WO2016027643A1 - 消失模型鋳造方法 - Google Patents

消失模型鋳造方法 Download PDF

Info

Publication number
WO2016027643A1
WO2016027643A1 PCT/JP2015/071755 JP2015071755W WO2016027643A1 WO 2016027643 A1 WO2016027643 A1 WO 2016027643A1 JP 2015071755 W JP2015071755 W JP 2015071755W WO 2016027643 A1 WO2016027643 A1 WO 2016027643A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
coating agent
hole
model
diameter
Prior art date
Application number
PCT/JP2015/071755
Other languages
English (en)
French (fr)
Inventor
一之 堤
毅 小西
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2016027643A1 publication Critical patent/WO2016027643A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns

Definitions

  • the present invention relates to a vanishing model casting method for casting a casting having a hole.
  • the disappearance model casting method is considered to be the most suitable method for forming a hole in a casting by casting (referred to as “casting”).
  • the disappearance model casting method is a method in which a mold formed by applying a coating agent on the surface of the foam model is buried in the casting sand, and then a molten metal is poured into the mold to disappear the foam model. It is a method of casting a casting by replacing it.
  • Patent Document 1 discloses a disappearance model casting method in which the casting time during casting is set according to the modulus of the model (model volume / model surface area).
  • the casting agent applied to the surface of the hole portion of the foam model and the casting sand filled in the hole portion from the periphery during casting in the course of solidification.
  • the heat load is large, and various external forces act from the molten metal.
  • the hole part of a foaming model is a part in which a hole is formed by casting. Therefore, as shown in FIG. 11, which is a conceptual diagram, the coating agent 24 is damaged at the hole end portion 23 a and the central portion 23 b of the hole portion 23, and the molten metal 26 is poured into the casting sand 25 filled in the hole portion 23. May ooze out.
  • the coating agent 24 is damaged, thereby causing “burning” in which the molten metal 26 and the cast sand 25 are fused, and the finished state is good. It becomes difficult to form a narrow hole.
  • a narrow hole having a diameter of 18 mm or less and a length of 50 mm or more is not punched, and a thin hole is made by machining later on the cast casting.
  • a narrow hole having a diameter of 18 mm or less and a length of 50 mm or more is cast out. Stable manufacturing is difficult.
  • An object of the present invention is to provide a vanishing model casting method capable of casting a fine hole having a diameter of 18 mm or less and a length of 100 mm or more and having a good finished state.
  • a molten metal is poured into the mold, and the foam model is eliminated to replace the molten metal.
  • a hole having a diameter of 18 mm or less is formed in the casting by casting, and the diameter of the hole portion of the foamed model, which is a portion where the hole is formed, is D ( mm)
  • the bending strength of the coating agent returned to room temperature after heating until resin decomposition is ⁇ c (MPa)
  • the thickness of the coating agent applied to the foamed model is 1 mm or more
  • the coating agent satisfying the following formula is used.
  • the thickness of the coating agent applied to the foamed model is set to 1 mm or more, and the coating agent satisfying the above formula is used. It is difficult to directly measure the high temperature strength of the coating agent, and the correlation between the bending strength of the coating agent at room temperature and the high temperature strength of the coating agent is small. Therefore, the above formula can be obtained by using the bending strength of the coating agent heated to the normal temperature after being heated until the resin decomposes, instead of the strength of the coating agent at a high temperature.
  • the thickness of the coating agent applied to the foamed model is 1 mm or more, so that a casting having a narrow hole having a diameter of 18 mm or less and a length of 100 mm or more is obtained. Even if it casts, a coating agent can be prevented from being damaged. Thereby, since seizing does not occur at the time of casting, it is possible to cast a fine hole having a diameter of 18 mm or less and a length of 100 mm or more and having a good finished state.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is an enlarged view of the principal part B of FIG. It is a side view of a casting_mold
  • FIG. 6 is a cross-sectional view taken along the line CC of FIG. It is an enlarged view of the principal part D of FIG. It is a figure which shows the relationship between the kind of coating agent, and an average diameter which can be cast. It is a figure which shows the relationship between the bending strength in the normal temperature of the dried coating agent, and the diameter which can be cast. It is a figure which shows the relationship between the bending strength of the mold agent which returned to normal temperature after heating until resin decomposition, and the diameter which can be cast. It is a conceptual diagram of casting by the vanishing model casting method.
  • a mold formed by applying a coating agent on the surface of a foam model is buried in casting sand (dry sand), and then a molten metal is poured into the mold to foam.
  • This vanishing model casting method is considered to be the most suitable method for casting, for example, a casting having a narrow hole having a diameter of 18 mm or less and a length of 100 mm or more by “casting”.
  • the vanishing model casting method includes a melting step of melting metal (cast iron) to form a molten metal, a molding step of forming a foamed model, and a coating step of applying a coating agent on the surface of the foamed model to form a mold.
  • the disappearing model casting method involves melting the foam model by pouring molten metal (molten metal) into the mold, and a molding process in which the mold is filled in the casting sand and filling the casting sand into every corner of the mold. It has a casting step for replacing the molten metal, a cooling step for cooling the molten metal poured into the mold to form a casting, and a separation step for separating the casting from the casting sand.
  • gray cast iron JIS G 5501: 1995 FC250
  • flake graphite cast iron JIS G 5501: 1995 FC300
  • a foam resin such as polystyrene foam
  • a silica-based aggregate coating agent or the like can be used.
  • the cast sand “silica sand” mainly composed of SiO 2 , zircon sand, chromite sand, synthetic ceramic sand, or the like can be used.
  • the thickness of the coating agent applied to the foamed model is 1 mm or more.
  • the thickness of the coating agent is preferably 3 mm or less.
  • fills the following formula
  • D is the diameter (mm) of the hole of the foamed model
  • ⁇ c is the bending strength (bending strength) (MPa) of the coating agent that has been heated until the resin is decomposed and then returned to room temperature.
  • the hole part of a foaming model is a part in which a hole is formed by casting.
  • a hole 3 having a diameter of D (mm) and a length of 1 (mm) is formed in the center of the rectangular foam model 2.
  • a casting having a narrow hole having a diameter of 18 mm or less and a length of 100 mm or more is cast using a mold 1 provided penetrating from the upper surface to the lower surface.
  • the hole part 3 is provided so that an angle may be formed between the hole end part 3a and the surface of the foam model 2. That is, the hole end portion 3a is not processed with a taper or the like.
  • the diameter D of the hole 3 is the length between the surfaces of the hole 3 across the center line of the hole 3, and is the length between the surfaces of the coating agent applied to the surface of the hole 3. Absent.
  • the diameter of the narrow hole is preferably 10 mm or more.
  • the diameter of the narrow hole is more preferably 18 mm or less. This is because when a coating agent having a thickness of 3 mm is applied to the surface of a fine hole having a diameter of 10 mm, the inner diameter of the space inside the fine hole becomes 4 mm, and it becomes difficult to throw casting sand into the fine hole.
  • a load acting on the coating agent applied to the surface of the hole 3 of the foam model 2 is predicted.
  • the following external force acts on the coating agent applied to the hole end 3 a of the hole 3.
  • Melt static pressure ( ⁇ p) (2) Dynamic pressure due to molten metal flow ( ⁇ m) (3) Thermal contraction / expansion difference ( ⁇ thout) during solidification of coating agent and molten metal (4) Thermal contraction / expansion difference ( ⁇ thin) between casting sand in hole 3 and coating agent (5) Pressure of gas generated by combustion of foam model (Pgout) ( ⁇ gout) (6) Internal pressure (Pgin) ( ⁇ gin) generated when the gas generated by the combustion of the foam model is accumulated inside the hole 3
  • FIG. 2 which is a side view of the mold 1
  • the casting sand 5 filled around the foamed model 2 receives the static pressure of the molten metal 6.
  • FIG. 3 which is a cross-sectional view taken along the line AA of FIG. 2, the coating agent 4 applied to the surface of the hole 3 receives a compressive force in the circumferential direction.
  • FIG. 4 is an enlarged view of the main part B of FIG.
  • the static pressure of the molten metal 6 and the reaction force from the casting sand 5 are balanced. Therefore, the axial load of the hole 3 can be ignored.
  • the external force w (N / mm) can be obtained by the following equation (3) as an average head difference (difference in height in the vertical direction between the molten metal gate and the hole 3) h (mm).
  • the molten metal gate is a portion where the molten metal is poured into the casting sand surrounding the foamed model above the hole.
  • FIG. 5 is a side view of the mold 1
  • the foam model 2 disappears and is replaced with the molten metal 6
  • the casting sand 5 filled around the foam model 2 is gas generated by the combustion of the foam model 2. Under pressure.
  • FIG. 6 which is a CC cross-sectional view of FIG. 5
  • the coating agent 4 applied to the surface of the hole 3 receives a compressive force in the circumferential direction.
  • FIG. 7 which is an enlarged view of the main part D of FIG. 5
  • a tensile force of the following expression (5) is given in the axial direction of the hole 3.
  • ⁇ b> ⁇ p + ⁇ gout ( ⁇ / 8) ⁇ m ghl 2 / t 2 + kPgout / D 2 + ⁇ Expression (8)
  • k is a proportional constant
  • ⁇ m + ⁇ thout + ⁇ thin + ⁇ gin ⁇ 0.
  • Equation (8) is the most severe condition that is established when there is no reaction force of the sand. Therefore, if each term is replaced with a coefficient in consideration of the reaction force of casting sand, the function is a function of the diameter D and length l of the hole 3 and the thickness t of the coating agent as shown in equation (9). Can do.
  • the bending strength ⁇ c (MPa) of the coating agent heated to the normal temperature after being heated until the resin is decomposed is used. Then, from the relationship between the bending strength of the mold agent that has been heated to resin decomposition and then returned to room temperature, and the diameter of the hole that can be cast (diameter that can be cast), formula (9) is formula (10) Can be expressed as In addition, the relationship between the bending strength of the mold agent that has been heated until the resin is decomposed and then returned to room temperature and the diameter that can be cast will be described later.
  • the thickness of the coating agent applied to the foamed model is 1 mm or more, thereby providing a narrow hole having a diameter of 18 mm or less and a length of 100 mm or more. Even if a casting is cast, the coating agent can be prevented from being damaged.
  • FIG. 9 shows the relationship between the bending strength (bending strength) at room temperature (Table 1) and the diameter that can be cast (Table 3) of the dried coating agent.
  • Table 1 the bending strength
  • Table 3 the diameter that can be cast
  • the correlation between the two is low. Therefore, the correlation between the bending strength of the coating agent at normal temperature and the high temperature strength of the coating agent is small. This is because, in the bending strength after the coating agent is dried, the properties of the binder (resin component) have a strong influence, but when the coating agent is heated to 200 to 400 ° C. or more in actual casting. It is considered that the strength characteristic by another mechanism related to carbon (or carbide) generated by decomposition of the binder becomes dominant.
  • the dried coating agent was heated until the resin was decomposed to obtain a sintered body, which was cooled to room temperature, and then the bending strength was measured.
  • the dried coating agent was heated to 1100 ° C., it was cooled to room temperature and the bending strength test was performed.
  • FIG. 10 shows the relationship between the bending strength of the coating agent that has been heated to resin decomposition and then returned to room temperature, and the diameter that can be cast.
  • the bending strength test was implemented as follows. (1) The casting agent is poured into a mold, naturally dried at room temperature or 25 ° C. for 12 hours or more, then dried in a constant temperature dryer at 50 ° C.
  • test specimen for measurement having a thickness of 2 ⁇ 0.5 mm was prepared.
  • the bending strength was measured with respect to the produced test piece by the three-point bending test by the center concentrated load. At this time, a load (0.05 to 0.1 N / s) was applied to the surface that was in contact with the mold and dried when the test piece was prepared.
  • the thickness of the fracture surface of the test piece was measured at three or more locations including the center and both ends, and the bending strength was calculated using the average value.
  • the above three-point bending test uses a bending tester having a load capacity of 0.05 to 0.1 N / s, and uses a test jig having a distance between fulcrums of 40 mm and a fulcrum tip shape of R1.5 mm. It was.
  • the diameter of the hole formed by punching is D (mm)
  • the bending strength (bending strength) of the coating agent that is heated once until the resin is decomposed and then returned to room temperature is ⁇ c (MPa). Then, the following equation (11) is obtained.
  • the casting agent is prevented from being damaged even when a casting having a narrow hole having a diameter of 18 mm or less and a length of 100 mm or more is cast. I understand that I can do it.
  • the thickness of the coating agent applied to the foam model 2 is set to 1 mm or more.
  • a coating agent satisfying the above formula (1) is used. It is difficult to directly measure the high temperature strength of the coating agent, and the correlation between the bending strength of the coating agent at room temperature and the high temperature strength of the coating agent is small. Therefore, the above formula (1) is obtained by using the bending strength of the coating agent returned to room temperature after being heated until the resin decomposes, instead of the strength of the coating agent at high temperature.
  • the thickness of the coating agent applied to the foam model 2 is set to 1 mm or more, so that a fine hole having a diameter of 18 mm or less and a length of 100 mm or more is formed. It is possible to prevent the coating agent from being damaged even if the casting is provided. Thereby, since seizing does not occur at the time of casting, it is possible to cast a fine hole having a diameter of 18 mm or less and a length of 100 mm or more and having a good finished state.

Abstract

直径が18mm以下で長さが100mm以上である、仕上がり状態が良好な細穴を鋳抜くことができるようにする。穴部3の直径をD(mm)、樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度(曲げ強さ)をσc(MPa)とすると、発泡模型2に塗布する塗型剤の厚みを1mm以上とし、且つ、以下の式を満たす塗型剤を用いる。σc≧-0.36+140/D

Description

消失模型鋳造方法
 本発明は、穴を備えた鋳物を鋳造する消失模型鋳造方法に関する。
 一般的な砂型鋳造による方法に対して、寸法精度の優れた鋳物を鋳造する方法がいくつか提案されている。例えば、インベストメント鋳造法(別名、ロストワックス法)、石膏鋳型鋳造法、消失模型鋳造法などが開発されている。
 その中でも、消失模型鋳造法は、鋳造によって鋳物の内部に穴を形成する(「鋳抜き」と呼ばれる)のに最も適した方法であると考えられる。ここで、消失模型鋳造法は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、鋳型内に金属の溶湯を注ぎ込み、発泡模型を消失させて溶湯と置換することで、鋳物を鋳造する方法である。
 特許文献1には、鋳造時の鋳込み時間を、模型のモジュラス(模型の体積÷模型の表面積)に応じて設定する消失模型鋳造法が開示されている。
特開2011-110577号公報
 ところで、消失模型鋳造法では、鋳造中(凝固進行中)において、発泡模型の穴部の表面に塗布された塗型剤、および、穴部の内部に充填された鋳砂に対して、周囲からの熱負荷が大きく、また、溶湯から様々な外力が作用する。なお、発泡模型の穴部は、鋳抜きによって穴が形成される部分である。そのため、概念図である図11に示すように、穴部23の穴端部23aや中央部23bにおいて塗型剤24が損傷して、穴部23の内部に充填された鋳砂25に溶湯26が染み出すことがある。特に、直径が18mm以下の細穴を鋳抜きする場合には、塗型剤24に損傷が生じることで、溶湯26と鋳砂25とが融着する「焼き付き」が生じて、仕上がり状態が良好な細穴を形成することが困難になる。
 そこで、通常、直径が18mm以下で長さが50mm以上の細穴は鋳抜きせずに、鋳造した鋳物に後から機械加工で細穴をあけている。あるいは、数度の試作を行って塗型剤の材質や鋳造条件(注湯時の溶湯温度)を決めることで、直径が18mm以下で長さが50mm以上の細穴を鋳抜いているが、安定的な製造は難しい。
 本発明の目的は、直径が18mm以下で長さが100mm以上である、仕上がり状態が良好な細穴を鋳抜くことが可能な消失模型鋳造方法を提供することである。
 本発明は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、前記鋳型内に金属の溶湯を注ぎ込み、前記発泡模型を消失させて前記溶湯と置換することで、鋳物を鋳造する消失模型鋳造方法において、鋳造によって、直径が18mm以下の穴を前記鋳物に形成するとともに、前記穴が形成される部分である前記発泡模型の穴部の直径をD(mm)、樹脂分解するまで加熱した後に常温に戻した前記塗型剤の抗折強度をσc(MPa)とすると、前記発泡模型に塗布する前記塗型剤の厚みを1mm以上とし、且つ、以下の式を満たす前記塗型剤を用いることを特徴とする。
 σc≧-0.36+140/D
 本発明によると、鋳造によって、直径が18mm以下の穴を鋳物に形成するに際し、発泡模型に塗布する塗型剤の厚みを1mm以上とし、且つ、上記の式を満たす塗型剤を用いる。塗型剤の高温強度を直接測定することは困難であり、また、常温の塗型剤の抗折強度と、塗型剤の高温強度との相関は小さい。そこで、高温下における塗型剤の強度の代わりに、樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度を用いると、上記の式が得られる。よって、上記の式を満たす塗型剤を用いて、発泡模型に塗布する塗型剤の厚みを1mm以上とすることで、直径が18mm以下で長さが100mm以上の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができる。これにより、鋳造時に焼き付きが生じないので、直径が18mm以下で長さが100mm以上である、仕上がり状態が良好な細穴を鋳抜くことができる。
鋳型の上面図である。 鋳型の側面図である。 鋳型の側面図である。 図2のA-A断面図である。 図2の要部Bの拡大図である。 鋳型の側面図である。 図5のC-C断面図である。 図5の要部Dの拡大図である。 塗型剤の種類と平均鋳抜き可能径との関係を示す図である。 乾燥させた塗型剤の常温における抗折強度と鋳抜き可能径との関係を示す図である。 樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度と、鋳抜き可能径との関係を示す図である。 消失模型鋳造法による鋳造の概念図である。
 以下、本発明の好適な実施の形態について、図面を参照しつつ説明する。
(消失模型鋳造方法)
 本発明の実施形態による消失模型鋳造方法は、発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂(乾燥砂)の中に埋めた後に、鋳型内に金属の溶湯を注ぎ込み、発泡模型を消失させて溶湯と置換することで、鋳物を鋳造する方法である。この消失模型鋳造方法は、「鋳抜き」によって、例えば、直径が18mm以下で長さが100mm以上の細穴を備えた鋳物を鋳造するのに最も適した方法であると考えられる。
 消失模型鋳造方法は、金属(鋳鉄)を溶解して溶湯とする溶解工程と、発泡模型を成形する成形工程と、発泡模型の表面に塗型剤を塗布して鋳型とする塗布工程と、を有している。さらに、消失模型鋳造方法は、鋳型を鋳砂の中に埋めて鋳型の隅々にまで鋳砂を充填する造型工程と、鋳型内に溶湯(溶融金属)を注ぎ込むことで、発泡模型を溶かして溶湯と置換する鋳込工程と、鋳型内に注ぎ込んだ溶湯を冷却して鋳物にする冷却工程と、鋳物と鋳砂とを分離する分離工程と、を有している。
 溶湯にする金属としては、ねずみ鋳鉄(JIS G 5501:1995 FC250)または片状黒鉛鋳鉄(JIS G 5501:1995 FC300)などを用いることができる。また、発泡模型としては、発泡スチロールなどの発泡樹脂を用いることができる。また、塗型剤としては、シリカ系骨材の塗型剤などを用いることができる。また、鋳砂としては、SiOを主成分とする「けい砂」、ジルコン砂、クロマイト砂または合成セラミック砂などを用いることができる。なお、鋳砂に粘結剤または硬化剤を添加してもよい。
 ここで、本実施形態では、発泡模型に塗布する塗型剤の厚みを1mm以上としている。なお、塗型剤の厚みは3mm以下が好ましい。塗型剤の厚みが3mm以上になると、塗型剤の塗布と乾燥とを3回以上繰り返す必要があり手間がかかる上に、厚みが不均一になりやすいからである。また、以下の式(1)を満たす塗型剤を用いている。
 σc≧-0.36+140/D・・・式(1)
 ここで、Dは発泡模型の穴部の直径(mm)、σcは樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度(曲げ強さ)(MPa)である。なお、発泡模型の穴部は、鋳抜きによって穴が形成される部分である。
 ここで、上面図である図1Aおよび側面図である図1Bに示すように、直方体の発泡模型2の中央部に、直径がD(mm)で長さがl(mm)の穴部3が上面から下面にかけて貫通して設けられた鋳型1を用いて、直径が18mm以下で長さが100mm以上の細穴を備えた鋳物を鋳造する場合について考える。なお、穴部3は、その穴端部3aにおいて発泡模型2の面との間に角が生じるように設けられている。即ち、穴端部3aにテーパなどの加工は施されていない。また、穴部3の直径Dは、穴部3の中心線を挟んだ穴部3の表面間の長さであり、穴部3の表面に塗布された塗型剤の表面間の長さではない。
 ここで、細穴の直径は、10mm以上であることが好ましい。また、細穴の直径は、18mm以下であることがより好ましい。直径10mmの細穴の表面に厚み3mmの塗型剤を塗布すると、細穴の内側の空間の内径が4mmとなり、細穴の内部に鋳砂を投入するのが困難になるからである。
 まず、基本的な鋳造条件にしたがって、発泡模型2の穴部3の表面に塗布された塗型剤に作用する負荷を予測する。ここで、細穴を鉛直方向に沿って設ける場合、穴部3の穴端部3aに塗布した塗型剤には以下の外力が作用する。
(1)溶湯の静圧(σp)
(2)溶湯の流れによる動圧(σm)
(3)塗型剤と溶湯との凝固時の熱収縮・膨張差(σthout)
(4)穴部3内の鋳砂と塗型剤との熱収縮・膨張差(σthin)
(5)発泡模型の燃焼で発生したガスの圧力(Pgout)(σgout)
(6)発泡模型の燃焼で発生したガスが穴部3の内部に溜まって生じる内圧(Pgin)(σgin)
 したがって、溶湯(溶融金属)の温度と同等の高温下における塗型剤の強度をσbとすると、以下の式(2)が成立すれば、塗型剤の損傷による溶湯と鋳砂との「焼き付き」を生じさせることなく、「鋳抜き」することが可能となる。
 σb>σp+σm+σthout+σthin+σgout+σgin・・・式(2)
 以下、各外力について検討する。
(溶湯の静圧)
 鋳型1の側面図である図2に示すように、発泡模型2を消失させて溶湯6と置換すると、発泡模型2の周囲に充填された鋳砂5は、溶湯6の静圧を受ける。図2のA-A断面図である図3に示すように、穴部3の表面に塗布された塗型剤4は、周方向に圧縮力を受ける。
 ここで、発泡模型2の周囲に充填された鋳砂5の量が十分である場合には、図2の要部Bの拡大図である図4に示すように、穴端部3aに塗布された塗型剤4において、溶湯6の静圧と鋳砂5からの反力とが釣り合う。よって、穴部3の軸方向の負荷は無視することができる。
 一方、穴部3の内部に充填された鋳砂5の量が不十分である場合には、穴端部3aに塗布された塗型剤4には、溶湯6の静圧(浮力)による曲げ応力が作用する。
 ここで、穴部3の直径をD(mm)、重力加速度をg、溶湯6の密度をρ(kg/mm3)とすると、溶湯6の静圧による穴部3(半円)への外力w(N/mm)は、平均ヘッド差(溶湯の湯口と穴部3との鉛直方向高さの差)h(mm)として、次式(3)で求めることができる。なお、溶湯の湯口とは、穴部よりも上方において、発泡模型を囲む鋳砂に開口されて、溶湯が注ぎ込まれる箇所である。
 w=ρgh×∫(D/2sinθ×θ)dθ
  =ρghD/2×∫sinθdθ
  =ρghD/2〔θ/2-sin2θ/4〕
  =(π/4)ρghD・・・式(3)
 溶湯6の静圧により、穴部3の表面に塗布された厚みt(mm)の塗型剤4に作用する応力は、穴部3の内部に充填された鋳砂5からの反力が無いと仮定して平板に近似すると、梁理論から次式(4)のσp(MPa)となる。
 σp≒M/I×t/2=(π/8)ρghl/t・・・式(4)
ここで、Mは穴部3の両端に作用するモーメント、Iは半円筒の断面2次モーメントである。
 M=(π/48)ρghDl
 I=Dt/12
(溶湯の流れによる動圧)
 溶湯の流れによる動圧は、溶湯の流れが静かであることを前提とすると、無視することができる。
(塗型剤と溶湯との凝固時の熱収縮・膨張差)
 線膨張率は、鋳砂より鋳鉄の方が大きい。よって、塗型剤と溶湯との凝固時の熱収縮・膨張差は、塗型剤の軸方向に圧縮力を与える。この圧縮力は、塗型剤が形成する円管が座屈により破壊される原因になりうるが、無視できるほど小さいと考えられる。また、塗型剤の周方向の応力も無視することができる。
(穴部内の鋳砂と塗型剤との熱収縮・膨張差)
 穴部3内の鋳砂や塗型剤は、溶湯よりも温度変化が小さい。よって、穴部3内の鋳砂と塗型剤との熱収縮・膨張差による影響は、塗型剤と溶湯との凝固時の熱収縮・膨張差よりも小さく、無視することができる。
(発泡模型の燃焼で発生したガスの圧力)
 鋳型1の側面図である図5に示すように、発泡模型2を消失させて溶湯6と置換すると、発泡模型2の周囲に充填された鋳砂5は、発泡模型2の燃焼で発生したガスの圧力を受ける。
 図5のC-C断面図である図6に示すように、穴部3の表面に塗布された塗型剤4は、周方向に圧縮力を受ける。しかし、図5の要部Dの拡大図である図7に示すように、穴部3の軸方向には、次式(5)の引張力を与える。
 σgout∝Pgout/D・・・式(5)
 なお、図7に示すように、発泡模型2の周囲に充填された鋳砂5の量が十分である場合には、ガスの圧力と鋳砂5からの反力とが釣り合うので、穴部3の軸方向の負荷は無視することができる。
(発泡模型の燃焼で発生したガスが穴部の内部に溜まって生じる内圧)
 発泡模型2の燃焼で発生したガスが穴部3の内部に溜まって生じる内圧は、塗型剤に式(6)の周方向の応力、および、式(7)の軸方向の応力を生じさせる。
 σgin≒D×Pgin/t・・・式(6)
 σginz≒D×Pgin/(2t)・・・式(7)
 ここで、穴部3の直径Dが小さいほど鋳抜きがし難いことから、式(6)、式(7)で表される外力の影響は無視できるほど小さいといえる。
 以上から、鋳砂の充填量が十分である場合には、塗型剤への負荷は小さい。しかし、実際には、鋳砂からの反力は十分ではなく、塗型剤には、溶湯の静圧による曲げ応力、および、発泡模型2の燃焼で発生したガスの圧力による軸方向の引張力が作用する。よって、塗型剤は、これらに耐えうる強度を有する必要がある。したがって、鋳抜き条件として、式(2)は、式(4)と式(5)とを用いて、式(8)のように近似することができる。
 σb>σp+σgout=(π/8)ρghl/t+kPgout/D+γ・・・式(8)
 ここで、kは比例定数、γ=σm+σthout+σthin+σgin≒0である。
 式(8)は、鋳砂の反力が無いときに成立する、もっとも厳しい条件である。そこで、鋳砂の反力も加味して各項を係数に置き換えると、式(9)のような、穴部3の直径Dと長さl、および、塗型剤の厚みtの関数とすることができる。
 σb>α・l/t+β/D・・・式(9)
 ここで、高温下における塗型剤の強度σb(MPa)の代わりに、樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度σc(MPa)を用いる。すると、樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度と、穴部の鋳抜き可能な直径(鋳抜き可能径)との関係から、式(9)は式(10)で表すことができる。なお、樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度と、鋳抜き可能径との関係については後述する。
 σc≧-0.36+140/D・・・式(10)
 よって、上記の式(10)を満たす塗型剤を用いて、発泡模型に塗布する塗型剤の厚みを1mm以上とすることで、直径が18mm以下で長さが100mm以上の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができる。
(鋳抜き評価)
 次に、発泡模型に塗布する塗型剤の厚みを1mmとし、鋳抜きで形成する細穴の長さを100mmとした場合について、塗型剤、鋳砂、および、穴部3の直径をそれぞれ異ならせて、鋳抜きの可否を評価した。塗型剤の種類を表1に、鋳砂の種類を表2に、それぞれ示す。また、鋳抜き可否の結果を表3に示す。また、塗型剤の種類と平均鋳抜き可能径との関係を図8に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 この評価は、同じ成分のねずみ鋳鉄(JIS G 5501:1995 FC250)を用いて、同じ鋳造方法で行っている。よって、表1に示した3種類の塗型剤は、それぞれ高温強度(最高温度約1200℃)が式(9)を満たすものと推定できる。
 ここで、塗型剤の高温強度を直接測定することは困難である。そこで、塗型剤の強度を間接的に推定する方法を検討した。乾燥させた塗型剤の常温における抗折強度(曲げ強さ)(表1)と鋳抜き可能径(表3)との関係を図9に示す。図9からわかるように、両者の相関は低い。よって、常温の塗型剤の抗折強度と、塗型剤の高温強度との相関は小さい。これは、塗型剤が乾燥した後の抗折強度においては、粘結剤(樹脂分)の特性が強く影響する一方、実際の鋳造で塗型剤が200~400℃以上に加熱されると、粘結剤が分解して生じる炭素(あるいは炭化物)に関係する別のメカニズムによる強度特性が支配的になるためと考えられる。
 そこで、乾燥した塗型剤を樹脂分解するまで加熱して焼結体とし、それを常温に冷却してから抗折強度を測定した。本実施形態では乾燥した塗型剤を1100℃に加熱した後、常温まで冷却して抗折強度試験を実施した。樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度と、鋳抜き可能径との関係を図10に示す。
 なお、抗折強度試験は、以下の要領により実施した。
(1)塗型剤を型に流し込み、室温または25℃で12時間以上自然乾燥した後、50℃の恒温乾燥機で2時間以上乾燥し、その後所定の大きさに切り出し、50mm×10mm、厚さ2±0.5mmの測定用試験片を作製した。
(2)作製した試験片に対して、中央集中荷重による3点曲げ試験により抗折力を測定した。この際、試験片作製時に型と接触して乾燥した面に対して荷重(0.05~0.1N/s)を負荷した。
(3)試験後に、試験片の破断面の厚みを、中央および両端を含む3箇所以上で測定してその平均値を用いて、抗折力を算出した。
(4)同一条件により作製した試験片を用いて、上記3点曲げ試験を3回以上行い、その抗折力の平均値を求め、この平均値を塗型剤の抗折強度とした。
(5)上記3点曲げ試験は、0.05~0.1N/sの負荷能力を有する抗折試験機を用い、支点間距離40mmで支点先端形状がR1.5mmの試験用治具を用いた。
 図10に示す関係から、鋳抜きで形成する穴の直径をD(mm)、樹脂分解するまで一度加熱した後に常温に戻した塗型剤の抗折強度(曲げ強さ)をσc(MPa)とすると、次式(11)が得られる。
 σc≧-0.36+140/D・・・式(11)
 よって、式(11)を満たす塗型剤を用いることで、直径が18mm以下で長さが100mm以上の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができることがわかる。
(実施例)
 次に、ねずみ鋳鉄(JIS G 5501:1995 FC250)を溶湯として用いて、100(mm)×100(mm)×200(mm)の直方体の発泡模型に、上面から下面にかけて貫通する、長さ100mmで直径14mmの穴部を配置した鋳型を用いて、細穴を備えた鋳物を鋳造した。
 鋳造には、式(1)にD=14(mm)を代入することで得られた、骨材径が100μm以下のシリカ系骨材の塗型剤(表1のB)を用いた。また、鋳砂としてSiOを主成分とする「けい砂」を用いた。
 発泡模型に塗型剤を1mm以上塗布して鋳造を行った結果、「焼き付き」を生じさせることなく、仕上がり状態が良好な細穴を鋳抜くことができた。
(効果)
 以上に述べたように、本実施形態に係る消失模型鋳造方法によると、鋳造によって、直径が18mm以下の穴を鋳物に形成するに際し、発泡模型2に塗布する塗型剤の厚みを1mm以上とし、且つ、上記の式(1)を満たす塗型剤を用いる。塗型剤の高温強度を直接測定することは困難であり、また、常温の塗型剤の抗折強度と、塗型剤の高温強度との相関は小さい。そこで、高温下における塗型剤の強度の代わりに、樹脂分解するまで加熱した後に常温に戻した塗型剤の抗折強度を用いると、上記の式(1)が得られる。よって、上記の式(1)を満たす塗型剤を用いて、発泡模型2に塗布する塗型剤の厚みを1mm以上とすることで、直径が18mm以下で長さが100mm以上の細穴を備えた鋳物を鋳造しても、塗型剤が損傷しないようにすることができる。これにより、鋳造時に焼き付きが生じないので、直径が18mm以下で長さが100mm以上である、仕上がり状態が良好な細穴を鋳抜くことができる。
(本実施形態の変形例)
 以上、本発明の実施形態を説明したが、具体例を例示したに過ぎず、特に本発明を限定するものではなく、具体的構成などは、適宜設計変更可能である。また、発明の実施の形態に記載された、作用及び効果は、本発明から生じる最も好適な作用及び効果を列挙したに過ぎず、本発明による作用及び効果は、本発明の実施の形態に記載されたものに限定されるものではない。
 本出願は、出願日が2014年8月18日である日本国特許出願、特願第2014-165865号を基礎出願とする優先権主張を伴い、特願第2014-165865号は参照することにより本明細書に取り込まれる。
 1 鋳型
 2 発泡模型
 3 穴部
 3a 穴端部
 4 塗型剤
 4a 端部
 5 鋳砂
 6 溶湯
 23 穴部
 23a 穴端部
 23b 中央部
 24 塗型剤
 25 鋳砂
 26 溶湯

Claims (1)

  1.  発泡模型の表面に塗型剤を塗布してなる鋳型を鋳砂の中に埋めた後に、前記鋳型内に金属の溶湯を注ぎ込み、前記発泡模型を消失させて前記溶湯と置換することで、鋳物を鋳造する消失模型鋳造方法において、
     鋳造によって、直径が18mm以下の穴を前記鋳物に形成するとともに、
     前記穴が形成される部分である前記発泡模型の穴部の直径をD(mm)、樹脂分解するまで加熱した後に常温に戻した前記塗型剤の抗折強度をσc(MPa)とすると、前記発泡模型に塗布する前記塗型剤の厚みを1mm以上とし、且つ、以下の式を満たす前記塗型剤を用いることを特徴とする消失模型鋳造方法。
     σc≧-0.36+140/D
PCT/JP2015/071755 2014-08-18 2015-07-31 消失模型鋳造方法 WO2016027643A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014165865A JP6014087B2 (ja) 2014-08-18 2014-08-18 消失模型鋳造方法
JP2014-165865 2014-08-18

Publications (1)

Publication Number Publication Date
WO2016027643A1 true WO2016027643A1 (ja) 2016-02-25

Family

ID=55350589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071755 WO2016027643A1 (ja) 2014-08-18 2015-07-31 消失模型鋳造方法

Country Status (3)

Country Link
JP (1) JP6014087B2 (ja)
TW (1) TWI583458B (ja)
WO (1) WO2016027643A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101929134B1 (ko) * 2014-08-18 2018-12-13 가부시키가이샤 고베 세이코쇼 소실 모형 주조 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183744A (ja) * 1987-01-26 1988-07-29 Nabeya:Kk 多孔性鋳造品の製造方法
JPH01266941A (ja) * 1988-04-20 1989-10-24 Mitsubishi Heavy Ind Ltd 消失模型用塗型剤
JP2003290873A (ja) * 2002-04-08 2003-10-14 Kao Corp 消失模型鋳造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183744A (ja) * 1987-01-26 1988-07-29 Nabeya:Kk 多孔性鋳造品の製造方法
JPH01266941A (ja) * 1988-04-20 1989-10-24 Mitsubishi Heavy Ind Ltd 消失模型用塗型剤
JP2003290873A (ja) * 2002-04-08 2003-10-14 Kao Corp 消失模型鋳造法

Also Published As

Publication number Publication date
JP2016041435A (ja) 2016-03-31
TW201620641A (zh) 2016-06-16
JP6014087B2 (ja) 2016-10-25
TWI583458B (zh) 2017-05-21

Similar Documents

Publication Publication Date Title
JP6470141B2 (ja) 消失模型鋳造方法
JP6655757B1 (ja) 鋳包み用シリンダライナ、及びシリンダブロックの製造方法
WO2016027643A1 (ja) 消失模型鋳造方法
TWI586455B (zh) 消失模型鑄造方法
JP6231465B2 (ja) 消失模型鋳造方法
JP3883502B2 (ja) 鋳ぐるみ用鋳鉄部材
JP2018183805A (ja) 消失模型鋳造方法
TWI594823B (zh) 浮力傳達治具
JP6747997B2 (ja) 消失模型鋳造方法
JP6605305B2 (ja) 鋳造方法
JP2021016896A (ja) 横穴の鋳抜き可否評価方法
BRPI0904476B1 (pt) estrutura de fundição de inserção

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833124

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833124

Country of ref document: EP

Kind code of ref document: A1