WO2016027808A1 - 内燃機関用ピストン及びその製造方法 - Google Patents

内燃機関用ピストン及びその製造方法 Download PDF

Info

Publication number
WO2016027808A1
WO2016027808A1 PCT/JP2015/073143 JP2015073143W WO2016027808A1 WO 2016027808 A1 WO2016027808 A1 WO 2016027808A1 JP 2015073143 W JP2015073143 W JP 2015073143W WO 2016027808 A1 WO2016027808 A1 WO 2016027808A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
internal combustion
combustion engine
dislocation density
laser
Prior art date
Application number
PCT/JP2015/073143
Other languages
English (en)
French (fr)
Inventor
大 鳴澤
宗春 沓名
匡 渡辺
Original Assignee
アート金属工業株式会社
株式会社最新レーザ技術研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アート金属工業株式会社, 株式会社最新レーザ技術研究センター filed Critical アート金属工業株式会社
Priority to JP2016544218A priority Critical patent/JPWO2016027808A1/ja
Publication of WO2016027808A1 publication Critical patent/WO2016027808A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/356Working by laser beam, e.g. welding, cutting or boring for surface treatment by shock processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/01Pistons; Trunk pistons; Plungers characterised by the use of particular materials

Definitions

  • the present invention relates to a piston for an internal combustion engine in which strength is improved by selecting a part and a method for manufacturing the same.
  • the piston for an internal combustion engine shows various structural forms depending on its design, and the parts that require strength differ depending on the structural form.
  • the strength of the top surface 11d of the piston body may be required
  • the strength of the skirt portion 12 may be required
  • the strength of the hole 3 may be required.
  • the pin hole 3 transmits combustion pressure to a connecting rod via a piston pin, a load is large and it is requested
  • no prior art has been found that proposes a technology for improving the strength of the inner surface of the pin hole that can withstand even a severe operating environment with increased combustion pressure.
  • Patent Document 1 proposes a technique in which a side relief is provided in the inner peripheral surface of the pin hole so as to relieve excessive stress generated in the piston inner portion of the pin hole during engine operation. .
  • This technique also has the effect of making lubricating oil easily enter the pin holes, preventing oil film breakage and reducing poor lubrication.
  • Patent Document 2 proposes a technique for roughening at least locally a boss hole or a small end connecting rod eye or a big end connecting rod eye with a laser beam in order to enhance the oil retaining ability of the bearing. .
  • Patent Document 3 proposes a technique for providing a plurality of crater-like depressions on the surface of a pin hole. This technique is capable of collecting lubricant, particularly engine oil, in the recess and forming a sliding membrane or support cushion.
  • pistons for internal combustion engines have been proposed in various structural forms depending on their design, and the parts that require strength differ depending on the structural form. Therefore, if the required portion can be selectively made high in strength, the degree of freedom in design can be increased, the range of material selection can be expanded, and the manufacturing process can be simplified.
  • the present invention has been made to meet the above-mentioned demands, and an object thereof is related to a piston for an internal combustion engine in which strength is improved by selecting a part and a manufacturing method thereof.
  • a piston for an internal combustion engine according to the present invention for solving the above-described problem has at least a portion having a dislocation density in a range of 10 9 cm / cm 3 or more and 10 12 cm / cm 3 or less, and the dislocation
  • the portion having the density is characterized in that a precipitate having a major axis of 0.2 ⁇ m is generated by heating, or a precipitate having a major axis of less than 0.2 ⁇ m is generated by heating.
  • the portion having the dislocation density can be configured to exist within a range of a depth of 1 mm from the surface.
  • the portion having the dislocation density is any one selected from the outer peripheral surface of the piston, the top surface, the inner surface of the piston, and the inner peripheral surface of the pin hole for inserting the piston pin. It can be configured to be one or more sites.
  • the part having the dislocation density is preferably an Al—Si alloy or an Al—Cu alloy that generates the precipitate by the heating.
  • the dislocation density within the range can be obtained by laser peening, and the precipitate can be generated by heating.
  • a method for manufacturing a piston for an internal combustion engine according to the present invention for solving the above-mentioned problems can form a dislocation density in a range of 10 9 cm / cm 3 to 10 12 cm / cm 3 , and the dislocation density
  • a step of performing is preparing a piston material for an internal combustion engine capable of generating a precipitate having a major axis of less than 0.2 ⁇ m by heating the portion where the material is formed, and peening the internal combustion engine piston material to form the dislocation density
  • the heating may be applied during operation after the peened internal combustion engine piston is mounted on the internal combustion engine.
  • the heating may be applied before the piston for the internal combustion engine after the peening treatment is mounted on the internal combustion engine.
  • the method of manufacturing a piston for an internal combustion engine the laser peening, a pulse width in the range of less 20ns or 0.1 ns, the peak power density 0.1GW / cm 2 or more 20GW / cm 2 or less of
  • the pulse laser within the range is guided, the guided pulse laser is condensed by a condenser lens, the optical path of the condensed pulse laser is bent by a reflection mirror, and the irradiated laser beam is irradiated to the irradiated part.
  • the dislocation density is formed by irradiating the irradiated portion of the pulse laser with light guiding, condensing, and refracting the pulse laser in water. After covering, the pulse laser can be guided, condensed and refracted.
  • the irradiation of the pulsed laser to the irradiated portion is performed with a coverage of 3 or more after being covered with the water or the water flow.
  • the strength can be improved by selecting a part.
  • the strength of each part such as the outer peripheral surface of the piston, the top surface, the inner surface of the piston, and the inner peripheral surface of the pin hole for inserting the piston pin can be increased.
  • the strength of the piston pin hole can also be improved, when the load on the pin hole of the piston pin becomes extremely large due to the vertical movement of the piston in a severe operating environment with increased combustion pressure. Even if it exists, the intensity
  • a piston for an internal combustion engine it is possible to manufacture a piston capable of improving strength by selecting a part.
  • a piston for an internal combustion engine in which a required part has high strength can be manufactured, so that the degree of freedom in design increases, the range of material selection increases, and the manufacturing process can be simplified.
  • the piston pin hole for the internal combustion engine can be manufactured with high strength, the piston material can be strengthened without changing the piston material or providing a pin hole reinforcing member. There is an exceptional effect that is extremely effective in terms of manufacturing technology that it is only necessary to apply.
  • FIG. 1 It is a block diagram which shows an example of the piston for internal combustion engines which concerns on this invention, (A) is a side view, (B) is a partial sectional view of the IB-IB line. It is the microscope picture (A) which shows the form of the dislocation appearing in the inner peripheral surface of a pin hole, and its depth direction, and its schematic diagram (B). It is the microscope picture (A) which shows a dislocation and a fine precipitate, and explanatory drawing (B) of a dislocation and a fine precipitate. It is a micrograph in which dislocations and fine precipitates are hardly generated.
  • the microscope picture (A) which shows the dislocation which arose by the laser peening process
  • the microscope picture (B) when not performing a laser peening process. It is a graph which shows the stress amplitude when a predetermined stress is repeatedly applied, and the number of repetitions until breakage, (A) is a laser peening treatment, and (B) is a laser peening treatment. It is a graph which shows the relationship between the depth from an inner peripheral surface, and hardness, (A) is what carried out the laser peening process, (B) does not carry out a laser peening process. It is a graph which shows the relationship between the depth from an internal peripheral surface, and a residual stress about what was laser-peened.
  • the piston 1 for an internal combustion engine has at least a portion having a dislocation density within a range of 10 9 cm / cm 3 or more and 10 12 cm / cm 3 or less, and the portion having the dislocation density is heated. This is characterized in that precipitates having a major axis of less than 0.2 ⁇ m are produced, or precipitates having a major axis of less than 0.2 ⁇ m are produced by heating.
  • a site may be a site where strength is required in the piston 1 illustrated in FIG. 1 and may be selective.
  • the outer peripheral surface and top surface of the piston 1, the inner surface of the piston 1, the inner peripheral surface 4 of the pin hole 3 for inserting the piston pin, and the like can be exemplified.
  • the obtained piston 1 for an internal combustion engine can select a part and improve the strength.
  • the strength of each part such as the outer peripheral surface of the piston 1, the top surface, the inner surface of the piston 1, and the inner peripheral surface 4 of the pin hole 3 for inserting the piston pin can be selectively increased.
  • the strength of the pin hole 3 of the piston 1 can be selectively improved, the load on the pin hole 3 of the piston pin is significantly increased by the vertical movement of the piston under a severe operating environment in which the combustion pressure is increased. Even in this case, the strength of the pin hole 3 can be further increased, and a stable driving state can be maintained over a long period of time.
  • there is an exceptional effect that is extremely effective in terms of manufacturing technology, in which the piston material is not changed and the reinforcing member for the pin hole 3 is not provided, and the conventional piston only needs to be reinforced.
  • the internal combustion engine piston 1 includes an upper apex portion 11 and a lower skirt portion 12.
  • a first compression ring groove 11a, a second compression ring groove 11b, and an oil ring groove 11c are provided in this order toward the skirt portion 12 side.
  • Each groove is a groove in which a piston ring corresponding to the groove is mounted.
  • the structure, dimensions, etc. of the top 11 are not limited to the example of FIG. 1, and may be other structural forms, dimensions, etc.
  • the form and size of the entire piston are not limited to the example of FIG. It may be in form or size.
  • the skirt portion 12 is provided with a pair of pin boss portions 2 that face each other in the diameter direction.
  • the pin boss portion 2 is provided with a pin hole 3.
  • the pin hole 3 is a hole into which a piston pin (not shown) having a predetermined diameter is inserted.
  • the piston pin is connected to a connecting rod (not shown) for moving the piston 1 up and down in a cylinder liner (not shown).
  • the structure, dimensions, and the like of the skirt portion 12 are not limited to the example of FIG.
  • the pin hole 3 will be described as an example of the portion for improving the strength.
  • the pin hole 3 is not limited to this, and may be one portion or the whole surface of the outer peripheral surface, top surface, or one portion or the whole surface of the piston. But you can.
  • At least the inner peripheral surface 4 of the pin hole 3 can form dislocations 5 of high density (in the range of 10 9 cm / cm 3 to 10 12 cm / cm 3 . Consists of materials. Examples of such a material include an Al—Si alloy and an Al—Cu alloy. Here, “at least” means that the entire piston including the pin hole 3 may be an Al—Si alloy, an Al—Cu alloy, or the like, or only the inner peripheral surface 4 is an Al—Si alloy or Al—. A Cu-based alloy or the like may be used.
  • Such an Al—Si based alloy or Al—Cu based alloy is not particularly limited as long as it is a material in which high-density dislocations 5 are formed by the processing described later, and various types of materials can be used.
  • the Al—Si based alloy may be, for example, an Al—Si based alloy containing about 5 mass% of Si in Al, or an Al—Si based alloy containing about 25 mass% of Si in Al.
  • an Al—Si based alloy containing Si in an amount of about 11% by mass to 13% by mass may be used.
  • Si which is the main element of the Al—Si based alloy, can improve the flow of molten metal during casting and also acts to improve the wear resistance.
  • the content of Si is arbitrarily set as described above in consideration of the entire characteristics including hot water flowability and wear resistance.
  • the Al—Si alloy may contain various elements as long as the effects of the present invention are not impaired.
  • the inclusion of Cu is preferable because high-density dislocations 5 are formed by the process described later and fine precipitates of an AlCu-based alloy are easily generated.
  • Al—Cu alloy examples include A2618 alloy. Like the Al—Si alloy, this Al—Cu alloy contains one or more elements selected from Si, Mg, Ni, Cr, Fe and Mn as long as the effects of the present invention are not impaired. May be. Furthermore, trace amounts of elements other than these may be contained.
  • the high-density dislocations 5 are generated so as to exist within a range of a depth of 1 mm from the surface of the inner peripheral surface 4. Within the range, it may be within a range of 200 ⁇ m from the surface, may be within a range of 500 ⁇ m from the surface, or may be within a range of 1 mm from the surface. Usually, high-density dislocations 5 occur at least in the range of 200 ⁇ m from the surface.
  • the dislocation 5 is a linear crystal defect contained in the crystal, and includes an edge dislocation, a screw dislocation, and a mixed dislocation in which they are mixed.
  • the dislocation in the present invention is also used in a concept including these. Yes.
  • the dislocation density is the total length (cm) of dislocation lines existing in the unit volume (cubic centimeter: cm 3 ) of the crystal, and the unit is expressed in cm / cm 3 . When this dislocation density increases, the interaction between dislocations increases and the dislocations become difficult to move. That is, the static strength increases.
  • the dislocation density is usually in the range of 10 6 cm / cm 3 or more and 10 7 cm / cm 3 or less in the annealed metal material, but in the present invention, the dislocation density is 10 9 cm / cm 3 or more and 10 12. It has at least a portion having a high dislocation density in the range of cm / cm 3 or less. A value of 10 9 cm / cm 3 or more and 10 12 cm / cm 3 or less is a high value as the dislocation density.
  • part with a high dislocation density has shown high intensity
  • the dislocation density is derived by measuring the number and length of dislocations appearing in a predetermined area.
  • the length of the dislocation 5 is not particularly limited, and from the photograph in FIG. 2 (A), a large number of dislocations of about 0.05 ⁇ m or more and 0.5 ⁇ m or less can be observed.
  • the dislocation density can be 1 ⁇ 10 11 cm / cm 3 . In this invention, it observed with the transmission electron microscope of 1 million volts, and the result was shown in FIG. From the photograph, a transition density of about 10 9 cm / cm 3 to 10 12 cm / cm 3 was obtained.
  • the high-density dislocations 5 can be formed by various means, in the present invention, they are generated by laser peening.
  • the laser peening process is a peening process using a shock wave generated by irradiating a short pulse laser, and a pulse laser having a high peak output density capable of ablating a metal to be processed (for example, the inner peripheral surface 4 of the pin hole 3) in water. Is performed on the metal surface. Due to the laser irradiation, plasma is generated on the surface of the metal, and plasma expansion is suppressed in water. Therefore, a very high plasma pressure (for example, in the range of 10,000 to 50,000 atmospheres) is generated, and the pressure is A shock wave is generated and propagates through the metal. When the large force due to the shock wave exceeds the yield stress of the metal to be processed, the metal is plastically deformed. In the present invention, it is considered that such laser peening treatment causes plastic deformation in the metal to be treated (for example, the inner peripheral surface 4 of the pin hole 3), resulting in high-density dislocations 5.
  • the plastic deformation is considered to be caused to a certain depth, and in the present invention, the dislocation 5 formed on the metal to be treated (for example, the inner peripheral surface 4 of the pin hole 3) is also considered to have occurred to a depth of about 1 mm. It is done. Although the depth varies depending on the processing conditions, it cannot be generally stated. However, as shown in the symbol A of FIG. 7 and FIG. 8, from the results of the hardness measurement in the depth direction of the inner peripheral surface 4 and the residual stress, It is thought that it has occurred up to about 1 mm.
  • the power density (peak power density) is 0.1GW / cm 2 or more, 20GW / cm 2 or less of Within the range, the spot diameter is preferably 400 nm or more and 700 ⁇ m or less, and the coverage (overlap ratio) is preferably 3 or more.
  • the upper limit of coverage is not particularly limited, and may be 20 or 30.
  • Dislocation forming means represented by such laser peening treatment can generate high-density dislocations 5 from the surface of the inner peripheral surface 4 of the pin hole 3 to a predetermined depth.
  • the metal to be processed after the laser peening process (for example, the inner peripheral surface 4 of the pin hole 3) has a dislocation density within the above-described range, and exhibits high strength.
  • the “major axis” is the length of the longest part of the precipitate. If the precipitate is spherical, it is the diameter. If the precipitate is elliptical, it is the long diameter part. Length.
  • Such heating is usually applied during operation after the piston subjected to the laser peening treatment is mounted on the internal combustion engine, but may be applied before the piston after the laser peening treatment is mounted on the internal combustion engine. Since the piston temperature during operation in the internal combustion engine is about 150 ° C. or more and 400 ° C. or less, when heating before being mounted on the internal combustion engine, about 150 ° C. or more and 400 ° C. or less. In addition, heating and holding may be performed within a range of 2 hours or more and 200 hours or less.
  • the fine precipitates generated at the site where dislocations are generated are extremely small.
  • the dislocation density is about 10 11 cm / cm 3 .
  • the size of the fine precipitate is a size whose major axis is less than 0.2 ⁇ m, as shown in FIG.
  • the photograph shown to FIG. 3 (A) (B) is observed using the 1 million-volt ultrahigh voltage
  • fine precipitates having a major axis of less than 0.2 ⁇ m are useful for curing the piston.
  • the dislocation density is set to 10 9 cm / cm 3 or more, it is mounted on the internal combustion engine. However, it is considered that this was achieved by aging treatment at a temperature of 150 ° C. or higher and 400 ° C. or lower applied during the operation.
  • the composition of the precipitate is a precipitate of Al and Cu or a precipitate of Al, Cu and an additive element.
  • the fine precipitates of Al and Cu were precipitates having a major axis of 0.005 ⁇ m or more and less than 0.2 ⁇ m.
  • FIG. 4 is an electron micrograph in the case where laser peening is not performed as in the present invention, and is an electron micrograph in which coarse precipitates are generated with almost no fine precipitates.
  • the coarse precipitate had a major axis of about 0.2 ⁇ m.
  • the strength can be improved by selecting a part.
  • the strength of each part such as the outer peripheral surface of the piston, the top surface, the inner surface of the piston, and the inner peripheral surface of the pin hole for inserting the piston pin can be increased.
  • the strength of the piston pin hole can also be improved selectively, so that the load on the piston pin pin hole is significantly increased by the vertical movement of the piston under severe operating conditions with increased combustion pressure. Even in this case, the strength of the pin hole can be further increased, and a stable driving state can be maintained over a long period of time.
  • the manufacturing method of the piston 1 for an internal combustion engine according to the present invention can form a dislocation density in a range of 10 9 cm / cm 3 or more and 10 12 cm / cm 3 or less, and heats the site where the dislocation density is formed. Having a step of preparing a piston material for an internal combustion engine capable of generating a precipitate having a major axis of less than 0.2 ⁇ m, and a step of peening the internal combustion engine piston material to form the dislocation density. There are features.
  • the piston manufacturing process includes the casting or forging process of the piston material, the aging process of the cast or forged piston material, the processing process of the piston material after the aging process, and the specific part of the piston material after processing. And a step of performing a peening process. Since the piston material to be peened has already been described, the description thereof is omitted here.
  • the casting process is a process of casting, for example, an Al—Si alloy or an Al—Cu alloy.
  • various conventionally known casting means can be applied.
  • an Al—Si alloy in a molten state within a range of 700 ° C. or higher and 800 ° C. or lower is cast into a predetermined mold.
  • the forging step is a step of forging, for example, an Al—Si based alloy or an Al—Cu based alloy.
  • Various forging means known in the art can be applied to the forging. For example, it is a step of obtaining a product shape by mounting an Al—Si based alloy material preheated within a range of 400 ° C. or more and 500 ° C. or less to a predetermined forging die and press forming.
  • the aging step is a step of aging treatment of a cast or forged Al—Si alloy or Al—Cu alloy.
  • the conditions normally applied with respect to the aluminum alloy for pistons can be applied to an aging treatment.
  • the machining process is a process of machining the piston after the aging process into a predetermined dimension. Since the processing at this time can apply general processing means for processing the piston, the details are omitted here.
  • a laser peening process is applied.
  • a pulsed laser is guided, the guided pulsed laser is condensed by a condensing lens, the focused pulsed laser is bent by a reflection mirror, and the pulsed laser whose angle is bent is applied to the irradiated part.
  • This is a treatment for forming the above-mentioned dislocation density by irradiation.
  • irradiation of the irradiated portion of the pulse laser may be performed by guiding, condensing, and refracting the pulse laser in water, or after covering the irradiated portion with a water flow, You may perform light guide, condensing, and refraction.
  • the pulsed laser more than 0.1 ns, has a pulse width in the range below 20 ns, the peak power density can be applied within the scope of 0.1GW / cm 2 or more 20GW / cm 2 or less.
  • the irradiated portion of the pulse laser is irradiated with a coverage of 3 or more in water or after being covered with a water flow.
  • the coverage (overlapping rate) is a value obtained by dividing “product of laser spot unit area at irradiated portion ⁇ total number of irradiation times” by “irradiated area of irradiated portion”.
  • the piston manufactured in this manner is usually mounted on an internal combustion engine as it is, and fine precipitates are generated in a portion having a dislocation density by heat applied during the subsequent operation.
  • strength can be manufactured.
  • a piston for an internal combustion engine in which a portion requiring strength is made high in strength can be manufactured, so that the degree of freedom in design is increased, the range of material selection is expanded, and the manufacturing process can be simplified.
  • a piston for an internal combustion engine in which the pin hole of the piston is selectively high-strength can be manufactured, so that the conventional piston is not changed without changing the piston material and without providing the pin hole reinforcing member.
  • the internal combustion engine piston 1 Since the internal combustion engine piston 1 according to the present invention can improve the strength by selecting a part, it is preferably used as a high load compatible piston to which a particularly large load is applied during combustion.
  • An example of such a piston is a piston for a diesel engine.
  • pistons for gasoline engines Even for pistons for gasoline engines, lightweight pistons for gasoline engines that have been made lighter by reducing the thickness around the pin holes, and pistons for high-power gasoline engines that require increased strength at the pin hole parts. Can be mentioned.
  • a piston for a diesel engine will be described as an example, but the above-described lightweight piston for a gasoline engine and a piston for a high-power gasoline engine can be similarly applied.
  • FIG. 10 is an explanatory diagram of the detailed structure of the piston for a diesel engine.
  • Reference numeral 4 denotes an inner peripheral surface of the pin hole 3
  • reference numeral 8 denotes the inside of the piston
  • reference numeral 9 denotes the outside of the piston.
  • reference numeral 4 a is a portion on the inner side of the inner peripheral surface 4
  • reference symbol 4 b is a portion on the outer side of the inner peripheral surface 4.
  • a cavity 15 peculiar to a diesel engine piston is formed at the top 11 of the piston 1, and the cavity 15 includes a cavity peripheral surface upper part 15a, a cavity peripheral surface lower part 15b, and a cavity bottom part 15c. .
  • the diesel engine piston also has a structural feature that the top portion 11 has a cavity 15.
  • a large load is applied at the time of combustion. Therefore, the laser peening process improves the strength to such an extent that no cracks occur on the inner surface 4 of the pin hole, and the dimension of the entire piston is not increased without increasing the dimensional change of the entire piston. It is also necessary to maintain balance.
  • the inner part 4a on the piston inner side 8 of the pin hole inner peripheral surface 4 (in particular, It is desirable that at least the inner side portion 4a is subjected to laser peening treatment.
  • the outer side portion 4b is also slightly reduced in irradiation conditions under the same irradiation conditions (for example, It is preferable to perform the laser peening process by reducing the peak output density, reducing the coverage, and the like.
  • a piston pin is inserted into the inner peripheral surface 4 of the pin hole, and the piston pin applies a large load to the pin hole 3 due to an impact force applied to the piston during combustion. Since such a large load is applied to the inner peripheral surface 4 of the pin hole 3, the piston pin and the pin hole 3 are usually processed with high dimensional accuracy. As such processing, even a normal piston that is not subjected to laser peening is cut or ground at about 100 ⁇ m to 250 ⁇ m on one side in the depth direction of the inner peripheral surface 4 of the pin hole. Also in the present invention, the pin hole inner peripheral surface 4 subjected to the laser peening process is subjected to cutting or grinding to the above-described degree, and then the piston pin is inserted.
  • the above-described dislocation density exists in a range of 1 mm in depth from the surface of the pin hole inner peripheral surface 4 after the pin hole inner peripheral surface 4 subjected to laser peening treatment is cut or ground. As a result, the effect of the present invention is achieved.
  • a reentrant type, a toroidal type, and a shallow dish type as a structure of the cavity 15, but laser peening can be applied to a reentrant type or toroidal type cavity as required.
  • the cavity 15 may be subjected to laser peening treatment together with the pin hole inner circumferential surface 4, or only the pin hole inner circumferential surface 4 may be subjected to laser peening treatment and the cavity 15 may not be subjected to laser peening treatment.
  • laser peening is performed in the cavity 15, it is preferable to treat the cavity peripheral surface upper part 15a and the cavity peripheral surface lower part 15b to which a large load is applied as a processing target.
  • FIG. 11 is an explanatory diagram showing a laser peening processing method for the pin hole 3.
  • the laser peening process to the pin hole 3 is performed in the pulse width within the range of 0.1 ns to 20 ns as described in the explanation column of “dislocation” and the explanation column of “production method of piston for internal combustion engine”.
  • the condensed pulse laser (condensed light) 22 is bent by the reflection mirror 25 and the pulse laser (irradiated light) 23 having the bent optical path is irradiated onto the inner peripheral surface 4 of the pin hole which is the irradiated portion.
  • Such irradiation can be performed by guiding, condensing and reflecting (refracting) the pulse laser in water, or after guiding the inner peripheral surface 4 of the pin hole with water flow, guiding, condensing and reflecting (refracting) the pulse laser.
  • Reference numeral 26 denotes a laser light guide pipe (for example, a stainless steel pipe), and reference numeral 27 denotes a laser passage portion (for example, a laser transmission glass).
  • the pin hole 3 has an inner diameter in a range of about 15 mm to 40 mm, although it varies depending on the size of the piston. For this reason, it is impossible to irradiate the pin hole inner peripheral surface 4 that is an irradiated portion from a distance, and a laser (irradiation) in which the laser (condensed light) 22 is reflected by the reflection mirror 25 in the form shown in FIG. Light) 23 needs to be irradiated from a close range.
  • a laser having a pulse width in the range of 0.1 ns or more and 20 ns or less is 0.1 GW / cm 2 or more and 15 GW. It is desirable to irradiate with a peak power density within the range of / cm 2 or less. By irradiating a pulse laser with a peak output density in this range, sufficient strength can be imparted to the inner peripheral surface 4 of the pin hole. The strength is evaluated by the “250 ° C. rotation bending fatigue test” similar to the examples described later.
  • the dimensional accuracy characteristic of the pin hole 3 is 2 GW / cm 2 or less (that is, 0. it is particularly preferred 1 GW / cm 2 or more 2 GW / cm 2 or less).
  • the peak power density exceeds 2 GW / cm 2
  • the dimensional change when the pin hole 3 requiring high accuracy is irradiated with laser from a close distance may become large.
  • the dimensional balance of the entire piston to which a large load is applied may be lost.
  • a laser having a pulse width in the range of 0.1 ns or more and 20 ns or less is irradiated with a peak output density in the range of 0.1 GW / cm 2 or more and 15 GW / cm 2 or less.
  • the close distance means that the inner diameter of the pin hole 3 is within a range of about 15 mm to 40 mm, and therefore the distance that does not exceed the range at the maximum.
  • Example 1 First, an Al—Si—Cu alloy comprising Si: 12% by mass, Cu: 3.0% by mass, Mg: 1% by mass, Ni: 2.5% by mass, other inevitable impurity components, and the balance being Al.
  • the Al—Si—Cu alloy was prepared, melted, and cast into a mold for obtaining a piston having the form shown in FIG. 1 by gravity casting. Then, after aging treatment and cutting, laser peening treatment was performed toward the inner peripheral surface 4 of the pin hole 3. The laser peening process was performed with a power density (peak output density) of 10 GW / cm 2 , a spot diameter of 400 ⁇ m, and a coverage (overlap ratio) of 7. Thus, the piston of Example 1 was obtained.
  • Measurement 1 About the measurement sample, the structure
  • a measurement sample was prepared by electrolytic thin film method (twin jet method) using TEM (field emission transmission electron microscope, manufactured by Hitachi, Ltd., model name: HF-2000), It measured from the obtained TEM image.
  • the rotating bending fatigue test is a rotating bending performed by preparing a measurement sample having a total length of 90 mm, a parallel part length of 25 mm, and a parallel part diameter of 8 mm processed under the same conditions as in Example 1 and Comparative Example 1, and rotating in a 250 ° C. atmosphere. Using a fatigue tester (manufactured by Shimadzu Corporation, Ono type-H7 type), the measurement was performed in accordance with JIS Z 2274.
  • the hardness test in the depth direction was performed using a micro hardness tester (manufactured by Mitutoyo Corporation, model: HM-221).
  • the results of the rotational bending fatigue test are shown as stress amplitude (MPa) with respect to the number of repetitions, as shown in FIG. From this result, the stress amplitude of the laser peening process shown in FIG. 6 (A) is 15% or more at the number of repetitions of 10 7 times compared to the laser peening process shown in FIG. 6 (B). It was improved and the improvement of strength was confirmed.
  • the hardness is shown in Table 1 and FIG. As shown in FIGS. 7 (A) and 7 (B), laser peening is performed up to about 1000 ⁇ m from the result of hardness measurement in the depth direction of the inner peripheral surface 4 (reference A). The superiority was recognized compared with the thing which does not process (code
  • the residual stress was measured about the same sample using the micro part X-ray stress measuring apparatus (Rigaku Denki Co., Ltd. make, model: PSPC / MSF system).
  • the results are shown in Table 2 and FIG. From the results of Table 2 and FIG. 8, it was confirmed that the above-described change in hardness is related to the presence of negative residual stress (compressive stress). That is, it can be confirmed that high hardness can be exhibited within a range having a negative residual stress (compressive stress), which contributes to improvement in hardness.
  • the residual stress before the laser peening treatment was +35 MPa at a position of 200 ⁇ m from the surface.
  • Example 2 In Example 1, the piston of Example 2 was obtained in the same manner as in Example 1 except that the processing condition of the laser peening process was changed to a power density (peak output density) of 2 GW / cm 2 .
  • the pin hole 3 had an inner diameter of 22 mm, and laser peening was performed in the manner shown in FIG.
  • Reference Example 1 A piston of Reference Example 1 was obtained in the same manner as in Example 1 except that the processing condition of the laser peening process was set to a power density (peak output density) of 15 GW / cm 2 in Example 1.
  • the pin hole 3 had an inner diameter of 22 mm, and laser peening was performed in the manner shown in FIG.
  • Example 2 Reference Example 1 and Comparative Example 1, the same rotating bending fatigue test as in Measurement 1 was performed. As a result, rotation bending fatigue strength, Example 2 75 MPa (10 7 times), Reference Example 1 also 75 MPa (10 7 times) Comparative Example 1 was 65 MPa (10 7 times). Regarding rotational bending fatigue strength, Example 2 and Reference Example 1 were larger than Comparative Example 1, but Example 2 and Reference Example 1 were not different. On the other hand, it was confirmed that the dimension of the pin hole in Reference Example 1 was changed by 40 ⁇ m compared to Example 2.
  • the upper limit of the power density is 2 GW / cm 2 of Example 2 and the range is 0.1 GW / cm 2. It has been found that 2 GW / cm 2 or less is preferable.
  • Example 3 In Example 1, for the inner side portion 4a of the pin hole inner peripheral surface 4, the laser peening processing conditions are a power density (peak output density) of 2 GW / cm 2 , a spot diameter of 400 ⁇ m, and a coverage (overlap ratio). 7 for the outer side portion 4b of the inner peripheral surface 4 of the pin hole, the processing condition of the laser peening process is a power density (peak output density) of 2 GW / cm 2 , a spot diameter of 400 ⁇ m, and a coverage (overlap ratio) of 4 Went as. Other than that was carried out similarly to Example 1, and obtained the piston of Example 3. FIG. The pin hole 3 had an inner diameter of 22 mm, and laser peening was performed in the manner shown in FIG.
  • Example 4 In Example 1, laser peening was performed on the inner peripheral surface 4 (inner side portion 4a and outer side portion 4b), the cavity peripheral surface upper portion 15a, and the cavity peripheral surface lower portion 15b shown in FIG. A piston of Example 4 was obtained in the same manner as in Example 1 except that the laser peening treatment was performed at a power density (peak output density) of 2 GW / cm 2 .
  • the pin hole 3 had an inner diameter of 22 mm, and laser peening was performed in the manner shown in FIG.
  • the diameter of the inner surface of the cavity 15 was 40 mm, and the laser peening process was performed in the same manner as in FIG.

Abstract

【課題】部位を選択して強度を向上させた内燃機関用ピストン及びその製造方法を提供する。 【解決手段】10cm/cm以上1012cm/cm以下の範囲内の転位密度を持つ部位を少なくとも有し、その転位密度を持つ部位は、加熱することにより長径が0.2μmの析出物が生成する、又は加熱したことによって長径が0.2μm未満の微細な析出物が生成している内燃機関用ピストン1によって上記課題を解決する。その転位密度を有する部位は表面から深さ1mmの範囲内に存在する。また、その転位密度を有する部位が、ピストンの外周面、頂面、ピストンの内面、及び、ピストンピンを挿通するためのピン穴の内周面から選ばれるいずれか1又は2以上の部位であるようにしてもよい。また、その転位密度を持つ部位が、加熱によって微細な析出物を生成するAl-Si系合金又はAl-Cu系合金であることが好ましい。

Description

内燃機関用ピストン及びその製造方法
 本発明は、部位を選択して強度を向上させた内燃機関用ピストン及びその製造方法に関する。
 環境問題が大きく取り上げられる中、自動車エンジンを中心とした内燃機関は、高効率化や排出ガスの低減化が求められているとともに、エンジンの高出力化も求められている。こうした中、自動車エンジン等の内燃機関で用いられるピストンは、燃焼効率をより向上させた高効率化を実現するために、燃焼圧が増した過酷な動作環境下で使用される。そのため、そうした動作環境下でも使用可能な高強度の内燃機関用ピストンが求められている。
 内燃機関用ピストンは、その設計により種々の構造形態を示すので、その構造形態に応じて強度が要求される部位も異なる。例えば、図1に例示するように、ピストン本体の頂面11dの強度が要求されることがあったり、スカート部12の強度が要求されることがあったり、ピストン本体にピストンピンを挿入するピン穴3の強度が要求されることがあったりする。なかでも、ピン穴3は、燃焼圧力をピストンピンを介してコンロッドに伝達するため負荷が大きく、その強度を一層高めることが要求されている。しかしながら、燃焼圧が増した過酷な動作環境であっても耐えることができるピン穴内面の強度向上技術を提案する先行技術は見つかっていない。
 なお、ピストンの上下動によるピストンピンとピン穴との摺動時においては、ピン穴でのピストンピンの固着や焼き付きが生じるおそれがあった。そうした課題に対し、例えば特許文献1には、ピン穴の内周面にサイドリリーフを凹設して、エンジン作動時にピン穴のピストン内側部位に生じる過大な応力を緩和できる技術が提案されている。この技術は、潤滑油をピン穴に入り易くし、油膜切れを防止して潤滑不良を低減させる効果もある。また、特許文献2には、軸受けのオイル保持能力を高めるために、ボス孔又はスモールエンドのコンロッドアイ又はビックエンドのコンロッドアイを少なくとも局所的にレーザビームで粗面化する技術が提案されている。この技術は、レーザビームで粗面化することによって焼き付きのリスクを減少させてオイル保持能力を向上させるというものである。また、特許文献3には、ピン穴の表面にクレーター状の複数のくぼみを設ける技術が提案されている。この技術は、くぼみ内に潤滑剤特にエンジンオイルを収集し、滑動膜若しくは支持クッションを形成することができるというものである。
実開平7-8543号公報 特表2004-508501号公報 特表2007-504411号公報
 上記特許文献1~3の技術は、いずれもピン穴内での潤滑不足による焼き付きを防止したものであり、凹設、粗面化、くぼみ等によって、潤滑剤の保持性を増して潤滑性能を向上させている。しかしながら、燃焼圧が増した過酷な動作環境であっても耐えることができるピン穴内面の強度向上技術は提案されておらず、ピン穴の強度を一層高めることに対する要請には応えられていない。
 また、内燃機関用ピストンは、その設計により種々の構造形態が提案されており、その構造形態に応じて強度が要求される部位が異なる。そのため、要求される部位を選択的に高強度にすることができれば、設計の自由度も増し、材料選択の幅も拡大するとともに、製造工程の簡略化も図ることができる。
 本発明は、上記要請に応えるためになされたものであって、その目的は、部位を選択して強度を向上させた内燃機関用ピストン及びその製造方法に関する。
 (1)上記課題を解決するための本発明に係る内燃機関用ピストンは、10cm/cm以上1012cm/cm以下の範囲内の転位密度を持つ部位を少なくとも有し、前記転位密度を持つ部位は、加熱することにより長径が0.2μmの析出物が生成する、又は加熱したことによって長径が0.2μm未満の析出物が生成している、ことを特徴とする。
 本発明に係る内燃機関用ピストンにおいて、前記転位密度を有する部位が、表面から深さ1mmの範囲内に存在するように構成できる。
 本発明に係る内燃機関用ピストンにおいて、前記転位密度を有する部位が、ピストンの外周面、頂面、ピストンの内面、及び、ピストンピンを挿通するためのピン穴の内周面から選ばれるいずれか1又は2以上の部位であるように構成できる。
 本発明に係る内燃機関用ピストンにおいて、前記転位密度を持つ部位が、前記加熱によって前記析出物を生成するAl-Si系合金又はAl-Cu系合金であることが好ましい。
 本発明に係る内燃機関用ピストンにおいて、前記範囲内の転位密度はレーザピーニング処理によって得られ、前記析出物は加熱によって生成するように構成できる。
 (2)上記課題を解決するための本発明に係る内燃機関用ピストンの製造方法は、10cm/cm以上1012cm/cm以下の範囲内の転位密度を形成でき、前記転位密度を形成した部位を加熱して長径が0.2μm未満の析出物を生成することができる内燃機関用ピストン材料を準備する工程と、前記内燃機関用ピストン材料をピーニング処理して前記転位密度を形成する工程と、を有することを特徴とする。
 本発明に係る内燃機関用ピストンの製造方法において、前記加熱は、前記ピーニング処理した内燃機関用ピストンを内燃機関に装着した後の運転中に加わるように構成できる。
 本発明に係る内燃機関用ピストンの製造方法において、前記加熱は、前記ピーニング処理した後の内燃機関用ピストンを、内燃機関に装着する前に加えるように構成できる。
 本発明に係る内燃機関用ピストンの製造方法において、前記レーザピーニング処理は、0.1ns以上20ns以下の範囲内のパルス幅で、ピーク出力密度が0.1GW/cm2以上20GW/cm2以下の範囲内のパルスレーザを導光し、導光したパルスレーザを集光レンズで集光し、集光したパルスレーザを反射ミラーで光路を曲げ、光路を曲げたパルスレーザを被照射部に照射して前記転位密度を形成する処理であって、前記パルスレーザの前記被照射部への照射が、前記パルスレーザの導光、集光、屈折を水中で行う、又は、前記被照射部を水流で覆った後に前記パルスレーザの導光、集光、屈折を行う、ように構成できる。
 本発明に係る内燃機関用ピストンの製造方法において、前記パルスレーザの前記被照射部への照射を、前記水中又は前記水流で覆った後でのカバレージが3以上で照射することが好ましい。
 本発明に係る内燃機関用ピストンによれば、部位を選択して強度を向上させることができる。例えば、ピストンの外周面、頂面、ピストンの内面、及び、ピストンピンを挿通するためのピン穴の内周面等の各部の強度を高めることができる。なかでも、ピストンのピン穴についても、強度を向上させることができるので、燃焼圧が増した過酷な動作環境下でピストンの上下動によってピストンピンのピン穴への負荷が著しく大きくなった場合であっても、ピン穴の強度を一層高めることができ、安定した駆動状態を長期にわたって維持することができる。
 本発明に係る内燃機関用ピストンの製造方法によれば、部位を選択して強度を向上させることができるピストンを製造できる。その結果、要求される部位を高強度にした内燃機関用ピストンを製造できるので、設計の自由度が増し、材料選択の幅も拡大するとともに、製造工程の簡略化も図ることができる。また、ピストンのピン穴を高強度にした内燃機関用ピストンを製造することもできるので、ピストン材料を変化させたりせず、またピン穴の補強部材を設けることなく、従来のピストンに強化処理を施すだけでよいという製造技術的に極めて有効な格別の効果を奏する。
本発明に係る内燃機関用ピストンの一例を示す構成図であり、(A)は側面図であり、(B)はIB-IB線の一部断面図である。 ピン穴の内周面とその深さ方向に表れる転位の形態を示す顕微鏡写真(A)とその模式図(B)である。 転位と微細な析出物を示す顕微鏡写真(A)と、転位と微細な析出物の説明図(B)である。 転位も微細な析出物もほとんど生じていない顕微鏡写真である。 レーザピーニング処理で生じた転位を示す顕微鏡写真(A)と、レーザピーニング処理をしないときの顕微鏡写真(B)である。 所定の応力を繰り返し負荷したときの応力振幅と破断までの繰り返し数とを示すグラフであり、(A)はレーザピーニング処理したものであり、(B)はレーザピーニング処理しないものである。 内周面からの深さと硬さの関係を示すグラフであり、(A)はレーザピーニング処理したものであり、(B)はレーザピーニング処理しないものである。 レーザピーニング処理したものについて、内周面からの深さと残留応力の関係を示すグラフである。 ピストン疲労評価試験後に、レーザピーニング処理しないピン穴(A)とレーザピーニング処理したピン穴(B)の形態を観察した写真である。 ディーゼルエンジン用ピストンの詳しい構造形態の説明図である。 ピン穴へのレーザピーニング処理方法を示す説明図である。
 本発明に係る内燃機関用ピストン及びその製造方法について詳しく説明する。なお、以下の実施形態は一例であり、本発明の技術的範囲の属する他の形態も本発明に包含される。
 [内燃機関用ピストン]
 本発明に係る内燃機関用ピストン1は、10cm/cm以上、1012cm/cm以下の範囲内の転位密度を持つ部位を少なくとも有し、その転位密度を持つ部位は、加熱することにより長径が0.2μm未満の大きさの析出物が生成する、又は加熱したことによって長径が0.2μm未満の析出物が生成している、ことに特徴がある。こうした部位(前記転位密度を持つ部位)は、図1に例示するピストン1において、強度が要求される部位であればよく、選択的であってもよい。例えば、ピストン1の外周面、頂面、ピストン1の内面、ピストンピンを挿通するためのピン穴3の内周面4、等を挙げることができる。
 得られた内燃機関用ピストン1は、部位を選択して強度を向上させることができる。例えば、ピストン1の外周面、頂面、ピストン1の内面、ピストンピンを挿通するためのピン穴3の内周面4等の各部の強度を選択的に高めることができる。なかでも、ピストン1のピン穴3の強度を選択的に向上させることができるので、燃焼圧が増した過酷な動作環境下でピストンの上下動によってピストンピンのピン穴3への負荷が著しく大きくなった場合であっても、ピン穴3の強度を一層高めることができ、安定した駆動状態を長期にわたって維持することができる。しかも、ピストン材料を変化させたりせず、またピン穴3の補強部材を設けることなく、従来のピストンに強化処理を施すだけでよいという製造技術的に極めて有効な格別の効果を奏する。
 以下、内燃機関用ピストンの構成要素を詳しく説明する。
 (ピストンの構造)
 内燃機関用ピストン1は、図1に示すように、上側の頂部11と、下側のスカート部12とで構成されている。頂部11の外周には、スカート部12の側に向かって、第1圧縮リング溝11a、第2圧縮リング溝11b、及びオイルリング溝11cがその順で設けられている。この各溝は、それぞれに応じたピストンリングが装着される溝である。頂部11の構造や寸法等は、図1の例に限定されず、他の構造形態や寸法等であってもよいし、ピストン全体の形態や大きさも図1の例に限定されず、他の形態や大きさであってもよい。
 スカート部12には、直径方向に対向する1対のピンボス部2が設けられている。このピンボス部2には、ピン穴3が設けられている。このピン穴3は、所定の直径のピストンピン(図示しない)が挿入される穴である。ピストンピンは、ピストン1をシリンダライナ(図示しない)内で上下動させるためのコンロッド(図示しない)に連結されている。スカート部12の構造や寸法等は、図1の例に限定されず、他の構造形態や寸法等であってもよい。
 近年、燃焼圧が増した過酷な動作環境下では、部位を選択して強度を向上させるための設計が行われる傾向にあり、種々の構造形態が提案されている。そして、その構造形態に応じて強度が要求される部位が異なる。本発明では、強度の向上が要求される部位を選択的に高強度にしたものであり、その結果、設計の自由度も増し、材料選択の幅も拡大するとともに、製造工程の簡略化も図ることができるという利点がある。そうした部位としては、ピストン1の外周面、頂面、ピストン1の内面、ピストンピンを挿通するためのピン穴3の内周面4、等々を挙げることができる。これらは1部位でも複数部位でもよい。なかでも、ピン穴3は、燃焼圧力をピストンピンを介してコンロッドに伝達するため負荷が大きくなり、ピン穴3のより一層の強度向上が要求されている。
 以下では、強度を向上させる部位として、ピン穴3を例にして説明するが、それに限定されず、ピストンの外周面、頂面の一部位又は全面でもよいし、ピストンの内面の一部位又は全面でもよい。
 (ピン穴材料)
 ピン穴3の少なくとも内周面4は、後述の処理によって高密度(10cm/cm以上、1012cm/cm以下の範囲内のこと。以下同じ。)の転位5が形成可能な材料で構成されている。そうした材料としては、Al-Si系合金、Al-Cu系合金等を挙げることができる。ここで、「少なくとも」とは、ピン穴3を含むピストン全体がAl-Si系合金やAl-Cu系合金等であってもよいし、内周面4だけがAl-Si系合金やAl-Cu系合金等であってもよい。
 そうしたAl-Si系合金やAl-Cu系合金等は、後述の処理によって高密度の転位5が形成される材料であれば特に限定されず、各種のものを用いることができる。Al-Si系合金として、例えば、AlにSiが5質量%程度含有するAl-Si系合金であってもよいし、AlにSiが25質量%程度含有するAl-Si系合金であってもよいし、後述する実施例に示すように、AlにSiが11質量%以上、13質量%以下程度含有するAl-Si系合金であってもよい。Al-Si系合金の主要元素であるSiは、鋳造時の湯流れ性を向上させることができ、また、耐摩耗性を向上させるように作用する。Siの含有量は、湯流れ性や耐摩耗性を含めた全体の特性を考慮して、上記のように任意に設定されている。
 Al-Si系合金には、本発明の効果を阻害しない範囲で各種の元素が含まれていてもよい。特にCuの含有は、後述の処理によって高密度の転位5が形成するとともに、AlCu系合金の微細な析出物が生じ易いので好ましい。また、高強度で軽量なピストンとする場合は、Mg、Ni、Cr、Fe及びMnから選ばれる1又は2以上の元素を含有させてもよい。さらにこれら以外の元素が微量含まれていてもよい。
 Al-Cu系合金としては、例えば、A2618合金等を挙げることができる。このAl-Cu系合金にも、Al-Si系合金と同様、本発明の効果を阻害しない範囲で、Si、Mg、Ni、Cr、Fe及びMnから選ばれる1又は2以上の元素を含有させてもよい。さらにこれら以外の元素が微量含まれていてもよい。
 (転位)
 高密度の転位5は、図2(A)(B)に示すように、内周面4の表面から深さ1mmの範囲内に存在するように生じている。その範囲内であれば、表面から200μmの範囲内でもよいし、表面から500μmの範囲内であってもよいし、表面から1mmの範囲内であってもよい。通常は、少なくとも表面から200μmの範囲には高密度の転位5が生じている。
 転位5は、結晶中に含まれる線状の結晶欠陥のことであり、刃状転位と螺旋転位とそれらが混合した混合転位とがあり、本発明での転位は、これらを含む概念でも用いている。転位密度は、結晶の単位体積中(立方センチメートル:cm)に存在する転位線の全長(cm)であり、単位はcm/cmで表される。この転位密度が増加すると転位同士の相互作用が大きくなり、転位は動きにくくなる。すなわち、静的強度が増加する。
 転位密度としては、通常、焼鈍した金属材料では10cm/cm以上、10cm/cm以下の範囲内であるが、本発明では転位密度が10cm/cm以上、1012cm/cm以下の範囲内の高い転位密度を持つ部位を少なくとも有している。10cm/cm以上、1012cm/cm以下という値は、転位密度としては高い値である。高い転位密度を持つ部位は、高い強度を示している。
 転位密度は、所定の面積に現れる転位の数と長さを測定して導かれる。転位5の長さは特に限定されず、図2(A)の写真からは、およそ0.05μm以上、0.5μm以下の程度のものを多く観察できる。例えば図2に示すように、0.01μmに長さ0.1μmの転位5が10本存在する場合であれば、1×10-4cm/1×10-15cm)という計算により、転位密度は、1×1011cm/cmということができる。本発明では、100万ボルトの透過型電子顕微鏡で観察し、その結果を図2に示した。その写真から、転移密度がほぼ10cm/cm以上、1012cm/cm以下という値が得られた。
 高密度の転位5は、各種の手段で形成できるものと考えられるが、本発明では、レーザピーニング処理によって生じさせている。
 レーザピーニング処理とは、短パルスレーザを照射して発生する衝撃波を用いたピーニング処理であり、水中で処理対象金属(例えばピン穴3の内周面4)をアブレーションできる高ピーク出力密度のパルスレーザをその金属表面に照射して行われる。そのレーザ照射によって、金属の表面にプラズマが生成し、水中ではプラズマ膨張が抑制されるので、非常に高いプラズマ圧力(例えば1万気圧以上、5万気圧以下の範囲内)が生じ、その圧力により衝撃波が発生し、金属中を伝播する。その衝撃波による大きな力が処理対象金属の降伏応力を超えるとき、その金属に塑性変形を生じさせるという処理である。本発明では、こうしたレーザピーニング処理が、処理対象金属(例えばピン穴3の内周面4)に塑性変形を生じさせ、その結果、高密度の転位5を生じさせていると考えている。
 なお、塑性変形は、ある一定の深さまで引き起こすと考えられ、本発明でも処理対象金属(例えばピン穴3の内周面4)に形成した転位5も1mm程度の深さまで生じているものと考えられる。その深さは処理条件によっても変化するので一概に言えないが、図7の符号Aや図8に示すように、内周面4の深さ方向の硬さ測定や残留応力の結果から、およそ1mm程度までは生じているのではないかと考えられる。
 レーザピーニング処理の条件としては、処理対象金属の種類によっても異なるが、Al-Si系合金の場合には、パワー密度(ピーク出力密度)が0.1GW/cm以上、20GW/cm以下の範囲内で、スポット径が400nm以上、700μm以下の範囲内で、カバレージ(重ね率)が3以上であることが好ましい。なお、カバレージの上限は特に限定されず、20や30でもよい。こうしたレーザピーニング処理に代表される転位形成手段により、ピン穴3の内周面4の表面から所定の深さまで高密度の転位5を生じさせることができる。
 レーザピーニング処理後の処理対象金属(例えばピン穴3の内周面4)は、上記した範囲内の転位密度になっており、高い強度を示している。上記転位密度を持つ部位を加熱することによって、長径が0.2μm未満の微細な析出物が生成する。加熱は、転位をやや減少させるように作用する一方で、加熱によって微細な析出物が生じるので、本発明では、加熱によっても上記転位密度を持つ部位の強度が大きく低下しないという利点がある。なお、「長径」とは、析出物の最も長い部分の長さであり、析出物が球状の場合は直径であり、楕円形の場合は長い径の部分であり、棒状の場合は長手方向の長さである。
 そうした加熱は、通常、レーザピーニング処理したピストンを内燃機関に装着した後の運転中に加わるものであるが、レーザピーニング処理した後のピストンを内燃機関に装着する前に加えてもよい。なお、内燃機関での運転中のピストン温度は、150℃以上、400℃以下の程度になっているので、内燃機関に装着する前に加熱する場合には、150℃以上、400℃以下の程度に、2時間以上、200時間以下の範囲内で加熱保持すればよい。
 転位が生じている部位に生成した微細な析出物は、極めて小さく、上記のように転位5が0.01μmに例えば10本存在する場合、転位密度は約1011cm/cmとなる。このことから、微細な析出物の大きさは、図3(A)に示すように、長径が0.2μm未満の大きさであるということができる。なお、図3(A)(B)に示す写真は、100万ボルトの超高圧電子顕微鏡を用いて観察したものであり、図3(B)は、転位と微細な析出物の説明図である。このように、長径が0.2μm未満の微細な析出物は、ピストンの硬化に有用であり、レーザピーニング処理をして、転位密度を10cm/cm以上にした後、内燃機関に装着し、その運転中に加わる150℃以上、400℃以下の温度での時効処理により達成したものと考えられる。
 析出物の組成は、例えばCuを含有するAl-Si系合金の場合は、AlとCuの析出物又はAlとCuと添加元素の析出物である。後述の実施例では、このような微細なAlとCuの析出物は、転位が生じている部位に析出していることが確認できた。この微細なAlとCuの析出物の大きさは、長径が0.005μm以上、0.2μm未満の析出物であった。
 なお、図4は、本発明のようにレーザピーニング処理を行わない場合の電子顕微鏡写真であり、微細な析出物もほとんど生じておらず、粗大析出物が生じている電子顕微鏡写真である。この粗大析出物は、長径が約0.2μm程度であった。
 以上、本発明に係る内燃機関用ピストン1によれば、部位を選択して強度を向上させることができる。例えば、ピストンの外周面、頂面、ピストンの内面、ピストンピンを挿通するためのピン穴の内周面等の各部の強度を高めることができる。なかでも、ピストンのピン穴についても、選択的に強度を向上させることができるので、燃焼圧が増した過酷な動作環境下でピストンの上下動によってピストンピンのピン穴への負荷が著しく大きくなった場合であっても、ピン穴の強度を一層高めることができ、安定した駆動状態を長期にわたって維持することができる。
 [内燃機関用ピストンの製造方法]
 本発明に係る内燃機関用ピストン1の製造方法は、10cm/cm以上、1012cm/cm以下の範囲内の転位密度を形成でき、前記転位密度を形成した部位を加熱して長径が0.2μm未満の析出物を生成することができる内燃機関用ピストン材料を準備する工程と、前記内燃機関用ピストン材料をピーニング処理して前記転位密度を形成する工程と、を有することに特徴がある。なお、ピストンの製造工程は、ピストン材料の鋳造又は鍛造工程と、鋳造又は鍛造したピストン材料の時効工程と、時効工程後のピストン材料の加工工程と、加工した後のピストン材料の特定の部位にピーニング処理を行う工程とを少なくとも有する。なお、ピーニング処理するピストン材料は、既に説明したのでここではその説明を省略する。
 鋳造工程は、例えばAl-Si系合金やAl-Cu系合金等を鋳造する工程である。鋳造は、従来公知の各種の鋳造手段を適用することができる。例えば、700℃以上、800℃以下の範囲内の溶融状態にしたAl-Si系合金を所定の鋳型に鋳込んで鋳造する。
 鍛造工程は、例えばAl-Si系合金やAl-Cu系合金等を鍛造する工程である。鍛造は、従来公知の各種の鍛造手段を適用することができる。例えば、400℃以上、500℃以下の範囲内で予熱したAl-Si系合金材を所定の鍛造型に装着し、加圧成形して製品形状を得る工程である。
 時効工程は、鋳造又は鍛造したAl-Si系合金やAl-Cu系合金等を時効処理する工程である。時効処理は、ピストン用のアルミニウム合金に対して通常施される条件を適用することができる。
 加工工程は、時効工程後のピストンを所定の寸法に加工する工程である。このときの加工は、ピストンを加工する一般的な加工手段を適用できるので、ここでは詳細は省略する。
 ピーニング処理としては、レーザピーニング処理が適用される。レーザピーニング処理は、パルスレーザを導光し、導光したパルスレーザを集光レンズで集光し、集光したパルスレーザを反射ミラーで光路を曲げ、光路を曲げたパルスレーザを被照射部に照射して前記した転位密度を形成する処理である。このレーザピーニング処理では、パルスレーザの被照射部への照射が、パルスレーザの導光、集光、屈折を水中で行ってもよいし、又は、被照射部を水流で覆った後にパルスレーザの導光、集光、屈折を行ってもよい。
 パルスレーザとしては、0.1ns以上、20ns以下の範囲内のパルス幅をもち、ピーク出力密度が0.1GW/cm2以上20GW/cm2以下の範囲内のものを適用できる。
 パルスレーザの被照射部への照射は、水中又は水流で覆った後でのカバレージが3以上で照射することが好ましい。カバレージ(重ね率)とは 「被照射部でのレーザスポット単位面積×総照射回数の積」を「被照射部の照射面積」で除した値をいう。なお、レーザピーニング処理の条件の詳細は上記したとおりであり、ここではその説明を省略する。
 こうして製造されたピストンは、通常そのまま内燃機関に装着され、その後の運転中に加わる熱によって、転位密度を持つ部位に微細な析出物が生成する。なお、加熱は、ピーニング処理した後の内燃機関用ピストンを、内燃機関に装着する前に加えるように構成してもよい。
 以上、本発明に係る内燃機関用ピストン1の製造方法によれば、部位を選択して強度を向上させることができるピストンを製造できる。その結果、強度が要求された部位を高強度にした内燃機関用ピストンを製造できるので、設計の自由度が増し、材料選択の幅も拡大するとともに、製造工程の簡略化も図ることができる。また、ピストンのピン穴を選択的に高強度にした内燃機関用ピストンを製造することもできるので、ピストン材料を変化させたりせず、またピン穴の補強部材を設けることなく、従来のピストンに強化処理を施すだけでよいという製造技術的に極めて有効な格別の効果を奏する。
 (高負荷対応ピストン)
 本発明に係る内燃機関用ピストン1は、部位を選択して強度を向上させることができるので、燃焼時に特に大きな負荷が加わる高負荷対応ピストンとして用いることが好ましい。こうしたピストンとしては、ディーゼルエンジン用ピストンを挙げることができる。また、ガソリンエンジン用ピストンであっても、ピン穴周辺部の肉厚を薄くして軽量化したガソリンエンジン用軽量ピストンや、ピン穴部分の強度向上が必要とされる高出力ガソリンエンジン用ピストンを挙げることができる。以下では、ディーゼルエンジン用ピストンを一例として説明するが、前記したガソリンエンジン用軽量ピストンや高出力ガソリンエンジン用ピストンも同様に適用できる。
 図10は、ディーゼルエンジン用ピストンの詳しい構造形態の説明図である。符号4はピン穴3の内周面であり、符号8はピストン内方を指しており、符号9はピストン外方を指している。この内周面4において、符号4aは内周面4の内方側の部位であり、符号4bは内周面4の外方側の部位である。また、ピストン1の頂部11には、ディーゼルエンジン用ピストン特有のキャビティ15が形成されており、そのキャビティ15は、キャビティ周面上部15aとキャビティ周面下部15bとキャビティ底部15cとで構成されている。
 ディーゼルエンジン用ピストンは、図10に示すように、頂部11にキャビティ15を有していることも構造上の特徴である。こうしたピストンでは、燃焼時に大きな負荷が加わるので、レーザピーニング処理によって、ピン穴内周面4での亀裂が発生しない程度に強度を向上させるとともに、ピストン全体の寸法変化が大きくならずにピストン全体の寸法バランスが維持されることも必要である。これらを考慮してレーザピーニング処理を行う場合、燃焼時に大きな負荷が加わって亀裂が発生し易い部位としては、ピン穴内周面4のうち、ピストン内方8側の内方側部位4a(なかでも頂部11側の部位)であることから、少なくともその内方側部位4aがレーザピーニング処理されていることが望ましい。ただし、内方側部位4aだけをレーザピーニング処理することの方が処理が煩雑になることもあり、その場合には、外方側部位4bも同様の照射条件で又は照射条件を少し低下(例えば、ピーク出力密度を低下する、カバレージを小さくする、等々)させてレーザピーニング処理することが好ましい。
 ピン穴内周面4にはピストンピンが挿入され、燃焼時にピストンに加わる衝撃力により、そのピストンピンがピン穴3に大きな負荷を与える。こうした大きな負荷がピン穴3内周面4に加わることから、通常、ピストンピンとピン穴3とは高い寸法精度で加工されている。そうした加工としては、レーザピーニング処理をしない通常のピストンであっても、ピン穴内周面4の深さ方向に片側100μm~250μm前後で切削加工又は研削加工される。本発明においても、レーザピーニング処理されたピン穴内周面4は、前記の程度に切削加工又は研削加工された後にピストンピンが挿入される。したがって、上記した転位密度は、レーザピーニング処理されたピン穴内周面4が切削加工又は研削加工された後のピン穴内周面4において、表面から深さ1mmの範囲内に存在しており、その結果として本発明の効果を奏するものとなっている。
 ディーゼルエンジン用ピストンでは、キャビティ15の構造として、リエントラント型、トロイダル型、浅皿型があるが、レーザピーニング処理は、特にリエントラント型やトロイダル型のキャビティに対して必要に応じて適用することができる。したがって、ピン穴内周面4とともにキャビティ15をレーザピーニング処理してもよいし、ピン穴内周面4だけをレーザピーニング処理してキャビティ15はレーザピーニング処理しないようにしてもよい。キャビティ15内をレーザピーニング処理する場合は、大きな負荷が加わるキャビティ周面上部15aとキャビティ周面下部15bとを処理対象とすることが好ましい。
 図11は、ピン穴3へのレーザピーニング処理方法を示す説明図である。ピン穴3へのレーザピーニング処理は、上記した「転位」の説明欄と「内燃機関用ピストンの製造方法」の説明欄にも記載のように、0.1ns以上20ns以下の範囲内のパルス幅で、ピーク出力密度が0.1GW/cm2以上20GW/cm2以下の範囲内のパルスレーザ(平行光)21を導光し、導光したパルスレーザ21を集光レンズ24で集光し、集光したパルスレーザ(集光光)22を反射ミラー25で光路を曲げ、光路を曲げたパルスレーザ(照射光)23を被照射部であるピン穴内周面4に照射する処理である。こうした照射は、パルスレーザの導光、集光、反射(屈折)を水中で行うか、又は、ピン穴内周面4を水流で覆った後にパルスレーザの導光、集光、反射(屈折)を行う。このレーザピーニング処理により、ピン穴3の内周面4の表面から所定の深さまで高密度の転位5を生じさせることができる。なお、符号26はレーザ導光パイプ(例えばステンレスパイプ)であり、符号27はレーザ通過部(例えばレーザ透過ガラス)である。
 ピン穴3は、ピストンの大きさによっても異なるが、内径が15mm~40mmの程度の範囲内である。そのため、被照射部であるピン穴内周面4に遠くからレーザを照射することはできず、図11に示すような形態でレーザ(集光光)22を反射ミラー25で反射させたレーザ(照射光)23を至近距離から照射する必要がある。こうしたピン穴内周面4へのレーザピーニング処理では、パルスレーザを至近距離から照射することから、0.1ns以上、20ns以下の範囲内のパルス幅をもつレーザを、0.1GW/cm2以上15GW/cm2以下の範囲内のピーク出力密度で照射することが望ましい。この範囲のピーク出力密度でパルスレーザを照射することにより、ピン穴内周面4に十分な強度を付与することができる。なお、その強度は、後述の実施例と同様の「250℃回転曲げ疲労試験」で評価する。
 ピン穴内周面4に至近距離から照射するパルスレーザのピーク出力密度の範囲について、高負荷対応ピストンにおいては、ピン穴3の寸法精度特性をさらに考慮した場合、2GW/cm2以下(すなわち0.1GW/cm2以上2GW/cm2以下)であることが特に好ましい。ピーク出力密度が2GW/cm2を超えると、後述の実施例でも説明するように、高精度が要求されるピン穴3に至近距離からレーザ照射した場合の寸法変化が大きくなることがあり、極めて大きな負荷が加わるピストン全体の寸法バランスがくずれてしまうことがある。
 なお、ディーゼルエンジン用ピストン特有のキャビティ15にレーザピーニング処理する場合においても、図11と同様の方法によって、特にキャビティ周面上部15aとキャビティ周面下部15bとにレーザピーニング処理をすることが望ましい。このキャビティ周面(15a,15b)へのパルスレーザの照射も、上記したピン穴内周面4へのパルスレーザの照射と同様に至近距離から照射することが好ましい。したがって、強度向上の観点からは、0.1ns以上、20ns以下の範囲内のパルス幅をもつレーザを、0.1GW/cm2以上15GW/cm2以下の範囲内のピーク出力密度で照射することが望ましいが、至近距離からレーザ照射した場合の寸法変化抑制(寸法バランス維持)の観点を加味した場合には、2GW/cm2以下(すなわち0.1GW/cm2以上2GW/cm2以下)であることが特に好ましい。なお、至近距離とは、ピン穴3の内径が15mm~40mmの程度の範囲内であることから、最大でもその範囲は超えない距離ということができる。
 以下、実施例と比較例により、本発明をさらに詳しく説明する。
 [実施例1]
 先ず、Si:12質量%、Cu:3.0質量%、Mg:1質量%、Ni:2.5質量%、その他の不可避不純物成分、及び残部がAlからなるAl-Si-Cu系合金を準備し、そのAl-Si-Cu系合金を溶融し、図1に示す形態のピストンを得るための鋳型に重力鋳造で鋳込んだ。その後、時効処理を施し、切削加工した後、ピン穴3の内周面4に向けてレーザピーニング処理を行った。レーザピーニング処理は、パワー密度(ピーク出力密度)を10GW/cmとし、スポット径を400μmとし、カバレージ(重ね率)を7として行った。こうして実施例1のピストンを得た。
 [比較例1]
 実施例1において、レーザピーニング処理を行わなかった。それ以外は実施例1と同様にして比較例1のピストンを得た。
 [測定1]
 測定サンプルについて、透過型電子顕微鏡写真による組織観察、回転曲げ疲労試験、深さ方向の硬さ試験を行った。なお、透過型電子顕微鏡写真による組織観察は、TEM(電界放出形透過電子顕微鏡、日立製作所製、型名:HF-2000)を用い、電解薄膜法(ツインジェット法)で測定試料を準備し、得られたTEM像から測定した。
 回転曲げ疲労試験は、実施例1と比較例1と同じ条件で処理した全長90mm×平行部長さ25mm×平行部径φ8mmの測定サンプルを準備し、250℃の雰囲気下で回転させながら行う回転曲げ疲労試験機(株式会社島津製作所製、小野式-H7型)を用い、JIS Z 2274を準拠して測定した。
 深さ方向の硬さ試験は、微小硬さ試験機(株式会社ミツトヨ製、型式:HM-221)を用いて行った。
 ピストン疲労評価試験機(株式会社鷺宮製作所製)を用い、ピストンのピン穴3に負荷を掛けて実験を行った。負荷は、図1に示すピストン1において、頂面11dへの圧力を9MPaとし、内周面4のうち下側の面に慣性力相当の力として8.8kN(6000回転/分)を印加した。圧力波形としてはサイン波で6×10回繰り返した。試験環境温度は250℃とした。
 [結果1]
 比較例1で得られた図5(B)に示すTEM像に対し、実施例1で得られた図2(A)、図3及び図5(A)のTEM像から、転位5と析出物が観察された。転位5については、既に記載した範囲内での転位密度が観察された。
 回転曲げ疲労試験結果は、図6に示すように、繰り返し回数に対する応力振幅(MPa)として示した。この結果から、図6(A)に示すレーザピーニング処理を行ったものは、図6(B)に示すレーザピーニング処理を行っていないものに比べ、繰り返し数10回において応力振幅が15%以上向上しており、強度の向上が確認できた。
 硬さは、表1及び図7に示した。図7(A)(B)に示すように、内周面4の深さ方向の硬さ測定の結果から、レーザピーニング処理を行ったもの(符号A)は、およそ1000μm程度までは、レーザピーニング処理を行っていないもの(符号B)に比べて優位性が認められた。この結果は、レーザピーニング処理により、ある一定の深さまで高密度の転位を生じさせていることに依存していると考えられる。
Figure JPOXMLDOC01-appb-T000001
 なお、同じ試料について微小部X線応力測定装置(理学電機株式会社製、型式:PSPC/MSFシステム)を用いて残留応力を測定した。その結果を表2及び図8に示す。表2及び図8の結果より、上記した硬さ変化は、マイナスの残留応力(圧縮応力)の存在に関連していることが確認できた。すなわち、マイナスの残留応力(圧縮応力)を有する範囲内で、高い硬度を示すことができ、硬度向上に寄与していることが確認できた。なお、レーザピーニング処理前の残留応力は、表面から200μmの位置で+35MPaであった。
Figure JPOXMLDOC01-appb-T000002
 ピストン疲労評価試験機での結果を図9に示した。レーザピーニング処理をしなかった図9(A)のものは、染色探傷法で亀裂を示す発色が見られ、亀裂が発生していた。しかし、レーザピーニング処理した図9(B)のものは、染色探傷法で亀裂を示す発色が見られず、亀裂が発生していなかった。
 [実施例2]
 実施例1において、レーザピーニング処理の処理条件を、パワー密度(ピーク出力密度)2GW/cmとした他は実施例1と同様にして、実施例2のピストンを得た。なお、ピン穴3は内径22mmであり、図11に示す態様でレーザピーニング処理を行った。
 [参考例1]
 実施例1において、レーザピーニング処理の処理条件を、パワー密度(ピーク出力密度)15GW/cmとした他は実施例1と同様にして、参考例1のピストンを得た。なお、ピン穴3は内径22mmであり、図11に示す態様でレーザピーニング処理を行った。
 [測定2及び結果2]
 実施例2、参考例1及び比較例1について、上記測定1と同様の回転曲げ疲労試験を行った。その結果、回転曲げ疲労強度は、実施例2が75MPa(10回)、参考例1も75MPa(10回)、比較例1が65MPa(10回)であった。回転曲げ疲労強度については、比較例1に比べて実施例2及び参考例1は大きかったが、実施例2と参考例1とは差がなかった。一方、参考例1は、実施例2に比べてピン穴の寸法が40μm変化しているのが確認された。これらの結果から、強度向上と寸法変化抑制の両方の観点からは、パワー密度(ピーク出力密度)の上限は実施例2の2GW/cmで十分であり、その範囲は0.1GW/cm2以上2GW/cm2以下が好ましいことがわかった。
 [実施例3]
 実施例1において、ピン穴内周面4の内方側部位4aについては、レーザピーニング処理の処理条件をパワー密度(ピーク出力密度)2GW/cmとし、スポット径400μmとし、カバレージ(重ね率)を7として行い、ピン穴内周面4の外方側部位4bについては、レーザピーニング処理の処理条件をパワー密度(ピーク出力密度)2GW/cmとし、スポット径400μmとし、カバレージ(重ね率)を4として行った。それ以外は実施例1と同様にして実施例3のピストンを得た。なお、ピン穴3は内径22mmであり、図11に示す態様でレーザピーニング処理を行った。
 [実施例4]
 実施例1において、図10に示すピン穴内周面4(内方側部位4a及び外方側部位4b)及びキャビティ周面上部15aとキャビティ周面下部15bについてレーザピーニング処理した。レーザピーニング処理の条件を、パワー密度(ピーク出力密度)2GW/cmとした他は実施例1と同様にして、実施例4のピストンを得た。なお、ピン穴3は内径22mmであり、図11に示す態様でレーザピーニング処理を行った。また、キャビティ15の内面の直径は40mmであり、このキャビティ内についても図11と同様の態様でレーザピーニング処理を行った。
 実施例3,4については、レーザピーニング処理によって強度向上を実現できたとともに、参考例1で見られたような寸法変化もなく、寸法精度も維持しており、ディーゼルエンジン用ピストンの構造形態に応じた望ましいピストンを作製できた。
 1 ピストン
 2 ピンボス部
 3 ピン穴
 4 ピン穴の内周面
 4a 内周面の内方側
 4b 内周面の外方側
 5 転位
 8 ピストン内方
 9 ピストン外方
 11 頂部
 11a 第1圧縮リング溝
 11b 第2圧縮リング溝
 11c オイルリング溝
 11d ピストン本体の頂面
 12 スカート部
 15 キャビティ
 15a キャビティ周面上部
 15b キャビティ周面下部
 15c キャビティ底部
 21 レーザ(平行光)
 22 レーザ(集光光)
 23 レーザ(照射光)
 24 集光レンズ
 25 反射ミラー
 26 レーザ導光パイプ
 27 レーザ通過部

Claims (10)

  1.  10cm/cm以上1012cm/cm以下の範囲内の転位密度を持つ部位を少なくとも有し、前記転位密度を持つ部位は、加熱することにより長径が0.2μmの析出物が生成する、又は加熱したことによって長径が0.2μm未満の析出物が生成している、ことを特徴とする内燃機関用ピストン。
  2.  前記転位密度を有する部位が、表面から深さ1mmの範囲内に存在する、請求項1に記載の内燃機関用ピストン。
  3.  前記転位密度を有する部位が、ピストンの外周面、頂面、ピストンの内面、及び、ピストンピンを挿通するためのピン穴の内周面から選ばれるいずれか1又は2以上の部位である、請求項1又は2に記載の内燃機関用ピストン。
  4.  前記転位密度を持つ部位が、前記加熱によって前記析出物を生成するAl-Si系合金又はAl-Cu系合金である、請求項1~3のいずれか1項に記載の内燃機関用ピストン。
  5.  前記範囲内の転位密度はレーザピーニング処理によって得られ、前記析出物は加熱によって生成する、請求項1~4のいずれか1項に記載の内燃機関用ピストン。
  6.  10cm/cm以上1012cm/cm以下の範囲内の転位密度を形成でき、前記転位密度を形成した部位を加熱して長径が0.2μm未満の析出物を生成することができる内燃機関用ピストン材料を準備する工程と、前記内燃機関用ピストン材料をピーニング処理して前記転位密度を形成する工程と、を有することを特徴とする内燃機関用ピストンの製造方法。
  7.  前記加熱は、前記ピーニング処理した内燃機関用ピストンを内燃機関に装着した後の運転中に加わる、請求項6に記載の内燃機関用ピストンの製造方法。
  8.  前記加熱は、前記ピーニング処理した後の内燃機関用ピストンを、内燃機関に装着する前に加える、請求項6に記載の内燃機関用ピストンの製造方法。
  9.  前記レーザピーニング処理は、0.1ns以上20ns以下の範囲内のパルス幅で、ピーク出力密度が0.1GW/cm2以上20GW/cm2以下の範囲内のパルスレーザを導光し、導光したパルスレーザを集光レンズで集光し、集光したパルスレーザを反射ミラーで光路を曲げ、光路を曲げたパルスレーザを被照射部に照射して前記転位密度を形成する処理であって、前記パルスレーザの前記被照射部への照射が、前記パルスレーザの導光、集光、屈折を水中で行う、又は、前記被照射部を水流で覆った後に前記パルスレーザの導光、集光、屈折を行う、請求項6~8のいずれか1項に記載の内燃機関用ピストンの製造方法。
  10.  前記パルスレーザの前記被照射部への照射を、前記水中又は前記水流で覆った後でのカバレージが3以上で照射する、請求項6~9のいずれか1項に記載の内燃機関用ピストンの製造方法。
PCT/JP2015/073143 2014-08-18 2015-08-18 内燃機関用ピストン及びその製造方法 WO2016027808A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544218A JPWO2016027808A1 (ja) 2014-08-18 2015-08-18 内燃機関用ピストン及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014165810 2014-08-18
JP2014-165810 2014-08-18

Publications (1)

Publication Number Publication Date
WO2016027808A1 true WO2016027808A1 (ja) 2016-02-25

Family

ID=55350752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073143 WO2016027808A1 (ja) 2014-08-18 2015-08-18 内燃機関用ピストン及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2016027808A1 (ja)
WO (1) WO2016027808A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018153542A1 (de) * 2017-02-24 2018-08-30 Stabilus Gmbh Verfahren zur fertigung eines düsenkolbens, produktionsverfahren für einen dämpfer, düsenkolben, dämpfer, produktionsanlage zur produktion eines dämpfers
JP2019202340A (ja) * 2018-05-24 2019-11-28 トヨタ自動車株式会社 部品の製造方法
JP2021063443A (ja) * 2019-10-10 2021-04-22 Tpr株式会社 内燃機関用ピストンとピストンリングとの組み合わせ
JPWO2020045383A1 (ja) * 2018-08-31 2021-09-24 国立大学法人大阪大学 金属積層造形装置及び金属積層造形方法
EP4283002A1 (en) * 2022-05-24 2023-11-29 Suzuki Motor Corporation Piston for internal combustion engine and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083757A (ja) * 2004-09-15 2006-03-30 Nagoya Institute Of Technology エンジンシリンダー及びエンジンシリンダー内壁の処理方法
JP2006122969A (ja) * 2004-10-29 2006-05-18 Muneharu Kutsuna 金属材料及び金属クラッド材の溶接継手及び鋳造材のレーザピーニング処理
JP2006320907A (ja) * 2005-05-17 2006-11-30 Muneharu Kutsuna 粉体および被膜を用いたマイクロレーザピーニング処理およびマイクロレーザピーニング処理部品
JP2007169753A (ja) * 2005-12-26 2007-07-05 Muneharu Kutsuna レーザピーニング処理方法及びレーザ吸収粉体層シート
WO2015064434A1 (ja) * 2013-10-30 2015-05-07 アイシン精機株式会社 ピストンおよびピストンの製造方法
JP2015105402A (ja) * 2013-11-29 2015-06-08 アイシン精機株式会社 アルミ合金部材およびアルミ合金部材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083757A (ja) * 2004-09-15 2006-03-30 Nagoya Institute Of Technology エンジンシリンダー及びエンジンシリンダー内壁の処理方法
JP2006122969A (ja) * 2004-10-29 2006-05-18 Muneharu Kutsuna 金属材料及び金属クラッド材の溶接継手及び鋳造材のレーザピーニング処理
JP2006320907A (ja) * 2005-05-17 2006-11-30 Muneharu Kutsuna 粉体および被膜を用いたマイクロレーザピーニング処理およびマイクロレーザピーニング処理部品
JP2007169753A (ja) * 2005-12-26 2007-07-05 Muneharu Kutsuna レーザピーニング処理方法及びレーザ吸収粉体層シート
WO2015064434A1 (ja) * 2013-10-30 2015-05-07 アイシン精機株式会社 ピストンおよびピストンの製造方法
JP2015105402A (ja) * 2013-11-29 2015-06-08 アイシン精機株式会社 アルミ合金部材およびアルミ合金部材の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018153542A1 (de) * 2017-02-24 2018-08-30 Stabilus Gmbh Verfahren zur fertigung eines düsenkolbens, produktionsverfahren für einen dämpfer, düsenkolben, dämpfer, produktionsanlage zur produktion eines dämpfers
JP2020514087A (ja) * 2017-02-24 2020-05-21 シュタビルス ゲーエムベーハーStabilus Gmbh ノズルピストンの製造方法、ダンパーのための製造方法、ノズルピストン、ダンパー、ダンパーを製造するための製造プラント
US11353083B2 (en) 2017-02-24 2022-06-07 Stabilus Gmbh Method for manufacturing a nozzle piston, production method for a damper, nozzle piston, damper, production plant for producing a damper
JP7170649B2 (ja) 2017-02-24 2022-11-14 シュタビルス ゲーエムベーハー ノズルピストンの製造方法、ダンパーのための製造方法、ノズルピストン、ダンパー、ダンパーを製造するための製造プラント
JP2019202340A (ja) * 2018-05-24 2019-11-28 トヨタ自動車株式会社 部品の製造方法
JP7035807B2 (ja) 2018-05-24 2022-03-15 トヨタ自動車株式会社 部品の製造方法
JPWO2020045383A1 (ja) * 2018-08-31 2021-09-24 国立大学法人大阪大学 金属積層造形装置及び金属積層造形方法
JP7204236B2 (ja) 2018-08-31 2023-01-16 国立大学法人大阪大学 金属積層造形装置及び金属積層造形方法
JP2021063443A (ja) * 2019-10-10 2021-04-22 Tpr株式会社 内燃機関用ピストンとピストンリングとの組み合わせ
EP4283002A1 (en) * 2022-05-24 2023-11-29 Suzuki Motor Corporation Piston for internal combustion engine and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2016027808A1 (ja) 2017-09-07

Similar Documents

Publication Publication Date Title
WO2016027808A1 (ja) 内燃機関用ピストン及びその製造方法
CN103108970B (zh) 内燃机的钢活塞
JP5420116B1 (ja) ポペットバルブのフェース部の形成方法およびこの形成方法によるフェース部を有するポペットバルブ
JP5904431B1 (ja) Ni基超耐熱合金の製造方法
Miles et al. Comparison of formability of friction stir welded and laser welded dual phase 590 steel sheets
CN1504637A (zh) 一种内燃机活塞的制造方法和由此得到的活塞
JP2007127227A (ja) 中空ばね
KR20080077084A (ko) 레이저 경화 처리에 의해 슬라이딩-링 밀봉부의 슬라이딩링 및/또는 정합 링을 제조하기 위한 방법
CN105921675A (zh) 一种锯刀结构及其锻压淬火工艺
CN103639648A (zh) 一种内燃机胀断连杆的加工工艺
EP1801432A2 (en) Connecting rod and method of producing the same
US10132268B2 (en) Piston and method for manufacturing piston
KR20130069496A (ko) 외장을 구비한 성형 금속 작업편을 제조하는 방법
CN110248752B (zh) 滑动构件和内燃机的滑动构件
JP6854140B2 (ja) 積層体、摺動部材、及び積層体の製造方法
JP5588884B2 (ja) マグネシウム合金鍛造ピストンの製造方法およびマグネシウム合金鍛造ピストン
JP2006125530A (ja) ピストンリングおよびその製造方法
JP2006275034A (ja) チタン合金製バルブリフタ及びその製造方法
Uzkut et al. Determination of optimum welding parameters in connecting high alloyed X53CrMnNiN219 and X45CrSi93 steels by friction welding
JP5916829B1 (ja) コンロッド、内燃機関、自動車両およびコンロッドの製造方法
CN104736742B (zh) 内燃机用活塞的表面改性方法和内燃机用活塞
JP2014169631A (ja) ディーゼルエンジン排気バルブの製造方法
JP2007032465A (ja) 放熱性に優れた軽量エンジンバルブ
DE102017119437A1 (de) Stahllegierungen und zylinderlaufbuchsen aus selbigen
Pillai et al. Overcoming Manufacturing Challenges in Mass Production of Vanadium Micro-Alloyed Steel Connecting Rods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833450

Country of ref document: EP

Kind code of ref document: A1