WO2016026085A1 - 同步信号发送方法、接收方法以及相关装置 - Google Patents

同步信号发送方法、接收方法以及相关装置 Download PDF

Info

Publication number
WO2016026085A1
WO2016026085A1 PCT/CN2014/084721 CN2014084721W WO2016026085A1 WO 2016026085 A1 WO2016026085 A1 WO 2016026085A1 CN 2014084721 W CN2014084721 W CN 2014084721W WO 2016026085 A1 WO2016026085 A1 WO 2016026085A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
signal
synchronization
end device
test
Prior art date
Application number
PCT/CN2014/084721
Other languages
English (en)
French (fr)
Inventor
汲桐
吴毅凌
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14900070.5A priority Critical patent/EP3197216B1/en
Priority to PCT/CN2014/084721 priority patent/WO2016026085A1/zh
Priority to CN201480031645.XA priority patent/CN105519212B/zh
Publication of WO2016026085A1 publication Critical patent/WO2016026085A1/zh
Priority to US15/436,510 priority patent/US10070404B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes

Definitions

  • the same signal transmission method and receiving method are used to close the device
  • the present invention relates to the field of communications, and in particular, to a synchronization signal transmitting method, a receiving method, and related devices. Background technique
  • M2M Machine to Machine
  • the crystal precision of the receiving device is limited, and the received signal has a larger frequency offset than the original signal sent by the transmitting device. Therefore, the transmitting device and the receiving device need to perform signal synchronization under a large carrier frequency offset.
  • LTE Long Term Evolution
  • the synchronization channel uses frequency reuse with a multiplexing factor of 3, and different cells use different root index ZC sequences as the primary synchronization sequence to distinguish.
  • LTE relies on a primary synchronization sequence to distinguish three groups of cells, and three groups of cells respectively use a ZC sequence with root indices of 29, 24, and 25 as primary synchronization sequences, and the UE determines cells according to cross-correlation between ZC sequences of different root indices. Which group belongs to.
  • the ZC sequence with good characteristics can be applied to the M2M technology according to the prior art, signal synchronization under the same frequency networking in the M2M system can be realized.
  • the root index of each cell's ZC sequence is different.
  • the signal received by the receiving device has a large frequency offset. It has been found that only the ZC sequence with a root index of +1 or -1 can satisfy the synchronization requirement of the M2M with a large frequency offset.
  • the only two root indices cannot meet the needs of different cells in the M2M technology, so that the M2M technology cannot use the ZC sequence to synchronize signals under the same frequency network as in the prior art.
  • the ZC sequence with a root index of -1 refers to the conjugate sequence of the ZC sequence with a root index of 1, the same below. Summary of the invention
  • Embodiments of the present invention provide a synchronization signal transmission method, a reception method, and a related apparatus for realizing signal synchronization using a ZC sequence having a root index of +1 or -1 in the M2M technology.
  • a first aspect of the embodiments of the present invention provides a synchronization signal sending method, including:
  • the transmitting device determines the first signal, the sending device operates in the serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: a cyclic shift of the first ZC sequence through the first digit a sequence obtained by multiplying or conjugate multiplied by a feature sequence, wherein the special ZC sequence is a ZC sequence having a root index of +1 or -1, and the feature sequence and/or the first digit is The cell identifier of the serving cell is corresponding, the feature sequence is used to distinguish the serving cell from other cells, and the sending end device sends the first signal to the receiving device, so that the receiving device performs the The first signal is synchronized.
  • the determining, by the sending end device, that the first signal includes:
  • the sending end device determines a cell identifier of the serving cell
  • the transmitting device determines the first signal according to the sequence of features and/or the first number of bits.
  • the feature sequence includes:
  • a second aspect of the embodiments of the present invention provides a synchronization signal sending method, including: a source device determines a second signal, the second signal includes a second synchronization sequence, and the second synchronization sequence is a special ZC sequence. a sequence obtained by cyclic shifting of a two-digit number, the special ZC sequence being a ZC sequence having a root index of +1 or -1, the transmitting device operating in a serving cell, the second digit and the Corresponding to the cell identifier of the serving cell;
  • the transmitting end device sends the second signal to the receiving end device, so that the receiving end device performs synchronization according to the second signal.
  • the sending end device determines that the second signal comprises:
  • the sending end device determines a cell identifier of the serving cell
  • the sending end device determines the second digit according to the cell identifier of the serving cell; and the sending end device determines the second signal according to the second digit.
  • a third aspect of the embodiments of the present invention provides a synchronization signal receiving method, including:
  • the receiving end device receives the first signal sent by the sending end device, the receiving end device works in the serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: the special ZC sequence passes the first bit the cyclic shift number, then the phase characteristic dot sequence or conjugated bad sequence obtained by multiplying 1 J, the specific ZC sequence index of the root ZC sequence of +1 or -1, wherein the sequence And/or the first digit corresponds to a cell identifier of the serving cell, where the feature sequence is used to distinguish the serving cell from other cells;
  • the receiving end device synchronizes the first signal.
  • the receiving, by the receiving end device, synchronizing the first signal includes:
  • the receiving end device determines an integer frequency offset of the first signal
  • the receiving end device determines a fractional frequency offset of the first signal
  • the receiving end device determines a cell identifier of the serving cell.
  • the receiving end device determines that the integer frequency offset of the first signal includes: The receiving end device determines not less than one test sequence group, each of the test sequence groups includes a test feature sequence and a first test ZC sequence, and the first test ZC sequence is a special ZC sequence that has passed the first check digit a sequence obtained after cyclic shift;
  • the receiving end device de-characterizes the first synchronization sequence using a test feature sequence in the test sequence group, and de-features with no less than one frequency value pair
  • the first synchronization sequence is subjected to frequency compensation to obtain a first compensation sequence corresponding to each of the frequency values
  • each of the first compensation sequences is subjected to sliding correlation using the first verification ZC sequence to obtain each a sliding correlation peak corresponding to the first compensation sequence, determining a maximum sliding correlation peak among the sliding correlation peaks corresponding to each of the first compensation sequences as a test peak corresponding to the test sequence group;
  • the end device determines the largest test peak among the test peaks corresponding to each of the test sequence groups. Set as the first largest correlation peak;
  • the receiving end device determines an inverse of the frequency value corresponding to the first maximum correlation peak as an integer frequency offset of the first signal.
  • the receiving end device determines that the fractional frequency offset of the first signal includes: The receiving end device determines a first offset of the first maximum correlation peak with respect to a starting position of the first synchronization sequence, and calculates a fractional frequency offset of the first signal according to the first offset.
  • the determining the serving cell The cell identity includes:
  • the receiving end device determines that the test feature sequence corresponding to the first maximum correlation peak is the feature sequence, and determines that the first check digit corresponding to the first maximum correlation peak is the first digit;
  • the receiving end device determines, according to the feature sequence and/or the first digit, the cell identifier of the service cell.
  • a fourth aspect of the embodiments of the present invention provides a synchronization signal receiving method, which is characterized by:
  • the receiving device Receiving, by the receiving device, a second signal sent by the sending end device, where the second signal includes a second synchronization sequence, where the second synchronization sequence is a sequence obtained by cyclically shifting a special ZC sequence by a second number of bits, where The special ZC sequence is a ZC sequence with a root index of +1 or -1, the receiving end device operates in a serving cell, and the second digit corresponds to a cell identifier of the serving cell;
  • the receiving device synchronizes the second signal.
  • the receiving, by the receiving end device, synchronizing the second signal includes:
  • the receiving end device determines an integer frequency offset of the second signal
  • the receiving end device determines a fractional frequency offset of the second signal
  • the receiving end device determines a cell identifier of the serving cell.
  • the receiving end device determines that the integer frequency offset of the second signal includes: The receiving end device determines not less than one second test ZC sequence, and the second test ZC sequence Listed as a sequence obtained after a special ZC sequence has undergone a cyclic shift of the second check digit;
  • the receiving end device frequency-compensates the second synchronization sequence with a frequency value of not less than one, to obtain a second compensation sequence corresponding to each of the frequency values, Performing a sliding correlation on each of the second compensation sequences by using the second test ZC sequence to obtain a sliding correlation peak corresponding to each of the second compensation sequences, and sliding the corresponding each of the second compensation sequences
  • the largest sliding correlation peak in the correlation peak is determined as the inspection peak corresponding to the second inspection ZC sequence;
  • the receiving end device determines the largest test peak among the test peaks corresponding to each of the second test ZC sequences as the second largest correlation peak;
  • the receiving end device determines an inverse of the frequency value corresponding to the second maximum correlation peak as an integer frequency offset of the second signal.
  • the receiving end device determines that the fractional frequency offset of the second signal includes: The receiving end device determines a second offset of the second maximum correlation peak with respect to a starting position of the second synchronization sequence, and calculates a fractional frequency offset of the second signal according to the second offset.
  • the cell identity of the cell includes:
  • the receiving end device determines that the second check digit corresponding to the second maximum correlation peak is the second digit
  • the receiving end device determines a cell identifier of the serving cell according to the second digit.
  • a fifth aspect of the embodiments of the present invention provides a transmitting end device, including: a first determining module, configured to determine a first signal, where the sending end device works in a serving cell, where the first signal includes a first synchronization sequence, where the first synchronization sequence is: a sequence in which a special ZC sequence is cyclically shifted by a first number of bits, and then multiplied or conjugated with a feature sequence, the special sequence
  • the ZC sequence is a ZC sequence having a root index of +1 or -1, and the feature sequence and/or the first digit corresponds to a cell identifier of the serving cell, and the feature sequence is used to distinguish the serving cell And other communities;
  • a first sending module configured to send the first signal to a receiving end device, so that the receiving end is configured The synchronization is performed according to the first signal.
  • the first determining module includes:
  • a first identifier unit configured to determine a cell identifier of the serving cell
  • a first sequence unit configured to determine the feature sequence according to a cell identifier of the serving cell
  • a first signal unit configured to determine the first signal according to the sequence of features and/or the first number of bits.
  • a sixth aspect of the embodiments of the present invention provides a sending end device, including:
  • a second determining module configured to determine a second signal, where the second signal includes a second synchronization sequence, where the second synchronization sequence is a sequence obtained after a special ZC sequence is cyclically shifted by a second number of bits, the special The ZC sequence is a ZC sequence with a root index of +1 or -1, the transmitting device operates in a serving cell, and the second digit corresponds to a cell identifier of the serving cell;
  • a second sending module configured to send the second signal to the receiving end device, so that the receiving end device performs synchronization according to the second signal.
  • the second determining module includes:
  • a second identity unit configured to determine a cell identity of the serving cell
  • the second sequence unit determines the second digit according to the cell identifier of the serving cell; and the second signal unit determines the second signal according to the second digit.
  • a seventh aspect of the embodiments of the present invention provides a receiving end device, including:
  • a first receiving module configured to receive a first signal sent by the sending end device, where the receiving end device works in a serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: a special ZC sequence a sequence obtained by cyclically shifting a first number of bits and multiplying or conjugate by the feature sequence, wherein the special ZC sequence is a ZC sequence having a root index of +1 or -1, the feature The sequence and/or the first digit corresponds to the cell identifier of the serving cell, and the feature sequence is used to distinguish the service cell from other cells;
  • the first synchronization module is configured to synchronize the first signal.
  • the first implementation party of the seventh aspect of the embodiment of the present invention comprises:
  • a first integer frequency offset unit configured to determine an integer frequency offset of the first signal
  • the first fractional frequency offset unit is configured to determine a fractional frequency offset of the first signal.
  • the first integer frequency offset unit is specifically configured to:
  • each of the test sequence groups including a test feature sequence and a first test ZC sequence, wherein the first test ZC sequence is a cyclic shift of the first ZC sequence after the first check digit
  • the resulting sequence
  • test sequence groups de-characterizing the first synchronization sequence using the test feature sequence in the test sequence group, and de-characterizing the first synchronization with no less than one frequency value pair Performing frequency compensation on the sequence to obtain a first compensation sequence corresponding to each of the frequency values, and performing sliding correlation on each of the first compensation sequences by using the first verification ZC sequence, to obtain corresponding to each of the first compensation sequences a sliding correlation peak, the largest sliding correlation peak among the sliding correlation peaks corresponding to each of the first compensation sequences is determined as a test peak corresponding to the test sequence group;
  • the first decimal frequency offset unit is specifically configured to:
  • the first synchronization module further includes :
  • a first check determining unit configured to determine that the test feature sequence corresponding to the first maximum correlation peak is the feature sequence, and determine that the first check digit corresponding to the first maximum correlation peak is the first digit;
  • the first identifier determining unit is configured to determine a cell identifier of the monthly service cell according to the feature sequence and/or the first digit.
  • a second receiving module configured to receive a second signal sent by the sending end device, where the second signal includes a second synchronization sequence, where the second synchronization sequence is obtained after a special ZC sequence is cyclically shifted by a second digit a sequence, the special ZC sequence is a ZC sequence with a root index of +1 or -1, the receiving end device operates in a serving cell, and the second digit corresponds to a cell identifier of the serving cell;
  • the second synchronization module is configured to synchronize the second signal.
  • the second synchronization module includes:
  • a second integer frequency offset unit configured to determine an integer frequency offset of the second signal
  • the second fractional frequency offset unit is configured to determine a fractional frequency offset of the second signal.
  • the second integer frequency offset unit is specifically configured to:
  • each of the second test ZC sequences frequency-compensating the second synchronization sequence with a frequency value of not less than one, to obtain a second compensation sequence corresponding to each of the frequency values, using the second test
  • the ZC sequence performs sliding correlation on each of the second compensation sequences to obtain a sliding correlation peak corresponding to each of the second compensation sequences, and the largest of the sliding correlation peaks corresponding to each of the second compensation sequences Sliding the correlation peak, and determining the inspection peak corresponding to the second inspection ZC sequence;
  • the opposite of the frequency value corresponding to the second largest correlation peak is determined as the integer frequency offset of the second signal.
  • the second fractional frequency offset unit is specifically configured to:
  • the second synchronization module further Includes:
  • a second check determining unit configured to determine that the second check digit corresponding to the second largest correlation peak is the second digit
  • a second identifier determining unit configured to determine a cell identifier of the serving cell according to the second digit.
  • the transmitting device determines the first signal, the transmitting device operates in the serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: a special ZC a sequence obtained by cyclically shifting a sequence of first digits and multiplying or conjugate by a feature sequence, wherein the special ZC sequence is a ZC sequence having a root index of +1 or -1, the feature sequence And/or the first digit corresponds to the cell identifier of the serving cell; the sending end device sends the first signal to the receiving end device, so that the receiving end device synchronizes according to the first signal .
  • the first synchronization sequence included in the first signal sent by the source device in the embodiment of the present invention is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence.
  • different cells can be distinguished by different feature sequences, and/or by different cyclic shift bits of the ZC sequence with a root index of +1 or -1, without the need for different cells.
  • the root index of the ZC sequence is set to different values to meet the needs of different cells. In the M2M technology, the ZC sequence with a root index of +1 or -1 is used for signal synchronization.
  • FIG. 1 is a flowchart of an embodiment of a synchronization signal sending method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another embodiment of a method for transmitting a synchronization signal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of another embodiment of a method for transmitting a synchronization signal according to an embodiment of the present invention
  • FIG. 4 is a flowchart of another embodiment of a method for transmitting a synchronization signal according to an embodiment of the present invention
  • FIG. 5 is a flowchart of an embodiment of a synchronization signal receiving method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of another embodiment of a synchronization signal receiving method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of another embodiment of a synchronization signal receiving method according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of another embodiment of a synchronization signal receiving method according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of an embodiment of a transmitting device according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of another embodiment of a transmitting end device according to an embodiment of the present invention
  • FIG. 11 is a structural diagram of another embodiment of a transmitting end device according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of another embodiment of a transmitting device according to an embodiment of the present invention.
  • FIG. 13 is a structural diagram of an embodiment of a receiving end device according to an embodiment of the present invention.
  • FIG. 14 is a structural diagram of another embodiment of a receiving end device according to an embodiment of the present invention.
  • FIG. 15 is a structural diagram of another embodiment of a receiving end device according to an embodiment of the present invention.
  • 16 is a structural diagram of another embodiment of a receiving end device according to an embodiment of the present invention.
  • FIG. 17 is a structural diagram of another embodiment of a transmitting end device or a receiving end device according to an embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a synchronization signal transmission method, a reception method, and related devices, which will be separately described below.
  • the sender device and the receiver device in the embodiment of the present invention may refer to a base station, a UE, a relay, an access point, a small station, or other devices, which are not limited in the embodiment of the present invention.
  • the sending end device determines the first signal
  • the sending end device determines the first signal, where the sending end device works in the serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: a special ZC sequence undergoes a cyclic shift of the first digit, and then a sequence obtained by multiplying or conjugate multiplied by the feature sequence, the feature sequence is used to distinguish the serving cell from other cells, where the feature sequence and/or the first digit corresponds to the cell identity of the serving cell .
  • the special ZC sequence is a ZC sequence with a root index of +1 or -1, and its general formula is:
  • the special ZC sequence is cyclically shifted by the first digit, and then multiplied or conjugated with the feature sequence to obtain a first synchronization sequence.
  • the first synchronization sequence of each cell should be set to be different. It can be understood that only the feature sequences of different cells need to be set to be different, and/or the number of bits of the cyclic shift of the special ZC sequence of different cells is set to be different, so that the first synchronization sequence of different cells can be set to different. Therefore, in this embodiment, the feature sequence of the serving cell corresponds to the cell identity of the serving cell, such that the feature sequence of the serving cell is different from the feature sequence of other cells; and/or, the first digit corresponds to the cell identity of the serving cell. , making special in the service area The number of cyclic shifts of the zc sequence is different from that of other cells.
  • the cyclic shift is divided into a left shift and a right shift, the shift to any one direction can be set to be positive.
  • the number of bits shifted by the default right shift is a positive value.
  • the sequence A is [1, 2, 3, 4, 5, 6]
  • the cyclically shifted sequence A becomes [5, 6, 1, 2, 3, 4]
  • the cyclically shifted sequence A becomes [3, 4, 5, 6, 1, 2].
  • the meaning of the cyclic shift of the first ZC sequence through the first digit is:
  • the special ZC sequence is cyclically shifted, and the number of bits of the cyclic shift is the first digit.
  • the special ZC sequence is cyclically shifted by the first digit, and the absolute value of the first digit should be smaller than the length L of the special ZC sequence, that is, the range of the first digit is (-L, L) Any integer in . It can be understood that when the first digit is 0, it is equivalent to the special ZC sequence without cyclic shift.
  • the sending end device sends a first signal to the receiving end device.
  • the transmitting device sends a first signal to the receiving device, so that the receiving device synchronizes according to the first signal.
  • the specific method for the receiving device to perform synchronization according to the first signal will be described in detail in the following embodiments, which is not limited in this embodiment.
  • the sending end device determines the first signal, the sending end device works in the serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: the special ZC sequence passes the first bit a cyclic shift of a number, which is obtained by dot-multiplication or conjugate multiplication of the feature sequence, the special ZC sequence being a ZC sequence having a root index of +1 or -1, the feature sequence and/or The first digit corresponds to the cell identifier of the serving cell; the sender device sends the first signal to the receiver device, so that the receiver device synchronizes according to the first signal.
  • the first synchronization sequence included in the first signal sent by the source device in the embodiment of the present invention is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence.
  • different cells can be distinguished by different feature sequences, and/or by different cyclic shift bits of the ZC sequence with a root index of + 1 or -1, without the need to
  • the root index of the ZC sequence is set to different values to meet the needs of different cells.
  • the ZC sequence with a root index of +1 or -1 is used for signal synchronization.
  • FIG. 1 shows the basic flow of the synchronization signal transmission method provided by the present invention, in which the transmitting device first determines the first signal.
  • the following embodiment will provide a specific process for the source device to determine the first signal.
  • FIG. 2 another synchronization signal sender provided by the embodiment of the present invention is provided.
  • the basic process of the law includes:
  • the sending end device determines a cell identifier of the serving cell.
  • the sending end device determines, according to the cell identifier of the serving cell, a feature sequence and/or a first digit; at least one of the feature sequence and the first digit corresponds to a cell identifier of the serving cell.
  • the feature sequence corresponds to the cell identifier of the serving cell, and the first digit of the serving cell is the same as the other multiple cells, and the first digit is known by the sending end, and the sending end device according to the cell identifier of the serving cell and the feature sequence Determining a sequence of features corresponding to a cell identifier of the serving cell;
  • the feature sequence and the first digit correspond to the cell identifier of the serving cell
  • the transmitting device determines the feature sequence according to the cell identifier of the serving cell and the correspondence between the feature sequence and the first digit and the cell identifier of the serving cell. And the first digit.
  • the sending end device determines, according to the feature sequence and/or the first digit, the first signal.
  • the transmitting device determines the first synchronization sequence and the first signal according to the sequence of features and/or the first number of bits. Specifically, the sending end device determines that the special ZC sequence is cyclically shifted by the first digit, and then multiplies or conjugates the sequence with the feature sequence to obtain a first synchronization sequence, and determines that the first sequence is included. The first signal of the synchronization sequence.
  • the sending end device sends the first signal to the receiving end device.
  • the transmitting device sends the first signal to the receiving device, so that the receiving device synchronizes according to the first signal.
  • the specific method for the receiving device to perform synchronization according to the first signal will be described in detail in the following embodiments, which is not limited in this embodiment.
  • the sending end device determines the cell identifier of the serving cell; determines the feature sequence and/or the first digit according to the cell identifier of the serving cell; and determines the first synchronization sequence according to the feature sequence and/or the first digit
  • the first signal is sent to the receiving end device, so that the receiving end device performs synchronization according to the first signal.
  • the first synchronization sequence included in the first signal sent by the source device in the embodiment of the present invention is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence.
  • the root index of the ZC sequence is set to different values to meet the needs of different cells.
  • the ZC sequence with a root index of +1 or -1 is used to perform signals. Synchronize.
  • feature sequences including pseudo-random sequences, Walsh sequences, Hadamard sequences, gold sequences, or ZC sequences, which are not limited herein.
  • the corresponding pseudo-random sequence or gold sequence may be generated by using the cell identifier of the serving cell as the initial seed, and the feature sequence corresponds to the cell identity of the serving cell.
  • the basic process realizes the distinction between different cells by the special ZC sequence undergoing cyclic shift of the first digit and multiplying or conjugate by the feature sequence.
  • the following embodiment will provide a new method of synchronizing signaling, which in another way achieves differentiation of different cells.
  • another basic method for sending a synchronization signal includes:
  • the sending end device determines a second signal.
  • the transmitting device determines a second signal, where the second signal includes a second synchronization sequence, where the second synchronization sequence is a sequence obtained by cyclic shifting the second ZC sequence of the special ZC sequence, and the special ZC sequence has a root index of +1. Or a ZC sequence of -1, the transmitting device operates in the serving cell, and the second digit corresponds to the cell identifier of the serving cell.
  • the special ZC sequence is cyclically shifted by the second digit to obtain a second synchronization sequence.
  • the second synchronization sequence of each cell should be set to be different. It can be understood that the second synchronization sequence of different cells can be set to be different only by setting the number of bits of the cyclic shift of the special ZC sequence of different cells to be different. Therefore, in this embodiment, the second digit corresponds to the cell identifier of the serving cell, such that the number of cyclic shifts of the special ZC sequence in the serving cell is different from other cells.
  • the sending end device sends a second signal to the receiving end device.
  • the transmitting device sends a second signal to the receiving device, so that the receiving device synchronizes according to the second signal.
  • the specific method for the receiving device to perform synchronization according to the second signal will be described in detail in the following embodiments, which is not limited in this embodiment.
  • the sending end device determines a second signal, where the second signal includes a second synchronization sequence J'J, and the second synchronization sequence is a sequence obtained by cyclic shifting the second Z-bit sequence of the special ZC sequence,
  • the ZC sequence is a ZC sequence with a root index of +1 or -1, and the transmitting device works in the serving cell,
  • the two-digit number corresponds to the cell identity of the serving cell.
  • the transmitting device sends a second signal to the receiving device, so that the receiving device synchronizes according to the second signal.
  • the second synchronization sequence included in the second signal sent by the sending end device is obtained after the special ZC sequence is cyclically shifted by the second digit, so different cells may pass the root index of +1. Differentiating the number of different cyclic shifts of the ZC sequence of -1, without setting the root index of the ZC sequence of different cells to different values, the need to distinguish different cells can be satisfied, and in the M2M technology, the root is used.
  • a ZC sequence with an index of +1 or -1 is used for signal synchronization.
  • FIG. 3 shows a basic flow of still another method for transmitting a synchronization signal provided by the present invention, wherein the transmitting device first determines the second signal.
  • the following embodiment will provide a specific process for the transmitting device to determine the second signal.
  • another basic method for sending the synchronization signal according to the embodiment of the present invention includes:
  • the sending end device determines a cell identifier of the serving cell.
  • the sending end device determines the second digit according to the cell identifier of the serving cell.
  • the second digit corresponds to the cell identifier of the serving cell.
  • the transmitting device determines the cell identifier of the serving cell and the correspondence between the second digit and the cell identifier. Determine the second digit.
  • the sending end device determines, according to the second digit, the second signal.
  • the transmitting device determines the second signal according to the second digit. Specifically, the transmitting end device determines that the sequence obtained by cyclic shifting the second ZC sequence of the special ZC sequence is the second synchronization sequence, and determines the second signal including the second synchronization sequence.
  • the sending end device sends a second signal to the receiving end device.
  • the transmitting device sends a second signal to the receiving device, so that the receiving device synchronizes according to the second signal.
  • the specific method for the receiving device to perform synchronization according to the second signal will be described in detail in the following embodiments, which is not limited in this embodiment.
  • the sending end device determines the cell identifier of the serving cell; determines the second digit according to the cell identifier of the serving cell; determines the second synchronization sequence and the second signal according to the second digit; and sends the first to the receiving device
  • the two signals cause the receiving device to synchronize according to the second signal.
  • the second synchronization sequence included in the second signal sent by the sending end device is obtained after the special ZC sequence is cyclically shifted by the second digit, so different cells may pass the root index of +1. or The number of different cyclic shifts of the ZC sequence of -1 is distinguished. It is not necessary to set the root index of the ZC sequence of different cells to different values to meet the needs of different cells, and the root index is used in the M2M technology.
  • Signal synchronization is performed for a ZC sequence of +1 or -1.
  • the transmitting device can perform signal synchronization by using a ZC sequence with a root index of +1 or -1. It is worth noting that only the ZC sequence with a root index of +1 or -1 can satisfy the signal synchronization requirements of M2M. The principle can be simply explained as follows:
  • the special ZC sequence with a root index of +1 or -1 has very good performance against frequency offset, which is manifested in that there is an autocorrelation peak regardless of the frequency offset value acting on such a sequence.
  • the offset of the autocorrelation peak relative to the starting point of the sequence has a correspondence relationship with the frequency offset, so the frequency offset can be calculated based on the offset of the autocorrelation peak from the starting point of the sequence. It can be rigorously proved mathematically that the correlation between the offset of the autocorrelation peak relative to the starting point of the sequence and the frequency offset is only applicable to the special ZC sequence with a root index of +1 or -1.
  • FIG. 5 includes:
  • the receiving end device receives a first signal sent by the sending end device.
  • the receiving end device receives the first signal sent by the sending end device, where the receiving end device works in the serving cell.
  • the first signal includes a first synchronization sequence, that is, a sequence in which the special ZC sequence is cyclically shifted by the first digit, and then multiplied or conjugated with the signature sequence.
  • the special ZC sequence is a ZC sequence with a root index of +1 or -1, and the feature sequence is used to distinguish the serving cell from other cells, and the feature sequence and/or the first digit corresponds to the cell identifier of the serving cell. .
  • the receiving end device synchronizes the first signal.
  • the receiving device After receiving the first signal, the receiving device synchronizes the first signal.
  • the specific method for the receiving device to perform the synchronization according to the method will be described in detail in the following embodiments, which is not limited in this embodiment.
  • the receiving end device receives the first signal sent by the sending end device, and the receiving end device works in the serving cell, where the first signal includes the first synchronization sequence: the special ZC sequence undergoes a cyclic shift of the first digit a sequence obtained by multiplying or conjugate multiplied by the feature sequence, the special ZC sequence being a ZC sequence having a root index of +1 or -1, a feature sequence, and/or the first digit
  • the first synchronization sequence included in the first signal received by the receiving end device is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence. After multiplying, the number of different cyclic shifts of the ZC sequence of +1 or -1 is used to distinguish different cells, so that the root index of the ZC sequence in the signals of different cells received does not need to be different values.
  • the ZC sequence with a root index of +1 or -1 is used for signal synchronization.
  • the receiving end device synchronizes the first signal, and mainly includes determining an integer frequency offset of the first signal and a fractional frequency offset.
  • a more detailed method for determining integer frequency offset and fractional frequency offset will be given in the following embodiments. Please refer to Figure 6.
  • the basic flow includes:
  • the receiving end device receives the first signal sent by the sending end device.
  • the receiving end device determines not less than one test sequence group.
  • the receiving device determines no less than one test sequence group, wherein each of the test sequence groups is taken from a combination of a feature sequence that may be used by all cells in the communication system and a cyclically shifted special ZC sequence.
  • the sequence of features taken by each test sequence group is called a test feature sequence
  • the cyclically shifted special ZC sequence taken by each test feature group is called a first test ZC sequence
  • the first test ZC sequence is cyclic.
  • the number of bits shifted is the first check digit.
  • the receiving device For each of the test sequence groups, the receiving device performs steps 603 to 606:
  • the receiving end device de-characterization the first synchronization sequence by using the verification feature sequence in the verification sequence group.
  • the receiving end device de-characterizes the first synchronization sequence using the verification feature sequence in the test sequence group, wherein the de-characterization method corresponds to the first synchronization sequence. For example, if the first synchronization sequence is obtained by cyclically shifting the special ZC sequence by the first number of bits and then multiplying the feature sequence by the feature sequence, the receiving end device conjugates with the first synchronization sequence by using the verification feature sequence. Multiplying and de-charging; if the first synchronization sequence is obtained by cyclic shifting of the first ZC sequence by the first number of bits and then multiplying by the conjugate of the feature sequence, the receiving device uses the verification feature sequence and the first A synchronization sequence is multiplied to perform de-characterization.
  • the receiving end device performs frequency compensation on the de-characterized first synchronization sequence by using no less than one frequency value, to obtain a first compensation sequence corresponding to each frequency value.
  • Frequency compensation can be realized by many methods. For example, if the signal to be compensated is S1 , , ⁇ , s n , the frequency offset value to be compensated is ⁇ , then the compensated sequence ⁇ 2 , ⁇ ⁇ for,
  • B is used to represent the signal bandwidth.
  • the frequency value used by the receiving device is an integer multiple of the signal bandwidth of the first signal.
  • the receiving end device can determine the value range of the frequency value for frequency compensation used by the receiving end according to the maximum empirical value of the frequency offset of the communication system in which it is located. For example, when the maximum experience value of the frequency offset of the communication system is 2.7B, the frequency value used by the receiving device for frequency compensation may be: -3B, -2B, -1B, 0, IB, 2B, 3B.
  • the receiving end device performs sliding correlation on each first compensation sequence by using a first check ZC sequence, to obtain a sliding correlation peak corresponding to each first compensation sequence.
  • the first check ZC sequence ⁇ is used to perform sliding correlation on each of the first compensation sequences to obtain a sliding correlation peak corresponding to each first compensation sequence.
  • the receiving end device determines, as the test peak corresponding to the test sequence group, a maximum sliding correlation peak among the sliding correlation peaks corresponding to each first compensation sequence.
  • the receiving end device obtains the sliding correlation peak corresponding to each first compensation sequence, and determines the largest sliding correlation peak among them to determine the inspection peak corresponding to the test sequence group.
  • step 607 is performed.
  • the receiving end device determines, as the first largest correlation peak, the largest test peak among the test peaks corresponding to each test sequence group;
  • the test peaks corresponding to all the test sequence groups are obtained.
  • the receiving device determines the largest of the test peaks as the first maximum correlation peak.
  • the receiving end device determines, as the integer frequency offset of the first signal, an inverse of the frequency value corresponding to the first maximum correlation peak.
  • step 604 the receiving device performs frequency compensation on the de-characterized first synchronization sequence with a frequency value of not less than one.
  • the opposite of the frequency value corresponding to the first maximum correlation peak is determined as the integer frequency offset of the first signal.
  • the receiving end device determines a starting position of the first maximum correlation peak with respect to the first synchronization sequence. a first offset, and calculating a fractional frequency offset of the first signal according to the first offset;
  • the receiving end device After determining, by the receiving end device, the first maximum correlation peak, determining a first offset of the first maximum correlation peak relative to a starting position of the first synchronization sequence, and calculating a decimal of the first signal according to the first offset Frequency offset.
  • fractional frequency offset bl of the first signal can be calculated by the following formula:
  • Bl u X offset ⁇ X B/L.
  • u is the root index of the special ZC sequence corresponding to the first signal
  • offset ⁇ is the first offset
  • B is the signal bandwidth of the first signal
  • L is the length of the first synchronization sequence.
  • the receiving end device may also acquire the cell identifier of the serving cell for subsequent signal processing.
  • the cell identifier of the receiving end device acquiring the serving cell includes:
  • the receiving end device determines, as a feature sequence, a test feature sequence corresponding to the first maximum correlation peak, and determines that the first check digit corresponding to the first largest correlation peak is the first digit;
  • the first synchronization sequence is obtained by multiplying or conjugate the feature sequence with a special ZC sequence of a cyclic shift of the first number of bits. Therefore, only the first synchronization sequence is de-characterized using the feature sequence, and then used.
  • the special ZC sequence of the first-digit cyclic shift performs sliding correlation on the de-characterized first synchronization sequence to obtain the maximum peak value. Therefore, the receiving end device determines that the test feature sequence corresponding to the first maximum correlation peak is a feature sequence, and determines that the first check digit corresponding to the first largest correlation peak is the first digit.
  • the receiving end device determines a cell identifier of the serving cell according to the feature sequence and/or the first digit. Since the feature sequence and/or the first digit corresponds to the cell identifier of the serving cell, after determining the feature sequence and the first digit, the receiving device may according to the feature sequence and/or the first digit and the cell The corresponding relationship of the identifier determines the cell identifier of the serving cell. After the receiving device determines the cell identity of the serving cell, the cell identity of the serving cell can be used in subsequent signal processing.
  • the receiving end device receives the first signal sent by the sending end device, determines an integer frequency offset and a fractional frequency offset of the first signal, and determines a cell identifier of the serving cell.
  • Steps 602 to 608 are specific methods for determining an integer frequency offset of the first signal
  • step 609 is to determine a fractional frequency offset of the first signal.
  • the specific method, steps 610 to 611 is a specific method for determining the cell identity of the serving cell.
  • the first synchronization sequence included in the first signal received by the receiving device is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence.
  • the ZC sequence with a root index of +1 or -1 is used for signal synchronization.
  • the receiving device can directly learn the cell identifier of the serving cell. In this way, steps 610 and 611 can be omitted. Meanwhile, since the feature sequence and/or the first digit corresponds to the cell identity of the serving cell, the receiving device can be based on the cell identity of the serving cell, and the feature sequence and/or the first The correspondence between the number of bits and the cell identifier determines the sequence of features and/or the first number of bits.
  • the receiving device can directly de-characterize the first synchronization sequence by using the feature sequence; when the receiving device determines the cell identity of the serving cell.
  • the receiving device can directly perform sliding correlation on each of the first compensation sequences using a special ZC sequence that is cyclically shifted by the first number of bits.
  • FIG. 5 and FIG. 6 respectively provide a synchronization signal receiving method corresponding to the embodiment shown in FIG. 1 and FIG. 2, and the following embodiment will provide a synchronization signal transmitting method corresponding to that shown in FIG.
  • a synchronization signal receiving method please refer to FIG. 7.
  • the basic flow of the method includes:
  • the receiving end device receives a second signal sent by the sending end device.
  • the receiving end device receives the second signal sent by the sending end device, where the second signal includes a second synchronization sequence, where the second synchronization sequence is a sequence obtained by cyclic shifting the second ZC sequence of the special ZC sequence.
  • the special ZC sequence is a ZC sequence with a root index of +1 or -1, the receiving end device operates in a serving cell, and the second digit corresponds to a cell identifier of the serving cell.
  • the receiving end device synchronizes the second signal.
  • the receiving device After receiving the second signal, the receiving device synchronizes the second signal.
  • the receiving device receives the second signal sent by the sending end device, the receiving end device works in the serving cell, the second signal includes a second synchronization sequence, and the second synchronization sequence is: the special ZC sequence passes a sequence obtained by cyclic shifting of the second digit, wherein the special ZC sequence is a ZC sequence with a root index of +1 or -1, and the second digit corresponds to a cell identifier of the serving cell;
  • the first signal is synchronized.
  • the second synchronization sequence included in the second signal received by the receiving end device is obtained after the special ZC sequence is cyclically shifted by the second digit, so the receiving end device can pass the root index of +1. Or different number of cyclic shift bits of the ZC sequence of -1 to distinguish different cells, so that the root index of the ZC sequence in the signals of different cells received by the ZC sequence does not need to be different values, and the M2M technology is used.
  • a ZC sequence with an index of +1 or -1 is used for signal synchronization.
  • the receiving end device synchronizes the second signal, and mainly includes determining an integer frequency offset of the second signal and a fractional frequency offset.
  • a more detailed method for determining integer frequency offset and fractional frequency offset will be given in the following embodiments. Referring to Figure 8, the basic flow includes:
  • the receiving end device receives a second signal sent by the sending end device.
  • the receiving end device determines not less than one second check ZC sequence
  • the receiving end device determines not less than a second check ZC sequence, the second check ZC sequence is taken from a cyclically shifted special ZC sequence that may be used by all cells in the communication system, the second check ZC sequence being a special ZC The sequence is obtained after a cyclic shift of the second check digit.
  • the receiving device For each of the second test ZC sequences, the receiving device performs steps 803 through 805:
  • the receiving end device performs frequency compensation on the second synchronization sequence by using no less than one frequency value, to obtain a second compensation sequence corresponding to each of the frequency values.
  • Frequency compensation can be realized by many methods. For example, if the signal to be compensated is S1 , , ⁇ , s n , the frequency offset value to be compensated is ⁇ , then the compensated sequence ⁇ 2 , ⁇ ⁇ for,
  • the receiving end device can determine the value range of the frequency value used for frequency compensation by the receiving end according to the maximum empirical value of the frequency offset of the communication system in which it is located. For example, when the frequency offset of the communication system is When the maximum experience value is 2.7B, the frequency value used by the receiving device for frequency compensation may be: -3B, -2B, -1B, 0, IB, 2B, 3B. 804.
  • the receiving end device performs sliding correlation on each second compensation sequence by using a second check ZC sequence, to obtain a sliding correlation peak corresponding to each second compensation sequence.
  • the second check ZC sequence ⁇ is used to perform sliding correlation on each second compensation sequence to obtain a sliding correlation peak corresponding to each second compensation sequence.
  • the receiving end device determines, as a check peak corresponding to the second test ZC sequence, a maximum sliding correlation peak of each of the sliding correlation peaks corresponding to each of the second compensation sequences.
  • step 806 is performed.
  • the receiving end device determines, as the second largest correlation peak, the largest test peak among the test peaks corresponding to each second test ZC sequence.
  • the receiving end device After the receiving end device performs steps 803 to 805 for all the second check ZC sequences, the check peaks corresponding to all the second test ZC sequences are obtained. The receiving device determines the largest of the test peaks as the second largest correlation peak.
  • the receiving end device determines, as the integer frequency offset of the second signal, an inverse of the frequency value corresponding to the second largest correlation peak.
  • the frequency value corresponding to the second largest correlation peak is determined as the integer frequency offset of the second signal.
  • the receiving end device determines a second offset of the second maximum correlation peak relative to a starting position of the second synchronization sequence, and calculates a fractional frequency offset of the second signal according to the second offset.
  • fractional frequency offset b2 of the second signal can be calculated by the following formula:
  • offset 2 is the second offset, and when offset 2 is positive, it indicates that the second largest correlation peak is shifted to the right relative to the starting position of the second synchronization sequence When offset 2 is a negative value, it indicates that the second largest correlation peak is shifted to the left relative to the start position of the second synchronization sequence.
  • B is the signal bandwidth of the second signal
  • L is the length of the second synchronization sequence.
  • the receiving end device may also acquire the cell identifier of the serving cell for subsequent signal processing.
  • the cell identifier of the receiving end device acquiring the serving cell includes:
  • the receiving end device determines that the second check digit corresponding to the second largest correlation peak is the second digit;
  • the second synchronization sequence is a sequence obtained by cyclic shifting the second ZC sequence of the special ZC sequence. Therefore, only the sequence obtained by cyclic shifting the second ZV sequence using the special ZC sequence is subjected to sliding correlation with the second synchronization sequence. , in order to get the maximum peak. Therefore, the receiving end device determines that the second check digit corresponding to the second largest correlation peak is the second digit.
  • the receiving end device determines, according to the second digit, a cell identifier of the serving cell.
  • the receiving device can determine the cell identifier of the serving cell according to the correspondence between the second digit and the cell identifier. After the receiving end device determines the cell identity of the serving cell, the cell identifier of the serving cell can be used in subsequent signal processing.
  • the receiving end device receives the second signal sent by the sending end device, determines the integer frequency offset and the decimal frequency offset of the second signal, and determines the cell identifier of the serving cell.
  • Steps 802 to 807 are specific methods for determining the integer frequency offset of the first signal
  • step 808 is a specific method for determining the fractional frequency offset of the first signal.
  • Steps 809 and 810 are specific methods for determining the cell identifier of the serving cell.
  • the second synchronization sequence included in the second signal received by the receiving device is obtained after the special ZC sequence is cyclically shifted by the second digit, so the receiving device can pass the root index of +1 or -
  • the number of different cyclic shifts of the ZC sequence of 1 is used to distinguish different cells, so that the root index of the ZC sequence in the signals of different cells received does not need to be different values, and in the M2M technology, the root index is A ZC sequence of +1 or -1 is used for signal synchronization.
  • the receiving device can directly learn the cell identifier of the serving cell.
  • steps 809 and 810 can be omitted.
  • the receiving device can determine the second digit according to the cell identifier of the serving cell and the correspondence between the second digit and the cell identifier.
  • the receiving end device determines the second digit according to the cell identifier of the serving cell, in step 802, the receiving end device can directly use the special ZC sequence of the cyclic shift of the second digit as the second check ZC sequence. In this way, the number of second check ZC sequences determined by the receiving device in step 802 can be reduced, and the number of loops in steps 803 to 805 can be reduced, thereby saving performance consumption of the receiving device.
  • a base station performs M2M communication with a UE.
  • the base station determines the cell identifier of the serving cell, and determines the feature sequence according to the cell identifier of the serving cell as: a pseudo-random sequence with the cell identifier of the serving cell as a seed; determining that the first digit is: 0. Since the first digit is 0, the base station directly uses the ZC sequence with a root index of 1, multiplies the pseudo random sequence point to obtain a first synchronization sequence, and sends the first signal including the first synchronization sequence to The UE.
  • the signal received by the UE is a first signal, and the first signal has a frequency offset compared to the first signal, and the first signal includes a first synchronization sequence.
  • the UE determines 10 test sequence groups, each of which consists of a pseudo-random sequence seeded with a different cell identity and a ZC sequence with a root index of 1.
  • the UE For each test sequence group, the UE performs the following operations: conjugate multiplying the first synchronization sequence using a pseudo-random sequence in the test sequence group; and then de-characterizing the frequency value pair of not less than one
  • the first synchronization sequence performs frequency compensation to obtain a first compensation sequence corresponding to each frequency value; using the ZC sequence with the root index of 1 to perform sliding correlation on each of the first compensation sequences, to obtain a sliding corresponding to each first compensation sequence Correlate the peaks and determine which of the largest sliding correlation peaks is the corresponding test peak for the test sequence set. Since there are a total of 10 test sequence groups, a total of 10 test peaks can be obtained.
  • the UE determines that the largest test peak among the 10 test peaks is the first largest correlation peak, and determines the frequency value corresponding to the first maximum correlation peak as the integer frequency offset of the first signal, and compares the first maximum correlation peak with the first
  • the first offset of the starting position of the synchronization sequence is determined as the fractional frequency offset of the first signal.
  • the UE determines the seed of the pseudo random sequence in the test sequence group corresponding to the first largest correlation peak, and confirms the seed as the cell identity of the serving cell.
  • the above embodiment describes the method for transmitting and receiving a synchronization signal provided by the present invention.
  • the following embodiments will provide a corresponding sender device and a receiver device for implementing the above embodiment method.
  • the basic structure of the transmitting device provided by the embodiment of the present invention mainly includes: a first determining module 901, configured to determine the first signal.
  • the first determining module 901 is configured to determine a first signal, where the sending end device works in the serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: a cyclic shift of the first ZC sequence through the first digit a sequence obtained by multiplying or conjugate multiplied by the feature sequence, the feature sequence is used to distinguish the serving cell from other cells, wherein the feature sequence and/or the first digit and the serving cell The cell identity corresponds.
  • the special ZC sequence is cyclically shifted by the first digit, and then multiplied or conjugated with the signature sequence to obtain a first synchronization sequence.
  • the first synchronization sequence of each cell should be set to be different. It can be understood that only the feature sequences of different cells need to be set to be different, and/or the number of bits of the cyclic shift of the special ZC sequence of different cells is set to be different, so that the first synchronization sequence of different cells can be set to different. Therefore, in this embodiment, the feature sequence of the serving cell corresponds to the cell identity of the serving cell, such that the feature sequence of the serving cell is different from the feature sequence of other cells; and/or, the first digit corresponds to the cell identity of the serving cell. The number of cyclic shifts of the special ZC sequence in the serving cell is made different from other cells.
  • the cyclic shift is divided into a left shift and a right shift, the shift to any one direction can be set to be positive.
  • the number of bits shifted by the default right shift is a positive value.
  • the sequence A is [1, 2, 3, 4, 5, 6]
  • the cyclically shifted sequence A becomes [5, 6, 1, 2, 3, 4]
  • the cyclically shifted sequence A becomes [3, 4, 5, 6, 1, 2].
  • the meaning of the cyclic shift of the first ZC sequence through the first digit is:
  • the special ZC sequence is cyclically shifted, and the number of bits of the cyclic shift is the first digit.
  • the special ZC sequence is cyclically shifted by the first digit, and the absolute value of the first digit should be smaller than the length L of the special ZC sequence, that is, the range of the first digit is (-L, L) Any integer in . It can be understood that when the first digit is 0, it is equivalent to the special ZC sequence without cyclic shift.
  • the first sending module 902 is configured to send a first signal to the receiving end device, so that the receiving end device performs synchronization according to the first signal.
  • the first determining module 901 determines a first signal
  • the sending end device operates in a serving cell
  • the first signal includes a first synchronization sequence
  • the first synchronization sequence is: a special ZC sequence a sequence of one-bit cyclic shift, which is obtained by dot-multiplication or conjugate multiplication with the feature sequence, wherein the special ZC sequence is a ZC sequence having a root index of +1 or -1, the feature sequence and And the first digit corresponds to the cell identifier of the serving cell;
  • the first sending module sends the first signal to the receiving device, so that the receiving device synchronizes according to the first signal.
  • the first synchronization sequence included in the first signal sent by the source device in the embodiment of the present invention is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence. After multiplication Obtained, so different cells can be distinguished by different feature sequences, and/or by different cyclic shift bits of the ZC sequence with a root index of +1 or -1, without ZC sequences of different cells
  • the root index is set to different values to meet the needs of different cells.
  • the ZC sequence with a root index of +1 or -1 is used for signal synchronization.
  • FIG. 9 shows the basic structure of the transmitting device provided by the present invention.
  • the following embodiment will show the specific structure of the first determining module in the transmitting device.
  • another basic structure of the transmitting device provided by the embodiment of the present invention includes:
  • the first determining module 1001 is configured to determine the first signal.
  • the first determining module 1001 specifically includes:
  • a first identifier unit 10011 configured to determine a cell identifier of the serving cell
  • a first sequence unit 10012 configured to determine the feature sequence and/or the first digit according to a cell identifier of the serving cell
  • At least one of the feature sequence and the first digit corresponds to the cell identifier of the serving cell. specific:
  • the feature sequence corresponds to the cell identifier of the serving cell, and the first digit of the serving cell is the same as the other multiple cells, and the first digit is known by the sending end, and the sending end device according to the cell identifier of the serving cell and the feature sequence Determining a sequence of features corresponding to a cell identifier of the serving cell;
  • the feature sequence and the first digit correspond to the cell identifier of the serving cell
  • the transmitting device determines the feature sequence according to the cell identifier of the serving cell and the correspondence between the feature sequence and the first digit and the cell identifier of the serving cell. And the first digit.
  • a first signal unit 10013 configured to determine the first signal according to the feature sequence and/or the first number of bits
  • the first signal unit 10013 determines the first synchronization sequence and the first signal based on the sequence of features and/or the first number of bits. Specifically, the first signal unit 10013 determines that the special ZC sequence is cyclically shifted by the first number of bits, and then multiplies or conjugates the sequence of the feature sequence to obtain a sequence that is a first synchronization sequence, and determines that the sequence is included. The first signal of the first synchronization sequence.
  • the first sending module 1002 is configured to send a first signal to the receiving end device, so that the receiving end device performs synchronization according to the first signal.
  • the first identifier unit 10011 determines a cell identifier of the serving cell;
  • the element 10012 determines a feature sequence and/or a first digit according to the cell identifier of the serving cell;
  • the first signal unit 10013 determines the first synchronization sequence and the first signal according to the feature sequence and/or the first digit;
  • the first sending module The transmitting, by the receiving device, the first signal is sent to the receiving device, so that the receiving device synchronizes according to the first signal.
  • the first synchronization sequence included in the first signal sent by the source device in the embodiment of the present invention is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence.
  • the root index of the ZC sequence is set to different values to meet the needs of different cells.
  • the ZC sequence with a root index of +1 or -1 is used for signal synchronization.
  • feature sequences including pseudo-random sequences, Walsh sequences, Hadamard sequences, gold sequences, or ZC sequences, which are not limited herein.
  • the corresponding pseudo-random sequence or gold sequence may be generated by using the cell identifier of the serving cell as the initial seed, and the feature sequence corresponds to the cell identity of the serving cell.
  • FIG. 9 and FIG. 10 shows the basic structure of the transmitting device provided by the embodiment of the present invention, wherein the transmitting device passes the cyclic shift of the first digit through the special ZC sequence, and then The feature sequence is phase-multiplied or conjugate multiplied to achieve differentiation of different cells.
  • the following embodiment will provide a new type of sender device, which in another way enables differentiation of different cells. Please refer to the picture
  • the second determining module 1101 is configured to determine a second signal, where the second signal includes a second synchronization sequence, where the second synchronization sequence is a sequence obtained by cyclic shifting the second ZC sequence of the special ZC sequence, and the special ZC sequence is The ZC sequence with a root index of +1 or -1, the transmitting device operates in the serving cell, and the second digit corresponds to the cell identifier of the serving cell.
  • a second synchronization sequence is obtained.
  • the second synchronization sequence of each cell should be set to be different. It can be understood that the second synchronization sequence of different cells can be set to be different only by setting the number of bits of the cyclic shift of the special ZC sequence of different cells to be different. Therefore, in this embodiment, the second digit corresponds to the cell identifier of the serving cell, such that the number of cyclic shifts of the special ZC sequence in the serving cell is different from other cells.
  • the second sending module 1102 is configured to send the second signal to the receiving end device, so that the receiving end device performs synchronization according to the second signal.
  • the second determining module 1101 determines a second signal, where the second signal includes a second synchronization sequence, where the second synchronization sequence is a sequence obtained by cyclic shifting the second ZC sequence of the special ZC sequence, special ZC
  • the sequence is a ZC sequence with a root index of +1 or -1, the transmitting device operates in the serving cell, and the second digit corresponds to the cell identifier of the serving cell.
  • the second sending module 1102 sends a second signal to the receiving device, so that the receiving device synchronizes according to the second signal.
  • the second synchronization sequence included in the second signal sent by the sending end device is obtained after the special ZC sequence is cyclically shifted by the second digit, so different cells may pass the root index of +1. Differentiating the number of different cyclic shifts of the ZC sequence of -1, without setting the root index of the ZC sequence of different cells to different values, the need to distinguish different cells can be satisfied, and in the M2M technology, the root is used.
  • a ZC sequence with an index of +1 or -1 is used for signal synchronization.
  • FIG. 11 shows the basic structure of still another transmitting device provided by the present invention.
  • the following embodiment will provide a basic structure of the second determining module in the transmitting device.
  • another basic structure of the transmitting device provided by the embodiment of the present invention includes:
  • the second determining module 1201 is configured to determine the second signal.
  • the second determining module 1201 specifically includes:
  • a second identity unit 12011 determining a cell identity of the serving cell
  • the second sequence unit 12012 determines the second digit according to the cell identifier of the serving cell; the second digit corresponds to the cell identifier of the serving cell, and in this embodiment, after determining the cell identifier of the serving cell. The second sequence unit 12012 determines the second digit according to the cell identifier of the serving cell and the correspondence between the second digit and the cell identifier.
  • the second signal unit 12013 determines the second signal according to the second digit.
  • the second signal unit 12013 determines the second signal based on the second number of bits. Specifically, the second signal unit 12013 determines that the sequence obtained by cyclic shifting the second ZC of the special ZC sequence is the second synchronization sequence, and determines the second signal including the second synchronization sequence.
  • the second sending module 1202 is configured to send the second signal to the receiving end device, so that the receiving end device performs synchronization according to the second signal.
  • the second identifier unit 12011 determines a cell identifier of the serving cell;
  • the second signal unit 12013 determines the second synchronization sequence and the second signal according to the second digit;
  • the second sending module 1202 sends the second signal to the receiving device,
  • the receiving end device is synchronized according to the second signal.
  • the second synchronization sequence included in the second signal sent by the sending end device is obtained after the special ZC sequence is cyclically shifted by the second digit, so that different cells can pass the root index of +1.
  • the root index of the ZC sequence of different cells is not required to be set to different values, so that the need to distinguish different cells can be satisfied, and in the M2M technology, the root is used.
  • a ZC sequence with an index of +1 or -1 is used for signal synchronization.
  • FIG. 9 to FIG. 12 explains in detail the structure of the transmitting device provided by the embodiment of the present invention.
  • the following embodiments will provide a corresponding receiving device.
  • the basic structure of the device is as shown in FIG.
  • the first receiving module 1301 is configured to receive a first signal sent by the sending end device, where the receiving end device operates in a serving cell, where the first signal includes the first synchronization sequence, the first synchronization sequence is: a special ZC sequence a sequence obtained by cyclically shifting a first number of bits and multiplying or conjugate by the feature sequence, wherein the special ZC sequence is a ZC sequence having a root index of +1 or -1, the feature The sequence and/or the first digit corresponds to the cell identifier of the serving cell, and the feature sequence is used to distinguish the monthly service cell from other cells.
  • the first synchronization module 1302 is configured to synchronize the first signal.
  • the first receiving module 1301 receives the first signal sent by the sending end device, the receiving end device works in the serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: special ZC a sequence obtained by cyclically shifting a sequence of first digits and multiplying or conjugated by the feature sequence, wherein the special ZC sequence is a ZC sequence with a root index of +1 or -1, and a sequence of features And/or the first digit corresponds to a cell identifier of the serving cell; a first synchronization module
  • the first synchronization sequence included in the first signal received by the receiving end device is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence.
  • the receiving device can distinguish different cells by different feature sequences, and/or distinguish different cells by the number of different cyclic shifts of the ZC sequence with a root index of +1 or -1. , so that the root index of the ZC sequence in the signals of different cells received by the different cells does not need to be different values, and in the M2M technology, the ZC with the root index of +1 or -1 is used. Sequence for signal synchronization.
  • the receiving end device synchronizes the first signal, and mainly includes determining an integer frequency offset of the first signal and a fractional frequency offset.
  • the basic structure includes:
  • the first receiving module 1401 is configured to receive a first signal sent by the sending end device.
  • the receiving device operates in a serving cell, the first signal includes a first synchronization sequence, and the first synchronization sequence is: a special ZC sequence undergoes a cyclic shift of a first number of bits, and then is synchronized with the feature sequence a sequence obtained by multiplying by a point multiplication or a conjugate, the special ZC sequence being a ZC sequence having a root index of +1 or -1, the feature sequence and/or the first number of bits and a cell of the serving cell Corresponding to the identifier, the feature sequence is used to distinguish the monthly service cell from other cells.
  • the first synchronization module 1402 is configured to synchronize the first signal.
  • the first receiving module 1402 specifically includes:
  • the first integer frequency offset unit 14021 is configured to determine an integer frequency offset of the first signal; the first integer frequency offset unit 14021 determines a method for determining an integer frequency offset of the first signal, for example:
  • test sequence groups are taken from a combination of a feature sequence that may be used by all cells in the communication system and a cyclically shifted special ZC sequence.
  • the sequence of features taken by each test sequence group is called a test feature sequence
  • the cyclically shifted special ZC sequence taken by each test feature group is called a first test ZC sequence
  • the first test ZC sequence is cyclically shifted. The value is the first number of check digits.
  • the first integer frequency offset unit 14021 For each of the test sequence groups, the first integer frequency offset unit 14021 performs the following operations: de-characterizing the first synchronization sequence using the test feature sequence in the test sequence group, and not less than one And frequency-compensating the de-characterized first synchronization sequence to obtain a first compensation sequence corresponding to each of the frequency values, and performing sliding correlation on each of the first compensation sequences by using the first verification ZC sequence Obtaining a sliding correlation peak corresponding to each of the first compensation sequences, and determining a maximum sliding correlation peak among the sliding correlation peaks corresponding to each of the first compensation sequences as a test corresponding to the test sequence group Peak
  • the first integer frequency offset unit 14021 de-characterizes the first synchronization sequence using the verification feature sequence in the test sequence group, wherein the de-characterization method corresponds to the first synchronization sequence. For example, if the first synchronization sequence is obtained by cyclic shifting of the first ZC sequence by the first digit, and then multiplied by the feature sequence, the first integer frequency offset unit 14021 synchronizes with the first synchronization by using the verification feature sequence. The sequence is conjugate multiplied to perform de-characterization; if the first synchronization sequence is obtained by cyclic shifting of the special ZC sequence by the first number of bits and then multiplied by the feature sequence, the first integer frequency offset unit is obtained. 14021 performs decharacterization by using a test feature sequence to multiply the first synchronization sequence point.
  • the frequency value used by the first integer frequency offset unit 14021 is an integer multiple of the signal bandwidth of the first signal.
  • the receiving end device can determine the value range of the frequency value for frequency compensation used by the receiving end according to the maximum experience value of the frequency offset of the communication system in which it is located. For example, when the maximum experience value of the frequency offset of the communication system is 2.7B, the frequency value used by the receiving device for frequency compensation may be: -3B, -2B, -IB, 0, IB, 2B, 3B. ,
  • the first fractional frequency offset unit 14022 is configured to determine a fractional frequency offset of the first signal.
  • the first fractional frequency offset unit 14022 has a number of methods for determining the fractional frequency offset of the first signal, for example:
  • fractional frequency offset bl of the first signal can be calculated by the following formula:
  • Bl u X offset ⁇ X B/L.
  • u is the root index of the special ZC sequence corresponding to the first signal
  • offset ⁇ is the first offset
  • B is the signal bandwidth of the first signal
  • L is the length of the first synchronization sequence.
  • the first synchronization module 1402 may further include:
  • a first check determining unit 14023 configured to determine that the test feature sequence corresponding to the first maximum correlation peak is the feature sequence, and determine that the first check digit corresponding to the first maximum correlation peak is the first digit ;
  • the first synchronization sequence is a phase point of the special ZC sequence of the feature sequence and the cyclic shift of the first digit Multiplying or conjugate multiplied, therefore, only the first synchronization sequence is de-characterized using the feature sequence, and the de-characterized first synchronization sequence is performed using the special ZC sequence of the first-order cyclic shift Sliding related to get the maximum peak. Therefore, the first check determining unit 14023 determines that the test feature sequence corresponding to the first maximum correlation peak is a feature sequence, and determines that the first check digit corresponding to the first maximum correlation peak is the first digit.
  • the first identifier determining unit 14024 is configured to determine a cell identifier of the service cell according to the feature sequence and/or the first digit.
  • the first identifier determining unit 14024 may determine the feature sequence and the first digit, according to the feature sequence and/or the first digit. The correspondence between the number and the cell identifier determines the cell identity of the serving cell. After the receiving end device determines the cell identity of the serving cell, the cell identifier of the serving cell can be used in the subsequent signal processing.
  • the first receiving module 1401 receives the first signal sent by the sending end device, the first integer frequency offset unit 14021 determines the integer frequency offset of the first signal, and the first decimal frequency offset unit 14022 determines the fractional frequency of the first signal.
  • the first identity determining unit 14024 determines the cell identity of the serving cell.
  • the first synchronization sequence included in the first signal received by the receiving end device is cyclically shifted by the first Z-bit sequence by the special ZC sequence, and then multiplied or conjugated with the feature sequence.
  • the ZC sequence with a root index of +1 or -1 is used for signal synchronization.
  • the receiving device can directly learn the cell identifier of the serving cell.
  • the first check determining unit 14023 and the first identifier determining unit 14024 may be omitted.
  • the receiving end device may according to the cell identifier of the serving cell. And the correspondence between the feature sequence and/or the first digit and the d, the region identifier, and the feature sequence and/or the first digit are determined.
  • the receiving device can directly de-characterize the first synchronization sequence by using the feature sequence; when the receiving device determines the first bit according to the cell identifier of the serving cell When counting, the receiving device can directly use the cyclic shift of the first digit
  • the special ZC sequence of bits is slidingly correlated for each first compensation sequence. In this way, the number of verification sequence groups determined by the receiving device can be reduced, and the performance consumption of the receiving device can be saved.
  • FIG. 13 and FIG. 14 respectively provide the receiving end device corresponding to the embodiment shown in FIG. 9 and FIG. 10, and the following embodiment will provide the receiving end corresponding to the transmitting end device shown in FIG. Equipment, please refer to Figure 15, the basic structure includes:
  • the second receiving module 1501 is configured to receive a second signal sent by the sending end device, and the receiving end device receives the second signal sent by the sending end device.
  • the second signal includes a second synchronization sequence, where the second synchronization sequence is a sequence obtained by cyclic shifting a special ZC sequence with a root index of +1 or -1.
  • the ZC sequence, the receiving end device works in a serving cell, and the second digit corresponds to a cell identifier of the serving cell.
  • the second synchronization module 1502 is configured to synchronize the second signal.
  • the second receiving module 1501 receives the second signal sent by the sending end device, the receiving end device works in the serving cell, the second signal includes a second synchronization sequence, and the second synchronization sequence is: special ZC a sequence obtained by cyclically shifting a sequence of a second number of bits, wherein the special ZC sequence is a ZC sequence having a root index of +1 or -1, and the second digit corresponds to a cell identifier of the serving cell;
  • the synchronization module 1502 synchronizes the first signal.
  • the second synchronization sequence included in the second signal received by the receiving end device is obtained after the special ZC sequence is cyclically shifted by the second digit, so the receiving end device can pass the root index of +1. Or different number of cyclic shift bits of the ZC sequence of -1 to distinguish different cells, so that the root index of the ZC sequence in the signals of different cells received does not need to be different values, and the rooting of the M2M technology is realized.
  • a ZC sequence with an index of +1 or -1 is used for signal synchronization.
  • the receiving end device synchronizes the second signal, and mainly includes determining an integer frequency offset of the second signal and a fractional frequency offset.
  • the basic structure includes:
  • the second receiving module 1601 is configured to receive a second signal sent by the sending end device, and the receiving end device receives the second signal sent by the sending end device.
  • the second signal sent by the sending end device includes a second synchronization sequence, and accordingly, the second signal includes a second synchronization sequence, where the second synchronization sequence is a special ZC sequence that passes the second digit.
  • the special ZC sequence is a ZC sequence with a root index of + 1 or -1
  • the receiving device operates in a serving cell
  • the second digit is compared with the serving cell
  • the cell identifier corresponds. It can be understood that the second synchronization sequence in the second signal has a skew value compared to the second synchronization sequence in the second signal.
  • the second synchronization module 1602 is configured to synchronize the second signal.
  • the second synchronization module 1602 specifically includes:
  • the second integer frequency offset unit 16021 is configured to determine an integer frequency offset of the second signal.
  • the second integer frequency offset unit 16021 determines a method for determining an integer frequency offset of the second signal, for example:
  • the frequency offset unit 16021 determines not less than one second check ZC sequence, the second check ZC sequence is taken from a cyclically shifted special ZC sequence that may be used by all cells in the communication system, and the second check ZC sequence is The sequence obtained after the special ZC sequence has undergone a cyclic shift of the second check digit.
  • the second integer frequency offset unit 16021 For each of the second check ZC sequences, the second integer frequency offset unit 16021 performs the following operations: frequency-compensating the second synchronization sequence with a frequency value of not less than one, to obtain a corresponding value for each of the frequency values. a second compensation sequence, using the second test ZC sequence to perform sliding correlation on each of the second compensation sequences, to obtain a sliding correlation peak corresponding to each of the second compensation sequences, and each of the second The maximum sliding correlation peak of the sliding correlation peak corresponding to the compensation sequence is determined as the inspection peak corresponding to the second inspection ZC sequence; wherein each frequency value used by the second integer frequency offset unit 16021 is the second signal An integer multiple of the signal bandwidth.
  • the second synchronization sequence has a maximum offset value, and in this case, the absolute value of each frequency value used by the receiving device is not greater than the maximum offset value.
  • the value of the offset value can also be 0.
  • the second integer frequency offset unit 16021 determines the largest test peak among the test peaks corresponding to each of the second test ZC sequences as the second largest correlation peak;
  • the second integer frequency offset unit 16021 determines an inverse of the frequency value corresponding to the second largest correlation peak as an integer frequency offset of the second signal.
  • the second fractional frequency offset unit 16022 is configured to determine a fractional frequency offset of the second signal.
  • the second fractional frequency offset unit 1602 has a number of methods for determining the fractional frequency offset of the second signal, for example:
  • the second fractional frequency offset unit 16022 determines a second offset of the second maximum correlation peak relative to the start position of the second synchronization sequence, and calculates a fractional frequency offset of the second signal according to the second offset.
  • the fractional frequency offset b2 of the second signal can be calculated by the following formula:
  • B2 u X offset 2 XB/L.
  • u is the root index of the special ZC sequence corresponding to the first signal
  • offset 2 is the second offset
  • offset 2 is a negative value, it indicates that the second largest correlation peak is shifted to the left relative to the start position of the second synchronization sequence.
  • B is the signal bandwidth of the second signal
  • L is the length of the second synchronization sequence.
  • the second synchronization module 1602 may further include:
  • a second check determining unit 16023 configured to determine that the second check digit corresponding to the second largest correlation peak is the second digit
  • the second synchronization sequence is a sequence obtained by cyclic shifting the second ZC sequence of the special ZC sequence. Therefore, only the sequence obtained by cyclic shifting the second ZV sequence using the special ZC sequence is subjected to sliding correlation with the second synchronization sequence. , in order to get the maximum peak. Therefore, the second check determining unit 16023 determines that the second check digit corresponding to the second largest correlation peak is the second digit.
  • the second identifier determining unit 16024 is configured to determine a cell identifier of the serving cell according to the second digit.
  • the second identifier determining unit 16024 can determine the cell identifier of the serving cell according to the correspondence between the second digit and the cell identifier. After the receiving end device determines the cell identity of the serving cell, the cell identifier of the serving cell can be used in the subsequent signal processing.
  • the second receiving module 1601 receives the second signal sent by the sending end device, the second integer frequency offset unit 16021 determines the integer frequency offset of the second signal, and the second integer frequency offset unit 16021 determines the fractional frequency of the second signal.
  • the second identity determining unit 16024 determines the cell identity of the serving cell.
  • the second synchronization sequence included in the second signal received by the receiving device is obtained after the special ZC sequence is cyclically shifted by the second digit, so the receiving device can pass the root index of +1 or - The number of different cyclic shifts of the ZC sequence of 1 to distinguish different cells, so that the root index of the ZC sequence in the signals of different cells received does not need to be different values, and in the M2M technology, the root index is A ZC sequence of +1 or -1 is used for signal synchronization.
  • the receiving device can directly learn the cell identifier of the serving cell. In this way, the second test determination order can be omitted. Element 16023 and second identification determining unit 16024.
  • the receiving device can determine the second digit according to the cell identifier of the serving cell and the correspondence between the second digit and the cell identifier.
  • the receiving end device may directly use the special ZC sequence that is cyclically shifted by the second digit as the second verification ZC sequence. In this way, the number of second verification ZC sequences determined by the receiving end device can be reduced, and the performance consumption of the receiving end device is saved.
  • FIG. 17 another embodiment of the sending device in the embodiment of the present invention includes:
  • the input device 1701, the output device 1702, the processor 1703, and the memory 1704 (wherein the number of processors 1703 in the transmitting device 1700 may be one or more, and one processor 1703 is taken as an example in Fig. 17).
  • the input device 1701, the output device 1702, the processor 1703, and the memory 1704 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1703 is configured to perform the following steps: the sending end device determines the first signal, the sending end device operates in the serving cell, and the first signal includes a first synchronization sequence, where the operating device is configured to perform the following operations:
  • the first synchronization sequence is: a sequence obtained by cyclically shifting a first ZC sequence by a first number of bits, and then multiplying or conjugate by a feature sequence, wherein the special ZC sequence has a root index of +1 or a ZC sequence of -1, the feature sequence and/or the first number of bits corresponding to a cell identifier of the serving cell, the feature sequence being used to distinguish the serving cell from other cells; and transmitting to the receiving device Determining, by the first end signal, the receiving end device according to the first signal; determining a cell identifier of the monthly service cell; determining the feature sequence according to the cell identifier of the monthly service cell And/or the first number of bits; determining the first signal based on the sequence of features and/or the first number of bits
  • the processor 1703 is configured to perform the following steps: the source device determines the second signal, the second signal includes a second synchronization sequence, and the second synchronization sequence is a special ZC sequence. a sequence obtained by cyclic shifting of a second number of bits, the special ZC sequence being a ZC sequence having a root index of +1 or -1, wherein the transmitting device operates in a serving cell
  • the second digit corresponds to the cell identifier of the serving cell
  • the second signal is sent to the receiving device, so that the receiving device synchronizes according to the second signal; and determines a cell identifier of the serving cell; Determining the second digit according to the cell identifier of the serving cell; determining the second signal according to the second digit.
  • FIG. 17 another embodiment of the receiving device in the embodiment of the present invention includes:
  • the input device 1701, the output device 1702, the processor 1703, and the memory 1704 (wherein the number of processors 1703 in the receiving device 1700 may be one or more, and one processor 1703 in FIG. 17 is taken as an example).
  • the input device 1701, the output device 1702, the processor 1703, and the memory 1704 may be connected by a bus or other means, wherein the bus connection is taken as an example in FIG.
  • the processor 1703 is configured to perform the following steps: the receiving end device receives the first signal sent by the sending end device, the receiving end device works in the serving cell, and the first signal includes a first synchronization sequence, the first synchronization sequence is: a sequence in which a special ZC sequence is cyclically shifted by a first number of bits, and then multiplied or conjugated with the feature sequence, the special ZC sequence For a ZC sequence with a root index of +1 or -1, the feature sequence and/or the first digit corresponds to a cell identifier of the serving cell, and the feature sequence is used to distinguish the serving cell from other a cell; synchronizing the first signal; determining an integer frequency offset of the first signal; determining a fractional frequency offset of the first signal; determining not less than one test sequence group, each of the test sequence groups including Detecting a feature sequence and a first test ZC sequence, wherein the first test ZC sequence is a sequence obtained by cyclic shifting of a first ZC sequence by a first
  • the processor 1703 is configured to perform the following steps: the receiving end device receives the second signal sent by the sending end device, the second signal includes a second synchronization sequence, and the second synchronization sequence a sequence obtained after a special ZC sequence is cyclically shifted by a second number of bits, the special ZC sequence being a ZC sequence having a root index of +1 or -1, and the receiving end device operates in a serving cell, where the Two digits corresponding to the cell identifier of the serving cell; synchronizing the second signal; determining an integer frequency offset of the second signal; determining a fractional frequency offset of the second signal; determining not less than one a second test ZC sequence, wherein the second test ZC sequence is a sequence obtained after a special ZC sequence has undergone a cyclic shift of the second check digit; for each of the second test ZC sequences: at a frequency of not less than one And performing frequency compensation on the second synchronization sequence to obtain
  • a base station performs M2M communication with a UE.
  • the base station determines the cell identifier of the serving cell, and determines the feature sequence according to the cell identifier of the serving cell as: a pseudo-random sequence with the cell identifier of the serving cell as a seed; determining that the first digit is: 0. Since the first digit is 0, the base station directly uses the ZC sequence with a root index of 1, multiplies the pseudo random sequence point to obtain a first synchronization sequence, and sends the first signal including the first synchronization sequence to The UE.
  • the signal received by the first receiving module 1401 of the UE is a first signal, and the first signal has a frequency offset compared to the first signal, and the first signal includes a first synchronization sequence.
  • the first integer frequency offset unit 14021 of the UE determines 10 test sequence groups, each test sequence group consisting of a pseudo-random sequence with different cell identifiers as seeds and a ZC sequence with a root index of 1.
  • the first integer frequency offset unit 14021 of the UE performs the following operations: conjugate multiplying the first synchronization sequence using the pseudo-random sequence in the test sequence group; and then not less than one
  • the frequency value is frequency-compensated for the de-characterized first synchronization sequence to obtain a first compensation sequence corresponding to each frequency value; and the first compensation sequence is subjected to sliding correlation using the ZC sequence with the root index of 1 to obtain each
  • the first correlation compensation sequence corresponds to the sliding correlation peak, and determines that the largest sliding correlation peak is the corresponding inspection peak of the test sequence group. Since there are a total of 10 test sequence groups, a total of 10 test peaks can be obtained.
  • the first integer frequency offset unit 14021 of the UE determines that the largest test peak among the 10 test peaks is the first largest correlation peak, and determines the frequency value corresponding to the first maximum correlation peak as the integer frequency offset of the first signal, first The fractional frequency offset unit 14022 determines the first offset of the first maximum correlation peak relative to the start position of the first synchronization sequence as the fractional frequency offset of the first signal.
  • the first check determining unit 14023 of the UE determines a pseudo random sequence in the test sequence group corresponding to the first largest correlation peak, and the first identity determining unit 14024 confirms the seed of the pseudo random sequence as the cell identifier of the serving cell.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect engagement or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明实施例公开了一种同步信号发送方法,包括:发送端设备确定第一信号,所述发送端设备工作于服务小区内,所述第一信号包括第一同步序列,所述第一同步序列为:特殊ZC序列经过第一位数的循环移位,再与特征序列相点乘或共轭相乘后得到的序列,所述特殊ZC序列为根指数为+1或-1的ZC序列,所述特征序列和/或所述第一位数与所述服务小区的小区标识相对应;所述发送端设备向接收端设备发送所述第一信号,使得所述接收端设备根据所述第一信号进行同步。本发明实施例提供的同步信号发送方法可以实现M2M技术中,采用根指数为+1或-1的ZC序列来进行信号同步。本发明实施例还提供了相关的同步信号接收方法、发送端设备与接收端设备。

Description

同歩信号发送方法、 接收方法以 ¾ute关装置
技术领域
本发明涉及通信领域, 尤其涉及同步信号发送方法、接收方法以及相关装 置。 背景技术
随着通信技术的发展, M2M ( Machine to Machine, 物联网)技术在各个 领域均得到了广泛的应用。 在 M2M技术中, 为了降低成本, 接收端设备的晶 振精度有限,接收到的信号与发送端设备发送的原信号相比,存在较大的频率 偏移。因此,发送端设备与接收端设备需要在较大的载波频偏下进行信号同步。 在现阶段的通信领域中,信号同步的方法有很多,以 LTE ( Long Term Evolution, 长期演进) 为例, 由于 ZC ( Zadoff-Chu )序列具有良好的自相关性且幅值稳 定, 所以 LTE中以 ZC序列作为主同步序列进行同步。
在 M2M系统中, 为了提高频谱利用效率, 不同小区可以频率复用实现同 频组网。 在 LTE中, 同步信道釆用复用因子为 3的频率复用, 不同小区使用 不同根指数的 ZC序列作为主同步序列加以区分。 一般地, LTE依靠主同步序 列区分三组小区, 三组小区分别使用根指数为 29、 24、 25的 ZC序列作为主 同步序列, UE根据不同根指数的 ZC序列之间的互相关性确定小区属于哪个 小组。
如果能依照现有技术将具有良好特性的 ZC序列应用到 M2M技术中, 则 可以实现 M2M系统中同频组网下的信号同步。 其中, 现有技术在进行同频组 网时, 为了区分不同的小区, 每个小区的 ZC序列的根指数各不相同。 但是在 M2M技术中, 接收端设备接收到的信号存在较大频偏, 经研究发现, 只有根 指数为 +1或 -1的 ZC序列才能满足存在较大频偏的 M2M的同步需求,而该仅 有的两个根指数不能满足 M2M技术中区分不同小区的需要, 致使 M2M技术 中无法像现有技术那样使用 ZC序列进行同频组网下的信号同步。 其中, 根指 数为 -1的 ZC序列指的是根指数为 1的 ZC序列的共轭序列, 下同。 发明内容
本发明实施例提供了同步信号发送方法、接收方法以及相关装置, 用以实 现在 M2M技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
本发明实施例第一方面提供了一种同步信号发送方法, 包括:
发送端设备确定第一信号, 所述发送端设备工作于服务小区内, 所述第一 信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC序列经过第一位数的 循环移位, 再与特征序列相点乘或共轭相乘后得到的序列, 所述特殊 ZC序列 为根指数为 +1或 -1的 ZC序列, 所述特征序列和 /或所述第一位数与所述服务 小区的小区标识相对应, 所述特征序列用于区分所述服务小区与其他小区; 所述发送端设备向接收端设备发送所述第一信号,使得所述接收端设备根 据所述第一信号进行同步。
结合本发明实施例的第一方面,本发明实施例的第一方面的第一种实现方 式中, 所述发送端设备确定第一信号包括:
所述发送端设备确定所述服务小区的小区标识;
所述发送端设备根据所述服务小区的小区标识, 确定所述特征序列和 /或 所述第一位数;
所述发送端设备根据所述特征序列和 /或所述第一位数, 确定所述第一信 号。
结合本发明实施例的第一方面或第一方面的第一种实现方式,本发明实施 例的第一方面的第二种实现方式中, 所述特征序列包括:
伪随机序列、 Walsh序列、 Hadamard序列、 gold序列、 或 ZC序列。 本发明实施例的第二方面提供了一种同步信号发送方法, 包括: 发送端设备确定第二信号, 所述第二信号包括第二同步序列, 所述第二同 步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 所述特殊 ZC 序列为根指数为 +1或 -1的 ZC序列, 所述发送端设备工作于服务小区内, 所 述第二位数与所述服务小区的小区标识对应;
所述发送端设备向接收端设备发送所述第二信号,使得所述接收端设备根 据所述第二信号进行同步。
结合本发明实施例的第二方面,本发明实施例的第二方面的第一种实现方 式中, 所述发送端设备确定第二信号包括:
所述发送端设备确定所述服务小区的小区标识;
所述发送端设备根据所述服务小区的小区标识, 确定所述第二位数; 所述发送端设备根据所述第二位数, 确定所述第二信号。
本发明实施例第三方面提供了一种同步信号接收方法, 包括:
接收端设备接收发送端设备发送的第一信号,所述接收端设备工作于服务 小区内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC序 列经过第一位数的循环移位,再与所述特征序列相点乘或共轭相乘后得到的序 歹1 J, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述特征序列和 /或所 述第一位数与所述服务小区的小区标识相对应,所述特征序列用于区分所述服 务小区与其他小区;
所述接收端设备对所述第一信号进行同步。
结合本发明实施例的第三方面,本发明实施例的第三方面的第一种实现方 式中, 所述接收端设备对所述第一信号进行同步包括:
所述接收端设备确定所述第一信号的整数频偏;
所述接收端设备确定所述第一信号的小数频偏;
所述接收端设备确定所述服务小区的小区标识。
结合本发明实施例的第三方面的第一种实现方式,本发明实施例的第三方 面的第二种实现方式中, 所述接收端设备确定所述第一信号的整数频偏包括: 所述接收端设备确定不少于一个检验序列组,每个所述检验序列组包括检 验特征序列和第一检验 ZC序列, 所述第一检验 ZC序列为特殊 ZC序列经过 了第一检验位数的循环移位后得到的序列;
对于每个所述检验序列组, 所述接收端设备: 使用所述检验序列组中的检 验特征序列对所述第一同步序列进行去特征化,并以不少于一个的频率值对去 特征化后的第一同步序列进行频率补偿,得到每个所述频率值对应的第一补偿 序列, 使用所述第一检验 ZC序列对每个所述第一补偿序列进行滑动相关, 得 到每个所述第一补偿序列对应的滑动相关峰,将所述每个所述第一补偿序列对 应的滑动相关峰中的最大的滑动相关峰,确定为所述检验序列组对应的检验峰; 所述接收端设备将每个所述检验序列组对应的检验峰中最大的检验峰,确 定为第一最大相关峰;
所述接收端设备将所述第一最大相关峰所对应的频率值的相反数,确定为 所述第一信号的整数频偏。
结合本发明实施例的第三方面的第二种实现方式,本发明实施例的第三方 面的第三种实现方式中, 所述接收端设备确定所述第一信号的小数频偏包括: 所述接收端设备确定所述第一最大相关峰相对于所述第一同步序列的起 始位置的第一偏移, 并根据所述第一偏移计算所述第一信号的小数频偏。
结合本发明实施例的第三方面的第二种实现方式或第三方面的第三种实 现方式, 本发明实施例的第三方面的第四种实现方式中, 所述并确定所述服务 小区的小区标识包括:
所述接收端设备确定所述第一最大相关峰对应的检验特征序列为所述特 征序列, 确定所述第一最大相关峰对应的第一检验位数为所述第一位数;
所述接收端设备根据所述特征序列和 /或所述第一位数, 确定所述服务小 区的小区标 i只。
本发明实施例的第四方面提供了一种同步信号接收方法, 其特征在于, 包 括:
接收端设备接收发送端设备发送的第二信号,所述第二信号包括第二同步 序列, 所述第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序 列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述接收端设备工作于 服务小区内, 所述第二位数与所述服务小区的小区标识对应;
所述接收端设备对所述第二信号进行同步。
结合本发明实施例的第四方面,本发明实施例的第四方面的第一种实现方 式中, 所述接收端设备对所述第二信号进行同步包括:
所述接收端设备确定所述第二信号的整数频偏;
所述接收端设备确定所述第二信号的小数频偏;
所述接收端设备确定所述服务小区的小区标识。
结合本发明实施例的第四方面的第一种实现方式,本发明实施例的第四方 面的第二种实现方式中, 所述接收端设备确定所述第二信号的整数频偏包括: 所述接收端设备确定不少于一个第二检验 ZC序列, 所述第二检验 ZC序 列为特殊 ZC序列经过了第二检验位数的循环移位后得到的序列;
对于每个所述第二检验 ZC序列, 所述接收端设备: 以不少于一个的频率 值对所述第二同步序列进行频率补偿,得到每个所述频率值对应的第二补偿序 列, 使用所述第二检验 ZC序列对每个所述第二补偿序列进行滑动相关, 得到 每个所述第二补偿序列对应的滑动相关峰,将所述每个所述第二补偿序列对应 的滑动相关峰中的最大的滑动相关峰, 确定为所述第二检验 ZC序列对应的检 验峰;
所述接收端设备将每个所述第二检验 ZC序列对应的检验峰中最大的检验 峰, 确定为第二最大相关峰;
所述接收端设备将所述第二最大相关峰所对应的频率值的相反数,确定为 所述第二信号的整数频偏。
结合本发明实施例的第四方面的第二种实现方式,本发明实施例的第四方 面的第三种实现方式中, 所述接收端设备确定所述第二信号的小数频偏包括: 所述接收端设备确定所述第二最大相关峰,相对于所述第二同步序列的起 始位置的第二偏移, 并根据所述第二偏移计算所述第二信号的小数频偏。
结合本发明实施例的第四方面的第二种实现方式或第四的方面的第三种 实现方式, 本发明实施例的第四方面的第四种实现方式中, 所述并确定所述服 务小区的小区标识包括:
所述接收端设备确定所述第二最大相关峰对应的第二检验位数为所述第 二位数;
所述接收端设备根据所述第二位数, 确定所述服务小区的小区标识。
本发明实施例第五方面提供了一种发送端设备, 其特征在于, 包括: 第一确定模块, 用于确定第一信号, 所述发送端设备工作于服务小区内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC序列经过第 一位数的循环移位,再与特征序列相点乘或共轭相乘后得到的序列, 所述特殊
ZC序列为根指数为 +1或 -1的 ZC序列,所述特征序列和 /或所述第一位数与所 述服务小区的小区标识相对应,所述特征序列用于区分所述服务小区与其他小 区;
第一发送模块, 用于向接收端设备发送所述第一信号,使得所述接收端设 备根据所述第一信号进行同步。
结合本发明实施例的第五方面,本发明实施例的第五方面的第一种实现方 式中, 所述第一确定模块包括:
第一标识单元, 用于确定所述服务小区的小区标识;
第一序列单元, 用于根据所述服务小区的小区标识,确定所述特征序列和
/或所述第一位数;
第一信号单元, 用于根据所述特征序列和 /或所述第一位数, 确定所述第 一信号。
本发明实施例的第六方面提供了一种发送端设备, 包括:
第二确定模块, 用于确定第二信号, 所述第二信号包括第二同步序列, 所 述第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 所述 特殊 ZC序列为根指数为 +1或 -1的 ZC序列,所述发送端设备工作于服务小区 内, 所述第二位数与所述服务小区的小区标识对应;
第二发送模块, 用于向接收端设备发送所述第二信号,使得所述接收端设 备根据所述第二信号进行同步。
结合本发明实施例的第六方面,本发明实施例的第六方面的第一种实现方 式中, 所述第二确定模块包括:
第二标识单元, 确定所述服务小区的小区标识;
第二序列单元, 根据所述服务小区的小区标识, 确定所述第二位数; 第二信号单元, 根据所述第二位数, 确定所述第二信号。
本发明实施例的第七方面提供了一种接收端设备, 包括:
第一接收模块, 用于接收发送端设备发送的第一信号, 所述接收端设备工 作于服务小区内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特 殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相点乘或共轭相乘后 得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述特征序列 和 /或所述第一位数与所述服务小区的小区标识相对应, 所述特征序列用于区 分所述良务小区与其他小区;
第一同步模块, 用于对所述第一信号进行同步。
结合本发明实施例的第七方面,本发明实施例的第七方面的第一种实现方 式中, 所述第一同步模块包括:
第一整数频偏单元, 用于确定所述第一信号的整数频偏;
第一小数频偏单元, 用于确定所述第一信号的小数频偏。
结合本发明实施例的第七方面的第一种实现方式,本发明实施例的第七方 面的第二种实现方式中, 所述第一整数频偏单元具体用于:
确定不少于一个检验序列组,每个所述检验序列组包括检验特征序列和第 一检验 ZC序列, 所述第一检验 ZC序列为特殊 ZC序列经过了第一检验位数 的循环移位后得到的序列;
对于每个所述检验序列组:使用所述检验序列组中的检验特征序列对所述 第一同步序列进行去特征化,并以不少于一个的频率值对去特征化后的第一同 步序列进行频率补偿,得到每个所述频率值对应的第一补偿序列,使用所述第 一检验 ZC序列对每个所述第一补偿序列进行滑动相关, 得到每个所述第一补 偿序列对应的滑动相关峰,将所述每个所述第一补偿序列对应的滑动相关峰中 的最大的滑动相关峰, 确定为所述检验序列组对应的检验峰;
将每个所述检验序列组对应的检验峰中最大的检验峰,确定为第一最大相 关峰;
将所述第一最大相关峰所对应的频率值的相反数,确定为所述第一信号的 整数频偏。
结合本发明实施例的第七方面的第二种实现方式,本发明实施例的第七方 面的第三种实现方式中, 所述第一小数频偏单元具体用于:
确定所述第一最大相关峰相对于所述第一同步序列的起始位置的第一偏 移, 并根据所述第一偏移计算所述第一信号的小数频偏。
结合本发明实施例的第七方面的第二种实现方式或第七方面的第三种实 现方式, 本发明实施例的第七方面的第四种实现方式中, 所述第一同步模块还 包括:
第一检验确定单元,用于确定所述第一最大相关峰对应的检验特征序列为 所述特征序列,确定所述第一最大相关峰对应的第一检验位数为所述第一位数; 第一标识确定单元, 用于根据所述特征序列和 /或所述第一位数, 确定所 述月良务小区的小区标识。 本发明实施例的第八方面提供了一种接收端设备, 包括:
第二接收模块, 用于接收发送端设备发送的第二信号, 所述第二信号包括 第二同步序列, 所述第二同步序列为特殊 ZC序列经过第二位数的循环移位后 得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述接收端设 备工作于服务小区内, 所述第二位数与所述服务小区的小区标识对应;
第二同步模块, 用于对所述第二信号进行同步。
结合本发明实施例的第八方面,本发明实施例的第八方面的第一种实现方 式中, 所述第二同步模块包括:
第二整数频偏单元, 用于确定所述第二信号的整数频偏;
第二小数频偏单元, 用于确定所述第二信号的小数频偏。
结合本发明实施例的第八方面的第一种实现方式,本发明实施例的第八方 面的第二种实现方式中, 所述第二整数频偏单元具体用于:
确定不少于一个第二检验 ZC序列, 所述第二检验 ZC序列为特殊 ZC序 列经过了第二检验位数的循环移位后得到的序列;
对于每个所述第二检验 ZC序列: 以不少于一个的频率值对所述第二同步 序列进行频率补偿,得到每个所述频率值对应的第二补偿序列,使用所述第二 检验 ZC序列对每个所述第二补偿序列进行滑动相关, 得到每个所述第二补偿 序列对应的滑动相关峰,将所述每个所述第二补偿序列对应的滑动相关峰中的 最大的滑动相关峰, 确定为所述第二检验 ZC序列对应的检验峰;
将每个所述第二检验 ZC序列对应的检验峰中最大的检验峰, 确定为第二 最大相关峰;
将所述第二最大相关峰所对应的频率值的相反数,确定为所述第二信号的 整数频偏。
结合本发明实施例的第八方面的第二种实现方式,本发明实施例的第八方 面的第三种实现方式中, 所述第二小数频偏单元具体用于:
确定所述第二最大相关峰相对于所述第二同步序列的起始位置的第二偏 移, 并根据所述第二偏移计算所述第二信号的小数频偏。
结合本发明实施例的第八方面的第二种实现方式或第八方面的第三种实 现方式, 本发明实施例的第八方面的第四种实现方式中, 所述第二同步模块还 包括:
第二检验确定单元,用于确定所述第二最大相关峰对应的第二检验位数为 所述第二位数;
第二标识确定单元,用于根据所述第二位数,确定所述服务小区的小区标 识。
本发明提供的同步信号发送方法中,发送端设备确定第一信号, 所述发送 端设备工作于服务小区内, 所述第一信号包括第一同步序列, 所述第一同步序 列为: 特殊 ZC序列经过第一位数的循环移位, 再与特征序列相点乘或共轭相 乘后得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列、 所述特征 序列和 /或所述第一位数与所述服务小区的小区标识相对应; 所述发送端设备 向接收端设备发送所述第一信号,使得所述接收端设备根据所述第一信号进行 同步。其中, 由于本发明实施例中发送端设备发送的第一信号所包括的第一同 步序列由特殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相点乘或 共轭相乘后得到, 所以不同的小区可以通过不同的特征序列来进行区分, 和 / 或通过根指数为 +1或 -1的 ZC序列的不同的循环移位的位数来区分, 无需将 不同小区的 ZC序列的根指数设置为不同值就可以满足区分不同小区的需要, 实现了 M2M技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。 附图说明
图 1为本发明实施例中同步信号发送方法一个实施例流程图;
图 2为本发明实施例中同步信号发送方法另一个实施例流程图;
图 3为本发明实施例中同步信号发送方法另一个实施例流程图;
图 4为本发明实施例中同步信号发送方法另一个实施例流程图;
图 5为本发明实施例中同步信号接收方法一个实施例流程图;
图 6为本发明实施例中同步信号接收方法另一个实施例流程图;
图 7为本发明实施例中同步信号接收方法另一个实施例流程图;
图 8为本发明实施例中同步信号接收方法另一个实施例流程图;
图 9为本发明实施例中发送端设备一个实施例结构图;
图 10为本发明实施例中发送端设备另一个实施例结构图; 图 11为本发明实施例中发送端设备另一个实施例结构图;
图 12为本发明实施例中发送端设备另一个实施例结构图;
图 13为本发明实施例中接收端设备一个实施例结构图;
图 14为本发明实施例中接收端设备另一个实施例结构图;
图 15为本发明实施例中接收端设备另一个实施例结构图;
图 16为本发明实施例中接收端设备另一个实施例结构图;
图 17为本发明实施例中发送端设备或接收端设备另一个实施例结构图。 具体实施方式
本发明实施例提供了同步信号发送方法、接收方法以及相关装置, 以下将 分别进行描述。其中, 本发明实施例中的发送端设备与接收端设备均可指代基 站、 UE、 Relay, 访问接入点、 小站或其它设备, 本发明实施例中不做限定。
本发明实施例提供的同步信号发送方法的基本流程请参阅图 1, 包括: 101、 发送端设备确定第一信号;
发送端设备确定第一信号, 其中, 发送端设备工作于服务小区内, 该第一 信号包括第一同步序列, 第一同步序列为: 特殊 ZC序列经过第一位数的循环 移位,再与该特征序列相点乘或共轭相乘后得到的序列,特征序列用于区分所 述服务小区与其他小区, 其中, 特征序列和 /或第一位数与所述服务小区的小 区标识相对应。
其中, 特殊 ZC序列为根指数为 +1 或 -1 的 ZC序列, 其通项公式为:
Z(n) = eH™(n+1+2ci) L , 或, z(n) =
Figure imgf000011_0001
, 其中, q用于表示任意整 数, L用于表示所述特殊 ZC序列的长度, n的取值范围为 [0, L-l]。
其中, 特殊 ZC序列经过第一位数的循环移位, 再与该特征序列相点乘或 共轭相乘后得到第一同步序列。 为了区分不同小区,每个小区的第一同步序列 应设置为不同。 可以理解地, 只需要将不同小区的特征序列设置为不同, 和 / 或将不同小区的特殊 ZC序列的循环移位的位数设置为不同, 即可实现将不同 小区的第一同步序列设置为不同。 因此本实施例中,服务小区的特征序列与服 务小区的小区标识相对应,使得服务小区的特征序列与其他小区的特征序列不 同; 和 /或, 第一位数与服务小区的小区标识相对应, 使得服务小区中的特殊 zc序列的循环移位的位数与其他小区不同。
其中, 由于循环移位分为左移与右移, 所以可以将向任何一个方向的移位 设置为正。为了便于描述,本申请中统一默认右移时移位的位数为正值。例如, 序列 A为 [1,2,3,4,5,6], 当循环移位的位数为 2时, 经过循环移位的序列 A变 为 [5,6,1,2,3,4], 当循环移位的位数为 -2 时, 经过循环移位的序列 A 变为 [3,4,5,6,1,2]。 特殊 ZC序列经过第一位数的循环移位的含义为: 特殊 ZC序列 经过循环移位, 循环移位的位数为该第一位数。 其中, 特殊 ZC序列经过第一 位数的循环移位, 该第一位数的绝对值应小于该特殊 ZC序列的长度 L, 即该 第一位数的取值范围为 (-L, L ) 中的任意整数。 可以理解的, 当第一位数为 0时, 相当于该特殊 ZC序列没有经过循环移位。
102、 发送端设备向接收端设备发送第一信号。
发送端设备向接收端设备发送第一信号,使得接收端设备根据第一信号进 行同步。接收端设备根据该第一信号进行同步的具体方法将在后面的实施例中 详述, 本实施例中不做限定。
本实施例中,发送端设备确定第一信号, 所述发送端设备工作于服务小区 内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC序列经 过第一位数的循环移位, 再与所述特征序列相点乘或共轭相乘后得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列、 所述特征序列和 /或所述第 一位数与所述服务小区的小区标识相对应;所述发送端设备向接收端设备发送 所述第一信号, 使得所述接收端设备根据所述第一信号进行同步。 其中, 由于 本发明实施例中发送端设备发送的第一信号所包括的第一同步序列由特殊 ZC 序列经过第一位数的循环移位, 再与所述特征序列相点乘或共轭相乘后得到, 所以不同的小区可以通过不同的特征序列来进行区分, 和 /或通过根指数为 + 1 或 -1的 ZC序列的不同的循环移位的位数来区分, 无需将不同小区的 ZC序列 的根指数设置为不同值就可以满足区分不同小区的需要,实现了 M2M技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
图 1所示的实施例给出了本发明提供的同步信号发送方法的基本流程,其 中,发送端设备首先要确定第一信号。 下面的实施例将给出发送端设备确定第 一信号的具体流程, 请参见图 2, 本发明实施例提供的又一种同步信号发送方 法的基本流程包括:
201、 发送端设备确定服务小区的小区标识;
202、发送端设备根据服务小区的小区标识,确定特征序列和 /或第一位数; 特征序列与第一位数中, 至少有一个与服务小区的小区标识相对应。具体 的:
特征序列与该服务小区的小区标识相对应,服务小区的第一位数与其他多 个小区相同且发送端已知该第一位数,则发送端设备根据服务小区的小区标识, 以及特征序列与服务小区的小区标识的对应关系, 确定特征序列;
特征序列、第一位数均与该服务小区的小区标识相对应, 则发送端设备根 据服务小区的小区标识, 以及特征序列、第一位数与服务小区的小区标识的对 应关系, 确定特征序列和第一位数。
203、 发送端设备根据特征序列和 /或第一位数, 确定第一信号;
发送端设备根据特征序列和 /或第一位数, 确定第一同步序列与第一信号。 具体地, 发送端设备确定特殊 ZC序列经过第一位数的循环移位, 再与该特征 序列相点乘或共轭相乘后得到的序列为第一同步序列,并确定包括了该第一同 步序列的第一信号。
204、 发送端设备向接收端设备发送所述第一信号。
发送端设备向接收端设备发送所述第一信号,使得接收端设备根据第一信 号进行同步。接收端设备根据该第一信号进行同步的具体方法将在后面的实施 例中详述, 本实施例中不做限定。
本实施例中,发送端设备确定服务小区的小区标识; 根据服务小区的小区 标识, 确定特征序列和 /或第一位数; 根据特征序列和 /或第一位数, 确定第一 同步序列与第一信号; 向接收端设备发送所述第一信号,使得接收端设备根据 第一信号进行同步。其中, 由于本发明实施例中发送端设备发送的第一信号所 包括的第一同步序列由特殊 ZC序列经过第一位数的循环移位, 再与所述特征 序列相点乘或共轭相乘后得到,所以不同的小区可以通过不同的特征序列来进 行区分, 和 /或通过根指数为 +1或 -1的 ZC序列的不同的循环移位的位数来区 分, 无需将不同小区的 ZC序列的根指数设置为不同值就可以满足区分不同小 区的需要, 实现了 M2M技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号 同步。
其中,特征序列的类型有很多种,包括伪随机序列、 Walsh序列、 Hadamard 序列、 gold序列、 或 ZC序列, 此处不做限定。
特别地, 若特征序列为伪随机序列或 gold序列时, 可以以服务小区的小 区标识为初始种子生成对应的伪随机序列或 gold序列, 实现特征序列与该服 务小区的小区标识相对应。 基本流程, 通过特殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相 点乘或共轭相乘, 实现了对不同小区的区分。 下面的实施例将提供一种新的同 步信号发送方法, 以另一种方式实现了对不同小区的区分。 请参阅图 3, 本发 明实施例提供的另一种同步信号发送方法的基本流程包括:
301、 发送端设备确定第二信号;
发送端设备确定第二信号, 其中, 第二信号包括第二同步序列, 第二同步 序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 特殊 ZC序列为 根指数为 +1或 -1的 ZC序列, 发送端设备工作于服务小区内, 第二位数与服 务小区的小区标识对应。
其中, 特殊 ZC序列经过第二位数的循环移位后, 得到第二同步序列。 为 了区分不同小区, 每个小区的第二同步序列应设置为不同。 可以理解地, 只需 要将不同小区的特殊 ZC序列的循环移位的位数设置为不同, 即可实现将不同 小区的第二同步序列设置为不同。 因此本实施例中, 第二位数与服务小区的小 区标识相对应, 使得服务小区中的特殊 ZC序列的循环移位的位数与其他小区 不同。
302、 发送端设备向接收端设备发送第二信号。
发送端设备向接收端设备发送第二信号,使得接收端设备根据第二信号进 行同步。接收端设备根据第二信号进行同步的具体方法将在后面的实施例中详 述, 本实施例中不做限定。
本实施例中, 发送端设备确定第二信号, 其中, 第二信号包括第二同步序 歹 'J, 第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 特 殊 ZC序列为根指数为 +1或 -1的 ZC序列,发送端设备工作于服务小区内, 第 二位数与服务小区的小区标识对应。 发送端设备向接收端设备发送第二信号, 使得接收端设备根据第二信号进行同步。其中, 由于本发明实施例中发送端设 备发送的第二信号所包括的第二同步序列由特殊 ZC序列经过第二位数的循环 移位后得到, 所以不同的小区可以通过根指数为 +1或 -1的 ZC序列的不同的 循环移位的位数来区分, 无需将不同小区的 ZC序列的根指数设置为不同值就 可以满足区分不同小区的需要, 实现了 M2M技术中, 釆用根指数为 +1 或 -1 的 ZC序列来进行信号同步。
图 3 所示的实施例给出了本发明提供的又一种同步信号发送方法的基本 流程, 其中, 发送端设备首先要确定第二信号。 下面的实施例将给出发送端设 备确定第二信号的具体流程, 请参见图 4, 本发明实施例提供的又一种同步信 号发送方法的基本流程包括:
401、 发送端设备确定服务小区的小区标识;
402、 发送端设备根据服务小区的小区标识, 确定第二位数;
第二位数中与服务小区的小区标识相对应,本实施例中发送端设备在确定 了服务小区的小区标识后,根据服务小区的小区标识, 以及第二位数与小区标 识的对应关系, 确定第二位数。
403、 发送端设备根据第二位数, 确定第二信号;
发送端设备根据第二位数, 确定第二信号。 具体地, 发送端设备确定特殊 ZC序列经过第二位数的循环移位后得到的序列为第二同步序列, 并确定包括 了该第二同步序列的第二信号。
404、 发送端设备向接收端设备发送第二信号。
发送端设备向接收端设备发送第二信号,使得接收端设备根据第二信号进 行同步。接收端设备根据该第二信号进行同步的具体方法将在后面的实施例中 详述, 本实施例中不做限定。
本实施例中,发送端设备确定服务小区的小区标识; 根据服务小区的小区 标识确定第二位数; 根据第二位数确定第二同步序列与第二信号; 向接收端设 备发送所述第二信号, 使得接收端设备根据第二信号进行同步。 其中, 由于本 发明实施例中发送端设备发送的第二信号所包括的第二同步序列由特殊 ZC序 列经过第二位数的循环移位后得到, 所以不同的小区可以通过根指数为 +1 或 -1的 ZC序列的不同的循环移位的位数来区分, 无需将不同小区的 ZC序列的 根指数设置为不同值就可以满足区分不同小区的需要, 实现了 M2M技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
图 1至图 4的实施例中, 均实现了对不同小区的区分, 进而使得发送端设 备可以釆用根指数为 +1或 -1的 ZC序列来进行信号同步。 值得指出的是, 只 有根指数为 +1或 -1的 ZC序列才能满足 M2M的信号同步需求,其原理可以简 单解释如下:
经研究发现, 根指数为 +1或 -1的特殊 ZC序列具有非常好的抗频偏的性 能,其表现在于,无论作用在这样的序列上的频偏值多大,都会存在自相关峰, 在一个序列长度内, 自相关峰有且仅有 1个。 并且, 该自相关峰相对序列起点 的偏移与频偏存在对应关系,因此可以根据自相关峰相对序列起点的偏移来计 算频偏。数学上可以严格证明, 这种自相关峰相对序列起点的偏移与频偏的对 应关系仅对根指数为 +1或 -1的特殊 ZC序列适用。
上面的实施例详细解释了本发明实施例提供的同步信号发送方法,下面的 实施例将提供相应的同步信号接收方法, 其基本流程请参阅图 5, 包括:
501、 接收端设备接收发送端设备发送的第一信号;
接收端设备接收发送端设备发送的第一信号, 其中,接收端设备工作于服 务小区内。
其中, 第一信号中包括第一同步序列, 即: 特殊 ZC序列经过第一位数的 循环移位, 再与特征序列相点乘或共轭相乘后得到的序列。 其中, 特殊 ZC序 列为根指数为 +1或 -1的 ZC序列, 该特征序列用于区分所述服务小区与其他 小区, 该特征序列和 /或第一位数与服务小区的小区标识相对应。
502、 接收端设备对第一信号进行同步。
接收端设备接收到第一信号后,对第一信号进行同步。接收端设备根据该 进行同步的具体方法将在后面的实施例中详述, 本实施例中不做限定。
本实施例中,接收端设备接收发送端设备发送的第一信号, 该接收端设备 工作于服务小区内, 该第一信号包括第一同步序列: 特殊 ZC序列经过第一位 数的循环移位,再与所述特征序列相点乘或共轭相乘后得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列、特征序列和 /或所述第一位数与所述服 务小区的小区标识相对应; 接收端设备对第一信号进行同步。 其中, 由于本发 明实施例中接收端设备接收的第一信号所包括的第一同步序列由特殊 ZC序列 经过第一位数的循环移位,再与所述特征序列相点乘或共轭相乘后得到, 所以 数为 +1或 -1的 ZC序列的不同的循环移位的位数来区分不同的小区, 使得其 接收的不同小区的信号中的 ZC序列的根指数无需为不同值, 实现了 M2M技 术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
一般的,接收端设备对第一信号进行同步, 主要包括确定第一信号的整数 频偏以及小数频偏。下面的实施例中将给出一种较为详细的确定整数频偏与小 数频偏的方法, 请参阅图 6, 其基本流程包括:
601、 接收端设备接收发送端设备发送的第一信号;
602、 接收端设备确定不少于一个检验序列组;
接收端设备确定不少于一个检验序列组, 其中,每个该检验序列组取自该 通信系统内所有小区可能使用到的特征序列与经过循环移位的特殊 ZC序列的 组合。 其中, 每个检验序列组取到的特征序列称为检验特征序列, 每个检验特 征组取到的经过循环移位的特殊 ZC序列称为第一检验 ZC序列, 该第一检验 ZC序列的循环移位的位数为第一检验位数。
对于每个所述检验序列组, 接收端设备均执行步骤 603至 606:
603、 接收端设备使用检验序列组中的检验特征序列对第一同步序列进行 去特征化;
接收端设备使用检验序列组中的检验特征序列对第一同步序列进行去特 征化, 其中, 去特征化的方法与第一同步序列相对应。 例如, 若第一同步序列 由特殊 ZC序列经过第一位数的循环移位、 再与所述特征序列相点乘后得到, 则接收端设备通过使用检验特征序列与第一同步序列共轭相乘来进行去特征 化; 若第一同步序列由特殊 ZC序列经过第一位数的循环移位、 再与所述特征 序列共轭相乘后得到,则接收端设备通过使用检验特征序列与第一同步序列点 乘来进行去特征化。
604、 接收端设备以不少于一个的频率值对去特征化后的第一同步序列进 行频率补偿, 得到每个频率值对应的第一补偿序列; 频率补偿可以通过很多种方法来实现, 例如, 设需要补偿的信号为 Sl, ,···, sn, 需要补偿的频偏值为 ^, 则补偿后的序列 ^2,···^η为,
CSl = ej2^B Sl,(i = l ,n)。 其中, B用于表示信号带宽。 其中, 接收端设备使用的 每个频率值均为该第一信号的信号带宽的整数倍。
优选的,接收端设备可以根据所在的通信系统的频偏的最大经验值, 来确 定接收端使用的进行频率补偿的频率值的取值范围。例如, 当该通信系统的频 偏的最大经验值为 2.7B时,接收端设备使用的进行频率补偿的频率值可以为: -3B, -2B, -1B , 0, IB , 2B, 3B。
605、 接收端设备使用第一检验 ZC序列对每个第一补偿序列进行滑动相 关, 得到每个第一补偿序列对应的滑动相关峰;
接收端设备得到每个频率值对应的第一补偿序列后, 使用第一检验 ZC序 歹 ,对每个第一补偿序列进行滑动相关,得到每个第一补偿序列对应的滑动相 关峰。
606、 接收端设备将每个第一补偿序列对应的滑动相关峰中的最大的滑动 相关峰, 确定为该检验序列组对应的检验峰;
接收端设备得到每个第一补偿序列对应的滑动相关峰,将其中最大的滑动 相关峰, 确定本检验序列组对应的检验峰。
在对所有的检验序列组执行了步骤 603至 606后, 执行步骤 607。
607、 接收端设备将每个检验序列组对应的检验峰中最大的检验峰, 确定 为第一最大相关峰;
接收端设备在对所有的检验序列组执行了步骤 603至 606后,得到了所有 检验序列组对应的检验峰。接收端设备将其中最大的检验峰确定为第一最大相 关峰。
608、 接收端设备将第一最大相关峰所对应的频率值的相反数, 确定为第 一信号的整数频偏;
步骤 604中,接收端设备以不少于一个的频率值对去特征化后的第一同步 序列进行频率补偿。 本步骤中, 接收端设备确定了第一最大相关峰后, 将第一 最大相关峰所对应的频率值的相反数, 确定为第一信号的整数频偏。
609、 接收端设备确定第一最大相关峰相对于该第一同步序列的起始位置 的第一偏移, 并根据该第一偏移计算第一信号的小数频偏;
接收端设备确定了第一最大相关峰后,确定所述第一最大相关峰相对于该 第一同步序列的起始位置的第一偏移,并根据该第一偏移计算第一信号的小数 频偏。
具体的, 第一信号的小数频偏 bl可以由如下公式计算得到:
bl = u X offset^ X B/L。 其中, u为第一信号对应的特殊 ZC序列的根指 数, offset^为第一偏移, 当 offset^为正值时, 表示第一最大相关峰相对第一同 步序列的起始位置向右偏移, 当 offse 为负值时, 表示第一最大相关峰相对第 一同步序列的起始位置向左偏移。 B为所述第一信号的信号带宽, L为所述 第一同步序列的长度。
优选的,在计算得到了第一信号的整数频偏与小数频偏后,接收端设备还 可以获取服务小区的小区标识, 以供后续的信号处理使用。接收端设备获取服 务小区的小区标识包括:
610、 接收端设备确定第一最大相关峰对应的检验特征序列为特征序列, 确定第一最大相关峰对应的第一检验位数为第一位数;
第一同步序列为特征序列与经过第一位数的循环移位的特殊 ZC序列相点 乘或共轭相乘得到, 因此, 只有使用特征序列对第一同步序列进行去特征化, 再使用经过第一位数的循环移位的特殊 ZC序列对去特征化后的第一同步序列 做滑动相关, 才能得到最大的峰值。 因此, 接收端设备确定第一最大相关峰对 应的检验特征序列为特征序列,确定第一最大相关峰对应的第一检验位数为第 一位数。
611、接收端设备根据特征序列和 /或第一位数,确定服务小区的小区标识。 由于特征序列和 /或第一位数与服务小区的小区标识相对应, 所以接收端 设备在确定了特征序列与第一位数后, 可以根据特征序列和 /或所述第一位数 与小区标识的对应关系,确定服务小区的小区标识。接收端设备确定了服务小 区的小区标识后,便可以在后续的信号处理过程中使用该服务小区的小区标识。
本实施例中,接收端设备接收发送端设备发送的第一信号,确定第一信号 的整数频偏与小数频偏, 并确定服务小区的小区标识。 其中, 步骤 602至 608 为确定第一信号的整数频偏的具体方法,步骤 609为确定第一信号的小数频偏 的具体方法, 步骤 610至 611为确定服务小区的小区标识的具体方法。 由于本 发明实施例中接收端设备接收的第一信号所包括的第一同步序列由特殊 ZC序 列经过第一位数的循环移位,再与所述特征序列相点乘或共轭相乘后得到, 所 指数为 +1或 -1的 ZC序列的不同的循环移位的位数来区分不同的小区, 使得 其接收的不同小区的信号中的 ZC序列的根指数无需为不同值, 实现了 M2M 技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
优选的, 在实际应用的某些场景中, 例如接收端设备为基站时, 接收端设 备可以直接获知服务小区的小区标识。 这样, 就可以省略步骤 610与 611, 同 时, 由于特征序列和 /或第一位数与服务小区的小区标识相对应, 接收端设备 可以根据服务小区的小区标识, 以及特征序列和 /或第一位数与小区标识的对 应关系, 确定特征序列和 /或第一位数。 当接收端设备根据服务小区的小区标 识确定了特征序列时, 步骤 603中,接收端设备可以直接使用该特征序列对第 一同步序列进行去特征化;当接收端设备根据服务小区的小区标识确定了第一 位数时, 步骤 605中,接收端设备可以直接使用经过第一位数的循环移位的特 殊 ZC序列对每个第一补偿序列进行滑动相关。 通过这样的方法, 可以减少步 骤 602中接收端设备确定的检验序列组的个数,并减少步骤 603至 606的循环 次数, 节约接收端设备的性能消耗。
图 5、 图 6所示的实施例分别提供了与图 1、 图 2所示的实施例相对应的 同步信号接收方法,下面的实施例将提供与图 3所示的同步信号发送方法对应 的同步信号接收方法, 请参阅图 7, 该方法的基本流程包括:
701、 接收端设备接收发送端设备发送的第二信号;
接收端设备接收发送端设备发送的第二信号, 其中, 第二信号中包括第二 同步序列, 所述第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到 的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述接收端设备工 作于服务小区内, 所述第二位数与所述服务小区的小区标识对应。
702、 接收端设备对第二信号进行同步。
接收端设备接收到第二信号后,对第二信号进行同步。接收端设备根据该 本实施例中,接收端设备接收发送端设备发送的第二信号, 该接收端设备 工作于服务小区内, 该第二信号包括第二同步序列, 所述第二同步序列为: 特 殊 ZC序列经过第二位数的循环移位后得到的序列, 所述特殊 ZC序列为根指 数为 +1或 -1的 ZC序列、 第二位数与所述服务小区的小区标识相对应; 接收 端设备对第一信号进行同步。其中, 由于本发明实施例中接收端设备接收的第 二信号所包括的第二同步序列由特殊 ZC序列经过第二位数的循环移位后得到, 所以接收端设备可以通过根指数为 +1或 -1的 ZC序列的不同的循环移位的位 数来区分不同的小区, 使得其接收的不同小区的信号中的 ZC序列的根指数无 需为不同值, 实现了 M2M技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信 号同步。
一般的,接收端设备对第二信号进行同步, 主要包括确定第二信号的整数 频偏以及小数频偏。下面的实施例中将给出一种较为详细的确定整数频偏与小 数频偏的方法, 请参阅图 8, 其基本流程包括:
801、 接收端设备接收发送端设备发送的第二信号;
802、 接收端设备确定不少于一个第二检验 ZC序列;
接收端设备确定不少于一个第二检验 ZC序列, 该第二检验 ZC序列取自 该通信系统内所有小区可能使用到的经过循环移位的特殊 ZC序列, 该第二检 验 ZC序列为特殊 ZC序列经过了第二检验位数的循环移位后得到的序列。
对于每个所述第二检验 ZC序列, 接收端设备均执行步骤 803至 805:
803、 接收端设备以不少于一个的频率值对所述第二同步序列进行频率补 偿, 得到每个所述频率值对应的第二补偿序列;
频率补偿可以通过很多种方法来实现, 例如, 设需要补偿的信号为 Sl, ,···, sn, 需要补偿的频偏值为 ^, 则补偿后的序列 ^2,···^η为,
CSl =ej2^B Sl,(i = l,'",n)。 其中, B用于表示信号带宽。 其中,接收端设备使用的每个频率值均为该第二信号的信号带宽的整数倍。 优选的,接收端设备可以根据所在的通信系统的频偏的最大经验值, 来确 定接收端使用的进行频率补偿的频率值的取值范围。例如, 当该通信系统的频 偏的最大经验值为 2.7B时,接收端设备使用的进行频率补偿的频率值可以为: -3B, -2B, -1B, 0, IB, 2B, 3B。 804、 接收端设备使用第二检验 ZC序列对每个第二补偿序列进行滑动相 关, 得到每个第二补偿序列对应的滑动相关峰;
接收端设备得到每个频率值对应的第二补偿序列后, 使用第二检验 ZC序 歹 ,对每个第二补偿序列进行滑动相关,得到每个第二补偿序列对应的滑动相 关峰。
805、 接收端设备将每个所述第二补偿序列对应的滑动相关峰中的最大的 滑动相关峰, 确定为第二检验 ZC序列对应的检验峰;
在对所有的第二检验 ZC序列执行了步骤 803至 805后, 执行步骤 806。
806、接收端设备将每个第二检验 ZC序列对应的检验峰中最大的检验峰, 确定为第二最大相关峰;
接收端设备在对所有的第二检验 ZC序列执行了步骤 803至 805后,得到 了所有第二检验 ZC序列对应的检验峰。接收端设备将其中最大的检验峰确定 为第二最大相关峰。
807、 接收端设备将第二最大相关峰所对应的频率值的相反数, 确定为第 二信号的整数频偏;
接收端设备确定了第二最大相关峰后,将第二最大相关峰所对应的频率值, 确定为第二信号的整数频偏。
808、 接收端设备确定第二最大相关峰相对于该第二同步序列的起始位置 的第二偏移, 并根据该第二偏移计算第二信号的小数频偏;
具体的, 第二信号的小数频偏 b2可以由如下公式计算得到:
b2 = u X offset2 x B/L。
其中, u为第一信号对应的特殊 ZC序列的根指数, offset2为第二偏移, 当 offset2为正值时,表示第二最大相关峰相对第二同步序列的起始位置向右偏 移, offset2为负值时, 表示第二最大相关峰相对第二同步序列的起始位置向左 偏移。 B为所述第二信号的信号带宽, L为所述第二同步序列的长度。
优选的,在计算得到了第二信号的整数频偏与小数频偏后,接收端设备还 可以获取服务小区的小区标识, 以供后续的信号处理使用。接收端设备获取服 务小区的小区标识包括:
809、 接收端设备确定第二最大相关峰对应的第二检验位数为第二位数; 第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 因 此, 只有使用特殊 ZC序列经过第二位数的循环移位后得到的序列对第二同步 序列做滑动相关, 才能得到最大的峰值。 因此, 接收端设备确定第二最大相关 峰对应的第二检验位数为第二位数。
810、 接收端设备根据第二位数, 确定所述服务小区的小区标识。
由于第二位数与服务小区的小区标识相对应,所以接收端设备在确定了第 二位数后, 可以根据第二位数与小区标识的对应关系,确定服务小区的小区标 识。接收端设备确定了服务小区的小区标识后,便可以在后续的信号处理过程 中使用该服务小区的小区标识。
本实施例中,接收端设备接收发送端设备发送的第二信号,确定第二信号 的整数频偏与小数频偏, 并确定服务小区的小区标识。 其中, 步骤 802至 807 为确定第一信号的整数频偏的具体方法,步骤 808为确定第一信号的小数频偏 的具体方法, 步骤 809与 810为确定服务小区的小区标识的具体方法。 由于本 发明实施例中接收端设备接收的第二信号所包括的第二同步序列由特殊 ZC序 列经过第二位数的循环移位后得到, 所以接收端设备可以通过根指数为 +1 或 -1的 ZC序列的不同的循环移位的位数来区分不同的小区,使得其接收的不同 小区的信号中的 ZC序列的根指数无需为不同值, 实现了 M2M技术中, 釆用 根指数为 +1或 -1的 ZC序列来进行信号同步。
优选的, 在实际应用的某些场景中, 例如接收端设备为基站时, 接收端设 备可以直接获知服务小区的小区标识。 这样, 就可以省略步骤 809与 810。 同 时, 由于第二位数与服务小区的小区标识相对应,接收端设备可以根据服务小 区的小区标识, 以及第二位数与小区标识的对应关系, 确定该第二位数。 当接 收端设备根据服务小区的小区标识确定了第二位数时, 步骤 802中,接收端设 备可以直接将经过第二位数的循环移位的特殊 ZC序列作为第二检验 ZC序列。 通过这样的方法, 可以减少步骤 802中接收端设备确定的第二检验 ZC序列的 个数, 并减少步骤 803至 805的循环次数, 节约接收端设备的性能消耗。
为了便于理解上述实施例,下面以上述实施例的一个具体应用场景为例进 行描述。
在服务小区内, 一基站与一 UE进行 M2M通信。 该基站确定服务小区的小区标识, 并根据该服务小区的小区标识,确定特 征序列为: 以服务小区的小区标识为种子的伪随机序列;确定第一位数为: 0。 由于第一位数为 0, 所以该基站直接使用根指数为 1的 ZC序列, 与该伪随机 序列点乘,得到第一同步序列, 并将包括了该第一同步序列的第一信号发送给 该 UE。
该 UE接收到的信号为第一信号, 第一信号与第一信号相比存在频偏, 该 第一信号中包括第一同步序列。 该 UE确定 10个检验序列组, 每个检验序列 组由以不同的小区标识为种子的伪随机序列、 与根指数为 1的 ZC序列组成。
对于每个检验序列组, 该 UE执行下述操作: 使用该检验序列组中的伪随 机序列对第一同步序列进行共轭相乘;然后以不少于一个的频率值对去特征化 后的第一同步序列进行频率补偿,得到每个频率值对应的第一补偿序列; 使用 该根指数为 1的 ZC序列对每个第一补偿序列进行滑动相关, 得到每个第一补 偿序列对应的滑动相关峰,并确定其中最大的滑动相关峰为该检验序列组对应 的检验峰。 由于共 10个检验序列组, 所以共可以得到 10个检验峰。
UE确定 10个检验峰中最大的检验峰为第一最大相关峰,并将该第一最大 相关峰对应的频率值确定为第一信号的整数频偏,将第一最大相关峰相对于第 一同步序列的起始位置的第一偏移确定为第一信号的小数频偏。
UE确定该第一最大相关峰对应的检验序列组中伪随机序列的种子、 并将 该种子确认为服务小区的小区标识。
上面的实施例对本发明提供的同步信号发送、接收方法进行了描述, 下面 的实施例将提供相应的发送端设备与接收端设备,用于实现上面的实施例方法。
本发明实施例提供的发送端设备的基本结构请参阅图 9, 主要包括: 第一确定模块 901, 用于确定第一信号。
第一确定模块 901用于确定第一信号, 其中,发送端设备工作于服务小区 内, 该第一信号包括第一同步序列, 第一同步序列为: 特殊 ZC序列经过第一 位数的循环移位,再与该特征序列相点乘或共轭相乘后得到的序列,特征序列 用于区分所述服务小区与其他小区, 其中, 特征序列和 /或第一位数与所述服 务小区的小区标识相对应。
其中, 特殊 ZC序列为根指数为 +1 或 -1 的 ZC序列, 其通项公式为: Z(n) = e-
Figure imgf000025_0001
其中, q用于表示任意整 数, L用于表示所述特殊 ZC序列的长度, n的取值范围为 [0, L-l]。
其中, 特殊 ZC序列经过第一位数的循环移位, 再与该特征序列相点乘或 共轭相乘后得到第一同步序列。 为了区分不同小区,每个小区的第一同步序列 应设置为不同。 可以理解地, 只需要将不同小区的特征序列设置为不同, 和 / 或将不同小区的特殊 ZC序列的循环移位的位数设置为不同, 即可实现将不同 小区的第一同步序列设置为不同。 因此本实施例中,服务小区的特征序列与服 务小区的小区标识相对应,使得服务小区的特征序列与其他小区的特征序列不 同; 和 /或, 第一位数与服务小区的小区标识相对应, 使得服务小区中的特殊 ZC序列的循环移位的位数与其他小区不同。
其中, 由于循环移位分为左移与右移, 所以可以将向任何一个方向的移位 设置为正。为了便于描述,本申请中统一默认右移时移位的位数为正值。例如, 序列 A为 [1,2,3,4,5,6], 当循环移位的位数为 2时, 经过循环移位的序列 A变 为 [5,6,1,2,3,4], 当循环移位的位数为 -2 时, 经过循环移位的序列 A 变为 [3,4,5,6,1,2]。 特殊 ZC序列经过第一位数的循环移位的含义为: 特殊 ZC序列 经过循环移位, 循环移位的位数为该第一位数。 其中, 特殊 ZC序列经过第一 位数的循环移位, 该第一位数的绝对值应小于该特殊 ZC序列的长度 L, 即该 第一位数的取值范围为 (-L, L ) 中的任意整数。 可以理解的, 当第一位数为 0时, 相当于该特殊 ZC序列没有经过循环移位。
第一发送模块 902, 用于向接收端设备发送第一信号, 使得所述接收端设 备根据所述第一信号进行同步。
本实施例中, 第一确定模块 901确定第一信号, 所述发送端设备工作于服 务小区内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC 序列经过第一位数的循环移位,再与所述特征序列相点乘或共轭相乘后得到的 序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列、 所述特征序列和 /或 所述第一位数与所述服务小区的小区标识相对应;第一发送模块向接收端设备 发送所述第一信号, 使得所述接收端设备根据所述第一信号进行同步。 其中, 由于本发明实施例中发送端设备发送的第一信号所包括的第一同步序列由特 殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相点乘或共轭相乘后 得到, 所以不同的小区可以通过不同的特征序列来进行区分, 和 /或通过根指 数为 +1或 -1的 ZC序列的不同的循环移位的位数来区分, 无需将不同小区的 ZC序列的根指数设置为不同值就可以满足区分不同小区的需要,实现了 M2M 技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
图 9所示的实施例给出了本发明提供的发送端设备的基本结构。下面的实 施例将给出发送端设备中第一确定模块的具体结构, 请参见图 10, 本发明实 施例提供的又一种发送端设备的基本结构包括:
第一确定模块 1001, 用于确定第一信号.本实施例中, 第一确定模块 1001 具体包括:
第一标识单元 10011, 用于确定所述服务小区的小区标识;
第一序列单元 10012, 用于根据所述服务小区的小区标识, 确定所述特征 序列和 /或所述第一位数;
特征序列与第一位数中, 至少有一个与服务小区的小区标识相对应。具体 的:
特征序列与该服务小区的小区标识相对应,服务小区的第一位数与其他多 个小区相同且发送端已知该第一位数,则发送端设备根据服务小区的小区标识, 以及特征序列与服务小区的小区标识的对应关系, 确定特征序列;
特征序列、第一位数均与该服务小区的小区标识相对应, 则发送端设备根 据服务小区的小区标识, 以及特征序列、第一位数与服务小区的小区标识的对 应关系, 确定特征序列和第一位数。
第一信号单元 10013,用于根据所述特征序列和 /或所述第一位数,确定所 述第一信号;
第一信号单元 10013根据特征序列和 /或第一位数, 确定第一同步序列与 第一信号。 具体地, 第一信号单元 10013确定特殊 ZC序列经过第一位数的循 环移位,再与该特征序列相点乘或共轭相乘后得到的序列为第一同步序列, 并 确定包括了该第一同步序列的第一信号。
第一发送模块 1002, 用于向接收端设备发送第一信号, 使得所述接收端 设备根据所述第一信号进行同步。
本实施例中, 第一标识单元 10011确定服务小区的小区标识; 第一序列单 元 10012根据服务小区的小区标识, 确定特征序列和 /或第一位数; 第一信号 单元 10013根据特征序列和 /或第一位数, 确定第一同步序列与第一信号; 第 一发送模块 1002向接收端设备发送所述第一信号, 使得接收端设备根据第一 信号进行同步。其中, 由于本发明实施例中发送端设备发送的第一信号所包括 的第一同步序列由特殊 ZC序列经过第一位数的循环移位, 再与所述特征序列 相点乘或共轭相乘后得到,所以不同的小区可以通过不同的特征序列来进行区 分, 和 /或通过根指数为 +1或 -1的 ZC序列的不同的循环移位的位数来区分, 无需将不同小区的 ZC序列的根指数设置为不同值就可以满足区分不同小区的 需要,实现了 M2M技术中,釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
其中,特征序列的类型有很多种,包括伪随机序列、 Walsh序列、 Hadamard 序列、 gold序列、 或 ZC序列, 此处不做限定。
特别地, 若特征序列为伪随机序列或 gold序列时, 可以以服务小区的小 区标识为初始种子生成对应的伪随机序列或 gold序列, 实现特征序列与该服 务小区的小区标识相对应。
图 9与图 10所示的实施例给出了本发明实施例提供的发送端设备的基本 结构, 其中, 发送端设备均通过特殊 ZC序列经过第一位数的循环移位, 再与 所述特征序列相点乘或共轭相乘, 实现了对不同小区的区分。 下面的实施例将 提供一种新的发送端设备, 以另一种方式实现了对不同小区的区分。请参阅图
11, 本发明实施例提供的另一种发送端设备的基本结构包括:
第二确定模块 1101, 用于确定第二信号, 其中, 第二信号包括第二同步 序列, 第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 发送端设备工作于服务小区内, 第二位数与服务小区的小区标识对应。
其中, 特殊 ZC序列经过第二位数的循环移位后, 得到第二同步序列。 为 了区分不同小区, 每个小区的第二同步序列应设置为不同。 可以理解地, 只需 要将不同小区的特殊 ZC序列的循环移位的位数设置为不同, 即可实现将不同 小区的第二同步序列设置为不同。 因此本实施例中, 第二位数与服务小区的小 区标识相对应, 使得服务小区中的特殊 ZC序列的循环移位的位数与其他小区 不同。 第二发送模块 1102, 用于向接收端设备发送所述第二信号, 使得所述接 收端设备根据所述第二信号进行同步。
本实施例中, 第二确定模块 1101确定第二信号, 其中, 第二信号包括第 二同步序列, 第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的 序列, 特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 发送端设备工作于服务小 区内, 第二位数与服务小区的小区标识对应。 第二发送模块 1102向接收端设 备发送第二信号, 使得接收端设备根据第二信号进行同步。 其中, 由于本发明 实施例中发送端设备发送的第二信号所包括的第二同步序列由特殊 ZC序列经 过第二位数的循环移位后得到, 所以不同的小区可以通过根指数为 +1或 -1的 ZC序列的不同的循环移位的位数来区分, 无需将不同小区的 ZC序列的根指 数设置为不同值就可以满足区分不同小区的需要, 实现了 M2M技术中, 釆用 根指数为 +1或 -1的 ZC序列来进行信号同步。
图 11所示的实施例给出了本发明提供的又一种发送端设备的基本结构,。 下面的实施例将给出该发送端设备中的第二确定模块的基本结构, 请参见图 12, 本发明实施例提供的又一种发送端设备的基本结构包括:
第二确定模块 1201,用于确定第二信号。本实施例中,第二确定模块 1201 具体包括:
第二标识单元 12011, 确定所述服务小区的小区标识;
第二序列单元 12012,根据所述服务小区的小区标识,确定所述第二位数; 第二位数中与服务小区的小区标识相对应,本实施例中在确定了服务小区 的小区标识后, 第二序列单元 12012根据服务小区的小区标识, 以及第二位数 与小区标识的对应关系, 确定第二位数。
第二信号单元 12013, 根据所述第二位数, 确定所述第二信号。
第二信号单元 12013根据第二位数, 确定第二信号。 具体地, 第二信号单 元 12013确定特殊 ZC序列经过第二位数的循环移位后得到的序列为第二同步 序列, 并确定包括了该第二同步序列的第二信号。
第二发送模块 1202, 用于向接收端设备发送所述第二信号, 使得所述接 收端设备根据所述第二信号进行同步。
本实施例中, 第二标识单元 12011确定服务小区的小区标识; 第二序列单 元 12012根据服务小区的小区标识确定第二位数;第二信号单元 12013根据第 二位数确定第二同步序列与第二信号; 第二发送模块 1202向接收端设备发送 所述第二信号, 使得接收端设备根据第二信号进行同步。 其中, 由于本发明实 施例中发送端设备发送的第二信号所包括的第二同步序列由特殊 ZC序列经过 第二位数的循环移位后得到,所以不同的小区可以通过根指数为 +1或 -1的 ZC 序列的不同的循环移位的位数来区分, 无需将不同小区的 ZC序列的根指数设 置为不同值就可以满足区分不同小区的需要, 实现了 M2M技术中, 釆用根指 数为 +1或 -1的 ZC序列来进行信号同步。
图 9至图 12所示的实施例详细解释了本发明实施例提供的发送端设备的 结构, 下面的实施例将提供相应的接收端设备, 其基本结构请参阅图 13, 包 括:
第一接收模块 1301, 用于接收发送端设备发送的第一信号, 所述接收端 设备工作于服务小区内,所述第一信号包括第一同步序列所述第一同步序列为: 特殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相点乘或共轭相乘 后得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述特征序 列和 /或所述第一位数与所述服务小区的小区标识相对应, 所述特征序列用于 区分所述月良务小区与其他小区。
第一同步模块 1302, 用于对第一信号进行同步。
本实施例中, 第一接收模块 1301接收发送端设备发送的第一信号, 该接 收端设备工作于服务小区内, 该第一信号包括第一同步序列, 所述第一同步序 列为: 特殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相点乘或共 轭相乘后得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列、特征 序列和 /或所述第一位数与所述服务小区的小区标识相对应; 第一同步模块
1302对第一信号进行同步。 其中, 由于本发明实施例中接收端设备接收的第 一信号所包括的第一同步序列由特殊 ZC序列经过第一位数的循环移位, 再与 所述特征序列相点乘或共轭相乘后得到,所以接收端设备可以通过不同的特征 序列来进行区分不同的小区, 和 /或通过根指数为 +1或 -1的 ZC序列的不同的 循环移位的位数来区分不同的小区, 使得其接收的不同小区的信号中的 ZC序 列的根指数无需为不同值, 实现了 M2M技术中, 釆用根指数为 +1或 -1的 ZC 序列来进行信号同步。
一般的,接收端设备对第一信号进行同步, 主要包括确定第一信号的整数 频偏以及小数频偏。下面的实施例中将给出一种较为详细的可以确定整数频偏 与小数频偏的接收端设备, 请参阅图 14, 其基本结构包括:
第一接收模块 1401, 用于接收发送端设备发送的第一信号。 所述接收端 设备工作于服务小区内, 所述第一信号包括第一同步序列, 所述第一同步序列 为: 特殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相点乘或共轭 相乘后得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述特 征序列和 /或所述第一位数与所述服务小区的小区标识相对应, 所述特征序列 用于区分所述月良务小区与其他小区。
第一同步模块 1402, 用于对第一信号进行同步。 本实施例中, 第一接收 模块 1402具体包括:
第一整数频偏单元 14021, 用于确定所述第一信号的整数频偏; 第一整数频偏单元 14021确定所述第一信号的整数频偏的方法有很多,例 如:
确定不少于一个检验序列组。其中,每个该检验序列组取自该通信系统内 所有小区可能使用到的特征序列与经过循环移位的特殊 ZC序列的组合。每个 检验序列组取到的特征序列称为检验特征序列,每个检验特征组取到的经过循 环移位的特殊 ZC序列称为第一检验 ZC序列, 该第一检验 ZC序列的循环移 位值为第一检验位数。
对于每个所述检验序列组, 第一整数频偏单元 14021执行以下操作: 使用 所述检验序列组中的检验特征序列对所述第一同步序列进行去特征化,并以不 少于一个的频率值对去特征化后的第一同步序列进行频率补偿,得到每个所述 频率值对应的第一补偿序列, 使用所述第一检验 ZC序列对每个所述第一补偿 序列进行滑动相关,得到每个所述第一补偿序列对应的滑动相关峰,将所述每 个所述第一补偿序列对应的滑动相关峰中的最大的滑动相关峰,确定为所述检 验序列组对应的检验峰;
将每个所述检验序列组对应的检验峰中最大的检验峰,确定为第一最大相 关峰; 将所述第一最大相关峰所对应的频率值的相反数,确定为所述第一信号的 整数频偏。
其中,第一整数频偏单元 14021使用检验序列组中的检验特征序列对第一 同步序列进行去特征化,其中,去特征化的方法与第一同步序列相对应。例如, 若第一同步序列由特殊 ZC序列经过第一位数的循环移位、再与所述特征序列 相点乘后得到,则第一整数频偏单元 14021通过使用检验特征序列与第一同步 序列共轭相乘来进行去特征化; 若第一同步序列由特殊 ZC序列经过第一位数 的循环移位、 再与所述特征序列共轭相乘后得到, 则第一整数频偏单元 14021 通过使用检验特征序列与第一同步序列点乘来进行去特征化。
其中,第一整数频偏单元 14021使用的每个频率值均为该第一信号的信号 带宽的整数倍。优选的,接收端设备可以根据所在的通信系统的频偏的最大经 验值, 来确定接收端使用的进行频率补偿的频率值的取值范围。 例如, 当该通 信系统的频偏的最大经验值为 2.7B时, 接收端设备使用的进行频率补偿的频 率值可以为: -3B, -2B, -IB, 0, IB, 2B, 3B。、
第一小数频偏单元 14022, 用于确定所述第一信号的小数频偏。 第一小数 频偏单元 14022确定所述第一信号的小数频偏的方法有很多, 例如:
确定所述第一最大相关峰相对于所述第一同步序列的起始位置的第一偏 移, 并根据所述第一偏移计算所述第一信号的小数频偏。
具体的, 第一信号的小数频偏 bl可以由如下公式计算得到:
bl = u X offset^ X B/L。 其中, u为第一信号对应的特殊 ZC序列的根指 数, offset^为第一偏移, 当 offset^为正值时, 表示第一最大相关峰相对第一同 步序列的起始位置向右偏移, 当 offse 为负值时, 表示第一最大相关峰相对第 一同步序列的起始位置向左偏移。 B为所述第一信号的信号带宽, L为所述 第一同步序列的长度。
优选的, 本实施例中, 第一同步模块 1402还可以包括:
第一检验确定单元 14023, 用于确定所述第一最大相关峰对应的检验特征 序列为所述特征序列,确定所述第一最大相关峰对应的第一检验位数为所述第 一位数;
第一同步序列为特征序列与经过第一位数的循环移位的特殊 ZC序列相点 乘或共轭相乘得到, 因此, 只有使用特征序列对第一同步序列进行去特征化, 再使用经过第一位数的循环移位的特殊 ZC序列对去特征化后的第一同步序列 做滑动相关, 才能得到最大的峰值。 因此, 第一检验确定单元 14023确定第一 最大相关峰对应的检验特征序列为特征序列,确定第一最大相关峰对应的第一 检验位数为第一位数。
第一标识确定单元 14024, 用于根据所述特征序列和 /或所述第一位数,确 定所述良务小区的小区标识。
由于特征序列和 /或第一位数与服务小区的小区标识相对应, 所以第一标 识确定单元 14024在确定了特征序列与第一位数后, 可以根据特征序列和 /或 所述第一位数与小区标识的对应关系,确定服务小区的小区标识。接收端设备 确定了服务小区的小区标识后,便可以在后续的信号处理过程中使用该服务小 区的小区标 i只。
本实施例中, 第一接收模块 1401接收发送端设备发送的第一信号, 第一 整数频偏单元 14021确定第一信号的整数频偏,第一小数频偏单元 14022确定 第一信号的小数频偏, 第一标识确定单元 14024确定服务小区的小区标识。 由 于本发明实施例中接收端设备接收的第一信号所包括的第一同步序列由特殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相点乘或共轭相乘后得 通过根指数为 +1或 -1的 ZC序列的不同的循环移位的位数来区分不同的小区, 使得其接收的不同小区的信号中的 ZC序列的根指数无需为不同值, 实现了 M2M技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
优选的, 在实际应用的某些场景中, 例如接收端设备为基站时, 接收端设 备可以直接获知服务小区的小区标识。 这样, 就可以省略第一检验确定单元 14023与第一标识确定单元 14024, 同时, 由于特征序列和 /或第一位数与服务 小区的小区标识相对应,接收端设备可以根据服务小区的小区标识, 以及特征 序列和 /或第一位数与 d、区标识的对应关系, 确定特征序列和 /或第一位数。 当 接收端设备根据服务小区的小区标识确定了特征序列时,接收端设备可以直接 使用该特征序列对第一同步序列进行去特征化;当接收端设备根据服务小区的 小区标识确定了第一位数时,接收端设备可以直接使用经过第一位数的循环移 位的特殊 ZC序列对每个第一补偿序列进行滑动相关。 通过这样的方法, 可以 减少接收端设备确定的检验序列组的个数, 节约接收端设备的性能消耗。
图 13、 图 14所示的实施例分别提供了与图 9、 图 10所示的实施例相对应 的接收端设备, 下面的实施例将提供与图 11所示的发送端设备对应的接收端 设备, 请参阅图 15, 其基本结构包括:
第二接收模块 1501, 用于接收发送端设备发送的第二信号, 接收端设备 接收发送端设备发送的第二信号。
其中, 第二信号中包括第二同步序列, 所述第二同步序列为特殊 ZC序列 经过第二位数的循环移位后得到的序列,所述特殊 ZC序列为根指数为 +1或 -1 的 ZC序列, 所述接收端设备工作于服务小区内, 所述第二位数与所述服务小 区的小区标识对应。
第二同步模块 1502, 用于对所述第二信号进行同步。
本实施例中, 第二接收模块 1501接收发送端设备发送的第二信号, 该接 收端设备工作于服务小区内, 该第二信号包括第二同步序列, 所述第二同步序 列为: 特殊 ZC序列经过第二位数的循环移位后得到的序列, 所述特殊 ZC序 列为根指数为 +1或 -1的 ZC序列、 第二位数与所述服务小区的小区标识相对 应; 第二同步模块 1502对第一信号进行同步。 其中, 由于本发明实施例中接 收端设备接收的第二信号所包括的第二同步序列由特殊 ZC序列经过第二位数 的循环移位后得到, 所以接收端设备可以通过根指数为 +1或 -1的 ZC序列的 不同的循环移位的位数来区分不同的小区,使得其接收的不同小区的信号中的 ZC序列的根指数无需为不同值, 实现了 M2M技术中, 釆用根指数为 +1或 -1 的 ZC序列来进行信号同步。
一般的,接收端设备对第二信号进行同步, 主要包括确定第二信号的整数 频偏以及小数频偏。下面的实施例中将给出一种较为详细的能够确定整数频偏 与小数频偏的接收端设备, 请参阅图 16, 其基本结构包括:
第二接收模块 1601, 用于接收发送端设备发送的第二信号, 接收端设备 接收发送端设备发送的第二信号。
其中, 发送端设备发送的第二信号中包括第二同步序列, 因此对应的, 第 二信号中包括第二同步序列, 所述第二同步序列为特殊 ZC序列经过第二位数 的循环移位后得到的序列, 所述特殊 ZC序列为根指数为 + 1或 -1的 ZC序列, 所述接收端设备工作于服务小区内,所述第二位数与所述服务小区的小区标识 对应。可以理解的, 第二信号中的第二同步序列与第二信号中的第二同步序列 相比存在偏频值。
第二同步模块 1602, 用于对所述第二信号进行同步。 本实施例中, 第二 同步模块 1602具体包括:
第二整数频偏单元 16021, 用于确定所述第二信号的整数频偏; 其中, 第 二整数频偏单元 16021确定所述第二信号的整数频偏的方法有很多, 例如: 第二整数频偏单元 16021确定不少于一个第二检验 ZC序列, 该第二检验 ZC序列取自该通信系统内所有小区可能使用到的经过循环移位的特殊 ZC序 列, 所述第二检验 ZC序列为特殊 ZC序列经过了第二检验位数的循环移位后 得到的序列。
对于每个所述第二检验 ZC序列,第二整数频偏单元 16021执行以下操作: 以不少于一个的频率值对所述第二同步序列进行频率补偿,得到每个所述频率 值对应的第二补偿序列, 使用所述第二检验 ZC序列对每个所述第二补偿序列 进行滑动相关,得到每个所述第二补偿序列对应的滑动相关峰,将所述每个所 述第二补偿序列对应的滑动相关峰中的最大的滑动相关峰,确定为所述第二检 验 ZC序列对应的检验峰; 其中, 第二整数频偏单元 16021使用的每个频率值 均为该第二信号的信号带宽的整数倍。一般的,第二同步序列存在最大偏频值, 在这样的情况下,接收端设备使用的每个频率值的绝对值均不大于该最大偏频 值。 其中, 偏频值的取值也可以为 0。
第二整数频偏单元 16021将每个所述第二检验 ZC序列对应的检验峰中最 大的检验峰, 确定为第二最大相关峰;
第二整数频偏单元 16021 将所述第二最大相关峰所对应的频率值的相反 数, 确定为所述第二信号的整数频偏。
第二小数频偏单元 16022, 用于确定所述第二信号的小数频偏。 第二小数 频偏单元 1602确定所述第二信号的小数频偏的方法有很多, 例如:
第二小数频偏单元 16022确定第二最大相关峰相对于所述第二同步序列 的起始位置的第二偏移, 并根据第二偏移计算第二信号的小数频偏。 具体的, 第二信号的小数频偏 b2可以由如下公式计算得到:
b2 = u X offset2 X B/L。 其中, u为第一信号对应的特殊 ZC序列的根指 数, offset2为第二偏移, 当 offset2为正值时, 表示第二最大相关峰相对第二同 步序列的起始位置向右偏移, offset2为负值时, 表示第二最大相关峰相对第二 同步序列的起始位置向左偏移。 B为所述第二信号的信号带宽, L为所述第 二同步序列的长度。
优选的, 第二同步模块 1602还可以包括:
第二检验确定单元 16023, 用于确定所述第二最大相关峰对应的第二检验 位数为所述第二位数;
第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 因 此, 只有使用特殊 ZC序列经过第二位数的循环移位后得到的序列对第二同步 序列做滑动相关, 才能得到最大的峰值。 因此, 第二检验确定单元 16023确定 第二最大相关峰对应的第二检验位数为第二位数。
第二标识确定单元 16024, 用于根据所述第二位数, 确定所述服务小区的 小区标识。
由于第二位数与服务小区的小区标识相对应, 所以在确定了第二位数后, 第二标识确定单元 16024可以根据第二位数与小区标识的对应关系,确定服务 小区的小区标识。接收端设备确定了服务小区的小区标识后,便可以在后续的 信号处理过程中使用该服务小区的小区标识。
本实施例中, 第二接收模块 1601接收发送端设备发送的第二信号, 第二 整数频偏单元 16021确定第二信号的整数频偏,第二整数频偏单元 16021确定 第二信号的小数频偏, 第二标识确定单元 16024确定服务小区的小区标识。 由 于本发明实施例中接收端设备接收的第二信号所包括的第二同步序列由特殊 ZC序列经过第二位数的循环移位后得到, 所以接收端设备可以通过根指数为 +1或 -1的 ZC序列的不同的循环移位的位数来区分不同的小区, 使得其接收 的不同小区的信号中的 ZC序列的根指数无需为不同值,实现了 M2M技术中, 釆用根指数为 +1或 -1的 ZC序列来进行信号同步。
优选的, 在实际应用的某些场景中, 例如接收端设备为基站时, 接收端设 备可以直接获知服务小区的小区标识。这样, 就可以省略步骤第二检验确定单 元 16023与第二标识确定单元 16024。 同时, 由于第二位数与服务小区的小区 标识相对应,接收端设备可以根据服务小区的小区标识, 以及第二位数与小区 标识的对应关系,确定该第二位数。 当接收端设备根据服务小区的小区标识确 定了第二位数时, 接收端设备可以直接将经过第二位数的循环移位的特殊 ZC 序列作为第二检验 ZC序列。 通过这样的方法, 可以减少接收端设备确定的第 二检验 ZC序列的个数, 节约接收端设备的性能消耗。
收端设备进行描述。 首先从发送端设备的角度进行描述, 请参阅图 17, 本发 明实施例中的发送端设备另一实施例包括:
输入装置 1701、 输出装置 1702、 处理器 1703和存储器 1704 (其中发送 端设备 1700中的处理器 1703的数量可以一个或多个, 图 17中以一个处理器 1703为例)。 在本发明的一些实施例中, 输入装置 1701、 输出装置 1702、 处 理器 1703和存储器 1704可通过总线或其它方式连接, 其中, 图 17中以通过 总线连接为例。
其中,通过调用存储器 1704存储的操作指令, 处理器 1703用于执行如下 步骤: 发送端设备确定第一信号, 所述发送端设备工作于服务小区内, 所述第 一信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC序列经过第一位数 的循环移位, 再与特征序列相点乘或共轭相乘后得到的序列, 所述特殊 ZC序 列为根指数为 +1或 -1的 ZC序列, 所述特征序列和 /或所述第一位数与所述服 务小区的小区标识相对应, 所述特征序列用于区分所述服务小区与其他小区; 向接收端设备发送所述第一信号,使得所述接收端设备根据所述第一信号进行 同步; 确定所述月良务小区的小区标识; 才艮据所述月良务小区的小区标识, 确定所 述特征序列和 /或所述第一位数; 根据所述特征序列和 /或所述第一位数, 确定 所述第一信号。
或,通过调用存储器 1704存储的操作指令, 处理器 1703用于执行如下步 骤: 发送端设备确定第二信号, 所述第二信号包括第二同步序列, 所述第二同 步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 所述特殊 ZC 序列为根指数为 +1或 -1的 ZC序列, 所述发送端设备工作于服务小区内, 所 述第二位数与所述服务小区的小区标识对应;向接收端设备发送所述第二信号, 使得所述接收端设备根据所述第二信号进行同步;确定所述服务小区的小区标 识; 根据所述服务小区的小区标识, 确定所述第二位数; 根据所述第二位数, 确定所述第二信号。
接下来从接收端设备的角度进行描述, 请仍参阅图 17, 本发明实施例中 的接收端设备另一实施例包括:
输入装置 1701、 输出装置 1702、 处理器 1703和存储器 1704 (其中接收 端设备 1700中的处理器 1703的数量可以一个或多个, 图 17中以一个处理器 1703为例)。 在本发明的一些实施例中, 输入装置 1701、 输出装置 1702、 处 理器 1703和存储器 1704可通过总线或其它方式连接, 其中, 图 17中以通过 总线连接为例。
其中,通过调用存储器 1704存储的操作指令, 处理器 1703用于执行如下 步骤: 接收端设备接收发送端设备发送的第一信号, 所述接收端设备工作于服 务小区内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC 序列经过第一位数的循环移位,再与所述特征序列相点乘或共轭相乘后得到的 序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述特征序列和 /或 所述第一位数与所述服务小区的小区标识相对应,所述特征序列用于区分所述 服务小区与其他小区; 对所述第一信号进行同步; 确定所述第一信号的整数频 偏; 确定所述第一信号的小数频偏; 确定不少于一个检验序列组, 每个所述检 验序列组包括检验特征序列和第一检验 ZC序列, 所述第一检验 ZC序列为特 殊 ZC序列经过了第一检验位数的循环移位后得到的序列; 对于每个所述检验 序列组:使用所述检验序列组中的检验特征序列对所述第一同步序列进行去特 征化, 并以不少于一个的频率值对去特征化后的第一同步序列进行频率补偿, 得到每个所述频率值对应的第一补偿序列, 使用所述第一检验 ZC序列对每个 所述第一补偿序列进行滑动相关,得到每个所述第一补偿序列对应的滑动相关 峰, 将所述每个所述第一补偿序列对应的滑动相关峰中的最大的滑动相关峰, 确定为所述检验序列组对应的检验峰;将每个所述检验序列组对应的检验峰中 最大的检验峰,确定为第一最大相关峰; 将所述第一最大相关峰所对应的频率 值,确定为所述第一信号的整数频偏; 确定所述第一最大相关峰相对于所述第 一同步序列的起始位置的第一偏移,并将所述第一偏移确定为所述第一信号的 小数频偏; 确定所述第一最大相关峰对应的检验特征序列为所述特征序列,确 定所述第一最大相关峰对应的第一检验位数为所述第一位数;根据所述特征序 列和 /或所述第一位数, 确定所述服务小区的小区标识。
或,通过调用存储器 1704存储的操作指令, 处理器 1703用于执行如下步 骤: 接收端设备接收发送端设备发送的第二信号, 所述第二信号包括第二同步 序列, 所述第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序 列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述接收端设备工作于 服务小区内, 所述第二位数与所述服务小区的小区标识对应; 对所述第二信号 进行同步; 确定所述第二信号的整数频偏; 确定所述第二信号的小数频偏; 确 定不少于一个第二检验 ZC序列, 所述第二检验 ZC序列为特殊 ZC序列经过 了第二检验位数的循环移位后得到的序列; 对于每个所述第二检验 ZC序列: 以不少于一个的频率值对所述第二同步序列进行频率补偿,得到每个所述频率 值对应的第二补偿序列, 使用所述第二检验 ZC序列对每个所述第二补偿序列 进行滑动相关,得到每个所述第二补偿序列对应的滑动相关峰,将所述每个所 述第二补偿序列对应的滑动相关峰中的最大的滑动相关峰,确定为所述第二检 验 ZC序列对应的检验峰; 将每个所述第二检验 ZC序列对应的检验峰中最大 的检验峰, 确定为第二最大相关峰; 将所述第二最大相关峰所对应的频率值, 确定为所述第二信号的整数频偏。确定所述第二最大相关峰,相对于所述第二 同步序列的起始位置的第二偏移,并将所述第二偏移确定为所述第二信号的小 数频偏; 确定所述第二最大相关峰对应的第二检验位数为所述第二位数; 根据 所述第二位数, 确定所述服务小区的小区标识。
为了便于理解上述实施例,下面以上述实施例的一个具体应用场景为例进 行描述。
在服务小区内, 一基站与一 UE进行 M2M通信。
该基站确定服务小区的小区标识, 并根据该服务小区的小区标识,确定特 征序列为: 以服务小区的小区标识为种子的伪随机序列;确定第一位数为: 0。 由于第一位数为 0, 所以该基站直接使用根指数为 1的 ZC序列, 与该伪随机 序列点乘,得到第一同步序列, 并将包括了该第一同步序列的第一信号发送给 该 UE。
该 UE的第一接收模块 1401接收到的信号为第一信号, 第一信号与第一 信号相比存在频偏, 该第一信号中包括第一同步序列。 该 UE的第一整数频偏 单元 14021确定 10个检验序列组, 每个检验序列组由以不同的小区标识为种 子的伪随机序列、 与根指数为 1的 ZC序列组成。
对于每个检验序列组, 该 UE的第一整数频偏单元 14021执行下述操作: 使用该检验序列组中的伪随机序列对第一同步序列进行共轭相乘;然后以不少 于一个的频率值对去特征化后的第一同步序列进行频率补偿,得到每个频率值 对应的第一补偿序列; 使用该根指数为 1的 ZC序列对每个第一补偿序列进行 滑动相关,得到每个第一补偿序列对应的滑动相关峰, 并确定其中最大的滑动 相关峰为该检验序列组对应的检验峰。 由于共 10个检验序列组, 所以共可以 得到 10个检验峰。
UE的第一整数频偏单元 14021确定 10个检验峰中最大的检验峰为第一最 大相关峰, 并将该第一最大相关峰对应的频率值确定为第一信号的整数频偏, 第一小数频偏单元 14022将第一最大相关峰相对于第一同步序列的起始位置 的第一偏移确定为第一信号的小数频偏。
UE的第一检验确定单元 14023确定该第一最大相关峰对应的检验序列组 中伪随机序列,第一标识确定单元 14024将该伪随机序列的种子确认为服务小 区的小区标 i只。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述 的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方 法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另 外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接辆合或通信连接可以是通过一些接口, 装置或单元的间接辆合或通信连接, 可以是电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以釆用硬件的形式实现,也可以釆用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全 部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述 的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以 存储程序代码的介质。
以上所述, 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽 管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理 解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分 技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱 离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种同步信号发送方法, 其特征在于, 包括:
发送端设备确定第一信号, 所述发送端设备工作于服务小区内, 所述第一 信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC序列经过第一位数的 循环移位, 再与特征序列相点乘或共轭相乘后得到的序列, 所述特殊 ZC序列 为根指数为 +1或 -1的 ZC序列, 所述特征序列和 /或所述第一位数与所述服务 小区的小区标识相对应, 所述特征序列用于区分所述服务小区与其他小区; 所述发送端设备向接收端设备发送所述第一信号,使得所述接收端设备根 据所述第一信号进行同步。
2、 根据权利要求 1所述的同步信号发送方法, 其特征在于, 所述发送端 设备确定第一信号包括:
所述发送端设备确定所述服务小区的小区标识;
所述发送端设备根据所述服务小区的小区标识, 确定所述特征序列和 /或 所述第一位数;
所述发送端设备根据所述特征序列和 /或所述第一位数, 确定所述第一信 号。
3、 根据权利要求 1或 2所述的同步信号发送方法, 其特征在于, 所述特 征序列包括:
伪随机序列、 Walsh序列、 Hadamard序列、 gold序列、 或 ZC序列。
4、 一种同步信号发送方法, 其特征在于, 包括:
发送端设备确定第二信号, 所述第二信号包括第二同步序列, 所述第二同 步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 所述特殊 ZC 序列为根指数为 +1或 -1的 ZC序列, 所述发送端设备工作于服务小区内, 所 述第二位数与所述服务小区的小区标识对应;
所述发送端设备向接收端设备发送所述第二信号,使得所述接收端设备根 据所述第二信号进行同步。
5、 根据权利要求 4所述的同步信号发送方法, 其特征在于, 所述发送端 设备确定第二信号包括:
所述发送端设备确定所述服务小区的小区标识; 所述发送端设备根据所述服务小区的小区标识, 确定所述第二位数; 所述发送端设备根据所述第二位数, 确定所述第二信号。
6、 一种同步信号接收方法, 其特征在于, 包括:
接收端设备接收发送端设备发送的第一信号,所述接收端设备工作于服务 小区内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC序 列经过第一位数的循环移位,再与所述特征序列相点乘或共轭相乘后得到的序 歹1 J, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述特征序列和 /或所 述第一位数与所述服务小区的小区标识相对应,所述特征序列用于区分所述服 务小区与其他小区;
所述接收端设备对所述第一信号进行同步。
7、 根据权利要求 6所述的同步信号接收方法, 其特征在于, 所述接收端 设备对所述第一信号进行同步包括:
所述接收端设备确定所述第一信号的整数频偏;
所述接收端设备确定所述第一信号的小数频偏;
所述接收端设备确定所述服务小区的小区标识。
8、 根据权利要求 7所述的同步信号接收方法, 其特征在于, 所述接收端 设备确定所述第一信号的整数频偏包括:
所述接收端设备确定不少于一个检验序列组,每个所述检验序列组包括检 验特征序列和第一检验 ZC序列, 所述第一检验 ZC序列为特殊 ZC序列经过 了第一检验位数的循环移位后得到的序列;
对于每个所述检验序列组, 所述接收端设备: 使用所述检验序列组中的检 验特征序列对所述第一同步序列进行去特征化,并以不少于一个的频率值对去 特征化后的第一同步序列进行频率补偿,得到每个所述频率值对应的第一补偿 序列, 使用所述第一检验 ZC序列对每个所述第一补偿序列进行滑动相关, 得 到每个所述第一补偿序列对应的滑动相关峰,将所述每个所述第一补偿序列对 应的滑动相关峰中的最大的滑动相关峰,确定为所述检验序列组对应的检验峰; 所述接收端设备将每个所述检验序列组对应的检验峰中最大的检验峰,确 定为第一最大相关峰;
所述接收端设备将所述第一最大相关峰所对应的频率值的相反数,确定为 所述第一信号的整数频偏。
9、 根据权利要求 8所述的同步信号接收方法, 其特征在于, 所述接收端 设备确定所述第一信号的小数频偏包括:
所述接收端设备确定所述第一最大相关峰相对于所述第一同步序列的起 始位置的第一偏移, 并根据所述第一偏移计算所述第一信号的小数频偏。
10、 根据权利要求 8或 9所述的同步信号接收方法, 其特征在于, 所述并 确定所述服务小区的小区标识包括:
所述接收端设备确定所述第一最大相关峰对应的检验特征序列为所述特 征序列, 确定所述第一最大相关峰对应的第一检验位数为所述第一位数; 所述接收端设备根据所述特征序列和 /或所述第一位数, 确定所述服务小 区的小区标 i只。
11、 一种同步信号接收方法, 其特征在于, 包括:
接收端设备接收发送端设备发送的第二信号,所述第二信号包括第二同步 序列, 所述第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序 列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述接收端设备工作于 服务小区内, 所述第二位数与所述服务小区的小区标识对应;
所述接收端设备对所述第二信号进行同步。
12、 根据权利要求 11所述的同步信号接收方法, 其特征在于, 所述接收 端设备对所述第二信号进行同步包括:
所述接收端设备确定所述第二信号的整数频偏;
所述接收端设备确定所述第二信号的小数频偏;
所述接收端设备确定所述服务小区的小区标识。
13、 根据权利要求 12所述的同步信号接收方法, 其特征在于, 所述接收 端设备确定所述第二信号的整数频偏包括:
所述接收端设备确定不少于一个第二检验 ZC序列, 所述第二检验 ZC序 列为特殊 ZC序列经过了第二检验位数的循环移位后得到的序列;
对于每个所述第二检验 ZC序列, 所述接收端设备: 以不少于一个的频率 值对所述第二同步序列进行频率补偿,得到每个所述频率值对应的第二补偿序 列, 使用所述第二检验 ZC序列对每个所述第二补偿序列进行滑动相关, 得到 每个所述第二补偿序列对应的滑动相关峰,将所述每个所述第二补偿序列对应 的滑动相关峰中的最大的滑动相关峰, 确定为所述第二检验 ZC序列对应的检 验峰;
所述接收端设备将每个所述第二检验 ZC序列对应的检验峰中最大的检验 峰, 确定为第二最大相关峰;
所述接收端设备将所述第二最大相关峰所对应的频率值的相反数,确定为 所述第二信号的整数频偏。
14、 根据权利要求 13所述的同步信号接收方法, 其特征在于, 所述接收 端设备确定所述第二信号的小数频偏包括:
所述接收端设备确定所述第二最大相关峰,相对于所述第二同步序列的起 始位置的第二偏移, 并根据所述第二偏移计算所述第二信号的小数频偏。
15、 根据权利要求 13或 14所述的同步信号接收方法, 其特征在于, 所述 并确定所述服务小区的小区标识包括:
所述接收端设备确定所述第二最大相关峰对应的第二检验位数为所述第 二位数;
所述接收端设备根据所述第二位数, 确定所述服务小区的小区标识。
16、 一种发送端设备, 其特征在于, 包括:
第一确定模块, 用于确定第一信号, 所述发送端设备工作于服务小区内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特殊 ZC序列经过第 一位数的循环移位,再与特征序列相点乘或共轭相乘后得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列,所述特征序列和 /或所述第一位数与所 述服务小区的小区标识相对应,所述特征序列用于区分所述服务小区与其他小 区;
第一发送模块, 用于向接收端设备发送所述第一信号,使得所述接收端设 备根据所述第一信号进行同步。
17、 根据权利要求 16所述的发送端设备, 其特征在于, 所述第一确定模 块包括:
第一标识单元, 用于确定所述服务小区的小区标识;
第一序列单元, 用于根据所述服务小区的小区标识,确定所述特征序列和 /或所述第一位数;
第一信号单元, 用于根据所述特征序列和 /或所述第一位数, 确定所述第 一信号。
18、 一种发送端设备, 其特征在于, 包括:
第二确定模块, 用于确定第二信号, 所述第二信号包括第二同步序列, 所 述第二同步序列为特殊 ZC序列经过第二位数的循环移位后得到的序列, 所述 特殊 ZC序列为根指数为 +1或 -1的 ZC序列,所述发送端设备工作于服务小区 内, 所述第二位数与所述服务小区的小区标识对应;
第二发送模块, 用于向接收端设备发送所述第二信号,使得所述接收端设 备根据所述第二信号进行同步。
19、 根据权利要求 18所述发送端设备, 其特征在于, 所述第二确定模块 包括:
第二标识单元, 确定所述服务小区的小区标识;
第二序列单元, 根据所述服务小区的小区标识, 确定所述第二位数; 第二信号单元, 根据所述第二位数, 确定所述第二信号。
20、 一种接收端设备, 其特征在于, 包括:
第一接收模块, 用于接收发送端设备发送的第一信号, 所述接收端设备工 作于服务小区内, 所述第一信号包括第一同步序列, 所述第一同步序列为: 特 殊 ZC序列经过第一位数的循环移位, 再与所述特征序列相点乘或共轭相乘后 得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述特征序列 和 /或所述第一位数与所述服务小区的小区标识相对应, 所述特征序列用于区 分所述良务小区与其他小区;
第一同步模块, 用于对所述第一信号进行同步。
21、 根据权利要求 20所述的接收端设备, 其特征在于, 所述第一同步模 块包括:
第一整数频偏单元, 用于确定所述第一信号的整数频偏;
第一小数频偏单元, 用于确定所述第一信号的小数频偏。
22、 根据权利要求 21所述的接收端设备, 其特征在于, 所述第一整数频 偏单元具体用于: 确定不少于一个检验序列组,每个所述检验序列组包括检验特征序列和第 一检验 ZC序列, 所述第一检验 ZC序列为特殊 ZC序列经过了第一检验位数 的循环移位后得到的序列;
对于每个所述检验序列组:使用所述检验序列组中的检验特征序列对所述 第一同步序列进行去特征化,并以不少于一个的频率值对去特征化后的第一同 步序列进行频率补偿,得到每个所述频率值对应的第一补偿序列,使用所述第 一检验 ZC序列对每个所述第一补偿序列进行滑动相关, 得到每个所述第一补 偿序列对应的滑动相关峰,将所述每个所述第一补偿序列对应的滑动相关峰中 的最大的滑动相关峰, 确定为所述检验序列组对应的检验峰;
将每个所述检验序列组对应的检验峰中最大的检验峰,确定为第一最大相 关峰;
将所述第一最大相关峰所对应的频率值的相反数,确定为所述第一信号的 整数频偏。
23、 根据权利要求 22所述的接收端设备, 其特征在于, 所述第一小数频 偏单元具体用于:
确定所述第一最大相关峰相对于所述第一同步序列的起始位置的第一偏 移, 并根据所述第一偏移计算所述第一信号的小数频偏。
24、 根据权利要求 22或 23所述的接收端设备, 其特征在于, 所述第一同 步模块还包括:
第一检验确定单元,用于确定所述第一最大相关峰对应的检验特征序列为 所述特征序列,确定所述第一最大相关峰对应的第一检验位数为所述第一位数; 第一标识确定单元, 用于根据所述特征序列和 /或所述第一位数, 确定所 述月良务小区的小区标识。
25、 一种接收端设备, 其特征在于, 包括:
第二接收模块, 用于接收发送端设备发送的第二信号, 所述第二信号包括 第二同步序列, 所述第二同步序列为特殊 ZC序列经过第二位数的循环移位后 得到的序列, 所述特殊 ZC序列为根指数为 +1或 -1的 ZC序列, 所述接收端设 备工作于服务小区内, 所述第二位数与所述服务小区的小区标识对应;
第二同步模块, 用于对所述第二信号进行同步。
26、 根据权利要求 25所述的接收端设备, 其特征在于, 所述第二同步模 块包括:
第二整数频偏单元, 用于确定所述第二信号的整数频偏;
第二小数频偏单元, 用于确定所述第二信号的小数频偏。
27、 根据权利要求 26所述的接收端设备, 其特征在于, 所述第二整数频 偏单元具体用于:
确定不少于一个第二检验 ZC序列, 所述第二检验 ZC序列为特殊 ZC序 列经过了第二检验位数的循环移位后得到的序列;
对于每个所述第二检验 ZC序列: 以不少于一个的频率值对所述第二同步 序列进行频率补偿,得到每个所述频率值对应的第二补偿序列,使用所述第二 检验 ZC序列对每个所述第二补偿序列进行滑动相关, 得到每个所述第二补偿 序列对应的滑动相关峰,将所述每个所述第二补偿序列对应的滑动相关峰中的 最大的滑动相关峰, 确定为所述第二检验 ZC序列对应的检验峰;
将每个所述第二检验 ZC序列对应的检验峰中最大的检验峰, 确定为第二 最大相关峰;
将所述第二最大相关峰所对应的频率值的相反数,确定为所述第二信号的 整数频偏。
28、 根据权利要求 27所述的接收端设备, 其特征在于, 所述第二小数频 偏单元具体用于:
确定所述第二最大相关峰相对于所述第二同步序列的起始位置的第二偏 移, 并根据所述第二偏移计算所述第二信号的小数频偏。
29、 根据权利要求 27或 28所述的同步信号接收方法, 其特征在于, 所述 第二同步模块还包括:
第二检验确定单元,用于确定所述第二最大相关峰对应的第二检验位数为 所述第二位数;
第二标识确定单元,用于根据所述第二位数,确定所述服务小区的小区标
PCT/CN2014/084721 2014-08-19 2014-08-19 同步信号发送方法、接收方法以及相关装置 WO2016026085A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14900070.5A EP3197216B1 (en) 2014-08-19 2014-08-19 Synchronization signal transmitting method, receiving method, and related device
PCT/CN2014/084721 WO2016026085A1 (zh) 2014-08-19 2014-08-19 同步信号发送方法、接收方法以及相关装置
CN201480031645.XA CN105519212B (zh) 2014-08-19 2014-08-19 同步信号发送方法、接收方法以及相关装置
US15/436,510 US10070404B2 (en) 2014-08-19 2017-02-17 Synchronization signal sending method, synchronization signal receiving method, and related apparatuses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/084721 WO2016026085A1 (zh) 2014-08-19 2014-08-19 同步信号发送方法、接收方法以及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/436,510 Continuation US10070404B2 (en) 2014-08-19 2017-02-17 Synchronization signal sending method, synchronization signal receiving method, and related apparatuses

Publications (1)

Publication Number Publication Date
WO2016026085A1 true WO2016026085A1 (zh) 2016-02-25

Family

ID=55350078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084721 WO2016026085A1 (zh) 2014-08-19 2014-08-19 同步信号发送方法、接收方法以及相关装置

Country Status (4)

Country Link
US (1) US10070404B2 (zh)
EP (1) EP3197216B1 (zh)
CN (1) CN105519212B (zh)
WO (1) WO2016026085A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108289070B (zh) 2017-01-09 2020-12-11 电信科学技术研究院 一种同步序列的发送方法、同步检测方法及装置
US10341946B2 (en) * 2017-05-05 2019-07-02 Qualcomm Incorporated Frequency scan in NR wireless communication
TWI723248B (zh) * 2018-02-09 2021-04-01 大陸商電信科學技術研究院有限公司 一種同步序列的發送方法、同步檢測方法及裝置
CN110492969B (zh) * 2018-05-11 2022-04-29 中兴通讯股份有限公司 信号发送、接收方法及装置
US11224088B2 (en) * 2018-07-02 2022-01-11 Qualcomm Incorporated Beam sweeping during an on-period of a DRX cycle
CN111711981B (zh) * 2019-03-18 2021-09-17 大唐移动通信设备有限公司 一种时间同步方法及网络节点
CN112688895A (zh) * 2019-10-17 2021-04-20 联发科技(新加坡)私人有限公司 非陆地网络通信中的随机接入信道前导码设计的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479951A (zh) * 2006-04-27 2009-07-08 德克萨斯仪器股份有限公司 在无线通信系统中分配参考信号的方法和装置
CN102857457A (zh) * 2011-06-30 2013-01-02 深圳市云海通讯股份有限公司 一种tdd-lte下行同步方法
CN103178913A (zh) * 2013-03-18 2013-06-26 东南大学 一种lte中zc参考序列参数估计方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075881A2 (en) * 2006-12-19 2008-06-26 Lg Electronics Inc. Sequence generating method for efficient detection and method for transmitting and receiving signals using the same
KR101481522B1 (ko) * 2008-06-18 2015-01-21 엘지전자 주식회사 물리 계층 id 정보 전달 방법
EP2406978B1 (en) * 2009-08-26 2012-11-28 Huawei Technologies Co., Ltd. Method for generating DFT coefficients
CN102148785B (zh) * 2010-02-05 2014-03-12 中兴通讯股份有限公司 一种lte系统中主同步信号检测与序列生成方法及装置
CN103929825A (zh) * 2014-04-30 2014-07-16 电子科技大学 基于zc序列的多用户检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479951A (zh) * 2006-04-27 2009-07-08 德克萨斯仪器股份有限公司 在无线通信系统中分配参考信号的方法和装置
CN102857457A (zh) * 2011-06-30 2013-01-02 深圳市云海通讯股份有限公司 一种tdd-lte下行同步方法
CN103178913A (zh) * 2013-03-18 2013-06-26 东南大学 一种lte中zc参考序列参数估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLL, MALIK MUHAMMAD USMAN ET AL.: "Robust synchronization for OFDM employing Zadoff-Chu sequence", 2012 46TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS, 23 March 2012 (2012-03-23), pages 1 - 6, XP032241458, DOI: doi:10.1109/CISS.2012.6310837 *

Also Published As

Publication number Publication date
EP3197216A1 (en) 2017-07-26
US20170164308A1 (en) 2017-06-08
US10070404B2 (en) 2018-09-04
EP3197216A4 (en) 2017-11-22
EP3197216B1 (en) 2018-10-31
CN105519212A (zh) 2016-04-20
CN105519212B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2016026085A1 (zh) 同步信号发送方法、接收方法以及相关装置
TWI434537B (zh) 在蜂巢式通信系統中用於單元群組偵測之次要同步序列
CN107959922B (zh) 一种检测D2D中主sidelink同步信号的方法及装置
US8509267B2 (en) Synchronization transmissions in a wireless communication system
EP2100402B1 (en) Apparatus, methods and computer program products providing limited use of zadoff-chu sequences in pilot or preamble signals
WO2017070944A1 (zh) 信号发送设备、接收设备以及符号定时同步的方法和系统
CN109391403B (zh) 用于无线信号的发送和接收的方法和装置
JP2010516132A5 (zh)
CN106161317A (zh) 一种同步方法及装置
JP5612224B2 (ja) プライマリ同期信号検出方法および装置
TW200832986A (en) Cell ID detection in cellular communication systems
CN102724158B (zh) 多输入多输出正交频分复用系统时频同步方法
WO2015034309A1 (ko) 고주파 대역을 지원하는 무선 접속 시스템에서 단계별 상향링크 동기 신호 검출 방법 및 장치
WO2018171507A1 (zh) 一种收发物理随机接入信道前导码序列的方法及装置
WO2016026086A1 (zh) 同步信号发送装置、接收装置及方法与系统
CN110402552B (zh) 具有用于低复杂度小区检测的同步信号序列结构的方法和装置
WO2012171407A1 (zh) 一种确定时间同步位置的方法及设备
CN114731701B (zh) 一种序列检测方法及设备
KR20200015550A (ko) 하나 이상의 통신 타겟에 이용될 복수의 동기화 신호 시퀀스의 세트를 확립하기 위한 방법 및 장치
WO2015149352A1 (zh) 异步tdd系统相位同步方法和装置
CN103152307B (zh) 宽带无线通信系统中高精度时频同步方法
CN110546909B (zh) 用于传送同步信号的方法和设备
TWI280003B (en) System and method for transmission diversity status detection
KR101421988B1 (ko) Lte 시스템에서 하향링크 동기화 방법
TW201306625A (zh) 基地台搜尋裝置及其搜尋方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014900070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900070

Country of ref document: EP