WO2016026099A1 - 数字调制方法及装置 - Google Patents

数字调制方法及装置 Download PDF

Info

Publication number
WO2016026099A1
WO2016026099A1 PCT/CN2014/084812 CN2014084812W WO2016026099A1 WO 2016026099 A1 WO2016026099 A1 WO 2016026099A1 CN 2014084812 W CN2014084812 W CN 2014084812W WO 2016026099 A1 WO2016026099 A1 WO 2016026099A1
Authority
WO
WIPO (PCT)
Prior art keywords
quadrant
constellation point
constellation
point set
distance
Prior art date
Application number
PCT/CN2014/084812
Other languages
English (en)
French (fr)
Inventor
何孝月
刘建华
孙方林
赵泉波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480006314.0A priority Critical patent/CN105594175B/zh
Priority to EP14900135.6A priority patent/EP3171564B1/en
Priority to ES18200981T priority patent/ES2857863T3/es
Priority to PCT/CN2014/084812 priority patent/WO2016026099A1/zh
Priority to ES14900135T priority patent/ES2713703T3/es
Priority to EP18200981.1A priority patent/EP3499833B1/en
Priority to CN201910420202.4A priority patent/CN110266633B/zh
Publication of WO2016026099A1 publication Critical patent/WO2016026099A1/zh
Priority to US15/436,421 priority patent/US9787518B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3411Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power reducing the peak to average power ratio or the mean power of the constellation; Arrangements for increasing the shape gain of a signal set
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3416Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a digital modulation method and apparatus. Background technique
  • Constellation mapping is a digital modulation technique.
  • the process of constellation mapping is to map a finite field "bit" sequence carrying digital information into a "symbol" sequence suitable for transmission.
  • the value space of each symbol can be a one-dimensional real space, a two-dimensional real space (that is, a complex space).
  • the constellation map contains two elements, Constellation and Labeling.
  • the constellation diagram represents a set of all the values of the constellation output symbols, where each point of the constellation corresponds to a value of the output symbol.
  • the constellation point mapping method represents a specific mapping relationship of input bits (sequences/groups) to constellation points, or a specific mapping relationship of constellation points to bits (sequences/groups).
  • PAM Pulse Amplitude Modulation
  • QAM Quadrature Amplitude Modulation
  • PSK Phase Shift Keying
  • the transmitting end of the existing communication system usually adopts the QAM technology to perform constellation mapping on the data bit stream, and also uses the forward error correction code technology to partially or completely
  • the bits are encoded.
  • the transmitting end may actually divide the encoded bit stream and the uncoded bit stream in the data bit stream into corresponding in-phase (I) components and quadrature (Q) components, respectively, and
  • the coded bit stream and the uncoded bit stream are respectively subjected to constellation mapping according to respective corresponding I components and Q components to obtain a coded constellation and an uncoded constellation.
  • the transmitting end further integrates the coded constellation and the uncoded constellation by a constellation fusion method to obtain a constellation corresponding to the data bit stream.
  • the different order QAM is 2 A nQAM, which is represented by a different integer n.
  • n the higher the spectrum utilization rate is.
  • the constellation diagram is a square constellation diagram, such as 4QAM and 16QAM, etc.; if n is an odd number, the constellation diagram is a rectangular constellation diagram, such as 32QAM, 128QAM, and 256QAM.
  • the value of n corresponding to the different order QAM is the length corresponding to the data bit stream.
  • the rectangular constellation diagram needs to be shaped to obtain a cross constellation diagram.
  • the receiving end needs to perform de-encoding and QAM demapping to obtain a corresponding data bit stream.
  • the bit soft information indicating the probability of bit value that is, the maximum likelihood ratio (LLR) is also known.
  • Embodiments of the present invention provide a digital modulation method and apparatus to solve the problem of complicated LLR calculation in the prior art.
  • an embodiment of the present invention provides a digital modulation method, including:
  • the constellation points in the rectangular constellation are distributed in corresponding coordinate points in the plane rectangular coordinate system, and the constellation points to be migrated include four quadrants of the plane rectangular coordinate system
  • the rectangular constellation is a constellation generated by orthogonal amplitude modulation QAM generation of the data bit stream;
  • the S is the number of columns to be migrated in each quadrant;
  • Performing lateral migration of each constellation point set in the four quadrants includes:
  • the two constellation points in the constellation point set having the smallest ordinate and the largest ordinate in the other constellation point group respectively migrate to the first distance and the second distance from the vertical axis in the same quadrant.
  • Performing longitudinal migration of each constellation point set in the four quadrants includes:
  • the method before the determining the constellation point to be migrated in the rectangular constellation, the method further includes:
  • the area between the straight line and the horizontal axis corresponding to the absolute value of the largest ordinate in the rectangular constellation is equally divided a line
  • the constellation points to be migrated in the four quadrants are respectively divided into two constellation point sets, including:
  • dividing a constellation point to be migrated in the first quadrant of the four quadrants to obtain a first constellation point set according to a bisector of a region between the straight line and the horizontal axis corresponding to the absolute value of the largest ordinate in the rectangular constellation; a second constellation point set, the constellation points to be migrated in the second quadrant of the four quadrants are divided to obtain a third constellation point set and a fourth constellation point set, and the third quadrant in the four quadrants
  • the migrating constellation points are divided to obtain a fifth constellation point set and a sixth constellation point set, and the constellation points to be migrated in the fourth quadrant of the four quadrants are divided to obtain a seventh constellation point set and an eighth constellation point set.
  • the two constellation point sets in each of the four quadrants are respectively migrated to the four quadrants a position in the first quadrant group from the original abscissa of 4 or 8 feature distances, wherein the minimum ordinate of one constellation point in the second quadrant of the four quadrants is greater than the maximum ordinate of the other constellation point set
  • the constellation point sets are respectively migrated to the positions of the first distance and the second distance from the vertical axis in the same quadrant, and the minimum ordinate of one constellation point in the first quadrant group is greater than the maximum ordinate of the other constellation point set.
  • the constellation point sets are respectively migrated to the second quadrant group, including: And shifting the first constellation point set and the second constellation point set to 8 feature distances from the original abscissa in the third quadrant and the second quadrant, respectively, and the position of the second distance from the vertical axis;
  • the third constellation point set and the fourth constellation point set respectively migrate to the third feature distance in the third quadrant and the second quadrant from the original abscissa, and the position of the first distance from the vertical axis;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to the fourth quadrant and the first feature distance from the original abscissa by 4 feature distances, and the position of the first distance from the vertical axis.
  • the two constellation point sets in each of the four quadrants are respectively migrated to the four quadrants a position in the first quadrant group from the original abscissa of 4 or 8 feature distances, wherein the minimum ordinate of one constellation point in the second quadrant of the four quadrants is greater than the maximum ordinate of the other constellation point set
  • the constellation point sets are respectively migrated to the positions of the first distance and the second distance from the vertical axis in the same quadrant, and the minimum ordinate of one constellation point in the first quadrant group is greater than the maximum ordinate of the other constellation point set.
  • the constellation point sets are respectively migrated to the second quadrant group, including:
  • the third constellation point set and the fourth constellation point set respectively migrate to a distance of 4 feature distances from the original abscissa in the second quadrant and the third quadrant, and a position of the first distance from the vertical axis;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to a distance of 4 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and a position of the first distance from the vertical axis.
  • the two constellation point sets in each of the four quadrants are respectively migrated to the four quadrants a position in the first quadrant group from the original abscissa of 4 or 8 feature distances, wherein the minimum ordinate of one constellation point in the second quadrant of the four quadrants is greater than the maximum ordinate of the other constellation point set
  • the constellation point sets are respectively migrated to the positions of the first distance and the second distance from the vertical axis in the same quadrant, and the minimum ordinate of one constellation point in the first quadrant group is greater than the maximum ordinate of the other constellation point set.
  • the constellation point sets are respectively migrated to the second quadrant group, including: And shifting the first constellation point set and the second constellation point set respectively to a fourth quadrant and a first feature distance from the original abscissa in the first quadrant, and a distance from the vertical axis to the first distance;
  • the third constellation point set and the fourth constellation point set respectively migrate to the fourth quadrant and the first feature distance from the original abscissa by 8 feature distances, and the position of the second distance from the vertical axis;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to a distance of 8 feature distances from the original abscissa in the third quadrant and the second quadrant, and a position of the second distance from the vertical axis.
  • the two constellation point sets in each of the four quadrants are respectively migrated to the four quadrants a position in the first quadrant group from the original abscissa of 4 or 8 feature distances, wherein the minimum ordinate of one constellation point in the second quadrant of the four quadrants is greater than the maximum ordinate of the other constellation point set
  • the constellation point sets are respectively migrated to the positions of the first distance and the second distance from the vertical axis in the same quadrant, and the minimum ordinate of one constellation point in the first quadrant group is greater than the maximum ordinate of the other constellation point set.
  • the constellation point sets are respectively migrated to the second quadrant group, including:
  • the third constellation point set and the fourth constellation point set respectively migrate to 8 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and the position of the second distance from the vertical axis;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to a distance of 8 feature distances from the original abscissa in the second quadrant and the third quadrant, and a position of the second distance from the ordinate axis.
  • an embodiment of the present invention provides a digital modulation apparatus, including:
  • a determining module configured to determine a constellation point to be migrated in the rectangular constellation; wherein each constellation point in the rectangular constellation is distributed in a corresponding coordinate point in a plane rectangular coordinate system, and the constellation point to be migrated includes the plane a constellation of S column constellations in which the absolute values of the abscissa in the four quadrants of the Cartesian coordinate system are large to small; the rectangular constellation is a constellation generated by quadrature amplitude modulation QAM of the data bit stream; the S is each quadrant The number of columns to be migrated;
  • a dividing module configured to follow a straight line corresponding to an absolute value of a maximum ordinate in the rectangular constellation a bisector of a region between the horizontal axes, wherein the constellation points to be migrated in the four quadrants are respectively divided into two constellation point sets;
  • a migration module configured to perform lateral migration and vertical migration of each constellation point set in the four quadrants to obtain a cross constellation diagram
  • the migration module includes:
  • a horizontal migration unit configured to migrate, respectively, two constellation point sets in each of the four quadrants to a position in the first quadrant group of the four quadrants that is 4 or 8 feature distances from the original abscissa And migrating to the first quadrant of the second quadrant of the four quadrants, wherein the constellation point set has a minimum ordinate greater than the maximum ordinate of the other constellation point set, and migrates to the first quadrant of the same quadrant from the vertical axis.
  • the two constellation point sets in which the minimum ordinate of one constellation point in the first quadrant group is greater than the maximum ordinate in the other constellation point set are respectively migrated to the second quadrant group;
  • the first The quadrant group includes a first quadrant and a fourth quadrant, or a second quadrant and a third quadrant;
  • the second quadrant group includes a first quadrant and a second quadrant, or a third quadrant and a fourth quadrant; a distance between two adjacent constellation points in the rectangular constellation; a difference between the first distance and the second distance is equal to S feature distances; and adjacent constellation points in the cross constellation
  • the maximum distance between the coordinates of the constellation points is equal to the distance s features;
  • a longitudinal migration unit configured to converge a constellation point of a minimum ordinate absolute value of each constellation point in the four quadrants to a position of a feature distance from a longitudinal boundary in the rectangular constellation, and maintain the four The relative positions between the constellation points in the constellation points in the quadrant are unchanged.
  • the device further includes:
  • An obtaining module configured to obtain a difference between a column and a row of the rectangular constellation before the determining module determines the constellation point to be migrated in the rectangular constellation, and divide the absolute value of the difference by 4 to obtain The number of columns to be migrated in each quadrant.
  • the dividing module is further configured to use a line corresponding to an absolute value of a maximum ordinate in the rectangular constellation a bisector of the region between the horizontal axis, the constellation points to be migrated in the first quadrant of the four quadrants are divided to obtain a first constellation point set and a second constellation point set, and the second of the four quadrants
  • the constellation points to be migrated in the quadrant are divided to obtain a third constellation point set and a fourth constellation point set
  • the constellation points to be migrated in the third quadrant of the four quadrants are divided to obtain a fifth constellation point set and a sixth
  • the constellation point set divides the constellation points to be migrated in the fourth quadrant of the four quadrants to obtain a seventh constellation point set and an eighth constellation point set.
  • the horizontal migration unit is further configured to separately migrate the first constellation point set and the second constellation point set Up to 8 feature distances from the original abscissa in the third quadrant and the second quadrant, and a position of the second distance from the vertical axis; migrating the third constellation point set and the fourth constellation point set respectively 4 feature distances from the original abscissa in the three quadrants and the second quadrant, and a position of the first distance from the vertical axis; migrating the fifth constellation point set and the sixth constellation point set to the fourth quadrant respectively And a first feature distance from the original abscissa in the first quadrant, and a position of the second distance from the vertical axis; migrating the seventh constellation point set and the eighth constellation point set to the fourth quadrant and the first A quadrant in the middle of the quadrant from the original abscissa and a distance from the first axis of the vertical axis.
  • the horizontal migration unit is further configured to separately migrate the first constellation point set and the second constellation point set Up to 8 feature distances from the original abscissa in the second quadrant and the third quadrant, and a position of the second distance from the vertical axis; migrating the third constellation point set and the fourth constellation point set respectively 4 feature distances from the original abscissa in the second quadrant and the third quadrant, and a position of the first distance from the vertical axis; migrating the fifth constellation point set and the sixth constellation point set to the first quadrant respectively And a fourth feature distance from the original abscissa in the fourth quadrant, and a position of the second distance from the vertical axis; migrating the seventh constellation point set and the eighth constellation point set to the first quadrant and the first The fourth quadrant has a distance of 4 feature distances from the original abscissa and a distance from the first distance of the vertical axis.
  • the horizontal migration unit is further configured to separately migrate the first constellation point set and the second constellation point set 4 feature distances from the original quadrant to the fourth quadrant and the first quadrant, and a position of the first distance from the vertical axis; moving the third constellation point set and the fourth constellation point set to the first 8 feature distances from the original quadrant in the four quadrants and the first quadrant, and a position of the second distance from the vertical axis; migrating the fifth constellation point set and the sixth constellation point set to the third quadrant respectively And a position distance of the first distance from the original abscissa in the second quadrant, and a position of the first distance from the vertical axis; migrating the seventh constellation point set and the eighth constellation point set to the third quadrant and the first The second quadrant has a distance of 8 characteristic distances from the original abscissa and a distance from the second distance of the vertical axis.
  • the horizontal migration unit is further configured to migrate the first constellation point set and the second constellation point set to 4 feature distances from the original abscissa in the first quadrant and the fourth quadrant respectively, and the distance from the vertical axis Positioning the first distance; moving the third constellation point set and the fourth constellation point set to 8 feature distances from the original abscissa in the first quadrant and the fourth quadrant respectively, and the distance from the vertical axis a position of the second distance; migrating the fifth constellation point set and the sixth constellation point set to 4 feature distances from the original abscissa in the second quadrant and the third quadrant, respectively, and the first distance from the vertical axis Positioning the seventh constellation point set and the eighth constellation point set to 8 feature distances from the original abscissa in the second quadrant and the third quadrant, respectively, and the second distance from the ordinate axis position.
  • an embodiment of the present invention provides a digital modulation apparatus, including: a receiver, a processor, and a transmitter;
  • the processor is configured to determine a constellation point to be migrated in a rectangular constellation, and according to a bisector of a region between a straight line and a horizontal axis corresponding to an absolute value of a maximum ordinate in the rectangular constellation,
  • the constellation points to be migrated in the quadrant are respectively divided into two constellation point sets, and the constellation point sets in the four quadrants are laterally migrated and longitudinally migrated to obtain a cross constellation map;
  • the constellation points in the rectangular constellation are distributed in corresponding coordinate points in the plane rectangular coordinate system, and the constellation points to be migrated include the absolute values of the abscissa in the four quadrants of the plane rectangular coordinate system from large to small.
  • S column constellation points; the rectangular constellation diagram is a constellation diagram for quadrature amplitude modulation QAM generation of a data bit stream; the S is a number of columns to be migrated in each quadrant;
  • the processor is specifically configured to migrate the two constellation point sets in each of the four quadrants to the first quadrant of the four quadrants, and the distance from the original abscissa to four or eight feature distances a position, a set of two constellation points in a constellation point set in the second quadrant of the four quadrants having a minimum ordinate greater than a maximum ordinate in the other constellation point set respectively migrate to a first distance from the vertical axis in the same quadrant and a second distance position, wherein two constellation point sets in a constellation point set in the first quadrant group having a minimum ordinate greater than a maximum ordinate in another constellation point set are respectively migrated to the second quadrant group; wherein
  • the first quadrant group includes a first quadrant and a fourth quadrant, or a second quadrant and a third quadrant;
  • the second quadrant group includes a first quadrant and a second quadrant, or a third quadrant and a fourth quadrant;
  • the feature distance is a distance between two adjacent constellation points in the
  • the processor is further configured to concentrate the minimum ordinate absolute values of each constellation point in the four quadrants
  • the constellation points migrate to a position away from the longitudinal boundary in the rectangular constellation diagram by a feature distance, and maintain the relative position between the constellation points in each of the four constellation points.
  • the processor is further configured to: before determining a constellation point to be migrated in the rectangular constellation, acquire a column of the rectangular constellation and The difference of the rows, and dividing the absolute value of the difference by 4, obtains the number of columns to be migrated in each of the quadrants.
  • the processor is further configured to perform absolute according to a maximum ordinate in the rectangular constellation a bisector of a region between the straight line and the horizontal axis corresponding to the value, dividing the constellation points to be migrated in the first quadrant of the four quadrants to obtain a first constellation point set and a second constellation point set, and the four The constellation points to be migrated in the second quadrant of the quadrant are divided to obtain a third constellation point set and a fourth constellation point set, and the constellation points to be migrated in the third quadrant of the four quadrants are divided to obtain a fifth constellation point set. And a sixth constellation point set, the constellation points to be migrated in the fourth quadrant of the four quadrants are divided to obtain a seventh constellation point set and an eighth constellation point set.
  • the processor is further configured to separately migrate the first constellation point set and the second constellation point set to 8 feature distances from the original abscissa in the third quadrant and the second quadrant, and a position of the second distance from the vertical axis; migrating the third constellation point set and the fourth constellation point set to the third 4 feature distances from the original abscissa in the quadrant and the second quadrant, and a position of the first distance from the vertical axis; migrating the fifth constellation point set and the sixth constellation point set to the fourth quadrant respectively 8 feature distances from the original abscissa in the first quadrant, and a position of the second distance from the vertical axis; migrating the seventh constellation point set and the eighth constellation point set to the fourth quadrant and the first The quadrant has a distance of 4 feature distances from the original abscissa and a position of the first distance from the vertical axis.
  • the processor is further configured to separately migrate the first constellation point set and the second constellation point set to 8 feature distances from the original abscissa in the second quadrant and the third quadrant, and a position of the second distance from the vertical axis; migrating the third constellation point set and the fourth constellation point set to the second 4 feature distances from the original abscissa in the quadrant and the third quadrant, and a position of the first distance from the vertical axis; migrating the fifth constellation point set and the sixth constellation point set to the first quadrant and 8 feature distances from the original abscissa in the fourth quadrant, and a position of the second distance from the vertical axis; The set of coordinates and the set of eighth constellations are respectively migrated to the first quadrant and the fourth quadrant from the original abscissa
  • the processor is further configured to separately migrate the first constellation point set and the second constellation point set to 4 feature distances from the original quadrant in the fourth quadrant and the first quadrant, and a position of the first distance from the vertical axis; migrating the third constellation point set and the fourth constellation point set to the fourth 8 feature distances from the original abscissa in the quadrant and the first quadrant, and a position of the second distance from the vertical axis; migrating the fifth constellation point set and the sixth constellation point set to the third quadrant respectively 4 feature distances from the original abscissa in the second quadrant, and a position of the first distance from the vertical axis; migrating the seventh constellation point set and the eighth constellation point set to the third quadrant and the second The quadrant has a distance of 8 feature distances from the original abscissa and a position of the second distance from the vertical axis.
  • the processor is further configured to separately migrate the first constellation point set and the second constellation point set to 4 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and a position of the first distance from the vertical axis; migrating the third constellation point set and the fourth constellation point set to the first 8 feature distances from the original abscissa in the quadrant and the fourth quadrant, and a position of the second distance from the vertical axis; migrating the fifth constellation point set and the sixth constellation point set to the second quadrant respectively 4 feature distances from the original abscissa in the third quadrant, and a position of the first distance from the vertical axis; migrating the seventh constellation point set and the eighth constellation point set to the second quadrant and the third The quadrant has a distance of 8 feature distances from the original abscissa and a position of the second distance from the ordinate axis.
  • the digital modulation method and apparatus determine the constellation point of the S column to be migrated from the largest to the smallest absolute value of the abscissa in each quadrant of the plane rectangular coordinate system, according to the absolute value of the maximum ordinate.
  • the bisector of the region between the straight line and the horizontal axis divides the constellation points to be migrated in the four quadrants into two constellation point sets, and migrates the two constellation point sets of each quadrant to the distance in the first quadrant group respectively.
  • the position of 4 or 8 feature distances of the original abscissa, the two constellation point sets in which the minimum ordinate of one constellation point set in the second quadrant group is larger than the largest ordinate of the other constellation point set are respectively migrated to the same quadrant.
  • FIG. 1 is a flowchart of a digital modulation method according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of a digital modulation method according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram showing the structure of a constellation point set when digitally modulating a constellation diagram according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic structural diagram of a cross constellation obtained by using the digital modulation method provided by Embodiment 3 of the present invention.
  • FIG. 6 is a flowchart of a digital modulation method according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic structural diagram of a cross constellation obtained by using the digital modulation method provided by Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a cross constellation obtained by using the digital modulation method provided in Embodiment 5 of the present invention.
  • FIG. 10 is a flowchart of a digital modulation method according to Embodiment 6 of the present invention.
  • FIG. 11 is a schematic structural diagram of a cross constellation obtained by using the digital modulation method provided by Embodiment 6 of the present invention.
  • FIG. 13 is a schematic structural diagram of a digital modulation apparatus according to Embodiment 8 of the present invention
  • FIG. 14 is a schematic structural diagram of a digital modulation apparatus according to Embodiment 9 of the present invention
  • FIG. 15 is a digital modulation apparatus according to Embodiment 10 of the present invention
  • Embodiments of the present invention provide a digital modulation method.
  • the solution provided by this embodiment may be performed by the soft information calculation module at the receiving end, or may be performed by the constellation mapping module of the transmitting end after encoding.
  • the soft information calculation module and the constellation mapping module may exist in the processor and the sender respectively in the form of software and/or hardware.
  • 1 is a flow chart of a digital modulation method according to Embodiment 1 of the present invention. As shown in FIG.
  • Step 101 Determine a constellation point to be migrated in a rectangular constellation, where constellation points in the rectangular constellation are distributed in corresponding coordinate points in a plane rectangular coordinate system, where The migration constellation points include S column constellation points whose absolute values of the abscissa in the four quadrants of the plane rectangular coordinate system are large to small.
  • the rectangular constellation is a constellation diagram for QAM generation of a data bitstream; the S is a number of columns to be migrated in each quadrant.
  • the data bitstream includes an encoded bitstream and an uncoded bitstream, wherein the encoded bitstream can be a low/bit bit of the data bitstream, the uncoded bitstream being a high order bit of the data bitstream.
  • the / can be an even number of 2, 4, 6 and so on.
  • the encoded bit stream can be represented as C 3 C 2 C l CQ
  • the uncoded bit stream can be represented as (12 ( ⁇ (1.) That is, the data bit stream is (! ⁇ .
  • the data bit stream may comprise encoded bit stream bitstream component and I e Q e component bitstream. wherein the component I e bitstream may be C 3 C 2, Q e component bitstream can For c lCQ .
  • the data bit stream is not encoded bit stream may comprise a component I d and Q d bitstream component bitstream.
  • the component I d bitstream may be 44, the bit-stream component Q d may be d. .
  • QAM obtains a coded constellation, which is actually an I e component bit stream and a 3 ⁇ 4 bit stream for modulation, and the obtained code constellation can be expressed, for example, as ⁇ 1.
  • (3 ⁇ 4> is the actual coding constellation 16QAM constellation; be obtained according to the QAM constellation encoding uncoded bit stream, I d is the actual component bitstream component and Q d is modulated bitstream, which is obtained in the encoding constellation
  • the graph can be expressed, for example, as ⁇ 1 (3 ⁇ 4>.
  • the encoded constellation is actually an 8QAM constellation.
  • the preset map integration method can be, for example, as shown in the following formula:
  • ⁇ I, Q > 2 ⁇ ⁇ I d , Q d > + ⁇ I c , Q c > ( 1) ;
  • I is the number of bits of the code.
  • the constellation corresponding to the data bit stream can be expressed as ⁇ 1>, which can be obtained by using the above formula (1) according to and ⁇ >.
  • the I component bit stream includes an I e component bit stream and an I d component bit stream, which can be represented as d 2 d lC3 c 2
  • the Q component bit stream includes a Q e component bit stream and Q
  • the d component bit stream can be expressed as d Q c lCQ . Due to the unequal division of the I component bit stream and the Q component bit stream, the constellation corresponding to the finally obtained data bit stream is a rectangular constellation, and the rectangular constellation may be a 128QAM constellation.
  • the constellation points in the rectangular constellation are distributed in corresponding coordinate points in the plane rectangular coordinate system, that is, one constellation point corresponds to one coordinate point.
  • the abscissa corresponds to the constellation point of the I component in the rectangular constellation
  • the ordinate corresponds to the constellation point of the Q component in the rectangular constellation. That is to say, different horizontal coordinate values correspond to different I component bit streams, and different ordinate values correspond to different Q component bit streams, and thus different data bit streams have coordinates with different abscissa values and/or different ordinate values. , can be located in the corresponding coordinate position in the plane Cartesian coordinate system.
  • the constellation points of the rectangular constellation to be migrated may be evenly distributed in four different quadrants in the plane direct coordinate system and located at the outermost part of the four quadrants. Since the I component bit stream is larger than the size of the Q component bit stream, the horizontal extent of the I component in the rectangular constellation is wider, that is, the number of columns of constellation points in the rectangular constellation is greater than the number of rows. Then, the constellation points to be migrated in each quadrant are located at the outermost lateral direction of the rectangular constellation, that is, the S column whose absolute value of the abscissa is from large to small.
  • the number of columns corresponding to the constellation points to be migrated in each quadrant may be determined according to the number of columns and the number of rows of the rectangular constellation, or may be the corresponding I component bitstream when the data bit stream is constelled.
  • the size of the Q component bit stream is determined.
  • Step 102 Divide the constellation points to be migrated in the four quadrants into two constellation point sets according to a bisector of a region between the straight line and the horizontal axis corresponding to the absolute value of the largest ordinate in the rectangular constellation.
  • the magnitude of the absolute value of the ordinate in the rectangular constellation may be determined according to a preset feature distance. If the I component bit stream in the data bit stream is 4 bits, the number of columns of the rectangular constellation may be For 2 4 , the corresponding Q component bit stream is 3 bits, and the number of rows of the rectangular constellation is 2 3 . If the feature distance, the distance between two adjacent constellation points i.e. is N, the constellation may be a rectangle the four constellation points in accordance with 2 wherein the distance N, the vertical axis centered evenly distributed, the 2 3 Planetary coordinates are uniformly distributed according to the characteristic distance N and centered on the horizontal axis. Then, in the rectangular constellation diagram, the maximum value of the abscissa may be the minimum value of the abscissa may be - ⁇ N; corresponding,
  • the maximum value of the ordinate can be ⁇ 1 ⁇ , and the minimum value of the abscissa can be _ ⁇ 1 ⁇ .
  • the bisector of the region between the straight line and the horizontal axis corresponding to the absolute value of the maximum ordinate in the rectangular constellation includes: a bisector of the region between the straight line and the horizontal axis corresponding to the maximum value of the ordinate, and the ordinate is the smallest The bisector of the area between the line and the horizontal axis corresponding to the value.
  • the bisector of the region between the straight line and the horizontal axis corresponding to the maximum value of the ordinate, the bisector of the region between the straight line and the horizontal axis corresponding to the minimum value of the ordinate, and the horizontal axis is symmetrical with respect to the middle line.
  • the bisector of the region between the straight line and the horizontal axis corresponding to the maximum value of the ordinate may be a straight line perpendicular to the vertical axis and one-half of the maximum value of the ordinate from the horizontal axis; correspondingly, the minimum value of the ordinate corresponds to
  • the bisector of the region between the straight line and the horizontal axis may be a straight line perpendicular to the longitudinal axis and one-half of the minimum of the ordinate from the horizontal axis.
  • the maximum value of the abscissa may be 15, the minimum value of the abscissa may be -15, the maximum value of the ordinate may be 7, and the minimum value of the ordinate is - 7.
  • the bisector of the region between the straight line and the horizontal axis corresponding to the maximum value of the ordinate, and the bisector of the region between the straight line and the horizontal axis corresponding to the minimum value of the ordinate may be perpendicular to the vertical axis and 7.5 from the horizontal axis, respectively. Two parallel lines.
  • Step 103 Perform lateral migration and longitudinal migration on each constellation point set in the four quadrants to obtain a cross constellation diagram.
  • the horizontal constellation of each constellation point set in the four quadrants may be performed according to a preset target abscissa, or the constellation point sets may be respectively separated according to a distance from the original abscissa or vertical. The position of the axis is migrated.
  • step 103 laterally migrating each set of star points in the four quadrants, which may include:
  • Two sets of constellation points in a constellation point set with a minimum ordinate greater than the largest ordinate in another constellation point set migrate to the second quadrant group, respectively.
  • the first quadrant group includes a first quadrant and a fourth quadrant, or a second quadrant and a third quadrant;
  • the second quadrant group includes a first quadrant and a second quadrant, or a third quadrant and a fourth quadrant;
  • the feature distance is the distance between two adjacent constellation points in the rectangular constellation.
  • the difference between the first distance and the second distance is equal to S feature distances; the distance between the constellation points of the largest constellation of the adjacent constellation points in the cross constellation diagram is equal to S feature distances.
  • the two constellation points in the constellation point set in the second quadrant group are smaller than the maximum ordinate in the other constellation point set, and include: the ordinate in the first quadrant is greater than the ordinate of the other constellation point set. a constellation point set, and a constellation point set in which the ordinate in the second quadrant is greater than the ordinate of the other constellation point set; or, the constellation point set in the third quadrant whose ordinate is greater than the ordinate of the other constellation point set, And the constellation point set in the fourth quadrant whose ordinate is greater than the ordinate of the other constellation point set.
  • the constellation point set of one constellation point in the first quadrant group is greater than the maximum constellation set of the other constellation point set, and includes: a constellation point in which the ordinate in the first quadrant is greater than the ordinate of the other constellation point set. a set of constellation points in the set and the fourth quadrant whose ordinate is greater than the ordinate of the other constellation point set; or, the constellation point set in the second quadrant whose ordinate is greater than the ordinate of the other constellation point set, and the third The constellation point set in the quadrant whose ordinate is greater than the ordinate of the other constellation point set.
  • the migration of the constellation point set is actually moving the constellation points in the constellation point set in units of constellation points, and the relative positions of the constellation points in the same constellation point set are unchanged after the migration. .
  • the two constellation point sets of each quadrant may be 4 feature distances from the original abscissa in the two quadrants of the first quadrant group, such as 4N, or 8 feature distances from the original abscissa, such as 8N.
  • the two constellation point sets of each quadrant are respectively migrated to the two quadrants in the first quadrant group, so that the same column in the cross constellation obtained after the migration, that is, the value of the upper-order coding bit corresponding to the same I component is obtained. the same.
  • the two constellation point sets in which the minimum ordinate is greater than the maximum ordinate of the other constellation point set in the two quadrants of the second quadrant group respectively migrate to the first quadrant and the second distance from the vertical axis in the same quadrant a position, and the difference between the first distance and the second distance is equal to the distance of the S constellation points.
  • the minimum ordinate of one of the two quadrants in the second quadrant group is greater than the other constellation point.
  • the two constellation point sets that focus on the largest ordinate are respectively moved to different positions in the same quadrant from the vertical axis.
  • the position of the first distance from the longitudinal axis is a position away from the vertical axis
  • the position of the second distance from the vertical axis is a position close to the vertical axis.
  • the vertical migration of each star point set in the four quadrants may specifically include:
  • the vertical boundary in the rectangular constellation is a line having a vertical vertical axis and a horizontal axis from the absolute maximum value of the ordinate of the rectangular constellation.
  • the two constellation point sets in each quadrant are respectively migrated to positions in the first quadrant group that are 4 or 8 feature distances from the original abscissa, which are actually two constellation points in each quadrant.
  • the set migrates to the position of the first quadrant group by 4 or 8 feature distances from the original abscissa, and simultaneously shifts the constellation points of the minimum ordinate absolute values of each constellation point to the rectangular constellation.
  • the longitudinal boundary is a position of a feature distance, and the relative positions between the constellation points in the constellation points are unchanged.
  • the constellation point of the S column in which the absolute value of the abscissa in each quadrant of the plane rectangular coordinate system is determined as the constellation point to be migrated is determined according to the straight line and the horizontal axis corresponding to the absolute value of the maximum ordinate.
  • the bisector of the inter-region divides the constellation points to be migrated in the four quadrants into two constellation point sets, and migrates the two constellation point sets of each quadrant to the first quadrant group by 4 or the original abscissa.
  • the position of the eight feature distances, the two constellation point sets in which the minimum ordinate of one constellation point in the second quadrant group is larger than the largest ordinate in the other constellation point set are respectively migrated to the same distance from the vertical axis, the first distance and the second
  • the position of the distance, one constellation point in the first quadrant group is concentrated, and one constellation point set in which the minimum ordinate is larger than the largest ordinate in the other constellation point set respectively migrates to the second quadrant group, and each constellation point is moved
  • the relative position between the base point unchanged, thereby obtaining a cross constellation may be such that the same value of the I component or Q component corresponding to the encoded bits obtained by cross constellation of FIG identical, to simplify the computational complexity of the LLR.
  • Embodiments of the present invention also provide a digital modulation method.
  • 2 is a flow chart of a digital modulation method according to Embodiment 2 of the present invention. As shown in FIG. 2, before the solution 101 determines the constellation points to be migrated in the rectangular constellation in the foregoing embodiment, the solution further includes:
  • Step 201 Obtain a difference between a column and a row of the rectangular constellation, and divide the absolute value of the difference by 4 to obtain the number of columns S to be migrated in each quadrant.
  • the number of columns to be migrated in each quadrant can be, for example, ⁇
  • the constellation points to be migrated in the four quadrants are respectively divided into two
  • the constellation point set may specifically include:
  • Step 202 According to a bisector of a region between a straight line and a horizontal axis corresponding to an absolute value of a maximum ordinate in the rectangular constellation, dividing the constellation points to be migrated in the first quadrant of the four quadrants a first constellation point set and a second constellation point set, the constellation points to be migrated in the second quadrant of the four quadrants are divided to obtain a third constellation point set and a fourth constellation point set, and the third of the four quadrants The constellation points to be migrated in the quadrant are divided to obtain a fifth constellation point set and a sixth constellation point set, and the constellation points to be migrated in the fourth quadrant of the four quadrants are divided to obtain a seventh constellation point set and an eighth constellation point. set.
  • FIG. 3 is a schematic diagram showing the structure of a constellation point set when digitally modulating a constellation diagram according to Embodiment 2 of the present invention.
  • the constellation points to be migrated in the first quadrant include a first constellation point set 301 and a second constellation point set 302
  • the constellation points to be migrated in the second quadrant include a third constellation point set 303 and a a constellation point set 304
  • the constellation points to be migrated in the third quadrant include a fifth constellation point set 305 and a sixth constellation point set 306, wherein the constellation points to be migrated in the fourth quadrant include a seventh constellation point set 307 and a Eight constellation points set 308.
  • the embodiment of the present invention can better ensure the migration of constellation point sets more accurately by dividing the specific constellation point set, thereby ensuring the same I component or Q component in the obtained cross constellation picture after migration.
  • the corresponding coded bits have the same value.
  • Embodiments of the present invention also provide a digital modulation method.
  • 4 is a flow chart of a digital modulation method according to Embodiment 3 of the present invention. As shown in FIG. 4, the method is further, based on the foregoing embodiment, the two constellation point sets in each of the four quadrants are respectively migrated to the four according to the foregoing embodiment.
  • the constellation point sets respectively migrate to the first distance and the second distance from the vertical axis in the same quadrant, and the constellation points in the first quadrant group are concentrated in two constellations whose minimum ordinate is greater than the maximum ordinate in the other constellation point set.
  • the point sets are respectively migrated to the second quadrant group, which may include:
  • Step 401 The first constellation point set and the second constellation point set are respectively migrated to 8 feature distances from the original abscissa in the third quadrant and the second quadrant, and the position of the second distance from the vertical axis;
  • the third constellation point set and the fourth constellation point set respectively migrate to a fourth feature distance from the original abscissa in the third quadrant and the second quadrant, and a position away from the vertical axis by the first distance.
  • Step 402 The fifth constellation point set and the sixth constellation point set are respectively migrated to the fourth quadrant and the first feature distance from the original abscissa by 8 feature distances, and the distance from the vertical axis to the second distance;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to the fourth quadrant and the first quadrant The four coordinate distances on the abscissa and the position of the first distance from the vertical axis.
  • FIG. 5 is a schematic structural diagram of a cross constellation obtained by using the digital modulation method provided by Embodiment 3 of the present invention.
  • the first constellation point set 301 is migrated to the position where the first constellation point set 501 shown in FIG. 5 is located by using the above step 401, and the second constellation point set 302 is migrated to the first constellation point set 502 shown in FIG. 5.
  • Position, the third constellation point set 303 is migrated to the position where the third constellation point set 503 is located as shown in FIG. 5, and the fourth constellation point set 304 is migrated to the fourth constellation point set 504 as shown in FIG. s position.
  • the fifth constellation point set 305 can be migrated to the position where the fifth constellation point set 505 is located as shown in FIG.
  • the sixth constellation point set 306 is migrated to the sixth constellation point as shown in FIG. 5.
  • the seventh constellation point set 307 is migrated to the position where the seventh constellation point set 507 is located as shown in FIG. 5
  • the eighth constellation point set 308 is migrated to the eighth constellation point as shown in FIG. The location where the set 508 is located.
  • the digital modulation method is described by the migration of another constellation point set, and the beneficial effects are similar to those in the foregoing embodiment, and details are not described herein again.
  • Embodiments of the present invention also provide a digital modulation method.
  • FIG. 6 is a flowchart of a digital modulation method according to Embodiment 4 of the present invention.
  • two constellation point sets in each of the four quadrants are respectively migrated to the first quadrant of the four quadrants.
  • a position of 4 or 8 feature distances from the original abscissa in the group, and the constellation points in the second quadrant of the four quadrants are respectively smaller than the maximum ordinate of the other constellation point set.
  • the second quadrant group may include:
  • Step 601 The first constellation point set and the second constellation point set are respectively migrated to 8 feature distances from the original abscissa in the second quadrant and the third quadrant, and the position of the second distance from the vertical axis;
  • the third constellation point set and the fourth constellation point set respectively migrate to a distance of 4 feature distances from the original abscissa in the second quadrant and the third quadrant, and a position away from the vertical axis by the first distance.
  • Step 602 The fifth constellation point set and the sixth constellation point set are respectively migrated to 8 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and the position of the second distance from the vertical axis;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to a distance of 4 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and a position away from the vertical axis by the first distance.
  • FIG. 7 is a schematic structural diagram of a cross constellation obtained by using the digital modulation method provided by Embodiment 4 of the present invention.
  • the first constellation point set 301 is migrated to the position of the first constellation point set 701 shown in FIG.
  • the second constellation point set 302 is migrated to the first constellation point set 702 shown in FIG. 7.
  • the third constellation point set 303 is migrated to the position where the third constellation point set 703 is located as shown in FIG. 7
  • the fourth constellation point set 304 is migrated to the fourth constellation point set 704 as shown in FIG. s position.
  • the fifth constellation point set 305 can be migrated to the position where the fifth constellation point set 705 is located as shown in FIG. 7 by using the above step 602, and the sixth constellation point set 306 is migrated to the sixth constellation point as shown in FIG.
  • the seventh constellation point set 307 is migrated to the position where the seventh constellation point set 707 is located as shown in FIG. 4, and the eighth constellation point set 308 is migrated to the eighth constellation point as shown in FIG. Set the location of 708.
  • the digital modulation method is described by the migration of another constellation point set, and the beneficial effects are similar to those in the foregoing embodiment, and details are not described herein again.
  • Embodiments of the present invention also provide a digital modulation method.
  • FIG. 8 is a flowchart of a digital modulation method according to Embodiment 5 of the present invention. As shown in FIG. 8, the method is based on the foregoing embodiment, and the two constellation point sets in each of the four quadrants are respectively migrated to the four quadrants according to the foregoing embodiment. a position in the quadrant group that is 4 or 8 characteristic distances from the original abscissa, and the constellation points in the second quadrant of the four quadrants are concentrated in a constellation point with a minimum ordinate greater than the maximum ordinate of the other constellation point set.
  • the sets are respectively moved to the positions of the first distance and the second distance from the vertical axis in the same quadrant, and the two constellation point sets in which the minimum ordinate of one constellation point in the first quadrant group is larger than the largest ordinate in the other constellation point set respectively
  • the migrating to the second quadrant group may include: step 801, migrating the first constellation point set and the second constellation point set to the fourth quadrant and the first feature distance from the original abscissa by four feature distances, respectively, and a position of the first distance from the vertical axis; the third constellation point set and the fourth constellation point set are respectively migrated to the fourth quadrant and the first feature distance from the original abscissa by 8 feature distances, and the distance is vertical The position of the second distance.
  • Step 802 The fifth constellation point set and the sixth constellation point set are respectively migrated to the fourth feature distance in the third quadrant and the second quadrant from the original abscissa, and the position of the first distance from the vertical axis;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to a distance of 8 feature distances from the original abscissa in the third quadrant and the second quadrant, and a position of the second distance from the vertical axis.
  • FIG. 9 is a cross constellation diagram obtained by using the digital modulation method provided in Embodiment 5 of the present invention. Schematic diagram of the structure.
  • the first constellation point set 301 is migrated to the position where the first constellation point set 901 shown in FIG. 9 is located by using the above step 801, and the second constellation point set 302 is migrated to the first constellation point set 902 shown in FIG. Position, the third constellation point set 303 is migrated to the position where the third constellation point set 903 is located as shown in FIG. 9, and the fourth constellation point set 304 is migrated to the fourth constellation point set 904 as shown in FIG. s position.
  • the fifth constellation point set 305 can be migrated to the position where the fifth constellation point set 905 is located as shown in FIG.
  • the sixth constellation point set 306 is migrated to the sixth constellation point as shown in FIG.
  • the seventh constellation point set 307 is migrated to the position where the seventh constellation point set 907 is located as shown in FIG. 9, and the eighth constellation point set 308 is migrated to the eighth constellation point as shown in FIG. Set the location of 908.
  • the digital modulation method is described by the migration of a constellation point set, and the beneficial effects are similar to those in the foregoing embodiment, and details are not described herein again.
  • Embodiments of the present invention also provide a digital modulation method.
  • FIG. 10 is a flowchart of a digital modulation method according to Embodiment 6 of the present invention. As shown in FIG. 10, the method is performed on the basis of the foregoing embodiment, and the two constellation point sets in each of the four quadrants are respectively migrated to the four quadrants. a position in the quadrant group that is 4 or 8 characteristic distances from the original abscissa, and the constellation points in the second quadrant of the four quadrants are concentrated in a constellation point with a minimum ordinate greater than the maximum ordinate of the other constellation point set.
  • the sets are respectively moved to the positions of the first distance and the second distance from the vertical axis in the same quadrant, and the two constellation point sets in which the minimum ordinate of one constellation point in the first quadrant group is larger than the largest ordinate in the other constellation point set respectively Migrating to the second quadrant group can include:
  • Step 1001 Move the first constellation point set and the second constellation point set respectively to four feature distances from the original abscissa in the first quadrant and the fourth quadrant, and the distance from the vertical axis to the first distance;
  • the third constellation point set and the fourth constellation point set respectively migrate to 8 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and the position of the second distance from the vertical axis.
  • Step 1002 The fifth constellation point set and the sixth constellation point set are respectively migrated to the fourth feature distance in the second quadrant and the third quadrant from the original abscissa, and the position of the first distance from the vertical axis;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to a distance of 8 feature distances from the original abscissa in the second quadrant and the third quadrant, and a position of the second distance from the ordinate axis.
  • FIG. 11 is a schematic structural diagram of a cross constellation obtained by using the digital modulation method provided by Embodiment 6 of the present invention.
  • the first constellation point set 301 is migrated to the manner shown in FIG. 11 by using the above step 1001.
  • the first constellation point set 1101 is located
  • the second constellation point set 302 is migrated to the position of the first constellation point set 1102 shown in FIG. 11, and the third constellation point set 303 is migrated to the same as shown in FIG.
  • the third constellation point set 1103 is moved to the position where the fourth constellation point set 1104 is located as shown in FIG.
  • the fifth constellation point set 305 can be migrated to the position where the fifth constellation point set 1105 is located as shown in FIG.
  • the sixth constellation point set 306 is migrated to the sixth constellation point as shown in FIG.
  • the seventh constellation point set 307 is migrated to the position where the seventh constellation point set 1107 is located as shown in FIG. 11, and the eighth constellation point set 308 is migrated to the eighth constellation point as shown in FIG. Set the location of 1108.
  • the digital modulation method is described by the migration of a constellation point set, and the beneficial effects are similar to those in the foregoing embodiment, and details are not described herein again.
  • the foregoing embodiments 3, 4, 5, and 6 respectively describe the solutions of the foregoing embodiments in four different implementation manners, and the four different implementation manners are independent of each other.
  • the foregoing migration to the constellation point set may be performed in the order of the quadrants, or may be the simultaneous migration. This embodiment is not limited thereto.
  • Embodiments of the present invention also provide a digital modulation method. This embodiment explains the above embodiments in detail by way of examples.
  • FIG. 12 is a flow chart of a digital modulation method according to Embodiment 7 of the present invention. As shown in Figure 12, the method includes:
  • Step 1201 Obtain a difference between a column and a row of the rectangular constellation, and divide the absolute value of the difference by 4 to obtain the number of columns S to be migrated in each quadrant.
  • the behavior of the rectangular constellation is a 128QAM constellation
  • the column is 2 4 , then the number of columns S to be migrated in each quadrant may be ⁇ 2, that is, the S is equal to 2.
  • Step 1202 The rectangular constellation is distributed as the abscissa in each quadrant of the plane rectangular coordinate system.
  • the absolute value of the S column constellation points is the constellation point to be migrated.
  • Step 1203 Divide the constellation points to be migrated in the first quadrant according to the bisector of the region between the straight line and the horizontal axis corresponding to the absolute value of the maximum ordinate in the rectangular constellation, to obtain the first constellation point set and the second a constellation point set, the constellation points to be migrated in the second quadrant are divided to obtain a third constellation point set and a fourth constellation point set, and the constellation points to be migrated in the third quadrant are divided to obtain a fifth constellation point set and a sixth a set of constellation points, dividing the constellation points to be migrated in the fourth quadrant to obtain a seventh constellation point Set and eighth constellation point set.
  • Step 1204 migrating the first constellation point set and the second constellation point set to 8 feature distances from the original abscissa in the third quadrant and the second quadrant, and the position of the second distance from the vertical axis;
  • the third constellation point set and the fourth constellation point set respectively migrate to a fourth feature distance from the original abscissa in the third quadrant and the second quadrant, and a position away from the vertical axis by the first distance.
  • Step 1205 migrating the fifth constellation point set and the sixth constellation point set to the fourth quadrant and the first feature distance from the original abscissa by 8 feature distances, and the distance from the vertical axis to the second distance;
  • the seventh constellation point set and the eighth constellation point set respectively migrate to the fourth quadrant and the first feature distance from the original abscissa by 4 feature distances, and the position of the first distance from the vertical axis.
  • Step 1206 migrating the constellation points of the minimum ordinate absolute values of the constellation points in the four quadrants to a position distance from a longitudinal boundary in the rectangular constellation, and maintaining the constellation points in the four quadrants The relative position between the constellation points is concentrated and the cross constellation is obtained.
  • step 1204, step 1205, and step 1206 can be performed simultaneously and sequentially, and the embodiment does not limit this.
  • the constellation point set is migrated, and the constellation points in the constellation point set are actually migrated as a whole. Within the constellation point set, the relative positions of the constellation points remain unchanged.
  • the foregoing steps 1204 and 1205 migrate the constellation point sets in each quadrant, and may be based on the original coordinates and the destination coordinates of the constellation points in each constellation point set.
  • the original coordinates of the constellation points may be represented by (I, Q)
  • the destination coordinates of the constellation points may be represented by (r, Q').
  • the above migration of constellation points in the constellation point set can be obtained by executing the following program instructions:
  • Example eight also provides a digital modulation device.
  • the digital modulation device can be integrated into the soft information calculation module of the receiving end by means of hardware and/or software, and can be integrated into the constellation mapping module of the transmitting end in a hardware and/or software manner.
  • FIG. 13 is a schematic structural diagram of a digital modulation apparatus according to Embodiment 8 of the present invention.
  • the digital modulation device 1300 includes:
  • the determining module 1301 is configured to determine a constellation point to be migrated in the rectangular constellation.
  • the constellation points in the rectangular constellation are distributed in corresponding coordinate points in the plane rectangular coordinate system, and the constellation points to be migrated include the S columns of the absolute values of the abscissa in the four quadrants of the plane rectangular coordinate system.
  • Constellation point; the rectangular constellation is a constellation generated by quadrature amplitude modulation QAM of the data bit stream; the S is the number of columns to be migrated in each quadrant.
  • the dividing module 1302 is configured to divide the constellation points to be migrated in the four quadrants into two constellation point sets according to a bisector of a region between the straight line and the horizontal axis corresponding to the absolute value of the largest ordinate in the rectangular constellation.
  • the migration module 1303 is configured to perform lateral migration and longitudinal migration of each constellation point set in the four quadrants to obtain a cross constellation diagram.
  • the migration module 1303 includes:
  • the horizontal migration unit 13031 is configured to migrate the two constellation point sets in each of the four quadrants to positions in the first quadrant group of the four quadrants that are 4 or 8 feature distances from the original abscissa. And locating two constellation points of a constellation point in the second quadrant of the four quadrants with a minimum ordinate greater than a maximum ordinate of the other constellation point set to a first distance and a second distance from the vertical axis in the same quadrant Position, the two constellation point sets in which one of the constellation points in the first quadrant group has a minimum ordinate greater than the largest ordinate in the other constellation point set respectively migrate to the second quadrant group.
  • the first quadrant group includes a first quadrant and a fourth quadrant, or a second quadrant and a third quadrant;
  • the second quadrant group includes a first quadrant and a second quadrant, or a third quadrant and a fourth quadrant;
  • the feature distance is a distance between two adjacent constellation points in the rectangular constellation; the difference between the first distance and the second distance is equal to S feature distances; and the adjacent constellation points in the cross constellation diagram have the largest abscissa The distance between the constellation points is equal to the S feature distances.
  • the longitudinal migration unit 13032 is configured to migrate the constellation points of the minimum ordinate absolute values of the constellation points in the four quadrants to a position distance from a longitudinal boundary in the rectangular constellation, and maintain the four quadrants The relative positions between the constellation points in each constellation point set are unchanged.
  • the digital modulating device provided in this embodiment can implement the digital modulating method described in any of the above, and the specific implementation process and the beneficial effects thereof are similar to those in the foregoing embodiment, and details are not described herein again.
  • the digital modulation device 1300 further includes:
  • An obtaining module configured to obtain a difference between a column and a row of the rectangular constellation before the determining module 1301 determines the constellation point to be migrated in the rectangular constellation, and divide the absolute value of the difference by 4 to obtain each The number of columns to be migrated in the quadrant.
  • the dividing module 1302 is specifically configured to: in the first quadrant of the four quadrants, according to a bisector of a region between the straight line and the horizontal axis corresponding to the absolute value of the largest ordinate in the rectangular constellation
  • the migration constellation points are divided to obtain a first constellation point set and a second constellation point set, and the constellation points to be migrated in the second quadrant of the four quadrants are divided to obtain a third constellation point set and a fourth constellation point set, and the The constellation points to be migrated in the third quadrant of the four quadrants are divided to obtain a fifth constellation point set and a sixth constellation point set, and the constellation points to be migrated in the fourth quadrant of the four quadrants are divided to obtain a seventh constellation point.
  • Set and eighth constellation point set in the first quadrant of the four quadrants, according to a bisector of a region between the straight line and the horizontal axis corresponding to the absolute value of the largest ordinate in the rectangular constellation
  • the migration constellation points are divided to obtain
  • the horizontal migration unit 13031 is further configured to migrate the first constellation point set and the second constellation point set to the first feature distance of the first quadrant and the second quadrant from the original abscissa, and the distance is vertical Positioning the second distance of the axis; migrating the third constellation point set and the fourth constellation point set to 4 feature distances from the original abscissa in the third quadrant and the second quadrant respectively, and the first distance from the vertical axis Positioning the fifth constellation point set and the sixth constellation point set to the fourth quadrant and the first feature distance from the original abscissa by 8 feature distances, and the distance from the vertical axis to the second distance; The seventh constellation point set and the eighth constellation point set respectively migrate to the fourth quadrant and the first feature distance from the original abscissa by 4 feature distances, and the position of the first distance from the vertical axis.
  • the horizontal migration unit 13031 is further configured to migrate the first constellation point set and the second constellation point set to 8 feature distances from the original abscissa in the second quadrant and the third quadrant respectively, and the distance is vertical Positioning the second distance of the axis; migrating the third constellation point set and the fourth constellation point set to 4 feature distances from the original abscissa in the second quadrant and the third quadrant, respectively, and the first distance from the vertical axis Positioning the fifth constellation point set and the sixth constellation point set to 8 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and the position of the second distance from the vertical axis; The seventh constellation point set and the eighth constellation point set respectively migrate to a distance of 4 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and a position away from the vertical axis by the first distance.
  • the horizontal migration unit 13031 is further configured to set the first constellation point and the first The second constellation point set migrates to the fourth quadrant and the first feature distance of the first quadrant from the original abscissa, and the distance from the vertical axis to the first distance; the third constellation point set and the fourth constellation point set respectively Migrating to the fourth quadrant and the first quadrant from the original abscissa 8 feature distances, and the position of the second distance from the vertical axis; migrating the fifth constellation point set and the sixth constellation point set to the third quadrant respectively And a distance from the original quadrant of the second quadrant to the first horizontal distance from the original abscissa, and shifting the seventh constellation point set and the eighth constellation point set to the third quadrant and the second quadrant respectively 8 feature distances from the original abscissa and the position of the second distance from the vertical axis.
  • the horizontal migration unit 13031 is further configured to migrate the first constellation point set and the second constellation point set to 4 feature distances from the original abscissa in the first quadrant and the fourth quadrant, respectively, and the distance is vertical Positioning the first distance of the axis; migrating the third constellation point set and the fourth constellation point set to 8 feature distances from the original abscissa in the first quadrant and the fourth quadrant, respectively, and the second distance from the vertical axis Positioning the fifth constellation point set and the sixth constellation point set to 4 feature distances from the original abscissa in the second quadrant and the third quadrant, and the position of the first distance from the vertical axis; The seventh constellation point set and the eighth constellation point set respectively migrate to 8 feature distances from the original abscissa in the second quadrant and the third quadrant, and the position of the second distance from the ordinate axis.
  • the digital modulating device provided in this embodiment can implement the digital modulating method described in any of the above, and the specific implementation process and the beneficial effects thereof are similar to those in the foregoing embodiment, and details are not described herein again.
  • the ninth embodiment also provides a digital modulation device.
  • the digital modulation device can be integrated into the soft information calculation module of the receiving end by means of hardware and/or software, and can be integrated into the constellation mapping module of the transmitting end by means of hardware and/or software.
  • FIG. 14 is a schematic structural diagram of a digital modulation apparatus according to Embodiment 9 of the present invention.
  • the digital modulation apparatus 1400 includes: a receiver 1401, a processor 1402, and a transmitter 1403.
  • the processor 1402 is configured to determine a constellation point to be migrated in the rectangular constellation, according to a bisector of a region between the straight line and the horizontal axis corresponding to the absolute value of the largest ordinate in the rectangular constellation, in the four quadrants
  • the constellation points to be migrated are respectively divided into two constellation point sets, and the constellation point sets in the four quadrants are laterally migrated and longitudinally migrated to obtain a cross constellation map.
  • the constellation points in the rectangular constellation are distributed in corresponding coordinate points in the plane rectangular coordinate system, and the constellation points to be migrated include the absolute values of the abscissa in the four quadrants of the plane rectangular coordinate system from large To a small S column constellation point;
  • the rectangular constellation is a constellation generated by quadrature amplitude modulation QAM generation of the data bit stream;
  • the S is the number of columns to be migrated in each quadrant.
  • the processor 1402 is specifically configured to migrate the two constellation point sets in each of the four quadrants to positions in the first quadrant group of the four quadrants that are 4 or 8 feature distances from the original abscissa. And locating two constellation points of a constellation point in the second quadrant of the four quadrants with a minimum ordinate greater than a maximum ordinate of the other constellation point set to a first distance and a second distance from the vertical axis in the same quadrant Position, the two constellation point sets in which one of the constellation points in the first quadrant group has a minimum ordinate greater than the largest ordinate in the other constellation point set respectively migrate to the second quadrant group.
  • the first quadrant group includes a first quadrant and a fourth quadrant, or a second quadrant and a third quadrant;
  • the second quadrant group includes a first quadrant and a second quadrant, or a third quadrant and a fourth quadrant;
  • the feature distance is a distance between two adjacent constellation points in the rectangular constellation; the difference between the first distance and the second distance is equal to S feature distances; and the adjacent constellation points in the cross constellation diagram have the largest abscissa The distance between the constellation points is equal to the S feature distances.
  • the processor 1402 is further configured to: converge the constellation points of the minimum ordinate absolute values of the constellation points in the four quadrants to a position distance from a longitudinal boundary in the rectangular constellation, and maintain the four quadrants The relative positions between the constellation points in each constellation point set are unchanged.
  • the digital modulating device provided in this embodiment can implement the digital modulating method described in any of the above, and the specific implementation process and the beneficial effects thereof are similar to those in the foregoing embodiment, and details are not described herein again.
  • the processor 1402 is further configured to: before determining the constellation point to be migrated in the rectangular constellation, obtain a difference between the column and the row of the rectangular constellation, and divide the absolute value of the difference The number of columns to be migrated in each quadrant is obtained by 4.
  • the processor 1402 is further configured to: in the first quadrant of the four quadrants, according to a bisector of a region between the straight line and the horizontal axis corresponding to the absolute value of the maximum ordinate in the rectangular constellation
  • the migration constellation points are divided to obtain a first constellation point set and a second constellation point set, and the constellation points to be migrated in the second quadrant of the four quadrants are divided to obtain a third constellation point set and a fourth constellation point set, and the The constellation points to be migrated in the third quadrant of the four quadrants are divided to obtain a fifth constellation point set and a sixth constellation point set, and the constellation points to be migrated in the fourth quadrant of the four quadrants are divided to obtain a seventh constellation point.
  • Set and eighth constellation point set is further configured to: in the first quadrant of the four quadrants, according to a bisector of a region between the straight line and the horizontal axis corresponding to the absolute value of the maximum ordinate in the rectangular constellation
  • the migration constellation points are divided
  • the processor 1402 is further configured to migrate the first constellation point set and the second constellation point set to the first feature distance of the third quadrant and the second quadrant from the original abscissa, and the distance vertical axis a position of the second distance; the third constellation point set and the fourth constellation point set are respectively migrated to a third feature distance in the third quadrant and the second quadrant from the original abscissa, and the first distance from the vertical axis Positioning the fifth constellation point set and the sixth constellation point set to the fourth quadrant and the first feature distance from the original abscissa by 8 feature distances, and the distance from the vertical axis to the second distance; The seven constellation point set and the eighth constellation point set respectively migrate to the fourth quadrant and the first feature distance from the original abscissa in the fourth quadrant, and the position of the first distance from the vertical axis.
  • the processor 1402 is further configured to migrate the first constellation point set and the second constellation point set to 8 feature distances from the original abscissa in the second quadrant and the third quadrant respectively, and the distance vertical axis a position of the second distance; migrating the third constellation point set and the fourth constellation point set to 4 feature distances from the original abscissa in the second quadrant and the third quadrant, respectively, and the first distance from the vertical axis Positioning the fifth constellation point set and the sixth constellation point set to 8 feature distances from the original abscissa in the first quadrant and the fourth quadrant, and the position of the second distance from the vertical axis; The seven constellation point sets and the eighth constellation point set respectively migrate to the first feature distance of the first quadrant and the fourth quadrant from the original abscissa, and the distance from the vertical axis to the first distance.
  • the processor 1402 is further configured to migrate the first constellation point set and the second constellation point set to the fourth quadrant and the first feature distance from the original abscissa by four feature distances, and the distance vertical axis Positioning the first distance; migrating the third constellation point set and the fourth constellation point set to the fourth quadrant and the first feature distance from the original abscissa by 8 feature distances, and the distance from the vertical axis to the second distance Positioning the fifth constellation point set and the sixth constellation point set to 4 feature distances from the original abscissa in the third quadrant and the second quadrant, and the position of the first distance from the vertical axis; The seven constellation point sets and the eighth constellation point set respectively migrate to the third feature distance in the third quadrant and the second quadrant from the original abscissa, and the position of the second distance from the vertical axis.
  • the processor 1402 is further configured to migrate the first constellation point set and the second constellation point set to four feature distances from the original quadrant in the first quadrant and the fourth quadrant, respectively, and the distance vertical axis Positioning the first distance; migrating the third constellation point set and the fourth constellation point set to 8 feature distances from the original abscissa in the first quadrant and the fourth quadrant, respectively, and the second distance from the vertical axis Positioning the fifth constellation point set and the sixth constellation point set to 4 feature distances from the original abscissa in the second quadrant and the third quadrant, and the position of the first distance from the vertical axis; The seven constellation point sets and the eighth constellation point set respectively migrate to the first feature distance from the original abscissa in the second quadrant and the third quadrant, and the position of the second distance from the ordinate axis.
  • the digital modulating device provided in this embodiment can implement the digital modulating method described in any of the above, and the specific implementation process and the beneficial effects thereof are similar to those in the for
  • FIG. 15 is a schematic structural diagram of a digital modulation apparatus according to Embodiment 10 of the present invention.
  • the digital modulation device 1500 includes at least one processor 1501 (eg, a CPU), at least one network interface 1502 or other communication interface, a memory 1503, and at least one communication bus 1504 for implementing between the devices. Connect communication.
  • the processor 1501 is configured to execute an executable module, such as a computer program, stored in the memory 1503.
  • Memory 1503 may include high speed random access memory (Random Access)
  • RAM Random Access Memory
  • non-volatile memory such as at least one disk storage.
  • the communication connection between the digital modulation device and at least one other network element is implemented by at least one network interface 1502 (which may be wired or wireless), and may use an Internet, a wide area network, a local area network, a metropolitan area network, or the like.
  • the memory 1503 stores a program 15031, and the program may be executed by the processor 1501, configured to: determine a constellation point to be migrated in a rectangular constellation, and each constellation point in the rectangular constellation is distributed in a plane rectangular coordinate
  • the constellation points to be migrated include S column constellation points in which the absolute values of the abscissa in the four quadrants of the plane rectangular coordinate system are large to small;
  • the rectangular constellation diagram is a quadrature amplitude of the data bit stream Modulating the constellation generated by QAM;
  • the S is the number of columns to be migrated in each quadrant; according to the bisector of the region between the straight line and the horizontal axis corresponding to the absolute value of the largest ordinate in the rectangular constellation, the four quadrants
  • the constellation points to be migrated are respectively divided into two constellation point sets; the constellation point sets in the four quadrants are laterally migrated and longitudinally migrated to obtain a cross constellation map.
  • the processor 1501 is further configured to migrate the two constellation point sets in each of the four quadrants to the position of the first quadrant of the four quadrants by 4 or 8 feature distances from the original abscissa. And moving the two constellation point sets of the constellation point set in the second quadrant of the four quadrants to be smaller than the maximum ordinate of the other constellation point set, respectively, to the first distance and the second distance from the vertical axis in the same quadrant The position of the two constellation points in the constellation point set in the first quadrant group whose minimum ordinate is greater than the maximum ordinate in the other constellation point set respectively migrates to the second quadrant group.
  • the first quadrant group includes a first quadrant and a fourth quadrant, or a second icon And a third quadrant;
  • the second quadrant group includes a first quadrant and a second quadrant, or a third quadrant and a fourth quadrant.
  • the feature distance is a distance between two adjacent constellation points in the rectangular constellation; the difference between the first distance and the second distance is equal to S feature distances; and the adjacent constellation points in the cross constellation diagram have the largest abscissa The distance between the constellation points is equal to s feature distances.
  • the processor 1501 is further configured to migrate the constellation points of the minimum ordinate absolute values of the constellation points in the four quadrants to a position away from the longitudinal boundary in the rectangular constellation, and maintain the four quadrants. The relative positions between the constellation points in the constellation points are unchanged.
  • the digital modulating device provided by the embodiment of the present invention can implement the digital modulating method of any of the above, and the specific implementation process and the beneficial effects thereof are similar to those of the foregoing embodiment, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明实施例提供一种数字调制方法及装置。本发明实施例的数字调制方法,包括:确定矩形星座图中的待迁移星座点,该矩形星座图中的各星座点分布于平面直角坐标系中对应的坐标点,该待迁移星座点包括该平面直角坐标系的四个象限中横坐标绝对值从大到小的S列星座点;该矩形星座图为对数据比特流进行QAM生成的星座图;按照该矩形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的平分线,将该四个象限中的待迁移星座点分别划分为两个星座点集;将该四个象限中各星座点集进行横向迁移和纵向迁移,获得十字星座图。本发明实施例所获得的十字星座图中相同I分量或Q分量所对应的编码比特位的值相同,可简化LLR的计算复杂度。

Description

数字调制方法及装置
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种数字调制方法及装置。 背景技术
星座映射是一种数字调制技术。 星座映射的过程, 就是将携带数字信息 的有限域"比特"序列映射成适于传输的"符号"序列。 每个符号的取值空间可 以是一维实数空间, 二维实数空间 (即复数空间) 。 星座映射包含两个要素, 即星座图 (Constellation) 和星座点映射方法 (Labeling) 。 星座图代表星座 映射输出符号的所有取值组成的集合, 其中, 星座图的每一个点对应输出符 号的一种取值。 星座点映射方式代表输入比特 (序列 /组) 到星座点的特定映 射关系, 或者是星座点到比特 (序列 /组) 的特定映射关系。 目前最为常见并 得到广泛应用的星座图主要有一维实数空间的脉冲幅度调制(Pulse Amplitude Modulation,简称 PAM),二维实数空间的正交幅度调制(Quadrature Amplitude Modulation, 简称 QAM) , 相移键控(Phase Shift Keying, 简称 PSK)调制。
随着通信系统对传输速率和频谱效率的要求不断提高, 现有通信系统中 发送端通常是采用 QAM技术对数据比特流进行星座图映射之前, 还采用前 向纠错码技术对其中部分或全部比特进行编码。 具体地, 该发送端实际可以 是将数据比特流中编码比特流及未编码比特流分别划分为对应的同相 (In-phase, 简称 I) 分量及正交(Quadrature, 简称 Q)分量, 并将该编码比 特流及该未编码比特流分别按照各自对应的 I分量及 Q分量进行星座图映射 获得编码星座图及未编码星座图。 该发送端还通过星座图融合方式将该编码 星座图及该未编码星座图进行整合, 从而获得该数据比特流对应的星座图。 根据网络系统的不同情况, 可采用不同阶的 QAM。 该不同阶的 QAM 为 2AnQAM, 具体通过不同的整数 n表示, n越大, 其频谱利用率越高。 若 n为 偶数, 该星座图为正方形星座图, 如 4QAM和 16QAM等; 若 n为奇数, 该 星座图为长方形星座图,如 32QAM、 128QAM、 及 256QAM等。 该不同阶的 QAM对应的 n值即为对应该数据比特流的长度。由于长方形星座图所对应的 两路信号, 即 I分量及 Q分量所对应的功率不对称, 星座点能量过大, 还需 对该长方形星座图进行整形, 从而获得十字星座图。 对应的, 接收端需进行 解编码及 QAM解映射, 从而获得对应的数据比特流。 然而, 在该接收端进 行解编码之前, 还需获知表示比特取值概率的比特软信息, 即最大似然比 (log-likelihood ratio, 简称 LLR) 。
由于现有技术中, 根据奇数比特所获得十字星座图 128QAM所对应的十 字星座图中相同 I分量或 Q分量所对应的编码比特位的值不相同, 从而使得 计算译码比特所需要的 LLR时需要对该十字星座图进行非常精细的区域划分 以计算 LLR, 使得 LLR的计算较复杂。 发明内容
本发明实施例提供一种数字调制方法及装置, 以解决现有技术中 LLR计 算复杂的问题。
第一方面, 本发明实施例提供一种数字调制方法, 包括:
确定矩形星座图中的待迁移星座点, 所述矩形星座图中的各星座点分布 于平面直角坐标系中对应的坐标点, 所述待迁移星座点包括所述平面直角坐 标系的四个象限中横坐标绝对值从大到小的 S列星座点; 所述矩形星座图为 对数据比特流进行正交幅度调制 QAM生成的星座图; 所述 S为每个象限中 的待迁移列数;
按照所述矩形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的 平分线, 将所述四个象限中的待迁移星座点分别划分为两个星座点集;
将所述四个象限中各星座点集进行横向迁移和纵向迁移, 获得十字星座 图;
所述将所述四个象限中各星座点集进行横向迁移, 包括:
将所述四个象限中每个象限中的两个星座点集分别迁移至所述四个象限 中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将所述四个象限 中第二象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标 的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第二距离的位 置, 将所述第一象限组中一个星座点集中最小纵坐标大于另一星座点集中最 大纵坐标的两个星座点集分别迁移至所述第二象限组; 其中, 所述第一象限 组包括第一象限和第四象限, 或, 第二象限和第三象限; 所述第二象限组包 括第一象限和第二象限, 或, 第三象限和第四象限; 所述特征距离为所述矩 形星座图中相邻两个星座点之间的距离; 所述第一距离与所述第二距离之差 等于 s个特征距离; 所述十字星座图中相邻星座点集中横坐标最大的星座点 之间的距离等于 S个特征距离;
所述将所述四个象限中各星座点集进行纵向迁移, 包括:
将所述四个象限中各星座点集中最小纵坐标绝对值的星座点, 迁移至距 离所述矩形星座图中的纵向边界一个特征距离的位置, 且保持所述四个象限 中各星座点集中各星座点之间的相对位置不变。
根据第一方面, 在第一方面的第一种可能实现的方式中, 所述确定矩形 星座图中的待迁移星座点之前, 还包括:
获取所述矩形星座图的列和行的差值, 并将该差值的绝对值除以 4获得 所述每个象限中的待迁移列数。
根据第一方面或第一方面的第一种可能实现的方式, 在第二种可能实现 的方式中, 按照所述矩形星座图中最大纵坐标绝对值对应的直线与横轴之间 区域的平分线,将所述四个象限中的待迁移星座点分别划分为两个星座点集, 包括:
按照所述矩形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的 平分线, 将所述四个象限中第一象限中的待迁移星座点进行划分获得第一星 座点集及第二星座点集, 将所述四个象限中第二象限中的待迁移星座点进行 划分获得第三星座点集及第四星座点集, 将所述四个象限中第三象限中的待 迁移星座点进行划分获得第五星座点集及第六星座点集, 将所述四个象限中 第四象限中的待迁移星座点进行划分获得第七星座点集及第八星座点集。
根据第一方面的第二种可能实现的方式, 在第三种可能实现的方式中, 所述将所述四个象限中每个象限中的两个星座点集分别迁移至所述四个象限 中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将所述四个象限 中第二象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标 的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第二距离的位 置, 将所述第一象限组中一个星座点集中最小纵坐标大于另一星座点集中最 大纵坐标的两个星座点集分别迁移至所述第二象限组, 包括: 将所述第一星座点集和所述第二星座点集分别迁移至第三象限和第二象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第三星座点集和所述第四星座点集分别迁移至第三象限和第二象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置;
将所述第五星座点集和所述第六星座点集分别迁移至第四象限和第一象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第四象限和第一象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
根据第一方面的第二种可能实现的方式, 在第四种可能实现的方式中, 所述将所述四个象限中每个象限中的两个星座点集分别迁移至所述四个象限 中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将所述四个象限 中第二象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标 的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第二距离的位 置, 将所述第一象限组中一个星座点集中最小纵坐标大于另一星座点集中最 大纵坐标的两个星座点集分别迁移至所述第二象限组, 包括:
将所述第一星座点集和所述第二星座点集分别迁移至第二象限和第三象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第三星座点集和所述第四星座点集分别迁移至第二象限和第三象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置;
将所述第五星座点集和所述第六星座点集分别迁移至第一象限和第四象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第一象限和第四象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
根据第一方面的第二种可能实现的方式, 在第五种可能实现的方式中, 所述将所述四个象限中每个象限中的两个星座点集分别迁移至所述四个象限 中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将所述四个象限 中第二象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标 的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第二距离的位 置, 将所述第一象限组中一个星座点集中最小纵坐标大于另一星座点集中最 大纵坐标的两个星座点集分别迁移至所述第二象限组, 包括: 将所述第一星座点集和所述第二星座点集分别迁移至第四象限和第一象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第三星座点集和所述第四星座点集分别迁移至第四象限和第一象限中距离原 横坐标 8个特征距离, 且距离纵轴所述第二距离的位置;
将所述第五星座点集和所述第六星座点集分别迁移至第三象限和第二象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第三象限和第二象限中距离原 横坐标 8个特征距离, 且距离纵轴所述第二距离的位置。
根据第一方面的第二种可能实现的方式, 在第六种可能实现的方式中, 所述将所述四个象限中每个象限中的两个星座点集分别迁移至所述四个象限 中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将所述四个象限 中第二象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标 的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第二距离的位 置, 将所述第一象限组中一个星座点集中最小纵坐标大于另一星座点集中最 大纵坐标的两个星座点集分别迁移至所述第二象限组, 包括:
将所述第一星座点集和所述第二星座点集分别迁移至第一象限和第四象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第三星座点集和所述第四星座点集分别迁移至第一象限和第四象限中距离原 横坐标 8个特征距离, 且距离纵轴所述第二距离的位置;
将所述第五星座点集和所述第六星座点集分别迁移至第二象限和第三象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第二象限和第三象限中距离原 横坐标 8个特征距离, 且距离纵坐标轴所述第二距离的位置。
第二方面, 本发明实施例提供一种数字调制装置, 包括:
确定模块, 用于确定矩形星座图中的待迁移星座点; 其中, 所述矩形星 座图中的各星座点分布于平面直角坐标系中对应的坐标点, 所述待迁移星座 点包括所述平面直角坐标系的四个象限中横坐标绝对值从大到小的 S列星座 点; 所述矩形星座图为对数据比特流进行正交幅度调制 QAM生成的星座图; 所述 S为每个象限中的待迁移列数;
划分模块, 用于按照所述矩形星座图中最大纵坐标绝对值对应的直线与 横轴之间区域的平分线, 将所述四个象限中的待迁移星座点分别划分为两个 星座点集;
迁移模块,用于将所述四个象限中各星座点集进行横向迁移和纵向迁移, 获得十字星座图;
其中, 所述迁移模块包括:
横向迁移单元, 用于将所述四个象限中每个象限中的两个星座点集分别 迁移至所述四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的位 置, 将所述四个象限中第二象限组中一个星座点集中最小纵坐标大于另一星 座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一距 离及第二距离的位置, 将所述第一象限组中一个星座点集中最小纵坐标大于 另一星座点集中最大纵坐标的两个星座点集分别迁移至所述第二象限组; 其 中, 所述第一象限组包括第一象限和第四象限, 或, 第二象限和第三象限; 所述第二象限组包括第一象限和第二象限, 或, 第三象限和第四象限; 所述 特征距离为所述矩形星座图中相邻两个星座点之间的距离; 所述第一距离与 所述第二距离之差等于 S个特征距离; 所述十字星座图中相邻星座点集中横 坐标最大的星座点之间的距离等于 s个特征距离;
纵向迁移单元, 用于将所述四个象限中各星座点集中最小纵坐标绝对值 的星座点, 迁移至距离所述矩形星座图中的纵向边界一个特征距离的位置, 且保持所述四个象限中各星座点集中各星座点之间的相对位置不变。
根据第二方面, 在第二方面的第一种可能实现的方式中, 所述装置还包 括:
获取模块, 用于在所述确定模块确定所述矩形星座图中的待迁移星座点 之前, 获取所述矩形星座图的列和行的差值, 并将该差值的绝对值除以 4获 得所述每个象限中的待迁移列数。
根据第二方面或第二方面的第一种可能实现的方式, 在第二种可能实现 的方式中, 所述划分模块, 还用于按照所述矩形星座图中最大纵坐标绝对值 对应的直线与横轴之间区域的平分线, 将所述四个象限中第一象限中的待迁 移星座点进行划分获得第一星座点集及第二星座点集, 将所述四个象限中第 二象限中的待迁移星座点进行划分获得第三星座点集及第四星座点集, 将所 述四个象限中第三象限中的待迁移星座点进行划分获得第五星座点集及第六 星座点集, 将所述四个象限中第四象限中的待迁移星座点进行划分获得第七 星座点集及第八星座点集。
根据第二方面的第二种可能实现的方式, 在第三种可能实现的方式中, 所述横向迁移单元, 还用于将所述第一星座点集和所述第二星座点集分别迁 移至第三象限和第二象限中距离原横坐标 8个特征距离, 且距离纵轴所述第 二距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第三象 限和第二象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位 置; 将所述第五星座点集和所述第六星座点集分别迁移至第四象限和第一象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第四象限和第一象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
根据第二方面的第二种可能实现的方式, 在第四种可能实现的方式中, 所述横向迁移单元, 还用于将所述第一星座点集和所述第二星座点集分别迁 移至第二象限和第三象限中距离原横坐标 8个特征距离, 且距离纵轴所述第 二距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第二象 限和第三象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位 置; 将所述第五星座点集和所述第六星座点集分别迁移至第一象限和第四象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第一象限和第四象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
根据第二方面的第二种可能实现的方式, 在第五种可能实现的方式中, 所述横向迁移单元, 还用于将所述第一星座点集和所述第二星座点集分别迁 移至第四象限和第一象限中距离原横坐标 4个特征距离, 且距离纵轴所述第 一距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第四象 限和第一象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位 置; 将所述第五星座点集和所述第六星座点集分别迁移至第三象限和第二象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第三象限和第二象限中距离原 横坐标 8个特征距离, 且距离纵轴所述第二距离的位置。
根据第二方面的第二种可能实现的方式, 在第六种可能实现的方式中, 所述横向迁移单元, 还用于将所述第一星座点集和所述第二星座点集分别迁 移至第一象限和第四象限中距离原横坐标 4个特征距离, 且距离纵轴所述第 一距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第一象 限和第四象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位 置; 将所述第五星座点集和所述第六星座点集分别迁移至第二象限和第三象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第二象限和第三象限中距离原 横坐标 8个特征距离, 且距离纵坐标轴所述第二距离的位置。
第三方面, 本发明实施例提供一种数字调制装置, 包括: 接收机、 处理 器及发射机;
其中, 所述处理器, 用于确定矩形星座图中的待迁移星座点, 按照所述 矩形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的平分线, 将所 述四个象限中的待迁移星座点分别划分为两个星座点集, 将所述四个象限中 各星座点集进行横向迁移和纵向迁移, 获得十字星座图;
其中, 所述矩形星座图中的各星座点分布于平面直角坐标系中对应的坐 标点, 所述待迁移星座点包括所述平面直角坐标系的四个象限中横坐标绝对 值从大到小的 S列星座点; 所述矩形星座图为对数据比特流进行正交幅度调 制 QAM生成的星座图; 所述 S为每个象限中的待迁移列数;
所述处理器, 具体用于将所述四个象限中每个象限中的两个星座点集分 别迁移至所述四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的 位置, 将所述四个象限中第二象限组中一个星座点集中最小纵坐标大于另一 星座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一 距离及第二距离的位置, 将所述第一象限组中一个星座点集中最小纵坐标大 于另一星座点集中最大纵坐标的两个星座点集分别迁移至所述第二象限组; 其中, 所述第一象限组包括第一象限和第四象限, 或, 第二象限和第三象限; 所述第二象限组包括第一象限和第二象限, 或, 第三象限和第四象限; 所述 特征距离为所述矩形星座图中相邻两个星座点之间的距离; 所述第一距离与 所述第二距离之差等于 S个特征距离; 所述十字星座图中相邻星座点集中横 坐标最大的星座点之间的距离等于 S个特征距离;
所述处理器, 还用于将所述四个象限中各星座点集中最小纵坐标绝对值 的星座点, 迁移至距离所述矩形星座图中的纵向边界一个特征距离的位置, 且保持所述四个象限中各星座点集中各星座点之间的相对位置不变。
根据第三方面, 在第三方面的第一种可能实现的方式中, 所述处理器, 还用于确定所述矩形星座图中的待迁移星座点之前, 获取所述矩形星座图的 列和行的差值, 并将该差值的绝对值除以 4获得所述每个象限中的待迁移列 数。
根据第三方面或第三方面的第一种可能实现的方式, 在第三方面的第二 种可能实现的方式中, 所述处理器, 还用于按照所述矩形星座图中最大纵坐 标绝对值对应的直线与横轴之间区域的平分线, 将所述四个象限中第一象限 中的待迁移星座点进行划分获得第一星座点集及第二星座点集, 将所述四个 象限中第二象限中的待迁移星座点进行划分获得第三星座点集及第四星座点 集, 将所述四个象限中第三象限中的待迁移星座点进行划分获得第五星座点 集及第六星座点集, 将所述四个象限中第四象限中的待迁移星座点进行划分 获得第七星座点集及第八星座点集。
根据第三方面的第二种可能实现的方式, 在第三种可能实现的方式中, 所述处理器, 还用于将所述第一星座点集和所述第二星座点集分别迁移至第 三象限和第二象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离 的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第三象限和第 二象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将 所述第五星座点集和所述第六星座点集分别迁移至第四象限和第一象限中距 离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述第七星 座点集和所述第八星座点集分别迁移至第四象限和第一象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
根据第三方面的第二种可能实现的方式, 在第四种可能实现的方式中, 所述处理器, 还用于将所述第一星座点集和所述第二星座点集分别迁移至第 二象限和第三象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离 的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第二象限和第 三象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将 所述第五星座点集和所述第六星座点集分别迁移至第一象限和第四象限中距 离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述第七星 座点集和所述第八星座点集分别迁移至第一象限和第四象限中距离原横坐标
4个特征距离, 且距离纵轴所述第一距离的位置。
根据第三方面的第二种可能实现的方式, 在第五种可能实现的方式中, 所述处理器, 还用于将所述第一星座点集和所述第二星座点集分别迁移至第 四象限和第一象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离 的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第四象限和第 一象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将 所述第五星座点集和所述第六星座点集分别迁移至第三象限和第二象限中距 离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述第七星 座点集和所述第八星座点集分别迁移至第三象限和第二象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置。
根据第三方面的第二种可能实现的方式, 在第六种可能实现的方式中, 所述处理器, 还用于将所述第一星座点集和所述第二星座点集分别迁移至第 一象限和第四象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离 的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第一象限和第 四象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将 所述第五星座点集和所述第六星座点集分别迁移至第二象限和第三象限中距 离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述第七星 座点集和所述第八星座点集分别迁移至第二象限和第三象限中距离原横坐标 8个特征距离, 且距离纵坐标轴所述第二距离的位置。
本发明实施例提供的数字调制方法及装置, 通过将平面直角坐标系中每 个象限中横坐标绝对值从大到小的 S列星座点确定为待迁移星座点, 按照最 大纵坐标绝对值对应的直线与横轴之间区域的平分线将四个象限中的待迁移 星座点分别划分为两个星座点集, 并将每个象限的两个星座点集分别迁移至 第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将第二象限组中一 个星座点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分 别迁移至同一象限中距离纵轴第一距离及第二距离的位置, 将第一象限组中 一个星座点集中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标 的两个星座点集分别迁移至所述第二象限组, 将各星座点集中最小纵坐标绝 对值的星座点,迁移至距离该矩形星座图中的纵向边界一个特征距离的位置, 且保持各星座点集中各星座点之间的相对位置不变, 从而获得十字星座图, 可使得获得的该十字星座图中相同 I分量或 Q分量所对应的编码比特位的值 相同, 从而简化 LLR的计算复杂度。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一所提供的数字调制方法的流程图;
图 2为本发明实施例二所提供的数字调制方法的流程图;
图 3为本发明实施例二所提供的对星座图进行数字调制时星座点集的划 分结构示意图;
图 4为本发明实施例三所提供的数字调制方法的流程图;
图 5为采用本发明实施例三所提供的数字调制方法所获得的十字星座图 的结构示意图;
图 6为本发明实施例四所提供的数字调制方法的流程图;
图 7为采用本发明实施例四所提供的数字调制方法所获得的十字星座图 的结构示意图;
图 8为本发明实施例五所提供的数字调制方法的流程图;
图 9为采用本发明实施例五所提供的数字调制方法所获得的十字星座图 的结构示意图;
图 10为本发明实施例六所提供的数字调制方法的流程图;
图 11为采用本发明实施例六所提供的数字调制方法所获得的十字星座 图的结构示意图;
图 12为本发明实施例七所提供的数字调制的流程图;
图 13为本发明实施例八所提供的数字调制装置的结构示意图; 图 14为本发明实施例九所提供的数字调制装置的结构示意图; 图 15为本发明实施例十所提供的数字调制装置的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
实施例一
本发明实施例提供一种数字调制方法。 该实施例提供的方案可以是在接 收端的软信息计算模块执行, 也可以是发送端的星座映射模块在进行编码之 后执行。 其中, 该软信息计算模块及该星座图映射模块可以以软件和 /硬件的 形式以处理器的方式分别存在于该接收端及该发送端内部。 图 1为本发明实 施例一所提供的数字调制方法的流程图。如图 1所示, 该方法具体包括如下: 歩骤 101、 确定矩形星座图中的待迁移星座点, 该矩形星座图中的各星 座点分布于平面直角坐标系中对应的坐标点, 该待迁移星座点包括该平面直 角坐标系的四个个象限中横坐标绝对值从大到小的 S列星座点。
其中, 该矩形星座图为对数据比特流进行 QAM生成的星座图; 该 S为 每个象限中的待迁移列数。
具体地, 该数据比特流包括编码比特流及未编码比特流, 其中该编码比 特流可以为该数据比特流的低 /位比特, 该未编码比特流为该数据比特流的 高位比特。其中, 该 /可为 2、 4、 6等偶数。对该数据比特流进行 QAM调制, 实际是分别根据该数据比特流中编码比特流及未编码比特流分别进行 QAM, 从而获得编码星座图及未编码星座图, 继而采用预设星座图整合方式根据该 编码星座图及该未编码星座图, 获得该数据比特流对应的星座图。 该编码比 特例如可以是采用低密度奇偶校验 (Low Density Parity Check, 简称 LDPC) 前向纠错码技术进行编码所获得的编码比特。
假设, 该数据比特流为 7比特, /可以为 2、 4、 6中任一, 假设 /为 4, 则该编码比特流可以为低四位比特, 该未编码比特流则为高 3位比特。 该编 码比特流可表示为 C3C2Cl CQ, 该未编码比特流可表示为(12(^(1。。 也就是说, 该 数据比特流为(!^^^^^^。。 该数据比特流中编码比特流可包括 Ie分量比特 流及 Qe分量比特流。 其中, 该 Ie分量比特流可以为 C3C2, Qe分量比特流可以 为 clCQ。该数据比特流中未编码比特流可包括 Id分量比特流及 Qd分量比特流。 该 Id分量比特流可以为 44, 该 Qd分量比特流可以为 d。。
根据该编码比特流进行 QAM可获得编码星座图, 实际是 Ie分量比特流 及 ¾比特流进行调制, 其获得的编码星座图例如可以表示为<1。,(¾>。 该编码 星座图实际为 16QAM星座图;根据该未编码比特流进行 QAM可获得编码星 座图, 实际是 Id分量比特流及 Qd分量比特流进行调制, 其获得的编码星座图 例如可以表示为<1 (¾>。 该编码星座图实际为 8QAM星座图。
该预设 座图整合方式, 例如可以为如下公式所示:
< I,Q >= 2^ < Id,Qd > + < Ic,Qc > ( 1) ; 其中, I 为编码的比特位数。 该数据比特流对应的星座图可表示为<1 > 可以是采用上述公式 (1 ) 根据 及^ 〉获得。
由于该数据比特流为 7比特, 其 I分量比特流包括 Ie分量比特流及 Id分 量比特流, 可表示为 d2dlC3c2, 该 Q分量比特流包括 Qe分量比特流及 Qd分量 比特流,可表示为 dQclCQ。 由于该 I分量比特流及 Q分量比特流的不等分使得 最终获得的该数据比特流对应的星座图为矩形星座图, 该矩形星座图可以为 128QAM星座图。
在该矩形星座图中的各星座点分布于平面直角坐标系中对应的坐标点,, 也就是说一个星座点对应一个坐标点。 在该平面直角坐标系中横坐标对应该 矩形星座图中的 I分量的星座点, 纵坐标对应矩形星座图中的 Q分量的星座 点。 也就是说, 不同横坐标值对应不同的 I分量比特流, 不同的纵坐标值对 应不同的 Q分量比特流,因而不同的数据比特流具有由不同横坐标值和 /或不 同纵坐标值的坐标, 可位于该平面直角坐标系中对应的坐标位置。
该矩形星座图的待迁移星座点可均匀分布于该平面直接坐标系中的四个 不同的象限中, 且位于该 4个象限的最外部。 由于 I分量比特流大于 Q分量 比特流的大小, 则该矩形星座图中 I分量的横向幅度较宽, 即该矩形星座图 中星座点的列数大于行数。 那么该每个象限中的待迁移星座点位于该矩形星 座图中横向最外部, 也就是横坐标绝对值从大到小的 S列。 具体地, 每个象 限中待迁移星座点对应的列数,可以是根据该矩形星座图的列数及行数确定, 也可以是对数据比特流进行星座图映射时对应的 I分量比特流及 Q分量比特 流的大小确定。 歩骤 102、 按照该矩形星座图中最大纵坐标绝对值对应的直线与横轴之 间区域的平分线,将该四个象限中的待迁移星座点分别划分为两个星座点集。
具体地, 该矩形星座图中纵坐标的绝对值的大小, 可以是根据预设的特 征距离来确定, 假设该数据比特流中 I分量比特流为 4比特, 则该矩形星座 图的列数可以为 24, 对应的 Q分量比特流为 3比特, 则该矩形星座图的行数 为 23。 若该特征距离, 即相邻两个星座点之间的距离为 N, 则该矩形星座图 中可以是将该 24列星座点按照特征距离为 N, 以纵轴为中心均匀分布, 将该 23行星座点按照特征距离为 N, 以横轴为中心均匀分布。 那么, 该矩形星座 图中, 横坐标最大值可以为 横坐标最小值可以为 -^N ; 对应的,
2 2 纵坐标最大值可以为^ 1τν, 横坐标最小值可以为 _^1τν。
2 2 该矩形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的平分线 则包括: 该纵坐标最大值对应的直线与横轴之间区域的平分线, 及该纵坐标 最小值对应的直线与横轴之间区域的平分线。 其中, 该纵坐标最大值对应的 直线与横轴之间区域的平分线, 与该纵坐标最小值对应的直线与横轴之间区 域的平分线, 以横轴为中线相对称。 该纵坐标最大值对应的直线和横轴之间 区域的平分线可以是垂直于纵轴且距离横轴该纵坐标最大值的二分之一的直 线; 对应的, 该纵坐标最小值对应的直线和横轴之间区域的平分线可以为垂 直于纵轴且距离横轴该纵坐标最小值的二分之一的直线。
举例来说, 该矩形星座图中 Ν为 2, 则该横坐标最大值可以为 15, 该横 坐标最小值可以为 -15, 该纵坐标最大值可以为 7, 该纵坐标最小值则为 -7。 该纵坐标最大值对应的直线与横轴之间区域的平分线, 及该纵坐标最小值对 应的直线与横轴之间区域的平分线, 可以分别为垂直于纵轴且距离横轴 7.5 的两条平行直线。
歩骤 103、 将该四个象限中各星座点集进行横向迁移和纵向迁移, 获得 十字星座图。
具体地, 将该四个象限中各星座点集进行横线迁移, 可以是根据预设的 目标横坐标进行迁移, 也可以是分别将该各星座点集按照距离原横坐标或纵 轴的位置进行迁移。
可选的, 上述歩骤 103中将该四个象限中各星族点集进行横向迁移, 具 体可以包括:
将该四个象限中每个象限中的两个星座点集分别迁移至该四个象限中第 一象限组中距离原横坐标 4个或 8个特征距离的位置, 将该四个象限中第二 象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标的两个 星座点集分别迁移至同一象限中距离纵轴第一距离及第二距离的位置, 将该 第一象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标的 两个星座点集分别迁移至该第二象限组。
其中, 该第一象限组包括第一象限和第四象限, 或, 第二象限和第三象 限; 该第二象限组包括第一象限和第二象限, 或, 第三象限和第四象限; 该 特征距离为该矩形星座图中相邻两个星座点之间的距离。 该第一距离与该第 二距离之差等于 S个特征距离; 该十字星座图中相邻星座点集中横坐标最大 的星座点之间的距离等于 S个特征距离。
具体地, 该第二象限组中一个星座点集中最小纵坐标大于另一星座点集 中最大纵坐标的两个星座点集, 包括: 第一象限中纵坐标均大于另一星座点 集的纵坐标的星座点集, 及第二象限中纵坐标均大于另一星座点集的纵坐标 的星座点集; 或者, 第三象限中纵坐标均大于另一星座点集的纵坐标的星座 点集, 及第四象限中纵坐标均大于另一星座点集的纵坐标的星座点集。
该第一象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵 坐标的两个星座点集, 包括: 第一象限中纵坐标均大于另一星座点集的纵坐 标的星座点集, 及第四象限中纵坐标均大于另一星座点集的纵坐标的星座点 集; 或者, 第二象限中纵坐标均大于另一星座点集的纵坐标的星座点集, 及 第三象限中纵坐标均大于另一星座点集的纵坐标的星座点集。
需要说明的是, 在实施例方案中, 对星座点集的迁移实际是将该星座点 集中各星座点以星座点集为单位进行迁移, 迁移之后同一星座点集中各星座 点的相对位置不变。
每个象限的两个星座点集可以是迁移至第一象限组中两个象限中距离原 横坐标 4个特征距离, 如 4N, 也可以距离原横坐标 8个特征距离, 如 8N。 举例来说, 可以是将第一象限中的两个星座点集分别迁移至第二象限及第三 象限中距离原横坐标 8N 的距离, 或者, 将第一象限中的两个星座点集中的 星座点分别迁移至第一象限及第四象限中距离原横坐标 4N 的距离。 将每个 象限的两个星座点集分别迁移至该第一象限组中的两个象限, 可使得迁移后 获得的十字星座图中同一列, 也就相同 I分量对应的高位编码比特位的值相 同。
将该第二象限组中两个象限中的一个星座点集中最小纵坐标大于另一星 座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一距 离及第二距离的位置, 且该第一距离与该第二距离之差的等于 S个星座点距 离, 实际是, 将该第二象限组中两个象限中的一个星座点集中最小纵坐标大 于另一星座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵 轴的不同位置。 其中, 由于第一距离大于第二距离, 则距离纵轴第一距离的 位置, 为远离纵轴的位置, 距离纵轴第二距离的位置为靠近纵轴的位置。
进一歩地, 由于将第一象限组中两个象限中一个星座点集中最小纵坐标 大于另一星座点集中最大纵坐标的两个星座点集分别迁移至该第二象限组中 的两个象限, 使得迁移后获得的十字星座图中同一行, 也就相同 Q分量对应 的低位编码比特位的值相同。
上述歩骤 103中将该四个象限中各星族点集进行纵向迁移, 具体可以包 括:
将该四个象限中各星座点集中最小纵坐标绝对值的星座点, 迁移至距离 该矩形星座图中的纵向边界一个特征距离的位置, 且保持该四个象限中各星 座点集中各星座点之间的相对位置不变。
具体地, 该矩形星座图中的纵向边界, 是以垂直纵轴且距离横轴该矩形 星座图纵坐标最大绝对值的直线作为边界。
将该四个象限中各星座点集中最小纵坐标绝对值的星座点, 迁移至距离 该矩形星座图中的纵向边界一个特征距离的位置, 可保证迁移后的星座图中 相邻星座点之间的距离相等, 且均为特征距离。
那么, 将该每个象限中的两个星座点集分别迁移至该第一象限组中距离 原横坐标 4个或 8个特征距离的位置, 实际是将该每个象限中的两个星座点 集分别迁移至该第一象限组中距离原横坐标 4个或 8个特征距离的位置, 同 时将各星座点集中最小纵坐标绝对值的星座点, 迁移至距离该矩形星座图中 的纵向边界一个特征距离的位置, 且该各星座点集中各星座点之间的相对位 置不变。
本发明实施例, 可通过将平面直角坐标系中每个象限中横坐标绝对值从 大到小的 S列星座点确定为待迁移星座点, 按照最大纵坐标绝对值对应的直 线与横轴之间区域的平分线将四个象限中的待迁移星座点分别划分为两个星 座点集, 并将每个象限的两个星座点集分别迁移至第一象限组中距离原横坐 标 4个或 8个特征距离的位置, 将第二象限组中一个星座点集中最小纵坐标 大于另一星座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离 纵轴第一距离及第二距离的位置, 将第一象限组中一个星座点集中一个星座 点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分别迁移 至所述第二象限组, 将各星座点集中最小纵坐标绝对值的星座点, 迁移至距 离该矩形星座图中的纵向边界一个特征距离的位置, 且保持各星座点集中各 星座点之间的相对位置不变, 从而获得十字星座图, 可使得获得的该十字星 座图中相同 I分量或 Q分量所对应的编码比特位的值相同,从而简化 LLR的 计算复杂度。
实施例二
本发明实施例还提供一种数字调制方法。 图 2为本发明实施例二所提供 的数字调制方法的流程图。 如图 2所示, 该方案在上述实施例中歩骤 101确 定矩形星座图中的待迁移星座点之前, 还包括:
歩骤 201、 获取该矩形星座图的列和行的差值, 并将该差值的绝对值除 以 4获得该每个象限中的待迁移列数 S。
具体地, 如该数据比特流为 7比特, I分量比特流为 4比特, Q分量比特 流为 3比特,那么该矩形星座图的列可以为 24, 该矩形星座图的行可以为 23。 那么该每个象限中的待迁移列数 S例如可以是^^
4 。 优选的, 上述实施例中歩骤 102中按照该矩形星座图中最大纵坐标绝对 值对应的直线与横轴之间区域的平分线, 将该四个象限中待迁移星座点分别 划为两个星座点集, 具体可以包括:
歩骤 202、 按照该矩形星座图中最大纵坐标绝对值对应的直线与横轴之 间区域的平分线, 将该四个象限中第一象限中的待迁移星座点进行划分获得 第一星座点集及第二星座点集, 将该四个象限中第二象限中的待迁移星座点 进行划分获得第三星座点集及第四星座点集, 将该四个象限中第三象限中的 待迁移星座点进行划分获得第五星座点集及第六星座点集, 将该四个象限中 第四象限中的待迁移星座点进行划分获得第七星座点集及第八星座点集。
图 3为本发明实施例二所提供的对星座图进行数字调制时星座点集的划 分结构示意图。 如图 3所示, 该第一象限中的待迁移星座点包括第一星座点 集 301及第二星座点集 302, 该第二象限中的待迁移星座点包括第三星座点 集 303及第四星座点集 304, 该第三象限中的待迁移星座点包括第五星座点 集 305及第六星座点集 306, 该第四象限中的待迁移星座点包括第七星座点 集 307及第八星座点集 308。
本发明实施例在上述实施例的基础上, 通过具体的星座点集的划分可更 好地保证星座点集的迁移更准确, 从而保证迁移后的获得的十字星座图中相 同 I分量或 Q分量对应的编码比特位的值相同。
实施例三
本发明实施例还提供一种数字调制方法。 图 4为本发明实施例三所提供 的数字调制方法的流程图。 如图 4所示, 该方法在上述实施例的基础上, 进 一歩地, 上述实施例方案所述的, 将该四个象限中每个象限中的两个星座点 集分别迁移至该四个象限中第一象限组中距离原横坐标 4个或 8个特征距离 的位置, 将该四个象限中第二象限组中一个星座点集中最小纵坐标大于另一 星座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一 距离及第二距离的位置, 将该第一象限组中一个星座点集中最小纵坐标大于 另一星座点集中最大纵坐标的两个星座点集分别迁移至该第二象限组, 可以 包括:
歩骤 401、 将该第一星座点集和该第二星座点集分别迁移至第三象限和 第二象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将 该第三星座点集和该第四星座点集分别迁移至第三象限和第二象限中距离原 横坐标 4个特征距离, 且距离纵轴该第一距离的位置。
歩骤 402、 将该第五星座点集和该第六星座点集分别迁移至第四象限和 第一象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将 该第七星座点集和该第八星座点集分别迁移至第四象限和第一象限中距离原 横坐标 4个特征距离, 且距离纵轴该第一距离的位置。
图 5为采用本发明实施例三所提供的数字调制方法所获得的十字星座图 的结构示意图。 采用上述歩骤 401将第一星座点集 301迁移至图 5所示的第 一星座点集 501所在的位置, 将第二星座点集 302迁移至图 5所示的第一星 座点集 502所在的位置, 将第三星座点集 303迁移至如图 5所示的第三星座 点集 503所在的位置, 将第四星座点集 304迁移至如图 5所示的第四星座点 集 504所在的位置。 采用上述歩骤 402可将第五星座点集 305迁移至如图 5 所示的第五星座点集 505所在的位置, 将第六星座点集 306迁移至如图 5所 示的第六星座点集 506所在的位置, 将第七星座点集 307迁移至如图 5所示 的第七星座点集 507所在的位置, 将第八星座点集 308迁移至如图 5所示的 第八星座点集 508所在的位置。
本实施例还通过另一种星座点集的迁移,对上述数字调制方法进行说明, 其有益效果与上述实施例类似, 在此不再赘述。
实施例四
本发明实施例还提供一种数字调制方法。 图 6为本发明实施例四所提供 的数字调制方法的流程图。 如图 6所示, 该方法在上述实施例的基础上, 如 上实施例所述的, 将该四个象限中每个象限中的两个星座点集分别迁移至该 四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将该四 个象限中第二象限组中一个星座点集中最小纵坐标大于另一星座点集中最大 纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第二距离 的位置, 将该第一象限组中一个星座点集中最小纵坐标大于另一星座点集中 最大纵坐标的两个星座点集分别迁移至该第二象限组, 可以包括:
歩骤 601、 将该第一星座点集和该第二星座点集分别迁移至第二象限和 第三象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将 该第三星座点集和该第四星座点集分别迁移至第二象限和第三象限中距离原 横坐标 4个特征距离, 且距离纵轴该第一距离的位置。
歩骤 602、 将该第五星座点集和该第六星座点集分别迁移至第一象限和 第四象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将 该第七星座点集和该第八星座点集分别迁移至第一象限和第四象限中距离原 横坐标 4个特征距离, 且距离纵轴该第一距离的位置。 图 7为采用本发明实施例四所提供的数字调制方法所获得的十字星座图 的结构示意图。 采用上述歩骤 601将第一星座点集 301迁移至图 7所示的第 一星座点集 701所在的位置, 将第二星座点集 302迁移至图 7所示的第一星 座点集 702所在的位置, 将第三星座点集 303迁移至如图 7所示的第三星座 点集 703所在的位置, 将第四星座点集 304迁移至如图 7所示的第四星座点 集 704所在的位置。 采用上述歩骤 602可将第五星座点集 305迁移至如图 7 所示的第五星座点集 705所在的位置, 将第六星座点集 306迁移至如图 4所 示的第六星座点集 706所在的位置, 将第七星座点集 307迁移至如图 4所示 的第七星座点集 707所在的位置, 将第八星座点集 308迁移至如图 4所示的 第八星座点集 708所在的位置。
本实施例还通过另一种星座点集的迁移,对上述数字调制方法进行说明, 其有益效果与上述实施例类似, 在此不再赘述。
实施例五
本发明实施例还提供一种数字调制方法。 图 8为本发明实施例五所提供 的数字调制方法的流程图。 如图 8所示, 该方法在上述实施例的基础上, 如 上实施例方案中所述的, 将该四个象限中每个象限中的两个星座点集分别迁 移至该四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将该四个象限中第二象限组中一个星座点集中最小纵坐标大于另一星座点集 中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第 二距离的位置, 将该第一象限组中一个星座点集中最小纵坐标大于另一星座 点集中最大纵坐标的两个星座点集分别迁移至该第二象限组, 可以包括: 歩骤 801、 将该第一星座点集和该第二星座点集分别迁移至第四象限和 第一象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将 该第三星座点集和该第四星座点集分别迁移至第四象限和第一象限中距离原 横坐标 8个特征距离, 且距离纵轴该第二距离的位置。
歩骤 802、 将该第五星座点集和该第六星座点集分别迁移至第三象限和 第二象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将 该第七星座点集和该第八星座点集分别迁移至第三象限和第二象限中距离原 横坐标 8个特征距离, 且距离纵轴该第二距离的位置。
图 9为采用本发明实施例五所提供的数字调制方法所获得的十字星座图 的结构示意图。 采用上述歩骤 801将第一星座点集 301迁移至图 9所示的第 一星座点集 901所在的位置, 将第二星座点集 302迁移至图 9所示的第一星 座点集 902所在的位置, 将第三星座点集 303迁移至如图 9所示的第三星座 点集 903所在的位置, 将第四星座点集 304迁移至如图 9所示的第四星座点 集 904所在的位置。 采用上述歩骤 802可将第五星座点集 305迁移至如图 9 所示的第五星座点集 905所在的位置, 将第六星座点集 306迁移至如图 9所 示的第六星座点集 906所在的位置, 将第七星座点集 307迁移至如图 9所示 的第七星座点集 907所在的位置, 将第八星座点集 308迁移至如图 9所示的 第八星座点集 908所在的位置。
本实施例还通过一种星座点集的迁移, 对上述数字调制方法进行说明, 其有益效果与上述实施例类似, 在此不再赘述。
实施例六
本发明实施例还提供一种数字调制方法。图 10为本发明实施例六所提供 的数字调制方法的流程图。 如图 10所示, 该方法在上述实施例的基础上, 乳 上实施例方案所述的, 将该四个象限中每个象限中的两个星座点集分别迁移 至该四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将 该四个象限中第二象限组中一个星座点集中最小纵坐标大于另一星座点集中 最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第二 距离的位置, 将该第一象限组中一个星座点集中最小纵坐标大于另一星座点 集中最大纵坐标的两个星座点集分别迁移至该第二象限组, 可以包括:
歩骤 1001、 将该第一星座点集和该第二星座点集分别迁移至第一象限和 第四象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将 该第三星座点集和该第四星座点集分别迁移至第一象限和第四象限中距离原 横坐标 8个特征距离, 且距离纵轴该第二距离的位置。
歩骤 1002、 将该第五星座点集和该第六星座点集分别迁移至第二象限和 第三象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将 该第七星座点集和该第八星座点集分别迁移至第二象限和第三象限中距离原 横坐标 8个特征距离, 且距离纵坐标轴该第二距离的位置。
图 11 为采用本发明实施例六所提供的数字调制方法所获得的十字星座 图的结构示意图。 采用上述歩骤 1001将第一星座点集 301迁移至图 11所示 的第一星座点集 1101所在的位置, 将第二星座点集 302迁移至图 11所示的 第一星座点集 1102所在的位置, 将第三星座点集 303迁移至如图 11所示的 第三星座点集 1103所在的位置, 将第四星座点集 304迁移至如图 11所示的 第四星座点集 1104所在的位置。 采用上述歩骤 1002可将第五星座点集 305 迁移至如图 11所示的第五星座点集 1105所在的位置, 将第六星座点集 306 迁移至如图 11所示的第六星座点集 1106所在的位置, 将第七星座点集 307 迁移至如图 11所示的第七星座点集 1107所在的位置, 将第八星座点集 308 迁移至如图 11所示的第八星座点集 1108所在的位置。
本实施例通过一种星座点集的迁移, 对上述数字调制方法进行说明, 其 有益效果与上述实施例类似, 在此不再赘述。
需要说明的是, 上述实施例三、 四、 五及六分别为四种不同的实现方式 对上述实施例方案进行说明, 且该四种不同实现方式之间相互独立。 上述对 星座点集的迁移, 可以是按照象限顺序进行迁移, 也可以是同时迁移均可, 本实施例不以此为限。
实施例七
本发明实施例还提供一种数字调制方法。 该实施例具体通过实例对上述 实施例进行解释说明。图 12为本发明实施例七所提供的数字调制方法的流程 图。 如图 12所示, 该方法包括:
歩骤 1201、 获取矩形星座图的列和行的差值, 并将该差值的绝对值除以 4获得该每个象限中的待迁移列数 S。
具体地, 若该矩形星座图为 128QAM星座图, 那么该矩形星座图的行为
23, 列为 24, 那么该每个象限的待迁移列数 S可以为 ^二 ^, 即该 S等于 2。
4 歩骤 1202、 将该矩形星座图分布为平面直角坐标系中每个象限中横坐标 绝对值从大到小的 S列星座点作为待迁移星座点。
歩骤 1203、 按照该矩形星座图中的最大纵坐标绝对值对应的直线和横轴 之间区域的平分线, 将第一象限中的待迁移星座点进行划分获得第一星座点 集及第二星座点集, 将第二象限中的待迁移星座点进行划分获得第三星座点 集及第四星座点集, 将第三象限中的待迁移星座点进行划分获得第五星座点 集及第六星座点集, 将第四象限中的待迁移星座点进行划分获得第七星座点 集及第八星座点集。
歩骤 1204、 将该第一星座点集和该第二星座点集分别迁移至第三象限和 第二象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将 该第三星座点集和该第四星座点集分别迁移至第三象限和第二象限中距离原 横坐标 4个特征距离, 且距离纵轴该第一距离的位置。
歩骤 1205、 将该第五星座点集和该第六星座点集分别迁移至第四象限和 第一象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将 该第七星座点集和该第八星座点集分别迁移至第四象限和第一象限中距离原 横坐标 4个特征距离, 且距离纵轴该第一距离的位置。
歩骤 1206、 将该四个象限中各星座点集中最小纵坐标绝对值的星座点, 迁移至距离该矩形星座图中的纵向边界一个特征距离的位置, 且保持该四个 象限中各星座点集中各星座点之间的相对位置不变, 从而获得十字星座图。
上述歩骤 1204、 歩骤 1205、 歩骤 1206可以同时执行也先后执行, 本实 施例并不对此进行限制。
需要说明的是, 上述实施例中, 对星座点集进行迁移, 实际是该星座点 集中的各星座点作为一个整体进行迁移, 在星座点集内部, 各星座点的相对 位置保持不变。
上述歩骤 1204和 1205对各象限中的星座点集进行迁移, 可以是根据各 星座点集中星座点的原坐标及目的坐标进行迁移。 例如可以是通过(I,Q) 表 示星座点的原坐标, 通过(r,Q')来表示星座点的目的坐标。上述对星座点集 中星座点的迁移可以是通过执行如下程序指令获得:
if(|I|>((MI+MQ)/2-l))then if(I>0)then //确定第一象限、 第四象限; if(Q>2s)then //确定第一象限中的第一星座点集中星座点; .I'=I-8s; //确定该第一星座点集中星座点的目标 I坐标;
•Q'=Q-8s. //确定该第一星座点集中星座点的目标 Q坐标; else if(Q>0)&&(Q<2s)then //确定第一象限中的第二星座点集中星座点;
·Γ= Ι - 8s; //确定该第二星座点集中星座点的目标 I坐标;
•Q'= Q + 4s.//确定该第二星座点集中星座点的目标 Q坐标; else if(Q<0)&&(Q>-2s)then.//确定第四象限中的第七星座点集中星座点; ·Γ= Ι - 4s; //确定该第七星座点集中星座点的目标 I坐标; •Q'= Q - 4s. //确定该第七星座点集中星座点的目标 Q坐标; else if (Q <-2s) then〃确定第四象限中的第八星座点集中星座点; ·Γ= Ι - 4s; //确定该第八星座点集中星座点的目标 I坐标;
•Q'= Q + 8s. //确定该第八星座点集中星座点的目标 Q坐标; Else //确定第二象限、 第三象限; if (Q > 2s) then //确定第二象限中的第三星座点集中星座点; •I'=I+4s; //确定该第三星座点集中星座点的目的 I坐标; -Q'=Q-8s. //确定该第三星座点集中星座点的目的 Q坐标; elseif(Q>0)&&(Q<2s:) then //确定第二象限中的第四星座点集中星座点;
•I'=I+4s; //确定该第四星座点集中星座点的目的 I坐标;
•Q'=Q+4s. //确定该第四星座点集中星座点的目的 Q坐标; else if(Q<0)&&(Q>-2s)then //确定第三象限中的第五星座点集中星座点; .I'=I+8s; //确定该第五星座点集中星座点的目的 I坐标;
•Q'=Q-4s. //确定该第五星座点集中星座点的目的 Q坐标; else if(Q<-2s)then //确定第三象限中的第六星座点集中星座点; •I'=I+8s; //确定该第六星座点集中星座点的目的 I坐标; •Q'=Q+8s. //确定该第六星座点集中星座点的目的 Q坐标; endif
end 其中的 ΜΙ=2Λ4=16列和 MQ=2A3=8行的星座点,需要进行整形, S=2列。 本实施例通过具体实例对上述实施例进行进一歩地的解释说明, 其有益 效果与上述实施例类似, 在此不再赘述。
实施例八 本实施例八还提供一种数字调制装置。 该数字调制装置可通过硬件和 /或 软件的方式集成在接收端的软信息计算模块中, 可硬件和 /或软件的方式集成 发送端的星座映射模块中。图 13为本发明实施例八所提供的数字调制装置的 结构示意图。
如图 13所示, 该数字调制装置 1300, 包括:
确定模块 1301, 用于确定矩形星座图中的待迁移星座点。 其中, 该矩形 星座图中的各星座点分布于平面直角坐标系中对应的坐标点, 该待迁移星座 点包括该平面直角坐标系的四个象限中横坐标绝对值从大到小的 S 列星座 点; 该矩形星座图为对数据比特流进行正交幅度调制 QAM生成的星座图; 该 S为每个象限中的待迁移列数。
划分模块 1302, 用于按照该矩形星座图中最大纵坐标绝对值对应的直线 与横轴之间区域的平分线, 将该四个象限中的待迁移星座点分别划分为两个 星座点集。
迁移模块 1303, 用于将该四个象限中各星座点集进行横向迁移和纵向迁 移, 获得十字星座图。
其中, 迁移模块 1303包括:
横向迁移单元 13031, 用于将该四个象限中每个象限中的两个星座点集 分别迁移至该四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的 位置, 将该四个象限中第二象限组中一个星座点集中最小纵坐标大于另一星 座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一距 离及第二距离的位置, 将该第一象限组中一个星座点集中最小纵坐标大于另 一星座点集中最大纵坐标的两个星座点集分别迁移至该第二象限组。
其中, 该第一象限组包括第一象限和第四象限, 或, 第二象限和第三象 限; 该第二象限组包括第一象限和第二象限, 或, 第三象限和第四象限; 该 特征距离为该矩形星座图中相邻两个星座点之间的距离; 该第一距离与该第 二距离之差等于 S个特征距离; 该十字星座图中相邻星座点集中横坐标最大 的星座点之间的距离等于 S个特征距离。
纵向迁移单元 13032, 用于将该四个象限中各星座点集中最小纵坐标绝 对值的星座点,迁移至距离该矩形星座图中的纵向边界一个特征距离的位置, 且保持该四个象限中各星座点集中各星座点之间的相对位置不变。 本实施例所提供的数字调制装置,可实施上述任一所述的数字调制方法, 其具体的实现过程及有益效果与上述实施例类似, 在此不再赘述。
进一歩地, 如上该数字调制装置 1300, 还包括:
获取模块,用于在确定模块 1301确定该矩形星座图中的待迁移星座点之 前, 获取该矩形星座图的列和行的差值, 并将该差值的绝对值除以 4获得该 每个象限中的待迁移列数。
在如上实施例方案中, 划分模块 1302, 具体用于按照该矩形星座图中最 大纵坐标绝对值对应的直线与横轴之间区域的平分线, 将该四个象限中第一 象限中的待迁移星座点进行划分获得第一星座点集及第二星座点集, 将该四 个象限中第二象限中的待迁移星座点进行划分获得第三星座点集及第四星座 点集, 将该四个象限中第三象限中的待迁移星座点进行划分获得第五星座点 集及第六星座点集, 将该四个象限中第四象限中的待迁移星座点进行划分获 得第七星座点集及第八星座点集。
可选的, 上述横向迁移单元 13031, 还用于将该第一星座点集和该第二 星座点集分别迁移至第三象限和第二象限中距离原横坐标 8个特征距离, 且 距离纵轴该第二距离的位置; 将该第三星座点集和该第四星座点集分别迁移 至第三象限和第二象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距 离的位置; 将该第五星座点集和该第六星座点集分别迁移至第四象限和第一 象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将该第 七星座点集和所述第八星座点集分别迁移至第四象限和第一象限中距离原横 坐标 4个特征距离, 且距离纵轴该第一距离的位置。
可替代的, 上述横向迁移单元 13031, 还用于将该第一星座点集和该第 二星座点集分别迁移至第二象限和第三象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将该第三星座点集和该第四星座点集分别迁 移至第二象限和第三象限中距离原横坐标 4个特征距离, 且距离纵轴该第一 距离的位置; 将该第五星座点集和该第六星座点集分别迁移至第一象限和第 四象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将该 第七星座点集和该第八星座点集分别迁移至第一象限和第四象限中距离原横 坐标 4个特征距离, 且距离纵轴该第一距离的位置。
可替代的, 上述横向迁移单元 13031, 还用于将该第一星座点集和该第 二星座点集分别迁移至第四象限和第一象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将该第三星座点集和该第四星座点集分别迁 移至第四象限和第一象限中距离原横坐标 8个特征距离, 且距离纵轴该第二 距离的位置; 将该第五星座点集和该第六星座点集分别迁移至第三象限和第 二象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将该 第七星座点集和该第八星座点集分别迁移至第三象限和第二象限中距离原横 坐标 8个特征距离, 且距离纵轴该第二距离的位置。
可替代的, 上述横向迁移单元 13031, 还用于将该第一星座点集和该第 二星座点集分别迁移至第一象限和第四象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将该第三星座点集和该第四星座点集分别迁 移至第一象限和第四象限中距离原横坐标 8个特征距离, 且距离纵轴该第二 距离的位置; 将该第五星座点集和该第六星座点集分别迁移至第二象限和第 三象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将该 第七星座点集和该第八星座点集分别迁移至第二象限和第三象限中距离原横 坐标 8个特征距离, 且距离纵坐标轴该第二距离的位置。
本实施例所提供的数字调制装置,可实施上述任一所述的数字调制方法, 其具体的实现过程及有益效果与上述实施例类似, 在此不再赘述。
实施例九
本实施例九还提供一种数字调制装置。 该数字调制装置可通过硬件和 /或 软件的方式集成在接收端的软信息计算模块中, 可硬件和 /或软件的方式集成 发送端的星座映射模块中。图 14为本发明实施例九所提供的数字调制装置的 结构示意图。
如图 14所示, 该数字调制装置 1400, 包括: 接收机 1401、 处理器 1402 及发射机 1403。
其中, 处理器 1402, 用于确定矩形星座图中的待迁移星座点, 按照该矩 形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的平分线, 将该四 个象限中的待迁移星座点分别划分为两个星座点集, 将该四个象限中各星座 点集进行横向迁移和纵向迁移, 获得十字星座图。
其中, 该矩形星座图中的各星座点分布于平面直角坐标系中对应的坐标 点, 该待迁移星座点包括该平面直角坐标系的四个象限中横坐标绝对值从大 到小的 S列星座点; 该矩形星座图为对数据比特流进行正交幅度调制 QAM 生成的星座图; 该 S为每个象限中的待迁移列数。
处理器 1402, 具体用于将该四个象限中每个象限中的两个星座点集分别 迁移至该四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将该四个象限中第二象限组中一个星座点集中最小纵坐标大于另一星座点集 中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第 二距离的位置, 将该第一象限组中一个星座点集中最小纵坐标大于另一星座 点集中最大纵坐标的两个星座点集分别迁移至该第二象限组。
其中, 该第一象限组包括第一象限和第四象限, 或, 第二象限和第三象 限; 该第二象限组包括第一象限和第二象限, 或, 第三象限和第四象限; 该 特征距离为该矩形星座图中相邻两个星座点之间的距离; 该第一距离与该第 二距离之差等于 S个特征距离; 该十字星座图中相邻星座点集中横坐标最大 的星座点之间的距离等于 S个特征距离。
处理器 1402, 还用于将该四个象限中各星座点集中最小纵坐标绝对值的 星座点, 迁移至距离该矩形星座图中的纵向边界一个特征距离的位置, 且保 持该四个象限中各星座点集中各星座点之间的相对位置不变。
本实施例所提供的数字调制装置,可实施上述任一所述的数字调制方法, 其具体的实现过程及有益效果与上述实施例类似, 在此不再赘述。
进一歩地, 如上所述的处理器 1402, 还用于确定该矩形星座图中的待迁 移星座点之前, 获取该矩形星座图的列和行的差值, 并将该差值的绝对值除 以 4获得该每个象限中的待迁移列数。
在如上实施例方案中, 处理器 1402, 还用于按照该矩形星座图中最大纵 坐标绝对值对应的直线与横轴之间区域的平分线, 将该四个象限中第一象限 中的待迁移星座点进行划分获得第一星座点集及第二星座点集, 将该四个象 限中第二象限中的待迁移星座点进行划分获得第三星座点集及第四星座点 集, 将该四个象限中第三象限中的待迁移星座点进行划分获得第五星座点集 及第六星座点集, 将该四个象限中第四象限中的待迁移星座点进行划分获得 第七星座点集及第八星座点集。
可选的, 上述处理器 1402, 还用于将该第一星座点集和该第二星座点集 分别迁移至第三象限和第二象限中距离原横坐标 8个特征距离, 且距离纵轴 该第二距离的位置; 将该第三星座点集和该第四星座点集分别迁移至第三象 限和第二象限中距离原横坐标 4个特征距离,且距离纵轴该第一距离的位置; 将该第五星座点集和该第六星座点集分别迁移至第四象限和第一象限中距离 原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将该第七星座点集 和该第八星座点集分别迁移至第四象限和第一象限中距离原横坐标 4个特征 距离, 且距离纵轴该第一距离的位置。
可替代的, 上述处理器 1402, 还用于将该第一星座点集和该第二星座点 集分别迁移至第二象限和第三象限中距离原横坐标 8个特征距离, 且距离纵 轴该第二距离的位置; 将该第三星座点集和该第四星座点集分别迁移至第二 象限和第三象限中距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位 置; 将该第五星座点集和该第六星座点集分别迁移至第一象限和第四象限中 距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位置; 将该第七星座 点集和该第八星座点集分别迁移至第一象限和第四象限中距离原横坐标 4个 特征距离, 且距离纵轴该第一距离的位置。
可替代的, 上述处理器 1402, 还用于将该第一星座点集和该第二星座点 集分别迁移至第四象限和第一象限中距离原横坐标 4个特征距离, 且距离纵 轴该第一距离的位置; 将该第三星座点集和该第四星座点集分别迁移至第四 象限和第一象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位 置; 将该第五星座点集和该第六星座点集分别迁移至第三象限和第二象限中 距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将该第七星座 点集和该第八星座点集分别迁移至第三象限和第二象限中距离原横坐标 8个 特征距离, 且距离纵轴该第二距离的位置。
可替代的, 上述处理器 1402, 还用于将该第一星座点集和该第二星座点 集分别迁移至第一象限和第四象限中距离原横坐标 4个特征距离, 且距离纵 轴该第一距离的位置; 将该第三星座点集和该第四星座点集分别迁移至第一 象限和第四象限中距离原横坐标 8个特征距离, 且距离纵轴该第二距离的位 置; 将该第五星座点集和该第六星座点集分别迁移至第二象限和第三象限中 距离原横坐标 4个特征距离, 且距离纵轴该第一距离的位置; 将该第七星座 点集和该第八星座点集分别迁移至第二象限和第三象限中距离原横坐标 8个 特征距离, 且距离纵坐标轴该第二距离的位置。 本实施例所提供的数字调制装置,可实施上述任一所述的数字调制方法, 其具体的实现过程及有益效果与上述实施例类似, 在此不再赘述。
实施例十
本发明还提供一种数字调制装置。 该数字调制装置可用于执行前述各 个实施例中的数字调制方法。 图 15为本发明实施例十所提供的数字调制 装置的结构示意图。 如图 15所示, 该数字调制装置 1500包括至少一个处 理器 1501 (例如 CPU) , 至少一个网络接口 1502或者其他通信接口, 存 储器 1503, 和至少一个通信总线 1504, 用于实现这些装置之间的连接通 信。 处理器 1501用于执行存储器 1503中存储的可执行模块, 例如计算机 程序。 存储器 1503可能包含高速随机存取存储器 (Random Access
Memory, 简称 RAM) , 也可能还包括非不稳定的存储器 (non-volatile memory) , 例如至少一个磁盘存储器。 通过至少一个网络接口 1502 (可 以是有线或者无线)实现该数字调制装置与至少一个其他网元之间的通信 连接, 可以使用互联网, 广域网, 本地网, 城域网等。
在一些实施方式中, 存储器 1503存储了程序 15031, 程序可以被处理 器 1501执行, 以用于: 确定矩形星座图中的待迁移星座点, 该矩形星座 图中的各星座点分布于平面直角坐标系中对应的坐标点, 该待迁移星座点 包括该平面直角坐标系的四个象限中横坐标绝对值从大到小的 S列星座 点;该矩形星座图为对数据比特流进行正交幅度调制 QAM生成的星座图; 该 S为每个象限中的待迁移列数; 按照该矩形星座图中最大纵坐标绝对值 对应的直线与横轴之间区域的平分线, 将该四个象限中的待迁移星座点分 别划分为两个星座点集; 将该四个象限中各星座点集进行横向迁移和纵向 迁移, 获得十字星座图。
其中, 处理器 1501还可用于将该四个象限中每个象限中的两个星座 点集分别迁移至该四个象限中第一象限组中距离原横坐标 4个或 8个特征 距离的位置, 将该四个象限中第二象限组中一个星座点集中最小纵坐标大 于另一星座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距 离纵轴第一距离及第二距离的位置, 将该第一象限组中一个星座点集中最 小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分别迁移至该 第二象限组。 其中, 该第一象限组包括第一象限和第四象限, 或, 第二象 限和第三象限; 该第二象限组包括第一象限和第二象限, 或, 第三象限和 第四象限。 该特征距离为该矩形星座图中相邻两个星座点之间的距离; 该 第一距离与该第二距离之差等于 S个特征距离; 该十字星座图中相邻星座 点集中横坐标最大的星座点之间的距离等于 s个特征距离。
其中, 处理器 1501还可用于将该四个象限中各星座点集中最小纵坐 标绝对值的星座点, 迁移至距离该矩形星座图中的纵向边界一个特征距离 的位置, 且保持该四个象限中各星座点集中各星座点之间的相对位置不 变。
本发明实施例所提供的数字调制装置,可实施上述任一所述的数字调制 方法, 其具体的实现过程及有益效果与上述实施例类似, 在此不再赘述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种数字调制方法, 其特征在于, 包括:
确定矩形星座图中的待迁移星座点, 所述矩形星座图中的各星座点分布 于平面直角坐标系中对应的坐标点, 所述待迁移星座点包括所述平面直角坐 标系的四个象限中横坐标绝对值从大到小的 S列星座点; 所述矩形星座图为 对数据比特流进行正交幅度调制 QAM生成的星座图; 所述 S为每个象限中 的待迁移列数;
按照所述矩形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的 平分线, 将所述四个象限中的待迁移星座点分别划分为两个星座点集;
将所述四个象限中各星座点集进行横向迁移和纵向迁移, 获得十字星座 图;
所述将所述四个象限中各星座点集进行横向迁移, 包括:
将所述四个象限中每个象限中的两个星座点集分别迁移至所述四个象限 中第一象限组中距离原横坐标 4个或 8个特征距离的位置, 将所述四个象限 中第二象限组中一个星座点集中最小纵坐标大于另一星座点集中最大纵坐标 的两个星座点集分别迁移至同一象限中距离纵轴第一距离及第二距离的位 置, 将所述第一象限组中一个星座点集中最小纵坐标大于另一星座点集中最 大纵坐标的两个星座点集分别迁移至所述第二象限组; 其中, 所述第一象限 组包括第一象限和第四象限, 或, 第二象限和第三象限; 所述第二象限组包 括第一象限和第二象限, 或, 第三象限和第四象限; 所述特征距离为所述矩 形星座图中相邻两个星座点之间的距离; 所述第一距离与所述第二距离之差 等于 S个特征距离; 所述十字星座图中相邻星座点集中横坐标最大的星座点 之间的距离等于 S个特征距离;
所述将所述四个象限中各星座点集进行纵向迁移, 包括:
将所述四个象限中各星座点集中最小纵坐标绝对值的星座点, 迁移至距 离所述矩形星座图中的纵向边界一个特征距离的位置, 且保持所述四个象限 中各星座点集中各星座点之间的相对位置不变。
2、 根据权利要求 1所述的方法, 其特征在于, 所述确定矩形星座图中的 待迁移星座点之前, 还包括:
获取所述矩形星座图的列和行的差值, 并将该差值的绝对值除以 4获得 所述每个象限中的待迁移列数。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 按照所述矩形星座图 中最大纵坐标绝对值对应的直线与横轴之间区域的平分线, 将所述四个象限 中的待迁移星座点分别划分为两个星座点集, 包括:
按照所述矩形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的 平分线, 将所述四个象限中第一象限中的待迁移星座点进行划分获得第一星 座点集及第二星座点集, 将所述四个象限中第二象限中的待迁移星座点进行 划分获得第三星座点集及第四星座点集, 将所述四个象限中第三象限中的待 迁移星座点进行划分获得第五星座点集及第六星座点集, 将所述四个象限中 第四象限中的待迁移星座点进行划分获得第七星座点集及第八星座点集。
4、 根据权利要求 3所述的方法, 其特征在于, 所述将所述四个象限中每 个象限中的两个星座点集分别迁移至所述四个象限中第一象限组中距离原横 坐标 4个或 8个特征距离的位置, 将所述四个象限中第二象限组中一个星座 点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分别迁移 至同一象限中距离纵轴第一距离及第二距离的位置, 将所述第一象限组中一 个星座点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分 别迁移至所述第二象限组, 包括:
将所述第一星座点集和所述第二星座点集分别迁移至第三象限和第二象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第三星座点集和所述第四星座点集分别迁移至第三象限和第二象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置;
将所述第五星座点集和所述第六星座点集分别迁移至第四象限和第一象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第四象限和第一象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
5、 根据权利要求 3所述的方法, 其特征在于, 所述将所述四个象限中每 个象限中的两个星座点集分别迁移至所述四个象限中第一象限组中距离原横 坐标 4个或 8个特征距离的位置, 将所述四个象限中第二象限组中一个星座 点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分别迁移 至同一象限中距离纵轴第一距离及第二距离的位置, 将所述第一象限组中一 个星座点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分 别迁移至所述第二象限组, 包括:
将所述第一星座点集和所述第二星座点集分别迁移至第二象限和第三象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第三星座点集和所述第四星座点集分别迁移至第二象限和第三象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置;
将所述第五星座点集和所述第六星座点集分别迁移至第一象限和第四象 限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第一象限和第四象限中距离原 横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
6、 根据权利要求 3所述的方法, 其特征在于, 所述将所述四个象限中每 个象限中的两个星座点集分别迁移至所述四个象限中第一象限组中距离原横 坐标 4个或 8个特征距离的位置, 将所述四个象限中第二象限组中一个星座 点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分别迁移 至同一象限中距离纵轴第一距离及第二距离的位置, 将所述第一象限组中一 个星座点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分 别迁移至所述第二象限组, 包括:
将所述第一星座点集和所述第二星座点集分别迁移至第四象限和第一象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第三星座点集和所述第四星座点集分别迁移至第四象限和第一象限中距离原 横坐标 8个特征距离, 且距离纵轴所述第二距离的位置;
将所述第五星座点集和所述第六星座点集分别迁移至第三象限和第二象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第三象限和第二象限中距离原 横坐标 8个特征距离, 且距离纵轴所述第二距离的位置。
7、 根据权利要求 3所述的方法, 其特征在于, 所述将所述四个象限中每 个象限中的两个星座点集分别迁移至所述四个象限中第一象限组中距离原横 坐标 4个或 8个特征距离的位置, 将所述四个象限中第二象限组中一个星座 点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分别迁移 至同一象限中距离纵轴第一距离及第二距离的位置, 将所述第一象限组中一 个星座点集中最小纵坐标大于另一星座点集中最大纵坐标的两个星座点集分 别迁移至所述第二象限组, 包括:
将所述第一星座点集和所述第二星座点集分别迁移至第一象限和第四象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第三星座点集和所述第四星座点集分别迁移至第一象限和第四象限中距离原 横坐标 8个特征距离, 且距离纵轴所述第二距离的位置;
将所述第五星座点集和所述第六星座点集分别迁移至第二象限和第三象 限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述 第七星座点集和所述第八星座点集分别迁移至第二象限和第三象限中距离原 横坐标 8个特征距离, 且距离纵坐标轴所述第二距离的位置。
8、 一种数字调制装置, 其特征在于, 包括:
确定模块, 用于确定矩形星座图中的待迁移星座点; 其中, 所述矩形星 座图中的各星座点分布于平面直角坐标系中对应的坐标点, 所述待迁移星座 点包括所述平面直角坐标系的四个象限中横坐标绝对值从大到小的 S列星座 点; 所述矩形星座图为对数据比特流进行正交幅度调制 QAM生成的星座图; 所述 S为每个象限中的待迁移列数;
划分模块, 用于按照所述矩形星座图中最大纵坐标绝对值对应的直线与 横轴之间区域的平分线, 将所述四个象限中的待迁移星座点分别划分为两个 星座点集;
迁移模块,用于将所述四个象限中各星座点集进行横向迁移和纵向迁移, 获得十字星座图;
其中, 所述迁移模块包括:
横向迁移单元, 用于将所述四个象限中每个象限中的两个星座点集分别 迁移至所述四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的位 置, 将所述四个象限中第二象限组中一个星座点集中最小纵坐标大于另一星 座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一距 离及第二距离的位置, 将所述第一象限组中一个星座点集中最小纵坐标大于 另一星座点集中最大纵坐标的两个星座点集分别迁移至所述第二象限组; 其 中, 所述第一象限组包括第一象限和第四象限, 或, 第二象限和第三象限; 所述第二象限组包括第一象限和第二象限, 或, 第三象限和第四象限; 所述 特征距离为所述矩形星座图中相邻两个星座点之间的距离; 所述第一距离与 所述第二距离之差等于 s个特征距离; 所述十字星座图中相邻星座点集中横 坐标最大的星座点之间的距离等于 s个特征距离;
纵向迁移单元, 用于将所述四个象限中各星座点集中最小纵坐标绝对值 的星座点, 迁移至距离所述矩形星座图中的纵向边界一个特征距离的位置, 且保持所述四个象限中各星座点集中各星座点之间的相对位置不变。
9、 根据权利要求 8所述的装置, 其特征在于, 还包括:
获取模块, 用于在所述确定模块确定所述矩形星座图中的待迁移星座点 之前, 获取所述矩形星座图的列和行的差值, 并将该差值的绝对值除以 4获 得所述每个象限中的待迁移列数。
10、 根据权利要求 8或 9所述的装置, 其特征在于,
所述划分模块, 还用于按照所述矩形星座图中最大纵坐标绝对值对应的 直线与横轴之间区域的平分线, 将所述四个象限中第一象限中的待迁移星座 点进行划分获得第一星座点集及第二星座点集, 将所述四个象限中第二象限 中的待迁移星座点进行划分获得第三星座点集及第四星座点集, 将所述四个 象限中第三象限中的待迁移星座点进行划分获得第五星座点集及第六星座点 集, 将所述四个象限中第四象限中的待迁移星座点进行划分获得第七星座点 集及第八星座点集。
11、 根据权利要求 10所述的装置, 其特征在于,
所述横向迁移单元, 还用于将所述第一星座点集和所述第二星座点集分 别迁移至第三象限和第二象限中距离原横坐标 8个特征距离, 且距离纵轴所 述第二距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第 三象限和第二象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离 的位置; 将所述第五星座点集和所述第六星座点集分别迁移至第四象限和第 一象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将 所述第七星座点集和所述第八星座点集分别迁移至第四象限和第一象限中距 离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
12、 根据权利要求 10所述的装置, 其特征在于,
所述横向迁移单元, 还用于将所述第一星座点集和所述第二星座点集分 别迁移至第二象限和第三象限中距离原横坐标 8个特征距离, 且距离纵轴所 述第二距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第 二象限和第三象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离 的位置; 将所述第五星座点集和所述第六星座点集分别迁移至第一象限和第 四象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将 所述第七星座点集和所述第八星座点集分别迁移至第一象限和第四象限中距 离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置。
13、 根据权利要求 10所述的装置, 其特征在于,
所述横向迁移单元, 还用于将所述第一星座点集和所述第二星座点集分 别迁移至第四象限和第一象限中距离原横坐标 4个特征距离, 且距离纵轴所 述第一距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第 四象限和第一象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离 的位置; 将所述第五星座点集和所述第六星座点集分别迁移至第三象限和第 二象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将 所述第七星座点集和所述第八星座点集分别迁移至第三象限和第二象限中距 离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置。
14、 根据权利要求 10所述的装置, 其特征在于,
所述横向迁移单元, 还用于将所述第一星座点集和所述第二星座点集分 别迁移至第一象限和第四象限中距离原横坐标 4个特征距离, 且距离纵轴所 述第一距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第 一象限和第四象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二距离 的位置; 将所述第五星座点集和所述第六星座点集分别迁移至第二象限和第 三象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将 所述第七星座点集和所述第八星座点集分别迁移至第二象限和第三象限中距 离原横坐标 8个特征距离, 且距离纵坐标轴所述第二距离的位置。
15、 一种数字调制装置, 其特征在于, 包括: 接收机、 处理器及发射机; 其中, 所述处理器, 用于确定矩形星座图中的待迁移星座点, 按照所述 矩形星座图中最大纵坐标绝对值对应的直线与横轴之间区域的平分线, 将所 述四个象限中的待迁移星座点分别划分为两个星座点集, 将所述四个象限中 各星座点集进行横向迁移和纵向迁移, 获得十字星座图;
其中, 所述矩形星座图中的各星座点分布于平面直角坐标系中对应的坐 标点, 所述待迁移星座点包括所述平面直角坐标系的四个象限中横坐标绝对 值从大到小的 S列星座点; 所述矩形星座图为对数据比特流进行正交幅度调 制 QAM生成的星座图; 所述 S为每个象限中的待迁移列数;
所述处理器, 具体用于将所述四个象限中每个象限中的两个星座点集分 别迁移至所述四个象限中第一象限组中距离原横坐标 4个或 8个特征距离的 位置, 将所述四个象限中第二象限组中一个星座点集中最小纵坐标大于另一 星座点集中最大纵坐标的两个星座点集分别迁移至同一象限中距离纵轴第一 距离及第二距离的位置, 将所述第一象限组中一个星座点集中最小纵坐标大 于另一星座点集中最大纵坐标的两个星座点集分别迁移至所述第二象限组; 其中, 所述第一象限组包括第一象限和第四象限, 或, 第二象限和第三象限; 所述第二象限组包括第一象限和第二象限, 或, 第三象限和第四象限; 所述 特征距离为所述矩形星座图中相邻两个星座点之间的距离; 所述第一距离与 所述第二距离之差等于 s个特征距离; 所述十字星座图中相邻星座点集中横 坐标最大的星座点之间的距离等于 s个特征距离;
所述处理器, 还用于将所述四个象限中各星座点集中最小纵坐标绝对值 的星座点, 迁移至距离所述矩形星座图中的纵向边界一个特征距离的位置, 且保持所述四个象限中各星座点集中各星座点之间的相对位置不变。
16、 根据权利要求 15所述的装置, 其特征在于,
所述处理器, 还用于确定所述矩形星座图中的待迁移星座点之前, 获取 所述矩形星座图的列和行的差值, 并将该差值的绝对值除以 4获得所述每个 象限中的待迁移列数。
17、 根据权利要求 15或 16所述的装置, 其特征在于,
所述处理器, 还用于按照所述矩形星座图中最大纵坐标绝对值对应的直 线与横轴之间区域的平分线, 将所述四个象限中第一象限中的待迁移星座点 进行划分获得第一星座点集及第二星座点集, 将所述四个象限中第二象限中 的待迁移星座点进行划分获得第三星座点集及第四星座点集, 将所述四个象 限中第三象限中的待迁移星座点进行划分获得第五星座点集及第六星座点 集, 将所述四个象限中第四象限中的待迁移星座点进行划分获得第七星座点 集及第八星座点集。
18、 根据权利要求 17所述的装置, 其特征在于, 所述处理器, 还用于将所述第一星座点集和所述第二星座点集分别迁移 至第三象限和第二象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二 距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第三象限 和第二象限中距离原横坐标 4个特征距离,且距离纵轴所述第一距离的位置; 将所述第五星座点集和所述第六星座点集分别迁移至第四象限和第一象限中 距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述第七 星座点集和所述第八星座点集分别迁移至第四象限和第一象限中距离原横坐 标 4个特征距离, 且距离纵轴所述第一距离的位置。
19、 根据权利要求 17所述的装置, 其特征在于,
所述处理器, 还用于将所述第一星座点集和所述第二星座点集分别迁移 至第二象限和第三象限中距离原横坐标 8个特征距离, 且距离纵轴所述第二 距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第二象限 和第三象限中距离原横坐标 4个特征距离,且距离纵轴所述第一距离的位置; 将所述第五星座点集和所述第六星座点集分别迁移至第一象限和第四象限中 距离原横坐标 8个特征距离, 且距离纵轴所述第二距离的位置; 将所述第七 星座点集和所述第八星座点集分别迁移至第一象限和第四象限中距离原横坐 标 4个特征距离, 且距离纵轴所述第一距离的位置。
20、 根据权利要求 17所述的装置, 其特征在于,
所述处理器, 还用于将所述第一星座点集和所述第二星座点集分别迁移 至第四象限和第一象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一 距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第四象限 和第一象限中距离原横坐标 8个特征距离,且距离纵轴所述第二距离的位置; 将所述第五星座点集和所述第六星座点集分别迁移至第三象限和第二象限中 距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述第七 星座点集和所述第八星座点集分别迁移至第三象限和第二象限中距离原横坐 标 8个特征距离, 且距离纵轴所述第二距离的位置。
21、 根据权利要求 17所述的装置, 其特征在于,
所述处理器, 还用于将所述第一星座点集和所述第二星座点集分别迁移 至第一象限和第四象限中距离原横坐标 4个特征距离, 且距离纵轴所述第一 距离的位置; 将所述第三星座点集和所述第四星座点集分别迁移至第一象限 和第四象限中距离原横坐标 8个特征距离,且距离纵轴所述第二距离的位置; 将所述第五星座点集和所述第六星座点集分别迁移至第二象限和第三象限中 距离原横坐标 4个特征距离, 且距离纵轴所述第一距离的位置; 将所述第七 星座点集和所述第八星座点集分别迁移至第二象限和第三象限中距离原横坐 标 8个特征距离, 且距离纵坐标轴所述第二距离的位置。
PCT/CN2014/084812 2014-08-20 2014-08-20 数字调制方法及装置 WO2016026099A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201480006314.0A CN105594175B (zh) 2014-08-20 2014-08-20 数字调制方法及装置
EP14900135.6A EP3171564B1 (en) 2014-08-20 2014-08-20 Digital modulation method and device
ES18200981T ES2857863T3 (es) 2014-08-20 2014-08-20 Método y aparato de modulación digital
PCT/CN2014/084812 WO2016026099A1 (zh) 2014-08-20 2014-08-20 数字调制方法及装置
ES14900135T ES2713703T3 (es) 2014-08-20 2014-08-20 Método y dispositivo de modulación digital
EP18200981.1A EP3499833B1 (en) 2014-08-20 2014-08-20 Digital modulation method and apparatus
CN201910420202.4A CN110266633B (zh) 2014-08-20 2014-08-20 数字调制方法及装置
US15/436,421 US9787518B2 (en) 2014-08-20 2017-02-17 Digital modulation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/084812 WO2016026099A1 (zh) 2014-08-20 2014-08-20 数字调制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/436,421 Continuation US9787518B2 (en) 2014-08-20 2017-02-17 Digital modulation method and apparatus

Publications (1)

Publication Number Publication Date
WO2016026099A1 true WO2016026099A1 (zh) 2016-02-25

Family

ID=55350091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084812 WO2016026099A1 (zh) 2014-08-20 2014-08-20 数字调制方法及装置

Country Status (5)

Country Link
US (1) US9787518B2 (zh)
EP (2) EP3171564B1 (zh)
CN (2) CN110266633B (zh)
ES (2) ES2713703T3 (zh)
WO (1) WO2016026099A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10257013B2 (en) * 2015-08-14 2019-04-09 Hfi Innovation, Inc. Signal modulation and demodulation for multiuser superposition transmission scheme
CN109474552B (zh) * 2017-09-08 2020-05-15 北京科技大学 软符号估计方法、接收机及计算机可读介质
WO2021016832A1 (en) * 2019-07-30 2021-02-04 Qualcomm Incorporated Layer modulation of coded and unencoded bits
CN115150236A (zh) * 2021-03-30 2022-10-04 华为技术有限公司 一种信号处理方法及相关设备
WO2022213326A1 (zh) * 2021-04-08 2022-10-13 华为技术有限公司 一种数据接收方法及装置
CN115987745B (zh) * 2022-12-12 2024-05-28 北京航空航天大学 一种低复杂度正交幅度调制十字星座解映射方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163242A1 (en) * 2004-01-27 2005-07-28 Gottfried Ungerboeck Bit mapping for variable-size higher-order digital modulations
US7688885B1 (en) * 2005-11-08 2010-03-30 Marvell International Ltd. Efficient blind equalization for quadrature amplitude modulation
CN102594768A (zh) * 2011-01-11 2012-07-18 中兴通讯股份有限公司 适用于多qam系统的软解调方法及装置
CN103701752A (zh) * 2013-12-03 2014-04-02 长安大学 一种g.hn标准中十字星座qam低复杂度解映射算法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560440B2 (ja) * 2005-05-16 2010-10-13 Okiセミコンダクタ株式会社 復調回路及び復調方法
JP5251984B2 (ja) * 2008-09-09 2013-07-31 富士通株式会社 送信機及び送信方法並びに受信機及び受信方法
CN101547181B (zh) * 2009-04-17 2011-07-13 北京大学 一种qam星座图标签的构建方法
CN101547182B (zh) * 2009-04-17 2011-07-20 北京大学 一种qam星座图的映射和解映射方法
CN101938450B (zh) * 2009-06-30 2013-02-13 联芯科技有限公司 高阶qam的snr测量方法及装置
GB2471876B (en) * 2009-07-15 2011-08-31 Toshiba Res Europ Ltd Data communication method and apparatus
CN102316072B (zh) * 2010-06-30 2013-10-02 清华大学 编码调制方法及解调解码方法
CN102195727B (zh) * 2011-05-24 2013-08-28 中国计量科学研究院 基于基带星座图设置的数字调制质量参数计量方法及系统
EP2645654B1 (en) * 2012-03-30 2016-08-03 Imec Method and Device for Demodulating Rotated Constellations
CN103378921B (zh) * 2012-04-17 2016-08-03 华为技术有限公司 信号解调方法和装置
US9209834B2 (en) * 2012-06-12 2015-12-08 Broadcom Corporation Symbol mapping for binary coding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050163242A1 (en) * 2004-01-27 2005-07-28 Gottfried Ungerboeck Bit mapping for variable-size higher-order digital modulations
US7688885B1 (en) * 2005-11-08 2010-03-30 Marvell International Ltd. Efficient blind equalization for quadrature amplitude modulation
CN102594768A (zh) * 2011-01-11 2012-07-18 中兴通讯股份有限公司 适用于多qam系统的软解调方法及装置
CN103701752A (zh) * 2013-12-03 2014-04-02 长安大学 一种g.hn标准中十字星座qam低复杂度解映射算法

Also Published As

Publication number Publication date
EP3171564B1 (en) 2018-11-28
CN110266633A (zh) 2019-09-20
EP3499833B1 (en) 2020-12-23
CN105594175A (zh) 2016-05-18
ES2713703T3 (es) 2019-05-23
US20170163464A1 (en) 2017-06-08
CN110266633B (zh) 2021-08-20
ES2857863T3 (es) 2021-09-29
EP3499833A1 (en) 2019-06-19
US9787518B2 (en) 2017-10-10
CN105594175B (zh) 2019-05-17
EP3171564A1 (en) 2017-05-24
EP3171564A4 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
WO2016026099A1 (zh) 数字调制方法及装置
JP2002330188A (ja) Qam信号のビット対数尤度比演算の方法と装置
KR102021314B1 (ko) 비정방 직교진폭변조 방식의 연판정 복조 장치 및 방법
KR102083594B1 (ko) 회전 직교 진폭 변조 기반의 통신 시스템에서 소프트 디매핑 방법 및 장치
JP2008545305A (ja) あるシンボルマッピング方式を使用するシンボルマッパを使用して異なるシンボルマッピング方式に従う変調シンボルを生成する方法と、シンボルマッピング方式を生成する方法
CN105635027B (zh) 可以生成伪随机序列正交幅度调制信号的测量装置及其调制方法
JPWO2007046558A1 (ja) 変復調方法、並びに変調装置及び復調装置
JP5976252B2 (ja) 尤度生成装置およびその方法
WO2014000453A1 (zh) 一种高阶调制方法、解映射方法以及相应装置
JP6929851B2 (ja) 送信装置、受信装置、送信方法および受信方法
CN105634851B (zh) 可以生成自定义数据文件正交幅度调制信号的测量装置及其调制方法
CN110535805B (zh) 一种基于星座旋转的额外信息传输方法
CN104980251B (zh) 编码调制方法及解码解调方法
JP5113897B2 (ja) データワードから16qamコンスタレーションの変調シンボルへのマッピングを生成する方法および装置、ならびにこれを実行させる命令を格納するコンピュータ可読媒体
CN113315735B (zh) 一种基于分层调制的概率整形方法、装置及电子设备
WO2019141281A1 (zh) 信息处理方法和系统、发送装置及接收装置
JP4494276B2 (ja) 適応変調装置および適応変調方法
KR102094736B1 (ko) 회전 직교 진폭 변조 기반의 통신 시스템에서 소프트 디매핑 방법 및 장치
US6957381B2 (en) System and method for determining branch metrics using a polar indexed branch metric look-up table
KR100903876B1 (ko) 비트 대칭 그레이 코드를 이용하여 위상 편이 방식으로변조된 수신 심볼 신호를 비트 정보로 분할하는 방법 및 그장치
WO2015196565A1 (zh) 一种多级编码装置、多级编码装置的实现方法及存储介质
US20240039558A1 (en) Radio Transmitter and Receiver
JP4220912B2 (ja) 変調装置
Priya et al. A Trellis-Coded Modulation scheme with 32-dimensional constant envelope Q 2 PSK constellation
CN110506401B (zh) 用于延迟比特交织编码调制的发送器和接收器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900135

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014900135

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900135

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE