WO2016027464A1 - 液圧駆動システム - Google Patents

液圧駆動システム Download PDF

Info

Publication number
WO2016027464A1
WO2016027464A1 PCT/JP2015/004128 JP2015004128W WO2016027464A1 WO 2016027464 A1 WO2016027464 A1 WO 2016027464A1 JP 2015004128 W JP2015004128 W JP 2015004128W WO 2016027464 A1 WO2016027464 A1 WO 2016027464A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
calculation unit
tilt angle
injection amount
target
Prior art date
Application number
PCT/JP2015/004128
Other languages
English (en)
French (fr)
Inventor
博英 松嶋
孝志 陵城
英泰 村岡
陽治 弓達
和也 岩邊
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201580044088.XA priority Critical patent/CN106573615B/zh
Priority to US15/504,802 priority patent/US10006447B2/en
Priority to GB1704397.7A priority patent/GB2544447B/en
Publication of WO2016027464A1 publication Critical patent/WO2016027464A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • F04B1/324Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B67/00Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for
    • F02B67/08Engines characterised by the arrangement of auxiliary apparatus not being otherwise provided for, e.g. the apparatus having different functions; Driving auxiliary apparatus from engines, not otherwise provided for of non-mechanically driven auxiliary apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a hydraulic drive system that controls the tilt angle of a variable displacement hydraulic pump that is driven by an engine and an electric motor and changes the discharge amount in accordance with the tilt angle.
  • Construction machines and the like are equipped with a hydraulic pump, and pressure oil is discharged from the hydraulic pump when an operation lever or the like is operated.
  • the discharged pressure oil is guided to a hydraulic actuator such as a hydraulic cylinder to operate the hydraulic actuator.
  • the arm, boom, and the like are moved by operating the hydraulic actuator.
  • the hydraulic pump is connected to the engine and the electric motor via a rotating shaft, and is rotated by the engine and the electric motor.
  • a construction machine disclosed in Patent Document 1 is known.
  • the engine is controlled by a control device so that the engine speed becomes a rotation speed command.
  • the hydraulic pump is loaded, such as when a hydraulic actuator is driven, the engine speed is increased. The number drops.
  • the control device moves the electric motor to assist the engine. In this way, the control device keeps the engine speed constant (specifically, the engine speed command).
  • the upper limit value of the absorption torque of the hydraulic pump is reduced.
  • the upper limit value of the absorption torque is set according to the engine speed deviation ⁇ N (deviation between the actual speed and the target speed) based on predetermined control characteristics.
  • the upper limit value of the absorption torque is determined according to the rotation speed deviation ⁇ N. Therefore, when a large load is applied to the hydraulic pump and the engine speed rapidly decreases, the upper limit value of the absorption torque cannot be suppressed unless the engine speed deviation ⁇ N reaches the set value. Then, a time lag occurs in the engine assist with respect to the engine speed reduction. Therefore, the engine speed may decrease excessively.
  • the present invention provides a hydraulic drive system that can reduce the output torque of the hydraulic pump so that the engine speed does not decrease excessively.
  • the hydraulic drive system of the present invention is driven by an engine output torque, and is a variable displacement hydraulic pump that discharges a pressure amount of hydraulic fluid according to the tilt angle, and an input tilt angle command.
  • a tilt angle adjusting device that adjusts the tilt angle of the hydraulic pump, an electric motor that rotates the hydraulic pump by assisting an output torque of the engine, and a target in which the rotational speed of the engine is set in advance
  • the control device includes a target assist torque calculation unit, a target assist torque limiting unit, a drive control unit, an insufficient torque calculation unit, a tilt angle calculation unit, and a tilt angle control unit, and the target assist torque
  • the arithmetic unit is The target assist torque output from the electric motor assisting the engine is calculated, the target assist torque limiting unit limits the target assist torque to an output value equal to or less than a
  • the target assist torque when the target assist torque becomes equal to or greater than the limit value, the target assist torque is limited to an output value equal to or less than the limit value, and a command torque corresponding to the output value is output from the electric motor.
  • the shortage torque calculating unit calculates the shortage torque that is insufficient due to the target assist torque being limited to the limit value or less.
  • a tilt angle command value for discharging a corrected flow rate obtained by subtracting the reduced flow rate corresponding to the insufficient torque from the required flow rate from the hydraulic pump is calculated by the tilt angle calculation unit. Further, the tilt angle control unit controls the tilt angle control device so that the tilt angle becomes the tilt angle command value.
  • the output torque of the hydraulic pump can be reduced by the insufficient torque, and the engine speed can be prevented from dropping due to insufficient torque.
  • the tilt angle control can be performed before the engine speed rapidly decreases. Therefore, it is possible to suppress an excessive decrease in the engine rotational speed as compared with the conventional technique that adjusts the tilt angle based on the rotational speed difference.
  • the control device includes a reduction torque estimation unit, an excess / deficiency calculation unit, and a torque correction unit, and the reduction torque estimation unit determines the tilt angle of the hydraulic pump as the tilt angle.
  • a reduction torque in the hydraulic pump is estimated by tilt angle control adjusted to a command value, and the excess / deficiency calculation unit is caused by a response delay of the tilt angle of the hydraulic pump in the tilt angle control,
  • the torque correction unit adds the torque reduction excess / deficiency to the output value.
  • the output value may be corrected.
  • the excess or deficiency of the reduced torque due to the response delay in the tilt angle control can be compensated by increasing or decreasing the output torque of the motor. Therefore, it can suppress that assist torque runs short with a response delay, and it can suppress that the rotation speed of an engine falls.
  • the reduced torque estimating unit may estimate the reduced torque by a transfer function including a first-order lag element.
  • the reduction torque can be calculated more closely. Thereby, the fall of the rotation speed of an engine can further be suppressed.
  • control device may include a command torque limiter, and the command torque limiter may limit the command torque to a maximum allowable torque that is greater than the limit value.
  • the apparatus includes a power supply device that supplies power to the electric motor, and a state value detection sensor that detects a state value indicating a state of the power supply device, and the target assist torque limiting unit detects the state detection value.
  • the limit value may be changed according to the result.
  • the limit value can be changed according to the state of the power supply device. Therefore, the situation which cannot output command torque from an electric motor can be controlled.
  • the control device includes a target fuel injection amount calculation unit, an injection amount restriction unit, an actual torque calculation unit, a target torque calculation unit, and a differential torque calculation unit, and the target fuel injection amount
  • the calculation unit calculates a target fuel injection amount corresponding to the target rotational speed
  • the injection amount restriction unit calculates the actual fuel injection amount step by step until the target fuel injection amount calculated by the target fuel injection amount calculation unit.
  • the actual fuel injection amount is determined such that the time change rate of the actual fuel injection amount during the increase is less than or equal to a predetermined value, and the actual torque calculation unit is detected by the rotational speed sensor.
  • An actual torque output from the engine is calculated based on the actual rotational speed and the actual fuel injection amount determined by the injection amount limiting unit, and the target torque calculating unit detects the actual torque detected by the rotational speed sensor.
  • Rotation speed and target fuel injection amount calculation The target torque to be applied to the rotating shaft is calculated based on the target fuel injection amount calculated in step (i), and the differential torque calculation unit is configured to calculate the actual torque relative to the target torque calculated in the target torque calculation unit.
  • a difference torque that is insufficient with the actual torque calculated by the calculation unit may be calculated, and the target assist torque calculation unit may calculate the target assist torque based on the difference torque calculated by the difference torque calculation unit.
  • the output torque of the engine becomes insufficient by limiting the time change rate of the actual fuel injection amount, but the insufficient output torque is calculated in advance as a differential torque.
  • the torque output from the entire hydraulic drive system can be brought close to the target torque even if the actual fuel injection amount is limited, and the torque output from the entire hydraulic drive system is reduced. Can be suppressed.
  • the amount of change in the output torque due to the time rate of change being limited is estimated in advance, and the shortage of torque is output to the motor to cope with it. It is possible to suppress an excessive decrease in the rotational speed of the engine E as compared with the case of adjusting the torque according to the deviation. As a result, it is possible to suppress a decrease in fuel consumption of the engine due to an excessive decrease in the rotational speed.
  • the control device includes an actual fuel injection amount calculation unit, a torque change estimation unit, and a change torque calculation unit, wherein the fuel injection amount calculation unit is an actual fuel injection according to a target rotational speed.
  • the torque change estimation unit estimates a change per unit revolution of the engine output torque with respect to the actual fuel injection amount calculated by the fuel injection amount calculation unit, and the change torque calculation unit And calculating a change torque for assisting based on a change per unit rotation number of the output torque calculated by the torque change estimation unit, wherein the target assist torque calculation unit is calculated by the change torque calculation unit.
  • the target assist torque may be calculated based on the above.
  • the change amount of the output torque due to the deterioration of the combustion state of the engine due to the change of the actual fuel injection amount is estimated in advance, and the change torque is calculated based on the estimated change amount.
  • the calculated change torque is output from the electric motor.
  • the load of the hydraulic pump can be reduced so that the engine speed does not decrease excessively.
  • FIG. 1 is a block diagram showing a hydraulic drive system according to an embodiment of the present invention. It is the functional block diagram which showed the function which the control apparatus with which the hydraulic drive system of FIG.
  • FIG. 3 is a functional block diagram illustrating an assist torque block of the control device of FIG. 2 in more detail.
  • FIG. 4 is a functional block diagram showing a part of the assist torque block of FIG. 3 in more detail.
  • 6 is a graph showing changes over time in various values when the hydraulic pump drive system of FIG. 1 is driven in a state where a target assist torque is equal to or less than a maximum allowable torque.
  • 2 is a graph showing changes over time in various values when the hydraulic pump drive system of FIG. 1 is driven in a state where a target assist torque is equal to or greater than a maximum allowable torque.
  • Construction machines are equipped with various attachments such as buckets, loaders, blades and hoisting machines, and are moved by hydraulic actuators such as hydraulic cylinders and hydraulic motors (electro-hydraulic motors).
  • a hydraulic excavator that is a kind of construction machine includes a bucket, an arm, and a boom, and can perform operations such as excavation while moving these three members.
  • Each of the bucket, arm, and boom is provided with hydraulic cylinders 11 to 13, and the bucket, arm, and boom are moved by supplying pressure oil to each cylinder 11-13.
  • the hydraulic excavator has a traveling device, and a revolving body is mounted on the traveling device so as to be capable of turning.
  • a boom is attached to the revolving structure so as to be swingable in the vertical direction.
  • a hydraulic turning motor 14 is attached to the turning body, and the turning body is turned by supplying pressure oil to the turning motor 14.
  • a hydraulic traveling motor 15 is attached to the traveling device, and the traveling device 15 moves forward or backward by supplying pressure oil to the traveling motor 15.
  • the hydraulic excavator is provided with a plurality of operation levers 111 to 115 corresponding to the hydraulic actuators 11 to 15, respectively.
  • a hydraulic pressure supply device 16 is connected to the hydraulic actuators 11 to 15 (that is, the hydraulic cylinders 11 to 13 and the hydraulic motors 14 and 15), and when any of the plurality of operating tools 111 to 115 is operated, the operating tool is operated. Pressure oil is supplied from the hydraulic pressure supply device 16 to the hydraulic actuators 11 to 15 corresponding to 111 to 115, and the corresponding hydraulic actuators 11 to 15 are operated.
  • the hydraulic pressure supply device 16 includes a hydraulic pump 17, a control valve 18, and a tilt angle adjusting device 19.
  • the hydraulic pump 17 has a rotating shaft 17a, and discharges pressure oil by rotating the rotating shaft 17a.
  • the discharged pressure oil is guided to the control valve 18.
  • the control valve 18 controls the flow of pressure oil so that the pressure oil flows to the hydraulic actuators 11 to 15 corresponding to the operated operation tools 111 to 115. It has become.
  • Each operation tool 111 to 115 outputs a pilot pressure of a pressure corresponding to the operation direction and the operation amount when each operation tool 111 to 115 is operated.
  • the control valve 18 controls the flow of the discharged pressure oil according to the pilot pressure output from the operation tools 111 to 115, and supplies the pressure oil to the hydraulic actuators 11 to 15 corresponding to the operated operation tools 111 to 115. It is designed to activate them.
  • the control valve 18 supplies the corresponding hydraulic actuators 11 to 15 with the pressure oil having a flow rate corresponding to the pilot pressure output from the operation tools 111 to 115. Accordingly, the hydraulic actuators 11 to 15 are moved at a speed corresponding to the operation amount of the operation tools 111 to 115. In this manner, the bucket, arm, boom, and the like can be moved at a speed corresponding to the operation amount of the operation tools 111-115.
  • the hydraulic pressure supply device 16 configured as described above constitutes a positive control type hydraulic system in the present embodiment, and increases or decreases the discharge amount of the hydraulic pump 17 in accordance with the operation amount of the operation tools 111 to 115. It has become.
  • the hydraulic pressure supply device 16 may constitute a negative control type hydraulic system.
  • the configuration of the hydraulic pressure supply device 16 will be described in more detail.
  • the hydraulic pump 17 can change the discharge amount by changing the tilt angle of the swash plate 17b.
  • the hydraulic pump 17 is provided with a tilt angle adjusting device 19 that changes the tilt angle of the swash plate 17b. ing.
  • the tilt angle adjusting device 19 includes a tilt angle adjusting valve 19a and a servo mechanism 19b.
  • the tilt angle adjusting valve 19a is an electromagnetic pressure reducing valve, for example, and is connected to a pilot pump (not shown).
  • the tilt angle adjusting valve 19a is configured to output a command pressure p 1 corresponding to an input tilt signal (tilt angle command).
  • Tilt angle adjusting valve 19a is connected to servo mechanism 19b, the outputted command pressure p 1 is adapted to be guided to the servo mechanism 19b.
  • the servo mechanism 19b has a servo piston (not shown).
  • a swash plate 17b is connected to the servo piston, and the tilt angle of the swash plate 17b can be changed by moving the servo piston.
  • Servo piston is adapted to move in response to the command pressure p 1 input thereto. Therefore, the tilting angle of the swash plate 17b is adjusted to an angle corresponding to the command pressure p 1. That is, the tilt angle of the swash plate 17b is adjusted to an angle corresponding to the tilt signal.
  • the hydraulic pump 17 is provided with the hydraulic pump drive device 2 on the rotary shaft 17a, and the rotary shaft 17a is rotationally driven by the hydraulic pump drive device 2.
  • the hydraulic pump drive device 2 is a hybrid drive system including an engine E and an electric motor 20, and both the engine E and the electric motor 20 are connected to a rotating shaft 17 a of the hydraulic pump 17.
  • the engine E is, for example, a diesel engine having a plurality of cylinders, and a fuel injection device 21 is provided in association with each cylinder.
  • the fuel injection device 21 includes, for example, a fuel pump and an electromagnetic control valve, and injects an amount of fuel corresponding to an input injection command into the combustion chamber of the corresponding cylinder.
  • the engine E burns the fuel injected from the fuel injection device 21 and reciprocates a piston (not shown) to rotate the rotating shaft 17a and discharge the hydraulic oil from the hydraulic pump 17.
  • the engine E is a diesel engine.
  • the engine E is not necessarily a diesel engine and may be a gasoline engine.
  • the rotating shaft 17a is provided with an electric motor 20 that assists in driving the engine E.
  • the electric motor 20 is an AC motor, for example, and is connected to the inverter 22.
  • the inverter 22 that is a drive device is connected to the battery 25, converts a direct current supplied from the battery 25 into an alternating current, and supplies the alternating current to the electric motor 20. Further, the inverter 22 supplies an alternating current having a frequency and voltage according to the input torque command to the electric motor 20 so that the torque corresponding to the torque command (assist torque described later) is output from the electric motor 20 to the rotating shaft 17a. It has become.
  • a rotation speed sensor 23 is attached to the rotation shaft 17a, and the rotation speed sensor 23 outputs a signal corresponding to the rotation speed of the rotation shaft 17a.
  • the rotation speed sensor 23 is electrically connected to the control device 30 together with the inverter 22 and the electromagnetic control valve of the fuel injection device 21.
  • the discharge pressure sensor 24, the plurality of pilot pressure sensors S1 and S2, and the battery sensor 26 are electrically connected to the control device 30.
  • the discharge pressure sensor 24 is a sensor that detects the discharge pressure of the hydraulic pump 17, and outputs a signal corresponding to the discharge pressure to the control device 30.
  • the pilot pressure sensors S1 and S2 are provided in association with the operation tools 111 to 115, respectively.
  • the pilot pressure sensors S1 and S2 are sensors for detecting the pilot pressure output from the corresponding operation tools 111 to 115, and output a signal corresponding to the pilot pressure to the control device 30.
  • the battery sensor 26 is a sensor that detects a state value indicating a battery state such as a battery voltage (that is, a charge amount) and a temperature, and outputs a signal corresponding to the battery state to the control device 30. It is like that.
  • the control device 30 has a functional part that calculates various values as shown in FIG. 2, and hereinafter, the functional part that calculates various values will be described in blocks.
  • the control device 30 includes a target rotation speed determination unit 31, a rotation speed difference calculation unit 32, and a target fuel injection amount calculation unit 33.
  • the target rotational speed determination unit 31 determines the target rotational speed of the engine based on the rotational speed input from the input means (dial, button, touch panel, etc.) or set in advance.
  • the rotation speed difference calculation unit 32 calculates the actual rotation speed of the rotation shaft 17 a based on the signal input from the rotation speed sensor 23. Further, the rotation speed difference calculation unit 32 calculates a difference between the calculated actual rotation number and the target rotation number determined by the target rotation number determination unit 31.
  • the target fuel injection amount calculation unit 33 calculates a target fuel injection amount to be injected from the fuel injection device 21 based on the difference between the actual rotational speed and the target rotational speed.
  • control device 30 calculates an actual fuel injection amount by a method described later based on the target fuel injection amount, and causes the fuel injection device 21 to inject this actual fuel injection amount.
  • the control device 30 calculates the actual rotation speed and the target fuel injection amount at predetermined intervals. Further, when the output from the torque from the engine E is insufficient, the control device 30 drives the electric motor 20 to assist the engine E and reduce the output torque of the hydraulic pump 17.
  • the control device 30 drives the electric motor 20 to assist the engine E and reduce the output torque of the hydraulic pump 17.
  • the control device 30 includes an assist torque calculation block 40, a torque limit block 50, and a tilt angle control block 60.
  • the assist torque calculation block 40 is configured to calculate the assist torque and the actual torque according to the target fuel injection amount calculated by the target fuel injection amount calculation unit 33 and the actual rotational speed calculated based on the signal input from the rotational speed sensor 23.
  • a fuel injection amount (amount of fuel to be actually injected) is calculated.
  • the assist torque calculation block 40 includes a target torque calculation unit 41, an injection amount restriction unit 42, an actual torque calculation unit 43, and a first assist torque calculation unit 44.
  • the target torque calculation unit 41 calculates the target torque using the target torque map.
  • the target torque map is a map in which the target torque output by the entire hydraulic pump drive device 2 is associated with the target fuel injection amount and the actual rotational speed, and the target torque calculation unit 41 includes the calculated target fuel injection amount and The target torque is calculated from the target torque map based on the actual rotational speed.
  • the target fuel injection amount calculated by the target fuel injection amount calculation unit 33 is used for the injection amount restriction unit 42 to calculate the actual fuel injection amount that is actually injected by the fuel injection device 21.
  • the injection amount limiting unit 42 (actual fuel injection amount calculating unit) has a rate limit function with an increase rate limitation and without a decrease rate limitation, and the actual fuel injection amount based on the target fuel injection amount by this rate limit function. Is calculated. Further details will be described.
  • the injection amount limiting unit 42 restricts the change rate or the change amount based on a predetermined change rule. The amount is changed stepwise up to the target fuel injection amount.
  • the injection amount limiting unit 42 sets the target fuel injection amount as the actual fuel injection amount without limiting the decrease rate.
  • the injection amount restriction unit 42 internally holds (that is, stores) the target fuel injection amount calculated by the target fuel injection amount calculation unit 33, and calculates immediately after the held target fuel injection amount. The target fuel injection amount thus made is compared.
  • the injection amount limiting unit 42 calculates the target fuel injection amount as the actual fuel injection amount when the target fuel injection amount immediately after the held target fuel injection amount is small, that is, when the target fuel injection amount is decreasing.
  • the injection amount limiting unit 42 increases the rate of increase (in this embodiment, two target fuel injection amounts). It is determined whether or not the difference in fuel injection amount exceeds a predetermined value.
  • the injection amount limiting unit 42 calculates the target fuel injection amount as the actual fuel injection amount when it is equal to or less than the predetermined value. On the other hand, if the injection amount limiting unit 42 exceeds the predetermined value, the injection amount limiting unit 42 gradually increases the actual fuel injection amount to the target fuel injection amount while limiting the increase rate based on a change rule that sets the increase rate to a predetermined value or less. Increase to. That is, when the predetermined amount is exceeded, the injection amount limiting unit 42 increases the actual fuel injection amount step by step to the target fuel injection amount in proportion to the time based on a proportional constant equal to or less than the predetermined value.
  • the injection amount limiting unit 42 may be a filter, and may increase the target fuel injection amount based on, for example, a transfer function having a first-order lag element (that is, a lag element).
  • the actual fuel injection amount calculated in this way is used together with the actual rotational speed in order to calculate the actual torque by the actual torque calculation unit 43.
  • the actual torque calculation unit 43 calculates the actual torque using the actual torque map.
  • the actual torque is an output torque output from the engine E when the fuel injection device 21 injects the actual fuel injection amount into the engine E.
  • the actual torque map is a map in which the actual torque is associated with the actual fuel injection amount and the actual rotational speed.
  • the actual torque calculation unit 43 calculates the actual torque from the actual torque map based on the calculated actual fuel injection amount and actual rotation speed. In the present embodiment, the same map is used for the actual torque map and the target torque map.
  • the calculated actual torque is used together with the target torque so that the first assist torque calculating unit 44 calculates the first assist torque to be output by the electric motor 20.
  • the first assist torque calculation unit 44 (difference torque calculation unit) is a shortage torque obtained by subtracting the actual torque from the target torque based on the actual torque calculated from one target fuel injection amount and the target torque. One assist torque (difference torque) is calculated. Further details will be described. The first assist torque calculation unit 44 subtracts the actual torque from the target torque. Thus, the first assist torque that is insufficient when the target torque is generated from the hydraulic pump drive device 2 is calculated.
  • the increase rate of the injection amount is limited when the target fuel injection amount suddenly increases.
  • the increase rate in this way, it is possible to prevent deterioration of the combustion state of the engine E due to a rapid increase in the actual fuel injection amount.
  • the actual torque actually output becomes smaller than the target torque by limiting the increase rate, that is, an insufficient torque is generated, the first corresponding to the insufficient amount is output so that the electric motor 20 outputs the insufficient amount. Assist torque is calculated.
  • the assist torque calculation block 40 estimates the amount of decrease in output torque caused by deterioration of the combustion state of the engine E accompanying the change in the actual fuel injection amount, and secondly compensates for the decreased output torque with the electric motor 20. It has a function of calculating assist torque (change torque).
  • the assist torque calculation block 40 includes a torque change estimation unit 45, a second assist torque calculation unit 46, and a target assist torque calculation unit 47 in order to calculate the second assist torque.
  • the torque change estimation unit 45 is configured to estimate the amount of change in torque output from the engine E based on the calculated actual rotational speed and the actual fuel injection amount based on the actual rotational speed. Due to the change in the actual fuel injection amount, the combustion state of the engine E deteriorates and a response delay occurs in the output torque. Further, the combustion state of the engine E changes every cycle, and the deterioration of the combustion state of the engine E is improved as the number of combustion passes. Accordingly, as the actual rotational speed is larger, the number of combustions per unit time is increased, so that the deterioration of the combustion state of the engine E is improved more quickly, and the decrease in the torque of the engine E is reduced.
  • the torque change estimation unit 45 calculates a decrease in the output torque at every unit speed (preferably, every cycle). It is supposed to be.
  • the torque change estimation unit 45 estimates the change in the output torque of the engine E by numerically modeling the engine E using a transfer function including a pseudo-derivative, which will be described later, and is a first-order lag element included in the pseudo part. The constant is changed according to the actual rotational speed. Thereby, it is possible to artificially calculate the output torque drop for each unit rotation speed.
  • the output torque characteristic of the engine E in which the response delay of the torque changes according to the actual rotational speed can be estimated by the transfer function described above.
  • the calculation of the torque change estimation unit 45 is performed at a predetermined interval. The torque change estimating unit 45 that estimates the change amount of the output torque in this way will be described in more detail below with reference to FIG. 4 in addition to FIG.
  • the torque change estimating unit 45 includes a time constant calculating unit 71, a pseudo-differential calculating unit 72, a torque change coefficient calculating unit 73, a torque change rate calculating unit 74, and a correction coefficient as functional parts for estimating a change in output torque.
  • a calculation unit 75 and a torque change amount calculation unit 76 are provided.
  • the time constant calculator 71 calculates the actual rotation speed based on the signal from the rotation speed sensor 23, and further calculates the time constant from the actual rotation speed using the time constant map.
  • the time constant map is a map in which the time constant is associated with the actual rotation. The correspondence between the time constant of the time constant map and the actual rotation is set based on data obtained from experiments and the like.
  • the displacement of the engine E, accessories (supercharger, EGR, etc.), and structure It depends on the pipe diameter and length. That is, the correspondence is different for each model of the engine E, and is set for each model of the engine E with reference to the experimental result. The correspondence relationship may be set not only for each model but also for each individual.
  • the time constant calculated by the time constant calculating unit 71 is used together with the actual fuel injection amount by the pseudo-differential calculating unit 72 in order to calculate a differential value of the actual fuel injection amount.
  • the pseudo differential calculation unit 72 calculates a differential value of the actual fuel injection amount by a transfer function obtained by numerically modeling the engine E.
  • the fuel injection amount corresponds to the torque
  • the differential value of the actual fuel injection amount corresponds to the rate of change of the torque. ing.
  • the pseudo differential operation unit 72 will be described in more detail.
  • the transfer function of the pseudo differential operation unit 72 includes a pseudo differential (also referred to as incomplete differential) including a first-order lag element, and the pseudo differential operation unit 72 uses this transfer function to differentiate the actual fuel injection amount. The value is calculated.
  • the pseudo-differentiation, the Laplace variable and s, the differential gain and T D, when the constant is T time represented by the following formula (1).
  • the differential value of the actual fuel injection amount by the pseudo differential including the first-order lag element, a value corresponding to the rate of change of the output torque considering the response delay due to the deterioration of the combustion state (that is, the actual fuel injection)
  • the differential value of the quantity is calculated.
  • the time constant calculated by the time constant calculator 71 is used as the time constant T of the first-order lag element included in the pseudo-differentiation. That is, the pseudo-differential calculation unit 72 calculates the differential value of the actual fuel injection amount by changing the time constant every time it is calculated.
  • the rate of change of the output torque per unit rotation speed (preferably every cycle) is simulated. It can be calculated.
  • the differential value of the actual fuel injection amount calculated in this way corresponds to the rate of change per unit rotational speed of the output torque of the engine E, and the torque change coefficient described later is calculated by the torque change coefficient calculating unit 73. Used for.
  • the torque change coefficient calculating unit 73 calculates a torque change coefficient based on the differential value of the actual fuel injection amount calculated by the pseudo-differential calculating unit 72.
  • the torque change coefficient is a coefficient indicating how much the torque changes with respect to the actual torque.
  • the torque change coefficient calculation unit 73 first calculates the absolute value of the differential value of the actual fuel injection amount, and then uses the torque change coefficient map 73a shown in FIG. 4 to change the torque change from the absolute value of the differential value of the actual fuel injection amount. Calculate the coefficient.
  • the torque change coefficient map 73a is a map in which the absolute value of the differential value of the actual fuel injection amount is associated with the torque change coefficient.
  • the torque change coefficient map 73a is set so that the torque change coefficient increases as the absolute value of the differential value increases.
  • the correspondence between the absolute value of the differential value of the actual fuel injection amount in the torque change coefficient map 73a and the torque change coefficient is set based on data obtained from experiments or the like, and the time constant map and Similarly, it is set for each model of the engine E. It should be noted that the correspondence relationship between the absolute value of the differential value of the actual fuel injection amount and the torque change coefficient is not necessarily the correspondence relationship shown in FIG.
  • the torque change coefficient calculation unit 73 calculates a torque change coefficient based on the torque change coefficient map 73a and the absolute value of the differential value of the actual fuel injection amount, and the calculated torque change coefficient indicates the torque change rate as the torque change rate. It is used for calculation by the calculation unit 74.
  • the torque change rate indicates the ratio of torque that changes (specifically decreases) as the combustion state changes with respect to the actual torque that is output when fuel of the actual fuel injection amount is injected into the engine E. Value.
  • the torque change coefficient and the torque change rate basically correspond to each other, but the torque change coefficient is a value set so as to be uniquely derived from the absolute value of the differential value of the actual fuel injection amount.
  • the torque change rate takes into account not only the absolute value of the differential value of the actual fuel injection amount (that is, the torque change coefficient) but also the effects of the actual rotational speed and the actual fuel injection amount.
  • the torque change rate is corrected by the torque change coefficient calculated by the torque change coefficient calculating unit 73, and the correction coefficient for correction is calculated by the correction coefficient calculating unit 75. is doing.
  • the correction coefficient calculation unit 75 calculates a correction coefficient based on the actual fuel injection amount and the actual rotation speed calculated by the injection amount restriction unit 42.
  • the correction coefficient is a coefficient for correcting the torque change coefficient calculated by the torque change coefficient calculating unit 73 according to the actual rotational speed and the actual fuel injection amount. Further details will be described.
  • the correction coefficient calculation unit 75 calculates the first correction coefficient from the actual rotation speed using the first correction coefficient map 75a as shown in FIG. 4, and uses the second correction coefficient map 75b as shown in FIG. A second correction coefficient is calculated from the fuel injection amount.
  • the first correction coefficient map 75a is a map in which the actual rotation speed and the first correction coefficient are associated with each other.
  • the second correction coefficient map 75b is a map in which the actual fuel injection amount and the second correction coefficient are associated with each other.
  • the correction coefficient is set to be smaller as the actual rotational speed and the actual fuel injection amount are increased.
  • the two correction coefficient maps 75a and 75b are set based on data obtained from experiments or the like, and are different for each model of the engine E as in the other maps. Further, each of the correspondence relationship between the actual rotational speed and the first correction coefficient and the correspondence relationship between the actual fuel injection amount and the second correction coefficient is not necessarily the correspondence relationship as shown in FIG.
  • the correction coefficient calculator 75 multiplies the calculated first and second correction coefficients by the correction coefficient multiplier 75c to calculate a torque correction coefficient.
  • the calculated torque correction coefficient is used together with the torque change coefficient in order to calculate the torque change rate by the torque change rate calculation unit 74.
  • the torque change rate calculation unit 74 calculates the torque change rate based on the torque change coefficient calculated by the torque change coefficient calculation unit 73 and the correction coefficient calculated by the correction coefficient calculation unit 75.
  • the torque change rate is a value indicating the ratio of the torque that changes (increases or decreases) with the deterioration of the combustion state with respect to the actual torque as described above.
  • the torque change rate calculator 74 calculates the torque change rate by multiplying the calculated torque change coefficient and the correction coefficient. The calculated torque change rate is used together with the actual torque in order to calculate the torque change amount by the torque change amount calculation unit 76.
  • the torque change amount calculation unit 76 is based on the torque change rate calculated by the torque change rate calculation unit 74 and the actual torque calculated by the actual torque calculation unit 43, and the torque of the engine E caused by the change in the actual fuel injection amount.
  • the amount of change is calculated.
  • the amount of change in torque is the amount of change in torque that changes in accordance with the combustion state of engine E when the actual fuel injection amount calculated by injection amount restriction unit 42 is injected into engine E (that is, the amount of decrease or increase in torque). ).
  • the torque change amount calculation unit 76 multiplies the torque change rate and the actual torque calculation unit 43 to calculate the torque change amount.
  • the torque change estimation unit 45 estimates the torque change amount in this way.
  • the estimated torque change amount is used for calculating the second assist torque by the second assist torque calculator 46.
  • the second assist torque calculation unit 46 corresponds to the torque corresponding to the shortage so that the shortage of torque that has decreased due to the change in the actual fuel injection amount is compensated by the output torque of the electric motor 20. Two assist torques (change torques) are calculated. The calculation method will be described in detail.
  • the second assist torque calculator 46 first determines whether or not the differential value of the actual fuel injection amount calculated by the pseudo-differential calculator 72 is less than 0 (zero). If it is determined that the differential value of the actual fuel injection amount is less than zero, the second assist torque calculator 46 selects zero as the multiplication coefficient.
  • a predetermined value 1 in the present embodiment
  • the target assist torque calculation unit 47 calculates the target assist torque by adding the first assist torque and the second assist torque.
  • the calculated target assist torque is used by the torque limit block 50 to calculate the limit assist torque that is actually output from the electric motor 20.
  • the torque limiting block 50 shown in FIG. 2 limits the output torque so that the output torque of the electric motor 20 does not exceed the limit value.
  • the torque limit block 50 includes a first torque limiter 51 and an insufficient torque calculator 52.
  • the first torque limiter 51 has a limit function that limits the target assist torque calculated by the assist torque calculation block 40 to a predetermined virtual allowable value L1 or less. Specifically, when the target assist torque is less than the virtual allowable value L1, the first torque limiting unit 51 sets the target assist torque as an output value without limiting the target assist torque, and the target assist torque is the virtual allowable torque L1. In the above case, the virtual allowable torque L1 is set as the output value.
  • the virtual allowable torque L1 is a value set in advance and is smaller than a maximum allowable torque L2 described later.
  • the calculated output value is used to calculate the insufficient torque generated by limiting the target assist torque by the insufficient torque calculation unit 52.
  • the insufficient torque calculating unit 52 is based on the output value of the first torque limiting unit 51 and the target assist torque, and the insufficient torque obtained by subtracting the output value from the target assist torque (in this embodiment, the insufficient amount is expressed as a positive value). )). Further details will be described.
  • the insufficient torque calculator 52 subtracts the output value from the target assist torque. Thereby, the insufficient torque is calculated.
  • the calculated insufficient torque is used in the tilt angle control block 60 in order to calculate the tilt angle to be reduced.
  • the tilt angle control block 60 controls the tilt angle of the swash plate 17b of the hydraulic pump 17.
  • the tilt angle control block 60 includes a reduced power calculation unit 61, a reduced flow rate calculation unit 62, a set flow rate calculation unit 63, an actual flow rate calculation unit 64, a tilt angle calculation unit 65, and a tilt angle control unit 66. And have.
  • the reduced power calculator 61 calculates the power of the hydraulic pump 17 to be reduced, that is, reduced power, based on the insufficient torque calculated by the insufficient torque calculator 52 and the actual rotational speed. This will be specifically described.
  • the reduced power calculation unit 61 calculates the reduced power by multiplying the insufficient torque by the actual rotational speed.
  • the calculated reduced power is used by the reduced flow rate calculation unit 62 in order to calculate the discharge flow rate to be reduced.
  • the reduction flow rate calculation unit 62 determines the hydraulic pump 17 to be reduced based on the discharge pressure of the hydraulic pump 17 calculated based on the signal from the discharge pressure sensor 24 and the reduction power calculated by the reduction power calculation unit 61. A discharge flow rate, that is, a reduced flow rate is calculated. This will be specifically described.
  • the reduced flow rate calculation unit 62 calculates a reduced flow rate by dividing reduced power by the discharge pressure.
  • the calculated reduced flow rate is used by the actual flow rate calculation unit 64 in order to calculate the actual discharge flow rate that is actually discharged from the hydraulic pump 17. Further, the actual flow rate calculation unit 64 uses the required flow rate to calculate the actual discharge flow rate, and the required flow rate is calculated by the set flow rate calculation unit 63.
  • the set flow rate calculation unit 63 calculates a required flow rate that is a discharge flow rate to be discharged from the hydraulic pump 17. An example of the calculation example will be described.
  • the set flow rate calculation unit 63 first calculates the pilot pressures output from the operation tools 111 to 115 based on signals input from the pilot pressure sensors S1 and S2 of the operation tools 111 to 115. Next, the set flow rate calculation unit 63 selects the maximum pilot pressure among all the calculated pilot pressures. Further, the set flow rate calculation unit 63 calculates a specified flow rate based on the selected pilot pressure and the flow rate map.
  • the flow rate map is a map in which the pilot pressure and the specified flow rate are associated with each other.
  • the set flow rate calculation unit 63 calculates a specified flow rate from the flow rate map based on the selected pilot pressure.
  • the specified flow rate is a flow rate discharged from the hydraulic pump 17 when the actual rotational speed is a predetermined reference rotational speed.
  • the set flow rate calculator 63 corrects the calculated specified flow rate with the actual number of revolutions, and calculates the required flow rate required for the operation amounts of the operation tools 111 to 115.
  • the calculated required flow rate is used by the actual flow rate calculation unit 64 to calculate the actual discharge flow rate together with the reduced flow rate calculated by the reduction flow rate calculation unit 62.
  • the actual flow rate calculation unit 64 calculates the actual discharge flow rate actually discharged from the hydraulic pump 17 based on the required flow rate and the reduced flow rate. This will be specifically described.
  • the actual flow rate calculation unit 64 calculates the actual discharge flow rate by subtracting the reduced flow rate from the required flow rate.
  • the calculated actual discharge flow rate is used by the tilt angle calculation unit 65 in order to calculate the tilt angle of the swash plate 17b.
  • the tilt angle calculation unit 65 calculates a tilt angle command value that is a tilt angle for tilting in order to discharge the actual discharge flow rate from the hydraulic pump 17. In the hydraulic pump 17, the tilt angle corresponds to the discharge capacity, and the actual flow rate calculation unit 64 calculates the actual discharge flow rate discharged from the hydraulic pump 17 based on the tilt angle and the actual rotation speed. can do.
  • the tilt angle calculation unit 65 can calculate the tilt angle command value based on the actual discharge flow rate and the actual rotation speed.
  • the tilt angle calculation unit 65 calculates a tilt angle command value based on the actual rotation speed calculated based on the signal from the rotation speed sensor 23 and the actual discharge flow rate.
  • the calculated tilt angle command value is used by the tilt angle control unit 66 when determining the tilt signal.
  • the tilt angle control unit 66 determines a tilt signal for moving the tilt angle adjusting device 19 so that the tilt angle of the swash plate 17b becomes the tilt angle command value. Further, the tilt angle control unit 66 outputs the determined tilt signal to the tilt angle adjusting valve 19a, and controls the servo mechanism 19b so that the tilt angle of the swash plate 17b becomes the tilt angle command value. It has become. Thus, the swash plate 17b can be tilted to the tilt angle command value, and the calculated actual discharge flow rate can be discharged from the hydraulic pump 17.
  • the insufficient torque generated by limiting the output torque of the electric motor 20 by the torque limit block 50 is reduced from the output torque of the hydraulic pump 17, the load on the engine E is reduced, and the rotational speed of the engine E is rapidly increased. To prevent falling.
  • the control device 30 has a torque correction block 80 in addition to the three blocks 40, 50, 60.
  • the torque correction block 80 calculates the excess and deficiency of the reduced torque caused by the response delay, and corrects the output value so that the excess and deficiency is compensated by the output torque of the electric motor 20.
  • the torque correction block 80 includes a reduced torque estimation unit 81, an excess / deficiency calculation unit 82, and a torque correction unit 83.
  • the reduced torque estimating unit 81 estimates the reduced torque reduced by the hydraulic pump 17 by the tilt angle control executed by the tilt angle control block 60 based on the insufficient torque calculated by the insufficient torque calculating unit 52. It has become.
  • the reduction torque estimation unit 81 estimates the reduction torque (in this embodiment, the amount to be reduced is expressed as a positive value) using a transfer function obtained by modeling the hydraulic pump 17.
  • the transfer function of the reduced torque estimation unit 81 includes a first-order lag element, and this first-order lag element is set based on data obtained from experiments or the like that are performed in advance.
  • the reduction torque estimation unit 81 estimates the reduction torque of the hydraulic pump 17 that is reduced by the tilt angle control by the tilt angle control block 60 using such a transfer function.
  • the estimated reduction torque is used by the excess / deficiency calculation unit 82 together with the insufficient torque calculated by the insufficient torque calculation unit 52 in order to calculate the excess / deficiency of the reduction torque.
  • the excess / deficiency calculation unit 82 calculates the excess / deficiency of the reduction torque based on the reduced torque estimated by the reduction torque estimation unit 81 and the insufficient torque calculated by the insufficient torque calculation unit 52. Further details will be described.
  • the excess / deficiency calculation unit 82 subtracts the reduction torque from the insufficient torque. Thereby, the excess or deficiency of the reduced torque is calculated.
  • the calculated excess / deficiency is used by the torque correction unit 83 to correct the output value calculated by the first torque limiting unit 51.
  • the torque correction unit 83 Based on the excess / deficiency calculated by the excess / deficiency calculation unit 82 and the output value calculated by the first torque limiting unit 51, the torque correction unit 83 corrects the output value to compensate for the excess / deficiency of the reduced torque. It is to be corrected. Further details will be described.
  • the torque correction unit 83 corrects the output value by adding the excess / deficiency to the output value, and calculates the correction torque by correcting the output value.
  • the calculated correction torque is used by the second torque limiter 53 of the torque limit block 50 so as to keep it below the maximum allowable torque L2 of the electric motor 20.
  • the second torque limiting unit 53 has a function of limiting the correction torque to the maximum allowable torque L2 or less.
  • the maximum allowable torque L2 is the maximum torque that can be allowed by the electric motor 20.
  • the second torque limiting unit 53 will be described in further detail.
  • the second torque limiting unit 53 sets the correction torque as the command torque when the correction torque is less than the maximum allowable torque L2, and sets the maximum allowable torque L2 as the command torque when the correction torque is equal to or greater than the maximum allowable torque L2. Set.
  • the command torque is used by the drive control unit 54 of the torque limit block 50.
  • the drive control unit 54 drives the electric motor 20 by controlling the inverter 22 so that the command torque is output from the electric motor 20.
  • the control device 30 configured in this manner is used when the load on the hydraulic pump 17 increases, the engine speed decreases, and the target fuel injection amount of the engine E increases to compensate for the decreased engine speed.
  • the electric motor 20 is driven to assist the engine E.
  • the tilt angle of the swash plate 17b is reduced to reduce the output torque of the hydraulic pump 17.
  • the hydraulic pump 17 When the operation tool is operated and the control valve 18 is activated, the hydraulic pump 17 is switched from the unloaded state to the on-loaded state, and a large load acts on the hydraulic pump 17.
  • the load on the hydraulic pump 17 increases, the actual rotational speed of the engine E decreases.
  • the target rotational speed is determined in advance by the target rotational speed determination unit 31, and the difference between the actual rotational speed and the target rotational speed is calculated by the rotational speed difference calculation unit 32.
  • the target fuel injection amount calculation unit 33 calculates the target fuel injection amount based on this difference.
  • the calculated target fuel injection amount is used in the assist torque calculation block 40 together with the actual rotational speed, and the assist torque calculation block 40 calculates the target assist torque based on the target fuel injection amount and the actual rotational speed.
  • the injection amount limiting unit 42 increases the actual fuel injection amount stepwise in proportion to the time to the target fuel injection amount while limiting the increase rate (or increase amount) of the target fuel injection amount to less than a predetermined value.
  • the increase rate is less than the predetermined value, the target fuel injection amount is not limited.
  • the actual torque calculator 43 calculates the actual torque output from the engine E based on the actual fuel injection amount and the actual rotational speed.
  • the target torque calculation unit 41 calculates the target torque based on the target fuel injection amount and the actual rotational speed.
  • the first assist torque calculation unit 44 calculates a shortage torque obtained by subtracting the actual torque from the target torque, that is, the first assist torque.
  • the assist torque calculation block 40 calculates in advance a first assist torque that is a torque that is insufficient by limiting the fuel injection amount. By outputting the first assist torque from the electric motor 20, even if the actual fuel injection amount is limited, the torque output from the entire hydraulic pump drive device 2 can be brought close to the target torque. Thereby, it can suppress that the torque output as the hydraulic pump drive device 2 whole falls.
  • the amount of change in the output torque is estimated in advance and the torque is output to the electric motor 20, and the engine is compared with the case where the torque is adjusted according to the deviation in the rotational speed. It can suppress that the rotation speed of E falls too much. As a result, it is possible to suppress a decrease in fuel consumption of the engine E due to an excessive decrease in the rotational speed of the engine E.
  • the assist torque calculation block 40 calculates a torque change coefficient in the torque change estimation unit 45 in parallel with calculating the first assist torque.
  • the torque change estimation unit 45 calculates a torque change coefficient based on the actual rotational speed and the actual fuel injection amount, and further calculates the torque change amount. This will be described in detail.
  • the time constant calculation unit 71 calculates a time constant from the actual rotational speed using the time constant map 71a, and the pseudo-differential calculation unit 72 calculates a differential value of the actual fuel injection amount using the calculated time constant.
  • the torque change coefficient calculating unit 73 calculates the absolute value of the differential value of the actual fuel injection amount, and the torque change coefficient calculating unit 73 further uses the torque change coefficient map 73a to calculate the absolute value of the differential value of the actual fuel injection amount.
  • the torque change coefficient is calculated from
  • the pseudo-differential calculation unit 72 calculates the rate of change of the output torque for each unit rotation speed with respect to the actual torque by changing the time constant for each calculation, and for each unit rotation speed based on this change rate and the actual torque.
  • the amount of change in output torque is calculated.
  • the change in the output torque is calculated not in the time unit but in the rotation speed unit, it is possible to estimate the decrease in the output torque of the engine E more accurately than in the case of calculating in the time unit. Thereby, it can prevent that rotation speed falls excessively by the fall of the output torque by combustion deterioration, and can suppress the fall of the fuel consumption of the engine E accompanying it.
  • the pseudo-differential calculation unit 72 changes the time constant according to the actual rotational speed, the torque reduction coefficient can be calculated in detail.
  • the torque change estimation unit 45 can estimate a more accurate torque change coefficient and torque change amount.
  • the correction coefficient calculator 75 calculates a correction coefficient in parallel with the torque change coefficient calculation in the torque change coefficient calculator 73. This will be described in detail.
  • the correction coefficient calculator 75 calculates a first correction coefficient and a second correction coefficient based on the calculated actual rotational speed and actual fuel injection amount, respectively, and further based on the first correction coefficient and the second correction coefficient.
  • a correction coefficient is calculated.
  • the torque change rate calculator 74 calculates the torque change rate based on the calculated correction coefficient and torque change coefficient, and the torque change amount calculator 76 calculates the torque change amount based on the torque change rate and the actual torque. .
  • the torque change estimation unit 45 estimates the torque change amount, and the estimated torque change amount is used by the second assist torque calculation unit 46.
  • the second assist torque calculator 46 calculates the second assist torque based on the torque change amount.
  • the torque change estimation unit 45 preliminarily estimates the amount of change in the output torque due to the deterioration of the combustion state of the engine E caused by the change in the actual fuel injection amount, and the estimated change.
  • a second assist torque corresponding to the amount can be calculated. That is, when there is a change in the output torque of the engine E, the change can be assisted by the electric motor.
  • the hydraulic pump 17 is loaded (that is, when a load is applied to the hydraulic pump), it is possible to prevent the output torque from being lowered due to deterioration of combustion and the rotational speed from being excessively reduced, and the rotational speed is excessive. It is possible to suppress a decrease in fuel consumption of the engine E due to a decrease in the speed.
  • the second assist torque calculator 46 calculates the second assist torque by multiplying the torque change amount by this multiplication coefficient.
  • the target assist torque calculation unit 47 calculates the target assist torque by adding the calculated first assist torque and second assist torque.
  • the calculated target assist torque is used in the torque limiting block 50 in order to determine the output torque of the electric motor 20 and the tilt angle of the swash plate 17b.
  • FIG. 5 shows changes over time in target assist torque, insufficient torque, reduced torque, excess / deficiency, command torque, and engine assist value in order from the top of the drawing.
  • the horizontal axis represents time
  • the vertical axis represents various values.
  • the target assist torque rises to torque T1 (> L1) at time t1 when any one of the operation tools 111 to 115 is operated, and then remains constant until time t2, and the operation tools 111 to 115 operated at time t2. Is returned to zero.
  • the first torque limiting unit 51 calculates an output value in which the target assist torque is limited to the virtual allowable value L1 or less.
  • the insufficient torque calculator 52 calculates the insufficient torque by subtracting the output value from the target assist torque (see times t1 to t2 in the insufficient torque graph of FIG. 5).
  • the reduced power calculation unit 61 of the tilt angle control block 60 calculates the reduced power based on the insufficient torque calculated by the insufficient torque calculation unit 52 and the actual rotational speed.
  • the reduced flow rate calculation unit 62 calculates a reduced flow rate based on the reduced power and the discharge pressure of the hydraulic pump 17.
  • the set flow rate calculation unit 63 calculates the specified flow rate, and calculates the required flow rate by correcting the calculated specified flow rate with the actual rotational speed.
  • the actual flow rate calculation unit 64 calculates the actual discharge flow rate by subtracting the reduced flow rate from the calculated required flow rate.
  • the tilt angle calculation unit 65 calculates a tilt angle command value based on the calculated actual discharge flow rate and the actual rotation speed from the relationship between the discharge flow rate, the tilt angle, and the rotation speed of the hydraulic pump 17, Based on the tilt angle command value, the tilt angle control unit 66 determines a tilt signal (current).
  • the tilt angle control unit 66 outputs the determined tilt signal to the tilt angle adjusting valve 19a of the tilt angle adjusting device 19, and the tilt angle of the swash plate 17b of the hydraulic pump 17 becomes the tilt angle command value. In this manner, the movement of the servo mechanism 19b is controlled. Thereby, the tilt angle of the swash plate 17b is tilted to the tilt angle command value, and the output torque of the hydraulic pump 17 is reduced.
  • the torque correction block 80 calculates the excess or deficiency of the reduced torque caused by the response delay of the tilt angle control in parallel with the tilt angle control by the tilt angle control block 60. This will be described in detail.
  • the reduced torque estimating unit 81 of the torque correction block 80 calculates the reduced torque using the insufficient torque calculated by the insufficient torque calculating unit 52 and the transfer function (see the reduced torque graph in FIG. 5). As shown in the graph of reduced torque in FIG. 5, the reduced torque of the hydraulic pump 17 gradually increases with the start of the tilt angle control (time t1), and reaches the insufficient torque after a predetermined time has elapsed.
  • the excess / deficiency calculation unit 82 calculates the excess / deficiency of the reduction torque by subtracting the reduction torque from the insufficient torque (refer to the torque reduction excess / deficiency graph of FIG. 5). As shown in the graph of torque reduction excess / deficiency in FIG. 5, the shortage is the largest immediately after the operation tools 111 to 115 are operated, and the shortage decreases with time, and eventually becomes zero. Thereafter, when the operating tools 111 to 115 are returned to the neutral position, the torque reduction becomes excessive. The excessive torque reduction also decreases with time and eventually becomes zero.
  • the torque correction unit 83 calculates the correction torque by adding the excess / deficiency of the reduced torque to the output value of the first torque limiting unit 51 in order to compensate for the excess / deficiency of the reduced torque changing in this way.
  • the second torque limiting unit 53 sets the command torque so that the correction torque is limited to be equal to or less than the maximum allowable torque L2 of the electric motor 20 (see the command torque graph in FIG. 5).
  • the inverter 22 is controlled so that the command torque set by the drive control unit 54 is output from the electric motor 20.
  • the target assist torque can be covered by the assist torque by the electric motor 20 and the reduced torque of the hydraulic pump 17. That is, it is possible to assist the engine E with the torque corresponding to the target assist torque by outputting the correction torque from the electric motor 20 and reducing the reduction torque from the output torque of the hydraulic pump 17. Therefore, the engine assist value obtained by adding the correction torque and the reduction torque (a positive value) is substantially equal to the target assist torque as shown in the engine assist value graph of FIG. See torque graph).
  • the output torque of the hydraulic pump 17 is reduced by adjusting the tilt angle of the swash plate 17b. Therefore, the output torque of the hydraulic pump 17 can be reduced with the increase of the target assist torque before the rotational speed of the engine E suddenly drops, so that the rotational angle is lowered and the tilt angle control is performed. be able to. Therefore, it is possible to suppress a drop in the rotational speed as compared with the conventional technique that reduces the output torque of the hydraulic pump 17 based on the rotational speed difference. Thus, the hydraulic drive system 1 can reduce the output torque of the hydraulic pump 17 so that the rotational speed of the engine E does not decrease excessively.
  • the rotational speed of the engine E can be maintained near the target rotational speed. Therefore, the engine E can be operated in a good operation region, and deterioration of the fuel efficiency of the engine E can be prevented.
  • the excess / deficiency of the reduced torque due to the response delay by the tilt angle control can be compensated by the increase / decrease of the output torque of the electric motor 20. Thereby, it can suppress that assist torque runs short with a response delay, and can suppress that the rotation speed of the engine E falls.
  • FIG. 6 similarly to FIG. 5, changes over time in target assist torque, insufficient torque, reduced torque, excess / deficiency, command torque, and system torque are shown in order from the top of the page.
  • the horizontal axis represents time
  • the vertical axis represents various values.
  • the target assist torque rises to the torque T2 (> L2) at time t3 when any of the operation tools 111 to 115 is operated as shown in the graph of target assist torque in FIG.
  • the operating tools 111 to 115 operated at time t4 are returned to zero.
  • the first torque limiter 51 first calculates an output value that limits the target assist torque to the virtual allowable value L1 or less.
  • the torque calculator 52 calculates the insufficient torque.
  • the tilt angle control block 60 calculates a tilt angle command value based on the calculated insufficient torque. Further, the tilt angle control block 60 outputs a tilt signal to the tilt angle adjusting valve 19a based on the tilt angle command value, so that the tilt angle of the swash plate 17b becomes the tilt angle command value.
  • the turning angle adjusting device 19 is operated.
  • the reduced torque estimating unit 81 estimates the reduced torque based on the insufficient torque calculated by the insufficient torque calculating unit 52 (see the reduced torque graph in FIG. 6), and further estimated reduced torque. Based on the above, the excess / deficiency calculation unit 82 calculates the excess / deficiency of the reduced torque (refer to the reduced torque excess / deficiency graph of FIG. 6). The torque correction unit 83 calculates the correction torque by correcting the output value based on the calculated excess / deficiency. Since the target assist torque is not less than the maximum allowable torque L2 and there is a response delay in the tilt angle control, the correction torque calculated immediately after the start of the tilt angle control is not less than the maximum allowable torque L2.
  • the second torque limiter 53 sets the command torque so as to limit the correction torque to the maximum allowable torque L2 or less (see the command torque graph in FIG. 6).
  • the drive control unit 54 controls the operation of the inverter 22 so that the set command torque is output from the electric motor 20.
  • the output torque of the electric motor 20 is cut as much as the target assist torque exceeds the maximum allowable torque L2 immediately after the start of the tilt control. Therefore, the total torque of the hydraulic drive system 1 is slightly smaller than the target assist torque immediately after the start of the tilt control, but can be substantially matched with the target assist torque (see the total torque graph in FIG. 6).
  • the virtual limit value L1 of the first torque limiter 51 is constant, but the virtual limit value L1 may be a variable value.
  • the control device 30 may detect the state of the battery 25 according to a signal from the battery sensor 26 and change the virtual limit value L1 according to the state of the battery 25.
  • the virtual limit value L1 is lowered as the charge amount of the battery 25 decreases or the temperature of the battery 25 decreases.
  • the virtual limit value L1 a variable value, it is possible to suppress a situation in which the command torque cannot be output from the electric motor 20.
  • the state value of the battery 25 is detected, but the state value of the inverter 22 may be detected.
  • the target assist torque is calculated by calculating the actual fuel injection amount and the torque change amount by the assist torque calculation block 40, but the target assist torque is not always calculated by such a calculation method. do not have to.
  • the first assist torque may be the target assist torque
  • the second assist torque may be the target assist torque.
  • the construction machine on which the hydraulic drive system 1 is mounted is not limited to a hydraulic excavator, and may be another construction machine such as a crane or a dozer, and may be a construction machine provided with a hydraulic actuator.
  • a hydraulic pump has been described as an example of a hydraulic pump.
  • the hydraulic pump is not limited to a hydraulic pump, and may be any pump that discharges a liquid such as water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Operation Control Of Excavators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

 油圧駆動システムは、可変容量型の油圧ポンプと、傾転角調整装置と、電動機と、制御装置とを備えている。制御装置は、目標アシストトルクを目標アシストトルク演算部で演算し、第1トルク制限部で目標アシストトルクを仮想制限値以下の出力値に制限し、更に出力値に応じた指令トルクを出力するように電動機を駆動制御部で制御する。また、制御装置は、目標アシストトルクから出力値を減算して不足トルクを不足トルク演算部で演算し、油圧ポンプの出力トルクから不足トルクを低減させる傾転角指令値を傾転角演算部で演算し、更に傾転角指令値に応じた傾転信号を傾転角制御部から傾転角調整装置に出力する。

Description

液圧駆動システム
 本発明は、エンジン及び電動機によって駆動され且つ傾転角に応じて吐出量が変化する可変容量型の液圧ポンプの傾転角を制御する液圧駆動システムに関する。
 建設機械等は、油圧ポンプを備えており、操作レバー等が操作されると油圧ポンプから圧油が吐出される。吐出される圧油は、油圧シリンダ等の油圧アクチュエータに導かれ、油圧アクチュエータを作動させる。油圧アクチュエータが作動することでアームやブーム等が動くようになっている。油圧ポンプは、回転軸を介してエンジン及び電動機と連結されており、エンジン及び電動機によって回転駆動されるようになっている。このように構成されている建設機械として、例えば特許文献1の建設機械が知られている。
 特許文献1の建設機械では、エンジンは、エンジンの回転数が回転数指令となるように制御装置によって制御されているが、油圧アクチュエータを駆動する場合など、油圧ポンプに負荷がかかるとエンジンの回転数が低下する。エンジンの回転数が減少して前記回転数と回転数指令との偏差が増加すると、制御装置が電動機を動かしてエンジンをアシストするようになっている。このようにして、制御装置は、エンジンの回転数を一定(具体的には、回転数指令)に保つようになっている。
 また、特許文献1の建設機械では、油圧ポンプに大きな負荷がかかるような場合、油圧ポンプの吸収トルクの上限値を低減させるようになっている。吸収トルクの上限値は、所定の制御特性に基づいてエンジンの回転数偏差ΔN(実回転数と目標回転数との偏差)に応じて設定されている。
特開2012-180683号公報
 特許文献1の建設機械では、回転数偏差ΔNに応じて吸収トルクの上限値を決定している。そのため、油圧ポンプに大きな負荷が掛かってエンジンの回転数が急激に低下した場合、回転数偏差ΔNが設定値まで到達しないと吸収トルクの上限値が抑えられない。そうすると、エンジンの回転数低下に対するエンジンアシストにタイムラグが生じる。それ故、エンジン回転数が過度に低下することがある。
 そこで本発明は、エンジンの回転数が過度に低下しないように液圧ポンプの出力トルクを低下させることができる液圧駆動システムを提供する。
 本発明の液圧駆動システムは、エンジンの出力トルクによって回転駆動され、傾転角に応じた吐出量の圧液を吐出する可変容量型の液圧ポンプと、入力される傾転角指令に応じて前記液圧ポンプの傾転角を調整する傾転角調整装置と、前記エンジンの出力トルクをアシストして前記液圧ポンプを回転駆動する電動機と、前記エンジンの回転数が予め設定される目標エンジン回転数になるように前記電動機を制御し、且つ操作装置の操作量に応じた要求流量を前記液圧ポンプから吐出させるように前記傾転角調整装置を制御する制御装置とを備え、前記制御装置は、目標アシストトルク演算部と、目標アシストトルク制限部と、駆動制御部と、不足トルク演算部と、傾転角演算部と、傾転角制御部とを有し、前記目標アシストトルク演算部は、前記エンジンをアシストする前記電動機から出力する目標アシストトルクを演算し、前記目標アシストトルク制限部は、前記目標アシストトルクを予め設定されている制限値以下の出力値に制限し、前記駆動制御部は、前記出力値に応じた指令トルクを出力するように前記電動機を制御し、前記不足トルク演算部は、前記目標アシストトルクと前記出力値とに応じて不足分である不足トルクを演算し、前記傾転角演算部は、前記不足トルク演算部で演算された前記不足トルクを液圧ポンプの出力トルクから低減させる傾転角指令値を演算し、前記傾転角制御部は、前記傾転角演算部で演算された傾転角指令値に応じた傾転角指令を前記傾転角制御装置に出力して前記傾転角制御装置を制御するものである。
 本発明に従えば、目標アシストトルクが制限値以上になると、目標アシストトルクを制限値以下の出力値に制限し、出力値に応じた指令トルクを電動機から出力させる。他方、目標アシストトルクを制限値以下に制限することで不足した不足トルクを不足トルク演算部で演算する。この不足トルクに対応する低減流量を要求流量から減算した補正流量を液圧ポンプから吐出する傾転角指令値を傾転角演算部で演算する。更に、傾転角制御部は、傾転角が傾転角指令値となるように傾転角制御装置を制御する。これにより、液圧ポンプの出力トルクを不足トルク分低減することができ、トルク不足によりエンジンの回転数が落ち込むことを抑制することができる。また、目標アシストトルクに基づいて演算される不足トルクに基づいて傾転角を調整しているので、エンジンの回転数が急激に低下する前に傾転角制御を行うことができる。それ故、回転数差に基づいて傾転角を調整する従来の技術に比べてエンジンの回転数が過度に低下することを抑制することができる。
 上記発明において、前記制御装置は、低減トルク推定部と、過不足分演算部と、トルク補正部とを有し、前記低減トルク推定部は、前記液圧ポンプの傾転角を前記傾転角指令値に調整する傾転角制御によって前記液圧ポンプにおける低減トルクを推定し、前記過不足分演算部は、前記傾転角制御における前記液圧ポンプの傾転角の応答遅れによって生じる、前記不足トルクに対するトルク低減の過不足分を前記低減トルク推定部によって推定された前記低減トルクに基づいて演算し、前記トルク補正部は、前記出力値に前記トルク低減の過不足分を加算することによって前記出力値を補正してもよい。
 上記構成に従えば、傾転角制御における応答遅れによる低減トルクの過不足分を電動機の出力トルクの増減によって補うことができる。これにより、応答遅れに伴ってアシストトルクが不足することを抑制することができ、エンジンの回転数が低下することを抑制することができる。
 上記発明において、前記低減トルク推定部は、一次遅れ要素を含む伝達関数により前記低減トルクを推定してもよい。
 上記構成に従えば、低減トルクをより近似して演算することができる。これにより、エンジンの回転数の低下をさらに抑制することができる。
 上記発明において、前記制御装置は、指令トルク制限部を有し、前記指令トルク制限部は、前記制限値より大きい最大許容トルク以下に指令トルクを制限するようになっていてもよい。
 上記構成に従えば、電動機から最大許容トルク以上の指令トルクが出力されることを防ぐことができる。これにより、出力トルクの出し過ぎによる電動機の損傷を防ぐことができる。
 上記発明において、前記電動機に電力を供給する電力供給装置と、前記電力供給装置の状態を表す状態値を検出する状態値検出センサを備え、前記目標アシストトルク制限部は、前記状態検出値の検出結果に応じて前記制限値を変更してもよい。
 上記構成に従えば、電源装置の状態に応じて電動機の最大トルクが制限される際に、電源装置の状態に応じて制限値を変えることができる。これにより、指令トルクを電動機から出力できない事態を抑制することができる。
 上記発明において、前記制御装置は、目標燃料噴射量演算部と、噴射量制限部と、実トルク演算部と、目標トルク演算部と、差分トルク演算部と、を有し、前記目標燃料噴射量演算部は、目標回転数に応じた目標燃料噴射量を演算し、前記噴射量制限部は、前記目標燃料噴射量演算部によって演算される前記目標燃料噴射量まで段階的に実燃料噴射量を増加させる機能を有し、増加させる際の実燃料噴射量の時間変化率が所定値以下となるように実燃料噴射量を決定し、前記実トルク演算部は、前記回転数センサで検出される実回転数と前記噴射量制限部で決定された前記実燃料噴射量とに基づいて前記エンジンで出力される実トルクを演算し、前記目標トルク演算部は、前記回転数センサで検出される実回転数と前記目標燃料噴射量演算部で演算される前記目標燃料噴射量とに基づいて、前記回転軸に与える目標トルクを演算し、前記差分トルク演算部は、前記目標トルク演算部で演算される前記目標トルクに対して前記実トルク演算部で演算される前記実トルクで不足する差分トルクを演算し、前記目標アシストトルク演算部は、前記差分トルク演算部で演算される前記差分トルクに基づいて目標アシストトルクを演算してもよい。
 上記構成に従えば、実燃料噴射量の時間変化率を制限することによってエンジンの出力トルクが不足するが、その不足する出力トルクを差分トルクとして事前に演算する。この差分トルクを電動機から出力させることによって、実燃料噴射量を制限しても油圧駆動システム全体から出力されるトルクを目標トルクに近づけることができ、油圧駆動システム全体から出力されるトルクの低下を抑えることができる。このように、油圧駆動システムでは、時間変化率が制限されることに起因する出力トルクの変化量を事前に推定して、その不足分のトルクを電動機に出力させて対処しており、回転数の偏差に応じてトルク調整する場合に比べてエンジンEの回転数が過度に低下することを抑制することができる。これにより、回転数が過度に低下することに伴うエンジンの燃費の低下を抑えることができる。
 上記発明において、前記制御装置は、実燃料噴射量演算部と、トルク変化推定部と、変化トルク演算部と、を有し、前記燃料噴射量演算部は、目標回転数に応じた実燃料噴射量を演算し、前記トルク変化推定部は、前記燃料噴射量演算部で演算される前記実燃料噴射量に対する前記エンジンの出力トルクの単位回転数当たりの変化を推定し、前記変化トルク演算部は、前記トルク変化推定部で演算される前記出力トルクの単位回転数当たりの変化に基づいてアシストする変化トルクを演算し、前記目標アシストトルク演算部は、前記変化トルク演算部で演算される変化トルクに基づいて目標アシストトルクを演算してもよい。
 上記構成に従えば、実燃料噴射量の変化に起因するエンジンの燃焼状態の悪化等による出力トルクの変化量を事前に推定し、推定された変化量に基づいて変化トルクを演算する。演算された変化トルクは電動機から出力される。これにより、エンジンの出力トルクを電動機によってアシストすることができ、出力トルクに変化があった際にその変化分を電動機によってアシストすることができる。例えば、液圧ポンプの負荷入れ時において目標燃料噴射量が急激に増加して燃焼状態が悪化しても、それに起因する出力トルクの低下及び回転数の過度な低下を防ぐことができる。これにより、回転数が過度に低下することに伴うエンジンの燃費の低下を抑えることができる。
 本発明によれば、エンジンの回転数が過度に低下しないように液圧ポンプの負荷を低下させることができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本件発明の実施形態に係る油圧駆動システムを示すブロック図である。 図1の油圧駆動システムに備わる制御装置が有する機能をブロックにして示した機能ブロック図である。 図2の制御装置のアシストトルクブロックをさらに詳細に説明すべく示した機能ブロック図である。 図3のアシストトルクブロックの一部分を更に詳細に説明すべく示した機能ブロック図である。 図1の油圧ポンプ駆動システムが、目標アシストトルクが最大許容トルク以下である状態で駆動したときの各種値の経時変化を示すグラフである。 図1の油圧ポンプ駆動システムが、目標アシストトルクが最大許容トルク以上である状態で駆動したときの各種値の経時変化を示すグラフである。
 以下、本発明に係る実施形態の油圧駆動システム1について図面を参照して説明する。なお、以下の説明で用いる方向の概念は、説明する上で便宜上使用するものであって、発明の構成の向き等をその方向に限定するものではない。また、以下に説明する油圧駆動システム1は、本発明の一実施形態に過ぎない。従って、本発明は実施の形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
 建設機械は、バケット、ローダ、ブレード、巻上機等の種々のアタッチメントを備え、油圧シリンダや油圧モータ(電油モータ)等の油圧アクチュエータによって動かすようになっている。例えば、建設機械の1種である油圧ショベルは、バケット、アーム及びブームを備えており、これら3つの部材を動かしながら掘削等の作業を行うことができるようになっている。バケット、アーム、及びブームの各々には油圧シリンダ11~13が設けられており、各シリンダ11~13に圧油を供給することでバケット、アーム、及びブームが動くようになっている。
 また、油圧ショベルは、走行装置を有しており、更に走行装置の上には、旋回体が旋回可能に取り付けられている。旋回体には、ブームが上下方向に揺動可能に取り付けられている。旋回体には、油圧式の旋回用モータ14が取り付けられており、旋回用モータ14に圧油を供給することで旋回体が旋回するようになっている。また、走行装置には、油圧式の走行用モータ15が取り付けられており、走行用モータ15に圧油を供給することで前進又は後退するようになっている。
 また、油圧ショベルには、複数の操作レバー111~115が油圧アクチュエータ11~15の各々に対応付けて設けられている。油圧アクチュエータ11~15(即ち、油圧シリンダ11~13及び油圧モータ14,15)には、油圧供給装置16が接続されており、複数の操作具111~115の何れかが操作されると操作具111~115に対応する油圧アクチュエータ11~15に油圧供給装置16から圧油が供給されて、対応する油圧アクチュエータ11~15が作動するようになっている。
 次に油圧供給装置16を詳細に説明する。油圧供給装置16は、油圧ポンプ17と、コントロールバルブ18と、傾転角調整装置19とを有している。油圧ポンプ17は、回転軸17aを有しており、回転軸17aを回転させることで圧油を吐出するようになっている。吐出された圧油は、コントロールバルブ18に導かれるようになっている。コントロールバルブ18は、操作具111~115の何れかが操作されると、操作された操作具111~115に対応する油圧アクチュエータ11~15に圧油を流すように圧油の流れを制御するようになっている。
 さらに詳細に説明する。各操作具111~115は、各操作具111~115が操作されると、操作方向及び操作量に応じた圧力のパイロット圧を出力するようになっている。コントロールバルブ18は、操作具111~115から出力されるパイロット圧に応じて吐出された圧油の流れを制御し、操作される操作具111~115に対応する油圧アクチュエータ11~15に圧油を流してそれらを作動させるようになっている。また、コントロールバルブ18は、各操作具111~115から出力されるパイロット圧に応じた流量の圧油を対応する油圧アクチュエータ11~15に供給する。これにより、操作具111~115の操作量に応じた速度で油圧アクチュエータ11~15を動かすようになっている。このようにして操作具111~115の操作量に応じた速度でバケット、アーム、及びブーム等を動かすことができるようになっている。
 このように構成されている油圧供給装置16は、本実施形態においてポジティブコントロール方式の油圧システムを構成しており、操作具111~115の操作量に応じて油圧ポンプ17の吐出量を増減するようになっている。なお、油圧供給装置16は、ネガティブコントロール方式の油圧システムを構成していてもよい。油圧供給装置16の構成について更に詳細に説明する。油圧ポンプ17は、可変容量型のポンプ、例えば可変容量型の斜板ポンプが採用されている。油圧ポンプ17は、斜板17bの傾転角を変えることで吐出量を変えられるようになっており、油圧ポンプ17には斜板17bの傾転角を変える傾転角調整装置19が設けられている。
 傾転角調整装置19は、傾転角調整バルブ19aとサーボ機構19bとを有している。傾転角調整バルブ19aは、例えば電磁減圧弁であり、図示しないパイロットポンプに接続されている。傾転角調整バルブ19aは、入力される傾転信号(傾転角指令)に応じた指令圧p1を出力するようになっている。傾転角調整バルブ19aは、サーボ機構19bに接続されており、出力された指令圧pは、サーボ機構19bに導かれるようになっている。
 サーボ機構19bは、図示しないサーボピストンを有している。サーボピストンには、斜板17bが連結されており、サーボピストンが移動することで斜板17bの傾転角を変えることができるようになっている。サーボピストンは、入力される指令圧pに応じて移動するようになっている。従って、斜板17bの傾転角が指令圧pに応じた角度に調整される。即ち、斜板17bの傾転角は、傾転信号に応じた角度に調整されるようになっている。また、油圧ポンプ17は、その回転軸17aに油圧ポンプ駆動装置2が設けられており、油圧ポンプ駆動装置2によって回転軸17aが回転駆動されるようになっている。
 油圧ポンプ駆動装置2は、エンジンE及び電動機20を備えるハイブリッド式の駆動システムであり、エンジンE及び電動機20が共に油圧ポンプ17の回転軸17aに連結されている。エンジンEは、例えば複数の気筒を有するディーゼルエンジンであり、気筒毎に燃料噴射装置21が対応付けて設けられている。燃料噴射装置21は、例えば燃料ポンプと電磁制御弁とによって構成されており、入力される噴射指令に応じた量の燃料を対応する気筒の燃焼室に噴射するようになっている。エンジンEは、燃料噴射装置21から噴射された燃料を燃焼させて図示しないピストンを往復運動させることで回転軸17aを回転させ、油圧ポンプ17から圧油を吐出させるようになっている。なお、本実施形態では、エンジンEがディーゼルエンジンであるが、必ずしもディーゼルエンジンである必要はなくガソリンエンジンであってもよい。また、回転軸17aには、エンジンEの駆動をアシストする電動機20が設けられている。
 電動機20は、例えばACモータであって、インバータ22に接続されている。駆動装置であるインバータ22は、バッテリ25と繋がっており、バッテリ25から供給される直流電流を交流電流に変換して交流電流を電動機20に供給するようになっている。また、インバータ22は、入力されるトルク指令に応じた周波数及び電圧の交流電流を電動機20に供給し、トルク指令(後述するアシストトルク)に応じたトルクを電動機20から回転軸17aに出力させるようになっている。
 また、回転軸17aには、回転数センサ23が取り付けられており、回転数センサ23は、回転軸17aの回転数に応じた信号を出力するようになっている。回転数センサ23は、インバータ22及び燃料噴射装置21の電磁制御弁と共に制御装置30に電気的に接続されている。また、制御装置30には、吐出圧センサ24、複数のパイロット圧センサS1,S2及びバッテリセンサ26が電気的に接続されている。吐出圧センサ24は、油圧ポンプ17の吐出圧を検出するセンサであって、前記吐出圧に応じた信号を制御装置30に出力するようになっている。パイロット圧センサS1,S2は、各操作具111~115に対応付けて設けられている。パイロット圧センサS1,S2は、対応する操作具111~115から出力されるパイロット圧を検出するセンサであって、前記パイロット圧に応じた信号を制御装置30に出力するようになっている。また、バッテリセンサ26は、バッテリの電圧(即ち、充電量)、及び温度等のバッテリの状態を示す状態値を検出するセンサであって、バッテリの状態に応じた信号を制御装置30に出力するようになっている。
 制御装置30は、図2に示すような各種値を演算する機能部分を有しており、以下では、各種値を演算する機能部分毎にブロックに分けて説明する。制御装置30は、目標回転数決定部31と、回転数差演算部32と、目標燃料噴射量演算部33とを有している。目標回転数決定部31は、入力手段(ダイヤル、ボタン、及びタッチパネル等)から入力された又は予め設定された回転数に基づいてエンジンの目標回転数を決定する。回転数差演算部32は、回転数センサ23から入力される信号に基づいて回転軸17aの実回転数を算出する。また、回転数差演算部32は、算出された実回転数と目標回転数決定部31で決定された目標回転数との差を演算する。目標燃料噴射量演算部33は、前記実回転数と前記目標回転数との差に基づいて燃料噴射装置21から噴射すべき目標燃料噴射量を演算する。
 また、制御装置30は、目標燃料噴射量に基づいて後述の方法で実燃料噴射量を演算し、この実燃料噴射量を燃料噴射装置21から噴射させるようになっている。なお、制御装置30は、実回転数及び目標燃料噴射量を所定の間隔で演算するようになっている。更に、制御装置30は、エンジンEからのトルクでは出力が不足する場合、電動機20を駆動してエンジンEをアシストし、また油圧ポンプ17の出力トルクを低減させるようになっている。以下では、制御装置30のこのような機能について図2及び図3を参照しながら更に詳細に説明する。
 制御装置30は、アシストトルク演算ブロック40と、トルク制限ブロック50と、傾転角制御ブロック60とを有している。アシストトルク演算ブロック40は、目標燃料噴射量演算部33で演算された目標燃料噴射量と、回転数センサ23から入力される信号に基づいて算出される実回転数とに応じてアシストトルク及び実燃料噴射量(実際に噴射すべき燃料量)を演算するようになっている。図3に示すようにアシストトルク演算ブロック40は、目標トルク演算部41、噴射量制限部42、実トルク演算部43、及び第1アシストトルク演算部44を有している。
 目標トルク演算部41は、目標トルクマップを用いて目標トルクを演算するようになっている。目標トルクマップは、油圧ポンプ駆動装置2全体で出力する目標トルクが目標燃料噴射量及び実回転数に対応付けられているマップであり、目標トルク演算部41は、演算された目標燃料噴射量及び実回転数に基づいて目標トルクマップから目標トルクを算出するようになっている。また、目標燃料噴射量演算部33で演算される目標燃料噴射量は、燃料噴射装置21にて実際に噴射させる実燃料噴射量を噴射量制限部42で演算するために用いられる。
 噴射量制限部42(実燃料噴射量演算部)は、増加率制限あり且つ減少率制限なしのレートリミット機能を有しており、このレートリミット機能により目標燃料噴射量に基づいて実燃料噴射量を演算するようになっている。さらに詳細に説明する。噴射量制限部42は、目標燃料噴射量が増加する際に目標燃料噴射量の増加率が所定値を超えると、予め定められる変化規則に基づいて変化率又は変化量を制限しながら実燃料噴射量を前記目標燃料噴射量まで段階的に変化させるようになっている。他方、目標燃料噴射量が減少する場合、噴射量制限部42は、減少率を制限せずに目標燃料噴射量を実燃料噴射量とするようになっている。
 本実施形態において、噴射量制限部42は、目標燃料噴射量演算部33で演算された目標燃料噴射量を内部に保持(即ち、記憶)し、保持している目標燃料噴射量と直後に演算された目標燃料噴射量とを比較するようになっている。噴射量制限部42は、保持している目標燃料噴射量より直後の目標燃料噴射量が小さい、即ち目標燃料噴射量が減少している場合、目標燃料噴射量を実燃料噴射量として算出する。他方、噴射量制限部42は、保持している目標燃料噴射量より直後の目標燃料噴射量が大きい、即ち目標燃料噴射量が増加している場合、増加率(本実施形態では、2つの目標燃料噴射量の差)が所定値を超えているか否かを判定する。噴射量制限部42は、所定値以下の場合は、標燃料噴射量を実燃料噴射量として算出する。他方、噴射量制限部42は、所定値を超えている場合、増加率を所定値又はそれ以下とする変化規則に基づいて増加率を制限しながら実燃料噴射量を目標燃料噴射量まで段階的に増加させる。即ち、噴射量制限部42は、所定値を超えている場合、所定値又はそれ以下の比例定数に基づいて時間に比例させて実燃料噴射量を目標燃料噴射量まで段階的に増加させる。なお、噴射量制限部42は、フィルターであってもよく、例えば一次遅れ要素(即ち、遅れ要素)を有する伝達関数に基づいて目標燃料噴射量を増加させるようにしてもよい。このように演算された実燃料噴射量は、実トルクを実トルク演算部43で演算するために実回転数と共に用いられる。
 実トルク演算部43は、実トルクマップを用いて実トルクを演算するようになっている。実トルクは、燃料噴射装置21によってエンジンEに実燃料噴射量を噴射した場合にエンジンEが出力する出力トルクである。実トルクマップは、実トルクが実燃料噴射量及び実回転数に対応付けられているマップである。実トルク演算部43は演算された実燃料噴射量及び実回転数に基づいて実トルクマップから実トルクを算出するようになっている。本実施形態では、実トルクマップ及び目標トルクマップに同じマップが使用されている。算出された実トルクは、電動機20で出力させる第1アシストトルクを第1アシストトルク演算部44で演算するために目標トルクと共に用いられる。
 第1アシストトルク演算部44(差分トルク演算部)は、1つの目標燃料噴射量から演算される実トルクと目標トルクとに基づいて、目標トルクから実トルクを差し引いた不足分のトルクである第1アシストトルク(差分トルク)を演算するようになっている。更に詳細に説明する。第1アシストトルク演算部44は、目標トルクから実トルクを減算する。これにより、油圧ポンプ駆動装置2から目標トルクを発生させる時に不足する第1アシストトルクが演算される。
 このように、アシストトルク演算ブロック40では、目標燃料噴射量が急激に増加したときに噴射量の増加率を制限するようになっている。このように増加率を制限することによって、実燃料噴射量の急激な増加に起因するエンジンEの燃焼状態の悪化を防ぐことができる。他方、増加率が制限されることで実際に出力される実トルクが目標トルクより小さくなる、即ち不足するトルクが生じるので、不足分を電動機20に出力させるように、不足分に相当する第1アシストトルクを演算している。
 また、油圧ポンプ駆動装置2では、実燃料噴射量が変化することによってエンジンEの燃焼状態が悪化して、エンジンEの出力トルクが低下する。アシストトルク演算ブロック40は、実燃料噴射量が変化することに伴うエンジンEの燃焼状態の悪化等に起因する出力トルクの低下分を推定し、低下した出力トルクを電動機20で補うように第2アシストトルク(変化トルク)を演算する機能を有している。アシストトルク演算ブロック40は、第2アシストトルクを演算するために、トルク変化推定部45と、第2アシストトルク演算部46と、目標アシストトルク演算部47とを有している。
 トルク変化推定部45は、演算された実回転数及び実燃料噴射量に基づいて、エンジンEから出力されるトルクの変化量を実回転数に基づいて推定するようになっている。実燃料噴射量の変化によりエンジンEの燃焼状態が悪化し、出力トルクに応答遅れが生じる。また、エンジンEの燃焼状態は、一サイクル毎に変化し、エンジンEの燃焼状態の悪化は、燃焼回数を経るにつれて改善される。従って、実回転数が大きければ大きい程、単位時間当たりの燃焼回数が多くなるので、エンジンEの燃焼状態の悪化がより早く改善し、エンジンEのトルクの低下が小さくなる。
 エンジンEの燃焼状態が一サイクル毎に変化するというエンジンEの出力トルクの特性を鑑みて、トルク変化推定部45は、単位回転数毎(好ましくは、一サイクル毎)に出力トルクの低下を演算するようになっている。本実施形態において、トルク変化推定部45では、後述する疑似微分を含む伝達関数によってエンジンEを数値モデル化してエンジンEの出力トルクの変化を推定し、更に疑似部分に含まれる一次遅れ要素の時定数を実回転数に応じて変化させる。これにより、単位回転数毎の出力トルク低下を疑似的に演算することができる。そうすると、実回転数が大きい程エンジンEの燃焼状態がより早く改善してトルク低下が抑えられ、且つ実回転数が小さい程エンジンEの燃焼状態の改善が遅くなってトルク低下が大きくなることが考慮される。即ち、実回転数に応じてトルクの応答遅れが変化するエンジンEの出力トルク特性が前述する伝達関数によって推定できる。なお、トルク変化推定部45の演算は、予め定められた間隔で行われる。このように出力トルクの変化量を推定するトルク変化推定部45について、図3に併せて図4も参照しながら以下にさらに詳細に説明する。
 トルク変化推定部45は、出力トルクの変化を推定する機能部分として、時定数演算部71と、疑似微分演算部72と、トルク変化係数演算部73と、トルク変化率演算部74と、補正係数演算部75と、トルク変化量演算部76とを有している。時定数演算部71は、回転数センサ23からの信号に基づいて実回転数を算出し、更に時定数マップを用いて実回転数から時定数を算出する。本実施形態において、時定数マップは、時定数と実回転とが対応付けられているマップである。時定数マップの時定数と実回転との対応関係は、実験等から得られたデータに基づいて設定されており、エンジンEの排気量、付属品(過給機やEGR等)、及び構造(配管の径や長さ等)等によって異なる。即ち、前記対応関係は、エンジンEの機種毎に異なっており、エンジンEの機種毎に実験結果を参考にして設定される。なお、前記対応関係は、機種毎だけでなく個体毎に設定されてもよい。時定数演算部71で演算される時定数は、実燃料噴射量の微分値を演算するために疑似微分演算部72で実燃料噴射量と共に用いられる。
 疑似微分演算部72は、エンジンEを数値モデル化した伝達関数によって実燃料噴射量の微分値を演算する。なお、エンジンEでは、燃料噴射量とトルクとが対応しており、実燃料噴射量の微分値(実燃料噴射量の単位回転数当たりの変化率に相当)は、トルクの変化率に対応している。疑似微分演算部72についてさらに詳細に説明する。疑似微分演算部72の伝達関数には、一次遅れ要素を含む疑似微分(不完全微分ともいう)が含まれており、疑似微分演算部72は、この伝達関数を用いて実燃料噴射量の微分値を演算するようになっている。本実施形態において、疑似微分は、ラプラス変数をsとし、微分ゲインをTとし、時定数をTとすると、下記の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 このように一次遅れ要素を含む疑似微分によって実燃料噴射量の微分値を演算することで、燃焼状態の悪化による応答遅れが考慮された出力トルクの変化率に対応する値(即ち、実燃料噴射量の微分値)が演算される。また、疑似微分に含まれる一次遅れ要素の時定数Tは、時定数演算部71で演算された時定数を用いる。即ち、疑似微分演算部72は、演算する度に時定数を変化させて実燃料噴射量の微分値を演算する。このように時定数を実回転数に基づいて演算して、時定数を演算する度に変更することで、単位回転数毎(好ましくは、一サイクル毎)の出力トルクの変化率を疑似的に演算することができる。このようにして演算される実燃料噴射量の微分値は、エンジンEの出力トルクの単位回転数当たりの変化率に対応しており、後述するトルク変化係数をトルク変化係数演算部73で演算するために用いられる。
 トルク変化係数演算部73は、疑似微分演算部72で演算された実燃料噴射量の微分値に基づいてトルク変化係数を演算するようになっている。トルク変化係数は、実トルクに対してどの程度トルクが変化するかを示す係数である。トルク変化係数演算部73は、まず実燃料噴射量の微分値の絶対値を演算し、次に図4に示すトルク変化係数マップ73aを用いて実燃料噴射量の微分値の絶対値からトルク変化係数を算出する。トルク変化係数マップ73aは、実燃料噴射量の微分値の絶対値とトルク変化係数とが対応付けられているマップであり、例えば微分値の絶対値が大きくなるとトルク変化係数が大きくなるように設定されている。本実施形態において、トルク変化係数マップ73aの実燃料噴射量の微分値の絶対値とトルク変化係数との対応関係は、実験等から得られたデータに基づいて設定されており、時定数マップと同様にエンジンEの機種毎に設定されている。なお、実燃料噴射量の微分値の絶対値とトルク変化係数との対応関係は、必ずしも図4に示されるような対応関係である必要はない。トルク変化係数演算部73は、トルク変化係数マップ73aと実燃料噴射量の微分値の絶対値とに基づいてトルク変化係数を演算し、演算されたトルク変化係数は、トルク変化率をトルク変化率演算部74で演算するために用いられる。
 トルク変化率は、実燃料噴射量の燃料をエンジンEに噴射したときに出力される実トルクに対して、燃焼状態の変化に伴って変化(具体的には、減少)するトルクの割合を示す値である。トルク変化係数とトルク変化率とは、基本的に対応しているが、トルク変化係数は、実燃料噴射量の微分値の絶対値から一義的に導かれるように設定された値である。これに対して、トルク変化率は、実燃料噴射量の微分値の絶対値(即ち、トルク変化係数)だけでなく、実回転数及び実燃料噴射量の影響が加味されている。例えば、エンジンEに排気ターボ機能が備わっている場合、低回転域では、そのターボによって吸気遅れが増大して、出力トルクの低下が増大する。このような現象を加味すべく、トルク変化率は、トルク変化係数演算部73で演算されるトルク変化係数を補正するようになっており、補正するための補正係数を補正係数演算部75で演算している。
 補正係数演算部75は、噴射量制限部42で演算される実燃料噴射量及び実回転数に基づいて補正係数を演算するようになっている。補正係数は、トルク変化係数演算部73で演算されたトルク変化係数を実回転数及び実燃料噴射量に応じて補正するための係数である。さらに詳細に説明する。補正係数演算部75は、図4に示すような第1補正係数マップ75aを用いて実回転数から第1補正係数を演算し、図4に示すような第2補正係数マップ75bを用いて実燃料噴射量から第2補正係数を演算する。第1補正係数マップ75aは、実回転数と第1補正係数とが対応付けられているマップである。第2補正係数マップ75bは、実燃料噴射量と第2補正係数とが対応付けられているマップである。各補正係数マップ75a,75bでは、例えば実回転数及び実燃料噴射量が大きくなると補正係数が小さくなるように設定されている。なお、2つの補正係数マップ75a,75bは、実験等から得られたデータに基づいて設定されており、他のマップと同様にエンジンEの機種毎に異なっている。また、実回転数と第1補正係数との対応関係及び実燃料噴射量と第2補正係数との対応関係の各々は、必ずしも図4に示されるような対応関係である必要はない。
 補正係数演算部75は、演算された第1及び第2補正係数を補正係数乗算部75cによって乗算してトルク補正係数を算出する。算出されたトルク補正係数は、トルク変化率をトルク変化率演算部74で演算するためにトルク変化係数と共に用いられる。
 トルク変化率演算部74は、トルク変化係数演算部73で演算されるトルク変化係数と補正係数演算部75で演算される補正係数とに基づいてトルク変化率を演算するようになっている。トルク変化率は、前述の通り実トルクに対して、燃焼状態の悪化等に伴って変化(増加又は減少)するトルクの割合を示す値である。トルク変化率演算部74は、演算されるトルク変化係数及び補正係数を乗算することによりトルク変化率を算出している。算出されたトルク変化率は、トルク変化量をトルク変化量演算部76で演算するために実トルクと共に用いられる。
 トルク変化量演算部76は、トルク変化率演算部74で演算されるトルク変化率及び実トルク演算部43で演算される実トルクに基づいて、実燃料噴射量の変化に起因するエンジンEのトルク変化量を演算するようになっている。トルク変化量は、噴射量制限部42で演算される実燃料噴射量をエンジンEに噴射した際にエンジンEの燃焼状態に応じて変化したトルクの変化量(即ち、トルクの低下量又は増加量)である。トルク変化量演算部76は、トルク変化率及び実トルク演算部43を乗算してトルク変化量を算出する。トルク変化推定部45では、このようにしてトルク変化量が推定される。推定されたトルク変化量は、第2アシストトルクを第2アシストトルク演算部46で演算するために用いられる。
 第2アシストトルク演算部46(変化トルク演算部)は、実燃料噴射量の変化に伴って低下したトルクの不足分を電動機20の出力トルクで補うように、その不足分のトルクに相当する第2アシストトルク(変化トルク)を演算するようになっている。演算方法について詳細に説明する。第2アシストトルク演算部46は、まず疑似微分演算部72で演算された実燃料噴射量の微分値が0(ゼロ)未満か否かを判定する。実燃料噴射量の微分値がゼロ未満であると判定すると、第2アシストトルク演算部46は、乗算係数としてゼロを選択する。実燃料噴射量の微分値がゼロ以上と判定すると、第2アシストトルク演算部46は、乗算係数として所定値(本実施形態では、所定値=1)を選択する。更に、第2アシストトルク演算部46は、乗算係数とトルク変化量とを乗算して乗算結果を第2アシストトルクとして算出する。従って、微分値がゼロ未満の場合、第2アシストトルクはゼロとなり、微分値がゼロ以上である場合、第2アシストトルクはトルク変化量となる。このようにして算出された第2アシストトルクは、電動機20から出力すべき目標アシストトルクを目標アシストトルク演算部47で演算するために第1アシストトルクと共に用いられる。
 図3に示す目標アシストトルク演算部47は、第1アシストトルク及び第2アシストトルクに基づいて電動機20から出力する目標アシストトルクを演算する。即ち、目標アシストトルク演算部47は、第1アシストトルクと第2アシストトルクとを加算することによって目標アシストトルクを演算する。演算された目標アシストトルクは、電動機20から実際に出力する制限アシストトルクをトルク制限ブロック50で演算するために用いられる。
 図2に示すトルク制限ブロック50は、電動機20の出力トルクが制限値を超えないように出力トルクを制限するようになっている。トルク制限ブロック50は、第1トルク制限部51、及び不足トルク演算部52を有している。第1トルク制限部51は、アシストトルク演算ブロック40で演算された目標アシストトルクを予め定められた仮想許容値L1以下に制限するリミット機能を有している。具体的には、第1トルク制限部51は、目標アシストトルクが仮想許容値L1未満の場合、目標アシストトルクを制限せずに目標アシストトルクをそのまま出力値とし、目標アシストトルクが仮想許容トルクL1以上の場合、仮想許容トルクL1を出力値とするようになっている。仮想許容トルクL1は、予め設定された値であり、後述する最大許容トルクL2より小さい値である。演算された出力値は、目標アシストトルクを制限することによって生じる不足トルクを不足トルク演算部52で演算するために用いられる。不足トルク演算部52は、第1トルク制限部51の出力値と目標アシストトルクに基づいて、目標アシストトルクから出力値を差し引いた不足トルク(本実施形態では、不足分が正の値で表される)を演算するようになっている。さらに詳細に説明する。不足トルク演算部52は、目標アシストトルクから出力値を減算する。これにより、不足トルクが演算される。演算された不足トルクは、低減すべき傾転角を演算するために傾転角制御ブロック60で用いられる。
 傾転角制御ブロック60は、油圧ポンプ17の斜板17bの傾転角を制御するようになっている。傾転角制御ブロック60は、低減動力演算部61と、低減流量演算部62と、設定流量演算部63と、実流量演算部64と、傾転角演算部65と、傾転角制御部66とを有している。低減動力演算部61は、不足トルク演算部52で演算された不足トルクと実回転数とに基づいて、低減すべき油圧ポンプ17の動力、即ち低減動力を演算する。具体的に説明する。低減動力演算部61は、不足トルクに実回転数を乗算することによって低減動力を演算する。演算された低減動力は、低減すべき吐出流量を演算するために低減流量演算部62で用いられる。
 低減流量演算部62は、吐出圧センサ24からの信号に基づいて算出される油圧ポンプ17の吐出圧と低減動力演算部61で演算される低減動力とに基づいて、低減すべき油圧ポンプ17の吐出流量、即ち低減流量を演算する。具体的に説明する。低減流量演算部62は、低減動力を前記吐出圧で除算することによって低減流量を演算する。演算された低減流量は、油圧ポンプ17から実際に吐出させる実吐出流量を演算するために実流量演算部64で用いられる。また、実流量演算部64では、実吐出流量を演算するために要求流量を用いており、要求流量は、設定流量演算部63にて演算される。
 設定流量演算部63は、油圧ポンプ17から吐出すべき吐出流量である要求流量を演算するようになっている。演算例の一例を説明する。設定流量演算部63は、まず各操作具111~115のパイロット圧センサS1,S2から入力される信号に基づいて各操作具111~115から出力されるパイロット圧を算出する。次に、設定流量演算部63は、算出される全てのパイロット圧のうち最大のパイロット圧を選択する。更に、設定流量演算部63は、選択されたパイロット圧と流量マップとに基づいて規定流量を算出する。流量マップは、パイロット圧と規定流量とが対応付けられているマップである。設定流量演算部63は、選択されたパイロット圧に基づいて流量マップから規定流量が算出されるようになっている。また、規定流量とは、実回転数が予め定められた基準回転数である場合において、油圧ポンプ17から吐出する流量である。設定流量演算部63は、算出された規定流量を実回転数で補正して、各操作具111~115の操作量に対して要求される要求流量を演算する。算出された要求流量は、低減流量演算部62で演算された低減流量と共に実吐出流量を演算するために実流量演算部64で用いられる。
 実流量演算部64は、要求流量と低減流量とに基づいて実際に油圧ポンプ17から吐出する実吐出流量を演算する。具体的に説明する。実流量演算部64は、要求流量から低減流量を減算することによって実吐出流量を演算する。演算される実吐出流量は、斜板17bの傾転角を演算するために傾転角演算部65で用いられる。傾転角演算部65は、実吐出流量を油圧ポンプ17から吐出させるために傾ける傾転角である傾転角指令値を演算する。なお、油圧ポンプ17では、傾転角と吐出容量とが対応しており、実流量演算部64は、傾転角と実回転数とに基づいて油圧ポンプ17から吐出される実吐出流量を演算することができる。従って、傾転角演算部65は、実吐出流量と実回転数とに基づいて傾転角指令値を演算することができる。傾転角演算部65は、回転数センサ23からの信号に基づいて算出される実回転数と実吐出流量とに基づいて傾転角指令値を演算する。演算された傾転角指令値は、傾転信号を決定する際に傾転角制御部66で用いられる。
 傾転角制御部66は、斜板17bの傾転角が傾転角指令値となるように傾転角調整装置19を動かす傾転信号を決定する。更に傾転角制御部66は、決定した傾転信号を傾転角調整バルブ19aに出力し、斜板17bの傾転角が傾転角指令値になるようにサーボ機構19bを制御するようになっている。これにより、斜板17bを傾転角指令値に傾けることができ、演算された実吐出流量を油圧ポンプ17から吐出させることができる。これにより、例えばトルク制限ブロック50で電動機20の出力トルクを制限することによって生じた不足トルクを油圧ポンプ17の出力トルクから低減させ、エンジンEにかかる負担を小さくしてエンジンEの回転数が急激に落ちることを防いでいる。
 他方、油圧駆動システム1では、傾転角調整装置19によって機械的に油圧ポンプ17の実吐出流量を低減させているため、傾転信号に対して傾転角調整装置19で応答遅れが生じる。応答遅れが生じることによって、油圧ポンプ17の実吐出流量を傾転信号通りに低減することができず、油圧ポンプ17の出力トルクを低減することができない。そのため、制御装置30は、3つのブロック40,50,60に加えて、トルク補正ブロック80を有している。
 トルク補正ブロック80は、応答遅れによって生じる低減トルクの過不足分を演算し、過不足分を電動機20の出力トルクによって補うように出力値を補正するようになっている。トルク補正ブロック80は、低減トルク推定部81、過不足分演算部82、トルク補正部83を有している。低減トルク推定部81は、傾転角制御ブロック60によって実行される傾転角制御によって油圧ポンプ17で低減される低減トルクを、不足トルク演算部52で演算された不足トルクに基づいて推定するようになっている。低減トルクを推定する際、低減トルク推定部81は、油圧ポンプ17を数値モデル化した伝達関数を用いて低減トルク(本実施形態では、低減すべき分が正の値で表される)を推定する。低減トルク推定部81の伝達関数には、一次遅れ要素が含まれており、この一次遅れ要素は、予め実施される実験等から得られたデータに基づいて設定される。低減トルク推定部81は、このような伝達関数を用いて傾転角制御ブロック60による傾転角制御によって低減される油圧ポンプ17の低減トルクを推定する。推定される低減トルクは、低減トルクの過不足分を演算するために、不足トルク演算部52で演算される不足トルクと共に過不足分演算部82で用いられる。
 過不足分演算部82は、低減トルク推定部81で推定された低減トルクと不足トルク演算部52で演算された不足トルクとに基づいて、低減トルクの過不足分を演算する。さらに詳細に説明する。過不足分演算部82は、不足トルクから低減トルクを減算する。これにより、低減トルクの過不足分が演算される。算出された過不足分は、第1トルク制限部51で演算された出力値を補正するためにトルク補正部83で用いられる。
 トルク補正部83は、過不足分演算部82で演算された過不足分、及び第1トルク制限部51で演算された出力値に基づいて、低減トルクの過不足分を補うように出力値を補正するようになっている。さらに詳細に説明する。トルク補正部83は、出力値に過不足分を加算することによって出力値を補正し、補正することによって補正トルクを演算する。演算される補正トルクは、電動機20の最大許容トルクL2以下に抑えるようにトルク制限ブロック50の第2トルク制限部53で用いられる。
 第2トルク制限部53は、補正トルクを最大許容トルクL2以下に制限する機能を有している。最大許容トルクL2は、電動機20が許容できる最大トルクである。第2トルク制限部53についてさらに詳細に説明する。第2トルク制限部53は、補正トルクが最大許容トルクL2未満である場合、その補正トルクを指令トルクに設定し、補正トルクが最大許容トルクL2以上である場合、最大許容トルクL2を指令トルクに設定する。指令トルクは、トルク制限ブロック50の駆動制御部54で用いられる。駆動制御部54は、指令トルクを電動機20から出力させるようにインバータ22を制御して、電動機20を駆動するようになっている。
 このように構成されている制御装置30は、油圧ポンプ17の負荷が大きくなってエンジンEの回転数が低下し、低下した回転数を補うようにエンジンEの目標燃料噴射量が増加した際に電動機20を駆動してエンジンEをアシストするようになっている。その際に、要求されるアシストトルクが大きくなって電動機20の負荷が大きくなると、斜板17bの傾転角を小さくして油圧ポンプ17の出力トルクを低減させるようになっている。以下では、操作具111~115の何れかが操作されて油圧ポンプ17の負荷が増大した際の油圧ポンプ駆動装置2の動きを説明する。
 操作具が操作されてコントロールバルブ18が作動すると、油圧ポンプ17は、アンロード状態からオンロード状態に切換わり、油圧ポンプ17に大きな負荷が作用する。油圧ポンプ17の負荷が大きくなるとエンジンEの実回転数が低下する。油圧ポンプ駆動装置2では、目標回転数決定部31にて予め目標回転数が決定されており、回転数差演算部32で実回転数と目標回転数との差が演算されている。実回転数が低下してエンジンEの実回転数と目標回転数とに差が生じると、この差に基づいて目標燃料噴射量演算部33が目標燃料噴射量を演算する。演算された目標燃料噴射量は、実回転数と共にアシストトルク演算ブロック40で用いられ、アシストトルク演算ブロック40は、目標燃料噴射量と実回転数とに基づいて目標アシストトルクを演算する。
 アシストトルク演算ブロック40での演算について簡単に説明する。まず噴射量制限部42が目標燃料噴射量の増加率(又は増加量)を所定値未満に制限しながら実燃料噴射量を目標燃料噴射量まで時間に比例して段階的に増加させる。なお、増加率が所定値未満の場合は、目標燃料噴射量が制限されることはない。実トルク演算部43は、実燃料噴射量と実回転数とに基づいてエンジンEから出力される実トルクを演算する。他方、目標トルク演算部41は、目標燃料噴射量と実回転数とに基づいて目標トルクを演算する。次に、第1アシストトルク演算部44が目標トルク及び実トルクに基づいて、目標トルクから実トルクを差し引いた不足分のトルク、即ち第1アシストトルクを演算する。
 このように、油圧ポンプ駆動装置2では、実燃料噴射量の増加率(又は増加量)を制限して実燃料噴射量が急激に変化することを抑制することができる。これにより、エンジンEの燃焼状態が悪化することを抑制することができ、エンジンEのトルクが低下することを抑え、且つエンジンEの燃費を向上させることができる。アシストトルク演算ブロック40は、燃料噴射量を制限することによって不足するトルクである第1アシストトルクを予め演算している。この第1アシストトルクを電動機20から出力させることによって、実燃料噴射量を制限しても油圧ポンプ駆動装置2全体から出力されるトルクを目標トルクに近づけることができる。これにより、油圧ポンプ駆動装置2全体として出力されるトルクが低下することを抑えることができる。このように、油圧ポンプ駆動装置2では、出力トルクの変化量を事前に推定して電動機20にトルクを出力させて対処しており、回転数の偏差に応じてトルク調整する場合に比べてエンジンEの回転数が過度に低下することを抑制することができる。これにより、エンジンEの回転数が過度に低下することに伴うエンジンEの燃費の低下を抑えることができる。
 アシストトルク演算ブロック40は、第1アシストトルクを演算するのに並行してトルク変化推定部45にてトルク変化係数を演算する。トルク変化推定部45は、実回転数及び実燃料噴射量に基づいてトルク変化係数を算出し、更にトルク変化量を算出する。詳細に説明する。時定数演算部71が時定数マップ71aを用いて実回転数から時定数を算出し、算出された時定数を用いて疑似微分演算部72が実燃料噴射量の微分値を演算する。次に、トルク変化係数演算部73が実燃料噴射量の微分値の絶対値を演算し、更にトルク変化係数演算部73がトルク変化係数マップ73aを用いて実燃料噴射量の微分値の絶対値からトルク変化係数を演算する。
 疑似微分演算部72は、演算の度に時定数を変更することによって、実トルクに対する単位回転数毎の出力トルクの変化率を演算し、この変化率と実トルクとに基づいて単位回転数毎の出力トルクの変化量を演算している。このように時間単位ではなく回転数単位で出力トルクの変化を演算するので、時間単位で演算する場合に比べてエンジンEの出力トルクの低下をより正確に推定することができる。これにより、燃焼悪化による出力トルクの低下により回転数が過度に低下することを防ぐことができ、それに伴うエンジンEの燃費の低下を抑えることができる。疑似微分演算部72は、時定数を実回転数に応じて変更するので、トルク低下係数を詳細に演算することができる。これによりトルク変化推定部45では、より正確なトルク変化係数及びトルク変化量を推定することができる。
 補正係数演算部75では、トルク変化係数演算部73でのトルク変化係数の演算に並行して補正係数を演算する。詳細に説明する。補正係数演算部75は、演算された実回転数及び実燃料噴射量の各々に基づいて第1補正係数及び第2補正係数を夫々算出し、更に第1補正係数及び第2補正係数に基づいて補正係数を算出する。トルク変化率演算部74は、演算された補正係数及びトルク変化係数に基づいてトルク変化率を演算し、更にトルク変化量演算部76がトルク変化率及び実トルクに基づいてトルク変化量を演算する。このようにトルク変化推定部45は、トルク変化量を推定し、推定されたトルク変化量は、第2アシストトルク演算部46で用いられる。第2アシストトルク演算部46は、このトルク変化量によって第2アシストトルクを演算する。
 このようにアシストトルク演算ブロック40では、トルク変化推定部45によって実燃燃料噴射量の変化に起因するエンジンEの燃焼状態の悪化等による出力トルクの変化量を事前に推定し、推定された変化量に相当する第2アシストトルクを演算することができる。即ち、エンジンEの出力トルクに変化があった際にその変化分を電動機によってアシストさせることができる。これにより、油圧ポンプ17の負荷入れ時(即ち、油圧ポンプに負荷がかかる時)において、燃焼悪化によって出力トルクが低下して回転数が過度に低下することを防ぐことができ、回転数が過度に低下することに伴うエンジンEの燃費の低下を抑えることができる。
 第2アシストトルク演算部46は、実燃料噴射量の微分値がゼロ以上である場合、乗算係数として所定値(=1)を選択する。第2アシストトルク演算部46は、この乗算係数をトルク変化量に乗算して第2アシストトルクを演算する。目標アシストトルク演算部47は、演算された第1アシストトルク及び第2アシストトルクを加算して目標アシストトルクを算出する。算出される目標アシストトルクは、電動機20の出力トルク及び斜板17bの傾転角を決定するためにトルク制限ブロック50で用いられる。
 以下では、算出される目標トルクが図5の目標アシストルクのグラフで示すように経時変化する場合について説明する。なお、図5には、紙面の上から順に目標アシストトルク、不足トルク、低減トルク、過不足分、指令トルク、及びエンジンアシスト値の経時変化が示されている。図5の横軸が時間であり、縦軸が各種値を示している。
 目標アシストトルクは、操作具111~115の何れかが操作された時刻t1においてトルクT1(>L1)まで立ち上がり、その後時刻t2まで一定に維持され、時刻t2で操作されていた操作具111~115が戻されてゼロになっている。トルク制限ブロック50では、まず第1トルク制限部51が目標アシストトルクを仮想許容値L1以下に制限した出力値を算出する。不足トルク演算部52は、目標アシストトルクから出力値を減算して不足トルクを演算する(図5の不足トルクのグラフの時刻t1~t2参照)。傾転角制御ブロック60の低減動力演算部61は、不足トルク演算部52で演算される不足トルクと実回転数に基づいて低減動力を演算する。次に低減流量演算部62がこの低減動力と油圧ポンプ17の吐出圧とに基づいて低減流量を演算する。それと共に、設定流量演算部63は、規定流量を算出し、算出された規定流量を実回転数で補正することによって要求流量を演算する。実流量演算部64は、演算された要求流量から低減流量を減算することによって実吐出流量を演算する。更に傾転角演算部65は、油圧ポンプ17の吐出流量と傾転角と回転数との関係から、演算された実吐出流量と実回転数とに基づいて傾転角指令値を演算し、この傾転角指令値に基づいて傾転角制御部66が傾転信号(電流)を決定する。傾転角制御部66は、決定した傾転信号を傾転角調整装置19の傾転角調整バルブ19aに出力し、油圧ポンプ17の斜板17bの傾転角が傾転角指令値になるようにサーボ機構19bの動きを制御する。これにより、斜板17bの傾転角が傾転角指令値へと傾けられ、油圧ポンプ17の出力トルクが低減される。
 また、油圧駆動システム1では、傾転角制御ブロック60による傾転角制御に並行して、傾転角制御の応答遅れによって生じる低減トルクの過不足分をトルク補正ブロック80で演算する。詳細に説明する。トルク補正ブロック80の低減トルク推定部81が、不足トルク演算部52で演算された不足トルクと伝達関数とを用いて低減トルクを演算する(図5の低減トルクのグラフ参照)。なお、図5の低減トルクのグラフに示すように、油圧ポンプ17の低減トルクは、傾転角制御の開始(時刻t1)と共に徐々に増加し、所定時間経過後に不足トルクまで達成する。操作具111~115が中立位置に戻される(時刻t2)と傾転角を要求流量に応じた傾転角指令値に戻すように、ゆっくりと減少するようになっている。このように低減トルクは、傾転信号に対して遅れて応答する。低減トルクが推定されると、過不足分演算部82は、不足トルクから低減トルクを減算することによって低減トルクの過不足分を演算する(図5のトルク低減過不足のグラフ参照)。図5のトルク低減過不足のグラフに示されているように、操作具111~115が操作された直後が最も不足分が大きく時間が経つにつれて不足分が減少し、やがてゼロになる。その後、操作具111~115が中立位置に戻されると逆にトルク低減が過大となる。なお、過大となったトルク低減も時間が経つにつれて減少し、やがてゼロになる。
 トルク補正部83は、このように変化する低減トルクの過不足分を補うため、第1トルク制限部51の出力値に低減トルクの過不足分を加算して補正トルクを演算する。第2トルク制限部53は、補正トルクが電動機20の最大許容トルクL2以下に制限するように指令トルクを設定する(図5の指令トルクのグラフ参照)。駆動制御部54が設定された指令トルクが電動機20から出力されるようにインバータ22を制御する。
 このように油圧駆動システム1では、傾転角を制御し且つ電動機20を駆動することで、目標アシストトルクを電動機20によるアシストトルクと油圧ポンプ17の低減トルクとによって賄うことができる。即ち、電動機20から補正トルクを出力させ、且つ油圧ポンプ17の出力トルクから低減トルクを低減させることで、エンジンEに対して目標アシストトルク分のトルクをアシストすることができる。従って、補正トルクと低減トルク(減少分であって正の値)とを加算したエンジンアシスト値は、図5のエンジンアシスト値のグラフに示すように目標アシストトルクと略一致する(図5の総トルクのグラフ参照)。
 このように、油圧駆動システム1では、目標アシストトルクが仮想許容値L1以上になると斜板17bの傾転角を調整して油圧ポンプ17の出力トルクを低減している。それ故、実際にエンジンEの回転数が急激に落ち込む前に目標アシストトルクの上昇に伴って油圧ポンプ17の出力トルクを低減させることができるので、回転数が低下すると共に傾転角制御を行うことができる。それ故、回転数差に基づいて油圧ポンプ17の出力トルクを低減させる従来の技術に比べて回転数の落ち込みを抑制することができる。このように、油圧駆動システム1は、エンジンEの回転数が過度に低下しないように油圧ポンプ17の出力トルクを低減させることができる。これにより、油圧ポンプ17に大きな負荷がかかってもエンジンEの回転数を目標回転数付近に維持することができる。それ故、エンジンEを良好な運転領域で運転することができ、エンジンEの燃費悪化を防ぐことができる。
 また、油圧駆動システム1では、傾転角制御による応答遅れによる低減トルクの過不足分を電動機20の出力トルクの増減によって補うことができる。これにより、応答遅れに伴ってアシストトルクが不足することを抑制することができ、エンジンEの回転数が低下することを抑制することができる。
 次に、油圧ポンプ17の負荷が増大した際に演算される目標アシストトルクが最大許容トルクL2以上となった場合について、図6を参照しながら説明する。図6には、図5と同様に、紙面の上から順に目標アシストトルク、不足トルク、低減トルク、過不足分、指令トルク、及びシステムトルクの経時変化が示されている。図5の横軸が時間であり、縦軸が各種値を示している。
 アシストトルク演算ブロック40で目標アシストトルクは、図6の目標アシストトルクのグラフに示すように操作具111~115の何れかが操作された時刻t3においてトルクT2(>L2)まで立ち上がり、その後時刻t4まで一定に維持され、時刻t4で操作されていた操作具111~115が戻されてゼロになっている。トルク制限ブロック50では、目標アシストトルクが仮想許容値L1以下であった場合と同様に、まず第1トルク制限部51が目標アシストトルクを仮想許容値L1以下に制限した出力値を算出し、不足トルク演算部52で不足トルクを演算する。傾転角制御ブロック60は、演算された不足トルクに基づいて傾転角指令値を演算する。更に、傾転角制御ブロック60は、傾転角指令値に基づいて傾転角調整バルブ19aに傾転信号を出力し、斜板17bの傾転角が傾転角指令値になるように傾転角調整装置19を作動させる。
 他方、トルク補正ブロック80では、不足トルク演算部52で演算された不足トルクに基づいて低減トルク推定部81が低減トルクを推定し(図6の低減トルクのグラフ参照)、更に推定された低減トルクに基づいて過不足分演算部82が低減トルクの過不足分を演算する(図6の低減トルク過不足分のグラフ参照)。トルク補正部83は、演算された過不足分に基づいて出力値を補正することによって補正トルクを演算する。目標アシストトルクが最大許容トルクL2以上であり、且つ傾転角制御に応答遅れがあるので、傾転角制御開始直後において演算される補正トルクが最大許容トルクL2以上になる。そのため、第2トルク制限部53は、補正トルクを最大許容トルクL2以下に制限するように指令トルクを設定する(図6の指令トルクのグラフ参照)。駆動制御部54が設定された指令トルクが電動機20から出力されるようにインバータ22の動きを制御する。
 目標アシストトルクが最大許容トルクL2を超える場合、傾転制御開始直後、目標アシストトルクにおいて最大許容トルクL2を超えている分だけ電動機20の出力トルクがカットされる。それ故、油圧駆動システム1の総トルクが、傾転制御開始直後において目標アシストトルクから若干小さくなるが、目標アシストトルクと略一致させることができる(図6の総トルクのグラフ参照)
 [その他の実施形態]
 本実施形態の油圧駆動システム1では、第1トルク制限部51の仮想制限値L1が一定であるが、仮想制限値L1が可変値であってもよい。例えば、制御装置30が、バッテリセンサ26からの信号に応じてバッテリ25の状態を検出し、バッテリ25の状態に応じて仮想制限値L1を変えるようにしてもよい。具体的には、バッテリ25の充電量の減少又はバッテリ25の温度の低下に伴って仮想制限値L1を低くすることが考えられる。このように仮想制限値L1を可変値とすることで、電動機20から指令トルクが出力できないような事態を抑制することができる。なお、本実施形態では、バッテリ25の状態値を検出しているが、インバータ22の状態値を検出してもよい。
 本実施形態の油圧駆動システム1では、アシストトルク演算ブロック40で実燃料噴射量及びトルク変化量を演算して目標アシストトルクを演算しているが、必ずしもこのような演算方法で目標アシストトルクを演算する必要はない。例えば、第1アシストトルクを目標アシストトルクとしてもよく、また第2アシストトルクを目標アシストトルクとしてもよい。
 また、油圧駆動システム1が実装される建設機械は、油圧ショベルに限定されず、クレーンやドーザ等の他の建設機械であってもよく、油圧アクチュエータを備えている建設機械であればよい。また、油圧駆動システム1では、液圧ポンプの例として油圧ポンプを挙げたが、液圧ポンプは、油圧ポンプに限定されず水等の液体を吐出するポンプであればよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 1 油圧駆動システム
 17 油圧ポンプ
 17b 斜板
 19 傾転角調整装置
 20 電動機
 22 インバータ
 25 バッテリ
 26 バッテリセンサ
 30 制御装置
 33 目標燃料噴射量演算部
 40 アシストトルク演算ブロック
 41 目標トルク演算部
 42 噴射量制限部
 43 実トルク演算部
 44 第1アシストトルク演算部(差分トルク演算部)
 45 トルク変化推定部
 46 第2アシストトルク演算部
 47 目標アシストトルク演算部
 51 第1トルク制限部(目標アシストトルク制限部)
 52 不足トルク演算部
 53 第2トルク制限部(指令トルク制限部)
 54 駆動制御部
 65 傾転角演算部
 66 傾転角制御部
 81 低減トルク推定部
 82 過不足分演算部
 83 トルク補正部
 111~115 操作具(操作装置)

Claims (7)

  1.  エンジンの出力トルクによって回転駆動され、傾転角に応じた吐出量の圧液を吐出する可変容量型の液圧ポンプと、
     入力される傾転角指令に応じて前記液圧ポンプの傾転角を調整する傾転角調整装置と、
     前記エンジンの出力トルクをアシストして前記液圧ポンプを回転駆動する電動機と、
     前記エンジンの回転数が予め設定される目標エンジン回転数になるように前記電動機を制御し、且つ操作装置の操作量に応じた要求流量を前記液圧ポンプから吐出させるように前記傾転角調整装置を制御する制御装置とを備え、
     前記制御装置は、目標アシストトルク演算部と、目標アシストトルク制限部と、駆動制御部と、不足トルク演算部と、傾転角演算部と、傾転角制御部とを有し、
     前記目標アシストトルク演算部は、前記エンジンをアシストする前記電動機から出力する目標アシストトルクを演算し、
     前記目標アシストトルク制限部は、前記目標アシストトルクを予め設定されている制限値以下の出力値に制限し、
     前記駆動制御部は、前記出力値に応じた指令トルクを出力するように前記電動機を制御し、
     前記不足トルク演算部は、前記目標アシストトルクと前記出力値とに応じて不足分である不足トルクを演算し、
     前記傾転角演算部は、前記不足トルク演算部で演算された前記不足トルクを液圧ポンプの出力トルクから低減させる傾転角指令値を演算し、
     前記傾転角制御部は、前記傾転角演算部で演算された傾転角指令値に応じた傾転角指令を前記傾転角制御装置に出力して前記傾転角制御装置を制御する、液圧駆動システム。
  2.  前記制御装置は、低減トルク推定部と、過不足分演算部と、トルク補正部とを有し、
     前記低減トルク推定部は、前記液圧ポンプの傾転角を前記傾転角指令値に調整する傾転角制御によって前記液圧ポンプにおける低減トルクを推定し、
     前記過不足分演算部は、前記傾転角制御における前記液圧ポンプの傾転角の応答遅れによって生じる、前記不足トルクに対するトルク低減の過不足分を前記低減トルク推定部によって推定された前記低減トルクに基づいて演算し、
     前記トルク補正部は、前記出力値に前記トルク低減の過不足分を加算することによって前記出力値を補正する、請求項1に記載の液圧駆動システム。
  3.  前記低減トルク推定部は、一次遅れ要素を含む伝達関数により前記低減トルクを推定する、請求項2に記載の液圧駆動システム。
  4.  前記制御装置は、指令トルク制限部を有し、
     前記指令トルク制限部は、前記制限値より大きい最大許容トルク以下に指令トルクを制限するようになっている、請求項1乃至3のいずれか1つに記載の液圧駆動システム。
  5.  前記電動機に電力を供給する電力供給装置と、
     前記電力供給装置の状態を表す状態値を検出する状態値検出センサを備え、
     前記目標アシストトルク制限部は、前記状態検出値の検出結果に応じて前記制限値を変更する、請求項1乃至4のいずれか1つに記載の液圧駆動システム。
  6.  前記前記制御装置は、目標燃料噴射量演算部と、噴射量制限部と、実トルク演算部と、目標トルク演算部と、差分トルク演算部と、を有し、
     前記目標燃料噴射量演算部は、目標回転数に応じた目標燃料噴射量を演算し、
     前記噴射量制限部は、前記目標燃料噴射量演算部によって演算される前記目標燃料噴射量まで段階的に実燃料噴射量を増加させる機能を有し、増加させる際の実燃料噴射量の時間変化率が所定値以下となるように実燃料噴射量を決定し、
     前記実トルク演算部は、前記回転数センサで検出される実回転数と前記噴射量制限部で決定された前記実燃料噴射量とに基づいて前記エンジンで出力される実トルクを演算し、
     前記目標トルク演算部は、前記回転数センサで検出される実回転数と前記目標燃料噴射量演算部で演算される前記目標燃料噴射量とに基づいて、前記回転軸に与える目標トルクを演算し、
     前記差分トルク演算部は、前記目標トルク演算部で演算される前記目標トルクに対して前記実トルク演算部で演算される前記実トルクで不足する差分トルクを演算し、
     前記目標アシストトルク演算部は、前記差分トルク演算部で演算される前記差分トルクに基づいて目標アシストトルクを演算する、請求項1乃至5の何れか1つに記載の液圧駆動システム。
  7.  前記制御装置は、実燃料噴射量演算部と、トルク変化推定部と、変化トルク演算部と、を有し、
     前記燃料噴射量演算部は、目標回転数に応じた実燃料噴射量を演算し、
     前記トルク変化推定部は、前記燃料噴射量演算部で演算される前記実燃料噴射量に対する前記エンジンの出力トルクの単位回転数当たりの変化を推定し、
     前記変化トルク演算部は、前記トルク変化推定部で演算される前記出力トルクの単位回転数当たりの変化に基づいてアシストする変化トルクを演算し、
     前記目標アシストトルク演算部は、前記変化トルク演算部で演算される変化トルクに基づいて目標アシストトルクを演算する、請求項1乃至6の何れか1つに記載の液圧駆動システム。
     
PCT/JP2015/004128 2014-08-20 2015-08-19 液圧駆動システム WO2016027464A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580044088.XA CN106573615B (zh) 2014-08-20 2015-08-19 液压驱动系统
US15/504,802 US10006447B2 (en) 2014-08-20 2015-08-19 Liquid-pressure driving system
GB1704397.7A GB2544447B (en) 2014-08-20 2015-08-19 Liquid-pressure driving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014167548A JP6378577B2 (ja) 2014-08-20 2014-08-20 液圧駆動システム
JP2014-167548 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027464A1 true WO2016027464A1 (ja) 2016-02-25

Family

ID=55350426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004128 WO2016027464A1 (ja) 2014-08-20 2015-08-19 液圧駆動システム

Country Status (5)

Country Link
US (1) US10006447B2 (ja)
JP (1) JP6378577B2 (ja)
CN (1) CN106573615B (ja)
GB (1) GB2544447B (ja)
WO (1) WO2016027464A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391357B1 (ko) * 2018-09-05 2022-04-27 가부시키가이샤 히다치 겡키 티에라 전동식 유압 작업 기계의 유압 구동 장치
JP7330263B2 (ja) * 2019-03-29 2023-08-21 住友建機株式会社 ショベル
JPWO2020203906A1 (ja) 2019-03-29 2020-10-08

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147121A1 (ja) * 2009-06-19 2010-12-23 住友重機械工業株式会社 ハイブリッド型建設機械及びハイブリッド型建設機械の制御方法
WO2010150382A1 (ja) * 2009-06-25 2010-12-29 住友重機械工業株式会社 ハイブリッド型作業機械及び作業機械の制御方法
JP2011063089A (ja) * 2009-09-16 2011-03-31 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2012180683A (ja) * 2011-03-01 2012-09-20 Hitachi Constr Mach Co Ltd 建設機械の制御装置
JP2013203234A (ja) * 2012-03-28 2013-10-07 Kubota Corp ハイブリッド作業車

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60226760D1 (de) * 2001-10-22 2008-07-03 Yanmar Co Ltd Fahrzeug mit hydraulikgetriebe
US7788917B2 (en) * 2007-02-28 2010-09-07 Caterpillar Inc Method and system for feedback pressure control
CN102216533B (zh) * 2008-11-28 2015-08-19 住友重机械工业株式会社 混合式工作机械的控制方法及混合式工作机械的泵输出限制方法
CN104159803B (zh) * 2012-01-05 2016-12-14 日立建机株式会社 工程机械的控制装置
EP2832568B1 (en) 2012-03-28 2019-11-27 Kubota Corporation Hybrid work vehicle
JP5828808B2 (ja) * 2012-06-29 2015-12-09 日立建機株式会社 油圧作業機械
JP6204866B2 (ja) * 2014-03-31 2017-09-27 日立建機株式会社 ハイブリッド建設機械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147121A1 (ja) * 2009-06-19 2010-12-23 住友重機械工業株式会社 ハイブリッド型建設機械及びハイブリッド型建設機械の制御方法
WO2010150382A1 (ja) * 2009-06-25 2010-12-29 住友重機械工業株式会社 ハイブリッド型作業機械及び作業機械の制御方法
JP2011063089A (ja) * 2009-09-16 2011-03-31 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2012180683A (ja) * 2011-03-01 2012-09-20 Hitachi Constr Mach Co Ltd 建設機械の制御装置
JP2013203234A (ja) * 2012-03-28 2013-10-07 Kubota Corp ハイブリッド作業車

Also Published As

Publication number Publication date
JP2016044414A (ja) 2016-04-04
GB201704397D0 (en) 2017-05-03
US20170268490A1 (en) 2017-09-21
GB2544447A (en) 2017-05-17
GB2544447B (en) 2020-09-30
CN106573615A (zh) 2017-04-19
CN106573615B (zh) 2019-05-17
JP6378577B2 (ja) 2018-08-22
US10006447B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
US8136355B2 (en) Pump control apparatus for hydraulic work machine, pump control method and construction machine
US8424298B2 (en) Pump torque control system for hydraulic construction machine
JP4282718B2 (ja) 油圧ショベルの油圧駆動装置
US8744654B2 (en) Method of controlling hybrid working machine and method of controlling pump output of hybrid working machine
EP2980322B1 (en) Slewing drive apparatus for construction machine
KR101875241B1 (ko) 하이브리드 건설 기계
JP2009013632A (ja) 建設機械のエンジン制御装置
WO2013058325A1 (ja) ハイブリッド駆動式の油圧作業機械
KR20130124163A (ko) 건설기계용 선회유량 제어시스템 및 그 제어방법
WO2016027463A1 (ja) 液圧ポンプの駆動システム
WO2016027464A1 (ja) 液圧駆動システム
JP4729446B2 (ja) 作業機械の出力制御装置及び作業機械の出力制御方法
EP1550809A1 (en) Controller for construction machine and method for operating input torque
WO2014087978A1 (ja) 作業機械
JP4768766B2 (ja) 建設機械の監視装置
JP4063742B2 (ja) ハイブリッド作業機械の駆動制御装置
JP6336855B2 (ja) 液圧ポンプの駆動システム
JPH08135475A (ja) 建設機械の駆動制御装置
CN113286950A (zh) 工程机械的回转驱动装置
JP6619939B2 (ja) 液圧駆動システム
US12018460B2 (en) Excavator
JP2018028357A (ja) 建設機械の油圧システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15504802

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201704397

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150819

122 Ep: pct application non-entry in european phase

Ref document number: 15833223

Country of ref document: EP

Kind code of ref document: A1