue this operation until the temperature fed back by the temperature sensor group 214 is at a suitable temperature range, for example, 30 ° C to 45 ° C, or other temperature that ensures stable performance of the optical devices in the working chamber 207. range.
  • a temperature threshold T can be set based on actual ambient temperature conditions. For example, if the outside of the fiber grating demodulator chassis 215 is relatively cold, the threshold T can be set to be 45 ° C, for example 44 ° C; and if the outside of the fiber grating demodulator chassis 215 is hot, the threshold T can be set to a tendency At 30 ° C, for example 31 ° C. The temperature threshold can also be set to other temperature values depending on actual operational considerations.
  • the temperature control circuit 201 can signal the chiller 217, increasing the output of the chiller 217, and correspondingly reducing the temperature within the working chamber 207. In this manner, the temperature within the working chamber 207 is maintained at no higher than the set threshold T to stabilize the operational performance of the various optics within the working chamber 207.
  • the temperature control circuit 201 can signal the heater 218, increasing the output of the heater 218, and correspondingly raising the temperature within the working chamber 207. In this manner, the temperature within the working chamber 207 is maintained at a level not lower than the set threshold T to stabilize the operational performance of the optical devices within the working chamber 207.
  • the temperature control system shown in Fig. 1 can be applied to a fiber grating demodulator as shown in Fig. 2, or the temperature control system shown in Fig. 2 can be applied to a fiber grating demodulator as shown in Fig. 1. Such replacement is readily made by those skilled in the art.
  • FIG. 3 is a flow chart of a method 300 for temperature control of a fiber grating demodulator of the present invention, wherein the fiber grating demodulator may include a temperature control system and a working chamber that houses the optical device of the fiber grating demodulator .
  • the outer portion of the working chamber is tightly wrapped with an insulating layer such that heat exchange between the interior and exterior of the working chamber is minimized.
  • the method can be implemented in software, hardware, or a combination of software and hardware in a temperature control circuit of a temperature control system.
  • the method 300 begins in step 301, in which the temperature control system begins to power up, at which point the fiber grating demodulator may or may not be in operation.
  • the method proceeds to step 302 where the temperature control circuit of the temperature control system detects the temperature within the working chamber included in the fiber grating demodulator. For example, the temperature is detected by reading information sensed by a temperature sensor disposed within the working chamber.
  • the method 300 proceeds to step 303 where it is determined whether the temperature within the detected working chamber satisfies the temperature threshold T. If the threshold T is met, then the method 300 returns to step 302 to continue detecting the temperature within the working chamber. If the threshold T is not met, the method 300 proceeds to step 304 to adjust the temperature within the working chamber.
  • the optical device in the working cavity of the fiber grating demodulator performs better at a temperature ranging from 30 ° C to 45 ° C near room temperature, so the threshold T can select a temperature range. Any one of 30 ° C ⁇ 45 ° C.
  • a threshold T can be set according to the actual external temperature condition. For example, if the fiber Bragg grating demodulator is relatively cold outside, the threshold T can be set to favor 45 ° C, such as 44 ° C; and if the outside is hot, the threshold T can be set to favor 30 ° C, such as 31 ° C.
  • the threshold can also be set to other temperature values depending on actual work considerations.
  • step 304 of method 300 if the detected temperature within the working chamber is below a set threshold, the output of the temperature control circuit can be adjusted to raise the temperature within the working chamber; if the detected working chamber If the temperature inside is higher than the set threshold, the output of the temperature control circuit can be adjusted to lower the temperature in the working chamber.
  • the temperature control system includes a heating refrigerator that can employ a semiconductor refrigerator.
  • the temperature control circuit can signal the semiconductor refrigerator to increase the output of the semiconductor cooler and correspondingly reduce the temperature in the working chamber. In this manner, the temperature within the working chamber is maintained at no higher than the set threshold T to stabilize the operational performance of the various optics within the working chamber.
  • the temperature control circuit can apply a forward current to the semiconductor refrigerator and can increase the magnitude of the applied current.
  • the temperature control circuit can signal the semiconductor cooler to increase the output of the semiconductor cooler and correspondingly raise the temperature within the working chamber. In this way, the temperature in the working chamber is maintained at not lower than the set threshold T to stabilize the operational performance of the respective optical devices in the working chamber.
  • the temperature control circuit can apply a reverse current to the semiconductor refrigerator and can increase the magnitude of the applied current.
  • the temperature control system can include a chiller and a heater.
  • the temperature control circuit can signal to the refrigerator to increase the output of the refrigerator and correspondingly reduce the temperature in the working chamber. In this manner, the temperature within the working chamber is maintained at no higher than the set threshold T to stabilize the operational performance of the various optics within the working chamber.
  • the temperature control circuit can signal the heater, increase the output of the heater, and accordingly raise the temperature within the working chamber. In this way, the temperature in the working chamber is maintained at not lower than the set threshold T to stabilize the operational performance of the respective optical devices in the working chamber.
  • step 302 After adjusting the output of the temperature control circuit, it is possible to return to step 302 to start detecting the temperature in the working chamber again immediately; or to set a delay, for example 1-5 minutes, and then to detect the temperature in the working chamber again.
  • the method 300 then repeats the above steps to ensure that the temperature of the working chamber is equal to or close to the set threshold.
  • the temperature threshold of step 303 can be a temperature range that includes an upper limit temperature and a lower limit temperature.
  • the temperature range may be 30 ° C to 45 ° C, at which time the upper limit temperature is 45 ° C and the lower limit temperature is 30 ° C. If the detected temperature is within the set temperature range, then the method 300 returns to step 302 to continue detecting the temperature within the working chamber. Otherwise, the method 300 proceeds to step 304 where the output of the temperature control circuit is adjusted to raise or lower the temperature within the working chamber such that the temperature of the working chamber falls within the set temperature range. The manner in which the output power of the temperature control circuit is adjusted can be performed as described above so that the temperature of the working chamber is within the set temperature range.
  • the temperature range set here is not necessarily limited to the temperature range of 30 ° C to 45 ° C, and may be, for example, 31 ° C to 44 ° C, or narrower, or wider.
  • the setting of the temperature range can be further adjusted with reference to the operating parameters of the optics in the working chamber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Transform (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种光纤光栅解调仪及其温度控制方法,该光纤光栅解调仪包括:光学器件;温度控制系统;工作腔(107),用于容纳光学器件;保温层(110),包裹所述工作腔(107),用于隔离该光学器件与工作腔(107)外部的热交换。其中该温度控制系统与该工作腔(107)耦合,用以调节该工作腔(107)内的温度,可以使光纤光栅解调仪的工作温度范围大大地得到扩展。

Description

光纤光栅解调仪及其温度控制方法 技术领域
本申请的实施例涉及光纤光栅解调仪,特别地,涉及可在一定温度范围内工作的光纤光栅解调仪及其温度控制方法。
背景技术
光纤光栅传感器是光纤传感器的一种,广泛应用于结构健康监测、温度监测和铁路落石监测等领域。光纤光栅传感器通过反射光的中心波长变化来反映被测物理量的大小,光纤光栅解调仪可以将光纤光栅传感器的光信号转变为能被计算机系统所识别电信号。
目前,光纤光栅解调仪主要有衍射光栅式(如:CN201425690)和扫描滤波式(如:CN203083585U)两种。无论是衍射光栅式还是扫描滤波式光纤光栅解调仪都会不可避免地使用光电子器件和纯光学器件。由于现有工艺限制以及光电器件的原理特性,光电子器件和纯光学器件的工作温度范围都较窄。以纯光学无源器件光纤环形器为例,市面上能够买到的光纤环形器工作温度范围多为-5℃~70℃,极少数产品可达到-20℃~70℃。若超出该温度范围,其插入损耗和串扰等关键技术指标都会急剧增大,从而无法使用。而光源、光开关等有源器件一般工作温度范围会更窄。因此,无论是哪种原理的光纤光栅解调仪都无法在有着较为严苛的环境温度的条件下使用。
发明内容
为了克服现有的光纤光栅解调仪不能在宽温范围内使用的缺陷,本申请的实施例提供了光纤光栅解调仪及其温度控制方法,使光纤光栅解调仪的工作温 度范围扩展到了-40℃~70℃。
在第一个方面,本申请的实施例提供了一种光纤光栅解调仪,包括:温度控制系统;工作腔,包括光纤光栅解调仪的光学器件;保温层,包裹所述工作腔,用于隔离所光学器件与工作腔外部的热交换;其中所述温度控制系统与所述工作腔耦合,用以调节所述工作腔内的温度。
在第二个方面,本申请的实施例提供了一种光纤光栅解调仪的温度控制方法,包括:
检测光纤光栅解调仪所包括的工作腔内的温度,其中所述工作腔包括所述光纤光栅解调仪的光学器件;
由光纤光栅解调仪所包括的温度控制系统确定所检测的工作腔内的温度是否满足设定的温度阈值;
如果不满足所设定的温度阈值,则调整所述温度控制系统的温度控制电路的输出功率,以使得工作腔内的温度满足所述温度阈值。
本申请的实施例可以大大扩展光纤光栅解调仪的工作温度范围。通过选择效能较高的加热制冷装置,仪器的工作温度甚至能扩展到-40℃~70℃。本申请的实施例还可以通过较精确的温度控制提高光电元器件的性能,提高光纤光栅解调仪的解调精度,延长仪器使用寿命,增强可靠性。
附图说明
下面结合附图对本发明的示例性实施例进行进一步说明。
图1是根据本申请的示例性实施例,光纤光栅解调仪的结构框图。
图2是根据本申请的示例性实施例,光纤光栅解调仪的结构框图。
图3是根据本申请的示例性实施例,光纤光栅解调仪的温度控制方法的流程图。
具体实施方式
图1示出,根据本申请的示例性实施例,光纤光栅解调仪的结构框图。该光纤光栅解调仪例如可以适用于衍射光栅型光纤光栅解调仪。
在图1中,温度控制电路标记为101;光开关标记为102;光源标记为103;光电转换模块标记为104;连接至光开关102的光纤标记为105;连接至上位机的数据线标记为106;工作腔标记为107;温度传感器电源及数据线标记为108;制冷加热器的控制及电源线标记为109;保温层标记为110;光纤标记为111;环形器标记为112;制冷加热器标记为113;温度传感器标记为114;光纤光栅解调仪机箱标记为115。
在一个实施例中,该光纤光栅解调仪包括工作腔107和温度控制系统。所述工作腔107和温度控制系统可以被布置在光纤光栅解调仪机箱115中。该光纤光栅解调仪还包括容纳在工作腔107中的光学器件,例如光源103、光开关102、光电转换模块104和环形器112。光开关112连接到光纤105的一端,光纤105的另一端连接至光纤光栅传感器(未示出)。光纤111连接光开关102和环形器112。光源103和光电转换模块104均分别与环形器112相耦合。
工作腔107可以使用导热材质制作,例如使用金属等导热性能较好的材质来制作。工作腔107外部可以紧密地包裹有保温层110,以使得工作腔107内部与外部的热量交换尽量地减少。连接至光开关102的光纤105和连接至上位机的数据线106被通过在工作腔107侧壁上开出的小孔引入光纤光栅解调仪和引出至上位机。所述开出的小孔尽可能地小,以降低工作腔107内部与外部的热量交换。
在工作时,该光纤光栅解调仪通过光纤105从光纤光栅传感器接收光信号,通过光源103、光开关102、光纤111、环形器112和光电转换模块104对所接收的光信号进行衍射,以把所接收的光信号的各波长在空间上分离开,以实现光电信号的转换。然后,把转换所得的电信号通过连接至上位机的数据线106传送到上位机,例如计算机,以进行进一步的分析和处理。
所述光纤光栅解调仪所包括的温度控制系统,用于调节所述工作腔107中 的温度,使得工作腔中的光学器件工作在适当的温度范围内。根据一种示例性实施例,该温度范围可以是30℃~45℃。由于工作腔内的温度可以被调节到适当的温度,所以工作腔内的光学器件能够稳定地工作。从而,使得该光纤光栅解调仪能够在宽范围的工作环境中运行,例如,即使光纤光栅解调仪机箱115处于-40℃~70℃的温度范围,该光纤光栅解调仪仍然能够正常运行。
所述温度控制系统可以包括温度控制电路101、加热制冷器113和温度传感器114。在一个实施例中,加热制冷器113可以包括半导体制冷器113。半导体制冷器113可以配备有散热片和风扇,例如可以具有冷热面散热片与散热风扇。半导体制冷器113的工作面可以紧贴于工作腔107的外表面处。半导体制冷器113可以通过供电与控制线109与温度控制电路101相耦合。温度传感器114可以通过温度传感器电源及数据线108与温度控制电路101相耦合。温度传感器电源及数据线108可以穿过所述工作腔107侧壁中所开出的小孔连接至温度控制电路101。所述开出的小孔尽可能地小,以降低工作腔107内部与外部的热量交换。温度传感器114可以包括由多个温度传感器组成的温度传感器组。温度传感器组可以布置在工作腔107内的各个位置,例如可以布置在工作腔107的光学器件相对密集的位置处。温度传感器114可以实时地或者周期性地获得所述工作腔107内的温度,通过温度传感器电源及数据线108传送给温度控制电路101,作为温度控制电路101控制工作腔107内的温度的依据。
半导体制冷器113包括至少一对N型半导体材料和P型半导体材料,它们联结成电偶对。虽然在本领域中常被称为“制冷器”,但是半导体制冷器不仅能够制冷,而且能够加热。例如,当半导体制冷器113接通直流电流后,如果电流从N型元件流向P型元件(这称为正向电流),则半导体制冷器113吸收热量,达到降温的效果;如果电流从P型元件流向N型元件(这称为反向电流)),则释放热量,达到升温的效果。
温度控制电路101接收来自温度传感器114的温度信号。例如,当温度传感器114所反馈的信号指示最低温度低于30℃或者接近30℃,温度控制电路101 可以发信号至半导体制冷器113,增加半导体制冷器113的输出(例如输出功率或持续时间),从而相应地升高工作腔107内的温度。通过这样的方式,使得工作腔107内的温度维持在不低于30℃的合适温度范围内,以使得工作腔107内的各光学器件的工作性能稳定。为了提高工作腔107内的温度,温度控制电路101可以向半导体制冷器113施加反向电流并可以增大所施加的电流的大小。
反之,例如当温度传感器114的反馈信号所指示的最高温度高于45℃或者接近45℃,温度控制电路101可以发信号至半导体制冷器113,增加半导体制冷器113的输出,从而相应地降低工作腔107内的温度。通过这样的方式,使得工作腔107内的温度维持在不高于45℃的合适温度范围内,以使得工作腔107内的各光学器件的工作性能稳定。为了降低工作腔107内的温度,温度控制电路101可以向半导体制冷器113施加正向电流并可以增大所施加的电流的大小。
温度控制电路101可以按照上述的方式操作,直到温度传感器组114所反馈的温度处于一个合适的范围,例如,30℃~45℃,或者其他能够确保工作腔107内的各光学器件的性能稳定的温度范围。
在一个实施例中,可以根据实际的外界的温度情况,设置一个固定的阈值T。例如,如果光纤光栅解调仪机箱115外面比较冷,该阈值T可以设置得倾向于45℃,例如44℃;而如果光纤光栅解调仪机箱115外面比较热,则该阈值T可以设置得倾向于30℃,例如31℃。该阈值也可以根据实际工作的考虑而设置成其他的温度值。
在设置温度阈值T的情况下,当温度传感器114的反馈信号所指示的最高温度高于所设置的阈值T,温度控制电路101可以发信号至半导体制冷器113,增加半导体制冷器113的输出,相应地降低工作腔107内的温度。通过这样的方式,使得工作腔107内的温度维持在不高于所设置的阈值T,以使得工作腔107内的各光学器件的工作性能稳定。为了使得工作腔107内的最高温度不高于所设置的阈值T,温度控制电路101可以向半导体制冷器113施加正向电流并可以增大所施加的电流的大小。
当温度传感器114所反馈的信号指示最低温度低于所设置的阈值T,温度控制电路101可以发信号至半导体制冷器113,增加半导体制冷器113的输出,相应地升高工作腔107内的温度。通过这样的方式,使得工作腔107内的温度维持在不低于所设置的阈值T,以使得工作腔107内的各光学器件的工作性能稳定。为了使得工作腔107内的最低温度不低于所设置的阈值T,温度控制电路101可以向半导体制冷器113施加反向电流并可以增大所施加的电流的大小。
当半导体制冷器113包括多对N型半导体材料和P型半导体材料时,温度控制电路101向半导体制冷器113施加的电流的大小还可以随着半导体材料的对数的增多提高,以进一步提高升温或者降温的速度。
图2示出是根据本申请的示例性实施例,光纤光栅解调仪的结构框图。该光纤光栅解调仪例如可以用于扫描滤波型光纤光栅解调仪。
在图2中,温度控制电路标记为201;连接至环形器的光纤标记为205;连接至上位机的数据线标记为206;工作腔标记为207;温度传感器电源及数据线标记为208;保温层标记为210;光纤标记为211;环形器标记为212;温度传感器标记为214;光纤光栅解调仪机箱标记为215;扫描光源控制电路及光电检测电路标记为216;制冷器标记为217;加热器标记为218;扫描光源标记为219;光电探测器标记为220;制冷加热装置控制线及电源线标记为221;扫描光源和光电探测器的信号线及电源线标记为222。
在一个实施例中,该光纤光栅解调仪包括工作腔207和温度控制系统。所述工作腔207和温度控制系统可以被布置在光纤光栅解调仪机箱215中。该光纤光栅解调仪还包括容纳在工作腔107中的光学器件,例如扫描光源219、环形器212、光电探测器220、扫描光源控制电路及光电检测电路216。
工作腔207可以使用导热材质制作,例如使用金属等导热性能较好的材质制作。工作腔207外部可以紧密地包裹有保温层210,以使得工作腔207内部与外界的热量交换尽量地减少。
连接至环形器212的光纤205、扫描光源219和光电探测器220的信号线及 电源线222被通过在工作腔207侧壁上所开出的小孔引入工作腔207和引出至扫描光源控制电路及光电检测电路216。所述开出的小孔尽可能地小,以降低工作腔207内部与外部的热量交换。
在工作时,该光纤光栅解调仪通过光纤205从光纤光栅传感器(未示出)接收光信号,通过激光器扫描光源219和光电探测器220,把所接收的光信号滤波转换成电信号,然后发送给扫描光源控制电路及光电检测电路216,以进行进一步处理。扫描光源控制电路及光电检测电路216可以控制激光器扫描光源219的激光发光的频率与功率,并且把所处理的电信号通过连接至上位机的数据线206传送到上位机,例如计算机,以进行进一步的分析和处理。
在一个实施例中,扫描光源控制电路及光电检测电路216也可以安置在工作腔207内,从而减少在所述工作腔207侧壁上开孔。
所述光纤光栅解调仪所包括的温度控制系统,用于调节所述工作腔207中的温度,使得工作腔中的光学器件工作在适当的温度范围内。根据一种示例性实施例,该温度范围可以是30℃~45℃。所述温度控制系统可以包括温度控制电路201、制冷器217(例如小型制冷压缩机)、加热器218(例如正温度系数(PTC)热敏电阻加热器)。制冷器217和加热器218作为温度控制系统的执行器,分别通过制冷加热装置的控制线及电源线221与温度控制电路201相耦合。温度控制电路201可以通过温度传感器214,获得工作腔内温度,并以此为依据通过一定的控制策略控制工作腔内的温度。
温度传感器214可以通过温度传感器电源及数据线208与温度控制电路201相耦合。温度传感器电源及数据线208可以穿过所述工作腔207侧壁中所开出的小孔连接至温度控制电路201。所述开出的小孔尽可能地小,以降低工作腔207内部与外部的热量交换。温度传感器214以包括由多个温度传感器组成的温度传感器组。温度传感器组可以布置在工作腔107内的各个位置,例如可以布置在工作腔207的光学器件相对密集的位置处。温度传感器214可以实时地或者周期性地获得所述工作腔内的温度,通过温度传感器数据线208传送给温度 控制电路201,作为温度控制电路201控制和调节工作腔207内的温度的依据。
制冷器217可以嵌入在所述工作腔207及包裹所述工作腔207的保温层210中。所述制冷器217可以接受所述温度控制电路201的指示使得工作腔207内的温度降低。制冷器217可以由温度控制电路201供电。
加热器218可以被安置在工作腔207内,例如,可以将其发热部件完全安置在工作腔207内。加热器218可以接受所述温度控制电路201的指示使得工作腔207内的温度升高。加热器218可以由温度控制电路201供电。
温度控制电路201接收来自温度传感器组214的温度信号。例如,当温度传感器214指示的最低温度低于30℃或者接近30℃,温度控制电路201可以发信号至加热器218,增加加热器218的输出,从而相应地升高工作腔207内的温度。通过这样的方式,使得工作腔207内的温度维持在不低于30℃的合适温度范围,以使得工作腔207内的各光学器件的工作性能稳定。
反之,例如当温度传感器214的反馈信号所指示的最高温度高于45℃或者接近45℃,温度控制电路201可以发信号至制冷器217,增加制冷器217的输出,从而相应地降低工作腔207内的温度。通过这样的方式,使得工作腔207内的温度维持不高于45℃的合适温度范围,以使得工作腔207内的各光学器件的工作性能稳定。
温度控制电路201可以持续此操作,直到温度传感器组214所反馈的温度处于一个合适的温度范围,例如,30℃~45℃,或者其他能够保证工作腔207内的各光学器件的性能稳定的温度范围。
在一个实施例中,可以根据实际的外界的温度情况,设置一个温度阈值T。例如,如果光纤光栅解调仪机箱215外面比较冷,该阈值T可以设置得倾向于45℃,例如44℃;而如果光纤光栅解调仪机箱215外面比较热,则该阈值T可以设置得倾向于30℃,例如31℃。该温度阈值也可以根据实际工作的考虑而设置成其他的温度值。
在设置阈值T的情况下,当温度传感器214的反馈信号所指示的最高温度 高于所设置的阈值T,温度控制电路201可以发信号至制冷器217,增加制冷器217的输出,相应地降低工作腔207内的温度。通过这样的方式,使得工作腔207内的温度维持在不高于所设置的阈值T,以使得工作腔207内的各光学器件的工作性能稳定。
当温度传感器214所反馈的信号指示最低温度低于所设置的温度阈值T,温度控制电路201可以发信号至加热器218,增加加热器218的输出,相应地升高工作腔207内的温度。通过这样的方式,使得工作腔207内的温度维持在不低于所设置的阈值T,以使得工作腔207内的各光学器件的工作性能稳定。
可以把图1所示的温度控制系统应用到如2所示的光纤光栅解调仪,也可以把图2所示的温度控制系统应用到如1所示的光纤光栅解调仪。本领域技术人员容易进行这样的替换。
图3是本发明的一种光纤光栅解调仪的温度控制方法300的流程图,其中该光纤光栅解调仪可以包括温度控制系统和工作腔,该工作腔容纳光纤光栅解调仪的光学器件。在一个实施例中,所述工作腔外部紧密地包裹有保温层,以使得工作腔内部与外部的热量交换尽量地减少。该方法可以采用软件、硬件或者软件和硬件的结合的方式在温度控制系统的温度控制电路中来实现。
该方法300开始于步骤301,在该步骤中,该温度控制系统开始上电,此时光纤光栅解调仪可以处于工作状态,也可以不处于工作状态。接着,该方法进入到步骤302,在该步骤,该温度控制系统的温度控制电路检测光纤光栅解调仪内所包括的工作腔内的温度。例如,通过读取设置在工作腔内的温度传感器所感测到的信息来检测该温度。接着,该方法300进入到步骤303,在该步骤,判定所检测到的工作腔内的温度是否满足温度阈值T。如果满足阈值T,则该方法300返回到步骤302,继续对工作腔内的温度进行检测。如果不满足阈值T,则该方法300进入到步骤304,对工作腔内的温度进行调整。
在一种实施例中,光纤光栅解调仪的工作腔内的光学器件在接近室温的温度范围30℃~45℃的工作性能表现得较好,所以该阈值T可以选择温度范围 30℃~45℃中的任何一个值。另外,可以根据实际的外界的温度情况,设置一个阈值T。例如,如果该光纤光栅解调仪外面比较冷,该阈值T可以设置得倾向于45℃,例如44℃;而如果外面比较热,则该阈值T可以设置得倾向于30℃,例如31℃。该阈值也可以根据实际工作的考虑而设置成其他的温度值。
在方法300的步骤304中,如果所检测到的工作腔内的温度低于所设置的阈值,则可以调整温度控制电路的输出,以升高工作腔内的温度;如果所检测到的工作腔内的温度高于所设置的阈值,则可以调整温度控制电路的输出,以降低工作腔内的温度。
在一个实施例中,所述温度控制系统包括的加热制冷器可以采用半导体制冷器。当温度传感器的反馈信号所指示的最高温度高于所设置的阈值T,温度控制电路可以发信号至半导体制冷器,增加半导体制冷器的输出,相应地降低工作腔内的温度。通过这样的方式,使得工作腔内的温度维持在不高于所设置的阈值T,以使得工作腔内的各光学器件的工作性能稳定。为了使得工作腔内的最高温度不高于所设置的阈值T,温度控制电路可以向半导体制冷器施加正向电流并可以增大所施加的电流的大小。
当温度传感器所反馈的信号指示最低温度低于所设置的阈值T,温度控制电路可以发信号至半导体制冷器,增加半导体制冷器的输出,相应地升高工作腔内的温度。通过这样的方式,使得工作腔内的温度维持在不低于所设置的阈值T,以使得工作腔内的各光学器件的工作性能稳定。为了使得工作腔内的最低温度不低于所设置的阈值T,温度控制电路可以向半导体制冷器施加反向电流并可以增大所施加的电流的大小。
在一个实施例中,所述温度控制系统可以包括制冷器和加热器。当温度传感器的反馈信号所指示的最高温度高于所设置的阈值T,温度控制电路可以发信号至制冷器,增加制冷器的输出,相应地降低工作腔内的温度。通过这样的方式,使得工作腔内的温度维持在不高于所设置的阈值T,以使得工作腔内的各光学器件的工作性能稳定。
当温度传感器指示的最低温度低于所设置的阈值T,温度控制电路可以发信号至加热器,增加加热器的输出,相应地升高工作腔内的温度。通过这样的方式,使得工作腔内的温度维持在不低于所设置的阈值T,以使得工作腔内的各光学器件的工作性能稳定。
在调整温度控制电路的输出之后,可以返回到步骤302,开始立即再次检测工作腔内的温度;也可以设置一个延迟,例如1-5分钟,之后再次检测工作腔内的温度。
然后,该方法300重复上述步骤,以确保工作腔的温度等于或者接近所设置的阈值。
在一个实施例中,步骤303的温度阈值可以是一个温度范围,该温度范围包括上限温度和下限温度。例如,该温度范围可以是30℃~45℃,此时上限温度是45℃,下限温度是30℃。如果所检测到的温度处于所设定的温度范围,则该方法300返回到步骤302继续检测工作腔内的温度。否则,该方法300进入到步骤304,调整温度控制电路的输出,以便升高或者减低工作腔内的温度,从而使得工作腔的温度落在所设定的温度范围内。调整温度控制电路的输出功率的方式可以参照上述的方式进行,以使得工作腔的温度处于所设置的温度范围。
这里所设定的温度范围不一定要限制在30℃~45℃这个温度范围,也可以例如是31℃~44℃,或者更窄些,或者更宽些。对该温度范围的设定可以进一步参考工作腔内的光学器件的工作参数,予以调整。
以上结合附图描述了本申请的示例性实施方式,但本发明的保护范围并不局限于此,熟悉本技术领域的技术人员在本申请揭露的技术范围内,可能想到各种变化或替换形式。

Claims (18)

  1. 一种光纤光栅解调仪,包括:
    光学器件;
    温度控制系统;
    工作腔,用于容纳所述光学器件;
    保温层,包裹所述工作腔,用于隔离所述光学器件与工作腔外部的热交换,
    其中所述温度控制系统与所述工作腔耦合,用以调节所述工作腔内的温度。
  2. 根据权利要求1所述的光纤光栅解调仪,其中,所述温度控制系统包括温度控制电路、温度传感器和温度调节装置,其中所述温度传感器与所述温度控制电路相耦合,所述温度调节装置与所述温度控制电路相耦合。
  3. 根据权利要求2所述的光纤光栅解调仪,其中,所述温度传感器安装在工作腔内侧。
  4. 根据权利要求3所述的光纤光栅解调仪,其中,所述温度传感器包括一组温度传感器。
  5. 根据权利要求2所述的光纤光栅解调仪,其中,所述温度调节装置包括制冷加热器。
  6. 根据权利要求5所述的光纤光栅解调仪,其中,所述制冷加热器包括既能制冷又能加热的半导体制冷器。
  7. 如权利要求6所述的光纤光栅解调仪,其中,所述半导体制冷器被安装成使得它的工作面紧贴于工作腔的外表面处。
  8. 根据权利要求5所述的光纤光栅解调仪,其中,所述制冷加热器包括加热器和制冷器,所述加热器被完全安置在工作腔内,并且所述制冷器被嵌入在所述工作腔及包裹所述工作腔的保温层中。
  9. 根据权利要求1-8中任何一项所述的光纤光栅解调仪,其中,所述光学器件包括光开关、光源、光电转换模块和环形器。
  10. 根据权利要求1-8中任何一项所述的光纤光栅解调仪,其中,所述光学器件包括扫描光源、环形器、光电探测器。
  11. 根据权利要求10所述的光纤光栅解调仪,还包括扫描光源控制电路及光电检测电路,所述扫描光源控制电路及光电检测电路位于所述工作腔的外部并且与所述扫描光源和光电探测器相耦合。
  12. 根据权利要求1-8中任何一项所述的光纤光栅解调仪,其中所述温度控制系统被配置成调节所述工作腔内的温度在30℃~45℃。
  13. 一种光纤光栅解调仪的温度控制方法,包括:
    检测光纤光栅解调仪所包括的工作腔内的温度,其中,所述工作腔容纳所述光纤光栅解调仪的光学器件;
    由光纤光栅解调仪所包括的温度控制系统确定所检测的工作腔内的温度是否满足设定的温度阈值;
    如果不满足所设定的温度阈值,则调整所述温度控制系统的温度控制电路的输出,以使得工作腔内的温度满足所述温度阈值。
  14. 根据权利要求13所述的光纤光栅解调仪的温度控制方法,其中,所述温度阈值是一个温度范围,包括上限温度和下限温度。
  15. 根据权利要求13所述的光纤光栅解调仪的温度控制方法,其中,所述温度控制系统包括半导体制冷器,所述半导体制冷器被安装成使得它的工作面紧贴于工作腔的外表面处,其中所述工作腔外包裹有保温层,调整所述温度控制系统的温度控制电路的输出的步骤包括:通过增大半导体制冷器的输出功率来调整工作腔内的温度。
  16. 根据权利要求13所述的光纤光栅解调仪的温度控制方法,其中,所述温度控制系统包括制冷器和加热器,所述加热器被安置在工作腔内,并且所述制冷器被嵌入在所述工作腔及包裹所述工作腔的保温层中,调整所述温度控制系统的温度控制电路的输出的步骤包括:通过增大制冷器的输出功率或增大加热器的输出功率,来调整工作腔内的温度。
  17. 根据权利要求13所述的光纤光栅解调仪的温度控制方法,其中所述光学器件包括光开关、光源、光电转换模块和环形器。
  18. 根据权利要求13所述的光纤光栅解调仪的温度控制方法,其中所述光学器件包括扫描光源、环形器、光电探测器,所述光纤光栅解调仪还包括扫描光源控制电路及光电检测电路,扫描光源控制电路及光电检测电路位于所述工作腔的外部并且与所述扫描光源和光电探测器相耦合。
PCT/CN2015/087489 2014-08-25 2015-08-19 光纤光栅解调仪及其温度控制方法 WO2016029812A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15834980.3A EP3187833B1 (en) 2014-08-25 2015-08-19 Optical fiber grating demodulator and temperature control method thereof
JP2016570156A JP6340089B2 (ja) 2014-08-25 2015-08-19 ファイバブラッググレーティング復調器及びその温度制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410420013.4A CN105444789A (zh) 2014-08-25 2014-08-25 一种光纤光栅解调仪及其温度控制方法
CN201410420013.4 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016029812A1 true WO2016029812A1 (zh) 2016-03-03

Family

ID=55398748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087489 WO2016029812A1 (zh) 2014-08-25 2015-08-19 光纤光栅解调仪及其温度控制方法

Country Status (4)

Country Link
EP (1) EP3187833B1 (zh)
JP (1) JP6340089B2 (zh)
CN (1) CN105444789A (zh)
WO (1) WO2016029812A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413616A (zh) * 2020-10-14 2021-02-26 湖北工业大学 一种高温锅炉自动温度场测量吹灰系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI638833B (zh) 2010-11-30 2018-10-21 中外製藥股份有限公司 細胞傷害誘導治療劑
CN106370203B (zh) * 2016-10-31 2023-11-17 苏州光环科技有限公司 光纤环温度激励装置
CN107894249A (zh) * 2017-12-08 2018-04-10 北京航天控制仪器研究所 一种光纤光栅解调仪的标定、校准装置
CN108563263A (zh) * 2017-12-13 2018-09-21 太原航空仪表有限公司 一种用于机载电子设备的加热装置
CN108645534B (zh) * 2018-05-24 2020-05-12 哈尔滨博检精测科技有限公司 基于光纤光栅的列车轴温轮温在线监测系统
CN108413994B (zh) * 2018-05-25 2024-05-03 陕西哲晟电力工程有限公司 一种电力光纤传感装置
CN112996437A (zh) * 2018-11-20 2021-06-18 深圳市大耳马科技有限公司 光纤传感器自适应调节调节方法、装置及系统
CN111579757A (zh) * 2020-05-13 2020-08-25 云南电网有限责任公司电力科学研究院 绝缘油中溶解气体在线监测设备光电转换模块的冷却装置
CN115166916A (zh) * 2022-05-06 2022-10-11 盛纬伦(深圳)通信技术有限公司 一种温度自适应分路器
CN116009621A (zh) * 2022-12-12 2023-04-25 西北工业大学 旋翼系统地面测试用调制解调器的分体式温控系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030168A1 (en) * 2002-09-30 2004-04-08 Optillion Ab Temperature control for semiconductor lasers
CN101621178A (zh) * 2009-07-17 2010-01-06 北京大学 激光器自动锁模控制器
CN102607613A (zh) * 2012-03-28 2012-07-25 中国航空工业集团公司北京长城计量测试技术研究所 一种光纤传感波长解调设备
CN202795081U (zh) * 2012-09-12 2013-03-13 济南兰光机电技术有限公司 控温罩装置
CN103717033A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 一种机箱,及温控设备
CN204177401U (zh) * 2014-08-25 2015-02-25 同方威视技术股份有限公司 一种光纤光栅解调仪

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302312A (ja) * 1987-06-02 1988-12-09 Mitsutoyo Corp 測長システム
DE19701221C1 (de) * 1997-01-16 1998-04-23 Abb Research Ltd Verfahren zur Temperaturkompensation von Meßsignalen eines faseroptischen Sensors
US20030063887A1 (en) * 2001-10-03 2003-04-03 Lowell Seal Packaging structure for optical components
US20030063886A1 (en) * 2001-10-03 2003-04-03 Lowell Seal Methods for thermal control of optical components
JP4421229B2 (ja) * 2003-07-11 2010-02-24 株式会社東芝 ファイバブラッググレーティング物理量計測方法および装置
CN1699925A (zh) * 2005-03-28 2005-11-23 浙江大学 温度控制光纤布拉格光栅的波长解调方法及其系统
JP2007108325A (ja) * 2005-10-12 2007-04-26 Oki Electric Ind Co Ltd 波長調整装置および波長調整方法
JP2007123541A (ja) * 2005-10-27 2007-05-17 Aisin Seiki Co Ltd 機能部品内蔵装置
CN201130028Y (zh) * 2007-12-07 2008-10-08 天津国品光电技术有限公司 一种光纤光栅传感器解调仪
CN101221053A (zh) * 2008-01-23 2008-07-16 中国科学院上海光学精密机械研究所 波长可调谐光源
JP5197054B2 (ja) * 2008-02-15 2013-05-15 株式会社Ihi検査計測 ひずみ計測装置及びその計測方法
CN103575331B (zh) * 2013-10-16 2016-08-17 哈尔滨工业大学 一种高温结构温度和应变的同时测试方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004030168A1 (en) * 2002-09-30 2004-04-08 Optillion Ab Temperature control for semiconductor lasers
CN101621178A (zh) * 2009-07-17 2010-01-06 北京大学 激光器自动锁模控制器
CN102607613A (zh) * 2012-03-28 2012-07-25 中国航空工业集团公司北京长城计量测试技术研究所 一种光纤传感波长解调设备
CN202795081U (zh) * 2012-09-12 2013-03-13 济南兰光机电技术有限公司 控温罩装置
CN103717033A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 一种机箱,及温控设备
CN204177401U (zh) * 2014-08-25 2015-02-25 同方威视技术股份有限公司 一种光纤光栅解调仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413616A (zh) * 2020-10-14 2021-02-26 湖北工业大学 一种高温锅炉自动温度场测量吹灰系统
CN112413616B (zh) * 2020-10-14 2022-11-18 湖北工业大学 一种高温锅炉自动温度场测量吹灰系统

Also Published As

Publication number Publication date
EP3187833A1 (en) 2017-07-05
JP2017513011A (ja) 2017-05-25
JP6340089B2 (ja) 2018-06-06
CN105444789A (zh) 2016-03-30
EP3187833B1 (en) 2020-03-25
EP3187833A4 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
WO2016029812A1 (zh) 光纤光栅解调仪及其温度控制方法
US7795582B2 (en) System and method of monitoring with temperature stabilization
US8707714B2 (en) Component temperature control
JP2019503080A5 (zh)
CN107579429B (zh) 半导体激光器及其温度控制方法
JP2012168410A (ja) 光送信装置、光送受信装置、制御方法および制御プログラム
WO2005081865A2 (en) Power optimization for operation of optoelectronic device with thermoelectric cooler
US20060239314A1 (en) Electro-optic transducer die mounted directly upon a temperature sensing device
US20090097527A1 (en) Temperature Measurement Apparatus for Optoelectronic Transceiver
US7706421B2 (en) Temperature sensing device patterned on an electro-optic transducer die
JP5420442B2 (ja) 光モジュール、筐体温度推定方法、筐体温度推定装置及び筐体温度推定プログラム
JP2010251646A (ja) 光送信器、光送受信器、駆動電流制御方法、及び温度測定方法
JP7127548B2 (ja) 距離測定装置及びそのsn比を改善する方法
US9983371B2 (en) Optoelectronic transducer with integrally mounted thermoelectric cooler
US9059804B2 (en) High speed optical transceiver module
CN204177401U (zh) 一种光纤光栅解调仪
JP2008153529A (ja) 光送信器
CN210321776U (zh) 一种光纤光栅光源系统
JP2010212477A (ja) 半導体素子モジュール
US20150303652A1 (en) Temperature Controllable High Bit Rate Laser Diode
JP2006114774A (ja) 波長安定化半導体レーザ装置
KR101753246B1 (ko) 광 모듈 및 광 모듈의 동작온도 제어방법
US11258228B2 (en) Optical communication module
JP2005109357A (ja) 光送信器および発光素子の劣化判定方法
CN110542444A (zh) 一种光纤光栅解调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834980

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015834980

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834980

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016570156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE