WO2016027717A1 - 光源装置 - Google Patents

光源装置 Download PDF

Info

Publication number
WO2016027717A1
WO2016027717A1 PCT/JP2015/072634 JP2015072634W WO2016027717A1 WO 2016027717 A1 WO2016027717 A1 WO 2016027717A1 JP 2015072634 W JP2015072634 W JP 2015072634W WO 2016027717 A1 WO2016027717 A1 WO 2016027717A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
light
peak
long
intensity
Prior art date
Application number
PCT/JP2015/072634
Other languages
English (en)
French (fr)
Inventor
亮 町田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201580043200.8A priority Critical patent/CN106574755A/zh
Priority to EP15833082.9A priority patent/EP3184878A4/en
Priority to JP2016536966A priority patent/JP6099831B2/ja
Publication of WO2016027717A1 publication Critical patent/WO2016027717A1/ja
Priority to US15/433,584 priority patent/US10531789B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/12Combinations of only three kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29388Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM for lighting or use with non-coherent light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources

Definitions

  • the present invention relates to a light source device.
  • Patent Document 3 uses a white LED in addition to a red, green, and blue LED, and corrects the spectrum in the green wavelength region by using a partial component of white light emitted by the white LED. The color temperature of the illumination light is adjusted.
  • the mucous membrane is illuminated with illumination light that lacks a spectrum in the wavelength range from green to red, it is not possible to express subtle differences in the mucous membrane color, and the mucous membrane color tone is accurately displayed in an endoscopic image. There is an inconvenience that it cannot be reproduced.
  • the present invention has been made in view of the above-described circumstances, and provides a light source device capable of generating illumination light having good spectral characteristics with little wavelength loss in order to ensure better color reproducibility.
  • the purpose is to do.
  • the present invention includes a long wavelength light source that emits a long wavelength light having a peak wavelength in a red wavelength range, a green wavelength range of 500 nm to 580 nm and a peak wavelength of 580 nm or less, and a short wavelength of the long wavelength light.
  • a light source device having a wavelength at which the intensity is 10% or more of the peak intensity and the intensity of the broadband light is 10% or more of the peak intensity.
  • the long-wavelength light emitted from the long-wavelength light source and the broadband light emitted from the broadband light source and having a spectrum in the red wavelength range are combined into one by the multiplexing unit.
  • illumination light having no missing spectrum is generated at least in the wavelength range from green to red.
  • the long-wavelength light and the broadband light combined by the multiplexing unit are sufficient for at least 10% of the peak intensity in the wavelength region between the peak wavelength of the long-wavelength light and the peak wavelength of the broadband light.
  • red wavelength range means a wavelength range of about 580 nm to about 760 nm, and includes orange.
  • Green wavelength range means a wavelength range of about 500 nm to about 580 nm.
  • the “blue wavelength range” means a wavelength range of about 380 nm to about 500 nm, and includes purple.
  • the said broadband light has the said peak wavelength in the range of 500 nm to 580 nm.
  • two short wavelength light sources each emitting short wavelength light having different peak wavelengths in the blue wavelength range are provided, and one of the short wavelength lights having a peak wavelength on the long wavelength side is equal to or less than a predetermined wavelength.
  • the multiplexing unit has one of the long-wavelengths having a peak wavelength on the long-wavelength side
  • a wavelength range of light longer than a predetermined wavelength and the other wavelength range of the other long wavelength light having a peak wavelength on the short wavelength side are combined, and the predetermined wavelength is It may be a wavelength at which the intensity of one long wavelength light is 10% or more of the peak intensity and the intensity of the other long wavelength light is 10% or more of the peak intensity.
  • the intensity ratio adjustment part which adjusts the intensity ratio of the light combined by the said multiplexing part.
  • 1 is an overall configuration diagram of a light source device according to an embodiment of the present invention.
  • 2 is a graph showing emission spectra (left axis) of blue, green, and red LEDs included in the light source device of FIG. 1 and spectral transmittances (right axis) of first and second dichroic filters. It is a graph which shows the spectrum (left axis) of the illumination light produced
  • the spectral transmittance (right axis) of a 3rd dichroic filter It is a graph which shows the emission spectrum (left axis) of the blue LED and purple LED with which the light source device of FIG. 4 is provided, and the spectral reflectance (right axis) of a mucous membrane. It is a whole block diagram which shows another modification of the light source device of FIG. It is a graph which shows the emission spectrum (left axis) of red LED and orange LED with which the light source device of FIG. 7 is provided, and the spectral transmittance (right axis) of a 4th dichroic filter.
  • 11 is a graph showing emission spectra (left axis) of blue, green and red LEDs included in the light source device of FIG. 10 and spectral transmittances (right axis) of first and second dichroic filters.
  • the light source device 1 which concerns on one Embodiment of this invention is demonstrated with reference to drawings.
  • the light source device 1 combines three LEDs 21, 22, 23 and three lights Lb, Lg, Lr emitted from the LEDs 21, 22, 23 into one.
  • Two dichroic filters 31 and 32 that generate white illumination light Lw by wave generation, three collimator lenses 4 arranged immediately after each of the LEDs 21, 22, and 23, and a dichroic filter (multiplexing unit) 31 , 32, and a converging lens 5 for converging the illumination light Lw generated.
  • FIG. 2 shows the spectra of the light Lb, Lg and Lr emitted from the LEDs 21, 22 and 23 and the light transmission characteristics of the dichroic filters 31 and 32.
  • the intensities of the light Lb, Lg, and Lr are standardized with the maximum value of each being 1.
  • the LEDs 21, 22, and 23 include a single blue LED (short wavelength light source) 21 that emits blue light (short wavelength light) Lb, a single green LED (wide band light source) 22 that emits green light (broadband) Lg, It is a single red LED (long wavelength light source) 23 that emits red light (long wavelength light) Lr.
  • the blue light Lb is a narrow band light having a half-width spectrum of about 20 nm to 30 nm, and has a peak wavelength of about 460 nm.
  • the red light Lr is a narrow band light having a half-width spectrum of about 20 nm to 30 nm, and has a peak wavelength at about 630 nm.
  • the green light Lg is a broadband light composed of a spectrum with a half width of about 100 nm or more, and has a peak wavelength of about 550 nm. That is, the green light Lg also has a spectrum in the red wavelength region, and the wavelength region on the long wavelength side of the green light Lg overlaps at least the wavelength region on the short wavelength side of the red light Lr.
  • the green LED 22 is arranged so that its emission optical axis intersects with the emission optical axis A of the blue LED 21.
  • the red LED 23 is disposed so that the emission optical axis thereof intersects the emission optical axis A of the blue LED 21 at a position farther from the blue LED 21 than the green LED 22.
  • the first dichroic filter 31 is a short-pass filter having a cutoff wavelength (predetermined wavelength) ⁇ cut1 at about 500 nm, transmits light having a wavelength equal to or shorter than the cutoff wavelength ⁇ cut1, and is longer than the cutoff wavelength ⁇ cut1.
  • Reflects light having The second dichroic filter 32 is a short pass filter having a cutoff wavelength ⁇ cut2 between the peak wavelength of the green light Lg and the peak wavelength of the red light Lr, and transmits light having a wavelength equal to or shorter than the cutoff wavelength ⁇ cut2. The light having a wavelength longer than the cutoff wavelength ⁇ cut2 is reflected.
  • the first dichroic filter 31 is disposed at a position where the emission optical axis A of the blue LED 21 and the emission optical axis of the green LED 22 intersect.
  • the first dichroic filter 31 transmits all of the blue light Lb emitted from the blue LED 21 along the output optical axis A, while most of the green light Lg emitted from the green LED 22 extends along the output optical axis A. Reflect.
  • the second dichroic filter 32 is disposed at a position where the emission optical axis A of the blue LED 21 and the emission optical axis of the red LED 23 intersect.
  • the second dichroic filter 32 transmits all of the blue light Lb along the output optical axis A, while the green light Lg reflected by the first dichroic filter 31 has a longer wavelength range than the cutoff wavelength ⁇ cut2.
  • the second dichroic filter 32 reflects the wavelength range longer than the cutoff wavelength ⁇ cut2 of the red light Lr emitted from the red LED 23 along the output optical axis A, and has a wavelength equal to or shorter than the cutoff wavelength ⁇ cut2. Make the area transparent.
  • the blue, green, and red lights Lb, Lg, and Lr are combined to generate the white illumination light Lw.
  • the generated illumination light Lw is converged on the cover glass 6 on the optical axis A by the converging lens 5, and the illumination light Lw is output from the cover glass 6 to the outside of the light source device 1.
  • the cutoff wavelength ⁇ cut2 of the second dichroic filter 32 is such that the intensity of the green light Lg at the cutoff wavelength ⁇ cut2 is 10% or more of the peak intensity of the green light Lg and the red light at the cutoff wavelength ⁇ cut2
  • the intensity of Lr is set to a wavelength that is 10% or more of the peak intensity of the red light Lr.
  • the cutoff wavelength ⁇ cut2 is set to about 615 nm.
  • the intensities of the lights Lr and Lg at the cutoff wavelength ⁇ cut2 are less than 10% of the peak intensities, a wavelength region with insufficient intensity may be generated in the vicinity of the cutoff wavelength ⁇ cut2 of the illumination light Lw. As a result, it becomes difficult to ensure good color reproducibility of the illumination light Lw described later.
  • Each collimator lens 4 is a convex lens in which a focal point is disposed on the light emitting portion of each LED 21, 22, 23, and receives light Lb, Lg, Lr emitted as a diffused light beam from the light emitting portion of LED 21, 22, 23, respectively.
  • the light is converted into a parallel light beam having substantially the same light beam diameter, and is emitted to the dichroic filters 31 and 32, respectively.
  • the blue light Lb, the green light Lg, and the red light Lr are combined to generate the illumination light Lw.
  • Reference numeral 7 denotes a light guide for illuminating the endoscope connected to the light source device 1.
  • the three color lights Lb, Lg, and Lr emitted from the respective LEDs 21, 22, and 23 are multiplexed on the same emission optical axis A by the two dichroic filters 31 and 32, whereby the second dichroic filter 32.
  • white illumination light Lw is generated.
  • the generated illumination light Lw is converged by the converging lens 5 and enters the light guide 7.
  • the illumination light Lw incident on the light guide 7 guides the light guide 7 to the tip of the light guide 7 disposed at the tip of the endoscope, and is irradiated from the tip of the endoscope toward the observation target.
  • the reflected light of the illumination light Lw from the observation target is received by an image sensor such as a CCD image sensor built in the distal end of the endoscope and is converted into a color image.
  • the spectral reflectance of the mucous membrane varies greatly in the wavelength range from 500 nm to 650 nm, as shown in FIG.
  • the intensity of the illumination light Lw is standardized with a maximum value of 1.
  • a conventional light source device 1 ′ will be described with reference to FIGS. 10 to 12.
  • the basic configuration of the light source device 1 ′ is substantially the same as that of the light source device 1 according to the present embodiment, and the blue LED 21 ′, the red LED 23 ′, the first dichroic filter 31 ′, and the collimator lens 4.
  • the focusing lens 5' are configured in the same manner as the blue LED 21, the red LED 23, the first dichroic filter 31, the collimator lens 4, and the focusing lens 5, respectively.
  • the optical characteristics of the green LED 22 ′ and the second dichroic filter 32 ′ of the conventional light source device 1 ′ are different from the optical characteristics of the green LED 22 and the second dichroic filter 32, respectively. .
  • the spectrum of the generated illumination light Lw ′ is as shown in FIG.
  • the wavelength is lost in the green to red wavelength region where the spectral reflectance of the mucosa changes greatly. This means that the color of the mucous membrane cannot be accurately reproduced when the mucosa is irradiated with the illumination light Lw ′.
  • the illumination light Lw generated by combining the broadband green light Lg and the red light Lr has a continuous spectrum with little wavelength loss over the entire wavelength range from 500 nm to 650 nm.
  • the cutoff wavelength ⁇ cut2 of the second dichroic filter 32 that combines the green light Lg and the red light Lr is such that both the light Lg and Lr have an intensity of 10% or more of the peak intensity of the light Lg and Lr.
  • the wavelength is set to have.
  • the illumination light Lw has sufficient intensity at the cutoff wavelength ⁇ cut2 where the intensity is relatively low in the wavelength range of 500 nm to 650 nm and in the vicinity thereof, and is 500 nm to 650 nm. It has good spectral characteristics with little wavelength loss over the entire wavelength range.
  • Such illumination light Lw is advantageous for reproducing a subtle difference in hue between green and red that the mucous membrane has.
  • the delicate color of the mucous membrane can be accurately reproduced. There is an advantage that you can.
  • FIG. 4 shows a violet LED (short wavelength light source) 24 that emits a narrow-band violet light (short wavelength light) Lp having a single peak wavelength from about 410 to 420 nm, and emits violet light Lp and blue light Lb.
  • a configuration further including a third dichroic filter 33 that multiplexes on the axis A is shown.
  • the third dichroic filter 33 is a short-pass filter having a cutoff wavelength ⁇ cut3 between the peak wavelength of the blue light Lb and the peak wavelength of the violet light Lp.
  • the third dichroic filter 33 transmits substantially all of the violet light Lp along the emission optical axis A and reflects most of the blue light Lb along the emission optical axis A.
  • the cutoff wavelength ⁇ cut3 is set to about 440 nm.
  • the short wavelength region of the blue light Lb below a predetermined wavelength (about 430 nm in the example shown in FIGS. 5 and 6) and the long wavelength region longer than the predetermined wavelength of the violet light Lp are: Overlapping each other.
  • the predetermined wavelength is set to a wavelength at which the intensity of the blue light Lb is 10% or more of the peak intensity and the intensity of the violet light Lp is 10% or more of the peak intensity.
  • the illumination light Lw has a spectral characteristic with few wavelength loss in all the wavelengths of a blue wavelength range.
  • the spectral reflectance of the mucosa varies depending on the wavelength even in the blue wavelength region. Therefore, by combining the two LEDs 21 and 24 having the peak wavelength in the blue wavelength region, it is possible to obtain good spectral characteristics with little wavelength loss even in the blue wavelength region of the illumination light Lw. Thus, even in blue, there is an advantage that the subtle difference in blue color of the mucous membrane can be accurately expressed by illuminating the mucous membrane with the illumination light Lw having excellent color rendering properties. 5 and 6, the intensities of the light beams Lb and Lp are normalized with the maximum value of each being 1.
  • FIG. 7 shows an orange LED (long wavelength light source) 25 that emits narrow band orange light (long wavelength light) Lo having a peak wavelength at about 600 nm and an orange light Lo on the emission optical axis A in addition to the configuration of FIG. 4 shows a configuration further including a fourth dichroic filter 34 for multiplexing.
  • the fourth dichroic filter 34 is a short pass filter having a cutoff wavelength between the peak wavelength of the green light Lg and the peak wavelength of the orange light Lo. The cutoff wavelength is set to about 580 nm, for example.
  • the cutoff wavelength (predetermined wavelength) ⁇ cut2 of the second dichroic filter 32 is located between the peak wavelength of the orange light Lo and the peak wavelength of the red light Lr.
  • the intensity of the red light Lr at the cutoff wavelength ⁇ cut2 is 10% or more of the peak intensity of the red light Lr, and the intensity of the orange light Lo at the cutoff wavelength ⁇ cut2 is 10% of the peak intensity of the orange light Lo. % Or more.
  • the spectral reflectance of the mucosa and blood vessels existing in the mucosa varies depending on the wavelength in the red wavelength region. Therefore, by combining the two LEDs 23 and 25 having the peak wavelength in the red wavelength region, good spectral characteristics with little wavelength loss can be obtained even in the red wavelength region of the illumination light Lw. Thus, even in red, there is an advantage that the subtle difference in red color between the mucous membrane and the blood vessel can be accurately expressed by illuminating the mucous membrane with the illumination light Lw excellent in color rendering. 8 and 9, the intensities of the light Lb and Lo are standardized with the maximum value of each being 1.
  • an intensity ratio adjusting unit that adjusts the intensity ratio of the light Lb, Lg, Lr, Lp, Lo combined by the dichroic filters 31, 32, 33, 34 may be further provided.
  • the intensity ratio adjustment unit is, for example, a power supply (not shown) that supplies current to each of the LEDs 21, 22, 23, 24, 25, and individually determines the magnitude of the current supplied to each of the LEDs 21, 22, 23, 24, 25
  • the light emission intensity of each of the LEDs 21, 22, 23, 24, and 25 can be adjusted independently of each other, whereby the intensity ratio of the light Lb, Lg, Lr, Lp, and Lo can be adjusted.
  • the image sensor does not have the same detection sensitivity for light of all wavelengths, but the detection sensitivity differs for each wavelength.
  • the spectral characteristics of the illumination light Lw so as to be optimal for such spectral sensitivity characteristics of the image sensor, better color reproducibility can be ensured in an image acquired by the image sensor.
  • the green LED 22 that emits broadband green light is used as the broadband light source.
  • a light source that emits white light such as a white LED, may be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • Endoscopes (AREA)
  • Optical Filters (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

本発明の光源装置(1)は、赤色の波長域にピーク波長を有する長波長光(Lr)を発する長波長光源(23)と、500nmから580nmの緑色の波長域を含むとともに580nm以下にピーク波長を有し、長波長光(Lr)の短波長側の波長域と重複する波長域を長波長側に有する広帯域の広帯域光(Lg)を発する単一の広帯域光源(22)と、長波長光(Lr)の、所定の波長よりも長い波長域と、広帯域光(Lg)の、所定の波長以下の波長域とを合波する合波部(32)とを備え、所定の波長は、長波長光(Lr)のピーク波長と広帯域光(Lg)のピーク波長との間の波長であるとともに、長波長光(Lr)の強度がそのピーク強度の10%以上となり、かつ、広帯域光(Lg)の強度がそのピーク強度の10%以上となる波長である。

Description

光源装置
 本発明は、光源装置に関するものである。
 従来、単色光を発するLED(発光ダイオード)のような固体光源を複数個使用し、赤色、緑色および青色の単色光を合波して白色の照明光を生成する光源装置が知られている(例えば、特許文献1から3参照。)。
 緑色LEDが発する緑色光は、赤色LEDおよび青色LEDがそれぞれ発する赤色光および青色光に比べて光量が小さく、さらに、ピーク波長が緑色の波長域のうち短波長側に偏っている。したがって、生成される照明光のスペクトルにおいて、緑色光のピーク波長と赤色光のピーク波長との間に欠落した波長域が生じ、理想的な色温度の照明光を生成することができない。そこで、特許文献3は、赤色、緑色、青色のLEDに加えて白色LEDを使用し、該白色LEDが発する白色光の一部の成分を用いて緑色の波長域のスペクトルを補正することによって、照明光の色温度を調整している。
特開2005-173625号公報 特開2005-157221号公報 特開2004-151173号公報
 しかしながら、特許文献3のように緑色の波長域のスペクトルを補正したとしても、照明光の欠落した波長域を十分に補うことは難しく、波長欠落の少ない良好なスペクトル特性を有する照明光を生成することができない。特に、医療用内視鏡に適用される光源装置の場合、観察対象である内臓表面の粘膜を内視鏡映像を用いて正確に観察および診断するためには、緑色から赤色の波長域のスペクトル特性が重要となる。すなわち、粘膜は、緑色から赤色の波長域において比較的高い分光反射率を有するが、この分光反射率は一定ではない。したがって、緑色から赤色の波長域においてスペクトルの欠落が存在する照明光で粘膜を照明した場合、粘膜の微妙な色合いの違いを表現することができず、内視鏡映像において粘膜の色合いを正確に再現することができないという不都合がある。
 本発明は、上述した事情に鑑みてなされたものであって、より良い色再現性を確保するために、波長欠落の少ない良好なスペクトル特性を有する照明光を生成することができる光源装置を提供することを目的とする。
 上記目的を達成するため、本発明は以下の手段を提供する。
 本発明は、赤色の波長域にピーク波長を有する長波長光を発する長波長光源と、500nmから580nmの緑色の波長域を含むとともに580nm以下にピーク波長を有し、前記長波長光の短波長側の波長域と重複する波長域を長波長側に有する広帯域を発する単一の広帯域光源と、前記長波長光の、所定の波長よりも長い波長域と、前記広帯域光の、前記所定の波長以下の波長域とを合波する合波部とを備え、前記所定の波長は、前記長波長光のピーク波長と前記広帯域光のピーク波長との間の波長であるとともに、前記長波長光の強度がそのピーク強度の10%以上となり、かつ、前記広帯域光の強度がそのピーク強度の10%以上となる波長である光源装置を提供する。
 本発明によれば、長波長光源から射出された長波長光と、広帯域光源から射出された、赤色の波長域にまでスペクトルを有する広帯域光とが、合波部によって1つに合波されることによって、少なくとも緑色から赤色の波長域においてスペクトルに欠落が無い照明光が生成される。
 この場合に、合波部によって合波される長波長光および広帯域光は、長波長光のピーク波長と広帯域光のピーク波長との間の波長域において、各々のピーク強度の10%以上の十分に高い強度を有する。これにより、波長欠落の少ない良好なスペクトル特性を有し、より良い色再現性を確保することが可能な照明光を生成することができる。
 なお、本明細書において、「赤色の波長域」とは、約580nmから約760nmの波長域を意味し、橙色を含む。「緑色の波長域」とは、約500nmから約580nmの波長域を意味する。「青色の波長域」とは、約380nmから約500nmの波長域を意味し、紫色を含む。
 上記発明においては、前記広帯域光が、500nmから580nmの範囲内に前記ピーク波長を有することが好ましい。
 このようにすることで、照明光の、特に緑色から赤色の波長域においてより高いスペクトルの強度を確保し、より良好なスペクトル特性を得ることができる。
 上記発明においては、互いに異なるピーク波長を青色の波長域に有する短波長光をそれぞれ発する2つの短波長光源を備え、長波長側のピーク波長を有する一方の前記短波長光の、所定の波長以下の波長域と、短い方のピーク波長を有する他方の前記短波長光の、前記所定の波長よりも長い波長域とが、互いに重複し、前記所定の波長は、前記一方の短波長光の強度がそのピーク強度の10%以上となり、かつ、前記他方の短波長光の強度がそのピーク強度の10%以上となる波長であってもよい。
 このようにすることで、特に青色の波長域における分光反射率が一定では無い物体を照明する際に、該物体の色合いをより正確に表現することができる。
 上記発明においては、互いに異なるピーク波長を赤色の波長域に有する長波長光をそれぞれ発する少なくとも2つの長波長光源を備え、前記合波部が、長波長側のピーク波長を有する一方の前記長波長光の、所定の波長よりも長い波長域と、短波長側のピーク波長を有する他方の前記長波長光の、前記所定の波長以下の波長域とを合波し、前記所定の波長は、前記一方の長波長光の強度がそのピーク強度の10%以上となり、かつ、前記他方の長波長光の強度がそのピーク強度の10%以上となる波長であってもよい。
 このようにすることで、特に赤色の波長域における分光反射率が一定ではない物体を照明する際に、該物体の色合いをより正確に表現することができる。
 上記発明においては、前記合波部によって合波される光の強度比を調整する強度比調整部を備えていてもよい。
 このようにすることで、照明光によって照明された物体を撮像素子によって撮影する場合に、照明光のスペクトル特性を、撮像素子の分光感度特性に対して最適化することができる。
 本発明によれば、より良い色再現性を確保するために、波長欠落の少ない良好なスペクトル特性を有する照明光を生成することができるという効果を奏する。
本発明の一実施形態に係る光源装置の全体構成図である。 図1の光源装置が備える、青色、緑色および赤色のLEDの発光スペクトル(左軸)と、第1および第2のダイクロイックフィルタの分光透過率(右軸)とを示すグラフである。 図1の光源装置によって生成される照明光のスペクトル(左軸)と、粘膜の分光反射率(右軸)とを示すグラフである。 図1の光源装置の変形例を示す全体構成図である。 図4の光源装置が備える青色LEDおよび紫色LEDの発光スペクトル(左軸)と、第3のダイクロイックフィルタの分光透過率(右軸)とを示すグラフである。 図4の光源装置が備える青色LEDおよび紫色LEDの発光スペクトル(左軸)と、粘膜の分光反射率(右軸)とを示すグラフである。 図1の光源装置のもう1つの変形例を示す全体構成図である。 図7の光源装置が備える赤色LEDおよび橙色LEDの発光スペクトル(左軸)と、第4のダイクロイックフィルタの分光透過率(右軸)とを示すグラフである。 図7の光源装置が備える赤色LEDおよび橙色LEDの発光スペクトル(左軸)と、粘膜および血管の分光反射率(右軸)とを示すグラフである。 従来の光源装置の全体構成図である。 図10の光源装置が備える、青色、緑色および赤色のLEDの発光スペクトル(左軸)と、第1および第2のダイクロイックフィルタの分光透過率(右軸)とを示すグラフである。 図10の光源装置によって生成される照明光のスペクトル(左軸)と、粘膜の分光反射率(右軸)とを示すグラフである。
 以下に、本発明の一実施形態に係る光源装置1について図面を参照して説明する。
 本実施形態に係る光源装置1は、図1に示されるように、3個のLED21,22,23と、LED21,22,23から射出された3つの光Lb,Lg,Lrを1つに合波して白色の照明光Lwを生成する2個のダイクロイックフィルタ31,32と、各LED21,22,23の直後段に配置された3個のコリメータレンズ4と、ダイクロイックフィルタ(合波部)31,32によって生成された照明光Lwを収束させる収束レンズ5とを備えている。
 図2は、LED21,22,23が発する光Lb,Lg,Lrのスペクトルと、ダイクロイックフィルタ31,32の光透過特性とを示している。図2において、光Lb,Lg,Lrの強度は、各々の最大値を1として規格化されている。
 LED21,22,23は、青色光(短波長光)Lbを発する単一の青色LED(短波長光源)21と、緑色光(広帯域)Lgを発する単一の緑色LED(広帯域光源)22と、赤色光(長波長光)Lrを発する単一の赤色LED(長波長光源)23である。
 青色光Lbは、約20nmから30nmの半値幅のスペクトルからなる狭帯域光であり、約460nmのピーク波長を有する。
 赤色光Lrは、約20nmから30nmの半値幅のスペクトルからなる狭帯域光であり、約630nmにピーク波長を有する。
 緑色光Lgは、約100nm以上の半値幅のスペクトルからなる広帯域光であり、約550nmのピーク波長を有する。すなわち、緑色光Lgは、赤色の波長域にもスペクトルを有し、緑色光Lgの長波長側の波長域は、赤色光Lrの、少なくとも短波長側の波長域と重複している。
 緑色LED22は、その射出光軸が青色LED21の射出光軸Aと交差するように、配置されている。赤色LED23は、その射出光軸が、緑色LED22よりも青色LED21から離れた位置において該青色LED21の射出光軸Aと交差するように、配置されている。
 第1のダイクロイックフィルタ31は、約500nmにカットオフ波長(所定の波長)λcut1を有するショートパスフィルタであり、カットオフ波長λcut1以下の波長を有する光を透過させ、カットオフ波長λcut1よりも長い波長を有する光を反射する。
 第2のダイクロイックフィルタ32は、緑色光Lgのピーク波長と赤色光Lrのピーク波長との間にカットオフ波長λcut2を有するショートパスフィルタであり、カットオフ波長λcut2以下の波長を有する光を透過させ、カットオフ波長λcut2よりも長い波長を有する光を反射する。
 第1のダイクロイックフィルタ31は、青色LED21の射出光軸Aと緑色LED22の射出光軸とが交差する位置に配置されている。第1のダイクロイックフィルタ31は、青色LED21から射出された青色光Lbの全部を出力光軸Aに沿って透過させる一方、緑色LED22から射出された緑色光Lgの大部分を出力光軸Aに沿って反射する。
 第2のダイクロイックフィルタ32は、青色LED21の射出光軸Aと赤色LED23の射出光軸とが交差する位置に配置されている。第2のダイクロイックフィルタ32は、青色光Lbの全部を出力光軸Aに沿って透過させる一方、第1のダイクロイックフィルタ31によって反射された緑色光Lgのうち、カットオフ波長λcut2よりも長い波長域を反射し、カットオフ波長λcut2以下の波長域を出力光軸Aに沿って透過させる。さらに、第2のダイクロイックフィルタ32は、赤色LED23から射出された赤色光Lrのうち、カットオフ波長λcut2をよりも長い波長域を出力光軸Aに沿って反射し、カットオフ波長λcut2以下の波長域を透過させる。
 以上のようにして、第2のダイクロイックフィルタ32の後段においては、青色、緑色および赤色の光Lb,Lg,Lrが合波されて白色の照明光Lwが生成される。生成された照明光Lwは、収束レンズ5によって光軸A上のカバーガラス6に収束され、該カバーガラス6から光源装置1の外部へ照明光Lwが出力される。
 ここで、第2のダイクロイックフィルタ32のカットオフ波長λcut2は、該カットオフ波長λcut2における緑色光Lgの強度が該緑色光Lgピーク強度の10%以上であり、かつ、カットオフ波長λcut2における赤色光Lrの強度が該赤色光Lrのピーク強度の10%以上である波長に設定されている。図2に示される例では、カットオフ波長λcut2は、約615nmに設定されている。
 カットオフ波長λcut2における各光Lr,Lgの強度が、各々のピーク強度の10%未満である場合、照明光Lwの、カットオフ波長λcut2およびその近傍に、強度が不足する波長域が生じ得る。その結果、後述する照明光Lwの良好な色再現性を確保することが困難となる。
 各コリメータレンズ4は、各LED21,22,23の発光部に焦点が配置された凸レンズであり、LED21,22,23の発光部から拡散光束として射出される光Lb,Lg,Lrをそれぞれ受光し、略同一の光束径を有する平行光束に変換してダイクロイックフィルタ31,32へそれぞれ射出する。このように、青色光Lbと緑色光Lgと赤色光Lrとが合成されて、照明光Lwが生成される。
 次に、このように構成された光源装置1の作用について、生体内を観察する医療用内視鏡の光源装置として使用する場合を例に挙げて説明する。符号7は、光源装置1に接続された内視鏡の照明用のライトガイドを示している。
 各LED21,22,23から射出された3色の光Lb,Lg,Lrは、2つのダイクロイックフィルタ31,32によって同一の射出光軸A上に合波されることによって、第2のダイクロイックフィルタ32の後段において白色の照明光Lwを生成する。生成された照明光Lwは、収束レンズ5によって収束され、ライトガイド7へ入射する。
 ライトガイド7に入射した照明光Lwは、内視鏡の先端に配置されたライトガイド7の先端まで該ライトガイド7を導光し、内視鏡の先端から観察対象へ向かって照射される。観察対象からの照明光Lwの反射光は、内視鏡の先端に内蔵されたCCDイメージセンサのような撮像素子によって受光され、カラー画像化される。
 ここで、粘膜の分光反射率は、図3に示されるように、500nmから650nmの波長域において変化が大きい。図3において、照明光Lwの強度は、最大値を1として規格化されている。
 ここで、従来の光源装置1’について図10から図12を参照して説明する。図10に示されるように、光源装置1’の基本構成は、本実施形態に係る光源装置1と略同じであり、青色LED21’、赤色LED23’、第1のダイクロイックフィルタ31’、コリメータレンズ4’および集束レンズ5’は、青色LED21、赤色LED23、第1のダイクロイックフィルタ31、コリメータレンズ4、および集束レンズ5とそれぞれ同様に構成されている。ただし、図11に示されるように、従来の光源装置1’の緑色LED22’および第2のダイクロイックフィルタ32’の光学特性が、緑色LED22および第2のダイクロイックフィルタ32の光学特性とそれぞれ異なっている。
 図10および図11に示されるように、緑色LED22’として狭帯域の緑色光Lg’を発するLEDを使用した従来の光源装置1’の場合、生成される照明光Lw’のスペクトルは、図12に示されるように、粘膜の分光反射率が大きく変化する緑色から赤色の波長域において波長が欠落してしまう。これは、照明光Lw’を粘膜に照射した場合に、粘膜の色を正確に再現することができないことを意味している。
 本実施形態によれば、広帯域の緑色光Lgと、赤色光Lrとを合波して生成された照明光Lwは、500nmから650nmの波長域全体にわたって波長欠落の少ない連続するスペクトルを有する。さらに、緑色光Lgと赤色光Lrとを合波する第2のダイクロイックフィルタ32のカットオフ波長λcut2は、両方の光Lg,Lrが、該光Lg,Lrのピーク強度の10%以上の強度を有する波長に設定されている。これにより、照明光Lwは、図3に示されるように、500nmから650nmの波長域において相対的に強度が低くなるカットオフ波長λcut2およびその近傍においても十分な強度を有し、500nmから650nmの波長域全体にわたって波長欠落の少ない良好なスペクトル特性を有する。
 このような照明光Lwは、粘膜が有する、緑色から赤色の間の微妙な色合いの違いを再現するのに有利である。このように、特に緑色から赤色において演色性に優れた照明光Lwによって照明されている粘膜を撮影して得られた内視鏡のカラー画像において、粘膜の微妙な色合いも正確に再現することができるという利点がある。
 本実施形態においては、3色のLED21,22,23を備えることとしたが、LEDの色は適宜増加することができる。
 図4は、約410から420nmに単一のピーク波長を有する狭帯域の紫色光(短波長光)Lpを発する紫色LED(短波長光源)24と、紫色光Lpと青色光Lbとを射出光軸A上に合波する第3のダイクロイックフィルタ33とをさらに備えた構成を示している。
 第3のダイクロイックフィルタ33は、図5に示されるように、青色光Lbのピーク波長と紫色光Lpのピーク波長との間にカットオフ波長λcut3を有するショートパスフィルタである。第3のダイクロイックフィルタ33は、紫色光Lpの略全部を射出光軸Aに沿って透過させ、青色光Lbの大部分を射出光軸Aに沿って反射する。本例においては、カットオフ波長λcut3が約440nmに設定されている。
 ここで、青色光Lbの、所定の波長(図5および図6に示される例では、約430nm)以下の短波長域と、紫色光Lpの、所定の波長よりも長い長波長域とは、互いに重複している。所定の波長は、青色光Lbの強度がそのピーク強度の10%以上となり、かつ、紫色光Lpの強度がそのピーク強度の10%以上となる波長に設定されている。これにより、照明光Lwは、青色の波長域の全ての波長において波長欠落の少ないスペクトル特性を有する。
 図6に示されるように、粘膜の分光反射率は、青色の波長域においても、波長によって異なる。そこで、青色の波長域にピーク波長を有する2つのLED21,24を組み合わせることによって、照明光Lwの青色の波長域においても、波長欠落の少ない良好なスペクトル特性が得られる。このように、青色においても演色性に優れた照明光Lwで粘膜を照明することによって、粘膜が有する青色の微妙な色合いの違いも正確に表現することができるという利点がある。
 なお、図5および図6において、光Lb,Lpの強度は、各々の最大値を1として規格化されている。
 図7は、図4の構成にさらに、約600nmにピーク波長を有する狭帯域の橙色光(長波長光)Loを発する橙色LED(長波長光源)25と、橙色光Loを射出光軸A上に合波する第4のダイクロイックフィルタ34とをさらに備えた構成を示している。第4のダイクロイックフィルタ34は、緑色光Lgのピーク波長と、橙色光Loのピーク波長との間にカットオフ波長を有するショートパスフィルタである。カットオフ波長は、例えば、約580nmに設定される。
 図8に示されるように、第2のダイクロイックフィルタ32のカットオフ波長(所定の波長)λcut2は、橙色光Loのピーク波長と赤色光Lrのピーク波長との間に位置する。該カットオフ波長λcut2における赤色光Lrの強度は、該赤色光Lrのピーク強度の10%以上であり、かつ、カットオフ波長λcut2における橙色光Loの強度は、該橙色光Loのピーク強度の10%以上である。
 図9に示されるように、粘膜および該粘膜内に存在する血管の分光反射率は、赤色の波長域において、波長によって異なる。そこで、赤色の波長域にピーク波長を有する2つのLED23,25を組み合わせることによって、照明光Lwの赤色の波長域においても、波長欠落の少ない良好なスペクトル特性が得られる。このように、赤色においても演色性に優れた照明光Lwで粘膜を照明することによって、粘膜と血管との微妙な赤色の色合いの違いも正確に表現することができという利点がある。
 なお、図8および図9において、光Lb,Loの強度は、各々の最大値を1として規格化されている。
 さらに、本実施形態においては、ダイクロイックフィルタ31,32,33,34によって合波する光Lb,Lg,Lr,Lp,Loの強度比を調整する強度比調整部をさらに備えていてもよい。強度比調整部は、例えば、各LED21,22,23,24,25に電流を供給する電源(図示略)であり、各LED21,22,23,24,25に供給する電流の大きさを個別に調整することによって、各LED21,22,23,24,25の発光強度を互いに独立に調整し、それによって光Lb,Lg,Lr,Lp,Loの強度比を調整可能となっている。
 撮像素子は、全ての波長の光に対して等しい検出感度を有するのではなく、波長毎に検出感度が異なる。このような撮像素子の分光感度特性に最適となるように、照明光Lwのスペクトル特性を調整することで、撮像素子によって取得される画像において、より良い色再現性を確保することができる。
 また、本実施形態においては、広帯域光源として、広帯域の緑色光を発する緑色LED22を用いることとしたが、これに代えて、白色LEDのような、白色光を発する光源を使用してもよい。
1 光源装置
21 青色LED(短波長光源)
22 緑色LED(広帯域光源)
23 赤色LED(長波長光源)
24 紫色LED(短波長光源)
25 橙LED(長波長光源)
31,32,33,34 ダイクロイックフィルタ(合波部)
4 コリメータレンズ
5 収束レンズ
6 カバーガラス
7 ライトガイド

Claims (5)

  1.  赤色の波長域にピーク波長を有する長波長光を発する長波長光源と、
     500nmから580nmの緑色の波長域を含むとともに580nm以下にピーク波長を有し、前記長波長光の短波長側の波長域と重複する波長域を長波長側に有する広帯域光を発する単一の広帯域光源と、
     前記長波長光の、所定の波長よりも長い波長域と、前記広帯域光の、前記所定の波長以下の波長域とを合波する合波部とを備え、
     前記所定の波長は、前記長波長光のピーク波長と前記広帯域光のピーク波長との間の波長であるとともに、前記長波長光の強度がそのピーク強度の10%以上となり、かつ、前記広帯域光の強度がそのピーク強度の10%以上となる波長である光源装置。
  2.  前記広帯域光が、500nmから580nmの範囲内に前記ピーク波長を有する請求項1に記載の光源装置。
  3.  互いに異なるピーク波長を青色の波長域に有する短波長光をそれぞれ発する少なくとも2つの短波長光源を備え、
     長波長側のピーク波長を有する一方の前記短波長光の、所定の波長以下の波長域と、短波長側のピーク波長を有する他方の前記短波長光の、前記所定の波長よりも長い波長域とが、互いに重複し、
     前記所定の波長は、前記一方の短波長光の強度がそのピーク強度の10%以上となり、かつ、前記他方の短波長光の強度がそのピーク強度の10%以上となる波長である請求項1または請求項2に記載の光源装置。
  4.  互いに異なるピーク波長を赤色の波長域に有する長波長光をそれぞれ発する少なくとも2つの長波長光源を備え、
     前記合波部が、長波長側のピーク波長を有する一方の前記長波長光の、所定の波長よりも長い波長域と、短波長側のピーク波長を有する他方の前記長波長光の、前記所定の波長以下の波長域とを合波し、
     前記所定の波長は、前記一方の長波長光の強度がそのピーク強度の10%以上となり、かつ、前記他方の長波長光の強度がそのピーク強度の10%以上となる波長である請求項1から請求項3のいずれかに記載の光源装置。
  5.  前記合波部によって合波される光の強度比を調整する強度比調整部を備える請求項1から請求項4のいずれかに記載の光源装置。
PCT/JP2015/072634 2014-08-20 2015-08-10 光源装置 WO2016027717A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580043200.8A CN106574755A (zh) 2014-08-22 2015-08-10 光源装置
EP15833082.9A EP3184878A4 (en) 2014-08-22 2015-08-10 Light-source device
JP2016536966A JP6099831B2 (ja) 2014-08-22 2015-08-10 光源装置
US15/433,584 US10531789B2 (en) 2014-08-20 2017-02-15 Light-source device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014169408 2014-08-22
JP2014-169408 2014-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/433,584 Continuation US10531789B2 (en) 2014-08-20 2017-02-15 Light-source device

Publications (1)

Publication Number Publication Date
WO2016027717A1 true WO2016027717A1 (ja) 2016-02-25

Family

ID=55350662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072634 WO2016027717A1 (ja) 2014-08-20 2015-08-10 光源装置

Country Status (5)

Country Link
US (1) US10531789B2 (ja)
EP (1) EP3184878A4 (ja)
JP (1) JP6099831B2 (ja)
CN (1) CN106574755A (ja)
WO (1) WO2016027717A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131097A1 (ja) * 2017-01-11 2018-07-19 オリンパス株式会社 照明装置及び照明装置を含む内視鏡システム
JP2021096998A (ja) * 2019-12-19 2021-06-24 ティー.キュー.オプトエレクトロニックス.カンパニー,リミテッド 光源モジュール

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019044802A1 (ja) * 2017-08-28 2019-03-07 Hoya株式会社 内視鏡用光源装置及び内視鏡システム
JP2019080624A (ja) * 2017-10-27 2019-05-30 ソニー・オリンパスメディカルソリューションズ株式会社 医療用光源装置及び医療用内視鏡装置
CN110347010B (zh) * 2019-06-27 2021-04-20 苏州佳世达光电有限公司 光源模组及投影装置
CN112904549A (zh) * 2021-01-29 2021-06-04 武汉联影智融医疗科技有限公司 多色混光照明方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512671A (ja) * 2008-02-15 2011-04-21 クリー インコーポレイテッド 白色光出力を生成する広帯域発光デバイス・ランプ
JP2013125608A (ja) * 2011-12-13 2013-06-24 Olympus Corp 複数の導光ルートを有する光源システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034407A (en) * 1998-07-31 2000-03-07 Boeing North American, Inc. Multi-spectral planar photodiode infrared radiation detector pixels
JP4590647B2 (ja) * 1999-07-30 2010-12-01 日東光学株式会社 光源装置およびプロジェクタ装置
JP2004138866A (ja) * 2002-10-18 2004-05-13 Sony Corp 光学装置
JP4162971B2 (ja) 2002-10-29 2008-10-08 日東光学株式会社 光学エンジン
JP3944648B2 (ja) 2003-11-28 2007-07-11 セイコーエプソン株式会社 照明装置及びプロジェクタ
US7159987B2 (en) 2003-04-21 2007-01-09 Seiko Epson Corporation Display device, lighting device and projector
JP2005173625A (ja) 2005-01-06 2005-06-30 Seiko Epson Corp 照明装置及び投射装置
JP2013143329A (ja) * 2012-01-12 2013-07-22 Olympus Corp 照明装置
US9103528B2 (en) 2012-01-20 2015-08-11 Lumencor, Inc Solid state continuous white light source
WO2013150897A1 (ja) * 2012-04-04 2013-10-10 オリンパスメディカルシステムズ株式会社 光源装置
CN203258507U (zh) * 2013-03-18 2013-10-30 深圳市绎立锐光科技开发有限公司 一种发光装置及舞台灯系统
EP2976989A4 (en) * 2013-07-11 2017-03-15 Olympus Corporation Light source device
WO2015159676A1 (ja) 2014-04-17 2015-10-22 オリンパス株式会社 光源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512671A (ja) * 2008-02-15 2011-04-21 クリー インコーポレイテッド 白色光出力を生成する広帯域発光デバイス・ランプ
JP2013125608A (ja) * 2011-12-13 2013-06-24 Olympus Corp 複数の導光ルートを有する光源システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3184878A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131097A1 (ja) * 2017-01-11 2018-07-19 オリンパス株式会社 照明装置及び照明装置を含む内視鏡システム
US10791595B2 (en) 2017-01-11 2020-09-29 Olympus Corporation Illuminating device
JP2021096998A (ja) * 2019-12-19 2021-06-24 ティー.キュー.オプトエレクトロニックス.カンパニー,リミテッド 光源モジュール

Also Published As

Publication number Publication date
EP3184878A4 (en) 2018-05-02
JPWO2016027717A1 (ja) 2017-04-27
US20170156577A1 (en) 2017-06-08
US10531789B2 (en) 2020-01-14
JP6099831B2 (ja) 2017-03-22
EP3184878A1 (en) 2017-06-28
CN106574755A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6099831B2 (ja) 光源装置
AU2010332264B2 (en) Photonic lattice LEDs for ophthalmic illumination
WO2016006371A1 (ja) 内視鏡システム及び内視鏡用光源装置
US20110172492A1 (en) Medical apparatus and endoscope apparatus
WO2015016013A1 (ja) 内視鏡用光源装置、およびこれを用いた内視鏡システム
US10517473B2 (en) Endoscope light source apparatus
JP2009297290A (ja) 内視鏡装置およびその画像処理方法
US11076106B2 (en) Observation system and light source control apparatus
JP2020018914A (ja) 内視鏡システム
JP2020166012A (ja) 波長変換部材、光源装置、及び照明装置
JP6927210B2 (ja) 観察装置
JP4855755B2 (ja) 生体診断装置
JP5598968B2 (ja) 医用光学観察装置の照明デバイス用の光源構成
JP7405080B2 (ja) 医療用システム、医療用光源装置及び医療用光源装置の作動方法
US20160302652A1 (en) Fluorescence observation apparatus
JP5268583B2 (ja) 眼科撮影装置
JP6438830B2 (ja) 位置調整方法
JP6905038B2 (ja) 光源装置及び内視鏡システム
WO2020217852A1 (ja) 内視鏡用光源装置、及び、内視鏡システム
JP6681454B2 (ja) 内視鏡用光源装置、及び内視鏡システム
WO2020080223A1 (ja) 医療用システム、ライトガイド及び光の合波方法
WO2016203983A1 (ja) 内視鏡装置
JP6275360B1 (ja) 内視鏡用光源装置
JP7054401B2 (ja) 内視鏡用光源装置
JP6386939B2 (ja) 内視鏡光源装置、内視鏡システム、及び内視鏡光源装置の作動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016536966

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015833082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833082

Country of ref document: EP