WO2016026200A1 - 一种蓄电池复合添加剂 - Google Patents

一种蓄电池复合添加剂 Download PDF

Info

Publication number
WO2016026200A1
WO2016026200A1 PCT/CN2014/088352 CN2014088352W WO2016026200A1 WO 2016026200 A1 WO2016026200 A1 WO 2016026200A1 CN 2014088352 W CN2014088352 W CN 2014088352W WO 2016026200 A1 WO2016026200 A1 WO 2016026200A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
composite additive
humic acid
battery composite
lignin sulfonate
Prior art date
Application number
PCT/CN2014/088352
Other languages
English (en)
French (fr)
Inventor
张慧
张丽芳
方明学
王斌
顾中洋
Original Assignee
浙江天能电池江苏新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天能电池江苏新能源有限公司 filed Critical 浙江天能电池江苏新能源有限公司
Publication of WO2016026200A1 publication Critical patent/WO2016026200A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lead-acid batteries, in particular to a lead battery negative electrode additive.
  • the capacity is controlled by the positive electrode, but at low temperature and high rate discharge, the discharge capacity of the battery becomes controlled by the negative electrode due to the passivation of the negative active material, and the surface of the negative active material is generated.
  • a dense layer of lead sulfate hinders the diffusion of acid and reduces the utilization of the active material of the negative electrode.
  • a negative electrode additive is often added to the negative electrode, although the proportion is small, but it has an important influence on the electrochemical performance of the battery.
  • the negative electrode additive includes an organic expansion agent and an inorganic substance, and its main function is to improve the cycle performance of the battery, improve the output power of the battery, and particularly reduce the surface tension of the negative electrode under low temperature conditions, prevent the surface of the negative electrode from shrinking, and function as a "expansion agent".
  • organic additives sodium lignin sulfonate and humic acid.
  • Sodium lignin sulfonate is prepared by sulfonation reaction of lignin, which contains various functional groups, such as a carboxyl group which can increase the cold start capacity of the battery after self-discharge, and can improve the phenolic group of the cycle life, and has an influence on the self-discharge of the battery. Methoxy and organic sulfur, etc.
  • Humic acid is a natural organic polymer compound, and also contains a variety of organic functional groups, such as carboxyl, hydroxyl, methoxy, sulfhydryl, aryl and other reactive groups, which have different effects on battery performance.
  • Humic acid has a strong chemical adsorption capacity for heavy metal ions to form a metal ion-humic acid complex and is used as a negative electrode additive to disperse and emulsify, which can reduce the supersaturation of lead ions on the electrode surface.
  • the invention provides a battery composite additive, which overcomes the problem that the negative electrode additive sodium lignin sulfonate dissolves in an acid solution in the prior art, improves the low temperature performance of the battery, and prolongs the service life of the battery.
  • a battery composite additive is obtained by the following preparation method:
  • the mass ratio of sodium lignin sulfonate to humic acid is 1.5-2:1, and sodium lignin sulfonate and humic acid are dissolved in a 3-7% alkaline solution under stirring to be completely dissolved.
  • the material After neutralizing with a sulfuric acid solution to make the material pH 7 to 8.5, the material is Pour into a centrifuge, centrifuge at 2000-5000r/min for 30 to 50 minutes, remove the supernatant, and dry the solid to obtain a composite additive.
  • the alkaline solution is sodium hydroxide or potassium hydroxide.
  • the sodium lignosulfonate and the humic acid are dissolved in an alkaline solution in a water bath at 40 to 60 °C.
  • the sulfuric acid solution has a density of 1.40 to 1.84 g/cm 3 .
  • Humic acid has the ability of cation exchange and complexation. Based on this principle, lignin is organically synthesized with humic acid, and both have the advantages.
  • the sodium lignin sulfonate has a hydrophilic sulfonic acid group and a hydroxyl group, and has a large solubility in a sulfuric acid solution, a hydrophobic alkyl group, a methoxy group, etc., so that it can be adsorbed on the surface of the negative lead and lead sulfate. Reduce the surface tension, agglomerate between the lead crystals, and ensure the porous structure of the negative electrode; the humic acid is almost insoluble in the sulfuric acid solution, and can be stably existed.
  • the organic combination can be combined. Together, the effective isolation of the hydrophilic group from the contact of the electrolyte, while also ensuring its adsorption and stability on the surface of the negative electrode, reducing the dissolution loss during the use of the battery.
  • the parts by mass take 1.7 parts of sodium lignin sulfonate and 1 part of humic acid.
  • the dilute sulfuric acid solution with a density of 1.40 ⁇ 1.84g/cm 3 is disposed, and the neutralization is performed to make the pH of the material between 7 and 8.5.
  • the mixture is in suspension and then the suspension is suspended.
  • the composite additive and other additives are used together as a battery negative electrode additive, and the composite additive is added in a proportion of 0.4% by weight of the lead powder, and the remaining negative electrode additives are respectively added in the following proportions, namely, acetylene black 0.2%, barium sulfate 0.25%, stearic acid. ⁇ 0.15%, fiber material 0.1%. It was added to a paste machine, solidified and formed into a cooked negative electrode plate, and assembled into a 6-DZM-12 battery, and the initial performance test was carried out in accordance with the national standard. The results are shown in Table 1.
  • the parts by mass take 2 parts of sodium lignin sulfonate and 1 part of humic acid.
  • the dilute sulfuric acid solution with a density of 1.40 ⁇ 1.84g/cm 3 is disposed, and the neutralization is performed to make the pH of the material between 7 and 8.5.
  • the mixture is in suspension and then the suspension is suspended.
  • the rest of the implementation is as in Example 1.
  • Example 1 Example 2
  • Example 3 Blank example Initial capacity / Ah 13.1 12.8 13.0 12.9 Charging acceptance /A 2.246 2.254 2.287 2.204 -15° low temperature / Ah 10.9 10.8 10.8 10.6 21.6A high current discharge / min 28 27 28 26 Cycle life/time 472 468 495 385
  • the present invention overcomes the problem of additive loss caused by the dissolution of sodium lignin sulfonate into the electrolyte in the prior art, and the sodium lignin sulfonate is combined with the humic acid and then added to the negative electrode. In the middle, it can effectively improve the low temperature performance and cycle life of the battery, ensure the stable existence of the battery in the negative electrode, and prolong the cycle life of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种蓄电池复合添加剂,通过以下制备方法得到:木素磺酸钠与腐殖酸的质量比为1.5-2:1,在搅拌状态下将木素磺酸钠与腐殖酸溶解于质量浓度为3-7%碱性溶液中,待全部溶解后,用硫酸溶液中和使物料pH为7~8.5,将物料倒入离心机中,以2000~5000 r/min的转速离心30~50 min,去掉上层清液,固体物干燥后得到复合添加剂。有效解决了负极有机添加剂木素磺酸钠在酸液中的溶解问题,提高了电池低温性能,延长了电池使用寿命。

Description

一种蓄电池复合添加剂 技术领域
本发明涉及铅酸蓄电池领域,具体涉及铅蓄电池负极添加剂。
背景技术
铅蓄电池在常温或小电流充放电时,容量受控于正极,但是在低温高倍率放电时,由于负极活性物质的钝化,电池放电容量就变成受控于负极,负极活性物质表面由于生成一层致密的硫酸铅层而阻碍了酸液的扩散,降低负极活性物质利用率。
为提高蓄电池负极板的特性,常在负极中加入负极添加剂,虽然所占比例很小,但是对蓄电池的电化学性能会产生重要的影响。
负极添加剂包括有机膨胀剂和无机物,其主要作用是改善电池循环性能,提高电池输出功率,尤其是在低温条件下有效降低负极表面张力,防止负极表面收缩,起到“膨胀剂”的作用。但是因不同添加剂的生产厂家和种类的不同,会对电池产生不同的影响,尤其是有机添加剂木素磺酸钠和腐殖酸。
木素磺酸钠是由木质素经过磺化反应制成,其中含有多种官能团,如可提高电池自放电后冷启动容量的羧基,可提高循环寿命的酚基,对电池自放电有影响的甲氧基和有机硫等。经长期研究表明,木素磺酸钠吸附在电极表面时,可通过溶解和减少作用消除电极表面的硫酸铅阻挡层,有效抑制负极钝化,但是木素磺酸钠中含有的磺酸基因其亲水性会导致在电池循环过程中木素溶解到电解液中而损失,无法继续发挥作用。
腐殖酸是一种天然有机高分子化合物,也含有多种有机官能团,如羧基、羟基、甲氧基、醌基、芳香基等活性基团,对电池性能产生不同影响。腐殖酸因对重金属离子有很强的化学吸附能力可形成金属离子-腐殖酸络合物而被作为负极添加剂,起到分散和乳化作用,可降低铅离子在电极表面的过饱和度,细化硫酸铅晶粒,同时提高氢析出超电势,但不同产地原料提取生产单额腐殖酸由于成煤阶段、地质环境和氧化程度等的不同导致含有不同的活性基团含量,对电池产生不同影响。但腐殖酸在酸液中不溶解,具有较好的稳定性。
发明内容
本发明提供了一种蓄电池复合添加剂,克服现有技术中负极添加剂木素磺酸钠在酸液中的溶解问题,提高电池低温性能,延长电池使用寿命。
一种蓄电池复合添加剂,通过以下制备方法得到:
木素磺酸钠与腐殖酸的质量比为1.5-2:1,在搅拌状态下将木素磺酸钠与腐殖酸溶解于质量浓度为3-7%碱性溶液中,待全部溶解后,用硫酸溶液中和使物料pH为7~8.5,将物料 倒入离心机中,以2000~5000r/min的转速离心30~50min,去掉上层清液,固体物干燥后得到复合添加剂。
所述碱性溶液为氢氧化钠或氢氧化钾。
所述木素磺酸钠与腐殖酸是在40~60℃水浴中溶解于碱性溶液。
所述硫酸溶液密度为1.40~1.84g/cm3
腐殖酸具有阳离子交换与络合的能力,基于此原理将木素与腐殖酸进行有机合成,同时具备两者的优点。木素磺酸钠中具有亲水性的磺酸基与羟基,在硫酸溶液中有较大的溶解度,憎水性的烷基,甲氧基等,使其可以吸附在负极铅和硫酸铅表面,降低表面张力,组织铅晶粒间的团聚,保证了负极分散的多孔结构;腐殖酸在硫酸溶液中几乎不溶解,可以稳定的存在,将两者进行碱溶酸沉淀后,可以有机的结合在一起,有效的隔离亲水性基团与电解液的接触,同时也保证了其在负极表面的吸附和稳定性存在,减少在电池使用过程中的溶解损失。
具体实施方式
实施例1
按质量份,取木素磺酸钠1.7份,腐殖酸1份,在搅拌状态下,在40~60℃水浴加热中将木素磺酸钠、腐殖酸溶解于5%氢氧化钠碱性溶液中,待全部溶解后,配置好密度为1.40~1.84g/cm3的稀硫酸溶液,进行中和,使物料pH在7~8.5之间,此时混合物呈现悬浮液,再将悬浮液倒入离心机中,以2000~5000r/min的转速离心30~50min,取出存有物料的离心管,可看到悬浮液已明显分层,倒出上层清液,固体物进行干燥后得到复合添加剂。
用该复合添加剂和其他添加剂一起作为电池负极添加剂,该复合添加剂按铅粉重量的0.4﹪比例添加,其余负极添加剂分别按以下比例添加,即乙炔炭黑0.2﹪、硫酸钡0.25﹪、硬脂酸钡0.15﹪、纤维材料0.1﹪。将其加入到和膏机中,经固化、化成制备熟负极板,用其组装成6-DZM-12电池,按照国标进行初期性能测试,结果见表1。
实施例2
按质量份,取木素磺酸钠1.5份,腐殖酸1份,在搅拌状态下,在40~60℃水浴加热中将木素磺酸钠、腐殖酸溶解于3%氢氧化钠碱性溶液中,待全部溶解后,配置好密度为1.40~1.84g/cm3的稀硫酸溶液,进行中和,使物料pH在7~8.5之间,此时混合物呈现悬浮液,再将悬浮液倒入离心机中,以2000~5000r/min的转速离心30~50min,取出存有物料的离心管,可看到悬浮液已明显分层,倒出上层清液,固体物进行干燥后得到复合添加剂。其余实施如实施例1。
实施例3
按质量份,取木素磺酸钠2份,腐殖酸1份,在搅拌状态下,在40~60℃水浴加热中将 木素磺酸钠、腐殖酸溶解于7%氢氧化钠碱性溶液中,待全部溶解后,配置好密度为1.40~1.84g/cm3的稀硫酸溶液,进行中和,使物料pH在7~8.5之间,此时混合物呈现悬浮液,再将悬浮液倒入离心机中,以2000~5000r/min的转速离心30~50min,取出存有物料的离心管,可看到悬浮液已明显分层,倒出上层清液,固体物进行干燥后得到复合添加剂。其余实施如实施例1。
空白例
分别按铅粉重量,将0.2﹪木素磺酸钠、0.2﹪腐殖酸、0.2﹪乙炔炭黑、0.25﹪硫酸钡、0.15﹪硬脂酸钡、0.1﹪纤维材料,加入到和膏机中,经固化、化成制备熟负极板,用其组装成6-DZM-12电池,按照国标进行初期性能测试,结果见表1。
表1 负极添加剂电池初期性能测试
测试项目 实施例1 实施例2 实施例3 空白例
初期容量/Ah 13.1 12.8 13.0 12.9
充电接受/A 2.246 2.254 2.287 2.204
-15°低温/Ah 10.9 10.8 10.8 10.6
21.6A大电流放电/min 28 27 28 26
循环寿命/次 472 468 495 385
由表1可以看出,本发明克服了现有技术因“木素磺酸钠溶解到电解液中”导致的添加剂损失问题,将木素磺酸钠与腐殖酸进行复合后,加入到负极中,可有效提高电池低温性能和循环寿命,保证电池在负极中的稳定存在,延长电池循环寿命。

Claims (5)

  1. 一种蓄电池复合添加剂,其特征在于通过以下制备方法得到:
    木素磺酸钠与腐殖酸的质量比为1.5-2:1,在搅拌状态下将木素磺酸钠与腐殖酸溶解于质量浓度为3-7%碱性溶液中,待全部溶解后,用硫酸溶液中和使物料pH为7~8.5,将物料倒入离心机中离心分层后,去掉上层清液,固体物干燥后得到复合添加剂。
  2. 如权利要求1所述的一种蓄电池复合添加剂,其特征在于:所述碱性溶液为氢氧化钠或氢氧化钾。
  3. 如权利要求1所述的一种蓄电池复合添加剂,其特征在于:木素磺酸钠与腐殖酸是在40~60℃水浴中溶解于碱性溶液。
  4. 如权利要求1所述的一种蓄电池复合添加剂,其特征在于:所述硫酸溶液密度为1.40~1.84g/cm3。
  5. 如权利要求1所述的一种蓄电池复合添加剂,其特征在于:离心机以2000~5000r/min的转速离心30~50min。
PCT/CN2014/088352 2014-08-21 2014-10-11 一种蓄电池复合添加剂 WO2016026200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410414288.7A CN104362345A (zh) 2014-08-21 2014-08-21 一种蓄电池复合添加剂
CN201410414288.7 2014-08-21

Publications (1)

Publication Number Publication Date
WO2016026200A1 true WO2016026200A1 (zh) 2016-02-25

Family

ID=52529587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088352 WO2016026200A1 (zh) 2014-08-21 2014-10-11 一种蓄电池复合添加剂

Country Status (2)

Country Link
CN (1) CN104362345A (zh)
WO (1) WO2016026200A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584868A (zh) * 2019-02-15 2020-08-25 株式会社村田制作所 锂离子二次电池负极添加剂及包含其的负极浆料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609781B (zh) * 2015-12-23 2018-08-24 天能电池集团有限公司 一种铅酸蓄电池负极用复合有机膨胀剂及其制备方法
CN105651838B (zh) * 2015-12-31 2019-04-30 天能电池集团有限公司 一种木素磺酸钠测试电极及其制备方法
JP6775764B2 (ja) * 2016-09-30 2020-10-28 株式会社Gsユアサ 鉛蓄電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523694A (zh) * 2003-02-21 2004-08-25 曲阜圣阳电源实业有限公司 铅酸蓄电池负极铅膏
CN1747205A (zh) * 2005-10-14 2006-03-15 风帆股份有限公司 汽车起动用阀控密封铅酸蓄电池负极铅膏及制备方法
CN1767237A (zh) * 2005-08-22 2006-05-03 风帆股份有限公司 可提高低温性能的铅酸蓄电池负极铅膏及制备方法
CN101330140A (zh) * 2008-08-04 2008-12-24 风帆股份有限公司 一种车辆用高温铅酸蓄电池负极铅膏及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299337A (zh) * 2011-07-26 2011-12-28 山东金科力电源科技有限公司 铅酸蓄电池负极复合添加剂及其制备、使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523694A (zh) * 2003-02-21 2004-08-25 曲阜圣阳电源实业有限公司 铅酸蓄电池负极铅膏
CN1767237A (zh) * 2005-08-22 2006-05-03 风帆股份有限公司 可提高低温性能的铅酸蓄电池负极铅膏及制备方法
CN1747205A (zh) * 2005-10-14 2006-03-15 风帆股份有限公司 汽车起动用阀控密封铅酸蓄电池负极铅膏及制备方法
CN101330140A (zh) * 2008-08-04 2008-12-24 风帆股份有限公司 一种车辆用高温铅酸蓄电池负极铅膏及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WU, SHOUSONG: "Some Experiences with Organic Expanders", CHINESE LABAT MAN, 31 December 2000 (2000-12-31), pages 34, ISSN: 1006-0847 *
ZHU, SONGRAN ET AL.: "Comparison between Complex and Mix of Organic Expanders", CHINESE BATTERY INDUSTRY, vol. 7, no. 5, 31 October 2002 (2002-10-31), pages 246, ISSN: 1008-7923 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584868A (zh) * 2019-02-15 2020-08-25 株式会社村田制作所 锂离子二次电池负极添加剂及包含其的负极浆料
CN111584868B (zh) * 2019-02-15 2023-07-25 株式会社村田制作所 锂离子二次电池负极添加剂及包含其的负极浆料

Also Published As

Publication number Publication date
CN104362345A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
CN111403658A (zh) 一种具有电催化功能隔膜的制备方法及其在锂硫电池中的应用
CN105870451B (zh) 一种铅酸蓄电池用石墨烯分散液及其制备工艺
CN107768637B (zh) 一种多孔石墨烯/碳纳米管锂硫正极材料的制备方法
CN114229870B (zh) 一种原位碳包覆普鲁士蓝类正极材料及其制备方法和应用
CN103971950B (zh) 电化学电源隔膜及其制备方法、电化学电池或电容器
WO2016026200A1 (zh) 一种蓄电池复合添加剂
CN107180962A (zh) 一种多孔石墨掺杂与碳包覆石墨负极材料的制备方法
CN109755481B (zh) 一种提高铅蓄电池低温性能的制造工艺
CN112635698B (zh) 一种锌二次电池的负极极片及其制备方法和用途
CN103943881B (zh) 一种铅钙内化成胶体电解液及其制备方法
CN108183269A (zh) 一种水系高倍率钠离子电池的制备方法
CN105702953A (zh) 一种高温重负荷启停电池负极铅膏及其制备方法
CN104362310A (zh) 锂离子电池有机负极材料
CN102610802A (zh) 一种铅酸蓄电池正极材料和一种铅酸蓄电池
CN106784847A (zh) 多级孔结构导电碳材料的制备方法及用于铅酸电池的极板
CN104253270A (zh) 磷酸铁锂包覆锰酸锂复合电极材料及其制备方法
CN108258330A (zh) 一种铅酸电池加胶方法
CN109473648B (zh) 一种锂离子电池用硅碳复合材料及其制备方法
JP2015225719A (ja) 鉛蓄電池
CN110911662A (zh) 一种具有保护层的锂负极及其制备方法和应用
CN109638225A (zh) 一种免维护铅酸蓄电池负极板及其制备方法
CN107863563A (zh) 一种铅酸蓄电池胶体电解质
CN114843473A (zh) 一种应用于铁锂电池的复合浆料及其制备方法
CN104064816B (zh) 一种铅酸蓄电池抑制析氢的电解液添加剂及其制备方法
CN110233300B (zh) 大容量耐低温胶体电解液及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900295

Country of ref document: EP

Kind code of ref document: A1