WO2016143585A1 - 加工方法、接合構造体の製造方法および接合構造体 - Google Patents

加工方法、接合構造体の製造方法および接合構造体 Download PDF

Info

Publication number
WO2016143585A1
WO2016143585A1 PCT/JP2016/056089 JP2016056089W WO2016143585A1 WO 2016143585 A1 WO2016143585 A1 WO 2016143585A1 JP 2016056089 W JP2016056089 W JP 2016056089W WO 2016143585 A1 WO2016143585 A1 WO 2016143585A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal member
laser
processing
preheated
present
Prior art date
Application number
PCT/JP2016/056089
Other languages
English (en)
French (fr)
Inventor
和義 西川
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2016143585A1 publication Critical patent/WO2016143585A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel

Definitions

  • the present invention relates to a processing method, a manufacturing method of a bonded structure, and a bonded structure.
  • Patent Document 1 a processing method for forming a concavo-convex shape on the surface of a metal material is known (for example, see Patent Document 1).
  • Patent Document 1 has a problem that the processing time tends to be long because the laser scanning process needs to be repeated.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a processing method, a manufacturing method of a bonded structure, and a bonded structure capable of reducing the processing time. That is.
  • the processing method according to the present invention is a processing method for forming a concave portion on the surface of a metal member, a step of preheating the metal member with a heating device, and irradiating a laser on the surface of the preheated metal member with a laser processing device. And a step of forming a concave portion.
  • the heating device may preheat the metal member by resistance heating, induction heating, laser heating or infrared heating.
  • the metal member may be preheated so that the surface of the metal member is in a preset temperature range.
  • the preset temperature range is, for example, a lower limit value obtained by multiplying the melting temperature of the metal member by 0.2, and an upper limit value obtained by multiplying the melting temperature of the metal member by 0.8.
  • the laser irradiated on the surface of the metal member by the laser processing apparatus may be composed of a plurality of subpulses in one pulse.
  • the method for manufacturing a bonded structure according to the present invention is a method for manufacturing a bonded structure in which a metal member and a resin member are bonded, and includes a step of preheating the metal member with a heating device and laser processing on the surface of the preheated metal member.
  • the method includes a step of forming a concave portion by irradiating a laser with an apparatus, and a step of filling the concave portion of the metal member with a resin member and solidifying the resin member.
  • the bonded structure according to the present invention is manufactured by the above-described manufacturing method of the bonded structure.
  • the processing time can be shortened.
  • FIG. 1 it is the schematic diagram which showed the cross section of the joining structure body by one Embodiment of this invention. It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of forming a perforated part in a metal member. It is a figure for demonstrating the positional relationship of a joining area
  • the bonded structure 100 includes a metal member 1 and a resin member 2, and the metal member 1 and the resin member 2 are bonded to each other.
  • hatching is omitted for ease of viewing.
  • Examples of the material of the metal member 1 include iron metal, stainless steel metal, copper metal, aluminum metal, magnesium metal, and alloys thereof. Moreover, a metal molding may be sufficient and zinc die-casting, aluminum die-casting, powder metallurgy, etc. may be sufficient.
  • a perforated portion 12 is formed in a joining region (processing region) R, and the perforated portion 12 is filled with the resin member 2 and solidified. Thereby, the metal member 1 and the resin member 2 are mechanically joined by the anchor effect.
  • the perforated part 12 is an example of the “concave part” in the present invention.
  • the perforated part 12 is a substantially circular non-through hole when seen in a plan view, and a plurality of perforated parts 12 are formed in the joining region R of the metal member 1.
  • a projecting portion 13 projecting inward is formed on the inner peripheral surface of the perforated portion 12.
  • the protrusion 13 is formed over the entire length in the circumferential direction, and is formed in an annular shape.
  • the junction region R (see FIG. 3) is formed in a rectangular shape when viewed in a plan view, for example.
  • the perforated part 12 has a diameter-enlarged part in which the opening diameter increases from the surface 11 side to the bottom part in the depth direction and a contraction in which the opening diameter decreases from the surface 11 side to the bottom part in the depth direction. It is formed so as to be continuous with the diameter portion.
  • the enlarged diameter portion is disposed on the surface 11 side and is formed so as to expand in a curved shape.
  • the reduced diameter portion is disposed on the bottom side and is formed to reduce the diameter in a curved shape. That is, the protruding portion 13 is configured by the enlarged diameter portion.
  • the opening diameter of the open end of the perforated part 12 is preferably 30 ⁇ m or more and 100 ⁇ m or less. This is because if the opening diameter is less than 30 ⁇ m, the filling property of the resin member 2 is deteriorated and the anchor effect may be lowered. On the other hand, if the opening diameter exceeds 100 ⁇ m, the number of perforated portions 12 per unit area is reduced, and the anchor effect may be lowered.
  • the interval between the perforated portions 12 is preferably 200 ⁇ m or less. This is because if the interval between the perforated portions 12 exceeds 200 ⁇ m, the number of perforated portions 12 per unit area may decrease and the anchor effect may be reduced.
  • the perforated portion 12 is formed by, for example, a processing laser L1 (see FIG. 2).
  • the type of laser L1 is preferably a laser capable of pulse oscillation, and can be selected from a fiber laser, a YAG laser, a YVO 4 laser, a semiconductor laser, a carbon dioxide gas laser, and an excimer laser.
  • the second harmonic of YAG laser, YVO 4 laser, and semiconductor laser are preferable.
  • Such a perforated part 12 is formed by a laser L1 in which one pulse is composed of a plurality of sub-pulses.
  • This laser L1 is suitable for forming the perforated portion 12 because energy can be easily concentrated in the depth direction.
  • the laser processing apparatus capable of irradiating such a laser L1 there can be mentioned fiber laser marker MX-Z2000 or MX-Z2050 manufactured by OMRON.
  • one period of the sub-pulse is 15 ns or less. This is because when one period of the sub-pulse exceeds 15 ns, energy is easily diffused due to heat conduction and it is difficult to form the perforated portion 12.
  • one cycle of the subpulse is a total time of the irradiation time for one subpulse and the interval from the end of the irradiation of the subpulse to the start of the irradiation of the next subpulse.
  • the number of subpulses in one pulse is preferably 2 or more and 50 or less. This is because when the number of subpulses exceeds 50, the output per unit of subpulses becomes small and it becomes difficult to form the perforated portion 12.
  • the resin member 2 is a thermoplastic resin or a thermosetting resin, and is provided on the surface 11 of the metal member 1 and filled in the perforated portion 12.
  • thermoplastic resin examples include PVC (polyvinyl chloride), PS (polystyrene), AS (acrylonitrile styrene), ABS (acrylonitrile butadiene styrene), PMMA (polymethyl methacrylate), PE (polyethylene), PP (Polypropylene), PC (polycarbonate), m-PPE (modified polyphenylene ether), PA6 (polyamide 6), PA66 (polyamide 66), POM (polyacetal), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PSF ( Polysulfone), PAR (polyarylate), PEI (polyetherimide), PPS (polyphenylene sulfide), PES (polyethersulfone), PEEK (polyetheretherketone), P I (polyamideimide), LCP (liquid crystal polymer), PVDC (polyvinylidene chloride), PTFE (polyteth
  • TPE thermoplastic elastomer
  • examples of TPE include TPO (olefin-based), TPS (styrene-based), TPEE (ester-based), TPU (urethane-based), TPA (nylon-based), And TPVC (vinyl chloride type) is mentioned.
  • thermosetting resin examples include EP (epoxy), PUR (polyurethane), UF (urea formaldehyde), MF (melamine formaldehyde), PF (phenol formaldehyde), UP (unsaturated polyester), and SI (silicone).
  • EP epoxy
  • PUR polyurethane
  • UF urea formaldehyde
  • MF melamine formaldehyde
  • PF phenol formaldehyde
  • UP unsaturated polyester
  • SI silicone
  • FRP fiber reinforced plastic
  • a filler may be added to the resin member 2.
  • the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal fillers, organic fillers, and carbon fibers.
  • the method for manufacturing the bonded structure 100 includes a method for processing the metal member 1.
  • the metal member 1 is preheated by a high frequency induction heating device. Specifically, an eddy current is generated in the metal member 1 by flowing a high-frequency alternating current through the coil 52 of the high-frequency induction heating device, and the metal member 1 is heated by Joule heat due to the eddy current. That is, the metal member 1 is preheated by induction heating.
  • This high frequency induction heating device is controlled so that the surface 11 of the metal member 1 is in a preset temperature range.
  • the preset temperature range for example, the lower limit value is a value obtained by multiplying the melting temperature of the metal member 1 by 0.2, and the upper limit value is a value obtained by multiplying the melting temperature of the metal member 1 by 0.8. This is because if the temperature of the surface 11 of the metal member 1 falls below the lower limit value, the energy of the surface 11 of the metal member 1 is easily diffused when irradiated with a laser L1 for processing described later. If the value exceeds the value, the formation range of the molten layer is likely to be widened when the processing laser L1 is irradiated, and it becomes difficult to form the perforated portion 12.
  • the preset temperature range is more preferably a lower limit value obtained by multiplying the melting temperature of the metal member 1 by 0.4, and an upper limit value obtained by multiplying the melting temperature of the metal member 1 by 0.6. Value. That is, the preset temperature range is a temperature lower than the melting temperature of the metal member 1.
  • the coil 52 is disposed on the surface 11 side with respect to the metal member 1. Further, as shown in FIG. 3, the joining region R is disposed inside the coil 52.
  • the high-frequency induction heating device is an example of the “heating device” in the present invention.
  • the laser L1 is applied from the head 51 of the laser processing device to the bonding region R (see FIG. 1) on the surface 11 of the metal member 1. Irradiate.
  • the laser L1 is scanned a plurality of times. Thereby, while forming the perforated part 12 in the joining area
  • the laser L1 is, for example, a fiber laser, and one pulse is composed of a plurality of subpulses.
  • the resin member 2 is filled in the perforated portion 12 of the metal member 1, and the resin member 2 is solidified. Thereby, the metal member 1 and the resin member 2 are mechanically joined by the anchor effect, and the joining structure 100 (refer FIG. 1) is formed.
  • the resin member 2 is bonded by, for example, injection molding, hot plate welding, laser welding, cast hardening, ultrasonic welding, or vibration welding.
  • the perforated portion 12 is formed by irradiating the surface 11 of the metal member 1 with the laser L1 with the laser processing apparatus in a state where the surface 11 of the metal member 1 is preheated with the high frequency induction heating device. To do. With such a configuration, when the laser L1 for processing is irradiated, the energy is hardly diffused by the metal member 1, so that energy loss during laser processing can be reduced. That is, laser energy can contribute to the formation of the perforated portion 12 from the initial stage of laser processing. Accordingly, the perforated portion 12 can be formed even if the number of scans of the laser L1 is reduced as compared with the case where the metal member 1 is not preheated.
  • the processing time can be shortened.
  • temperature variations during laser processing (particularly at the initial stage of processing) in the joining region R can be suppressed, so that a processing shape (for example, perforation) caused by energy loss variation can be suppressed.
  • Variation in the depth of the portion 12 can be suppressed.
  • the perforated portion 12 can be formed using a low-power laser processing apparatus.
  • the processing method of this embodiment is especially effective when the material of the metal member 1 is a thing with high heat conductivity, such as copper and aluminum.
  • the surface 11 of the metal member 1 can be directly heated and the heated region can be easily set.
  • a region including the bonding region R may be set as a heating region, or a part of the bonding region R may be set as a heating region and the entire bonding region R may be heated by heat conduction.
  • the anchor effect can be improved by forming the protruding portion 13 in the perforated portion 12.
  • FIG. 4 is a diagram for explaining a preheating method according to a first modification of the present embodiment.
  • a plate heater 53 may be disposed so as to contact a surface opposite to the surface 11 of the metal member 1, and the metal member 1 may be preheated by the plate heater 53. That is, the metal member 1 may be preheated by resistance heating (indirect resistance heating).
  • the plate heater 53 is an example of the “heating device” in the present invention.
  • FIG. 5 is a diagram for explaining a preheating method according to a second modification of the present embodiment.
  • the metal member 1 may be preheated by irradiating the surface 11 of the metal member 1 with a laser L2 for heating from the head 54 of the laser heating device.
  • the laser L2 is, for example, a fiber laser, a YAG laser, a YVO 4 laser, a semiconductor laser, a carbon dioxide gas laser, or an excimer laser, and may be continuous oscillation or pulse oscillation.
  • the output of the laser L2 can be appropriately set according to the material of the metal member 1 and its laser absorption.
  • the focal diameter of the heating laser L2 is made larger than the focal diameter of the processing laser L1, and the lasers L1 and L2 are run in parallel in a state where the focal point of the laser L1 is included in the focal point of the laser L2.
  • the laser L2 may be scanned regardless of the laser L1. That is, the metal member 1 may be preheated by laser heating.
  • the laser heating device is an example of the “heating device” in the present invention.
  • FIG. 6 is a diagram for explaining a preheating method according to a third modification of the present embodiment.
  • the metal member 1 may be held by a jig 55 incorporating a heater rod 55a, and the metal member 1 may be preheated by the jig 55 (heater rod 55a). That is, the metal member 1 may be preheated by resistance heating.
  • the jig 55 is an example of the “heating device” in the present invention.
  • FIG. 7 is a diagram for explaining a preheating method according to a fourth modification of the present embodiment.
  • an infrared heater 56 may be disposed so as to be separated from the surface opposite to the surface 11 of the metal member 1, and the metal member 1 may be preheated by the infrared heater 56. That is, the metal member 1 may be preheated by infrared heating.
  • the infrared heater 56 is an example of the “heating device” in the present invention.
  • Example 1 This Experimental Example 1 was performed in order to confirm the effect of shortening the processing time by preheating. Specifically, a large number (for example, several thousand) of perforations are formed in a metal member by the processing methods according to Examples 1 to 5 and Comparative Example 1, and ten perforations selected from the many perforations are used. The number of scans required for the depth to be 40 ⁇ m or more was measured. The results are shown in Table 1.
  • Example 1 aluminum (A5052) was used as the material of the metal member.
  • This metal member is formed in a plate shape, has a length of 45 mm, a width of 15 mm, and a thickness of 3 mm.
  • the melting temperature of this metal member is about 600 to 660.degree.
  • the metal member was heated using a high frequency induction heating device. In addition, this heating was performed with respect to the area
  • the heating conditions are set so that the frequency is 400 kHz and the surface of the metal member is at a predetermined temperature.
  • the predetermined temperature is, for example, a value (300 to 330 ° C.) obtained by multiplying the melting temperature of the metal member by 0.5. That is, before irradiating the processing laser, the metal member is preheated so as to be maintained at a predetermined temperature.
  • the processed region is a linear region having a length of 12 mm and a width of 2 mm.
  • This laser irradiation was performed using an Omron fiber laser marker MX-Z2000.
  • the laser irradiation conditions are as follows.
  • Laser Fiber laser (wavelength 1062nm) Frequency: 10kHz Output: 2.5W Scanning speed: 650mm / sec Irradiation interval: 65 ⁇ m Focal diameter: 0.05mm Number of subpulses: 20
  • the frequency is a frequency of a pulse constituted by a plurality (20 in this example) of sub-pulses. That is, under this irradiation condition, laser (pulse) is irradiated 10,000 times at intervals of 65 ⁇ m while moving 650 mm per second, and the pulse is composed of 20 sub-pulses.
  • the laser was scanned a plurality of times until the depth of 10 perforations in the machining area of several thousand perforations reached 40 ⁇ m or more.
  • these ten perforations are perforations arranged near the center of the machining area.
  • the number of scans is the number of times the laser is repeatedly irradiated to the same location.
  • the metal member was preheated using a plate heater as in the first modification described above.
  • the metal member was preheated using the laser heating device as in the second modification described above.
  • the laser heating apparatus a semiconductor laser having a wavelength of 808 nm is used, the output is set to 30 W, the focal diameter is set to 0.6 mm, and the heating laser runs in parallel in the scanning direction of the processing laser. Scanned to do.
  • Example 4 the metal member was preheated using a jig with a built-in heater rod as in the third modification described above.
  • the metal member was preheated using an infrared heater as in the fourth modification described above.
  • the metal member was not preheated.
  • the other points of Examples 2 to 5 and Comparative Example 1 are the same as those of Example 1.
  • Example 1 to 5 the number of processing laser scans required for the depth of the 10 perforations to be 40 ⁇ m or more is smaller than that in Comparative Example 1. That is, in Examples 1 to 5, the processing time could be shortened compared to Comparative Example 1. This is because in Examples 1 to 5, by preheating the metal member, when the laser for processing is irradiated, the energy is not easily diffused, so that the energy loss of the laser for processing can be reduced. It is believed that there is.
  • Example 2 This Experimental Example 2 was performed in order to confirm the effect of suppressing variation in the processing shape due to preheating. Specifically, a large number (for example, several thousand) of perforations are formed in the metal member by the processing method according to Examples 6 to 10 and Comparative Example 2, and ten perforations selected from the many perforations are selected. The depth was measured. The results are shown in Table 2.
  • the number of scanning times of the processing laser was set to 20. That is, the number of scans in Examples 6 to 10 and Comparative Example 2 was set to be the same. Further, out of thousands of perforations formed in the machining area, 10 perforations are arranged linearly from the outer edge of the machining area toward the center, and the depth of the 10 perforations is set. It was measured. Other processing conditions are the same as in Experimental Example 1.
  • Example 6 is preheated with a high frequency induction heating device
  • Example 7 is preheated with a plate heater
  • Example 8 is preheated with a laser heating device
  • Example 9 is preheated with a jig incorporating a heater rod
  • Example 10 was preheated with an infrared heater
  • Comparative Example 2 was not preheated.
  • Examples 6 to 10 variations in the depth of the perforated part are suppressed as compared with Comparative Example 2. That is, in Examples 6 to 10, as compared with Comparative Example 2, variations in the machining shape of the drilled portion in the machining area are suppressed. This is because in Examples 6 to 10, by preheating the metal member, it is possible to suppress temperature variations during laser processing (particularly at the initial stage of processing) in the processing region. This is considered to be because the variation in energy loss could be suppressed.
  • the present invention is not limited to this, and the protruding portion is provided at a position where it enters in the depth direction of the perforated portion. May be.
  • the protruding portion 13 is formed in the perforated portion 12 is shown, but the present invention is not limited to this, and the protruding portion may not be formed in the perforated portion.
  • the perforated part may be formed in a cylindrical shape or a mortar shape.
  • the circular perforated portion 12 is shown as a plan view as an example of the concave portion, but the present invention is not limited thereto, and a groove portion may be formed as the concave portion.
  • the present invention is not limited to this, and the coil of the high-frequency induction heating device is on the back side of the metal member. It may be arranged.
  • the pre-heated metal member 1 is irradiated with the processing laser L1
  • the present invention is not limited thereto, and the pre-heated metal member is irradiated with the processing laser. You may make it irradiate. That is, processing may be performed in a state where the heating device is heating the metal member, or processing may be performed before the heating of the metal member by the heating device is stopped and heat is radiated.
  • the metal member 1 is preheated by the plate heater 53 in the first modification of the present embodiment.
  • the present invention is not limited thereto, and the metal member may be preheated by a band heater or a ribbon heater.
  • the present invention is not limited thereto, and the back surface of the metal member is irradiated with the heating laser. You may do it. That is, the heating laser may be irradiated from the side opposite to the processing laser.
  • the surface 11 of the metal member 1 may be roughened in order to improve the absorption of the laser L2 for heating.
  • the bonding region R is rectangular when viewed in plan is shown, but the present invention is not limited thereto, and the bonding region may have other shapes other than the rectangle.
  • the present invention is applicable to a processing method for forming a concave portion on the surface of a metal member, a method for manufacturing a joined structure, and a joined structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

 加熱装置(52)により金属部材(1)を予熱する工程と、予熱された金属部材(1)の表面にレーザ加工装置(51)によりレーザを照射することによって凹状部を形成する工程とを備えることで、金属部材(1)の表面に凹状部を形成する加工時間を短縮する。

Description

加工方法、接合構造体の製造方法および接合構造体
 本発明は、加工方法、接合構造体の製造方法および接合構造体に関する。
 従来、金属材料の表面に凹凸形状を形成する加工方法が知られている(たとえば、特許文献1参照)。
 特許文献1の加工方法では、レーザスキャニング加工を繰り返し行うことにより、金属材料の表面に凹凸形状が形成される。そして、この加工方法によって得られた金属材料に異種材料が接合される場合には、異種材料が凹状部に入り込むことにより、アンカー効果が発揮されるので、金属材料と異種材料とを強固に安定した状態で接合することが可能である。
特許第4020957号公報
 しかしながら、特許文献1に記載された加工方法では、レーザスキャニング加工を繰り返し行う必要があることから、加工時間が長くなりやすいという問題点がある。
 本発明は、上記の課題を解決するためになされたものであり、本発明の目的は、加工時間の短縮を図ることが可能な加工方法、接合構造体の製造方法および接合構造体を提供することである。
 本発明による加工方法は、金属部材の表面に凹状部を形成する加工方法であり、加熱装置により金属部材を予熱する工程と、予熱された金属部材の表面にレーザ加工装置によりレーザを照射することによって凹状部を形成する工程とを備える。
 上記加工方法において、加熱装置は、抵抗加熱、誘導加熱、レーザ加熱または赤外線加熱により金属部材を予熱するようにしてもよい。
 上記加工方法において、金属部材の表面が予め設定された温度範囲になるように金属部材が予熱されていてもよい。なお、予め設定された温度範囲は、たとえば、下限値が金属部材の溶融温度に0.2を乗じた値であり、上限値が金属部材の溶融温度に0.8を乗じた値である。
 上記加工方法において、レーザ加工装置により金属部材の表面に照射されるレーザは、1パルスが複数のサブパルスで構成されていてもよい。
 本発明による接合構造体の製造方法は、金属部材および樹脂部材が接合された接合構造体の製造方法であり、加熱装置により金属部材を予熱する工程と、予熱された金属部材の表面にレーザ加工装置によりレーザを照射することによって凹状部を形成する工程と、金属部材の凹状部に樹脂部材を充填して固化させる工程とを備える。
 本発明による接合構造体は、上記した接合構造体の製造方法によって製造されている。
 本発明の加工方法、接合構造体の製造方法および接合構造体によれば、加工時間の短縮を図ることができる。
本発明の一実施形態による接合構造体の断面を示した模式図である。 接合構造体の製造方法を説明するための図であって、金属部材に穿孔部を形成する工程を示した図である。 接合領域とコイルとの位置関係を説明するための図である。 本実施形態の第1変形例による予熱方法を説明するための図である。 本実施形態の第2変形例による予熱方法を説明するための図である。 本実施形態の第3変形例による予熱方法を説明するための図である。 本実施形態の第4変形例による予熱方法を説明するための図である。
 以下、本発明の一実施形態について図面を参照して説明する。
 まず、図1を参照して、本発明の一実施形態による接合構造体100について説明する。
 接合構造体100は、図1に示すように、金属部材1および樹脂部材2を備え、金属部材1および樹脂部材2が接合されている。なお、図1では、見やすさを考慮してハッチングを省略した。
 金属部材1の材料の一例としては、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金が挙げられる。また、金属成型体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金などであってもよい。
 金属部材1の表面11には、接合領域(加工領域)Rに穿孔部12が形成され、その穿孔部12には、樹脂部材2が充填されて固化されている。これにより、金属部材1と樹脂部材2とがアンカー効果によって機械的に接合されている。なお、穿孔部12は、本発明の「凹状部」の一例である。
 穿孔部12は、平面的に見てほぼ円形の非貫通孔であり、金属部材1の接合領域Rに複数形成されている。穿孔部12の内周面には、内側に突出する突出部13が形成されている。突出部13は、周方向における全長にわたって形成されており、環状に形成されている。なお、接合領域R(図3参照)は、たとえば平面的に見て矩形状に形成されている。
 具体的には、穿孔部12は、深さ方向において表面11側から底部に向けて開口径が大きくなる拡径部と、深さ方向において表面11側から底部に向けて開口径が小さくなる縮径部とが連なるように形成されている。拡径部は、表面11側に配置され、曲線状に拡径するように形成されている。縮径部は、底部側に配置され、曲線状に縮径するように形成されている。すなわち、拡径部により突出部13が構成されている。
 穿孔部12の開放端の開口径は、30μm以上、100μm以下が好ましい。これは、開口径が30μmを下回ると、樹脂部材2の充填性が悪化してアンカー効果が低下する場合があるためである。一方、開口径が100μmを上回ると、単位面積あたりの穿孔部12の数が減少してアンカー効果が低下する場合があるためである。
 また、穿孔部12の間隔(所定の穿孔部12の中心と、所定の穿孔部12と隣接する穿孔部12の中心との距離)は、200μm以下であることが好ましい。これは、穿孔部12の間隔が200μmを上回ると、単位面積あたりの穿孔部12の数が減少してアンカー効果が低下する場合があるためである。
 この穿孔部12は、たとえば加工用のレーザL1(図2参照)によって形成されている。なお、レーザL1の種類としては、パルス発振が可能なものが好ましく、ファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザが選択でき、波長を考慮すると、ファイバレーザ、YAGレーザ、YAGレーザの第2高調波、YVO4レーザ、半導体レーザが好ましい。
 このような穿孔部12は、1パルスが複数のサブパルスで構成されるレーザL1によって形成される。このレーザL1では、エネルギを深さ方向に集中させやすいので、穿孔部12を形成するのに好適である。このようなレーザL1を照射可能なレーザ加工装置の一例としては、オムロン製のファイバレーザマーカMX-Z2000またはMX-Z2050を挙げることができる。
 上記ファイバレーザマーカによる加工条件としては、サブパルスの1周期が15ns以下であることが好ましい。これは、サブパルスの1周期が15nsを超えると、熱伝導によりエネルギが拡散しやすくなり、穿孔部12を形成しにくくなるためである。なお、サブパルスの1周期は、サブパルスの1回分の照射時間と、そのサブパルスの照射が終了されてから次回のサブパルスの照射が開始されるまでの間隔との合計時間である。
 また、1パルスのサブパルス数は、2以上50以下であることが好ましい。これは、サブパルス数が50を超えると、サブパルスの単位あたりの出力が小さくなり、穿孔部12を形成しにくくなるためである。
 樹脂部材2は、熱可塑性樹脂または熱硬化性樹脂であり、金属部材1の表面11に設けられるとともに、穿孔部12に充填されている。
 上記熱可塑性樹脂の一例としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m-PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、TPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)が挙げられる。
 上記熱硬化性樹脂の一例としては、EP(エポキシ)、PUR(ポリウレタン)、UF(ユリアホルムアルデヒド)、MF(メラミンホルムアルデヒド)、PF(フェノールホルムアルデヒド)、UP(不飽和ポリエステル)、および、SI(シリコーン)が挙げられる。また、FRP(繊維強化プラスチック)であってもよい。
 なお、樹脂部材2には、充填剤が添加されていてもよい。充填剤の一例としては、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維などが挙げられる。
 -接合構造体の製造方法-
 次に、図1~図3を参照して、本実施形態による接合構造体100の製造方法について説明する。なお、接合構造体100の製造方法には、金属部材1の加工方法が含まれている。
 まず、図2に示すように、高周波誘導加熱装置により金属部材1を予熱する。具体的には、高周波誘導加熱装置のコイル52に高周波の交流電流を流すことにより、金属部材1で渦電流が発生し、その渦電流によるジュール熱で金属部材1が加熱される。すなわち、誘導加熱により金属部材1が予熱される。
 この高周波誘導加熱装置は、金属部材1の表面11が予め設定された温度範囲になるように制御される。予め設定された温度範囲は、たとえば、下限値が金属部材1の溶融温度に0.2を乗じた値であり、上限値が金属部材1の溶融温度に0.8を乗じた値である。これは、金属部材1の表面11の温度が下限値を下回ると、後述する加工用のレーザL1が照射されたときにそのエネルギが熱拡散されやすくなり、金属部材1の表面11の温度が上限値を上回ると、加工用のレーザL1が照射されたときに溶融層の形成範囲が広がりやすくなって穿孔部12を形成しにくくなるためである。
 なお、予め設定された温度範囲は、より好ましくは、下限値が金属部材1の溶融温度に0.4を乗じた値であり、上限値が金属部材1の溶融温度に0.6を乗じた値である。すなわち、予め設定された温度範囲は、金属部材1の溶融温度よりも低い温度である。
 コイル52は、金属部材1に対して表面11側に配置される。また、図3に示すように、コイル52の内側に接合領域Rが配置される。なお、高周波誘導加熱装置は、本発明の「加熱装置」の一例である。
 そして、高周波誘導加熱装置により金属部材1が予め設定された温度範囲に予熱された状態で、レーザ加工装置のヘッド51から金属部材1の表面11の接合領域R(図1参照)にレーザL1を照射する。なお、このレーザL1の照射は、複数回走査される。これにより、金属部材1の接合領域Rに穿孔部12を形成するとともに、その内周面に突出部13を形成する。このレーザL1は、たとえばファイバレーザであり、1パルスが複数のサブパルスで構成されている。
 その後、金属部材1の穿孔部12に樹脂部材2を充填し、その樹脂部材2を固化させる。これにより、金属部材1および樹脂部材2がアンカー効果により機械的に接合され、接合構造体100(図1参照)が形成される。なお、樹脂部材2は、たとえば、射出成形、熱板溶着、レーザ溶着、注型硬化、超音波溶着、または、振動溶着によって接合される。
 -効果-
 本実施形態では、上記のように、高周波誘導加熱装置により金属部材1の表面11を予熱した状態で、レーザ加工装置により金属部材1の表面11にレーザL1を照射することによって穿孔部12を形成する。このように構成することによって、加工用のレーザL1が照射されたときにそのエネルギが金属部材1で熱拡散されにくいので、レーザ加工時のエネルギロスを低減することができる。すなわち、レーザ加工の初期段階からレーザエネルギを穿孔部12の形成に寄与させることができる。これにより、金属部材1を予熱しない場合に比べて、レーザL1の走査回数を減らしても、穿孔部12を形成することができる。その結果、加工時間の短縮を図ることができる。また、金属部材1を予熱することにより、接合領域R内におけるレーザ加工時(特に、加工初期時)の温度ばらつきを抑制することができるので、エネルギロスのばらつきに起因する加工形状(たとえば、穿孔部12の深さ)のばらつきを抑制することができる。
 また、金属部材1を予熱することにより、低出力のレーザ加工装置を用いて穿孔部12を形成することができる。なお、本実施形態の加工方法は、金属部材1の材料が銅やアルミニウムなどの熱伝導率が高いものである場合に、特に有効である。
 また、本実施形態では、高周波誘導加熱装置により金属部材1を加熱することによって、金属部材1の表面11を直接加熱するとともに、その加熱される領域を容易に設定することができる。なお、接合領域Rを含む領域を加熱領域として設定してもよいし、接合領域R内の一部を加熱領域として設定して熱伝導により接合領域R全体を加熱するようにしてもよい。
 また、本実施形態では、穿孔部12に突出部13を形成することによって、アンカー効果の向上を図ることができる。
 -予熱方法の変形例-
 次に、図4~図7を参照して、金属部材1を予熱する予熱方法の変形例について説明する。
 図4は、本実施形態の第1変形例による予熱方法を説明するための図である。図4に示すように、金属部材1の表面11とは反対側の面に接触するようにプレートヒータ53を配置し、そのプレートヒータ53により金属部材1を予熱するようにしてもよい。すなわち、抵抗加熱(間接抵抗加熱)により金属部材1を予熱してもよい。なお、プレートヒータ53は、本発明の「加熱装置」の一例である。
 図5は、本実施形態の第2変形例による予熱方法を説明するための図である。図5に示すように、レーザ加熱装置のヘッド54から金属部材1の表面11に加熱用のレーザL2を照射することによって金属部材1を予熱するようにしてもよい。このレーザL2は、たとえば、ファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザまたはエキシマレーザであり、連続発振であってもよいしパルス発振であってもよい。レーザL2の出力は、金属部材1の材料やそのレーザ吸収性などに応じて適宜設定可能である。また、加熱用のレーザL2の焦点径を加工用のレーザL1の焦点径よりも大きくし、レーザL2の焦点にレーザL1の焦点が含まれる状態でレーザL1およびL2を並走するようにしてもよいし、レーザL1とは無関係にレーザL2を走査するようにしてもよい。すなわち、レーザ加熱により金属部材1を予熱してもよい。なお、レーザ加熱装置は、本発明の「加熱装置」の一例である。
 図6は、本実施形態の第3変形例による予熱方法を説明するための図である。図6に示すように、ヒータロッド55aを内蔵する治具55により金属部材1を保持し、その治具55(ヒータロッド55a)により金属部材1を予熱するようにしてもよい。すなわち、抵抗加熱により金属部材1を予熱してもよい。なお、治具55は、本発明の「加熱装置」の一例である。
 図7は、本実施形態の第4変形例による予熱方法を説明するための図である。図7に示すように、金属部材1の表面11とは反対側の面に離間するように赤外線ヒータ56を配置し、その赤外線ヒータ56により金属部材1を予熱するようにしてもよい。すなわち、赤外線加熱により金属部材1を予熱してもよい。なお、赤外線ヒータ56は、本発明の「加熱装置」の一例である。
 -実験例-
 次に、上記した本実施形態の効果を確認するために行った実験例1および2について説明する。
 [実験例1]
 この実験例1は、予熱による加工時間の短縮効果を確認するために行った。具体的には、実施例1~5および比較例1による加工方法によって金属部材に多数(たとえば数千)の穿孔部を形成し、その多数の穿孔部の中から選択した10個の穿孔部の深さが40μm以上になるのに要した走査回数を計測した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 まず、実施例1による加工方法について説明する。
 実施例1では、金属部材の材料としてアルミニウム(A5052)を用いた。この金属部材は、板状に形成されており、長さが45mmであり、幅が15mmであり、厚みが3mmである。なお、この金属部材の溶融温度は、600~660℃程度である。
 そして、高周波誘導加熱装置を用いて金属部材を加熱した。なお、この加熱は、金属部材の加工領域を含む領域に対して行った。また、加熱条件は、周波数を400kHzとし、金属部材の表面が所定温度になるように設定されている。なお、所定温度は、たとえば金属部材の溶融温度に0.5を乗じた値(300~330℃)である。すなわち、加工用のレーザを照射する前に、金属部材が所定温度で維持されるように予熱される。
 そして、金属部材の表面の加工領域に加工用のレーザを照射して多数の穿孔部を形成した。なお、加工領域は、長さが12mmで幅が2mmの線状領域である。このレーザの照射は、オムロン製のファイバレーザマーカMX-Z2000を用いて行った。レーザの照射条件は、以下のとおりである。
 <加工用のレーザ照射条件>
 レーザ:ファイバレーザ(波長1062nm)
 周波数:10kHz
 出力:2.5W
 走査速度:650mm/sec
 照射間隔:65μm
 焦点径:0.05mm
 サブパルス数:20
 なお、周波数は、複数(この例では20)のサブパルスによって構成されるパルスの周波数である。つまり、この照射条件では、1秒間に650mm移動しながら65μmの間隔で1万回レーザ(パルス)を照射し、そのパルスが20のサブパルスによって構成されている。
 そして、加工領域に形成される数千の穿孔部のうち、10個の穿孔部の深さが40μm以上になるまで、レーザを複数回走査した。なお、この10個の穿孔部は、加工領域の中央近傍に配置された穿孔部である。また、走査回数は、レーザが同じ箇所に繰り返し照射される回数である。
 次に、実施例2~5および比較例1による加工方法について説明する。
 実施例2の加工方法では、上記した第1変形例のようにプレートヒータを用いて金属部材の予熱を行った。実施例3の加工方法では、上記した第2変形例のようにレーザ加熱装置を用いて金属部材の予熱を行った。なお、レーザ加熱装置では、波長が808nmの半導体レーザを用い、出力を30Wにするとともに、焦点径を0.6mmにして、加工用のレーザの走査方向における前方で、加熱用のレーザが並走するように走査した。
 実施例4の加工方法では、上記した第3変形例のようにヒータロッドが内蔵された治具を用いて金属部材の予熱を行った。実施例5の加工方法では、上記した第4変形例のように赤外線ヒータを用いて金属部材の予熱を行った。比較例1の加工方法では、金属部材に対して予熱を行わなかった。なお、実施例2~5および比較例1のその他の点については実施例1と同様である。
 表1に示すように、実施例1~5では、10個の穿孔部の深さが40μm以上になるのに要する加工用レーザの走査回数が、比較例1に比べて少なくなっている。すなわち、実施例1~5では、比較例1に比べて、加工時間を短縮することができた。これは、実施例1~5では、金属部材を予熱することにより、加工用のレーザが照射されたときに、そのエネルギが熱拡散されにくいので、加工用のレーザのエネルギロスを低減できるためであると考えられる。
 [実験例2]
 この実験例2は、予熱による加工形状のばらつき抑制効果を確認するために行った。具体的には、実施例6~10および比較例2による加工方法によって金属部材に多数(たとえば数千)の穿孔部を形成し、その多数の穿孔部の中から選択した10個の穿孔部の深さを計測した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この実験例2では、実験例1と異なり、加工用のレーザの走査回数を20回とした。すなわち、実施例6~10および比較例2の走査回数を同じに設定した。また、加工領域に形成される数千の穿孔部のうち、加工領域の外縁から中央に向けて直線状に配置される10個の穿孔部を選択し、その10個の穿孔部の深さを測定した。その他の加工条件は実験例1と同様である。
 なお、実施例6は高周波誘導加熱装置で予熱し、実施例7はプレートヒータで予熱し、実施例8はレーザ加熱装置で予熱し、実施例9はヒータロッドを内蔵する治具で予熱し、実施例10は赤外線ヒータで予熱し、比較例2では予熱しなかった。
 表2に示すように、実施例6~10では、比較例2に比べて穿孔部の深さのばらつきが抑制されている。すなわち、実施例6~10では、比較例2に比べて、加工領域内における穿孔部の加工形状のばらつきが抑制されている。これは、実施例6~10では、金属部材を予熱することにより、加工領域内におけるレーザ加工時(特に、加工初期時)の温度ばらつきを抑制することができるので、加工用のレーザ照射時のエネルギロスのばらつきを抑制できたためであると考えられる。
 -他の実施形態-
 なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、本実施形態では、金属部材1および樹脂部材2を接合するために、金属部材1に穿孔部12を加工する加工方法に本発明を適用する例を示したが、これに限らず、金属部材に印字などをマーキングする加工方法に本発明を適用してもよい。
 また、本実施形態では、穿孔部12内の突出部13が表面11側に設けられる例を示したが、これに限らず、突出部が穿孔部の深さ方向において入り込んだ位置に設けられていてもよい。
 また、本実施形態では、穿孔部12に突出部13が形成される例を示したが、これに限らず、穿孔部に突出部が形成されていなくてもよい。たとえば、穿孔部が円筒状またはすり鉢状に形成されていてもよい。
 また、本実施形態では、凹状部の一例として平面的に見て円形の穿孔部12を示したが、これに限らず、凹状部として溝部が形成されていてもよい。
 また、本実施形態では、高周波誘導加熱装置のコイル52が金属部材1の表面11側に配置される例を示したが、これに限らず、高周波誘導加熱装置のコイルが金属部材の裏面側に配置されていてもよい。
 また、本実施形態では、予熱された状態の金属部材1に対して加工用のレーザL1を照射する例を示したが、これに限らず、予熱後の金属部材に対して加工用のレーザを照射するようにしてもよい。すなわち、加熱装置が金属部材を加熱している状態で加工してもよいし、加熱装置による金属部材への加熱が停止され、放熱される前に加工してもよい。
 また、本実施形態の第1変形例では、プレートヒータ53により金属部材1を予熱する例を示したが、これに限らず、バンドヒータまたはリボンヒータにより金属部材を予熱するようにしてもよい。
 また、本実施形態の第2変形例では、金属部材1の表面11に加熱用のレーザL2を照射する例を示したが、これに限らず、金属部材の裏面に加熱用のレーザを照射するようにしてもよい。すなわち、加熱用のレーザが加工用のレーザとは反対側から照射されていてもよい。
 また、本実施形態の第2変形例において、加熱用のレーザL2の吸収性を向上させるために、金属部材1の表面11に粗し処理が施されていてもよい。
 また、本実施形態では、接合領域Rが平面的に見て矩形状である例を示したが、これに限らず、接合領域が矩形以外のその他の形状であってもよい。
 本発明は、金属部材の表面に凹状部を形成する加工方法、接合構造体の製造方法および接合構造体に利用可能である。
 1   金属部材
 2   樹脂部材
 11  表面
 12  穿孔部(凹状部)
 51  ヘッド(レーザ加工装置)
 52  コイル(加熱装置)
 53  プレートヒータ(加熱装置)
 54  ヘッド(加熱装置)
 55  治具(加熱装置)
 56  赤外線ヒータ(加熱装置)
 100 接合構造体

Claims (6)

  1.  金属部材の表面に凹状部を形成する加工方法であって、
     加熱装置により前記金属部材を予熱する工程と、
     予熱された前記金属部材の表面にレーザ加工装置によりレーザを照射することによって前記凹状部を形成する工程とを備えることを特徴とする加工方法。
  2.  請求項1に記載の加工方法において、
     前記加熱装置は、抵抗加熱、誘導加熱、レーザ加熱または赤外線加熱により前記金属部材を予熱することを特徴とする加工方法。
  3.  請求項1または2に記載の加工方法において、
     前記金属部材の表面が予め設定された温度範囲になるように前記金属部材が予熱されることを特徴とする加工方法。
  4.  請求項1~3のいずれか1つに記載の加工方法において、
     前記レーザ加工装置により前記金属部材の表面に照射されるレーザは、1パルスが複数のサブパルスで構成されていることを特徴とする加工方法。
  5.  金属部材および樹脂部材が接合された接合構造体の製造方法であって、
     加熱装置により前記金属部材を予熱する工程と、
     予熱された前記金属部材の表面にレーザ加工装置によりレーザを照射することによって凹状部を形成する工程と、
     前記金属部材の凹状部に前記樹脂部材を充填して固化させる工程とを備えることを特徴とする接合構造体の製造方法。
  6.  請求項5に記載の接合構造体の製造方法によって製造されたことを特徴とする接合構造体。
PCT/JP2016/056089 2015-03-11 2016-02-29 加工方法、接合構造体の製造方法および接合構造体 WO2016143585A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048338A JP2016168598A (ja) 2015-03-11 2015-03-11 加工方法、接合構造体の製造方法および接合構造体
JP2015-048338 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016143585A1 true WO2016143585A1 (ja) 2016-09-15

Family

ID=56880141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056089 WO2016143585A1 (ja) 2015-03-11 2016-02-29 加工方法、接合構造体の製造方法および接合構造体

Country Status (2)

Country Link
JP (1) JP2016168598A (ja)
WO (1) WO2016143585A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695543A (zh) * 2017-08-24 2018-02-16 江苏大学 一种利用涡流效应辅助加热激光螺旋打孔装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7016083B2 (ja) * 2017-03-29 2022-02-04 株式会社トヨタカスタマイジング&ディベロップメント 接合システム及び接合方法
JP7154529B2 (ja) * 2017-12-13 2022-10-18 株式会社デンソー 金属部材および当該金属部材を用いた半導体素子、樹脂金属複合体、半導体装置、異種金属複合体並びに当該金属部材の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158157A (ja) * 1998-11-27 2000-06-13 Toshiko:Kk 微細凹凸形状体、及び、これを用いたコーティング構造体、ライニング用基体、粉流体搬送部材
JP2010167491A (ja) * 2008-12-24 2010-08-05 Toshiba Mach Co Ltd パルスレーザ加工装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000158157A (ja) * 1998-11-27 2000-06-13 Toshiko:Kk 微細凹凸形状体、及び、これを用いたコーティング構造体、ライニング用基体、粉流体搬送部材
JP2010167491A (ja) * 2008-12-24 2010-08-05 Toshiba Mach Co Ltd パルスレーザ加工装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107695543A (zh) * 2017-08-24 2018-02-16 江苏大学 一种利用涡流效应辅助加热激光螺旋打孔装置及方法

Also Published As

Publication number Publication date
JP2016168598A (ja) 2016-09-23

Similar Documents

Publication Publication Date Title
JP6414477B2 (ja) 接合構造体の製造方法
JP6439455B2 (ja) 接合構造体の製造方法
WO2016027775A1 (ja) 接合構造体および接合構造体の製造方法
WO2016027777A1 (ja) 接合構造体の製造方法および接合構造体
JP6451370B2 (ja) 接合構造体の製造方法
TWI704994B (zh) 接合構造體的製造方法及接合構造體
WO2016143585A1 (ja) 加工方法、接合構造体の製造方法および接合構造体
WO2016140097A1 (ja) 接合方法、接合構造体の製造方法および接合構造体
US20160052202A1 (en) Joined structure and method for manufacturing joined structure
WO2016125594A1 (ja) 接合構造体の製造方法および接合構造体
JP6398778B2 (ja) 接合構造体の製造方法および接合構造体
WO2016143586A1 (ja) 接合構造体の製造方法、接合構造体、及びレーザ装置
WO2016133078A1 (ja) 接合構造体の製造方法及び接合構造体
WO2016117501A1 (ja) レーザ溶着方法および接合構造体
WO2016140096A1 (ja) 接合構造体
WO2016140052A1 (ja) 金属部材のレーザ加工方法およびその方法を用いて製造される接合構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761555

Country of ref document: EP

Kind code of ref document: A1