WO2016024677A1 - Rf 코일부 및 이를 포함하는 자기공명영상 시스템 - Google Patents

Rf 코일부 및 이를 포함하는 자기공명영상 시스템 Download PDF

Info

Publication number
WO2016024677A1
WO2016024677A1 PCT/KR2015/000620 KR2015000620W WO2016024677A1 WO 2016024677 A1 WO2016024677 A1 WO 2016024677A1 KR 2015000620 W KR2015000620 W KR 2015000620W WO 2016024677 A1 WO2016024677 A1 WO 2016024677A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coil element
magnetic resonance
coil unit
resonance imaging
Prior art date
Application number
PCT/KR2015/000620
Other languages
English (en)
French (fr)
Inventor
김경남
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US15/503,442 priority Critical patent/US11125841B2/en
Publication of WO2016024677A1 publication Critical patent/WO2016024677A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system

Definitions

  • the disclosed embodiment relates to an RF coil unit and a magnetic resonance imaging system including the same.
  • MRI magnetic resonance imaging
  • the magnetic resonance imaging apparatus photographs a cross section of a subject, such as a human body, using a nuclear magnetic resonance phenomenon.
  • Atomic nuclei such as hydrogen ( 1 H), phosphorus ( 31 P), sodium ( 23 Na) and carbon isotopes ( 13 C) present in the human body each have their own rotor field constants due to nuclear magnetic resonance.
  • an electromagnetic wave to a magnetization vector of an atomic nucleus and receiving a magnetic resonance signal generated by a magnetization vector lying on a vertical plane due to resonance
  • an image inside the human body may be obtained.
  • an RF coil is used to apply an electromagnetic wave to the human body to resonate the magnetization vector in the human body, and to receive a magnetic resonance signal generated by the magnetization vector lying on a vertical plane due to resonance.
  • the RF coil is also called an RF antenna in the sense of transmitting an electromagnetic wave and receiving a magnetic resonance signal to resonate the magnetization vector. Resonating the magnetization vector with one RF coil (transmit mode) and receiving a magnetic resonance signal (receive mode) can be performed together. It can also be used separately to perform the transmit mode and receive mode.
  • a coil that performs both transmission and reception modes with one coil is called a transmission / reception coil, and a coil dedicated to transmission is called a transmission coil and a coil dedicated to reception is called a reception coil.
  • the RF coil has a body type RF coil installed in the external device of the magnetic resonance imaging apparatus, and a surface type RF coil or volume type used by being attached to or adjacent to the subject. ) RF coil. Since the body-type RF coil is installed in the external device of the magnetic resonance imaging apparatus, the body-type RF coil is made on a cylindrical frame having a size to which a subject can enter, and may be a transmission / reception coil or a transmission coil. On the other hand, the surface RF coil or volumetric RF coil is installed to be attached to or detached from the table on which the subject is seated, and is generally made according to the shape of the subject such as the head coil, the neck coil, and the waist coil. It may be a transmission / reception coil or a reception coil.
  • the technical problem to be solved by the present embodiment is not limited to the technical problems as described above, and may further include other technical problems.
  • At least one RF coil element formed on a cylindrical base having a circular or elliptical cross section
  • the coil elements of the first and second ends of the RF coil element provide an RF coil portion having an area bent in the z-axis direction surrounding the outer periphery of the base.
  • the RF coil unit may form a magnetic field having an asymmetrical shape in the z direction with respect to the y axis on the zy plane.
  • the RF coil element may comprise a connection portion formed between the coil element of the first end and the coil element of the second end.
  • connection part may be formed in a linear form in the z-axis direction between the coil element of the first end and the coil element of the second end.
  • the connecting portion may be formed of 8 to 32.
  • the RF coil element may have a shape in which the end-ring portion of the end of the birdcage type coil is bent in the z direction to be alternately protruded.
  • the RF coil element comprises a first RF coil element and a second RF coil element
  • the first RF coil element and the second RF coil element may be alternately formed in a direction protruding in the z-axis direction.
  • the shape of the magnetic field formed by the first RF coil element and the second RF coil element may be one formed in a zi-plane in a diagonal direction to each other.
  • An insulating layer may be formed between the first RF coil element and the second RF coil element to maintain electrical insulation.
  • the RF coil unit may be an RF coil unit which is a volume RF coil unit.
  • At least one RF coil element formed on a cylindrical base having a circular or elliptical cross section
  • the coil element of the first end and the second end of the RF coil element provides a magnetic resonance imaging system including an RF coil portion having an area bent in the z-axis direction surrounding the outer peripheral portion of the base.
  • the RF coil unit may be a volume RF coil unit located on a table on which the subject is seated.
  • the volume RF coil parts are formed to be asymmetrically arranged in the Z-axis direction so that the magnetic field in the xz plane or the yz plane may be distributed in the diagonal direction.
  • a volumetric RF coil unit and a magnetic resonance imaging system including the same capable of controlling a magnetic field distribution according to a region of interest in a subject.
  • FIG. 1 is a configuration diagram schematically showing a magnetic resonance imaging system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of an RF coil unit of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • FIG. 3A is a diagram illustrating a magnetic field formed when a subject is located inside the RF coil unit.
  • 3B is a view showing a magnetic field formed by the RF coil unit according to the embodiment of the present invention.
  • Figure 4a is a view showing the side of the RF coil unit according to an embodiment of the present invention.
  • Figure 4b is a view showing the RF coil element of the RF coil unit according to an embodiment of the present invention.
  • 5A is a view showing an RF coil unit according to another embodiment of the present invention.
  • FIG. 5B is a diagram illustrating a magnetic field formed by an RF coil unit according to another exemplary embodiment of the present invention illustrated in FIG. 5A.
  • FIG. 1 is a configuration diagram schematically showing a magnetic resonance imaging system according to an embodiment of the present invention.
  • the disclosed magnetic resonance imaging system includes a main magnet 120, a gradient coil 130, and a body type radio frequency coil 140 in a housing 110. It may include.
  • the main magnet 120 is a magnetic dipole moment of the atomic nucleus of elements distributed in the object 190 causing magnetic resonance, for example, elements such as hydrogen, phosphorus, sodium or carbon ( It is possible to create a static or static magnetic field to align the direction of the magnetic dipole moment in a constant direction.
  • the main magnet 120 may be a superconducting magnet, for example, to create a high magnetic field of 0.5T or more. As the magnetic field generated by the main magnet 120 becomes stronger and more uniform, a relatively precise and accurate magnetic resonance image of the object 190 may be obtained.
  • the subject 190 may include a person, an animal, or a part of a person or an animal.
  • the object 190 may include organs such as liver, heart, uterus, brain, breast, abdomen, or blood vessels.
  • the gradient magnetic coil unit 130 may be formed inside the main magnet 120.
  • the gradient magnetic field coil unit 130 may include three gradient coils that may generate gradient magnetic fields in the x-axis, y-axis, and z-axis directions that are perpendicular to each other.
  • the gradient magnetic field coil unit 130 may generate a spatially linear gradient magnetic field to take a magnetic resonance image.
  • the gradient magnetic field coil unit 130 may induce resonance frequencies differently for each part of the object 190 to provide position information of each part of the object 190.
  • the body type RF coil unit 140 may be located inside the gradient magnetic field coil unit 130.
  • the body type RF coil unit 140 may form part of a cylindrical magnetic structure together with the main magnet 120 and the gradient magnetic field coil unit 130.
  • the volume RF coil unit 170 or the surface RF coil unit may be positioned to be adjacent to the subject 190 on the table 180 where the subject 190 is located.
  • the RF coil parts 140 and 170 may generate a high frequency magnetic field having a Larmor frequency as the center frequency.
  • an RF signal may be excited to a subject 190 and a magnetic resonance signal emitted from the subject 190 may be received.
  • the RF coil unit 140, the volume RF coil unit 170, and the surface RF coil unit radio frequency corresponding to the type of atomic nucleus in order to transition the nucleus from the low energy state to the high energy state
  • An electromagnetic wave signal having, for example, an RF signal may be generated and applied to the subject 190.
  • the atomic nucleus may transition from a low energy state to a high energy state.
  • the electromagnetic waves generated by the body type RF coil unit 140 and the volume type RF coil unit 170 disappear, the atomic nucleus to which the electromagnetic wave is applied radiates an electromagnetic wave having a Lamor frequency while transitioning from a high energy state to a low energy state. can do. That is, when the application of the electromagnetic wave signal to the atomic nucleus is stopped, an electromagnetic wave having a Lamore frequency may be radiated while a change in energy level from high energy to low energy occurs in the atomic nucleus to which the electromagnetic wave is applied.
  • the body-type RF coil unit 140 and the volume-type RF coil unit 170 may receive an electromagnetic wave signal radiated from atomic nuclei inside the object 190.
  • the received electromagnetic wave signal is amplified by a high frequency amplifier and demodulated by a sine wave of the LMO frequency to obtain a base band magnetic resonance signal.
  • the baseband magnetic resonance signal may be imaged to generate a magnetic resonance image.
  • the body type RF coil unit 140 may be fixed to the inside of the gradient magnetic coil unit 130 of the housing 110, and the volume type RF coil unit 170 may have a table 180 on which the subject 190 is seated. It may be a form that can be removable.
  • the volume RF coil unit 170 may be used to diagnose a specific part of the subject 190, for example, a head, a face, a leg, or an ankle of the subject 190, or to diagnose a subject having a relatively small size. Can be.
  • the housing 110 including the main magnet 120, the gradient magnetic field coil unit 130, and the body type RF coil unit 140 may have a cylindrical cylinder shape.
  • a bore 160 which is a space into which the table 180 on which the subject 190 is seated, may enter, may be formed.
  • the bore 160 may be formed to extend in the z-direction inside the body RF coil unit 140, the diameter of the bore 160 is the main magnet 120, the gradient magnetic coil unit 130 and the body RF coil unit It may be determined according to the size of 140.
  • the display 150 may be mounted outside the housing 110 of the magnetic resonance imaging system, and an additional display may be further included inside the housing 110. Predetermined information may be transmitted to the user or the subject 190 through a display positioned inside and / or outside the housing 110.
  • the magnetic resonance imaging system may include a signal transceiver 10, a system controller 12, a monitoring unit 14, and an operating unit 16.
  • the signal transceiving unit 10 may control a gradient magnetic field formed in the housing 110, that is, the bore 160, and RF signals for the body type RF coil unit 140 and the volume type RF coil unit 170. Control the transmission and reception of the magnetic resonance signal with.
  • the system controller 12 may control a sequence of signals formed in the housing 110.
  • the monitoring unit 14 may monitor or control the housing 110 or various devices mounted on the housing 110.
  • the operating unit 16 may control the operation of the entire magnetic resonance imaging system.
  • FIG. 2 is a diagram illustrating an example of an RF coil unit of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • the RF coil unit 20 shown here may be a volume RF coil unit 170 positioned adjacent to the subject 190 of FIG. 1, except that the RF coil unit 20 is also applied to the body RF coil unit 140. no.
  • the RF coil unit 20 may be formed in a structure including RF coil elements 24a, 24b, and 26 formed on the base 22.
  • the RF coil elements 24a, 24b, 26 may be shaped to protrude from the end-ring portion of the end of the birdcage type coil by alternately bent in the z direction.
  • the coil elements 24a, 24b of the first and second ends of the RF coil elements 24a, 24b, 26 may have a ring shape surrounding the outer periphery of the base 22 and bent in the z-axis direction. May have an area.
  • connections 26 may be formed between the coil element 24a of the first end of the RF coil elements 24a, 24b and 26 and the coil element 24b of the second end.
  • the connection part 26 may be represented by a leg, a rod, or the like, and may be formed in a straight shape in the z-axis direction.
  • a cavity 28 may be formed inside the base 22 of the RF coil unit 20, which is an empty space through which a predetermined portion of the object 190 of FIG. 1 may enter.
  • the cavity 28 may be formed in the z-axis direction.
  • the cavity 28 may enter a specific portion of the subject 190, for example, a head, a face, a leg, or an ankle of the subject 190, or a subject having a relatively small size.
  • the first end 24a and the second end 24b of the RF coil elements 24a, 24b, and 26 may serve as a path for moving an RF source such as a current or a voltage applied to the RF coil unit 20. Can be.
  • the connections 26 of the RF coil elements 24a, 24b, 26 are coils of the first and second ends to improve the homogeneity and sensitivity of the magnetic field that can be generated from the RF coil section 20. A large number of connections 26 can be used between the elements 24a and 24b. However, the number of connecting portions 26 is not limited thereto.
  • connection portion 26 between the coil element 24a of the first end of the RF coil elements 24a, 24b, 26 of the RF coil part 20 and the coil element 24b of the second end is an example.
  • connection parts 26 may be formed, but are not limited thereto.
  • the base 22 of the RF coil unit 20 may be formed of a relatively light material having rigidity, and may be formed of a nonmagnetic material having good corrosion resistance and moldability.
  • the base 22 may be formed of an insulating polymer or a plastic material, and may be formed of, for example, fiber reinforced plastics (FRP), among which the glass fiber reinforced plastics composite material ( glass fiber reinforced plastics (GFRP).
  • FRP fiber reinforced plastics
  • GFRP glass fiber reinforced plastics
  • the base 22 may have a cylindrical shape in the shape of a cylinder whose end is circular or elliptical.
  • the coil element 24a at the first end of the RF coil elements 24a, 24b, 26, the coil element 24b at the second end, and the connection portion 26 may be formed of a conductive material, for example copper.
  • Silver, gold coated copper such as a metal having a high electrical conductivity may be formed by patterning, but is not limited thereto.
  • Capacitors may be formed in the coil element 24a of the first end of the RF coil elements 24a, 24b, 26, the coil element 24b of the second end, and the connection part 26.
  • the RF coil unit 20 according to the present disclosure may be applied as a transmit / receive RF coil.
  • FIG. 3A is a diagram illustrating a magnetic field formed when a subject is located inside the RF coil unit.
  • the volumetric RF coil part 32 of a general form, for example, the RF coil part 32 which used the cage coil is shown.
  • a general cage coil is uniform in the xy plane and symmetrical in the z-axis direction with respect to the y-axis.
  • a magnetic field M1 having a shape may be formed.
  • the signal strength may decrease from the central area toward the peripheral area and the diagonal direction.
  • ROI region of interest
  • 3B is a view showing a magnetic field formed by the RF coil unit according to the embodiment of the present invention.
  • the magnetic field is asymmetrically shaped in the z direction with respect to the y axis on the zy plane (M2). This can be formed.
  • the magnetic field M2 having such a shape is formed, the magnetic field M2 is uniformly included even when the region A1 and A2 of the object 34 of FIG. 3A are regions of interest (ROI). Therefore, a uniform magnetic resonance image can be obtained.
  • an RF coil part having a shape corresponding to the region of interest of the subject 34 may be provided, and the center area of the RF coil part may have a high B1 sensitivity and a magnetic field M2 forming area.
  • a uniform magnetic field distribution can be obtained as a whole in the magnetic field M2 formed diagonally on the zy plane.
  • Figure 4a is a view showing the side of the RF coil unit according to an embodiment of the present invention.
  • Figure 4b is a view showing the RF coil element of the RF coil unit according to an embodiment of the present invention.
  • the RF coil unit 40 may be formed in a structure including the RF coil elements 44 and 46 formed on the base 42, and the RF coil elements 44 and 46 may be formed.
  • the coil element 44 at the end may comprise regions l1 and l3 which protrude from the central region l2 in the + z and -z directions, respectively.
  • the ratios of the central regions 11 and the regions 11 and 13 that are bent and protruded in the + z and ⁇ z directions, respectively may be selectively determined according to the shape of the magnetic field to be formed.
  • the ratio of the central regions l1 of the RF coil elements 44 and 46 and the regions l1 and l3 protruded by bending in the + z and -z directions, respectively, l1: l2: l3 is 1: 1: 1. May be 0.5: 1: 0.5.
  • the coil element 44 at the ends of the RF coil elements 44 and 46 of the RF coil part 40 according to the present disclosure is bent at a portion corresponding to about half of the height in the y direction with respect to the side or sagittal view. It may have, but is not limited to.
  • Capacitors 48a and 48b may be formed in the connection portion 46 between the coil element 44 at the ends of the RF coil elements 44 and 46 and the coil elements 44 at the ends, respectively.
  • 5A is a view showing an RF coil unit according to another embodiment of the present invention.
  • 5B is a diagram illustrating a magnetic field formed by an RF coil unit according to another exemplary embodiment of the present invention illustrated in FIG. 5A.
  • the RF coil unit 50 may include a first RF coil element 54 and a second RF coil element 56 formed on the base 52.
  • the first RF coil element 54 and the second RF coil element 56 are formed to have different directions in the z-axis direction.
  • the first RF coil element 54 may include an RF coil element protruding upward and downward in the zy plane based on the side or sagittal view, and the second RF coil element 56 may be in the zy plane. It may include an RF coil element projecting upwardly and downwardly downward.
  • the shape of the magnetic field formed by the first RF coil element 54 and the second RF coil element 56 may be formed in a staggered direction in the zy plane.
  • FIG. 5B the shape of the magnetic field formed by the RF coil unit illustrated in FIG. 5A is illustrated.
  • the magnetic fields M54 and M56 respectively formed by the first RF coil element 54 and the second RF coil element 56 are formed in a diagonal direction intersected with each other in the zy plane.
  • the shape of the RF coil elements of the RF coil unit may be arbitrarily adjusted, and may be selectively applied according to the ROI of the subject to be diagnosed.
  • An insulating layer may be formed between the first RF coil element 54 and the second RF coil element 56 to maintain electrical insulation.
  • the RF coil unit may be variously modified according to the position of the ROI of the subject to be diagnosed, and the magnetic field is formed regardless of the position of the ROI of the subject. Uniformity can be improved.
  • the present invention has been described with reference to the preferred embodiments. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention.
  • the disclosed RF coil unit may be applied to a volume RF coil unit of a magnetic resonance imaging system, and may also be applicable to a body type RF coil unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

RF 코일부 및 이를 포함하는 자기공명영상 시스템이 개시된다. 개시된 RF 코일부는 원형 또는 타원 형상의 단면을 지닌 원통 형상의 베이스 상에 형성된 적어도 하나의 RF 코일 요소를 포함할 수 있으며, 상기 RF 코일 요소의 제 1단부 및 제 2단부의 코일 요소는 상기 베이스의 외주부를 둘러싸며 z축 방향으로 구부러진 영역을 지닐 수 있다. 상기 RF 코일 요소는 제 1RF 코일 요소 및 제 2RF 코일 요소를 포함할 수 있다.

Description

RF 코일부 및 이를 포함하는 자기공명영상 시스템
개시된 실시예는 RF 코일부 및 이를 포함하는 자기공명영상 시스템(Magnetic resonance imaging system)에 관한 것이다.
질병의 예방 또는 치료를 위해 인체 내부의 이상을 진단하기 위한 다양한 진단용 장치가 사용되고 있다. 이 중 자력에 의해 발생한 자기장을 이용하는 것으로 자기공명영상(Magnetic resonance imaging: MRI) 장치가 널리 사용되고 있다.
자기 공명 영상 장치는 핵자기 공명 현상을 이용하여 피검체, 가령 인체의 단면을 촬영한다. 인체 내에 존재하는 수소(1H), 인(31P), 나트륨(23Na), 탄소동위원소(13C) 등의 원자핵은 핵자기 공명현상에 의해 각기 고유한 회전자계상수를 가지므로, 이들 원자핵의 자화 벡터(magnetization vector)에 전자파를 인가하고, 공명으로 인해 수직평면에 누운 자화벡터가 만드는 자기 공명신호를 수신함으로써 인체 내부의 영상을 획득할 수 있다. 이때, 인체 내의 자화 벡터를 공명시키기 위해 인체에 전자파를 인가하고, 또, 공명으로 인해 수직평면에 누운 자화벡터가 만드는 자기 공명신호를 수신하는데 RF 코일이 사용된다. RF 코일은 자화벡터를 공명시키기 위하여 전자파를 송신하고 자기 공명신호를 수신한다는 의미에서 RF 안테나라고 불리우기도 한다. 한 개의 RF 코일로 자화벡터를 공명시키는 일(송신모드)과 자기 공명신호를 수신하는 일(수신모드)을 같이 수행할 수도 있고, 송신모드 전용의 RF 코일과 수신모드 전용의 RF 코일 두 개를 각기 따로 사용하여 송신모드와 수신모드를 수행할 수도 있다. 또한 한 개의 코일로 송신 및 수신모드를 다 수행하는 코일을 송수신 코일이라 부르며, 송신 전용의 코일을 송신 코일, 수신 전용의 코일을 수신 코일이라 부른다.
한편, RF 코일에는 자기 공명 영상 장치의 외관 장치 내에 설치되는 몸체형(body type) RF 코일과, 피검체에 부착하거나 인접하게 배치하여 사용하는 표면형(surface type) RF 코일 혹은 체적형(volume type) RF 코일이 있다. 몸체형 RF 코일는 자기 공명 영상 장치의 외관 장치 내에 설치되기 때문에 피검체가 들어 갈 수 있는 크기의 원통형 프레임 위에 만들어지며, 송수신 코일 혹은 송신 코일일 수 있다. 한편, 표면형 RF 코일이나 체적형 RF 코일은 피검체에 부착하거나 피검체가 안착되는 테이블에 탈부착되도록 설치되며, 머리코일, 목코일, 허리코일 등 피검체의 부위별 형상에 따라 만드는 것이 일반적이며, 송수신 코일 혹은 수신 코일일 수 있다.
자기공명영상 시스템에서 RF 코일부, 특히 체적형 RF 코일부에 의해 형성되는 자기 필드를 피검체의 관심 영역에 대응되도록 형성할 수 있는 RF 코일부를 및 이를 포함하는 자기공명영상 시스템을 제공하고자 한다. 본 실시예가 해결하려는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들을 더 포함할 수 있다.
본 발명의 실시예에서는,
자기공명영상 시스템용 RF 표면 코일부에 있어서,
원형 또는 타원 형상의 단면을 지닌 원통 형상의 베이스 상에 형성된 적어도 하나의 RF 코일 요소를 포함하며,
상기 RF 코일 요소의 제 1단부 및 제 2단부의 코일 요소는 상기 베이스의 외주부를 둘러싸며 z축 방향으로 구부러진 영역을 지닌 RF 코일부를 제공한다.
상기 RF 코일부는 zy평면 상에서 y축을 기준으로 z방향으로 비대칭적인 형상의 자기장을 형성할 수 있다.
상기 RF 코일 요소는 상기 제 1단부의 코일 요소 및 상기 제 2단부의 코일 요소들 사이를 연결하며 형성된 연결부를 포함할 수 있다.
상기 연결부는 상기 제 1단부의 코일 요소 및 상기 제 2단부의 코일 요소들 사이를 z축 방향으로 일자 형태로 형성된 것일 수 있다.
상기 연결부는 8개 내지 32개로 형성된 것일 수 있다.
상기 RF 코일 요소는 새장형 코일(birdcage type coil)의 단부의 엔드링(end-ring) 부위가 엇갈리게 z방향으로 구부러져 돌출된 형상을 지닌 것일 수 있다.
상기 RF 코일 요소는 제 1RF 코일 요소와 제 2RF 코일 요소를 포함하며,
상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 z축 방향으로 돌출된 방향이 서로 엇갈리게 형성된 것일 수 있다.
상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소에 의해 형성되는 자기장의 형태는 zy평면에서 각각 대각선 방향으로 서로 엇갈린 방향으로 형성된 것일 수 있다.
상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소 사이에는 전기적인 절연을 유지하기 위하여 절연층이 형성된 것일 수 있다.
상기 RF 코일부는 체적형 RF 코일부인 RF 코일부일 수 있다.
또한, 본 개시에서는 자기공명영상 시스템에 있어서,
원형 또는 타원 형상의 단면을 지닌 원통 형상의 베이스 상에 형성된 적어도 하나의 RF 코일 요소를 포함하며,
상기 RF 코일 요소의 제 1단부 및 제 2단부의 코일 요소는 상기 베이스의 외주부를 둘러싸며 z축 방향으로 구부러진 영역을 지닌 RF 코일부를 포함하는 자기공명영상 시스템을 제공한다.
상기 RF 코일부는 피검체가 안착되는 테이블 상에 위치하는 체적형 RF 코일부일 수 있다.
개시된 실시예에 따르면, 자기공명영상 시스템에서는 체적형 RF 코일부가 Z축 방향으로 비대칭적으로 배열되도록 형성함으로써 xz평면 또는 yz평면에서의 자기장이 대각선 방향으로 분포하도록 할 수 있다.
개시된 실시예에 따르면 피검체에서 관심 영역에 따라 자기장의 분포를 조절할 수 있는 체적형 RF 코일부 및 이를 포함하는 자기공명영상 시스템을 제공할 수 있다.
도 1은 본 발명의 실시예에 따른 자기공명영상 시스템을 개략적으로 나타낸 구성도이다.
도 2는 본 발명의 실시예에 따른 자기공명영상 시스템의 RF 코일부의 일 예를 나타낸 도면이다.
도 3a는 RF 코일부 내부에 피검체가 위치한 경우 형성되는 자기 필드를 나타낸 도면이다.
도 3b는 본 발명의 실시예에 따른 RF 코일부에 의해 형성되는 자기 필드를 나타낸 도면이다.
도 4a는 본 발명의 실시예에 따른 RF 코일부의 측면을 나타낸 도면이다.
도 4b는 본 발명의 실시예에 따른 RF 코일부의 RF 코일요소를 나타낸 도면이다.
도 5a는 본 발명의 다른 실시예에 따른 RF 코일부를 나타낸 도면이다.
도 5b는 도 5a에 나타낸 본 발명의 다른 실시예에 따른 RF 코일부에 의해 형성되는 자기 필드를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 RF 코일부 및 이를 포함하는 자기공명영상 시스템에 대해 상세하게 설명한다. 첨부된 도면에 도시된 층이나 영역들의 폭 및 두께는 명세서의 명확성을 위해 다소 과장되게 도시된 것일 수 있다. 상세한 설명 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.
도 1은 본 발명의 실시예에 따른 자기공명영상 시스템을 개략적으로 나타낸 구성도이다.
도 1을 참조하면, 개시된 자기공명영상 시스템은, 하우징(110) 내에 주자석(120), 경사 자계 코일부(gradient coil)(130) 및 바디형 RF 코일부(Body type Radio Frequency coil)(140)를 포함할 수 있다.
주자석(main magnet)(120)은 피검체(object)(190) 내에 분포해 있는 원소 중 자기공명현상을 일으키는 원소, 예를 들어 수소, 인, 나트륨 또는 탄소 등의 원소들의 원자핵의 자기 쌍극자 모멘트(magnetic dipole moment)의 방향을 일정한 방향으로 정렬하기 위한 정자기장 또는 정자장(static magnetic field)을 생성할 수 있다. 주자석(120)은 예를 들어 0.5T 이상의 높은 자계를 만드는 데는 초전도 자석이 사용될 수 있다. 주자석(120)에 의하여 생성된 자장이 강하고 균일할수록 대상체(190)에 대한 비교적 정밀하고 정확한 자기공명 영상을 얻을 수 있다.
참고로, 본 명세서에서 피검체(190)는 사람, 동물, 또는 사람이나 동물의 일부를 포함할 수 있다. 예를 들어, 대상체(190)는 간, 심장, 자궁, 뇌, 유방, 복부 등의 장기, 또는 혈관을 포함할 수 있다.
경사 자계 코일부(gradient coil)(130)는 주자석(120)의 내측에 형성될 수 있다. 경사 자계 코일부(130)는 서로 직교하는 x축, y축 및 z축 방향의 경사 자계를 발생시킬 수 있는 세 개의 경사 코일을 포함할 수 있다. 경사 자계 코일부(130)는 자기공명영상을 촬영하기 위해서 공간적으로 선형적인 경사자계를 발생시킬 수 있다. 경사 자계 코일부(130)는 피검체(190)의 각각의 부위 별로 공명 주파수를 서로 다르게 유도하여 피검체(190)의 각 부위의 위치 정보를 제공할 수 있다.
바디형 RF 코일부(140)는 경사 자계 코일부(130)의 내측에 위치할 수 있다. 바디형 RF 코일부(140)는 주자석(120) 및 경사 자계 코일부(130)와 함께 원통형 자기 구조체의 일부를 이루 수 있다. 또한, 피검체(190)가 위치하는 테이블(180) 상의 피검체(190)와 인접하도록 체적형 RF 코일부(170)나 표면형 RF 코일부가 위치할 수 있다.
RF 코일부(140, 170), 즉 바디형 RF 코일부(140), 체적형 RF 코일부(170) 및 표면형 RF 코일부는 라모어(Larmor) 주파수를 중심주파수로 하는 고주파자계를 발생시킬 수 있는 장치로서, 피검체(190)에 RF 신호를 여기시키고, 피검체(190)로부터 방출되는 자기공명 신호를 수신할 수 있다. 상세하게 살펴보면, RF 코일부(140), 체적형 RF 코일부(170) 및 표면형 RF 코일부는 원자핵을 낮은 에너지 상태로부터 높은 에너지 상태로 천이시키기 위하여 원자핵의 종류에 대응하는 무선 주파수(Radio Frequency)를 갖는 전자파 신호, 예컨대 RF 신호를 생성하여 피검체(190)에 인가할 수 있다. 바디형 RF 코일부(140) 및 체적형 RF 코일부(170)에 의해 생성된 전자파 신호가 원자핵에 가해지면, 원자핵은 낮은 에너지 상태로부터 높은 에너지 상태로 천이될 수 있다. 그리고 바디형 RF 코일부(140) 및 체적형 RF 코일부(170)에 의해 생성된 전자파가 사라지면, 전자파가 가해졌던 원자핵은 높은 에너지 상태로부터 낮은 에너지 상태로 천이하면서 라모어 주파수를 갖는 전자파를 방사할 수 있다. 즉, 원자핵에 대하여 전자파 신호의 인가가 중단되면, 전자파가 가해졌던 원자핵에서는 높은 에너지에서 낮은 에너지로의 에너지 준위의 변화가 발생하면서 라모어 주파수를 갖는 전자파가 방사될 수 있다. 바디형 RF 코일부(140) 및 체적형 RF 코일부(170)는 피검체(190) 내부의 원자핵들로부터 방사된 전자파 신호를 수신할 수 있다. 이와같이 수신된 전자파 신호를 고주파 증폭기로 증폭한 뒤 라모 주파수의 정현파로 복조(demodulation)하면 기저 대역(base band)의 자기공명 신호를 얻을 수 있다. 기저 대역의 자기공명 신호는 영상 처리되어 자기 공명 영상이 생성되게 될 수 있게 된다.
바디형 RF 코일부(140)는 하우징(110)의 경사 자계 코일부(130) 내측에 고정된 형태일 수 있으며, 체적형 RF 코일부(170)는 피검체(190)가 안착되는 테이블(180)에 탈착이 가능한 형태일 수 있다. 체적형 RF 코일부(170)는 피검체(190)의 특정 부위, 예를 들어 피검체(190)의 머리, 얼굴, 다리 또는 발목 등을 진단하거나, 크기가 비교적 작은 피검체를 진단하기 위해 사용될 수 있다.
주자석(120), 경사 자계 코일부(130) 및 바디형 RF 코일부(140)를 포함하는 하우징(110)은 원통형 실린더 형상을 지닐 수 있다. 하우징(110) 내부는 피검체(190)가 안착되는 테이블(180)이 진입할 수 있는 공간인 보어(bore)(160)가 형성될 수 있다. 보어(160)는 바디형 RF 코일부(140) 내측으로 z방향으로 연장되어 형성될 수 있으며, 보어(160)의 직경은 주자석(120), 경사 자계 코일부(130) 및 바디형 RF 코일부(140)의 크기에 따라 결정될 수 있다.
자기공명영상 시스템의 하우징(110) 외측에는 디스플레이(150)가 장착될 수 있으며, 하우징(110)의 내측에도 추가적인 디스플레이가 더 포함될 수 있다. 하우징(110)의 내측 및/또는 외측에 위치하는 디스플레이를 통하여 사용자 또는 피검체(190)에게 소정의 정보를 전달할 수 있다. 그리고, 자기공명영상 시스템은 신호 송수신부(10), 시스템 제어부(12), 모니터링부(14) 및 오퍼레이팅부(16)를 포함할 수 있다. 신호 송수신부(10)는 하우징(110) 내부, 즉 보어(160)에 형성되는 경사 자장을 제어할 수 있으며, 바디형 RF 코일부(140) 및 체적형 RF 코일부(170)에 대한 RF 신호와 자기공명 신호의 송수신을 제어할 수 있다. 시스템 제어부(12)는 하우징(110) 내부에서 형성되는 신호들의 시퀀스를 제어할 수 있다. 모니터링부(14)는 하우징(110) 또는 하우징(110)에 장착된 다양한 기기들을 모니터링 또는 제어할 수 있다. 오퍼레이팅부(16)는 자기공명영상 시스템 전체의 동작을 제어할 수 있다.
도 2는 본 발명의 실시예에 따른 자기공명영상 시스템의 RF 코일부의 일 예를 나타낸 도면이다. 여기서 나타낸 RF 코일부(20)는 도 1의 피검체(190)와 인접하여 위치하는 체적형 RF 코일부(170)일 수 있으며, 다만 바디형 RF 코일부(140)에도 적용되는 것을 배제하는 것은 아니다.
도 2를 참조하면, RF 코일부(20)는 베이스(22) 상에 형성된 RF 코일요소(24a, 24b, 26)들을 포함하는 구조로 형성될 수 있다. RF 코일 요소(24a, 24b, 26)는 새장형 코일(birdcage type coil)의 단부의 엔드링(end-ring) 부위가 엇갈리게 z방향으로 구부러져 돌출된 형상일 수 있다. 구체적으로, RF 코일 요소(24a, 24b, 26)의 제 1단부 및 제 2단부의 코일 요소(24a, 24b)는 베이스(22)의 외주부를 둘러싸는 링형상을 지닐 수 있으며 z축 방향으로 구부러진 영역을 지닐 수 있다. 그리고, RF 코일 요소(24a, 24b, 26)의 제 1단부의 코일 요소(24a) 및 제 2단부의 코일 요소(24b) 사이에는 다수의 연결부(26)가 형성될 수 있다. 연결부(26)는 레그(leg), 로드(rod) 등으로 표현될 수 있으며, z축 방향으로 일자 형태로 형성될 수 있다. RF 코일부(20)의 베이스(22) 내측에는 도 1의 피검체(190)의 소정 부위가 진입할 수 있는 빈공간인 공동(28)이 형성될 수 있다. 공동(28)은 z축 방향으로 형성된 것일 수 있다. 공동(28)에는 피검체(190)의 특정 부위, 예를 들어 피검체(190)의 머리, 얼굴, 다리 또는 발목 등이 진입하거나 크기가 비교적 작은 피검체가 진입할 수 있다.
RF 코일 요소(24a, 24b, 26)의 제 1단부(24a) 및 제 2단부(24b)는 RF 코일부(20)에 인가되는 전류 또는 전압 등의 RF 소스를 이동시키기 위한 경로로서의 역할을 할 수 있다. RF 코일 요소(24a, 24b, 26)의 연결부(26)는 RF 코일부(20)로부터 발생시킬 수 있는 자기장의 균일도(homogeneity) 및 민감도(sensitivity) 향상을 위하여 제 1단부 및 제 2단부의 코일 요소(24a, 24b) 사이에서 많은 수의 연결부(26)가 사용될 수 있다. 다만, 연결부(26)의 갯수는 이에 한정된 것은 아니다. 연결부(26)가 이론적으로 무한개로 형성되는 경우 이상적으로는 자기장의 균일도 및 민감도가 향상될 수 있으나 연결부(26)들 사이의 상호 인덕턴스 커플링이 존재하기 때문에 무한대로 증가시키는 것에는 한계가 있다. 본 개시에 있어서, RF 코일부(20)의 RF 코일 요소(24a, 24b, 26)의 제 1단부의 코일 요소(24a) 및 제 2단부의 코일 요소(24b) 사이의 연결부(26)는 예를 들어 8개 내지 32개의 연결부(26)를 형성할 수 있으며 이에 한정된 것은 아니다.
RF 코일부(20)의 베이스(22)는 강성을 지니며, 비교적 가벼운 재료로 형성될 수 있으며, 내식성 및 성형성이 좋은 비자성 물질로 형성될 수 있다. 구체적으로 베이스(22)는 절연성 폴리머, 플라스틱 재질로 형성될 수 있으며, 예를 들어 섬유 강화 플라스틱계 복합재료(fiber reinforced plastics:FRP)로 형성될 수 있으며, 그 중 유리섬유 강화 플라스틱계 복합재료(glass fiber reinforced plastics: GFRP)로 형성될 수 있다. 베이스(22)는 그 단부가 원형 또는 타원형인 실린더 형태의 원통형상을 지닌 것일 수 있다. RF 코일 요소(24a, 24b, 26)의 제 1단부의 코일 요소(24a), 제 2단부의 코일 요소(24b) 및 연결부(26)는 전도성 물질로 형성될 수 있으며, 예를 들어 구리(copper), 은(silver), 골드 코팅된 구리(gold coated copper) 등의 전기 전도성이 높은 금속이 패턴되어 형성될 수 있으며 이에 한정되는 것은 아니다. RF 코일 요소(24a, 24b, 26)의 제 1단부의 코일 요소(24a), 제 2단부의 코일 요소(24b) 및 연결부(26)에는 캐패시터들이 형성될 수 있다. 본 개시에 따른 RF 코일부(20)는 송수신 RF 코일로 적용될 수 있다.
도 3a는 RF 코일부 내부에 피검체가 위치한 경우 형성되는 자기 필드를 나타낸 도면이다. 여기서는 일반적인 형태의 체적형 RF 코일부(32), 예를 들어 새장형 코일을 사용한 RF 코일부(32)를 나타낸다.
도 3a를 참조하면, RF 코일부(32) 내에 피검체(34)가 위치하는 경우 일반적인 새장형 코일의 경우 xy 평면상에서 균일하면서 y축을 기준으로 z축 방향으로 대칭적인 신호 강도 세기(refocusing profile)를 지닌 형상의 자기장(M1)이 형성될 수 있다. 그러나 중심 영역에서 주변 지역, 대각선 방향으로 갈수록 신호강도가 저하될 수 있다. 예를 들어 피검체의 A1영역 및 A2 영역이 관심 영역(region of interest: ROI)인 경우 균일한 자기공명영상을 얻기 쉽지 않을 수 있다.
도 3b는 본 발명의 실시예에 따른 RF 코일부에 의해 형성되는 자기 필드를 나타낸 도면이다.
도 3b를 참조하면, 도 2에 나타낸 형상의 RF 코일 요소(24a, 24b, 26)를 포함하는 RF 코일부의 경우 자기장은 zy평면 상에서 y축을 기준으로 z방향으로 비대칭적인 형상의 자기장(M2)이 형성될 수 있다. 이와같은 형상의 자기장(M2)이 형성된 경우, 도 3a의 피검체(34)의 A1영역 및 A2영역이 관심 영역(region of interest: ROI)인 경우에도 자기장(M2)이 균일하게 형성된 영역에 포함되므로 균일한 자기공명영상을 얻을 수 있다. 이처럼 본 개시에 따르면, 피검체(34)의 관심 영역에 대응되는 형상을 지닌 RF 코일부를 제공할 수 있으며, RF 코일부의 중심 영역은 높은 B1감도를 지닐 수 있으며, 자기장(M2) 형성 영역, 예를 들어 zy평면 상에서 대각선 방향으로 형성된 자기장(M2) 내에는 전체적으로 균일한 자기장 분포를 얻을 수 있다.
도 4a는 본 발명의 실시예에 따른 RF 코일부의 측면을 나타낸 도면이다. 그리고, 도 4b는 본 발명의 실시예에 따른 RF 코일부의 RF 코일요소를 나타낸 도면이다.
도 4a 및 도 4b를 참조하면, RF 코일부(40)는 베이스(42) 상에 형성된 RF 코일요소(44, 46)들을 포함하는 구조로 형성될 수 있으며, RF 코일요소(44, 46)의 단부의 코일 요소(44)는 중심 영역(l2)으로부터 +z방향 및 -z 방향으로 각각 구부러져 돌출된 영역(l1, l3)을 포함할 수 있다. 이 때, 중심 영역(l1) 및 +z방향 및 -z 방향으로 각각 구부러져 돌출된 영역(l1, l3)의 비율은 형성하고자 하는 자기장의 형태에 따라 선택적으로 결정될 수 있다. 예를 들어 RF 코일요소(44, 46)의 중심 영역(l1) 및 +z방향 및 -z 방향으로 각각 구부러져 돌출된 영역(l1, l3)의 비율, l1:l2:l3는 1:1:1일 수 있으며, 0.5:1:0.5일 수 있다. 본 개시에 따른 RF 코일부(40)의 RF 코일요소(44, 46)의 단부의 코일 요소(44)는 측면 또는 sagittal view를 기준으로 y방향으로의 높이 중 약 절반에 해당하는 부위에서 구부러진 부위를 지닐 수 있으며, 다만 이에 제한된 것은 아니다. RF 코일요소(44, 46)의 단부의 코일 요소(44)와 단부의 코일 요소(44)들 사이의 연결부(46)에는 각각 캐패시터(48a, 48b)가 형성될 수 있다.
도 5a는 본 발명의 다른 실시예에 따른 RF 코일부를 나타낸 도면이다. 그리고, 도 5b는 도 5a에 나타낸 본 발명의 다른 실시예에 따른 RF 코일부에 의해 형성되는 자기 필드를 나타낸 도면이다.
도 5a를 참조하면, 실시예에 따른 RF 코일부(50)는 베이스(52) 상에 형성된 제 1RF 코일 요소(54)와 제 2RF 코일 요소(56)를 포함할 수 있다. 제 1RF 코일 요소(54) 및 제 2RF 코일 요소(56)는 z축 방향으로 돌출된 방향이 서로 다르게 형성된 것이다. 구체적으로 설명하면, 제 1RF 코일 요소(54)는 측면 또는 sagittal view를 기준으로 zy평면에서 우상향 및 좌하방으로 돌출된 RF 코일 요소를 포함할 수 있으며, 제 2RF 코일 요소(56)는 zy평면에서 좌상향 및 우하방으로 돌출된 RF 코일 요소를 포함할 수 있다. 이에 따라서 제 1RF 코일 요소(54) 및 제 2RF 코일 요소(56)에 의해 형성되는 자기장의 형태는 zy평면에서 서로 엇갈린 방향으로 형성될 수 있다. 도 5b에서는 도 5a에서 나타낸 RF 코일부에 의해 형성된 자기장의 형태를 나타내었다.
도 5a 및 도 5b를 참조하면, 제 1RF 코일 요소(54) 및 제 2RF 코일 요소(56)에 의해 형성되는 각각 자기장(M54, M56)은 zy 평면에서 서로 엇갈린 대각선 방향으로 형성된 것을 알 수 있다. 이와 같이 RF 코일부의 RF 코일 요소들의 형상은 임의로 조절할 수 있으며, 진단 대상인 피검체의 관심 영역에 따라 선택적으로 적용될 수 있다. 제 1RF 코일 요소(54) 및 제 2RF 코일 요소(56) 사이에는 전기적인 절연을 유지하기 위하여 절연층이 형성될 수 있다.
이처럼 본 발명의 실시예에 따른 자기공명영상 시스템에서는 RF 코일부는 진단 대상인 피검체의 관심 영역의 위치에 따라 다양하게 변형하여 형성할 수 있으며, 피검체의 관심 영역의 위치에 상관없이 형성되는 자기장을 균일도를 향상시킬 수 있다.
지금까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 예를 들어, 개시된 RF 코일부는 자기공명영상 시스템의 체적형 RF 코일부에 적용될 수 있으며, 또한 바디형 RF 코일부에도 적용 가능할 수 있다.
그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (17)

  1. 자기공명영상 시스템용 RF 코일부에 있어서,
    원형 또는 타원 형상의 단면을 지닌 원통 형상의 베이스 상에 형성된 적어도 하나의 RF 코일 요소를 포함하며,
    상기 RF 코일 요소의 제 1단부 및 제 2단부의 코일 요소는 상기 베이스의 외주부를 둘러싸며 z축 방향으로 구부러진 영역을 지닌 RF 코일부.
  2. 제 1항에 있어서,
    상기 RF 코일부는 zy평면 상에서 y축을 기준으로 z방향으로 비대칭적인 형상의 자기장을 형성하는 RF 코일부.
  3. 제 1항에 있어서,
    상기 RF 코일 요소는 상기 제 1단부의 코일 요소 및 상기 제 2단부의 코일 요소들 사이를 연결하며 형성된 연결부를 포함하는 RF 코일부.
  4. 제 3항에 있어서,
    상기 연결부는 상기 제 1단부의 코일 요소 및 상기 제 2단부의 코일 요소들 사이를 z축 방향으로 일자 형태로 형성된 RF 코일부.
  5. 제 3항에 있어서,
    상기 연결부는 8개 내지 32개로 형성된 RF 코일부.
  6. 제 1항에 있어서,
    상기 RF 코일 요소는 새장형 코일(birdcage type coil)의 단부의 엔드링(end-ring) 부위가 엇갈리게 z방향으로 구부러져 돌출된 형상을 지닌 RF 코일부.
  7. 제 1항에 있어서,
    상기 RF 코일 요소는 제 1RF 코일 요소와 제 2RF 코일 요소를 포함하며,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 z축 방향으로 돌출된 방향이 서로 엇갈리게 형성된 RF 코일부.
  8. 제 7항에 있어서,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소에 의해 형성되는 자기장의 형태는 zy평면에서 각각 대각선 방향으로 서로 엇갈린 방향으로 형성된 RF 코일부.
  9. 제 7항에 있어서,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소 사이에는 전기적인 절연을 유지하기 위하여 절연층이 형성된 RF 코일부.
  10. 제 1항에 있어서,
    상기 RF 코일부는 체적형 RF 코일부인 RF 코일부.
  11. 자기공명영상 시스템에 있어서,
    원형 또는 타원 형상의 단면을 지닌 원통 형상의 베이스 상에 형성된 적어도 하나의 RF 코일 요소를 포함하며,
    상기 RF 코일 요소의 제 1단부 및 제 2단부의 코일 요소는 상기 베이스의 외주부를 둘러싸며 z축 방향으로 구부러진 영역을 지닌 RF 코일부를 포함하는 자기공명영상 시스템.
  12. 제 11항에 있어서,
    상기 RF 코일부는 zy평면 상에서 y축을 기준으로 z방향으로 비대칭적인 형상의 자기장을 형성하는 자기공명영상 시스템.
  13. 제 11항에 있어서,
    상기 RF 코일 요소는 상기 제 1단부의 코일 요소 및 상기 제 2단부의 코일 요소들 사이를 연결하며 형성된 연결부를 포함하는 자기공명영상 시스템.
  14. 제 11항에 있어서,
    상기 RF 코일 요소는 새장형 코일(birdcage type coil)의 단부의 엔드링(end-ring) 부위가 엇갈리게 z방향으로 구부러져 돌출된 형상을 지닌 자기공명영상 시스템.
  15. 제 11항에 있어서,
    상기 RF 코일 요소는 제 1RF 코일 요소와 제 2RF 코일 요소를 포함하며,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 z축 방향으로 돌출된 방향이 서로 엇갈리게 형성된 자기공명영상 시스템.
  16. 제 15항에 있어서,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소에 의해 형성되는 자기장의 형태는 zy평면에서 각각 대각선 방향으로 서로 엇갈린 방향으로 형성된 RF 코일부.
  17. 제 11항에 있어서,
    상기 RF 코일부는 피검체가 안착되는 테이블 상에 위치하는 체적형 RF 코일부인 자기공명영상 시스템.
PCT/KR2015/000620 2014-08-11 2015-01-21 Rf 코일부 및 이를 포함하는 자기공명영상 시스템 WO2016024677A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/503,442 US11125841B2 (en) 2014-08-11 2015-01-21 Radio frequency coil and magnetic resonance imaging system comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140103627A KR102277899B1 (ko) 2014-08-11 2014-08-11 Rf 코일부 및 이를 포함하는 자기공명영상 시스템
KR10-2014-0103627 2014-08-11

Publications (1)

Publication Number Publication Date
WO2016024677A1 true WO2016024677A1 (ko) 2016-02-18

Family

ID=55304291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000620 WO2016024677A1 (ko) 2014-08-11 2015-01-21 Rf 코일부 및 이를 포함하는 자기공명영상 시스템

Country Status (3)

Country Link
US (1) US11125841B2 (ko)
KR (1) KR102277899B1 (ko)
WO (1) WO2016024677A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568080B (en) * 2017-11-03 2020-09-09 Elekta ltd Operation and control of magnetic resonance imaging apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309104A (en) * 1992-05-22 1994-05-03 General Electric Company Asymmetric radio frequency coil for magnetic resonance imaging
JPH07323017A (ja) * 1994-06-01 1995-12-12 Ge Yokogawa Medical Syst Ltd ヘッド−ネックコイル
US20070188173A1 (en) * 2004-03-03 2007-08-16 Koninklijke Philips Electronics N.V. Asymmetric ultra-short gradient coil for magnetic resonance imaging system
JP2014010090A (ja) * 2012-06-29 2014-01-20 Institute Of Physical & Chemical Research 核磁気共鳴現象測定用rfコイル
JP2014042685A (ja) * 2012-08-28 2014-03-13 Ge Medical Systems Global Technology Co Llc 磁気共鳴撮像装置用のヘリカル傾斜コイル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920318A (en) * 1985-08-14 1990-04-24 Picker International, Inc. Surface coil system for magnetic resonance imaging
US5374890A (en) 1992-07-24 1994-12-20 Picker International, Inc. Simultaneous magnetic resonance imaging of multiple human organs
US5372137A (en) * 1993-01-19 1994-12-13 The Mcw Research Foundation, Inc. NMR local coil for brain imaging
US6011395A (en) * 1997-12-11 2000-01-04 Varian, Inc. Shielded drive for balanced quadrature bird cage coil
JP2000189397A (ja) 1998-12-24 2000-07-11 Hitachi Medical Corp 磁気共鳴イメ―ジング装置
AUPS224702A0 (en) * 2002-05-10 2002-06-13 Thorlock International Limited Transmit - receive coil system for nuclear quadrupole resonance signal detection in substances
AU2003286534A1 (en) * 2002-10-21 2004-05-13 The General Hospital Corporation D/B/A Massachusetts General Hospital Catheter and radiofrequency coil with annular b1 filed
US7345481B2 (en) * 2003-11-18 2008-03-18 Koninklijke Philips Electronics N.V. Hybrid TEM/birdcage coil for MRI
JP2005245798A (ja) 2004-03-05 2005-09-15 Hitachi Medical Corp 受信コイル、および、それを用いた磁気共鳴イメージング装置
US7619412B2 (en) 2005-05-26 2009-11-17 Kabushiki Kaisha Toshiba MRI apparatus and high-frequency coil with plural imaging regions
US8022705B2 (en) * 2006-03-09 2011-09-20 Insight Neuroimaging Systems, Llc Microstrip coil designs for MRI devices
US8035384B2 (en) 2008-10-23 2011-10-11 General Electric Company Hybrid birdcage-TEM radio frequency (RF) coil for multinuclear MRI/MRS
WO2010050279A1 (ja) * 2008-10-29 2010-05-06 株式会社 日立メディコ アンテナ装置及び磁気共鳴検査装置
JP4683128B2 (ja) 2009-01-06 2011-05-11 ソニー株式会社 プレゼンス情報共有装置、プレゼンス情報共有方法、プレゼンス情報共有プログラムおよびプレゼンス情報共有システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309104A (en) * 1992-05-22 1994-05-03 General Electric Company Asymmetric radio frequency coil for magnetic resonance imaging
JPH07323017A (ja) * 1994-06-01 1995-12-12 Ge Yokogawa Medical Syst Ltd ヘッド−ネックコイル
US20070188173A1 (en) * 2004-03-03 2007-08-16 Koninklijke Philips Electronics N.V. Asymmetric ultra-short gradient coil for magnetic resonance imaging system
JP2014010090A (ja) * 2012-06-29 2014-01-20 Institute Of Physical & Chemical Research 核磁気共鳴現象測定用rfコイル
JP2014042685A (ja) * 2012-08-28 2014-03-13 Ge Medical Systems Global Technology Co Llc 磁気共鳴撮像装置用のヘリカル傾斜コイル

Also Published As

Publication number Publication date
US20170234947A1 (en) 2017-08-17
KR102277899B1 (ko) 2021-07-15
KR20160019228A (ko) 2016-02-19
US11125841B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2016035948A1 (ko) 유전 구조체를 포함하는 rf 코일부 및 이를 포함하는 자기공명영상 시스템
CN102914751B (zh) 具有多个可单独关断的匀场线圈的局部线圈
CN111904420B (zh) 磁共振断层扫描系统
US5144241A (en) Circularly polarizing rf antenna for an mri apparatus having a c-magnet
JP6511397B2 (ja) 磁気共鳴イメージング装置、アンテナ装置およびその製造方法
US20120280687A1 (en) Magnetic resonance device
WO2017191860A1 (ko) 자기공명영상 시스템
WO2015190816A1 (ko) Rf 표면 코일부 및 이를 포함하는 자기공명영상 시스템
US7602188B2 (en) System of electric coils for transmitting and receiving radio-frequency magnetic fields in a magnetic-resonance imaging apparatus, and magnetic-resonance imaging apparatus provided with such a system of electric coils
WO2016024677A1 (ko) Rf 코일부 및 이를 포함하는 자기공명영상 시스템
US6982553B2 (en) Radio frequency coil with two parallel end conductors
WO2015190818A1 (ko) Rf 표면 코일부 및 이를 포함하는 자기공명영상 시스템
CN107526049A (zh) 一种用于超高场的多核代谢成像双频头线圈
CN108802640A (zh) 用于发射高频辐射的线圈装置
JP5258968B2 (ja) 磁気共鳴計測装置
WO2016003059A1 (ko) 자기공명영상용 rf 코일 및 자기공명영상 시스템
JPH0947444A (ja) 磁気共鳴装置用rfプローブ
CN207164230U (zh) 一种用于超高场的多核代谢成像双频头线圈
Sakthisudhan et al. Survey on RF Coils for MRI Diagnosis System
US11614506B2 (en) Radio frequency coil unit and magnetic resonance imaging apparatus
CN116087849A (zh) 一种mri专用梯度线圈
CN109444780A (zh) 发射阵列单元、体发射天线以及磁共振设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831392

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831392

Country of ref document: EP

Kind code of ref document: A1