WO2016027777A1 - 接合構造体の製造方法および接合構造体 - Google Patents

接合構造体の製造方法および接合構造体 Download PDF

Info

Publication number
WO2016027777A1
WO2016027777A1 PCT/JP2015/073042 JP2015073042W WO2016027777A1 WO 2016027777 A1 WO2016027777 A1 WO 2016027777A1 JP 2015073042 W JP2015073042 W JP 2015073042W WO 2016027777 A1 WO2016027777 A1 WO 2016027777A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
perforated
manufacturing
joined
pulse
Prior art date
Application number
PCT/JP2015/073042
Other languages
English (en)
French (fr)
Inventor
和義 西川
彰朗 角谷
聡 廣野
博田 知之
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US15/327,380 priority Critical patent/US20180207847A1/en
Priority to CN201580040009.8A priority patent/CN106573342A/zh
Priority to EP15833742.8A priority patent/EP3184233B1/en
Priority to KR1020177001689A priority patent/KR101893073B1/ko
Publication of WO2016027777A1 publication Critical patent/WO2016027777A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers
    • B29C37/0082Mechanical anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • B29C2045/14327Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles anchoring by forcing the material to pass through a hole in the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/009Using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/12Iron

Definitions

  • the present invention relates to a method for manufacturing a bonded structure and a bonded structure.
  • Patent Document 1 discloses a joining method in which a dissimilar material such as a resin is joined to a metal material. Specifically, a laser scanning process is performed in a cross shape on the surface of the metal material, whereby a large number of protrusions (uneven portions) are formed on the surface. And when a dissimilar material is joined to the metal material on which the protrusions are formed, the dissimilar material enters the concave portion, so that the anchor effect is exhibited, so that the joining strength between the metal material and the dissimilar material is improved. Is done.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing a bonded structure and a bonded structure capable of improving the bonding strength. .
  • a method for manufacturing a bonded structure according to the present invention is a method for manufacturing a bonded structure in which a first member and a second member are bonded, and a laser in which one pulse is composed of a plurality of sub-pulses is applied to the surface of the first member. Irradiation includes a step of forming a perforated portion having an opening on the surface of the first member, and a step of filling the second member into the perforated portion of the first member and solidifying the second member.
  • the perforated portion can be deepened with respect to the opening diameter of the surface by forming the perforated portion with a laser in which one pulse is composed of a plurality of sub-pulses, so that the bonding strength can be improved. Can be planned.
  • a protruding portion protruding inward may be formed on the inner peripheral surface of the perforated portion.
  • the first member may be a metal, a thermoplastic resin, or a thermosetting resin.
  • the second member may be a thermoplastic resin or a thermosetting resin.
  • one period of the sub-pulse may be 15 ns or less.
  • the number of subpulses per pulse may be 2 or more and 50 or less.
  • the bonded structure according to the present invention is manufactured by any one of the above-described bonded structure manufacturing methods.
  • the perforated portion can be deepened with respect to the opening diameter of the surface by forming the perforated portion with a laser in which one pulse is composed of a plurality of sub-pulses, so that the bonding strength can be improved. Can be planned.
  • FIG. 1 It is a schematic diagram of the cross section of the joining structure body by 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the joining structure of FIG. 1, Comprising: It is the schematic diagram which showed the state in which the perforated part was formed in the 1st member. It is a schematic diagram of the cross section of the joining structure body by 2nd Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the joining structure of FIG. 3, Comprising: It is the schematic diagram which showed the state in which the perforated part was formed in the 1st member. It is the perspective view which showed the state by which the 1st member of an Example was processed with a laser. It is the perspective view which showed the joining structure of the Example.
  • the joined structure 100 is obtained by joining a first member 10 and a second member 20 made of different materials.
  • a perforated part 11 having an opening is formed on the surface 13 of the first member 10, and a projecting part 12 projecting inward is formed on the inner peripheral surface of the perforated part 11.
  • the second member 20 is filled in the perforated part 11 of the first member 10 and solidified.
  • FIG. 1 is a diagram schematically showing an enlarged joining interface between the first member 10 and the second member 20, and a plurality of perforated portions 11 are actually provided. In FIG. Only shown.
  • the material of the first member 10 is a metal, a thermoplastic resin, or a thermosetting resin
  • the material of the second member 20 is a thermoplastic resin or a thermosetting resin.
  • the metal examples include iron metal, stainless steel metal, copper metal, aluminum metal, magnesium metal, and alloys thereof.
  • a metal molding may be sufficient and zinc die-casting, aluminum die-casting, powder metallurgy, etc. may be sufficient.
  • thermoplastic resin examples include PVC (polyvinyl chloride), PS (polystyrene), AS (acrylonitrile styrene), ABS (acrylonitrile butadiene styrene), PMMA (polymethyl methacrylate), PE (polyethylene), PP (Polypropylene), PC (polycarbonate), m-PPE (modified polyphenylene ether), PA6 (polyamide 6), PA66 (polyamide 66), POM (polyacetal), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PSF ( Polysulfone), PAR (polyarylate), PEI (polyetherimide), PPS (polyphenylene sulfide), PES (polyethersulfone), PEEK (polyetheretherketone), P I (polyamideimide), LCP (liquid crystal polymer), PVDC (polyvinylidene chloride), PTFE (polyteth
  • TPE thermoplastic elastomer
  • examples of TPE include TPO (olefin-based), TPS (styrene-based), TPEE (ester-based), TPU (urethane-based), TPA (nylon-based), And TPVC (vinyl chloride type) is mentioned.
  • thermosetting resin examples include EP (epoxy), PUR (polyurethane), UF (urea formaldehyde), MF (melamine formaldehyde), PF (phenol formaldehyde), UP (unsaturated polyester), and SI (silicone).
  • EP epoxy
  • PUR polyurethane
  • UF urea formaldehyde
  • MF melamine formaldehyde
  • PF phenol formaldehyde
  • UP unsaturated polyester
  • SI silicone
  • FRP fiber reinforced plastic
  • a filler may be added to the above-described thermoplastic resin and thermosetting resin.
  • the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal fillers, organic fillers, and carbon fibers.
  • the perforated part 11 is a substantially circular non-through hole when seen in a plan view, and a plurality of perforated parts 11 are formed on the surface 13 of the first member 10.
  • the opening diameter R1 of the surface 13 of the perforated part 11 is preferably 30 ⁇ m or more and 100 ⁇ m or less. This is because when the opening diameter R1 is less than 30 ⁇ m, the filling property of the second member 20 is deteriorated and the anchor effect may be reduced. On the other hand, when the opening diameter R1 exceeds 100 ⁇ m, the number of the perforated portions 11 per unit area is reduced, and the anchor effect may be lowered.
  • the interval between the perforated parts 11 is preferably 200 ⁇ m or less. This is because when the interval between the perforated portions 11 exceeds 200 ⁇ m, the number of the perforated portions 11 per unit area decreases, and the anchor effect may be reduced.
  • interval of the punching part 11 it is the distance which the punching part 11 does not overlap and crush.
  • interval of the perforated part 11 is the same. This is because the joint strength in the shear direction becomes isotropic when the perforated portions 11 are equally spaced.
  • the perforated part 11 of the first embodiment includes an enlarged diameter part 111 whose opening diameter increases from the surface 13 side toward the bottom part 113 in the depth direction (Z direction), and a bottom part from the surface 13 side in the depth direction. It is formed so that the reduced diameter portion 112 whose opening diameter becomes smaller toward 113 is connected.
  • the enlarged diameter portion 111 is formed so as to increase in diameter in a curved shape, and the reduced diameter portion 112 is formed so as to reduce in diameter in a curved shape.
  • the enlarged diameter portion 111 is disposed on the surface 13 side, and the reduced diameter portion 112 is disposed on the bottom 113 side.
  • the opening diameter (inner diameter) R2 of the boundary part between the enlarged diameter part 111 and the reduced diameter part 112 is the largest, and the opening diameter R1 is smaller than the opening diameter R2.
  • the protrusion part 12 is arrange
  • This protrusion 12 is formed over the entire length in the circumferential direction, for example, and is formed in an annular shape.
  • the perforated portion 11 is formed by irradiating a processing laser.
  • a processing laser As the type of laser, a fiber laser, a YAG laser, a YVO 4 laser, a semiconductor laser, a carbon dioxide gas laser, and an excimer laser can be selected from the viewpoint of enabling pulse oscillation, and considering the laser wavelength, a fiber laser, a YAG laser, a YAG The second harmonic of the laser, YVO 4 laser, and semiconductor laser are preferred.
  • the laser output is set in consideration of the laser irradiation diameter, the type of material of the first member 10, the shape (for example, thickness) of the first member 10, and the like.
  • the output upper limit of the laser is preferably 40W. This is because when the laser output exceeds 40 W, the energy is large and it is difficult to form the perforated part 11 having the protruding part 12.
  • the perforated part 11 is formed by irradiating a laser in which one pulse is composed of a plurality of sub-pulses.
  • a laser As an example of an apparatus for emitting such a laser, OMRON fiber laser marker MX-Z2000 or MX-Z2050 can be cited.
  • the first member 10 is irradiated with a laser, the first member 10 is locally melted so that the formation of the perforated part 11 proceeds.
  • the laser is composed of a plurality of sub-pulses, the melted first member 10 is not easily scattered and easily deposited in the vicinity of the perforated portion 11.
  • the melted first member 10 is deposited inside the perforated part 11, thereby forming the protruding part 12.
  • the reflected portion of the laser is confined inside the perforated portion 11 by the protruding portion 12, and the processing by the laser proceeds in the depth direction. That is, it is easy to concentrate the laser energy in the depth direction.
  • the depth becomes larger than the opening diameter R1 on the surface.
  • the laser irradiation direction is, for example, a direction perpendicular to the surface 13, and the axis of the perforated part 11 is perpendicular to the surface 13.
  • the depth of the perforated portion 11 can be increased with respect to the surface opening diameter R1, so that the anchor effect is increased and the bonding strength is increased. Can be improved. Furthermore, even if the peeling stress resulting from the linear expansion coefficient difference of the 1st member 10 and the 2nd member 20 generate
  • one period of the subpulse is 15 ns or less. This is because if one period of the sub-pulse exceeds 15 ns, energy is easily diffused by heat conduction, and it becomes difficult to form the perforated part 11 having the protruding part 12.
  • one cycle of the subpulse is a total time of the irradiation time for one subpulse and the interval from the end of the irradiation of the subpulse to the start of the irradiation of the next subpulse.
  • the number of subpulses of one pulse is preferably 2 or more and 50 or less. This is because if the number of subpulses exceeds 50, the output per unit of subpulses becomes small, and it becomes difficult to form the perforated part 11 having the protruding parts 12.
  • the 2nd member 20 is joined to the surface 13 of the 1st member 10 in which the perforated part 11 was formed.
  • the second member 20 is joined to the first member 10 by, for example, injection molding, hot plate welding, laser welding, cast hardening, ultrasonic welding, or vibration welding. Thereby, the 2nd member 20 is solidified in the state with which the perforated part 11 was filled.
  • Such a bonded structure 100 is applicable, for example, when a resin cover (not shown) is bonded to a metal case (not shown) of a photoelectric sensor.
  • the metal case corresponds to the first member 10
  • the resin cover corresponds to the second member 20.
  • the perforated portion 11 is formed on the surface 13 of the first member 10
  • a protruding portion 12 is formed on the inner peripheral surface of the perforated portion 11.
  • the second member 20 is filled in the perforated portion 11 of the first member 10 and the second member 20 is solidified. Thereby, the 1st member 10 and the 2nd member 20 are joined, and joined structure 100 (refer to Drawing 1) is formed.
  • the second member 20 is joined by, for example, injection molding, hot plate welding, laser welding, cast hardening, ultrasonic welding, or vibration welding.
  • the joined structure 200 is obtained by joining the first member 30 and the second member 20 made of different materials.
  • a perforated part 31 having an opening is formed on the surface 33 of the first member 30, and a projecting part 32 projecting inward is formed on the inner peripheral surface of the perforated part 31.
  • the perforated portion 31 of the first member 30 is filled with the second member 20 and solidified.
  • the perforated part 31 of the second embodiment has a reduced diameter part 311 in which the opening diameter decreases from the surface 33 side toward the bottom part 314 in the depth direction (Z direction), and from the surface 33 side toward the bottom part 314 in the depth direction.
  • the enlarged diameter portion 312 having a larger opening diameter and the reduced diameter portion 313 having a smaller opening diameter from the surface 33 side toward the bottom portion 314 in the depth direction are connected.
  • the reduced diameter portion 311 is formed to linearly reduce the diameter
  • the enlarged diameter portion 312 is formed to increase in a curved shape
  • the reduced diameter portion 313 is formed to reduce in a curved shape. ing.
  • the diameter-reduced part 311, diameter-expanded part 312 and diameter-reduced part 313 are arrange
  • the opening diameter (inner diameter) R4 of the boundary part between the reduced diameter part 311 and the enlarged diameter part 312 is the opening diameter R3 of the surface 33 and the enlarged diameter part 312 and the reduced diameter part 313. It is smaller than the opening diameter R5 of the boundary portion.
  • the protrusion part 32 is arrange
  • the protrusion 32 is formed over the entire length in the circumferential direction, and is formed in an annular shape.
  • the other configuration of the first member 30 is the same as that of the first member 10 described above.
  • the perforated part 31 is formed on the surface 33 of the first member 30.
  • a protruding portion 32 is formed on the inner peripheral surface of the perforated portion 31.
  • the protruding portion 32 is disposed at a position where it enters the bottom portion 314 side.
  • Such a difference may be caused by, for example, the material of the first member 30 or laser irradiation conditions. Due to such differences.
  • the second member 20 is filled in the perforated part 31 of the first member 30, and the second member 20 is solidified. Thereby, the 1st member 30 and the 2nd member 20 are joined, and joined structure 200 (refer to Drawing 3) is formed.
  • the second member 20 is joined by, for example, injection molding, hot plate welding, laser welding, cast hardening, ultrasonic welding, or vibration welding.
  • Example 1 In Experimental Example 1, a bonded structure 500 (see FIG. 6) according to Examples 1 to 4 corresponding to the second embodiment and a bonded structure according to Comparative Example 1 were produced, and bonding evaluation was performed on each. . In addition, as joint evaluation, while joining strength was measured about the thing which has not performed the thermal shock test, joining strength was measured about the thing after a thermal shock test, and the pass / fail determination was performed based on the measurement result. The results are shown in Table 1.
  • the first member 501 is formed in a plate shape, has a length of 100 mm, a width of 29 mm, and a thickness of 3 mm.
  • a laser is irradiated to a predetermined region R on the surface of the first member 501.
  • the predetermined region R is an area where the bonded structure 500 is bonded, and is 12.5 mm ⁇ 20 mm.
  • the laser irradiation conditions common to Examples 1 to 4 are as follows.
  • Example 1 Laser: Fiber laser (wavelength 1062nm) Frequency: 10kHz Output: 3.8W Scanning speed: 650mm / sec Number of scans: 20 times Irradiation interval: 65 ⁇ m
  • the number of subpulses was set to 20, and one period of the subpulses was set to 15.0 ns.
  • Example 2 the number of subpulses was set to 2, and one period of the subpulses was set to 15.0 ns.
  • Example 3 the number of subpulses was set to 20, and one period of the subpulses was set to 10.5 ns.
  • Example 4 the number of subpulses was set to 50, and one period of the subpulses was set to 15.0 ns.
  • the frequency is a pulse frequency composed of a plurality of sub-pulses. That is, under this irradiation condition, laser (pulse) is irradiated 10,000 times at an interval of 65 ⁇ m while moving 650 mm per second, and the pulse is composed of a plurality of subpulses. Note that the number of scans is the number of times the laser is repeatedly irradiated to the same location.
  • the irradiation time for one subpulse is 7.5 ns
  • the subpulse irradiation interval is 7.5 ns.
  • the irradiation time for one sub-pulse is 3 ns
  • the sub-pulse irradiation interval is 7.5 ns.
  • a perforated part is formed in the predetermined region R on the surface of the first member 501, and a protruding part is formed in the perforated part.
  • the 2nd member 502 was joined to the surface of the 1st member 501 by insert molding.
  • PBT Japanese trademark
  • J35EL3 made from Japan Steel Works was used for the molding machine. The molding conditions are as follows.
  • the second member 502 is formed in a plate shape, has a length of 100 mm, a width of 25 mm, and a thickness of 3 mm.
  • the same materials as in Examples 1 to 4 were used as the materials for the first member and the second member, and the molding conditions were set to be the same.
  • the perforated part was formed using the fiber laser without a pulse control function. That is, a perforated part was formed by irradiating a laser (single pulse) in which one pulse is not composed of a plurality of subpulses. For this reason, a mortar-shaped (conical) perforated portion was formed in the first member of Comparative Example 1.
  • the bonding strength was measured using an electromechanical universal testing machine 5900 manufactured by Instron. Specifically, the test was performed at a tensile speed of 5 mm / min in the shear direction, and the test was terminated when the second member broke or the joint interface broke. And the maximum intensity
  • thermal shock test was performed using a thermal shock apparatus TSD-100 manufactured by Espec. Specifically, low temperature exposure at ⁇ 40 ° C. for 30 minutes and high temperature exposure at 85 ° C. for 30 minutes were repeated 100 times.
  • the bonding structures 500 of Examples 1 to 4 had higher bonding strength before and after the thermal shock test than the bonding structure of Comparative Example 1. This is considered to be because, in the joint structures 500 of Examples 1 to 4, the anchor effect was increased and the joint strength was improved because the depth of the perforated part was larger than the opening diameter of the surface.
  • the bonding strength before the thermal shock test can be maintained at 90% or more even after the thermal shock test.
  • the joint structure of Comparative Example 1 the joint strength is greatly reduced after the thermal shock test. Therefore, as in the bonded structure 500 of the first to fourth embodiments, by forming a deep perforated portion with a laser in which one pulse is composed of a plurality of subpulses, it is possible to improve durability in a thermal cycle environment. did it.
  • Experimental Example 2 the material of the first member was changed from Experimental Example 1. Specifically, in the joint structure of Experimental Example 2, PPS (Fortron (registered trademark) 1140 made of Polyplastics) was used as the material of the first member. In addition, with the change in the material of the first member, the laser irradiation conditions common to Examples 5 to 8 were set as follows.
  • Example 5 Laser: Fiber laser (wavelength 1062nm) Frequency: 10kHz Output: 1.1W Scanning speed: 650mm / sec Number of scans: 3 times Irradiation interval: 65 ⁇ m Further, as shown in Table 2, in Example 5, the number of subpulses was set to 20, and one period of the subpulses was set to 15.0 ns. In Example 6, the number of subpulses was set to 2, and one subpulse period was set to 15.0 ns. In Example 7, the number of subpulses was set to 20, and one period of the subpulses was set to 10.5 ns. In Example 8, the number of subpulses was set to 50, and one period of the subpulses was set to 15.0 ns.
  • the depth of the perforated part was larger than the opening diameter of the surface as compared with the joined structure of Comparative Example 2. This is because, in the bonded structures of Examples 5 to 8, a projection is formed in the perforated portion by irradiating a laser in which one pulse is composed of a plurality of subpulses, so that the reflected wave of the laser This is because the laser beam is confined inside, and laser processing proceeds in the depth direction.
  • the bonding structures of Examples 5 to 8 had higher bonding strength before and after the thermal shock test than the bonding structure of Comparative Example 2. This is presumably because, in the bonded structures of Examples 5 to 8, the anchor effect was increased and the bonding strength was improved because the depth of the perforated part was larger than the opening diameter of the surface.
  • the bonding strength before the thermal shock test can be maintained at 90% or more even after the thermal shock test.
  • the joint strength is significantly reduced after the thermal shock test.
  • PPS which is a resin
  • the surface 13 may be flat or curved.
  • the enlarged diameter portion 111 and the reduced diameter portion 112 are formed to be continuous.
  • the present invention is not limited to this, and the depth direction is provided between the enlarged diameter portion and the reduced diameter portion.
  • a straight extending portion may be formed. The same applies to the second embodiment.
  • the present invention is not limited to this, and the opening of the perforated part 11 is not limited to the first member 10a according to the first modification shown in FIG.
  • a bulging portion 14 that bulges upward from the surface 13 may be formed around.
  • the raised portion 14 is formed so as to surround the perforated portion 11 and is formed in a substantially circular shape when seen in a plan view.
  • the raised portion 14 is formed, for example, by depositing the melted first member 10a when a laser in which one pulse is composed of a plurality of sub-pulses is irradiated. If comprised in this way, since the anchor effect will generate
  • the present invention is not limited to this, as in the first member 10b according to the second modification shown in FIG.
  • the shaft center of the perforated part 11 b may be formed so as to be inclined with respect to the surface 13.
  • a protruding portion 12b protruding inward is formed on the inner peripheral surface of the perforated portion 11b.
  • the perforated part 11b is formed, for example, by making the laser irradiation direction oblique to the surface 13 (45 ° or more and less than 90 °). Thereby, even if the obstacle at the time of irradiating a laser exists above the area
  • the present invention is not limited to this, and the first member 10c according to the third modification shown in FIG.
  • a plurality of protruding portions 121c and 122c may be formed on the portion 11c.
  • This perforated part 11c can be formed, for example, by changing the laser output condition and irradiating the same part with the laser. If comprised in this way, while the surface area of the piercing
  • one perforated part 11d may be formed by multiple times of laser irradiation with different positions. That is, one perforated part 11d may be formed by overlapping a part of the perforated part formed by laser irradiation. A protruding portion 12d protruding inward is formed on the inner peripheral surface of the perforated portion 11d.
  • the first to fourth modifications described above may be combined as appropriate.
  • the present invention is applicable to a method for manufacturing a joined structure in which a first member and a second member made of different materials are joined, and a joined structure.

Abstract

 接合構造体(100,200)の製造方法は、第1部材(10,10a,10b,10c,10d,30)と第2部材(20)とが接合された接合構造体(100,200)の製造方法であり、1パルスが複数のサブパルスで構成されたレーザを第1部材(10,10a,10b,10c,10d,30)の表面(13)に照射することにより、開口を有する穿孔部(11,11b,11c,11d,31)を第1部材(10,10a,10b,10c,10d,30)の表面(13)に形成する工程と、第1部材(10,10a,10b,10c,10d,30)の穿孔部(11,11b,11c,11d,31)に第2部材(20)を充填して固化させる工程と、を備える。

Description

接合構造体の製造方法および接合構造体
 本発明は、接合構造体の製造方法および接合構造体に関する。
 従来、異なる材料からなる第1部材および第2部材が接合された接合構造体が知られている(たとえば、特許文献1参照)。
 特許文献1には、金属材料に樹脂などの異種材料を接合させる接合方法が開示されている。具体的には、金属材料の表面に、クロス状にレーザースキャニング加工が施されることにより、その表面に多数の突起(凹凸部)が形成される。そして、その突起が形成された金属材料に異種材料が接合された場合には、異種材料が凹状部に入り込むことにより、アンカー効果が発揮されるので、金属材料と異種材料との接合強度が向上される。
特許第4020957号公報
 しかしながら、従来の接合方法では、レーザにより金属表面に対して穿孔部(凹部)を形成する場合に、表面の開口径に対して穿孔部を深くすることが困難であり、接合強度を向上させることが困難であるという問題点がある。
 本発明は、上記の課題を解決するためになされたものであり、本発明の目的は、接合強度の向上を図ることが可能な接合構造体の製造方法および接合構造体を提供することである。
 本発明による接合構造体の製造方法は、第1部材と第2部材とが接合された接合構造体の製造方法であり、1パルスが複数のサブパルスで構成されたレーザを第1部材の表面に照射することにより、開口を有する穿孔部を第1部材の表面に形成する工程と、第1部材の穿孔部に第2部材を充填して固化させる工程とを備える。
 このように構成することによって、1パルスが複数のサブパルスで構成されたレーザにより穿孔部を形成することにより、表面の開口径に対して穿孔部を深くすることができるので、接合強度の向上を図ることができる。
 上記接合構造体の製造方法において、穿孔部の内周面に、内側に突出する突出部が形成されるようにしてもよい。
 上記接合構造体の製造方法において、第1部材は、金属、熱可塑性樹脂、または、熱硬化性樹脂であってもよい。
 上記接合構造体の製造方法において、第2部材は、熱可塑性樹脂、または、熱硬化性樹脂であってもよい。
 上記接合構造体の製造方法において、サブパルスの1周期は、15ns以下であってもよい。
 上記接合構造体の製造方法において、1パルスのサブパルス数は、2以上50以下であってもよい。
 本発明による接合構造体は、上記したいずれか1つの接合構造体の製造方法によって製造されている。
 このように構成することによって、1パルスが複数のサブパルスで構成されたレーザにより穿孔部を形成することにより、表面の開口径に対して穿孔部を深くすることができるので、接合強度の向上を図ることができる。
 本発明の接合構造体の製造方法および接合構造体によれば、接合強度の向上を図ることができる。
本発明の第1実施形態による接合構造体の断面の模式図である。 図1の接合構造体の製造方法を説明するための図であって、第1部材に穿孔部が形成された状態を示した模式図である。 本発明の第2実施形態による接合構造体の断面の模式図である。 図3の接合構造体の製造方法を説明するための図であって、第1部材に穿孔部が形成された状態を示した模式図である。 実施例の第1部材がレーザにより加工される状態を示した斜視図である。 実施例の接合構造体を示した斜視図である。 第1実施形態の第1変形例による第1部材を示した模式図である。 第1実施形態の第2変形例による第1部材を示した模式図である。 第1実施形態の第3変形例による第1部材を示した模式図である。 第1実施形態の第4変形例による第1部材を示した模式図である。
 以下、本発明の実施形態について図面を参照して説明する。
 (第1実施形態)
 まず、図1を参照して、本発明の第1実施形態による接合構造体100について説明する。
 接合構造体100は、図1に示すように、異なる材料からなる第1部材10および第2部材20が接合されたものである。第1部材10の表面13には、開口を有する穿孔部11が形成され、その穿孔部11の内周面には、内側に突出する突出部12が形成されている。そして、第1部材10の穿孔部11には、第2部材20が充填されて固化されている。なお、図1は、第1部材10および第2部材20の接合界面を拡大して模式的に示した図であり、実際には穿孔部11が複数設けられているが、図1では1つだけ示した。
 第1部材10の材料は、金属、熱可塑性樹脂、または、熱硬化性樹脂であり、第2部材20の材料は、熱可塑性樹脂、または、熱硬化性樹脂である。
 上記金属の一例としては、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金が挙げられる。また、金属成型体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金などであってもよい。
 上記熱可塑性樹脂の一例としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m-PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、TPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)が挙げられる。
 上記熱硬化性樹脂の一例としては、EP(エポキシ)、PUR(ポリウレタン)、UF(ユリアホルムアルデヒド)、MF(メラミンホルムアルデヒド)、PF(フェノールホルムアルデヒド)、UP(不飽和ポリエステル)、および、SI(シリコーン)が挙げられる。また、FRP(繊維強化プラスチック)であってもよい。
 なお、上記した熱可塑性樹脂および熱硬化性樹脂には、充填剤が添加されていてもよい。充填剤の一例としては、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維などが挙げられる。
 穿孔部11は、平面的に見てほぼ円形の非貫通孔であり、第1部材10の表面13に複数形成されている。穿孔部11の表面13の開口径R1は、30μm以上、100μm以下が好ましい。これは、開口径R1が30μmを下回ると、第2部材20の充填性が悪化してアンカー効果が低下する場合があるためである。一方、開口径R1が100μmを上回ると、単位面積あたりの穿孔部11の数が減少してアンカー効果が低下する場合があるためである。
 また、穿孔部11の間隔(所定の穿孔部11の中心と、所定の穿孔部11と隣接する穿孔部11の中心との距離)は、200μm以下であることが好ましい。これは、穿孔部11の間隔が200μmを上回ると、単位面積あたりの穿孔部11の数が減少してアンカー効果が低下する場合があるためである。なお、穿孔部11の間隔の下限の一例としては、穿孔部11が重畳して潰れない距離である。また、穿孔部11の間隔は同じであることが好ましい。これは、穿孔部11が等間隔であると、せん断方向の接合強度が等方的になるためである。
 ここで、第1実施形態の穿孔部11は、深さ方向(Z方向)において表面13側から底部113に向けて開口径が大きくなる拡径部111と、深さ方向において表面13側から底部113に向けて開口径が小さくなる縮径部112とが連なるように形成されている。拡径部111は、曲線状に拡径するように形成され、縮径部112は、曲線状に縮径するように形成されている。
 そして、拡径部111が表面13側に配置されるとともに、縮径部112が底部113側に配置されている。このため、穿孔部11において、拡径部111と縮径部112との境界部分の開口径(内径)R2が最も大きくなっており、開口径R1が開口径R2よりも小さくなっている。これにより、突出部12が第1部材10の表面13側に配置されている。この突出部12は、たとえば、周方向における全長にわたって形成されており、環状に形成されている。
 この穿孔部11は、加工用のレーザが照射されることによって形成される。レーザの種類としては、パルス発振が可能な観点から、ファイバレーザ、YAGレーザ、YVOレーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザが選択でき、レーザの波長を考慮すると、ファイバレーザ、YAGレーザ、YAGレーザの第2高調波、YVOレーザ、半導体レーザが好ましい。なお、レーザの出力は、レーザの照射径、第1部材10の材料の種類、第1部材10の形状(たとえば厚み)などを考慮して設定される。たとえば、レーザの出力上限は40Wが好ましい。これは、レーザの出力が40Wを超えると、エネルギが大きく、突出部12を有する穿孔部11を形成することが困難であるためである。
 また、穿孔部11は、1パルスが複数のサブパルスで構成されるレーザが照射されることにより形成されている。なお、このようなレーザを出射する装置の一例としては、オムロン製のファイバレーザマーカMX-Z2000またはMX-Z2050を挙げることができる。具体的には、第1部材10にレーザが照射されると、第1部材10が局部的に溶融されることにより穿孔部11の形成が進行する。このとき、レーザが複数のサブパルスで構成されているため、溶融された第1部材10が飛散されにくく、穿孔部11の近傍に堆積されやすい。そして、穿孔部11の形成が進行すると、溶融された第1部材10が穿孔部11の内部に堆積されることにより、突出部12が形成される。このため、突出部12により、レーザの反射波が穿孔部11の内部に閉じ込められるようになり、レーザによる加工がより深さ方向に進行することになる。つまり、レーザのエネルギを深さ方向に集中させやすくなっている。その結果、穿孔部11では、表面の開口径R1に対して深さが大きくなる。なお、レーザの照射方向は、たとえば、表面13に対して垂直方向であり、穿孔部11の軸心が表面13に対して垂直になる。
 このように、1パルスが複数のサブパルスで構成されるレーザを照射することにより、表面の開口径R1に対して穿孔部11の深さを大きくするができるので、アンカー効果が大きくなり、接合強度の向上を図ることができる。さらに、熱サイクル環境下において、第1部材10および第2部材20の線膨張係数差に起因する剥離応力が発生しても、接合強度を維持することができる。すなわち、熱サイクル環境下における耐久性の向上を図ることができる。
 なお、上記ファイバレーザマーカによる加工条件としては、サブパルスの1周期が15ns以下であることが好ましい。これは、サブパルスの1周期が15nsを超えると、熱伝導によりエネルギが拡散しやすくなり、突出部12を有する穿孔部11を形成しにくくなるためである。なお、サブパルスの1周期は、サブパルスの1回分の照射時間と、そのサブパルスの照射が終了されてから次回のサブパルスの照射が開始されるまでの間隔との合計時間である。
 また、上記ファイバレーザマーカによる加工条件としては、1パルスのサブパルス数は、2以上50以下であることが好ましい。これは、サブパルス数が50を超えると、サブパルスの単位あたりの出力が小さくなり、突出部12を有する穿孔部11を形成しにくくなるためである。
 そして、第2部材20は、穿孔部11が形成された第1部材10の表面13に接合されている。この第2部材20は、たとえば、射出成形、熱板溶着、レーザ溶着、注型硬化、超音波溶着、または、振動溶着によって第1部材10に接合されている。これにより、第2部材20が穿孔部11に充填された状態で固化されている。
 このような接合構造体100は、たとえば、光電センサの金属ケース(図示省略)に樹脂カバー(図示省略)を接合させる場合に適用可能である。この場合には、金属ケースが第1部材10に相当し、樹脂カバーが第2部材20に相当する。
 -接合構造体の製造方法-
 次に、図1および図2を参照して、第1実施形態による接合構造体100の製造方法について説明する。
 まず、図2に示すように、第1部材10の表面13に1パルスが複数のサブパルスで構成されたレーザを照射することにより、第1部材10の表面13に穿孔部11を形成するとともに、その穿孔部11の内周面に突出部12を形成する。このとき、突出部12が形成されると、レーザの反射波が穿孔部11の内部に閉じ込められるようになり、レーザによる加工がより深さ方向に進行することになる。これにより、穿孔部11では、表面の開口径R1に対して深さが大きくなる。
 その後、第1部材10の穿孔部11に第2部材20を充填し、その第2部材20を固化させる。これにより、第1部材10および第2部材20が接合され、接合構造体100(図1参照)が形成される。なお、第2部材20は、たとえば、射出成形、熱板溶着、レーザ溶着、注型硬化、超音波溶着、または、振動溶着によって接合される。
 (第2実施形態)
 次に、図3を参照して、本発明の第2実施形態による接合構造体200について説明する。
 接合構造体200は、図3に示すように、異なる材料からなる第1部材30および第2部材20が接合されたものである。第1部材30の表面33には、開口を有する穿孔部31が形成され、その穿孔部31の内周面には、内側に突出する突出部32が形成されている。そして、第1部材30の穿孔部31には、第2部材20が充填されて固化されている。
 第2実施形態の穿孔部31は、深さ方向(Z方向)において表面33側から底部314に向けて開口径が小さくなる縮径部311と、深さ方向において表面33側から底部314に向けて開口径が大きくなる拡径部312と、深さ方向において表面33側から底部314に向けて開口径が小さくなる縮径部313とが連なるように形成されている。縮径部311は、直線状に縮径するように形成され、拡径部312は、曲線状に拡径するように形成され、縮径部313は、曲線状に縮径するように形成されている。
 そして、表面33側から底部314側に向けて順に、縮径部311、拡径部312および縮径部313が配置されている。このため、穿孔部31において、縮径部311と拡径部312との境界部分の開口径(内径)R4が、表面33の開口径R3、および、拡径部312と縮径部313との境界部分の開口径R5よりも小さくなっている。これにより、突出部32が底部314側に入り込んだ位置に配置されている。この突出部32は、たとえば、周方向における全長にわたって形成されており、環状に形成されている。
 なお、第1部材30のその他の構成は、上記した第1部材10と同様である。
 -接合構造体の製造方法-
 次に、図3および図4を参照して、第2実施形態による接合構造体200の製造方法について説明する。
 まず、図4に示すように、第1部材30の表面33に1パルスが複数のサブパルスで構成されたレーザを照射することにより、第1部材30の表面33に穿孔部31を形成するとともに、その穿孔部31の内周面に突出部32を形成する。このとき、突出部32が形成されると、レーザの反射波が穿孔部31の内部に閉じ込められるようになり、レーザによる加工がより深さ方向に進行することになる。これにより、穿孔部31では、表面の開口径R3に対して深さが大きくなる。
 なお、第2実施形態では、第1実施形態と異なり、突出部32が底部314側に入り込んだ位置に配置されるが、このような違いは、たとえば、第1部材30の材料やレーザ照射条件などの違いに起因する。
 その後、第1部材30の穿孔部31に第2部材20を充填し、その第2部材20を固化させる。これにより、第1部材30および第2部材20が接合され、接合構造体200(図3参照)が形成される。なお、第2部材20は、たとえば、射出成形、熱板溶着、レーザ溶着、注型硬化、超音波溶着、または、振動溶着によって接合される。
 -実験例-
 次に、図5および図6を参照して、上記した第2実施形態の効果を確認するために行った実験例1および2について説明する。
 [実験例1]
 この実験例1では、第2実施形態に対応する実施例1~4による接合構造体500(図6参照)と、比較例1による接合構造体とを作製し、それぞれについての接合評価を行った。なお、接合評価としては、熱衝撃試験を行っていないものについて接合強度を測定するとともに、熱衝撃試験後のものについて接合強度を測定し、その測定結果に基づいて合否判定を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 まず、実施例1~4による接合構造体500の作製方法について説明する。
 実施例1~4の接合構造体500では、第1部材501の材料としてSUS304を用いた。この第1部材501は、図5に示すように、板状に形成されており、長さが100mmであり、幅が29mmであり、厚みが3mmである。
 そして、第1部材501の表面の所定領域Rにレーザを照射する。この所定領域Rは、接合構造体500が接合される面積であり、12.5mm×20mmとした。実施例1~4で共通するレーザの照射条件は、以下のとおりである。
 <レーザ照射条件>
 レーザ:ファイバレーザ(波長1062nm)
 周波数:10kHz
 出力:3.8W
 走査速度:650mm/sec
 走査回数:20回
 照射間隔:65μm
 また、表1に示すように、実施例1では、サブパルス数を20に設定するとともに、サブパルスの1周期を15.0nsに設定した。実施例2では、サブパルス数を2に設定するとともに、サブパルスの1周期を15.0nsに設定した。実施例3では、サブパルス数を20に設定するとともに、サブパルスの1周期を10.5nsに設定した。実施例4では、サブパルス数を50に設定するとともに、サブパルスの1周期を15.0nsに設定した。
 なお、周波数は、複数のサブパルスによって構成されるパルスの周波数である。つまり、この照射条件では、1秒間に650mm移動しながら65μmの間隔で1万回レーザ(パルス)を照射し、そのパルスが複数のサブパルスによって構成されている。なお、走査回数は、レーザが同じ箇所に繰り返し照射される回数である。また、実施例1、2および4では、サブパルスの1回分の照射時間が7.5nsであり、サブパルスの照射間隔が7.5nsである。また、実施例3では、サブパルスの1回分の照射時間が3nsであり、サブパルスの照射間隔が7.5nsである。
 このように、1パルスが複数のサブパルスで構成されるレーザを照射することにより、第1部材501の表面の所定領域Rには穿孔部が形成されるとともに、その穿孔部に突出部が形成される。
 そして、インサート成形により、第1部材501の表面に第2部材502を接合した。実施例1~4の接合構造体500では、第2部材502の材料としてPBT(ウィンテックポリマー製のジュラネックス(登録商標)3316)を用いた。また、成形機は、日本製鋼所製のJ35EL3を用いた。成形条件は以下のとおりである。
 <成形条件>
 予備乾燥:120℃×5時間
 金型温度:120℃
 シリンダ温度:270℃
 保圧:100MPa
 このようにして、実施例1~4の接合構造体500を作製した。なお、第2部材502は、板状に形成されており、長さが100mmであり、幅が25mmであり、厚みが3mmである。
 次に、比較例1による接合構造体の作製方法について説明する。
 比較例1の接合構造体では、第1部材および第2部材の材料として実施例1~4と同じものを用いるとともに、成形条件も同じ設定にした。そして、比較例1の接合構造体では、パルスコントロール機能のないファイバレーザを用いて穿孔部を形成した。すなわち、1パルスが複数のサブパルスで構成されていないレーザ(単一パルス)を照射することにより穿孔部が形成された。このため、比較例1の第1部材には、すり鉢状(円錐状)の穿孔部が形成された。
 そして、実施例1~4の接合構造体500および比較例1の接合構造体について、接合評価を行った。
 なお、接合強度は、インストロン製の電気機械式万能試験機5900を用いて測定した。具体的には、せん断方向について引張速度5mm/minで試験を行い、第2部材の破断または接合界面の破断で試験を終了した。そして、その試験での最大強度を接合強度として採用した。
 また、熱衝撃試験は、エスペック製の冷熱衝撃装置TSD-100を用いて行った。具体的には、-40℃で30分間の低温さらしと、85℃で30分間の高温さらしとを100回繰り返し行った。
 そして、熱サイクル環境下での信頼性を判断するために、以下の基準で合否判断を行った。
 合格(○):「熱衝撃試験後の接合強度」/「熱衝撃試験前の接合強度」≧90%
 不合格(×):「熱衝撃試験後の接合強度」/「熱衝撃試験前の接合強度」<90%
 上記した表1に示すように、実施例1~4の接合構造体500は、比較例1の接合構造体に比べて、表面の開口径に対して穿孔部の深さが大きくなっていた。これは、実施例1~4の接合構造体500では、1パルスが複数のサブパルスで構成されるレーザを照射することにより、穿孔部に突出部が形成されるため、レーザの反射波が穿孔部の内部に閉じ込められるようになり、レーザによる加工がより深さ方向に進行するためである。
 そして、実施例1~4の接合構造体500は、比較例1の接合構造体に比べて、熱衝撃試験の前後において、接合強度が高くなっていた。これは、実施例1~4の接合構造体500では、表面の開口径に対して穿孔部の深さが大きいことにより、アンカー効果が大きくなり、接合強度が向上したためであると考えられる。
 さらに、実施例1~4の接合構造体500では、熱衝撃試験前の接合強度を熱衝撃試験後においても90%以上維持できることが判明した。これに対して、比較例1の接合構造体では、熱衝撃試験後に接合強度が大幅に低下している。したがって、実施例1~4の接合構造体500のように、1パルスが複数のサブパルスで構成されるレーザにより深い穿孔部を形成することにより、熱サイクル環境下における耐久性の向上を図ることができた。
 [実験例2]
 この実験例2では、第2実施形態に対応する実施例5~8による接合構造体と、比較例2による接合構造体とを作製し、それぞれについての接合評価を行った。なお、接合評価は実験例1と同様に行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 この実験例2では、第1部材の材料を実験例1から変更した。具体的には、実験例2の接合構造体では、第1部材の材料としてPPS(ポリプラスチックス製のフォートロン(登録商標)1140)を用いた。また、第1部材の材料の変更に伴い、実施例5~8で共通するレーザ照射条件を以下のようにした。
 <レーザ照射条件>
 レーザ:ファイバレーザ(波長1062nm)
 周波数:10kHz
 出力:1.1W
 走査速度:650mm/sec
 走査回数:3回
 照射間隔:65μm
 また、表2に示すように、実施例5では、サブパルス数を20に設定するとともに、サブパルスの1周期を15.0nsに設定した。実施例6では、サブパルス数を2に設定するとともに、サブパルスの1周期を15.0nsに設定した。実施例7では、サブパルス数を20に設定するとともに、サブパルスの1周期を10.5nsに設定した。実施例8では、サブパルス数を50に設定するとともに、サブパルスの1周期を15.0nsに設定した。
 上記した表2に示すように、実施例5~8の接合構造体は、比較例2の接合構造体に比べて、表面の開口径に対して穿孔部の深さが大きくなっていた。これは、実施例5~8の接合構造体では、1パルスが複数のサブパルスで構成されるレーザを照射することにより、穿孔部に突出部が形成されるため、レーザの反射波が穿孔部の内部に閉じ込められるようになり、レーザによる加工がより深さ方向に進行するためである。
 そして、実施例5~8の接合構造体は、比較例2の接合構造体に比べて、熱衝撃試験の前後において、接合強度が高くなっていた。これは、実施例5~8の接合構造体では、表面の開口径に対して穿孔部の深さが大きいことにより、アンカー効果が大きくなり、接合強度が向上したためであると考えられる。
 さらに、実施例5~8の接合構造体では、熱衝撃試験前の接合強度を熱衝撃試験後においても90%以上維持できることが判明した。これに対して、比較例2の接合構造体では、熱衝撃試験後に接合強度が大幅に低下している。つまり、第1部材の材料として、樹脂であるPPSを用いた場合であっても、1パルスが複数のサブパルスで構成されるレーザにより深い穿孔部を形成することにより、接合強度の向上を図るとともに、熱サイクル環境下における耐久性の向上を図ることができた。
 (他の実施形態)
 なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、第1実施形態において、表面13が、平坦であってもよいし、湾曲されていてもよい。なお、第2実施形態についても同様である。
 また、第1実施形態では、拡径部111と縮径部112とが連なるように形成される例を示したが、これに限らず、拡径部と縮径部との間に深さ方向に真っ直ぐ延びる部分が形成されていてもよい。なお、第2実施形態についても同様である。
 また、第1実施形態では、穿孔部11の周囲が平坦である例を示したが、これに限らず、図7に示す第1変形例による第1部材10aのように、穿孔部11の開口の周囲に表面13から上方に隆起する隆起部14が形成されていてもよい。隆起部14は、穿孔部11の周囲を取り囲むように形成されており、平面的に見てほぼ円形に形成されている。この隆起部14は、たとえば、1パルスが複数のサブパルスで構成されるレーザが照射される際に、溶融された第1部材10aが堆積されることによって形成される。このように構成すれば、隆起部14によってもアンカー効果が発生するので、接合強度をより向上させることができる。なお、第2実施形態についても同様である。
 また、第1実施形態では、穿孔部11の軸心が表面13に対して垂直である例を示したが、これに限らず、図8に示す第2変形例による第1部材10bのように、穿孔部11bの軸心が表面13に対して傾斜するように形成されていてもよい。穿孔部11bの内周面には内側に突出する突出部12bが形成されている。この穿孔部11bは、たとえば、レーザの照射方向を表面13に対して斜め(45°以上90°未満)にすることにより形成される。これにより、穿孔部11bを形成する領域の上方に、レーザを照射する際の障害物が存在する場合であっても、穿孔部11bを形成することができる。なお、第2実施形態についても同様である。
 また、第1実施形態では、穿孔部11に1つの突出部12が形成される例を示したが、これに限らず、図9に示す第3変形例による第1部材10cのように、穿孔部11cに複数の突出部121cおよび122cが形成されていてもよい。この穿孔部11cは、たとえば、レーザの出力条件を変更して、レーザを同じ箇所に照射することにより形成することが可能である。このように構成すれば、穿孔部11cの表面積が大きくなるとともに、複数の突出部121cおよび122cが形成されることにより、接合強度をより向上させることができる。なお、図9では突出部は121cおよび122cの2箇所であるが、3箇所以上形成されていてもよい。なお、第2実施形態についても同様である。
 また、図10に示す第1実施形態の第4変形例による第1部材10dのように、位置をずらした複数回のレーザ照射により1つの穿孔部11dを形成するようにしてもよい。すなわち、レーザ照射によって形成される穿孔部の一部が重畳されることにより、1つの穿孔部11dが形成されるようにしてもよい。穿孔部11dの内周面には内側に突出する突出部12dが形成されている。なお、第2実施形態についても同様である。また、上記した第1~第4変形例を適宜組み合わせるようにしてもよい。
 本発明は、異なる材料からなる第1部材および第2部材が接合された接合構造体の製造方法および接合構造体に利用可能である。
 10、10a、10b、10c、10d   第1部材
 11、11b、11c、11d       穿孔部
 12、12b、121c、122c、12d 突出部
 13   表面
 20   第2部材
 30   第1部材
 31   穿孔部
 32   突出部
 33   表面
 100  接合構造体
 200  接合構造体

Claims (7)

  1.  第1部材と第2部材とが接合された接合構造体の製造方法であって、
     1パルスが複数のサブパルスで構成されたレーザを前記第1部材の表面に照射することにより、開口を有する穿孔部を前記第1部材の表面に形成する工程と、
     前記第1部材の穿孔部に前記第2部材を充填して固化させる工程とを備えることを特徴とする接合構造体の製造方法。
  2.  請求項1に記載の接合構造体の製造方法において、
     前記穿孔部の内周面に、内側に突出する突出部が形成されることを特徴とする接合構造体の製造方法。
  3.  請求項1または2に記載の接合構造体の製造方法において、
     前記第1部材は、金属、熱可塑性樹脂、または、熱硬化性樹脂であることを特徴とする接合構造体の製造方法。
  4.  請求項1~3のいずれか1つに記載の接合構造体の製造方法において、
     前記第2部材は、熱可塑性樹脂、または、熱硬化性樹脂であることを特徴とする接合構造体の製造方法。
  5.  請求項1~4のいずれか1つに記載の接合構造体の製造方法において、
     サブパルスの1周期は、15ns以下であることを特徴とする接合構造体の製造方法。
  6.  請求項1~5のいずれか1つに記載の接合構造体の製造方法において、
     1パルスのサブパルス数は、2以上50以下であることを特徴とする接合構造体の製造方法。
  7.  請求項1~6のいずれか1つに記載の接合構造体の製造方法によって製造されたことを特徴とする接合構造体。
PCT/JP2015/073042 2014-08-22 2015-08-17 接合構造体の製造方法および接合構造体 WO2016027777A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/327,380 US20180207847A1 (en) 2014-08-22 2015-08-17 Production method of bonded structure and bonded structure
CN201580040009.8A CN106573342A (zh) 2014-08-22 2015-08-17 接合结构体的制造方法以及接合结构体
EP15833742.8A EP3184233B1 (en) 2014-08-22 2015-08-17 Production method for a bonded structure
KR1020177001689A KR101893073B1 (ko) 2014-08-22 2015-08-17 접합 구조체의 제조방법 및 접합 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-169280 2014-08-22
JP2014169280A JP6455021B2 (ja) 2014-08-22 2014-08-22 接合構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2016027777A1 true WO2016027777A1 (ja) 2016-02-25

Family

ID=55350721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073042 WO2016027777A1 (ja) 2014-08-22 2015-08-17 接合構造体の製造方法および接合構造体

Country Status (7)

Country Link
US (1) US20180207847A1 (ja)
EP (1) EP3184233B1 (ja)
JP (1) JP6455021B2 (ja)
KR (1) KR101893073B1 (ja)
CN (1) CN106573342A (ja)
TW (1) TWI659845B (ja)
WO (1) WO2016027777A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190098785A1 (en) * 2017-09-08 2019-03-28 Apple Inc. Etching for bonding polymer material to a metal surface
US20220227094A1 (en) * 2019-06-25 2022-07-21 Omron Corporation Joint structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417786B2 (ja) 2014-08-22 2018-11-07 オムロン株式会社 接合構造体の製造方法
JP6441295B2 (ja) * 2016-12-26 2018-12-19 本田技研工業株式会社 接合構造体及びその製造方法
JP6778724B2 (ja) * 2017-09-08 2020-11-04 アップル インコーポレイテッドApple Inc. ポリマー材料を陽極酸化金属に接合するエッチング
JP6509299B1 (ja) * 2017-10-20 2019-05-08 ポリプラスチックス株式会社 複合成形品
JP2019117061A (ja) * 2017-12-26 2019-07-18 ファナック株式会社 ロータリエンコーダおよびロータリエンコーダの製造方法
JP7404899B2 (ja) * 2020-01-30 2023-12-26 オムロン株式会社 複合成形体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248337A (ja) * 1984-05-24 1985-12-09 Matsushita Electric Works Ltd 被加工体と合成樹脂との一体成形方法
US20090017242A1 (en) * 2007-07-13 2009-01-15 Douglas Weber Methods and systems for forming a dual layer housing
JP2013107273A (ja) * 2011-11-21 2013-06-06 Daicel Corp 複合成形体の製造方法
JP2013529137A (ja) * 2010-05-04 2013-07-18 イ−エスアイ−パイロフォトニクス レーザーズ インコーポレイテッド レーザパルスの系列を用いて穿孔する方法及び装置
JP2014166693A (ja) * 2013-02-28 2014-09-11 Daicel Polymer Ltd 複合成形体とその製造方法
JP2015100959A (ja) * 2013-11-22 2015-06-04 Dic株式会社 金属樹脂接合成形品、該成形品用金属部品およびそれらの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264528A (ja) * 1985-09-18 1987-03-23 Toyota Motor Corp 合成樹脂材料と異種材料の接合方法
GB2243320B (en) * 1990-04-26 1993-08-25 Ae Turbine Components Laser drilling
US6972268B2 (en) * 2001-03-29 2005-12-06 Gsi Lumonics Corporation Methods and systems for processing a device, methods and systems for modeling same and the device
EP1899064A2 (en) * 2005-06-03 2008-03-19 Spinx, Inc. Dosimeter for programmable microscale manipulation of fluids
JP4020957B2 (ja) 2005-12-19 2007-12-12 ヤマセ電気株式会社 異種材料との接合部を有する金属材料及びレーザーを用いてのその加工方法
WO2010113545A1 (ja) * 2009-03-31 2010-10-07 コニカミノルタオプト株式会社 射出成形用マスター型の製造方法、射出成形用マスター型及び射出成形用金型
US8782884B2 (en) * 2009-12-01 2014-07-22 Cochlear Limited Manufacturing an electrode assembly having contoured electrode contact surfaces
KR20130059337A (ko) * 2010-03-30 2013-06-05 아이엠알에이 아메리카, 인코포레이티드. 레이저 기반 재료 가공 장치 및 방법들

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248337A (ja) * 1984-05-24 1985-12-09 Matsushita Electric Works Ltd 被加工体と合成樹脂との一体成形方法
US20090017242A1 (en) * 2007-07-13 2009-01-15 Douglas Weber Methods and systems for forming a dual layer housing
JP2013529137A (ja) * 2010-05-04 2013-07-18 イ−エスアイ−パイロフォトニクス レーザーズ インコーポレイテッド レーザパルスの系列を用いて穿孔する方法及び装置
JP2013107273A (ja) * 2011-11-21 2013-06-06 Daicel Corp 複合成形体の製造方法
JP2014166693A (ja) * 2013-02-28 2014-09-11 Daicel Polymer Ltd 複合成形体とその製造方法
JP2015100959A (ja) * 2013-11-22 2015-06-04 Dic株式会社 金属樹脂接合成形品、該成形品用金属部品およびそれらの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190098785A1 (en) * 2017-09-08 2019-03-28 Apple Inc. Etching for bonding polymer material to a metal surface
US20190098780A1 (en) * 2017-09-08 2019-03-28 Apple Inc. Etching for bonding polymer material to anodized metal
US11178781B2 (en) * 2017-09-08 2021-11-16 Apple Inc. Etching for bonding polymer material to a metal surface
US11547005B2 (en) * 2017-09-08 2023-01-03 Apple Inc. Etching for bonding polymer material to anodized metal
US20220227094A1 (en) * 2019-06-25 2022-07-21 Omron Corporation Joint structure

Also Published As

Publication number Publication date
EP3184233A1 (en) 2017-06-28
TW201609400A (zh) 2016-03-16
JP6455021B2 (ja) 2019-01-23
CN106573342A (zh) 2017-04-19
KR20170020496A (ko) 2017-02-22
TWI659845B (zh) 2019-05-21
EP3184233B1 (en) 2021-06-23
US20180207847A1 (en) 2018-07-26
KR101893073B1 (ko) 2018-08-29
EP3184233A4 (en) 2017-12-27
JP2016043382A (ja) 2016-04-04

Similar Documents

Publication Publication Date Title
JP6455021B2 (ja) 接合構造体の製造方法
WO2016027775A1 (ja) 接合構造体および接合構造体の製造方法
WO2016129392A1 (ja) 接合構造体の製造方法および接合構造体
KR101889346B1 (ko) 접합 구조체의 제조방법 및 접합 구조체
JP6414477B2 (ja) 接合構造体の製造方法
JP6439455B2 (ja) 接合構造体の製造方法
WO2016129391A1 (ja) 接合構造体の製造方法および接合構造体
US20160052202A1 (en) Joined structure and method for manufacturing joined structure
JP6398778B2 (ja) 接合構造体の製造方法および接合構造体
WO2016125594A1 (ja) 接合構造体の製造方法および接合構造体
WO2016140097A1 (ja) 接合方法、接合構造体の製造方法および接合構造体
WO2016143585A1 (ja) 加工方法、接合構造体の製造方法および接合構造体
WO2016133078A1 (ja) 接合構造体の製造方法及び接合構造体
WO2016140096A1 (ja) 接合構造体
JP2016159354A (ja) 金属部材のレーザ加工方法およびその方法を用いて製造される接合構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177001689

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015833742

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15327380

Country of ref document: US

Ref document number: 2015833742

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE