WO2016029644A1 - 一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺 - Google Patents

一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺 Download PDF

Info

Publication number
WO2016029644A1
WO2016029644A1 PCT/CN2015/071415 CN2015071415W WO2016029644A1 WO 2016029644 A1 WO2016029644 A1 WO 2016029644A1 CN 2015071415 W CN2015071415 W CN 2015071415W WO 2016029644 A1 WO2016029644 A1 WO 2016029644A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
discharge
feed
module
mixing distributor
Prior art date
Application number
PCT/CN2015/071415
Other languages
English (en)
French (fr)
Inventor
高剑峰
Original Assignee
高剑峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高剑峰 filed Critical 高剑峰
Publication of WO2016029644A1 publication Critical patent/WO2016029644A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation

Definitions

  • the invention relates to the field of preparation of a microchannel reaction device, in particular to a microtubular reaction device and a process for preparing hydrogenated nitrile rubber by using the device.
  • microreaction technology has become a new research hotspot in the field of synthetic chemistry, most notably the application of microchannel reactors.
  • the Chinese patent CN101698646A is designed to use the micro-channel reactor continuous nitrification process, which can effectively solve the process defects of the nitrification reaction flying-temperature explosion and realize the continuous production of nitrate ester.
  • the microstructure inside the microchannel reactor allows the microreactor device to have a very large specific surface area, up to hundreds or even thousands of times that of conventional tank reactors.
  • the microchannel reaction device has extremely high mass transfer and heat transfer rate, and can realize instantaneous mixing and efficient heat transfer of the reactants, and has the advantages of mild reaction conditions, safety and environmental protection, easy amplification, and the like in many conventional reactions. Reactions that are not achievable in the device can be implemented in the microreactor.
  • microreactors have been widely used in the research and development of chemical process, and the application in commercial production is increasing. Its main application areas include organic synthesis processes, the preparation of micro and nano materials and the production of daily chemicals. We believe that microreactors will play a huge role in the chemical industry. However, the current microreactor has the problem of inconvenience in installation and disassembly.
  • the present invention provides a microtubular reaction device and a process for preparing a hydrogenated nitrile rubber by using the device.
  • the reaction device is assembled from a plurality of modules, which is convenient for installation and disassembly, and can overcome existing microchannels.
  • the reaction device is difficult to clean and repair.
  • the hydrogenation of the hydrogenated nitrile rubber product prepared by the preparation process is as high as possible More than 96%, the amount of catalyst consumed by the reactor is reduced by more than 15%, the reaction time is shortened by at least 30 times, the energy consumption and production cost are greatly reduced, and the continuous hydrogenation of the nitrile rubber can be conveniently realized.
  • the utility model has the advantages of simple reactor structure, convenient operation, low energy consumption, short reaction time, high safety, no side reaction, small environmental pollution, simple process flow and low production cost.
  • a microtubular reactor comprising a preheating module I and a reaction module II, the preheating module I comprising a heat transfer oil tank or a sealed steam tank and a plurality of material tubes disposed therein; the reaction module II is made of a heat transfer oil tank or a sealed
  • the steam tank, the feed mixing distributor, the main reaction material tube and the discharge mixer are configured; the feed mixing distributor, the main reaction material tube and the discharge mixer are sequentially connected from the top to the bottom and disposed in the heat transfer oil tank or sealed In the steam tank; the discharge port of the preheating module I is connected to the feed port of the feed mixing distributor.
  • Each material pipe correspondingly includes a material pipe feed port for material input and a material pipe discharge port for material flow;
  • the feed mixing distributor is provided with a plurality of discharge ports and a plurality of feed ports, each of which The material pipe discharge port is respectively connected with the feed port of the feed mixing distributor of the reaction module II;
  • the main reaction material pipe is composed of a plurality of material pipes; the plurality of material pipes respectively correspond to the material pipe feed The discharge port of the mouth and the material pipe;
  • the discharge mixer comprises a feed port of the discharge mixer and a discharge port of the discharge mixer; a discharge port of the feed mixing distributor and a plurality of material pipes of the main reaction material pipe
  • the feed ports are connected to each other;
  • the plurality of material pipe outlets of the main reaction material pipe are connected with the feed port of the discharge mixer, wherein the number of the material pipes in the main reaction material pipe and the output of the feed mixing distributor
  • the number of nozzles is the same, the number of outlets of the feed mixing distributor is 2-20, and the length
  • the number of discharge ports of the feed mixing distributor is 4-10, and the length of each section of the material pipe is 10-50 m.
  • the material tube is a mixture of one or more of an empty tube, an inner filling tube and other tubular reactors, and the material tube channel has a diameter of 0.01 to 10 mm.
  • the device is seamlessly welded and ferrule-connected, and the unit is made of carbon steel, stainless steel or alloy. to make.
  • a large-capacity feed mixing distributor is disposed between the preheating module I and the reaction module II; a large-capacity discharge mixer is disposed behind the reaction module II; and the large-capacity feeding mixing distributor includes a plurality of inlets And a plurality of discharge ports; the large-capacity discharge mixer comprises a plurality of feed ports and one discharge port; the feed mixing distributor in the reaction module II is a feed port and a plurality of discharge ports; The feed port of the material mixing distributor is in communication with the discharge port of the preheating module; the plurality of discharge ports of the large capacity feed mixing distributor are respectively mixed with the plurality of feeds in the reaction module II connected in series with each other in parallel The feed ports of the distributor are connected; the discharge ports of the plurality of parallel reaction modules II are connected to the plurality of feed ports of the large-capacity discharge mixer, wherein the number of discharge ports of the large-capacity feed mixing distributor is The number of parallel connections of the reaction module II is the same.
  • the number of the reaction modules II is plural, 2 to 20 reaction modules II are connected in series, and 2 to 10 reaction modules II connected in series are connected in parallel with each other.
  • the discharge mixer is similar in structure to the feed mixing distributor.
  • the former has the same number of feed ports as the latter, and the cavity size and microstructure are the same, except that the former is only one out.
  • Feed port, the latter has one or more feed ports.
  • a process for preparing hydrogenated nitrile rubber by using the microtubular reactor comprising the following steps:
  • NBR raw material nitrile rubber
  • RhCl(PPh 3 ) 3 homogeneous catalyst tris(triphenylphosphine) ruthenium chloride
  • ligand triphenylphosphine (PPh 3 ) was added to the solvent to prepare a certain concentration.
  • the NBR concentration is 1% to 15%
  • the mass ratio of the catalyst RhCl(PPh 3 ) 3 to the NBR is 50 to 300 ppm
  • the mass of the ligand PPh 3 and the NBR is 0.005 to 0.2:1;
  • the crude product is subjected to catalyst removal, evaporation of the solvent, devolatilization and extrusion molding to obtain a hydrogenated nitrile rubber.
  • NBR raw material nitrile rubber
  • RhCl(PPh 3 ) 3 homogeneous catalyst tris(triphenylphosphine) ruthenium chloride
  • ligand triphenylphosphine (PPh 3 ) was added to the solvent to prepare a certain concentration.
  • the NBR concentration is 5% to 10%
  • the mass ratio of the catalyst RhCl(PPh 3 ) 3 to the NBR is 175 to 300 ppm
  • the mass of the ligand PPh 3 and the NBR is 0.02 to 0.1:1;
  • the crude product is subjected to catalyst removal, evaporation of the solvent, devolatilization and extrusion molding to obtain a hydrogenated nitrile rubber.
  • the present invention has the following beneficial technical effects:
  • the microtubular reaction device provided by the invention is assembled from a plurality of modules, is convenient to be installed and disassembled, and can overcome the problem that the existing microchannel reaction device is difficult to clean and repair. It is also possible to quickly assemble the corresponding microtubular reaction device according to the conditions of the desired reaction, and the corresponding process flow can be quickly designed and improved.
  • the material diameter of the reaction device is less than 10 mm, and a plurality of mixers are added during the connection process, which retains the advantages of mass transfer, high heat transfer efficiency and high safety of the general micro-reaction device.
  • the hydrogenation degree of the hydrogenated nitrile rubber product prepared is as high as 96% or more, and the amount of catalyst consumed by the reactor is reduced by more than 15%.
  • the reaction time is shortened by at least 30 times, the energy consumption and production cost are greatly reduced, and the continuous production of hydrogenated nitrile rubber can be conveniently realized.
  • the utility model has the advantages of simple reactor structure, convenient operation, low energy consumption, short reaction time, high safety, no side reaction, small environmental pollution, simple process flow and low production cost.
  • Figure 1 is a structural view of a microtubular reactor in the case where a reaction module II is included in the present invention
  • the preheating module I A is a heat conducting oil tank or a steam tank; I 1 , I 2 , I 3 ... are the material feeding inlets of the preheating module; n1, n2, n3... are material pipes; C 1 , C 2 , C 3 ... are the discharge ports of the material pipes of the preheating module.
  • B is a heat transfer oil tank or steam tank;
  • D is a feed mixing distributor;
  • d1, d2, d3... is the feed port of each material of the feed mixing distributor;
  • D1, D2, D3... It is the discharge port of the feed mixing distributor;
  • R the main reaction material pipe R1, R2, R3...; e1, e2, e3... the feed port of the material pipe of the main reaction material pipe;
  • F is the discharge mixer;
  • f1, f2, f3... is the discharge mixer inlet;
  • Fc is the discharge mixer Feed port.
  • I 1 is a hydrogen feed port of the preheating module I; and I 2 is a NBR gel of the preheating module I.
  • a microtubular reaction device includes a preheating module I and a reaction module II, as shown in FIG. 1.
  • the preheating module I includes a heat transfer oil tank or a sealed steam tank A and a plurality of steam chambers disposed inside the tank.
  • the reaction module II is composed of a heat transfer oil tank or a sealed steam tank B, a feed mixing distributor D, and a main reaction material tube R
  • the discharge mixer F wherein the heat transfer oil tank can be unsealed (steam tank seal) for heating/cooling medium flow, and the feed mixing distributor D, the main reaction material tube R and the discharge mixer F are connected from top to bottom in turn.
  • the discharge port of the preheating module I is in communication with the feed port of the feed mixing distributor D.
  • each material tube respectively corresponds to a material pipe inlet port I 1 , I 2 , I 3 ... for material input and a material pipe outlet port C 1 , C 2 , C 3 ... for discharging material;
  • the feed mixing distributor D is provided with a plurality of discharge ports D1, D2, D3 ... and a plurality of feed ports d1, d2, d3 ..., each material pipe discharge ports C 1 , C 2 , C 3 ... Correspondingly connected with the feeding ports d1, d2, d3, ...
  • the main reaction material pipe R is composed of a plurality of material pipes R1, R2, R3, ..., a plurality of material pipes Corresponding to the material pipe inlets e1, e2, e3... and the material pipe outlets E1, E2, E3, ..., the discharge mixer F includes the feed ports f1, f2, f3... of the discharge mixer F and The discharge port FC of the discharge mixer F, the discharge ports D1, D2, D3... of the feed mixing distributor D are connected with the plurality of material pipe inlets e1, e2, e3, ... of the main reaction material pipe R; The plurality of material pipe outlets E1, E2, E3...
  • the material pipes of the main reaction material pipe R are in communication with the feed ports f1, f2, f3, ... of the discharge mixer F, wherein the material pipes of the main reaction material pipe R Number mixed with feed
  • the number of discharge ports D1, D2, D3... of the distributor D is the same, the number of discharge ports of the feed mixing distributor D is 2-20, and the length of each section of the material pipe is 4-100 m.
  • the optimal number of outlets of the feed mixing distributor D is 4-10, and the length of each section of the material tubes R1, R2, R3... in the reaction module II affects the reaction efficiency.
  • the length of the material pipe is too short, which makes the installation of the equipment inconvenient and the cost is increased; on the other hand, the length of the material pipe is too long, the efficiency of mixing between various materials is lowered, and the reaction efficiency is lowered, and the length of each section of the material pipe is 10 ⁇ 50m.
  • the material tube is a mixture of one or more of an empty tube, an inner filling tube and other tubular reactors, and the material tube channel has a diameter of 0.01 to 10 mm.
  • the device adopts seamless welding and ferrule connection, and the device can be made of carbon steel, stainless steel, alloy or the like according to the specific reaction type occurring in the device; the micro tube type reaction device, the mixer and the material tube material are selected from stainless steel. Or alloy.
  • a large-capacity feed mixing distributor [D] is disposed between the preheating module I and the reaction module II, and a large-capacity discharging mixer is disposed behind the reaction module II.
  • the large-capacity feed mixing distributor [D] includes a plurality of feed ports and a plurality of discharge ports
  • the large-capacity discharge mixer [F] includes a plurality of feed ports and one discharge port
  • the reaction module II The feed mixing distributor D is a feed port and a plurality of discharge ports, and the feed port of the large-capacity feed mixing distributor [D] is in communication with the discharge port of the preheating module, and the large-capacity feed is mixed.
  • the plurality of discharge ports of the distributor [D] are respectively connected to the feed ports of the feed mixing distributor D in the plurality of parallel reaction modules II connected in series, and the discharge ports in the plurality of parallel reaction modules II It is connected with a plurality of feed ports of the large-capacity discharge mixer [F], wherein the number of discharge ports of the large-capacity feed mixing distributor [F] is the same as the number of parallel connection of the reaction module II.
  • the discharge mixer F in the same reaction module II is similar in structure to the feed mixing distributor D, the former has the same number of feed ports and the latter has the same number of discharge ports, the former The number of discharge ports and the number of feed ports of the latter are both one, and the cavity size and microstructure of the two are the same.
  • the microtubular reactor is prepared by hydrogenating a nitrile rubber.
  • the number of the reaction modules II is plural, 2-20 reaction modules II are connected in series, and 2 to 10 reaction modules II connected in series are connected in parallel.
  • the reaction efficiency can be improved by connecting a plurality of reaction modules II in series, and the number of the reaction modules II in the series is optimally selected from 6 to 15.
  • the microtubular reactor can prepare a hydrogenated nitrile rubber, and the production capacity can be expanded by connecting a plurality of reaction modules II in parallel.
  • the number of the reaction modules II that are optimally selected in parallel for a single metering pump is 3-6, and the production is performed.
  • the capacity can reach 600L/h.
  • the optimal hydrogen inlet pressure is 6 to 13 MPa.
  • a process for preparing a hydrogenated nitrile rubber using the microtubular reactor comprises the following steps:
  • NBR raw material nitrile rubber
  • RhCl(PPh 3 ) 3 homogeneous catalyst tris(triphenylphosphine) ruthenium chloride
  • ligand triphenylphosphine (PPh 3 ) was added to the solvent to prepare a certain concentration.
  • the NBR concentration is 8%
  • the mass ratio of the catalyst RhCl(PPh 3 ) 3 to the NBR is 300 ppm
  • the mass of the ligand PPh 3 and the NBR is 0.005:1;
  • the reacted material enters the discharge mixer and merges and mixes uniformly, and then flows out of the discharge port F C of the discharge mixer into the gas-liquid separation tank; the flow rate of the glue is adjusted at 90 L/ h, adjusting the hydrogen flow rate so that the hydrogen inlet pressure is 17.5 MPa, and the reaction temperature is controlled at 120 ° C;
  • the gas flows from the top of the gas-liquid separation tank.
  • a hydrogen recovery tank the glue flows into the crude product tank through the product outlet of the bottom of the gas-liquid separation tank;
  • the crude product is subjected to catalyst removal, evaporation of the solvent, devolatilization and extrusion molding to obtain a hydrogenated nitrile rubber.
  • a process for preparing hydrogenated nitrile rubber by using the microtubular reactor comprising the following steps:
  • NBR raw material nitrile rubber
  • RhCl(PPh 3 ) 3 homogeneous catalyst tris(triphenylphosphine) ruthenium chloride
  • PPh 3 ligand triphenylphosphine
  • the crude product is subjected to catalyst removal, evaporation of the solvent, devolatilization and extrusion molding to obtain a hydrogenated nitrile rubber.
  • a process for preparing hydrogenated nitrile rubber by using the microtubular reactor comprising the following steps:
  • NBR raw material nitrile rubber
  • RhCl (PPh3) 3 homogeneous catalyst tris(triphenylphosphine) ruthenium chloride
  • ligand triphenylphosphine (PPh3) was added to the solvent to prepare a certain concentration of glue. Liquid, The NBR concentration is 1%, the mass ratio of the catalyst RhCl(PPh3)3 to the NBR is 175 ppm, and the mass of the ligand PPh3 and NBR is 0.2:1;
  • the crude product is subjected to catalyst removal, evaporation of the solvent, devolatilization and extrusion molding to obtain a hydrogenated nitrile rubber.
  • the selected microchannel reaction device has the following parameters: the reaction is carried out by using one reaction module II, the number of feed inlets of the liquid mixing distributor D is 2, the number of discharge ports is 8, and the material pipe is an empty stainless steel pipe with an inner diameter of 2 mm. The length of each material pipe is 40m.
  • the specific steps are as follows:
  • NBR raw material nitrile rubber
  • RhCl (PPh3) 3 homogeneous catalyst tris(triphenylphosphine) ruthenium chloride
  • ligand triphenylphosphine (PPh3) was added to the solvent to prepare a certain concentration of glue.
  • the crude product is subjected to the steps of removing the catalyst, evaporating the solvent, devolatilization and extrusion to obtain the final product hydrogenated nitrile rubber.
  • the product was tested by the bromine iodine method, and the degree of hydrogenation was 10.6%.
  • the specific reaction conditions and results are shown in Table 1.
  • a reaction module II was further connected in series to carry out a reaction, and the product was detected by a bromine iodine method, and the degree of hydrogenation was 30.4%.
  • the specific reaction conditions and results are shown in Table 1.
  • reaction modules II were further connected in series to carry out a reaction, and the product was detected by a bromine iodine method, and the degree of hydrogenation was 45.3%.
  • the specific reaction conditions and results are shown in Table 1.
  • Example 1 Five reaction modules II were further connected in series to carry out a reaction, and the product was detected by a bromine iodide method, and the degree of hydrogenation was 77.0%.
  • the specific reaction conditions and results are shown in Table 1.
  • Example 1 seven reaction modules II were further connected in series to carry out a reaction, and the product was detected by a bromine iodide method, and the degree of hydrogenation was 88.1%.
  • the specific reaction conditions and results are shown in Table 1.
  • Example 1 9 reaction modules II were further connected in series to carry out a reaction, and the product was detected by a bromine iodine method, and the degree of hydrogenation was 96.1%.
  • the specific reaction conditions and results are shown in Table 1.
  • Example 6 the amount of the catalyst was changed to 120 ppm, and the product was examined by the bromine iodine method, and the degree of hydrogenation was 74.4%.
  • the specific reaction conditions and results are shown in Table 1.
  • Example 1 the amount of the catalyst was changed to 150 ppm, and the product was examined by the bromine iodine method, and the degree of hydrogenation was 85.7%.
  • the specific reaction conditions and results are shown in Table 1.
  • Example 1 the amount of the catalyst was changed to 170 ppm, and the product was examined by the bromine iodine method, and the degree of hydrogenation was 95.2%.
  • the specific reaction conditions and results are shown in Table 1.
  • a total volume of 70 L of nitrile rubber (NBR), a rhodium catalyst and a ligand of triphenylphosphine (PPh3) in a chlorobenzene solution were added to a 100 L autoclave, wherein the concentration of NBR was 6% and the ligand concentration was 2 % (based on the mass ratio of dry glue), after the nitrogen is replaced, the reactor is filled with hydrogen gas to maintain the pressure in the autoclave at 8 MPa or more, and the heating is started and stirred.
  • NBR nitrile rubber
  • PPh3 rhodium catalyst
  • PPh3 triphenylphosphine
  • Example 9 and Product No. 3 were used in the same manner as the raw material type, the dope concentration, the catalyst concentration, the ligand concentration, and the reaction temperature, etc., using the microtubular reactor of the present invention.
  • the amount of catalyst consumed by the type of reaction device is reduced by 15%, and the same degree of hydrogenation (95%) can be achieved, and the reaction time of the former is shortened by more than 30 times, and the energy consumption is greatly reduced.
  • the process for preparing hydrogenated nitrile rubber using the microtubular reactor of the present invention enables continuous production and rapid expansion of production scale by paralleling without prolonging production time.
  • a novel microchannel reactor of the present invention and a process for preparing hydrogenated nitrile rubber using the same are still in a further optimization stage, and we believe that through continuous efforts, the production cost of preparing hydrogenated nitrile rubber can be greatly reduced. Production safety has been greatly improved.
  • the hydrogenation of the hydrogenated nitrile rubber product prepared by the process is as high as 96% or more, the catalyst consumption of the reactor is reduced by more than 15%, the reaction time is shortened by at least 30 times, and the hydrogenation reaction can be conveniently realized. produce.
  • the device can be applied to many other related fields of mixed mass transfer and reaction between fluids.
  • the process is also applicable to catalytic hydrogenation of other unsaturated copolymers and other similar multi-component mixed mass transfer and reaction. Many related fields.
  • the invention designs a novel micro-tube type reaction device, which is assembled by a plurality of modules, is convenient for installation and disassembly, and can overcome the problem that the existing micro-channel reaction device is difficult to clean and repair. It is also possible to quickly assemble the corresponding microtubular reaction device according to the conditions of the desired reaction, and the corresponding process flow can be quickly designed and improved.
  • the material diameter of the reaction device is less than 10 mm, and a plurality of mixers are added during the connection process, which retains the advantages of mass transfer, high heat transfer efficiency and high safety of the general micro-reaction device.
  • the hydrogenation rate of the prepared hydrogenated nitrile rubber product is up to 96%, which is more than 15% less than the amount of catalyst consumed in the reactor, and the reaction time is shortened by at least 30 times, which greatly reduces energy consumption and production.
  • the cost and the continuous production of hydrogenated nitrile rubber can be conveniently realized.
  • the utility model has the advantages of simple structure, convenient operation, low energy consumption, short reaction time, high safety, no side reaction, small environmental pollution, simple process flow and low production cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺,该装置包括预热模块I和反应模块II,预热模块I包括导热油槽或密封的蒸汽槽以及置于槽内的物料管;反应模块II由导热油槽或密封的蒸汽槽(A)、进料混合分配器(D)、主反应物料管(R)和出料混合器构成(F);进料混合分配器(D)、主反应物料管(R)和出料混合器(F)依次从上到下相连通后设置在导热油槽内(A);预热模块I的物料出料口与物料进料混合分配器(D)的进料口相连通。

Description

一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺 技术领域
本发明涉及一种微通道反应装置的制备领域,尤其涉及一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺。
背景技术
进入21世纪,微反应技术已经成为合成化学领域中新的研究热点,最明显的就是微通道反应装置的应用。例如中国专利CN101698646A设计采用微通道反应器连续式硝化工艺,可有效地解决了硝化反应飞温爆炸的工艺缺陷,实现了硝酸酯的连续式生产。微通道反应装置内部的微结构使得微反应装置设备具有极大的比表面积,可达传统釜式反应装置几百甚至上千倍。微通道反应装置具有极高的传质、传热速率,可实现反应物的瞬间混合和高效传热,相比常规反应装置具有反应条件温和、安全环保、易于放大等优点,且许多在常规反应装置中无法实现的反应都可以在微反应装置中实现。
随着全世界环境污染能源枯竭等问题的不断加剧,化学工业领域面临巨大的挑战与机遇,研究新型高效环保经济的化学反应途径迫在眉睫。鉴于微通道反应的诸多优点问题,诸多科学家对其进行深入研究,目前微反应装置在化工工艺过程的研究与开发中已经得到广泛的应用,商业化生产中的应用正日益增多。其主要应用领域包括有机合成过程,微米和纳米材料的制备和日用化学品的生产,我们相信微反应装置将在化学工业中发挥出巨大的作用。但目前的微反应装置存在着安装及拆卸不便的问题。
发明内容
本发明为了解决上述技术问题,提供一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺,该反应装置由多个模块组装而成,方便安装及拆卸,可克服现有微通道反应装置不易清洗检修的难题。同时基于该装置的制备氢化丁腈橡胶的工艺,该制备工艺制备的氢化丁腈橡胶产品加氢度高达 96%以上,相比釜式反应器消耗的催化剂量减少15%以上,反应时间缩短至少30倍以上,大幅度的降低了能耗和生产成本,并且能很方便的实现氢化丁腈橡胶的连续化生产。具有反应器结构简单、操作方便、能耗低、反应时间短、安全性高、无副反应、环境污染小、工艺流程简单和生产成本低等优点。
本发明是通过以下技术方案来实现:
一种微管式反应装置,包括预热模块I和反应模块II,预热模块I包括导热油槽或密封的蒸汽槽以及置于其内部的多个物料管;反应模块II由导热油槽或密封的蒸汽槽、进料混合分配器、主反应物料管和出料混合器构成;进料混合分配器、主反应物料管和出料混合器依次从上到下相连通后设置在导热油槽或密封的蒸汽槽内;预热模块I的出料口与进料混合分配器的进料口相连通。
各个物料管分别对应包括供物料输入的物料管进料口及供物料流出的物料管出料口;所述的进料混合分配器上设置有多个出料口和多个进料口,各个物料管出料口分别与反应模块II的进料混合分配器的进料口对应相连通;所述主反应物料管由多个物料管排列组成;多个物料管分别对应带有物料管进料口和物料管出料口;出料混合器包括出料混合器的进料口和出料混合器的出料口;进料混合分配器的出料口与主反应物料管的多个物料管进料口相连通;主反应物料管的多个物料管出料口与出料混合器的进料口相连通,其中,主反应物料管中的物料管的数目与进料混合分配器的出料口数目相同,进料混合分配器的出料口数目在2-20个,物料管每节的长度在4-100m。
所述的进料混合分配器的出料口数目在4~10个,物料管每节的长度在10~50m。
所述的物料管为空管、内充填料管及其他管状反应器中的一种或几种混合,物料管通道直径0.01~10mm。
该装置采用无缝焊接和卡套连接,且该装置采用碳钢、不锈钢、合金制 成。
所述的预热模块I和反应模块II之间设置有一个大容量进料混合分配器;反应模块II后面设置有大容量出料混合器;大容量进料混合分配器包括多个进料口和多个出料口;大容量出料混合器包括多个进料口和一个出料口;反应模块II中的进料混合分配器为一个进料口和多个出料口;大容量进料混合分配器的进料口与预热模块的出料口相连通;大容量进料混合分配器的多个出料口分别与多个并联的相互串联后的反应模块II中的进料混合分配器的进料口相连;多个并联的反应模块II中的出料口与大容量出料混合器的多个进料口相连,其中,大容量进料混合分配器的出料口数目与反应模块II的并联数目相同。
所述的反应模块II的数目为多个,2~20个反应模块II相互串联连接,2~10个串联后的反应模块II相互并联连接。
出料混合器与进料混合分配器结构类似,前者的进料口数目和后者出料口数目相同,并且二者的腔体大小及微结构相同,不同之处在于前者是仅有一个出料口,后者有一个或多个进料口。
一种利用所述的微管式反应装置制备氢化丁腈橡胶的工艺,包括以下步骤:
①首先将原料丁腈橡胶(NBR),均相催化剂三(三苯基膦)氯化铑【RhCl(PPh3)3】,配体三苯基膦(PPh3)加入溶剂中配制成一定浓度的胶液,所述NBR浓度为1%~15%,催化剂RhCl(PPh3)3与NBR的质量比为50~300ppm,配体PPh3与NBR的质量为0.005~0.2:1;
②开启加热系统,使得预热模块I和反应模块II加热到设置温度;
③将上述第①步配制好的胶液和过量的氢气输送至微管式反应装置的预热模块I,胶液和氢气分别进入各自的物料管中,在流动过程中预热到设置温度后,再经由物料管出料口流出,进入反应模块II的进料混合分配器混合 均匀,再均匀分配成多份进入主反应物料管的多个物料管中进行反应,混合均匀的物料在主反应物料管流动过程中逐步发生反应,反应后的物料进入出料混合器汇合并混合均匀,再由出料混合器的出料口流出进入气液分离罐;调节胶液流速在30~150L/h,调节氢气流量使得氢气进气压力在5~20MPa,反应温度控制在80~160℃;
④上述反应后的产物经气液分离罐分离后气体从气液分离罐顶端流入氢气回收罐,胶液经由气液分离罐底部产品出料口流入到粗产品罐中;
⑤粗产品经过脱除催化剂、蒸干溶剂、脱挥和挤压成型处理,得到产品氢化丁腈橡胶。
包括以下步骤:
①首先将原料丁腈橡胶(NBR),均相催化剂三(三苯基膦)氯化铑【RhCl(PPh3)3】,配体三苯基膦(PPh3)加入溶剂中配制成一定浓度的胶液,所述NBR浓度为5%~10%,催化剂RhCl(PPh3)3与NBR的质量比为175~300ppm,配体PPh3与NBR的质量为0.02~0.1:1;
②开启加热系统,使得预热模块I和反应模块II加热到设置温度;
③将上述第①步配制好的胶液和过量的氢气输送至微管式反应装置的预热模块I,胶液和氢气分别进入各自的物料管中,在流动过程中预热到设置温度后,再经由物料管出料口流出,进入反应模块II的进料混合分配器混合均匀,再均匀分配成多份进入主反应物料管的多个物料管中进行反应,混合均匀的物料在主反应物料管流动过程中逐步发生反应,反应后的物料进入出料混合器汇合并混合均匀,再由出料混合器的出料口流出进入气液分离罐;调节胶液流速在90~150L/h,调节氢气流量使得氢气进气压力在8~13MPa,反应温度控制在100~140℃;
④上述反应后的产物经气液分离罐分离后气体从气液分离罐顶端流入氢气回收罐,胶液经由气液分离罐底部产品出料口流入到粗产品罐中;
⑤粗产品经过脱除催化剂、蒸干溶剂、脱挥和挤压成型处理,得到产品氢化丁腈橡胶。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的微管式反应装置由多个模块组装而成,方便安装及拆卸,可克服现有微通道反应装置不易清洗检修的难题。还可以根据所需反应的条件快速组装相应的微管式反应装置,可以快速设计完善相应的工艺流程。另一方面该反应装置的物料管径在10mm以下,且连接过程中加入多个混合器,保留了一般微反应装置传质、传热效率高和安全性高等优点。基于本发明一种微管式反应装置的丁腈橡胶的连续加氢生产工艺,制备的氢化丁腈橡胶产品加氢度高达96%以上,相比釜式反应器消耗的催化剂量减少15%以上,反应时间缩短至少30倍以上,大幅度的降低了能耗和生产成本,并且能很方便的实现氢化丁腈橡胶的连续化生产。具有反应器结构简单、操作方便、能耗低、反应时间短、安全性高、无副反应、环境污染小、工艺流程简单和生产成本低等优点。
附图说明
图1是本发明中包含一个反应模块II时的微管式反应装置结构图;
其中,预热模块I:A为导热油槽或蒸汽槽;I1,I2,I3...为预热模块的各物料管进料口;n1,n2,n3...为物料管;C1,C2,C3...为预热模块的各物料管出料口。
反应模块II:B为导热油槽或蒸汽槽;D为进料混合分配器;d1,d2,d3...为进料混合分配器的各物料的进料口;D1,D2,D3...为进料混合分配器的出料口;R,为主反应物料管R1,R2,R3...;e1,e2,e3...为主反应物料管的物料管的进料口;E1,E2,E3...为主反应物料管的物料管的出料口;F为出料混合器;f1,f2,f3...为出料混合器进料口;Fc为出料混合器出料口。
图2是使用本发明微管式反应装置制备氢化丁腈橡胶的微管式反应装置 结构图;其中,I1为预热模块I的氢气进料口;I2为预热模块I的NBR胶液进料口;n1为氢气物料管;n2为NBR胶液物料管;【D】大容量进料混合分配器;【F】大容量出料混合器。
具体实施方式
以下实例中均采取溴碘法对氢化丁腈橡胶进行检测。
下述实施例是用于进一步说明本发明,而不是来限制本发明的范围,以下实施例是基于使用本发明一种新型的微管式反应装置制备氢化丁腈橡胶的工艺,但本领域技术人员能够理解该工艺同样适用于其他不饱和共聚物的催化加氢以及其他类似的多组分物料混合传质及反应的众多相关领域。
参见图1至图2,一种微管式反应装置,包括预热模块I和反应模块II,见图1,预热模块I包括导热油槽或密封的蒸汽槽A以及置于槽内部的多个物料管,其中导热油槽可不密封(蒸汽槽密封),导热油槽内部供预热/冷却介质流动;反应模块II由导热油槽或密封的蒸汽槽B、进料混合分配器D、主反应物料管R和出料混合器F构成,其中导热油槽可不密封(蒸汽槽密封)内部供加热/冷却介质流动,进料混合分配器D、主反应物料管R和出料混合器F依次从上到下相连通后设置在导热油槽或密封的蒸汽槽B内,预热模块I的出料口与进料混合分配器D的进料口相连通。
具体的,各个物料管分别对应包括供物料输入的物料管进料口I1,I2,I3...及供物料流出的物料管出料口C1,C2,C3…;所述的进料混合分配器D上设置有多个出料口D1,D2,D3…和多个进料口d1,d2,d3…,各个物料管出料口C1,C2,C3…分别与反应模块II的进料混合分配器D的进料口d1,d2,d3…对应连接;所述主反应物料管R由多个物料管R1,R2,R3…排列组成,多个物料管分别对应带有物料管进料口e1,e2,e3…和物料管出料口E1,E2,E3…,出料混合器F包括出料混合器F的进料口f1,f2,f3…和出料混合器F的出料口FC,进料混合分配器D的出料口D1,D2,D3…与主反应物 料管R的多个物料管进料口e1,e2,e3…相连通;主反应物料管R的多个物料管出料口E1,E2,E3…与出料混合器F的进料口f1,f2,f3…相连通,其中,主反应物料管R中的物料管的数目与进料混合分配器D的出料口D1,D2,D3…数目相同,进料混合分配器D的出料口数目在2-20个,物料管每节的长度在4-100m。
所述的进料混合分配器D的出料口数目最优选择在4~10个,反应模块II中物料管R1,R2,R3...每节的长度影响反应效率。一方面物料管长度太短,使得设备安装不方便,成本提高;另一方面物料管长度太长,各种物料之间混合的效率降低,进而导致反应效率降低,物料管每节的长度在10~50m。
所述的物料管为空管、内充填料管及其他管状反应器中的一种或几种混合,物料管通道直径0.01~10mm。
该装置采用无缝焊接和卡套连接,且该装置根据设备内具体发生的反应类型可采用碳钢、不锈钢、合金等制成;所述微管式反应装置,混合器及物料管材质选用不锈钢或合金。
为提高反应效率和增大生产规模,所述的预热模块I和反应模块II之间设置有一个大容量进料混合分配器【D】,反应模块II后面设置有大容量出料混合器【F】,大容量进料混合分配器【D】包括多个进料口和多个出料口,大容量出料混合器【F】包括多个进料口和一个出料口,反应模块II中的进料混合分配器D为一个进料口和多个出料口,大容量进料混合分配器【D】的进料口与预热模块的出料口相连通,大容量进料混合分配器【D】的多个出料口分别与多个并联的相互串联后的反应模块II中的进料混合分配器D的进料口相连,多个并联的反应模块II中的出料口与大容量出料混合器【F】的多个进料口相连,其中,大容量进料混合分配器【F】的出料口数目与反应模块II的并联数目相同。其中,同一个反应模块II中出料混合器F与进料混合分配器D结构类似,前者的进料口数目和后者出料口数目相同,前者的 出料口数目和后者的进料口数目均为一个,并且二者的腔体大小及微结构相同。
所述微管式反应装置制备氢化丁腈橡胶的工艺,所述的反应模块II的数目为多个,2~20个反应模块II相互串联连接,2~10个串联后的反应模块II相互并联连接,可通过串联多个反应模块II提高反应效率,最优选择串联的反应模块II数目为6~15个。
进一步地,所述微管式反应装置制备氢化丁腈橡胶的工艺,可通过并联多个反应模块II来扩大生产能力,单个计量泵最优选择并联的反应模块II数目为3~6个,生产能力可达600L/h。最优氢气进气压力为6~13MPa。
参见图2,一种利用所述的微管式反应装置制备氢化丁腈橡胶的工艺,包括以下步骤:
①首先将原料丁腈橡胶(NBR),均相催化剂三(三苯基膦)氯化铑【RhCl(PPh3)3】,配体三苯基膦(PPh3)加入溶剂中配制成一定浓度的胶液,所述NBR浓度为8%,催化剂RhCl(PPh3)3与NBR的质量比为300ppm,配体PPh3与NBR的质量为0.005:1;
②开启加热系统,使得预热模块I和反应模块II加热到温度100℃;
③将上述第①步配制好的胶液和过量的氢气输送至微管式反应装置的预热模块I,胶液和氢气分别进入各自的物料管中,在流动过程中预热到设置温度后,再经由物料管出料口流出,进入反应模块II的进料混合分配器混合均匀,再均匀分配成多份进入主反应物料管的多个物料管中进行反应,混合均匀的物料在主反应物料管的流动过程中逐步发生反应,反应后的物料进入出料混合器汇合并混合均匀,再由出料混合器的出料口FC流出进入气液分离罐;调节胶液流速在90L/h,调节氢气流量使得氢气进气压力在17.5MPa,反应温度控制在120℃;
④上述反应后的产物经气液分离罐分离后,气体从气液分离罐顶端流入 氢气回收罐,胶液经由气液分离罐底部产品出料口流入到粗产品罐中;
⑤粗产品经过脱除催化剂、蒸干溶剂、脱挥和挤压成型处理,得到产品氢化丁腈橡胶。
一种利用所述的微管式反应装置制备氢化丁腈橡胶的工艺,包括以下步骤:
①首先将原料丁腈橡胶(NBR),均相催化剂三(三苯基膦)氯化铑【RhCl(PPh3)3】,配体三苯基膦(PPh3)加入溶剂中配制成一定浓度的胶液,所述NBR浓度为15%,催化剂RhCl(PPh3)3与NBR的质量比为50ppm,配体PPh3与NBR的质量为0.1:1;
②开启加热系统,使得预热模块I和反应模块II加热到温度100℃;
③将上述第①步配制好的胶液和过量的氢气输送至微管式反应装置的预热模块I,胶液和氢气在流动过程中预热到设置温度后,再进入反应模块II的进料混合分配器混合均匀,再均匀分配成多份进入主反应物料管进行反应,混合均匀的物料在主反应物料管的流动过程中逐步发生反应,反应后的物料进入出料混合器汇合并混合均匀,再由出料混合器的出料口流出进入气液分离罐;调节胶液流速在150L/h,调节氢气流量使得氢气进气压力在20MPa,反应温度控制在160℃;
④上述反应产物经气液分离罐分离后,气体从气液分离罐顶端流入氢气回收罐,胶液经由气液分离罐底部产品出料口流入到粗产品罐中;
⑤粗产品经过脱除催化剂、蒸干溶剂、脱挥和挤压成型处理,得到产品氢化丁腈橡胶。
一种利用所述的微管式反应装置制备氢化丁腈橡胶的工艺,包括以下步骤:
①首先将原料丁腈橡胶(NBR),均相催化剂三(三苯基膦)氯化铑【RhCl(PPh3)3】,配体三苯基膦(PPh3)加入溶剂中配制成一定浓度的胶液, 所述NBR浓度为1%,催化剂RhCl(PPh3)3与NBR的质量比为175ppm,配体PPh3与NBR的质量为0.2:1;
②开启加热系统,使得预热模块I和反应模块II加热到温度100℃;
③将上述第①步配制好的胶液和过量的氢气输送至微管式反应装置的预热模块I,胶液和氢气在流动过程中预热到设置温度后,再进入反应模块II的进料混合分配器混合均匀,再均匀分配成多份进入主反应物料管进行反应,混合均匀的物料在主反应物料管的流动过程中逐步发生反应,反应后的物料进入出料混合器汇合并混合均匀,再由出料混合器的出料口流出进入气液分离罐;调节胶液流速在30L/h,调节氢气流量使得氢气进气压力在5MPa,反应温度控制在80℃;
④上述反应产物经气液分离罐分离后,气体从气液分离罐顶端流入氢气回收罐,胶液经由气液分离罐底部产品出料口流入到粗产品罐中;
⑤粗产品经过脱除催化剂、蒸干溶剂、脱挥和挤压成型处理,得到产品氢化丁腈橡胶。
实施例1
选择的微通道反应装置具有以下参数:采用一个反应模块II进行反应,进液混合分配器D的进料口数目为2,出料口数目为8,物料管选用内径为2mm的空不锈钢管,每节物料管长度为40m,具体操作步骤如下:
①首先将原料丁腈橡胶(NBR),均相催化剂三(三苯基膦)氯化铑【RhCl(PPh3)3】,配体三苯基膦(PPh3)加入溶剂中配制成一定浓度的胶液,其中所述NBR浓度为6%,催化剂RhCl(PPh3)3与NBR的质量比为200ppm,配体PPh3与NBR的质量为0.02:1。
②开启加热系统,使得预热模块I和反应模块II加热到设置温度100℃;
③将上述第①步配制好的胶液以100L/h的流速用计量泵输送至预加 热模块I的进料口I2,高压氢气从另一个进料口I1进入,胶液和氢气在流动过程中预热到设置温度后,接着进入进料混合分配器D混合均匀,再平均分配成多份进入主反应物料管R进行反应,混合均匀的物料在主反应物料管R的流动过程中逐步发生反应,反应后的物料进入出料混合器F汇合并混合均匀,再由出料混合器F的出料口Fc流出进入气液分离罐。调节氢气流量使得氢气进气压力在8MPa以上,反应温度控制在100℃,胶液输送流速设定为100L/h;
④上述反应产物经气液分离罐分离后,气体从气液分离罐顶端流入氢气回收罐,产物胶液经由气液分离罐底部产品出料口流入到粗产品罐中;
⑤粗产品经过脱除催化剂、蒸干溶剂、脱挥和挤压成型等步骤即可获得最终的产品氢化丁腈橡胶。采用溴碘法对产品进行检测,加氢度为10.6%。具体反应条件及结果见表1。
实施例2
在实施例1中,再串联1个反应模块II进行反应,采用溴碘法对产品进行检测,加氢度为30.4%。具体反应条件及结果见表1.
实施例3
在实施例1中,再串联3个反应模块II进行反应,采用溴碘法对产品进行检测,加氢度为45.3%。具体反应条件及结果见表1.
实施例4
在实施例1中,再串联5个反应模块II进行反应,采用溴碘法对产品进行检测,加氢度为77.0%。具体反应条件及结果见表1.
实施例5
在实施例1中,再串联7个反应模块II进行反应,采用溴碘法对产品进行检测,加氢度为88.1%。具体反应条件及结果见表1.
实施例6
在实施例1中,再串联9个反应模块II进行反应,采用溴碘法对产品进行检测,加氢度为96.1%。具体反应条件及结果见表1.
表1使用本发明微管式反应装置制备氢化丁腈橡胶的工艺条件及产品信息
Figure PCTCN2015071415-appb-000001
表1中:催化剂浓度按铑离子与干胶的质量比计,单位ppm(百万分之一)
对比实施例1、2、3、4、5、6的反应条件发现,在其他条件都相同的条件下,微管式反应装置串联的反应模块II数目越多,物料管总长度越长,氢气的进气量会越小。这是因为微管式反应装置是一种连续的非密闭式反应装置,物料管总长度越长,在进口压力相等的条件下,压力下降的梯度越小,氢气就越难进入到物料管中。对比实施例1、2、3、4、5、6产品的加氢度结果发现,微管式反应装置串联的反应模块II数目越多,物料管总长度越长,物料在物料管中反应的时间越长,加氢度越高。
实施例7
在实施例6中,催化剂的加入量变化为120ppm,采用溴碘法对产品进行检测,加氢度为74.4%。具体反应条件及结果见表1.
实施例8
在实施例1中,催化剂的加入量变化为150ppm,采用溴碘法对产品进行检测,加氢度为85.7%。具体反应条件及结果见表1.
实施例9
在实施例1中,催化剂的加入量变化为170ppm,采用溴碘法对产品进行检测,加氢度为95.2%。具体反应条件及结果见表1.
对比实施例6、7、8、9结果发现,增加催化剂的浓度可以提高反应效率,但催化剂浓度大于170ppm后,再增加催化剂的量,产品加氢度提高的幅度明显降低。
为了比较本发明微管式反应装置与釜式反应装置的加氢效果,首先使用釜式反应装置制备了一系列不同型号的HNBR橡胶(见表2),釜式反应装置制备氢化丁腈橡胶的通用步骤如下:
首先在100L高压反应釜中加入总体积为70L的丁腈橡胶(NBR)、铑催化剂和配体三苯基膦(PPh3)的氯苯溶液,其中NBR的浓度为6%,配体浓度为2%(按干胶的质量比计),氮气置换后再向反应釜中充入氢气,使釜内压力维持在8MPa以上,开启加热并搅拌,待釜内溶液温度达到100℃后(需要时间约45min),再持续搅拌反应6h(反应过程中如果釜内压力低于8MPa,立即补充氢气),获得的氢化丁腈橡胶产品加氢度见下表2。
比较表1,表2的结果发现,实施例9与产品编号3在原料型号、胶液浓度、催化剂浓度、配体浓度以及反应温度等相同的情况下,使用本发明微管式反应装置比釜式反应装置消耗的催化剂量减少15%,即可达到相同的加氢度(95%),且前者的反应时间比后者缩短了超过30倍,能耗大大降低。
使用本发明微管式反应装置制备氢化丁腈橡胶的工艺可连续化生产和通过并联的方式快速扩大生产规模,而不会延长生产时间。目前本发明一种新型的微通道反应器及使用该设备制备氢化丁腈橡胶的工艺还在进一步优化阶段,我们相信的通过不断地努力,可使得制备氢化丁腈橡胶的生产成本大幅度降低,生产安全性大幅度提高。
表2使用100L釜式反应器制备的HNBR产品信息列表
Figure PCTCN2015071415-appb-000002
表2中:催化剂浓度按铑离子与干胶的质量比计,单位ppm(百万分之一)
该工艺制备的氢化丁腈橡胶产品加氢度高达96%以上,相比釜式反应器催化剂消耗量减少15%以上,反应时间缩短至少30倍以上,并且可以很方便的实现氢化反应的连续化生产。
另外,该装置还可以应用于其他类似的流体间混合传质及反应的众多相关领域,该工艺同样适用于其他不饱和共聚物的催化加氢以及其他类似的多组分混合传质及反应的众多相关领域。
本发明设计了一种新型的微管式反应装置,该反应装置由多个模块组装而成,方便安装及拆卸,可克服现有微通道反应装置不易清洗检修的难题。还可以根据所需反应的条件快速组装相应的微管式反应装置,可以快速设计完善相应的工艺流程。另一方面该反应装置的物料管径在10mm以下,且连接过程中加入多个混合器,保留了一般微反应装置传质、传热效率高和安全性高等优点。基于本发明一种新型微管式反应装置的丁腈橡胶的连续加氢生 产工艺,制备的氢化丁腈橡胶产品加氢度高达96%以上,相比釜式反应器消耗的催化剂量减少15%以上,反应时间缩短至少30倍以上,大幅度的降低了能耗和生产成本,并且能很方便的实现氢化丁腈橡胶的连续化生产。具有反应装置结构简单、操作方便、能耗低、反应时间短、安全性高、无副反应、环境污染小、工艺流程简单和生产成本低等优点。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 一种微管式反应装置,其特征在于,包括预热模块I和反应模块II,预热模块I包括导热油槽或密封的蒸汽槽(A)以及置于其内部的多个物料管;反应模块II由导热油槽或密封的蒸汽槽(B)、进料混合分配器(D)、主反应物料管(R)和出料混合器(F)构成;进料混合分配器(D)、主反应物料管(R)和出料混合器(F)依次从上到下相连通后设置在导热油槽或密封的蒸汽槽(B)内;预热模块I的出料口与进料混合分配器(D)的进料口相连通。
  2. 根据权利要求1所述的微管式反应装置,其特征在于,各个物料管分别对应包括供物料输入的物料管进料口(I1,I2,I3...)及供物料流出的物料管出料口(C1,C2,C3…);所述的进料混合分配器(D)上设置有多个出料口(D1,D2,D3…)和多个进料口(d1,d2,d3…),各个物料管出料口(C1,C2,C3…)分别与反应模块II的进料混合分配器(D)的进料口(d1,d2,d3…)对应相连通;所述主反应物料管(R)由多个物料管(R1,R2,R3…)排列组成;多个物料管分别对应带有物料管进料口(e1,e2,e3…)和物料管出料口(E1,E2,E3…);出料混合器(F)包括出料混合器(F)的进料口(f1,f2,f3…)和出料混合器(F)的出料口(FC);进料混合分配器(D)的出料口(D1,D2,D3…)与主反应物料管(R)的多个物料管进料口(e1,e2,e3…)相连通;主反应物料管(R)的多个物料管出料口(E1,E2,E3…)与出料混合器(F)的进料口(f1,f2,f3…)相连通,其中,主反应物料管(R)中的物料管的数目与进料混合分配器(D)的出料口(D1,D2,D3…)数目相同,进料混合分配器(D)的出料口数目在2-20个,物料管每节的长度在4-100m。
  3. 根据权利要求2所述的微管式反应装置,其特征在于,所述的进料混合分配器(D)的出料口数目在4~10个,物料管每节的长度在10~50m。
  4. 根据权利要求2所述的微管式反应装置,其特征在于,所述的物料管 为空管、内充填料管及其他管状反应器中的一种或几种混合,物料管通道直径0.01~10mm。
  5. 根据权利要求1所述的微管式反应装置,其特征在于,该装置采用无缝焊接和卡套连接,且该装置采用碳钢、不锈钢、合金制成。
  6. 根据权利要求1所述的微管式反应装置,其特征在于,所述的预热模块I和反应模块II之间设置有一个大容量进料混合分配器;反应模块II后面设置有大容量出料混合器;大容量进料混合分配器包括多个进料口和多个出料口;大容量出料混合器包括多个进料口和一个出料口;大容量出料混合器包括多个进料口和一个出料口,反应模块II中的进料混合分配器(D)为一个进料口和多个出料口;大容量进料混合分配器的进料口与预热模块的出料口相连通;大容量进料混合分配器的多个出料口分别与多个并联的相互串联后的反应模块II中的进料混合分配器(D)的进料口相连;多个并联的反应模块II中的出料口与大容量出料混合器的多个进料口相连,其中,大容量进料混合分配器的出料口数目与反应模块II的并联数目相同。
  7. 根据权利要求6所述的微管式反应装置,其特征在于,所述的反应模块II的数目为多个,2~20个反应模块II相互串联连接,2~10个串联后的反应模块II相互并联连接。
  8. 根据权利要求1所述的微管式反应装置,其特征在于,出料混合器(F)与进料混合分配器(D)结构类似,前者的进料口数目和后者出料口数目相同,并且二者的腔体大小及微结构相同,不同之处在于前者是仅有一个出料口,后者有一个或多个进料口。
  9. 一种基于权利要求1-8所述的利用微管式反应装置制备氢化丁腈橡胶的工艺,其特征在于,包括以下步骤:
    ①首先将原料丁腈橡胶(NBR),均相催化剂三(三苯基膦)氯化铑【RhCl(PPh3)3】,配体三苯基膦(PPh3)加入溶剂中配制成一定浓度的胶液, 所述NBR浓度为1%~15%,催化剂RhCl(PPh3)3与NBR的质量比为50~300ppm,配体PPh3与NBR的质量为0.005~0.2:1;
    ②开启加热系统,使得预热模块I和反应模块II加热到设置温度;
    ③将上述第①步配制好的胶液和过量的氢气输送至微管式反应装置的预热模块I,胶液和氢气分别进入各自的物料管中,在流动过程中预热到设置温度后,再经由物料管出料口流出,进入反应模块II的进料混合分配器(D)混合均匀,再均匀分配成多份进入主反应物料管(R)的多个物料管中进行反应,混合均匀的物料在主反应物料管(R)流动过程中逐步发生反应,反应后的物料进入出料混合器(F)汇合并混合均匀,再由出料混合器(F)的出料口(FC)流出进入气液分离罐;调节胶液流速在30~150L/h,调节氢气流量使得氢气进气压力在5~20MPa,反应温度控制在80~160℃;
    ④上述反应后的产物经气液分离罐分离后气体从气液分离罐顶端流入氢气回收罐,胶液经由气液分离罐底部产品出料口流入到粗产品罐中;
    ⑤粗产品经过脱除催化剂、蒸干溶剂、脱挥和挤压成型处理,得到产品氢化丁腈橡胶。
  10. 根据权利要求9所述的利用微管式反应装置制备氢化丁腈橡胶的工艺,其特征在于,包括以下步骤:
    ①首先将原料丁腈橡胶(NBR),均相催化剂三(三苯基膦)氯化铑【RhCl(PPh3)3】,配体三苯基膦(PPh3)加入溶剂中配制成一定浓度的胶液,所述NBR浓度为5%~10%,催化剂RhCl(PPh3)3与NBR的质量比为175~300ppm,配体PPh3与NBR的质量为0.02~0.1:1;
    ②开启加热系统,使得预热模块I和反应模块II加热到设置温度;
    ③将上述第①步配制好的胶液和过量的氢气输送至微管式反应装置的预热模块I,胶液和氢气分别进入各自的物料管中,在流动过程中预热到设置温度后,再经由物料管出料口流出,进入反应模块II的进料混合分配器(D) 混合均匀,再均匀分配成多份进入主反应物料管(R)的多个物料管中进行反应,混合均匀的物料在主反应物料管(R)流动过程中逐步发生反应,反应后的物料进入出料混合器(F)汇合并混合均匀,再由出料混合器(F)的出料口(FC)流出进入气液分离罐;调节胶液流速在90~150L/h,调节氢气流量使得氢气进气压力在8~13MPa,反应温度控制在100~140℃;
    ④上述反应后的产物经气液分离罐分离后气体从气液分离罐顶端流入氢气回收罐,胶液经由气液分离罐底部产品出料口流入到粗产品罐中;
    ⑤粗产品经过脱除催化剂、蒸干溶剂、脱挥和挤压成型处理,得到产品氢化丁腈橡胶。
PCT/CN2015/071415 2014-08-29 2015-01-23 一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺 WO2016029644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410436581.3 2014-08-29
CN201410436581.3A CN104190340B (zh) 2014-08-29 2014-08-29 一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺

Publications (1)

Publication Number Publication Date
WO2016029644A1 true WO2016029644A1 (zh) 2016-03-03

Family

ID=52075792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071415 WO2016029644A1 (zh) 2014-08-29 2015-01-23 一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺

Country Status (2)

Country Link
CN (1) CN104190340B (zh)
WO (1) WO2016029644A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190340B (zh) * 2014-08-29 2016-04-06 高剑峰 一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺
CN107335395B (zh) * 2017-09-05 2023-11-03 山东豪迈化工技术有限公司 微反应器
CN112142883B (zh) * 2019-06-28 2022-06-07 沈阳化工研究院有限公司 一种共轭二烯烃聚合物连续加氢方法及装置
CN113813898B (zh) * 2021-10-22 2022-10-28 西安交通大学 一种组合式超临界水热合成微通道反应器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066245A2 (en) * 2000-03-07 2001-09-13 Symyx Technologies, Inc. Parallel flow process optimization reactor
WO2006031058A1 (en) * 2004-09-13 2006-03-23 Spec Co., Ltd Micro channel reactor
CN101014561A (zh) * 2003-05-02 2007-08-08 万罗赛斯公司 将碳氢化合物转化为氧化物或腈的方法
CN102432471A (zh) * 2011-11-07 2012-05-02 常州大学 一种利用微通道反应器进行氯苯硝基反应的方法
CN102875322A (zh) * 2012-10-15 2013-01-16 常州大学 一种采用微通道反应器溴化叔丁醇制备溴代叔丁烷的方法
CN103333290A (zh) * 2013-07-23 2013-10-02 蒲城瑞鹰新材料科技有限公司 一种氢化丁腈橡胶的微通道反应器连续生产工艺
CN103911194A (zh) * 2013-01-04 2014-07-09 高剑峰 复合型柴油十六烷值改进剂及其生产工艺
CN104190340A (zh) * 2014-08-29 2014-12-10 高剑峰 一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1297890A2 (en) * 2000-03-07 2003-04-02 Symyx Technologies, Inc. Parallel flow process optimization reactor
US7422910B2 (en) * 2003-10-27 2008-09-09 Velocys Manifold designs, and flow control in multichannel microchannel devices
CN1985175A (zh) * 2004-07-14 2007-06-20 株式会社荏原制作所 微管道芯片反应控制系统、包含它的微全反应系统以及微全分析系统
US20070246106A1 (en) * 2006-04-25 2007-10-25 Velocys Inc. Flow Distribution Channels To Control Flow in Process Channels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066245A2 (en) * 2000-03-07 2001-09-13 Symyx Technologies, Inc. Parallel flow process optimization reactor
CN101014561A (zh) * 2003-05-02 2007-08-08 万罗赛斯公司 将碳氢化合物转化为氧化物或腈的方法
WO2006031058A1 (en) * 2004-09-13 2006-03-23 Spec Co., Ltd Micro channel reactor
CN102432471A (zh) * 2011-11-07 2012-05-02 常州大学 一种利用微通道反应器进行氯苯硝基反应的方法
CN102875322A (zh) * 2012-10-15 2013-01-16 常州大学 一种采用微通道反应器溴化叔丁醇制备溴代叔丁烷的方法
CN103911194A (zh) * 2013-01-04 2014-07-09 高剑峰 复合型柴油十六烷值改进剂及其生产工艺
CN103333290A (zh) * 2013-07-23 2013-10-02 蒲城瑞鹰新材料科技有限公司 一种氢化丁腈橡胶的微通道反应器连续生产工艺
CN104190340A (zh) * 2014-08-29 2014-12-10 高剑峰 一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺

Also Published As

Publication number Publication date
CN104190340A (zh) 2014-12-10
CN104190340B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN103333290B (zh) 一种氢化丁腈橡胶的微通道反应器连续生产工艺
WO2016029644A1 (zh) 一种微管式反应装置及利用该装置制备氢化丁腈橡胶的工艺
US9504979B2 (en) Radial-parallel catalytic reactor
CA2557822A1 (en) Microchannel polymerization reactor
JP2017512642A (ja) アンモ酸化反応器のためのフィードスパージャ設計
US11661552B2 (en) Hydrothermal liquefaction system
CN102260176B (zh) 一种防老剂4020连续化生产工艺
CN206405435U (zh) 一种纳米金溶液微流控制备装置
CN102151521B (zh) 内冷换热式轴向流动固定床催化反应器
Konarova et al. Enabling compact GTL by 3D-printing of structured catalysts
CN214486841U (zh) 一种微反应器及并联式高效微反应器
CN114225858A (zh) 一种套管结构微反应器及应用
JP2019501011A5 (zh)
CN110756119A (zh) 一种带有氢气分布器的连续加氢反应装置及工艺
CN110697654B (zh) 一种连续流蛇形微通道聚光光热耦合催化制氢反应装置
CN206604395U (zh) 一种用于丙烯醛生产的气体混合器
CN112191203A (zh) 一种led光源光催化管式反应器及其应用
CN214183115U (zh) 一种带静态混合元件的管式反应器
CN212142558U (zh) 连续生产系统
CN205235936U (zh) 一种组合式固定床反应器及由其形成的装置
CN210206780U (zh) 一种连续流综合实验撬装装置
CN109966998B (zh) 一种管式反应器
CN208554115U (zh) 一种α-烯烃氢甲酰化反应制备醛的多相反应器
CN108686593B (zh) 多尺度微结构反应器
CN112430188A (zh) 一种新型加氢技术制备异丙基苯胺的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836588

Country of ref document: EP

Kind code of ref document: A1