WO2016029809A1 - 一种led直下式背光源及其发光方法 - Google Patents

一种led直下式背光源及其发光方法 Download PDF

Info

Publication number
WO2016029809A1
WO2016029809A1 PCT/CN2015/087463 CN2015087463W WO2016029809A1 WO 2016029809 A1 WO2016029809 A1 WO 2016029809A1 CN 2015087463 W CN2015087463 W CN 2015087463W WO 2016029809 A1 WO2016029809 A1 WO 2016029809A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
light
dissipating
emitting chip
led
Prior art date
Application number
PCT/CN2015/087463
Other languages
English (en)
French (fr)
Inventor
蔡鸿
Original Assignee
蔡鸿
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔡鸿 filed Critical 蔡鸿
Publication of WO2016029809A1 publication Critical patent/WO2016029809A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the invention relates to a structure of a backlight and a method for emitting the same, in particular to a direct type backlight with LED as a light source and a light emitting method thereof.
  • backlighting is a form of illumination that is often used in LCD displays.
  • the difference between backlight and front light is that the backlight is illuminated from the side or the back, while the front light is illuminated from the front as the name suggests. They are used to increase the illumination in low-light environments and the brightness of computer monitors and LCD screens to produce light in a similar way to CRT displays.
  • the light source of the led backlight may be an incandescent light bulb, an electro-optic panel (ELP), a light emitting diode (LED), a cold cathode tube (CCFL), or the like. Electro-optic panels provide uniform light across the surface, while other backlight modules use diffusers to provide uniform light from uneven sources.
  • the backlight can be any color, and the monochrome liquid crystal usually has backlights such as yellow, green, blue, and white. The color display uses white white light because it covers the most shades of light.
  • LED backlights are used on compact LCD panels. His light is usually colored, although white backlighting has become more common. Electro-optic panels are often used on large displays where uniform backlighting is important. The electro-optic panel needs to be driven via a high-voltage alternating current, which is provided by the inverter converter circuit. Cold cathode tubes are used on computer monitors and are usually white in color, which also requires the use of inverters and diffusers. LED backlighting enhances the color performance of LCD displays. The LED light is produced by three separate LEDs, providing a color spectrum that closely matches the LCD dot filter itself.
  • the process of direct-type backlight is the simplest, which does not require a light guide plate.
  • the LED array is placed at the bottom of the light box, and the light emitted from the LED is reflected by the bottom surface and the side surface, and then passes through the diffusion plate and the optical mode of the surface.
  • the group is evenly shot.
  • the thickness of the direct-lit backlight is determined by the distance between the bottom of the light box and the diffuser plate. Generally, the thicker the thickness, the better the light uniformity of the backlight. In the case of thinner backlights, color and brightness uniformity is the key to direct-lit backlighting. However, the technical cost of adjusting the uniformity of color and brightness is very high. At present, there is no related technology to solve the problem of thicker backlights by changing the light source and arrangement of the light source, and this is The main drawbacks of technology.
  • the existing liquid crystal display products mainly use direct-lit LED backlight technology or side-in LED backlight technology to illuminate the liquid crystal panel to realize the display of the screen.
  • the direct-lit LED backlight technology mainly uses an LED-mounted lens as a core component, and uses a lens to expand the divergence angle of the LED, and uses an air groove formed between the LED and the diffusion plate to provide a light-mixing distance for the LED light, thereby further making the LED light After mixing uniformly, the diffusion plate is reached, and the LED light is further diffused by the diffusion plate, and then uniformly irradiated onto the entire liquid crystal panel.
  • the main method is to increase the number of LEDs or increase the light mixing distance to improve the mixing effect of the light, so that the LED light can be uniformly illuminated onto the liquid crystal panel to improve the display effect.
  • the number of LEDs is increased, the cost of the LEDs and lenses is expensive, which leads to a substantial increase in the cost of the whole machine.
  • the method of increasing the mixing distance leads to an increase in the thickness of the product, which in turn affects the appearance of the overall product. Degree, and this is another disadvantage of the prior art.
  • the invention provides an LED direct type backlight and a method for emitting the same, which can significantly reduce the overall thickness of the backlight product by improving the structure and the illumination mode, and this is the main object of the invention.
  • an LED direct type backlight comprising a diffusion plate, a bottom case and a light source unit, wherein the diffusion plate is connected to the bottom case, and surrounds the bottom case by the diffusion plate Forming an air groove, an inner side of the diffuser plate forms a top surface of the air groove, an inner side surface of the bottom case forms a bottom surface of the air groove, the light source unit is disposed in the air groove, and the light source unit is in operation The light generated by the illuminating light is transmitted through the diffusing plate to the external environment to form a backlight.
  • the light source unit includes a plurality of illuminants, and the illuminants are sequentially arranged in the air groove, and each of the illuminants is laterally disposed.
  • the angle between the normal light intensity direction of each of the illuminants and the diffuser plate is within plus or minus thirty degrees.
  • the direction of the normal light intensity of each of the illuminators is parallel to the diffusing plate.
  • the light source unit includes a plurality of light strips, and the plurality of light strips are arranged laterally or longitudinally in the air slot.
  • Each of the light strips includes a plurality of the illuminators, and a fixed strip is fixed on the inner side surface of the bottom shell A plurality of the light strips are erected in the air groove through the fixing strip.
  • a reflector is provided on the inner side of the bottom case, by means of which the light is reflected as far as possible to the direction of the diffuser.
  • the illuminant is an LED double-sided light-emitting chip, and the LED double-sided light-emitting chip is disposed on a transparent heat-dissipating plate, and the transparent heat-dissipating plate is longitudinally inserted on the connecting seat, by using the LED double-sided light-emitting chip, the transparent heat-dissipating plate, and
  • the connecting block is combined to form a light strip, and the structure of the transparent heat sink longitudinally inserted on the connecting seat determines a structural configuration of the illuminating body laterally disposed in the air groove, and at the same time determines the illuminating of each illuminating body the way.
  • the transparent heat dissipating plate comprises a transparent heat dissipating substrate and a heat dissipating conductive film coating layer, wherein the heat dissipating conductive film coating layer is adhered to the outer surface of the transparent heat dissipating substrate, wherein the transparent heat dissipating substrate is made of a transparent heat dissipating material, and the heat dissipating conductive film coating layer is
  • the heat-dissipating heat-dissipating conductive material comprises a full-fill portion and a window portion, the full-fill portion and the window portion are spaced apart, and the LED double-sided light-emitting chip is horizontally disposed at the position of the window portion, at the moment, the LED The light generated by the outer side of the double-sided light-emitting chip is directly emitted into the external environment, and the light generated by the inner side of the LED double-sided light-emitting chip passes through the window portion and transmits the transparent heat-dissipating substrate to
  • the transparent heat-dissipating substrate is glass, and the heat-dissipating conductive film plating layer is silver paste.
  • the heat-dissipating conductive film coating layer is silver paste
  • the silver paste layer also has a function of light reflection while radiating heat conduction.
  • a plurality of heat-conducting support wires are disposed on the outer surface of the transparent heat-dissipating substrate and in the window portion, the heat-conducting support wires are the same as the material of the heat-dissipating conductive film plating layer, each of the strips Both ends of the heat-conducting support wire are connected to the full-filled portion, and the heat-conducting support wire is disposed on a bottom surface of the LED double-sided light-emitting chip, and heat generated by the operation of the LED double-sided light-emitting chip is conducted through the heat-conductive support wire.
  • the electrodes on both sides of the bottom surface of the LED double-sided light-emitting chip are electrically connected to the top surface of the full-side portion on both sides of the window portion, and the LED double-sided light-emitting chip working place
  • the generated heat is directly transmitted to the transparent heat dissipating substrate, and the heat is radiated simultaneously.
  • the light emitted from the bottom surface of the LED double-sided light emitting chip passes through the window portion and transmits the transparent heat dissipating substrate to the external environment.
  • An illuminating body heat-dissipating light-emitting structure wherein the illuminating body is an LED double-sided light-emitting chip, and the LED double-sided light-emitting chip is disposed on a transparent heat-dissipating plate, wherein the transparent heat-dissipating plate comprises a transparent heat-dissipating substrate and a heat-dissipating conductive film coating layer a conductive thin film coating is attached on an outer surface of the transparent heat dissipation substrate, the transparent
  • the heat dissipating substrate is made of a light-transmissive heat-dissipating material
  • the heat-dissipating conductive film coating layer is made of a heat-dissipating heat-dissipating conductive material
  • the heat-dissipating conductive film coating layer includes a full portion and a window portion, the full-fill portion and the window portion are spaced apart, and the LED double The surface
  • the LED double-sided light-emitting chip can be horizontally disposed at the position of the window in two ways, in the form of a dress and a flip-chip, when the LED double-sided light-emitting chip is being mounted, And a plurality of heat conducting support lines are disposed on the outer surface of the transparent heat dissipating substrate, and the heat conducting support lines are the same as the material of the heat dissipating conductive film plating layer, and both ends of each of the heat conducting support lines are full
  • the connecting portion is connected, the heat conducting support wire is disposed on a bottom surface of the LED double-sided light emitting chip, and the LED double-sided light emitting chip worker The generated heat is conducted to the transparent heat dissip
  • the electrodes on both sides of the bottom surface of the LED double-sided light-emitting chip are electrically connected to the top surface of the full-side portion on both sides of the window portion, and the LED double-sided light-emitting chip working place
  • the generated heat is directly transmitted to the transparent heat dissipating substrate, and the heat is radiated simultaneously.
  • the light emitted from the bottom surface of the LED double-sided light emitting chip passes through the window portion and transmits the transparent heat dissipating substrate to the external environment.
  • the diffusion plate is connected to the bottom case, and an air groove is formed around the bottom case by the diffusion plate, and the inner side of the diffusion plate forms a top surface of the air groove, the bottom The inner side of the casing forms a bottom surface of the air groove, and the light source unit is disposed in the air groove.
  • the light generated by the light source unit is transmitted through the diffusion plate to the external environment, and the light source unit includes a plurality of illuminants, wherein the illuminants are sequentially arranged in the air groove, and each of the illuminants is laterally disposed in the air groove such that a normal light intensity direction of each of the illuminants is parallel to the diffusion plate.
  • the light source unit includes a plurality of light strips, and the plurality of light strips are arranged laterally or longitudinally in the air slot.
  • Each of the light strips includes a plurality of the illuminators, and a fixed strip is fixed on the inner side surface of the bottom shell a plurality of the light strips are erected in the air groove through the fixing strip, and a reflective plate is disposed on the inner side surface of the bottom case, and the light reflecting body is reflected to the maximum extent by the reflecting plate Plate direction.
  • the conventional direct-type backlight technology mainly uses an LED mounting lens as a core component, and uses a lens to expand the divergence angle of the LED.
  • the conventional backlight illuminators are horizontally disposed in the air slot, and the illuminant is
  • the normal light intensity direction is generally perpendicular or close to the vertical of the diffuser plate, while the conventional backlight illuminator generally has a light-emitting angle of one hundred and twenty degrees, and generally increases to one hundred and forty degrees after the lens is added, and the height of the air groove
  • the increase can increase the area of the illuminating body to the spot on the diffusing plate, which is the core reason why the thickness of the conventional direct type backlight is generally too large, and the normal light of each illuminant in the present invention
  • the strong direction is disposed parallel or close to the diffusion plate, so the product of the present invention does not need to increase the height of the air groove to increase the projection area, so that the overall thickness of the backlight product of the present invention can
  • Figure 1 is a perspective exploded view of the present invention.
  • Figure 2 is a schematic cross-sectional view of the present invention.
  • FIG 3 is an exploded perspective view of a light source unit of the present invention.
  • Figure 4 is an exploded perspective view of the fixing strip and related components of the present invention.
  • FIG. 5 is a schematic structural view of a positive-loading chip of the present invention.
  • FIG. 6 is a schematic structural view of a flip chip according to the present invention.
  • Figure 7 is a schematic view showing the structure of the full part including the heat-dissipating heat-dissipating portion and the conductive heat-dissipating portion.
  • an LED direct type backlight includes a diffusion plate 10, a bottom case 20, and a light source unit 30, wherein the diffusion plate 10 is coupled to the bottom case 20, and with the diffusion plate 10 An air groove 40 is formed around the bottom case 20.
  • the inner side surface 11 of the diffuser plate 10 forms the top surface of the air groove 40, and the inner side surface 21 of the bottom case 20 forms the bottom surface of the air groove 40.
  • the light source unit 30 is disposed in the air tank 40.
  • light generated by the light-emitting unit 30 is electrically transmitted through the diffuser 10 to the external environment to form a backlight.
  • a connecting strip ring is disposed around the diffusing plate 10 and the bottom case 20 as needed, and the diffusing plate 10 and the edge of the bottom case 20 are respectively inserted in the connecting strip, thereby fixing the diffusing plate. The relative position between the 10 and the bottom case 20.
  • the light source unit 30 includes a plurality of illuminants 31, and a plurality of the illuminants 31 are sequentially arranged in the air tank 40.
  • Each of the illuminants 31 is laterally disposed in the air groove 40.
  • the angle between the normal light intensity direction of each of the illuminants 31 and the diffuser 10 is within plus or minus thirty degrees, wherein the preferred embodiment is the normal light intensity of each of the illuminants 31.
  • the directions are all parallel to the diffusion plate 10.
  • the traditional direct-type backlight technology mainly uses an LED-mounted lens as a core component, and uses a lens to expand the divergence angle of the LED.
  • the conventional backlight illuminators are horizontally disposed in the air slot, and the normal direction of the illuminant is generally
  • the diffuser plate is vertical or close to vertical, and the conventional backlight illuminator generally has a light-emitting angle of one hundred and twenty degrees, and generally increases to one hundred and forty degrees after the lens is increased, and the height of the air groove is increased to increase the light.
  • the area of the spot on the diffuser plate is also the core reason why the thickness of the conventional direct-type backlight is generally too large.
  • the direction of the normal light intensity of each of the illuminants 31 is parallel or close to the diffusion plate 10, so that the product of the present invention does not need to increase the height of the air groove 40 to increase the projection area. Therefore, the overall thickness of the backlight product of the present invention can be controlled within a very thin range, thereby reducing the thickness of the overall product and improving the aesthetic effect.
  • the light source unit 30 includes a plurality of light strips 32, and a plurality of the light strips 32 are arranged in the air tank 40 in a lateral or longitudinal direction.
  • Each of the strips 32 includes a plurality of the illuminators 31.
  • a fixing strip 22 is fixedly disposed on the inner side surface 21 of the bottom case 20, and a plurality of the light strips 32 are erected in the air groove 40 through the fixing strip 22.
  • a pre-embedded electrode connection block 23 is provided in the fixing strip 22, and the pre-embedded electrode connection block 23 supplies power to the corresponding strip 32.
  • the illuminants 31 located on the same strip 32 have the same orientation, and the orientation of any two adjacent strips 32 is opposite.
  • a reflector 24 is provided on the inner side 21 of the bottom casing 20, with which the light is reflected to the direction of the diffuser 10 as much as possible.
  • the illuminant 31 is the best when it is an LED light-emitting chip.
  • the illuminant 31 adopts a conventional LED light-emitting chip, the overall illuminating effect and the operating temperature cannot reach the most ideal state.
  • the applicant of the present invention discloses a technique of an LED light source and a method of manufacturing the same in PCT International Application No. PCT/CN2011/000756, which describes an LED element capable of emitting light through both sides, thereby avoiding heat accumulation.
  • the LED elements and the two fluorescent elements are directly connected in a sandwich manner to form one or more channel openings to thereby achieve heat transfer through the channel port to guide the LED elements.
  • the structure mainly includes one or more LED light source groups, wherein each of the LED light source groups includes: at least one LED element, wherein the LED element has a first light emitting surface and a second light emitting surface on the reverse side, wherein the The LED element is adapted to provide illumination at an angle greater than 180° by electroluminescence on each of the first illuminating surface and the second illuminating surface; two fluorescent elements, the two fluorescent elements being respectively located at the first of the LED elements a light emitting surface and the second light emitting surface portion to maintain the LED elements in position such that illumination generated by the LEDs respectively passes from the light emitting surface through the two fluorescent elements; and an electronic component, the electrons An element is coupled to the LED element to electrically connect the LED element to a power source.
  • the LED element is sandwiched by the two fluorescent elements to maintain the LED element in position such that the first light emitting surface and the second light emitting surface are directly pressed against the fluorescent element to obtain Supporting and directing heat transfer away from the LED elements, and the LED elements are held within an LED receiving cavity of the gap between the fluorescent elements.
  • PCT/CN2011/000756 has a small volume and good illumination effect on the product of the invention, and can simultaneously emit light simultaneously in all directions by using one LED light source, but in the specific implementation, since it only passes through the first light emitting surface and the first
  • the second light-emitting device faces the LED element for heat dissipation, but the idea is good, but in the specific implementation, the heat dissipation effect is not ideal, and the heat dissipation is slow, which causes the LED element to overheat.
  • the inventor of the present invention combines the technical features of PCT/CN2011/000756 to improve its heat dissipation mode and apply it to the backlight product of the present invention, so that the backlight product of the present invention has a luminous effect and an operating temperature. All have reached the ideal state, as described below.
  • the illuminator 31 is an LED double-sided light-emitting chip having an upper illuminating surface and a lower illuminating surface.
  • the LED double-sided light-emitting chip has six light-emitting surfaces, and includes a plurality of layers which are sequentially overlapped and arranged.
  • the LED double-sided light-emitting chips sequentially overlap and arrange a rigid and transparent base layer, a light-emitting layer and a current dispersion.
  • the flip-chip structure of the LED double-sided light-emitting chip has a simple structure and can define the upper light-emitting surface and the lower light-emitting surface.
  • the specific structure of the LED double-sided light-emitting chip is already in the previous case PCT/CN2011/000756. The disclosure here is no longer exhaustive.
  • a plurality of the LED double-sided light emitting chips are disposed on the transparent heat sink 100, and the transparent heat sink 100 is longitudinally inserted on the connecting base 200.
  • One of the strips 32 is formed by a combination of a plurality of the LED double-sided light emitting chips, the transparent heat sink 100, and the connector 200.
  • the structure in which the transparent heat dissipation plate 100 is longitudinally inserted into the connecting base 200 determines the structural configuration of the illuminant 31 laterally disposed in the air groove 40, and determines the normal light intensity direction of each of the illuminants 31.
  • the angle between the diffusing plates 10 is within a range of plus or minus thirty degrees.
  • the transparent heat dissipation plate 100 includes a transparent heat dissipation substrate 110 and a heat dissipation conductive film plating layer 120.
  • the heat dissipation conductive film plating layer 120 is attached to the outer surface of the transparent heat dissipation substrate 110.
  • the transparent heat dissipation substrate 110 is made of a light-transmitting heat dissipation material such as glass, sapphire or the like.
  • the heat-dissipating conductive film plating layer 120 is made of a heat-conductive heat-dissipating conductive material, such as silver paste.
  • the outer surface of the transparent heat-dissipating substrate 110 needs to be first etched and roughened, and then the heat-dissipating conductive film plating layer 120 is attached.
  • the method has strong adhesion and good product quality.
  • the heat-dissipating conductive film plating layer 120 includes a full portion 121 and a window portion 122, and the full portion 121 and the window portion 122 are spaced apart.
  • the LED double-sided light emitting chip is horizontally disposed at the position of the window portion 122. At this moment, the light generated by the outer side of the LED double-sided light emitting chip is directly emitted into the external environment, and the light generated by the inner side of the LED double-sided light emitting chip After passing through the window portion 122 and passing through the transparent heat dissipation substrate 110, it is transmitted to the external environment.
  • the purpose of setting the window portion 122 is also to fully utilize the characteristics of the double-sided illumination of the LED double-sided light-emitting chip, so that the light energy is lost as little as possible.
  • the purpose of providing the heat-dissipating conductive film coating layer 120 is mainly to utilize the material properties of the LED double-sided light-emitting chip to maximize heat dissipation, thereby minimizing the operating temperature thereof.
  • the thickness is preferably, the glass layer is 0.6 mm thick, and the silver paste layer is 10 ⁇ m thick.
  • the heat-dissipating conductive film plating layer 120 is a silver paste
  • the silver paste layer also has a function of light reflection while radiating heat and electricity, thereby reflecting light to the direction of the diffusion plate 10 as much as possible.
  • the fully-attached portion 121 includes a heat-dissipating heat-dissipating portion 124 and a conductive heat-dissipating portion 125 in a specific implementation.
  • the heat-conducting heat-dissipating portion 124 and the conductive heat-dissipating portion 125 are simultaneously attached to the outer surface of the transparent heat-dissipating substrate 110.
  • the transparent heat dissipation portion 124 defines a plurality of through holes 126.
  • the plurality of through holes 126 communicate the transparent heat dissipation substrate 110 with an external environment.
  • the transparent heat dissipation substrate 110 can efficiently dissipate heat to the transparent heat dissipation substrate 110. In an external environment.
  • the conductive heat-dissipating portion 125 is separated from the heat-dissipating heat-dissipating portion 124.
  • the conductive heat-dissipating portion 125 is disposed between the illuminants 31.
  • the electrical connecting lines of the adjacent illuminants 31 are electrically connected to the conductive heat-dissipating portion 125, respectively.
  • a plurality of the illuminants 31 are formed in a series connection relationship.
  • the heat-dissipating conductive film coating layer 120 can also be coated with a high heat radiation material to further enhance the heat dissipation effect.
  • such a structure can be used for modules of various lamps without additional heat sinks.
  • the LED double-sided light-emitting chip can be horizontally disposed at the position of the window portion 122 in both a front and a flip-chip manner.
  • a plurality of heat conduction support lines 123 are disposed on the outer surface of the transparent heat dissipation substrate 110 and in the window portion 122, and the heat conduction support lines 123 and the heat dissipation conductive film plating layer 120 are disposed.
  • the materials are the same.
  • Both ends of each of the heat conduction support lines 123 are connected to the full attachment portion 121.
  • the heat-conducting support line 123 is mounted on the bottom surface of the LED double-sided light-emitting chip, and the heat generated by the operation of the LED double-sided light-emitting chip is conducted to the transparent heat-dissipating substrate 110 and the heat-dissipating conductive film plating layer 120 through the heat-conducting support line 123. And heat dissipation simultaneously.
  • the light emitted from the bottom surface of the LED double-sided light-emitting chip passes through the gap between the plurality of heat-conductive support lines 123 and transmits through the transparent heat-dissipating substrate 110 to be transmitted to the external environment.
  • the width of the thermally conductive support line 123 is preferably five microns.
  • the electrodes on both sides of the bottom surface of the LED double-sided light emitting chip are electrically connected to the top surface of the full portion 121 on both sides of the window portion 122.
  • the heat generated by the operation of the LED double-sided light-emitting chip is directly transmitted to the transparent heat-dissipating substrate 110, and the heat is simultaneously radiated.
  • Light emitted from the bottom surface of the LED double-sided light-emitting chip passes through the window portion 122 and transmits through the transparent heat-dissipating substrate 110 to be transmitted to the external environment.
  • the backlight technology of the present invention can be applied to a wide range of fields, such as when a liquid crystal screen is disposed above the diffusing plate 10, the present invention can be used as a backlight of the liquid crystal screen without any other
  • the backlight product of the present invention can be directly used as an LED surface lamp, and the like is not listed here.
  • the silver plating layer needs to be externally cooled to be soldered.
  • an LED direct-lit backlight illumination method is used to connect the diffusion plate 10 to the bottom case 20, and an air groove 40 is formed around the bottom case 20 by the diffusion plate 10, and the diffusion plate is formed.
  • the inner side surface 11 of the 10 forms the top surface of the air groove 40
  • the inner side surface 21 of the bottom case 20 forms the bottom surface of the air groove 40
  • the light source unit 30 is disposed in the air groove 40.
  • light generated by the light-emitting unit 30 is electrically transmitted through the diffuser 10 to the external environment to form a backlight.
  • the light source unit 30 includes a plurality of illuminants 31, and a plurality of the illuminants 31 are sequentially arranged in the air tank 40.
  • Each of the illuminants 31 is laterally disposed in the air groove 40.
  • the angle between the normal light intensity direction of each of the illuminants 31 and the diffuser 10 is within plus or minus thirty degrees, wherein the preferred embodiment is such that the normal of each of the illuminators 31 The direction of the light intensity is parallel to the diffusion plate 10.
  • the light source unit 30 includes a plurality of light strips 32, and a plurality of the light strips 32 are arranged in the air tank 40 in a lateral or longitudinal direction.
  • Each of the strips 32 includes a plurality of the illuminators 31.
  • a fixing strip 22 is fixedly disposed on the inner side surface 21 of the bottom case 20, and a plurality of the light strips 32 are erected in the air groove 40 through the fixing strip 22.
  • a pre-embedded electrode connection block 23 is provided in the fixing strip 22, and the pre-embedded electrode connection block 23 supplies power to the corresponding strip 32.
  • the illuminants 31 located on the same strip 32 have the same orientation, and the orientation of any two adjacent strips 32 is opposite.
  • a reflector 24 is provided on the inner side 21 of the bottom casing 20, with which the light is reflected to the direction of the diffuser 10 as much as possible.
  • the illuminator 31 is an LED double-sided light-emitting chip having an upper illuminating surface and a lower illuminating surface.
  • the LED double-sided light-emitting chip has six light-emitting surfaces, and includes a plurality of layers which are sequentially overlapped and arranged.
  • the LED double-sided light-emitting chips sequentially overlap and arrange a rigid and transparent base layer, a light-emitting layer and a current dispersion.
  • the flip-chip structure of the LED double-sided light-emitting chip has a simple structure and can define the upper light-emitting surface and the lower light-emitting surface.
  • the specific structure of the LED double-sided light-emitting chip is already in the previous case PCT/CN2011/000756. The disclosure here is no longer exhaustive.
  • a plurality of the LED double-sided light-emitting chips are disposed on the transparent heat-dissipating plate 100.
  • the transparent heat-dissipating plate 100 is longitudinally inserted on the connecting base 200, and is formed by combining a plurality of the LED double-sided light-emitting chips, the transparent heat-dissipating plate 100, and the connecting base 200.
  • the structure in which the transparent heat dissipation plate 100 is longitudinally inserted into the connecting base 200 determines the structural configuration of the illuminant 31 laterally disposed in the air groove 40, and determines the normal light intensity direction of each of the illuminants 31.
  • the angle between the diffusing plates 10 is within a range of plus or minus thirty degrees.
  • the transparent heat dissipation plate 100 includes a transparent heat dissipation substrate 110 and a heat dissipation conductive film plating layer 120.
  • the heat dissipation conductive film plating layer 120 is attached to the outer surface of the transparent heat dissipation substrate 110.
  • the transparent heat dissipation substrate 110 is made of a light-transmitting heat dissipation material such as glass, sapphire or the like.
  • the heat-dissipating conductive film plating layer 120 is made of a heat-conductive heat-dissipating conductive material, such as silver paste.
  • the outer surface of the transparent heat-dissipating substrate 110 needs to be first etched and roughened, and then the heat-dissipating conductive film plating layer 120 is attached.
  • the method has strong adhesion and good product quality.
  • the heat-dissipating conductive film plating layer 120 includes a full portion 121 and a window portion 122, and the full portion 121 and the window portion 122 are spaced apart.
  • the LED double-sided light emitting chip is horizontally disposed at the position of the window portion 122. At this moment, the light generated by the outer side of the LED double-sided light emitting chip is directly emitted into the external environment, and the light generated by the inner side of the LED double-sided light emitting chip After passing through the window portion 122 and passing through the transparent heat dissipation substrate 110, it is transmitted to the external environment.
  • the purpose of setting the window portion 122 is also to fully utilize the characteristics of the double-sided illumination of the LED double-sided light-emitting chip, so that the light energy is lost as little as possible.
  • the purpose of providing the heat-dissipating conductive film coating layer 120 is mainly to utilize the material properties of the LED double-sided light-emitting chip to maximize heat dissipation, thereby minimizing the operating temperature thereof.
  • the thickness is preferably, the glass layer is 0.6 mm thick, and the silver paste layer is 10 ⁇ m thick.
  • the heat-dissipating conductive film plating layer 120 is a silver paste
  • the silver paste layer also has a function of light reflection while radiating heat and electricity, thereby reflecting light to the direction of the diffusion plate 10 as much as possible.
  • the LED double-sided light-emitting chip can be horizontally disposed at the position of the window portion 122 in both a front and a flip-chip manner.
  • a plurality of heat conduction support lines 123 are disposed on the outer surface of the transparent heat dissipation substrate 110 and in the window portion 122, and the heat conduction support lines 123 and the heat dissipation conductive film plating layer 120 are disposed.
  • the materials are the same.
  • Both ends of each of the heat conduction support lines 123 are connected to the full attachment portion 121.
  • the heat-conducting support line 123 is mounted on the bottom surface of the LED double-sided light-emitting chip, and the heat generated by the operation of the LED double-sided light-emitting chip is conducted to the transparent heat-dissipating substrate 110 and the heat-dissipating conductive film plating layer 120 through the heat-conducting support line 123. And heat dissipation simultaneously.
  • the light emitted from the bottom surface of the LED double-sided light-emitting chip passes through the gap between the plurality of heat-conductive support lines 123 and transmits through the transparent heat-dissipating substrate 110 to be transmitted to the external environment.
  • the width of the thermally conductive support line 123 is preferably five microns.
  • the electrodes on both sides of the bottom surface of the LED double-sided light emitting chip are electrically connected to the top surface of the full portion 121 on both sides of the window portion 122, and the LED double-sided light emitting chip
  • the heat generated by the work is directly transmitted to the transparent heat dissipation substrate 110, and the heat is radiated simultaneously.
  • the light emitted from the bottom surface of the LED double-sided light-emitting chip passes through the window portion 122 and transmits through the transparent heat dissipation substrate 110 to the external environment. in.

Abstract

一种LED直下式背光源及其发光方法,其结构中包括扩散板(10)、底壳(20)以及光源单元(30),其中,该扩散板(10)连接在该底壳(20)上,且借助该扩散板(10)与该底壳(20)围绕形成一空气槽(40),该扩散板(10)的内侧面(11)形成该空气槽(40)的顶面,该底壳(20)的内侧面(21)形成该空气槽(40)的底面,该光源单元(30)设置在该空气槽(40)中,在工作的时候,该光源单元(30)通电发光所产生的光线透过该扩散板(10)透射到外部环境中,从而形成背光源,该光源单元(30)包括若干发光体(31),若干该发光体(31)顺序排列设置在该空气槽(40)中,每一个该发光体(31)都横向设置在该空气槽(40)中。

Description

一种LED直下式背光源及其发光方法 技术领域
本发明涉及一种背光源的结构及其发光方法,特别是指一种以LED为光源的直下式背光源及其发光方法。
背景技术
众所周知,在电子工业中,背光是一种照明的形式,常被用于LCD显示上。背光式和前光式不同之处在于背光是从侧边或是背后照射,而前光顾名思义则从前方照射。他们被用来增加在低光源环境中的照明度和电脑显示器、液晶萤幕上的亮度,以和CRT显示类似的方式产生出光。led背光源其光源可以是白炽灯泡、电光面板(ELP)、发光二极管(LED)、冷阴极管(CCFL)等。电光面板提供整个表面均匀的光,而其他的背光模组则使用散光器从不均匀的光源中来提供均匀的光线。背光可以是任何一种颜色,单色液晶通常有黄、绿、蓝、白等背光。而彩色显示采用白色白光,因其涵盖最多色光。
LED背光被用在小巧的LCD面板上。他的光通常是有颜色的,虽然白色背光已经愈来愈普遍了。电光面板经常被使用在大型显示上,这时均匀的背光是很重要的。电光面板需要经由高压的交流电来驱动,这部份由反用换流器回路来提供。冷阴极管被用在像是电脑显示器上,颜色上通常是白色的,这同样也需要反用换流器和散光器。LED背光可增进LCD显示的色彩表现。LED光是经由三个各别的LED所产生出来,提供相当吻合LCD像点滤色器自身的色光谱。
在LED背光源的分类中以直下式背光源的工艺最为简单,其不需要导光板,LED阵列置于灯箱底部,从LED发出的光经过底面和侧面反射,再通过表面的扩散板和光学模组均匀射出。直下式背光源的厚度由灯箱底部和散射板的距离决定,通常厚度越厚,背光源的光均匀性就越好。在背光源较薄的情况下,色彩和亮度均匀性就成了直下式背光源的技术关键。但是对色彩和亮度的均匀性进行调整其所需要付出的技术成本很高,目前还没有出现通过改变光源发光、排列方式来解决直下式背光源厚度较厚的相关技术,而此是为现有技术的主要缺点。
另外在液晶显示领域,现有的液晶显示产品,主要采用直下式LED背光源技术或侧入式LED背光源技术对液晶面板进行照明,以实现画面的显示。目前,直下式LED背光源技术主要采用LED贴装透镜作为核心部件,利用透镜扩大LED的发散角度,利用LED与扩散板之间形成的空气槽,为LED光提供混光距离,进而使LED光混合均匀后再到达扩散板,通过扩散板对LED光做进一步地扩散处理后,均匀地照射到整个液晶面板上。
釆用这种直下式LED背光源技术设计的液晶产品,使用的LED数量越多且LED的间距越小,光的混合效果就越好;同时,混光距离越大,光的混合效果也越好。因此,当前主要釆用增加LED的数量或增大混光距离两种方式,来提高光的混合效果,使LED光能够均匀地照明到液晶面板上,提高显示效果。但是,当增加LED数量时,由于LED和透镜昂贵,因此会导致整机成本的大幅升高;而采用增大混光距离的方式则会导致产品厚度的增加,进而影响整机产品外形的美观度,而此是为现有技术的又一缺点。
发明内容
本发明提供一种LED直下式背光源及其发光方法,其通过对结构以及发光方式的改进能显著降低背光源产品的整体厚度,而此为本发明的主要目的。
本发明所采取的技术方案是:一种LED直下式背光源,其包括扩散板、底壳以及光源单元,其中,该扩散板连接在该底壳上,且借助该扩散板与该底壳围绕形成一空气槽,该扩散板的内侧面形成该空气槽的顶面,该底壳的内侧面形成该空气槽的底面,该光源单元设置在该空气槽中,在工作的时候,该光源单元通电发光所产生的光线透过该扩散板透射到外部环境中,从而形成背光源,该光源单元包括若干发光体,若干该发光体顺序排列设置在该空气槽中,每一个该发光体都横向设置在该空气槽中,每一个该发光体的法向光强方向与该扩散板之间的夹角在正负三十度内。
每一个该发光体的法向光强方向都与该扩散板平行。该光源单元包括若干光条,若干该光条横向或者纵向排列设置在该空气槽中,每一个该光条都包括有若干该发光体,在该底壳的该内侧面上固定设置有固定条,若干该光条通过该固定条被架设在该空气槽中。在该底壳的该内侧面上设置有反光板,借助该反光板尽最大可能将光线反射到该扩散板方向。
该发光体为LED双面发光芯片,若干该LED双面发光芯片设置在透明散热板上,该透明散热板纵向插设在连接座上,借助若干该LED双面发光芯片、该透明散热板以及该连接座组合形成一个该光条,该透明散热板纵向插设在连接座上的结构确定出该发光体横向设置在该空气槽中的结构构成方式,同时确定出每一个该发光体的发光方式。
该透明散热板包括透明散热基板以及散热导电薄膜镀层,其中,该散热导电薄膜镀层附着在该透明散热基板的外表面上,该透明散热基板由透光散热材料制成,该散热导电薄膜镀层由导热散热导电材料制成,该散热导电薄膜镀层包括满附部分以及窗口部分,该满附部分以及该窗口部分间隔设置,该LED双面发光芯片水平设置在该窗口部分位置处,此刻,该LED双面发光芯片外侧面所产生的光线直接发射到外部环境中,而该LED双面发光芯片内侧面所产生的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中。
该透明散热基板为玻璃,该散热导电薄膜镀层为银浆,该散热导电薄膜镀层为银浆的时候,银浆层在散热导电的同时也具备光反射的作用。
在正装该LED双面发光芯片的时候,在该透明散热基板的外表面上并且于该窗口部分中设置有若干条导热支撑线,该导热支撑线与该散热导电薄膜镀层的材料相同,每一条该导热支撑线的两端部都与该满附部分相连接,该导热支撑线架设在该LED双面发光芯片的底面上,该LED双面发光芯片工作所产生的热量通过该导热支撑线传导至该透明散热基板以及该散热导电薄膜镀层上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过若干条该导热支撑线之间的间隙并透过该透明散热基板后透射到外部环境中。
在倒装该LED双面发光芯片的时候,该LED双面发光芯片的底面两侧的电极搭设电连接在该窗口部分两侧的该满附部分顶面上,该LED双面发光芯片工作所产生的热量直接传导至该透明散热基板上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中。
一种发光体散热发光结构,该发光体为LED双面发光芯片,若干该LED双面发光芯片设置在透明散热板上,该透明散热板包括透明散热基板以及散热导电薄膜镀层,其中,该散热导电薄膜镀层附着在该透明散热基板的外表面上,该透明 散热基板由透光散热材料制成,该散热导电薄膜镀层由导热散热导电材料制成,该散热导电薄膜镀层包括满附部分以及窗口部分,该满附部分以及该窗口部分间隔设置,该LED双面发光芯片水平设置在该窗口部分位置处,此刻,该LED双面发光芯片外侧面所产生的光线直接发射到外部环境中,而该LED双面发光芯片内侧面所产生的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中,该LED双面发光芯片能够以正装以及倒装两种方式水平设置在该窗口部分位置处,在正装该LED双面发光芯片的时候,在该透明散热基板的外表面上并且于该窗口部分中设置有若干条导热支撑线,该导热支撑线与该散热导电薄膜镀层的材料相同,每一条该导热支撑线的两端部都与该满附部分相连接,该导热支撑线架设在该LED双面发光芯片的底面上,该LED双面发光芯片工作所产生的热量通过该导热支撑线传导至该透明散热基板以及该散热导电薄膜镀层上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过若干条该导热支撑线之间的间隙并透过该透明散热基板后透射到外部环境中。
在倒装该LED双面发光芯片的时候,该LED双面发光芯片的底面两侧的电极搭设电连接在该窗口部分两侧的该满附部分顶面上,该LED双面发光芯片工作所产生的热量直接传导至该透明散热基板上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中。
一种LED直下式背光源发光方法,将扩散板连接在底壳上,且借助该扩散板与该底壳围绕形成一空气槽,该扩散板的内侧面形成该空气槽的顶面,该底壳的内侧面形成该空气槽的底面,将光源单元设置在该空气槽中,在工作的时候,该光源单元通电发光所产生的光线透过该扩散板透射到外部环境中,该光源单元包括若干发光体,若干该发光体顺序排列设置在该空气槽中,每一个该发光体都横向设置在该空气槽中,使每一个该发光体的法向光强方向都与该扩散板平行,该光源单元包括若干光条,若干该光条横向或者纵向排列设置在该空气槽中,每一个该光条都包括有若干该发光体,在该底壳的该内侧面上固定设置有固定条,若干该光条通过该固定条被架设在该空气槽中,在该底壳的该内侧面上设置有反光板,借助该反光板尽最大可能将光线反射到该扩散板方向。
本发明的有益效果为:传统的直下式背光源技术主要采用LED贴装透镜作为核心部件,利用透镜扩大LED的发散角度,传统的背光源发光体都是水平设置在空气槽中,发光体的法向光强方向一般与扩散板垂直或者接近于垂直,而传统的背光源发光体其发光角度一般为一百二十度,在增加透镜后一般达到一百四十度,将空气槽的高度增大就能够加大发光体照射到扩散板上光斑的面积,此点也正是传统直下式背光源厚度普遍都偏大的核心原因,而本发明中将每一个该发光体的法向光强方向都设置的与该扩散板平行或者接近于平行,所以本发明的产品不需要增加该空气槽的高度来增加投射面积,从而使本发明的背光源产品的整体厚度能控制在很薄的范围内,从而缩小整体产品的厚度尺寸,提升美观效果,
附图说明
图1为本发明的立体分解图。
图2为本发明的截面结构示意图。
图3为本发明光源单元的立体分解图。
图4为本发明固定条及相关部件的立体分解图。
图5为本发明正装芯片的结构示意图。
图6为本发明倒装芯片的结构示意图。
图7为本发明满附部分包括导热散热部分以及导电散热部分的结构示意图。
具体实施方式
如图1至6所示,一种LED直下式背光源,其包括扩散板10、底壳20以及光源单元30,其中,该扩散板10连接在该底壳20上,且借助该扩散板10与该底壳20围绕形成一空气槽40。
该扩散板10的内侧面11形成该空气槽40的顶面,该底壳20的内侧面21形成该空气槽40的底面。
该光源单元30设置在该空气槽40中。
在工作的时候,该光源单元30通电发光所产生的光线透过该扩散板10透射到外部环境中,从而形成背光源。
在具体实施的时候,根据需要将连接条环设在该扩散板10以及该底壳20四周,该扩散板10以及该底壳20的边缘分别插设在该连接条中,从而固定该扩散板10与该底壳20之间的相对位置。
在具体实施的时候,该扩散板10以及该底壳20的具体构造以及材料构成属于现有技术这里不再累述。
该光源单元30包括若干发光体31,若干该发光体31顺序排列设置在该空气槽40中。
每一个该发光体31都横向设置在该空气槽40中。
每一个该发光体31的法向光强方向与该扩散板10之间的夹角在正负三十度内,其中,最佳的实施方式为,每一个该发光体31的法向光强方向都与该扩散板10平行。
传统的直下式背光源技术主要采用LED贴装透镜作为核心部件,利用透镜扩大LED的发散角度,传统的背光源发光体都是水平设置在空气槽中,发光体的法向光强方向一般与扩散板垂直或者接近于垂直,而传统的背光源发光体其发光角度一般为一百二十度,在增加透镜后一般达到一百四十度,将空气槽的高度增大就能够加大发光体照射到扩散板上光斑的面积,此点也正是传统直下式背光源厚度普遍都偏大的核心原因。
而本发明中将每一个该发光体31的法向光强方向都设置的与该扩散板10平行或者接近于平行,所以本发明的产品不需要增加该空气槽40的高度来增加投射面积,从而使本发明的背光源产品的整体厚度能控制在很薄的范围内,从而缩小整体产品的厚度尺寸,提升美观效果。
在具体实施的时候,该光源单元30包括若干光条32,若干该光条32横向或者纵向排列设置在该空气槽40中。
每一个该光条32都包括有若干该发光体31。
在具体实施的时候,在该底壳20的该内侧面21上固定设置有固定条22,若干该光条32通过该固定条22被架设在该空气槽40中。
该固定条22中设置有预埋电极连接块23,通过该预埋电极连接块23为相应的该光条32提供电力供给。
由于该发光体31正反两面所产生的光线亮度会有差异,所以任意相邻的两个该发光体31的朝向相反。
为了方便生产,也可以设计,位于同一该光条32上的该发光体31的朝向都相同,而任意相邻的两个该光条32的朝向相反。
在具体实施的时候,在该底壳20的该内侧面21上设置有反光板24,借助该反光板24尽最大可能将光线反射到该扩散板10方向。
在具体实施的时候,该发光体31为LED发光芯片的时候效果最佳。
值得注意的是,利用本发明的技术进行具体实施的时候,如果该发光体31采用一般传统的LED发光芯片则整体发光效果以及工作温度都不能达到最为理想的状态。
本发明的申请人在PCT国际申请号为PCT/CN2011/000756中公开了一种LED光源及其制造方法的技术,其记载了一种LED元件,其能通过两侧面发光,从而避免热量聚集在结传统LED光源的结合面和基片上,其LED元件与两荧光元件以三明治的方式直接连接,从而形成一个或多个通道口以藉此达到通过该通道口导引LED元件的热传递。其结构主要包括一个或多个LED光源组,其中每所述LED光源组包括:至少一LED元件,其中所述LED元件具有一第一发光面和在反面的一第二发光面,其中所述LED元件适于在每所述第一发光面和所述第二发光面通过电致发光提供大于180°角度的照明;两荧光元件,所述两荧光元件分别位于所述LED元件的所述第一发光面和所述第二发光面上部以保持所述LED元件就位,从而使所述LED产生的照明分别从所述发光面出发经过所述两荧光元件;和一电子元件,所述电子元件与所述LED元件藕接以将所述LED元件电连接于一电源。所述LED元件被所述两荧光元件以三明治方式夹在中间从而保持所述LED元件就位,以使所述第一发光面和所述第二发光面直接压向所述荧光元件上以得到支撑并导引热传递离开所述LED元件,并且所述LED元件被保持在所述荧光元件之间空隙的一LED容纳腔内。
PCT/CN2011/000756的技术应用到本发明的产品上具有体积小发光效果好,能够利用一个LED光源同时向各个方向同时发光,但是在具体实施的时候,由于其只是通过第一发光面和第二发光面对LED元件进行散热,其思路虽然较好,但是在具体实施的时候存在散热效果不理想,热量散发较慢而引发LED元件过热的情况。
本发明的发明人结合PCT/CN2011/000756的技术特点同时对其散热方式进行改进,并应用到本发明的背光源产品中,从而使本发明的背光源产品无论在发光效果还是在工作温度方面都达到了理想的状态,具体描述如下。
该发光体31为LED双面发光芯片,该LED双面发光芯片具有上发光面以及下发光面。该LED双面发光芯片具有六个发光面,并且包括复数层有序地重叠和排列,该LED双面发光芯片依次序地重叠和排列一刚性并且透明的基底层,一发光层和一电流分散层,该LED双面发光芯片的倒装结构,其结构简单,并能够定义出该上发光面以及该下发光面,该LED双面发光芯片的具体结构在前案PCT/CN2011/000756中已经公开这里不再累述。
若干该LED双面发光芯片设置在透明散热板100上,该透明散热板100纵向插设在连接座200上。
借助若干该LED双面发光芯片、该透明散热板100以及该连接座200组合形成一个该光条32。
该透明散热板100纵向插设在连接座200上的结构确定出该发光体31横向设置在该空气槽40中的结构构成方式,同时确定出每一个该发光体31的法向光强方向与该扩散板10之间的夹角在正负三十度内的发光方式。
该透明散热板100包括透明散热基板110以及散热导电薄膜镀层120,其中,该散热导电薄膜镀层120附着在该透明散热基板110的外表面上。
该透明散热基板110由透光散热材料制成,比如,玻璃、蓝宝石等。
该散热导电薄膜镀层120由导热散热导电材料制成,比如,银浆。
在具体将该散热导电薄膜镀层120附着在该透明散热基板110的外表面上的时候,需要首先对该透明散热基板110的外表面进行腐蚀粗糙,而后将该散热导电薄膜镀层120附着上,这种方式附着力强,产品质量佳。
该散热导电薄膜镀层120包括满附部分121以及窗口部分122,该满附部分121以及该窗口部分122间隔设置。
该LED双面发光芯片水平设置在该窗口部分122位置处,此刻,该LED双面发光芯片外侧面所产生的光线直接发射到外部环境中,而该LED双面发光芯片内侧面所产生的光线通过该窗口部分122并透过该透明散热基板110后透射到外部环境中。
设置该窗口部分122的目的也正是为了充分利用该LED双面发光芯片双面发光的特点,使光能尽少损失。
另外,设置该散热导电薄膜镀层120的目的主要是为了利用其材料特性最大可能的为该LED双面发光芯片进行散热,最大程度的降低其工作温度。
当该透明散热基板110为玻璃,该散热导电薄膜镀层120为银浆的时候优选厚度为,玻璃层零点六毫米厚,银浆层十微米厚。
另外,该散热导电薄膜镀层120为银浆的时候,银浆层在散热导电的同时也具备光反射的作用,从而尽最大可能将光线反射到该扩散板10方向。
如图7所示,在具体实施的时候,该满附部分121包括导热散热部分124以及导电散热部分125。
该导热散热部分124以及该导电散热部分125同时附着在该透明散热基板110的外表面上。
其中,该导热散热部分124上开设有若干通孔126,若干该通孔126将该透明散热基板110与外部环境相连通,通过该通孔126能够使该透明散热基板110高效的将热量散发到外部环境中。
该导电散热部分125与该导热散热部分124相分离,该导电散热部分125设置在该发光体31之间,相邻的该发光体31的电连接线分别与该导电散热部分125电连接,从而使若干该发光体31形成串联连接关系。
在具体实施的时候,该散热导电薄膜镀层120上还可以涂覆高热辐射材料,从而进一步提升其散热效果。
另外如图7所示,此种结构在不需另外加散热器的情况下,可以用于各种灯具的模组。
该LED双面发光芯片能够以正装以及倒装两种方式水平设置在该窗口部分122位置处。
在正装该LED双面发光芯片的时候,在该透明散热基板110的外表面上并且于该窗口部分122中设置有若干条导热支撑线123,该导热支撑线123与该散热导电薄膜镀层120的材料相同。
每一条该导热支撑线123的两端部都与该满附部分121相连接。
该导热支撑线123架设在该LED双面发光芯片的底面上,该LED双面发光芯片工作所产生的热量通过该导热支撑线123传导至该透明散热基板110以及该散热导电薄膜镀层120上,并同步进行散热。
该LED双面发光芯片的底面所发出的光线通过若干条该导热支撑线123之间的间隙并透过该透明散热基板110后透射到外部环境中。
该导热支撑线123的宽度优选五微米。
在倒装该LED双面发光芯片的时候,该LED双面发光芯片的底面两侧的电极搭设电连接在该窗口部分122两侧的该满附部分121顶面上。
该LED双面发光芯片工作所产生的热量直接传导至该透明散热基板110上,并同步进行散热。
该LED双面发光芯片的底面所发出的光线通过该窗口部分122并透过该透明散热基板110后透射到外部环境中。
最后需要强调的是,本发明的背光源技术可以应用在相当广泛的领域,比如当在该扩散板10上方设置液晶屏的时候,本发明能够作为液晶屏的背光源,而当不附加任何其他结构的时候本发明的背光源产品可以直接当作LED面灯使用,诸如此类这里不一一列举,另外,当功率加大时镀银层面需外接散热时可以进行焊接。
如图1至6所示,一种LED直下式背光源发光方法,将扩散板10连接在底壳20上,且借助该扩散板10与该底壳20围绕形成一空气槽40,该扩散板10的内侧面11形成该空气槽40的顶面,该底壳20的内侧面21形成该空气槽40的底面,将光源单元30设置在该空气槽40中。
在工作的时候,该光源单元30通电发光所产生的光线透过该扩散板10透射到外部环境中,从而形成背光源。
该光源单元30包括若干发光体31,若干该发光体31顺序排列设置在该空气槽40中。
每一个该发光体31都横向设置在该空气槽40中。
使每一个该发光体31的法向光强方向与该扩散板10之间的夹角在正负三十度内,其中,最佳的实施方式为,使每一个该发光体31的法向光强方向都与该扩散板10平行。
在具体实施的时候,该光源单元30包括若干光条32,若干该光条32横向或者纵向排列设置在该空气槽40中。
每一个该光条32都包括有若干该发光体31。
在具体实施的时候,在该底壳20的该内侧面21上固定设置有固定条22,若干该光条32通过该固定条22被架设在该空气槽40中。
该固定条22中设置有预埋电极连接块23,通过该预埋电极连接块23为相应的该光条32提供电力供给。
由于该发光体31正反两面所产生的光线亮度会有差异,所以任意相邻的两个该发光体31的朝向相反。
为了方便生产,也可以设计,位于同一该光条32上的该发光体31的朝向都相同,而任意相邻的两个该光条32的朝向相反。
在具体实施的时候,在该底壳20的该内侧面21上设置有反光板24,借助该反光板24尽最大可能将光线反射到该扩散板10方向。
该发光体31为LED双面发光芯片,该LED双面发光芯片具有上发光面以及下发光面。该LED双面发光芯片具有六个发光面,并且包括复数层有序地重叠和排列,该LED双面发光芯片依次序地重叠和排列一刚性并且透明的基底层,一发光层和一电流分散层,该LED双面发光芯片的倒装结构,其结构简单,并能够定义出该上发光面以及该下发光面,该LED双面发光芯片的具体结构在前案PCT/CN2011/000756中已经公开这里不再累述。
若干该LED双面发光芯片设置在透明散热板100上,该透明散热板100纵向插设在连接座200上,借助若干该LED双面发光芯片、该透明散热板100以及该连接座200组合形成一个该光条32。
该透明散热板100纵向插设在连接座200上的结构确定出该发光体31横向设置在该空气槽40中的结构构成方式,同时确定出每一个该发光体31的法向光强方向与该扩散板10之间的夹角在正负三十度内的发光方式。
该透明散热板100包括透明散热基板110以及散热导电薄膜镀层120,其中,该散热导电薄膜镀层120附着在该透明散热基板110的外表面上。
该透明散热基板110由透光散热材料制成,比如,玻璃、蓝宝石等。
该散热导电薄膜镀层120由导热散热导电材料制成,比如,银浆。
在具体将该散热导电薄膜镀层120附着在该透明散热基板110的外表面上的时候,需要首先对该透明散热基板110的外表面进行腐蚀粗糙,而后将该散热导电薄膜镀层120附着上,这种方式附着力强,产品质量佳。
该散热导电薄膜镀层120包括满附部分121以及窗口部分122,该满附部分121以及该窗口部分122间隔设置。
该LED双面发光芯片水平设置在该窗口部分122位置处,此刻,该LED双面发光芯片外侧面所产生的光线直接发射到外部环境中,而该LED双面发光芯片内侧面所产生的光线通过该窗口部分122并透过该透明散热基板110后透射到外部环境中。
设置该窗口部分122的目的也正是为了充分利用该LED双面发光芯片双面发光的特点,使光能尽少损失。
另外,设置该散热导电薄膜镀层120的目的主要是为了利用其材料特性最大可能的为该LED双面发光芯片进行散热,最大程度的降低其工作温度。
当该透明散热基板110为玻璃,该散热导电薄膜镀层120为银浆的时候优选厚度为,玻璃层零点六毫米厚,银浆层十微米厚。
另外,该散热导电薄膜镀层120为银浆的时候,银浆层在散热导电的同时也具备光反射的作用,从而尽最大可能将光线反射到该扩散板10方向。
该LED双面发光芯片能够以正装以及倒装两种方式水平设置在该窗口部分122位置处。
在正装该LED双面发光芯片的时候,在该透明散热基板110的外表面上并且于该窗口部分122中设置有若干条导热支撑线123,该导热支撑线123与该散热导电薄膜镀层120的材料相同。
每一条该导热支撑线123的两端部都与该满附部分121相连接。
该导热支撑线123架设在该LED双面发光芯片的底面上,该LED双面发光芯片工作所产生的热量通过该导热支撑线123传导至该透明散热基板110以及该散热导电薄膜镀层120上,并同步进行散热。
该LED双面发光芯片的底面所发出的光线通过若干条该导热支撑线123之间的间隙并透过该透明散热基板110后透射到外部环境中。
该导热支撑线123的宽度优选五微米。
在倒装该LED双面发光芯片的时候,该LED双面发光芯片的底面两侧的电极搭设电连接在该窗口部分122两侧的该满附部分121顶面上,该LED双面发光芯片工作所产生的热量直接传导至该透明散热基板110上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过该窗口部分122并透过该透明散热基板110后透射到外部环境中。

Claims (13)

  1. 一种LED直下式背光源,其包括扩散板、底壳以及光源单元,其中,该扩散板连接在该底壳上,且借助该扩散板与该底壳围绕形成一空气槽,该扩散板的内侧面形成该空气槽的顶面,该底壳的内侧面形成该空气槽的底面,该光源单元设置在该空气槽中,在工作的时候,该光源单元通电发光所产生的光线透过该扩散板透射到外部环境中,从而形成背光源,
    其特征在于:该光源单元包括若干发光体,若干该发光体顺序排列设置在该空气槽中,每一个该发光体都横向设置在该空气槽中,每一个该发光体的法向光强方向与该扩散板之间的夹角在正负三十度内。
  2. 如权利要求1所述的一种LED直下式背光源,其特征在于:每一个该发光体的法向光强方向都与该扩散板平行。
  3. 如权利要求1或2所述的一种LED直下式背光源,其特征在于:该光源单元包括若干光条,若干该光条横向或者纵向排列设置在该空气槽中,每一个该光条都包括有若干该发光体,在该底壳的该内侧面上固定设置有固定条,若干该光条通过该固定条被架设在该空气槽中。
  4. 如权利要求3所述的一种LED直下式背光源,其特征在于:在该底壳的该内侧面上设置有反光板,借助该反光板尽最大可能将光线反射到该扩散板方向。
  5. 如权利要求3所述的一种LED直下式背光源,其特征在于:该发光体为LED双面发光芯片,若干该LED双面发光芯片设置在透明散热板上,该透明散热板纵向插设在连接座上,借助若干该LED双面发光芯片、该透明散热板以及该连接座组合形成一个该光条,该透明散热板纵向插设在连接座上的结构确定出该发光体横向设置在该空气槽中的结构构成方式,同时确定出每一个该发光体的发光方式。
  6. 如权利要求5所述的一种LED直下式背光源,其特征在于:该透明散热板包括透明散热基板以及散热导电薄膜镀层,其中,该散热导电薄膜镀层附着在该透明散热基板的外表面上,该透明散热基板由透光散热材料制成,该散热导电薄膜镀层由导热散热导电材料制成,该散热导电薄膜镀层包括满附部分以及窗口部分,该满附部分以及该窗口部分间隔设置,
    该LED双面发光芯片水平设置在该窗口部分位置处,此刻,该LED双面发光芯片外侧面所产生的光线直接发射到外部环境中,而该LED双面发光芯片内侧面所产生的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中。
  7. 如权利要求6所述的一种LED直下式背光源,其特征在于:该透明散热基板为玻璃,该散热导电薄膜镀层为银浆,该散热导电薄膜镀层为银浆的时候,银浆层在散热导电的同时也具备光反射的作用。
  8. 如权利要求6所述的一种LED直下式背光源,其特征在于:在正装该LED双面发光芯片的时候,在该透明散热基板的外表面上并且于该窗口部分中设置有若干条导热支撑线,该导热支撑线与该散热导电薄膜镀层的材料相同,每一条该导热支撑线的两端部都与该满附部分相连接,该导热支撑线架设在该LED双面发光芯片的底面上,该LED双面发光芯片工作所产生的热量通过该导热支撑线传导至该透明散热基板以及该散热导电薄膜镀层上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过若干条该导热支撑线之间的间隙并透过该透明散热基板后透射到外部环境中。
  9. 如权利要求6所述的一种LED直下式背光源,其特征在于:在倒装该LED双面发光芯片的时候,该LED双面发光芯片的底面两侧的电极搭设电连接在该窗口部分两侧的该满附部分顶面上,该LED双面发光芯片工作所产生的热量直接传导至该透明散热基板上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中。
  10. 一种发光体散热发光结构,其特征在于:该发光体为LED双面发光芯片,若干该LED双面发光芯片设置在透明散热板上,该透明散热板包括透明散热基板以及散热导电薄膜镀层,其中,该散热导电薄膜镀层附着在该透明散热基板的外表面上,该透明散热基板由透光散热材料制成,该散热导电薄膜镀层由导热散热导电材料制成,该散热导电薄膜镀层包括满附部分以及窗口部分,该满附部分以及该窗口部分间隔设置,该LED双面发光芯片水平设置在该窗口部分位置处,此刻,该LED双面发光芯片外侧面所产生的光线直接发射到外部环境中,而该LED双面发光芯片内侧面所产生的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中,
    该LED双面发光芯片能够以正装以及倒装两种方式水平设置在该窗口部分位置处,在正装该LED双面发光芯片的时候,在该透明散热基板的外表面上并且于该窗口部分中设置有若干条导热支撑线,该导热支撑线与该散热导电薄膜镀层的材料相同,每一条该导热支撑线的两端部都与该满附部分相连接,该导热支撑线架设在该LED双面发光芯片的底面上,该LED双面发光芯片工作所产生的热量通过该导热支撑线传导至该透明散热基板以及该散热导电薄膜镀层上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过若干条该导热支撑线之间的间隙并透过该透明散热基板后透射到外部环境中,
    在倒装该LED双面发光芯片的时候,该LED双面发光芯片的底面两侧的电极搭设电连接在该窗口部分两侧的该满附部分顶面上,该LED双面发光芯片工作所产生的热量直接传导至该透明散热基板上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中。
  11. 一种LED直下式背光源发光方法,其特征在于:将扩散板连接在底壳上,且借助该扩散板与该底壳围绕形成一空气槽,该扩散板的内侧面形成该空气槽的顶面,该底壳的内侧面形成该空气槽的底面,将光源单元设置在该空气槽中,在工作的时候,该光源单元通电发光所产生的光线透过该扩散板透射到外部环境中,
    该光源单元包括若干发光体,若干该发光体顺序排列设置在该空气槽中,每一个该发光体都横向设置在该空气槽中,使每一个该发光体的法向光强方向都与该扩散板平行,该光源单元包括若干光条,若干该光条横向或者纵向排列设置在该空气槽中,每一个该光条都包括有若干该发光体,在该底壳的该内侧面上固定设置有固定条,若干该光条通过该固定条被架设在该空气槽中,在该底壳的该内侧面上设置有反光板,借助该反光板尽最大可能将光线反射到该扩散板方向。
  12. 如权利要求11所述的一种LED直下式背光源发光方法,其特征在于:该发光体为LED双面发光芯片,若干该LED双面发光芯片设置在透明散热板上,该透明散热板纵向插设在连接座上,借助若干该LED双面发光芯片、该透明散热板以及该连接座组合形成一个该光条,该透明散热板纵向插设在连接座上的结构确定出该发光体横向设置在该空气槽中的结构构成方式,同时确定出每一个该发光体的发光方式,该透明散热板包括透明散热基板以及散热导电薄膜镀层,其中,该散热导电薄膜镀层附着在该透明散热基板的外表面上,该透明散热基板由透光 散热材料制成,该散热导电薄膜镀层由导热散热导电材料制成,该散热导电薄膜镀层包括满附部分以及窗口部分,该满附部分以及该窗口部分间隔设置,该LED双面发光芯片水平设置在该窗口部分位置处,此刻,该LED双面发光芯片外侧面所产生的光线直接发射到外部环境中,而该LED双面发光芯片内侧面所产生的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中,
    该LED双面发光芯片能够以正装以及倒装两种方式水平设置在该窗口部分位置处,在正装该LED双面发光芯片的时候,在该透明散热基板的外表面上并且于该窗口部分中设置有若干条导热支撑线,该导热支撑线与该散热导电薄膜镀层的材料相同,每一条该导热支撑线的两端部都与该满附部分相连接,该导热支撑线架设在该LED双面发光芯片的底面上,该LED双面发光芯片工作所产生的热量通过该导热支撑线传导至该透明散热基板以及该散热导电薄膜镀层上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过若干条该导热支撑线之间的间隙并透过该透明散热基板后透射到外部环境中,
    在倒装该LED双面发光芯片的时候,该LED双面发光芯片的底面两侧的电极搭设电连接在该窗口部分两侧的该满附部分顶面上,该LED双面发光芯片工作所产生的热量直接传导至该透明散热基板上,并同步进行散热,该LED双面发光芯片的底面所发出的光线通过该窗口部分并透过该透明散热基板后透射到外部环境中。
  13. 如权利要求6所述的一种LED直下式背光源,其特征在于:该满附部分包括导热散热部分以及导电散热部分,该导热散热部分以及该导电散热部分同时附着在该透明散热基板的外表面上,其中,该导热散热部分上开设有若干通孔,若干该通孔将该透明散热基板与外部环境相连通,通过该通孔能够使该透明散热基板高效的将热量散发到外部环境中,该导电散热部分与该导热散热部分相分离,该导电散热部分设置在该发光体之间,相邻的该发光体的电连接线分别与该导电散热部分电连接,从而使若干该发光体形成串联连接关系。
PCT/CN2015/087463 2014-08-26 2015-08-18 一种led直下式背光源及其发光方法 WO2016029809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410422541.3A CN105371161B (zh) 2014-08-26 2014-08-26 一种led直下式背光源及其发光方法
CN201410422541.3 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016029809A1 true WO2016029809A1 (zh) 2016-03-03

Family

ID=55373603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087463 WO2016029809A1 (zh) 2014-08-26 2015-08-18 一种led直下式背光源及其发光方法

Country Status (2)

Country Link
CN (1) CN105371161B (zh)
WO (1) WO2016029809A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105444036B (zh) * 2014-08-26 2017-03-22 蔡鸿 一种led光源发光散热结构
CN109031773A (zh) * 2017-06-09 2018-12-18 群创光电股份有限公司 显示装置
CN109869647B (zh) * 2019-03-05 2021-05-18 东莞中之科技股份有限公司 一种双面发光的led灯珠

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080055927A1 (en) * 2006-08-31 2008-03-06 K-Bridge Electronics Co., Ltd. Light source efficiency upgrading installation
CN201413835Y (zh) * 2009-06-01 2010-02-24 北京众智同辉科技有限公司 发光二极管集群埋设结构
CN101846256A (zh) * 2010-05-04 2010-09-29 蔡州 Led光源
CN101994957A (zh) * 2009-08-11 2011-03-30 夏普株式会社 用于led的侧面发射led背光
CN201851960U (zh) * 2010-02-26 2011-06-01 金芃 薄型直下式led背光模组
CN102155695A (zh) * 2011-04-21 2011-08-17 中山大学 一种背光源的光源结构及其直下式和侧入式背光源结构
CN102287768A (zh) * 2010-05-11 2011-12-21 三星电子株式会社 发光二极管封装以及具有其的发光装置
CN203118987U (zh) * 2013-01-25 2013-08-07 廖旭文 双面发光的led灯板结构
CN103824927A (zh) * 2014-03-12 2014-05-28 上海亚浦耳照明电器有限公司 一种led芯片封装体及其制备方法
CN204062597U (zh) * 2014-08-26 2014-12-31 蔡鸿 一种led光源发光散热结构
CN204062595U (zh) * 2014-08-26 2014-12-31 蔡鸿 一种led灯具
CN204300813U (zh) * 2014-08-26 2015-04-29 蔡鸿 一种led直下式背光源

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100468170C (zh) * 2006-02-10 2009-03-11 鸿富锦精密工业(深圳)有限公司 背光系统
CN201606739U (zh) * 2009-11-11 2010-10-13 康佳集团股份有限公司 Led背光模组
CN202327686U (zh) * 2011-04-26 2012-07-11 蔡州 Led光源
KR20130011377A (ko) * 2011-07-21 2013-01-30 삼성전자주식회사 발광소자 패키지
CN102927483A (zh) * 2012-11-20 2013-02-13 田茂福 一体化倒装型led照明组件
WO2015062135A1 (zh) * 2013-10-29 2015-05-07 蔡鸿 一种led光源散热结构及其散热方法
CN105444036B (zh) * 2014-08-26 2017-03-22 蔡鸿 一种led光源发光散热结构

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080055927A1 (en) * 2006-08-31 2008-03-06 K-Bridge Electronics Co., Ltd. Light source efficiency upgrading installation
CN201413835Y (zh) * 2009-06-01 2010-02-24 北京众智同辉科技有限公司 发光二极管集群埋设结构
CN101994957A (zh) * 2009-08-11 2011-03-30 夏普株式会社 用于led的侧面发射led背光
CN201851960U (zh) * 2010-02-26 2011-06-01 金芃 薄型直下式led背光模组
CN101846256A (zh) * 2010-05-04 2010-09-29 蔡州 Led光源
CN102287768A (zh) * 2010-05-11 2011-12-21 三星电子株式会社 发光二极管封装以及具有其的发光装置
CN102155695A (zh) * 2011-04-21 2011-08-17 中山大学 一种背光源的光源结构及其直下式和侧入式背光源结构
CN203118987U (zh) * 2013-01-25 2013-08-07 廖旭文 双面发光的led灯板结构
CN103824927A (zh) * 2014-03-12 2014-05-28 上海亚浦耳照明电器有限公司 一种led芯片封装体及其制备方法
CN204062597U (zh) * 2014-08-26 2014-12-31 蔡鸿 一种led光源发光散热结构
CN204062595U (zh) * 2014-08-26 2014-12-31 蔡鸿 一种led灯具
CN204300813U (zh) * 2014-08-26 2015-04-29 蔡鸿 一种led直下式背光源

Also Published As

Publication number Publication date
CN105371161A (zh) 2016-03-02
CN105371161B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
US8564739B2 (en) LED backlight system for LCD displays
JP5554382B2 (ja) 高出力のコーナーledを使用するバックライト
TWI422918B (zh) 導光構件、面光源裝置及顯示裝置
US20100033954A1 (en) Thin illumination device, display device and luminary device
JP2006294618A (ja) 発光パネル
TWI593918B (zh) 發光模組
KR100708461B1 (ko) 멀티-칩 발광다이오드 패키지를 구비한 측광형 백라이트유닛 및 이를 채용한 디스플레이 장치
WO2016029809A1 (zh) 一种led直下式背光源及其发光方法
KR101850434B1 (ko) 광원 모듈 및 이를 포함하는 조명시스템
JP4992636B2 (ja) バックライト装置
KR100993252B1 (ko) 발광 다이오드 모듈
CN204300813U (zh) 一种led直下式背光源
KR20090040362A (ko) 조명 기구
JP2009104197A (ja) 内照式掲示器の光源構造
US20190058147A1 (en) Light emitting diode device, light source structure and electronic apparatus
KR102012353B1 (ko) 발광다이오드 모듈과, 이를 포함하는 백라이트 유닛 및 디스플레이 장치
KR20120075045A (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
TWM549299U (zh) 雙晶雙迴路光源模組與使用其之顯示器
KR20120140074A (ko) 발광소자 모듈 및 이를 포함하는 조명시스템
KR20120014489A (ko) 발광소자모듈, 및 그를 이용한 백라이트 유닛과 조명장치
KR20160059709A (ko) 발광 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15835629

Country of ref document: EP

Kind code of ref document: A1