WO2016003059A1 - 자기공명영상용 rf 코일 및 자기공명영상 시스템 - Google Patents
자기공명영상용 rf 코일 및 자기공명영상 시스템 Download PDFInfo
- Publication number
- WO2016003059A1 WO2016003059A1 PCT/KR2015/003595 KR2015003595W WO2016003059A1 WO 2016003059 A1 WO2016003059 A1 WO 2016003059A1 KR 2015003595 W KR2015003595 W KR 2015003595W WO 2016003059 A1 WO2016003059 A1 WO 2016003059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coil
- magnetic resonance
- loops
- resonance imaging
- imaging system
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/34—Constructional details, e.g. resonators, specially adapted to MR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/34—Constructional details, e.g. resonators, specially adapted to MR
- G01R33/341—Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
- G01R33/3415—Constructional details, e.g. resonators, specially adapted to MR comprising surface coils comprising arrays of sub-coils, i.e. phased-array coils with flexible receiver channels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4608—RF excitation sequences for enhanced detection, e.g. NOE, polarisation transfer, selection of a coherence transfer pathway
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4616—NMR spectroscopy using specific RF pulses or specific modulation schemes, e.g. stochastic excitation, adiabatic RF pulses, composite pulses, binomial pulses, Shinnar-le-Roux pulses, spectrally selective pulses not being used for spatial selection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4625—Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
Definitions
- Embodiments of the present invention relate to an RF coil and a magnetic resonance imaging system for magnetic resonance imaging.
- NMR Nuclear Magnetic Resonance
- MRI magnetic resonance imaging
- MRS magnetic resonance spectroscopy
- the magnetic resonance imaging apparatus photographs a cross section of a human body using a nuclear magnetic resonance phenomenon.
- Nuclear nuclei such as hydrogen (1H), phosphorus (31P), sodium (23Na), and carbon isotopes (13C) present in the human body each have their own rotor magnetic constants due to nuclear magnetic resonance.
- the RF coil is applied to the magnetization vector of the nuclear nucleus aligned in the direction of the field using an RF coil, and the RF coil receives a magnetic resonance signal generated by rearranging the magnetization vector in a vertical plane due to frequency resonance.
- the cross-sectional image of can be obtained.
- the RF coil may include an RF antenna capable of transmitting a high frequency and receiving a magnetic resonance signal to resonate the magnetization vector. Resonating the magnetization vector with one RF coil (RF antenna) (RF transmission mode) and receiving a magnetic resonance signal (RF reception mode) may be performed together. Alternatively, the RF transmission mode and the RF reception mode may be separately performed by using two RF coils dedicated to the RF transmission mode and two RF coils dedicated to the RF reception mode.
- a coil that performs both transmission and reception modes with one coil is called a transmission / reception (Tx / Rx) coil, and a transmission-only coil is called a transmission coil and a reception-only coil is called a reception coil.
- RF transmitting coils are installed inside the main magnet and are made of birdcage on a circular or circular frame sized to fit the human body.
- the RF receiving coil is located in a portion adjacent to the human body can be manufactured in various forms according to the shape of each part of the human body.
- Embodiments of the present invention provide an RF coil and a magnetic resonance imaging system for magnetic resonance imaging.
- An embodiment of the present invention is a radio frequency (RF) coil for a magnetic resonance imaging system, wherein the RF coil includes a plurality of radially disposed loops, each of the plurality of loops being at least partially at the center of the radial structure.
- RF coil for magnetic resonance imaging in which an area overlaps is disclosed.
- the RF coil may be a Rx only RF coil that acquires a magnetic resonance signal excited by an RF signal.
- each of the plurality of loops may be connected to a separate RF channel.
- each of the plurality of loops may be formed by winding conductive lines once and crossing each other, and the plurality of loops may be formed of one conductive line connected to one RF channel.
- the plurality of loops may be arranged in the horizontal direction on the same plane.
- the plurality of loops may be disposed at an isometric angle on the radial structure.
- a magnetic resonance imaging system comprising: a Tx only RF coil for applying an RF signal toward a subject and an area of interest of the subject excited by the applied RF signal An RF coil assembly comprising a Rx only RF coil for obtaining a magnetic resonance signal from the RF coil; An RF coil control unit controlling an RF transmission mode of the transmission-only RF coil and an RF reception mode of the reception-only RF coil; And an image processor configured to generate a magnetic resonance image of the subject based on the obtained magnetic resonance signal, wherein the reception-only RF coil includes a plurality of loops disposed radially, each of the plurality of loops. Discloses a magnetic resonance imaging system in which at least some areas overlap in the center of the radial structure.
- each of the plurality of loops may be connected to a separate RF channel.
- the loop may be formed by crossing conductive lines one by one and crossing each other, and the plurality of loops may be formed by one conductive line connected to one RF channel.
- the plurality of loops may be arranged in the horizontal direction on the same plane.
- the plurality of loops may be disposed at an isometric angle on the radial structure.
- the transmit-only RF coil and the receive-only RF coil may be arranged in parallel overlap.
- the B1 field sensitivity of the ROI is improved.
- FIG. 1 is a block diagram of a magnetic resonance imaging system 10 according to an embodiment of the present invention.
- FIG. 2 to 6 illustrate a receive-only RF coil 131 according to embodiments of the present invention.
- FIG. 1 is a block diagram of a magnetic resonance imaging system 10 according to an embodiment of the present invention.
- the magnetic resonance imaging system 10 of the embodiments of the present invention includes a computing device 100 and a circular housing 190.
- the circular housing 190 includes a volume-type RF coil device 140, a gradient magnetic coil 150, and a main magnet 160 that are transmit-only (Tx only, transmit only) in the order from the inside to the outside.
- the subject moves in the hollow 190a of the circular housing 190 in a state lying on the table 170, and then the magnetic resonance image is taken.
- the Tx only volume-type RF coil device 140, the gradient magnetic coil 150, and the main magnet 160 constituting the circular housing 190 are the computing device 100. It is connected to and driven and controlled.
- the computing device 100 may display a magnetic resonance image of the photographed subject or be connected to a console (not shown) to which a user's manipulation signal is input.
- the Tx only volume-type RF coil device 140 is an RF of the computing device 100 together with the RF coil assembly 130 of FIG. 1 installed at a site of a test subject. It may be independently driven and controlled by the coil controller 110.
- the main magnet 160 generates a main magnetic field for magnetizing an atomic nucleus such as hydrogen, phosphorus, sodium, and carbon, which causes magnetic resonance among elements distributed in the human body, and may be a superconducting electromagnet or a permanent magnet.
- an atomic nucleus such as hydrogen, phosphorus, sodium, and carbon
- Gradient magnetic field coil 150 is a coil for generating a spatially linear gradient magnetic field in order to take a magnetic resonance image, typically three magnetic gradients to form a gradient magnetic field in the x-, y-, z-direction Gradient magnetic field coils are used.
- the gradient magnetic coil 150 serves to spatially control the rotation frequency or phase of the magnetization vector when the magnetization vector rotates in the horizontal plane so that the magnetic resonance image signal is represented in the spatial frequency region, that is, the k-region.
- the magnetization vectors In order to generate a magnetic resonance image signal, the magnetization vectors must be aligned in the horizontal plane, which requires a volume RF coil device 140 and an RF coil assembly 130 that generate an RF magnetic field having a Larmor frequency as the center frequency. Do.
- the volume-type RF coil device 140 and the RF coil assembly 130 to which the RF current of the Ramo frequency band is applied form a rotating magnetic field rotating at the Ramo frequency.
- the rotational magnetic field causes resonance of the magnetization vector, that is, nuclear magnetic resonance
- the magnetization vector is aligned in the transverse plane.
- a base band magnetic resonance signal may be obtained by amplifying the electromotive force signal, that is, the received RF signal with a high frequency amplifier and demodulating the sinusoidal wave of the LMO frequency.
- the baseband magnetic resonance signal is transmitted to the computing device 100, and the magnetic resonance image is generated after being processed by the image processor 120 such as quantization.
- the volume-type RF coil device 140 provided in the circular housing 190 may be used to take a magnetic resonance image of a whole body of a subject.
- the RF coil assembly 130 installed on the body part of the subject may be used to take a magnetic resonance image of a body part of the subject, for example, a head, a chest, and a leg.
- the RF coil assembly 130 is a separate independent device provided outside the circular housing 190 and is movable to be positioned on the body part of the subject to be photographed with the magnetic resonance image.
- RF coils installed on body parts of a subject include birdcage coils, saddle coils, TEM coils, and receive-only surface coils. surface coils).
- the resonance frequency operated in the magnetic resonance imaging system 10 may vary.
- the magnetic resonance imaging system 10 is operated at 3T (tesla)
- the operating frequency of 127.74 MHz the operating frequency of 200 MHz when operating at 4.7T
- the operating frequency of 300 MHz operating at 9.4T when operating at 7T If you have an operating frequency of 400 MHz.
- the magnetic resonance imaging system 10 is operated with an ultra-high magnetic field of 7T or more, and the RF coil assembly 130 combines transmission and reception (Tx / Rx) in one RF coil, it is formed by one RF coil. Homogeneity of the B1 magnetic field may be lowered.
- the magnetic resonance imaging system 10 in particular the RF coil assembly 130, separates the transmit-only (Tx only) RF and the receive-only (Rx only) RF coil separately even under an ultra-high magnetic field of 7T or more.
- the uniformity of the B1 magnetic field formed by the RF coil assembly 130 may be improved.
- the transmit-only RF coil and the receive-only RF coil may be disposed to overlap each other in two dimensions, but embodiments of the present invention are not limited thereto.
- the receive-only RF coil 131 acquires a magnetic resonance signal excited by the RF signal.
- the receive-only RF coil 131 includes a plurality of loops 21, 22, 23, and 24.
- the plurality of loops 21, 22, 23, 24 may be arranged radially. 2, at least some areas of each loop 21, 22, 23, 24 may overlap each other at the center of the radial structure.
- Each of the plurality of loops 21, 22, 23, and 24 may be connected to a separate RF channel.
- the first loop 21 is in the first channel ch1
- the second loop 22 is in the second channel ch2
- the third loop 23 is in the third channel ch3
- Four loops 24 may be connected to the fourth channel ch4.
- the size of the overlapping area of the loops 21, 22, 23, and 24 at the center may be formed according to the specifications required for the magnetic resonance imaging system according to an exemplary embodiment.
- an overlapping area of the RF coil 131 may be larger or smaller according to the size of the ROI of the subject in the MRI system.
- the larger the size of the ROI the larger the overlapping region of the RF coil 131 may be formed.
- the size of the overlap region may affect the signal to noise ratio. For example, the smaller the size of the overlap region, the more the signal-to-noise ratio tends to be improved.
- the receive-only RF coil 131 includes a plurality of loops 21, 22, 23, 24, 25, and 26.
- the plurality of loops 21, 22, 23, 24, 25, 26 may be arranged radially.
- at least some areas of each loop 21, 22, 23, 24, 25, 26 may overlap each other at the center of the radial structure.
- Each of the plurality of loops 21, 22, 23, and 24 may be connected to a separate RF channel.
- the first loop 21 is in the first channel ch1
- the second loop 22 is in the second channel ch2
- the third loop 23 is in the third channel ch3
- the fourth loop 24 may be connected to the fourth channel ch4
- the fifth loop 25 may be connected to the fifth channel ch5
- the sixth loop 26 may be connected to the sixth channel ch6.
- the number of loops included in the receive-only RF coil 131 according to the embodiments is not limited to those illustrated in FIGS. 2 to 4.
- the number of loops included in the reception-only RF coil 131 may be variously formed according to the purpose of the reception-only RF coil 131 and the design of the magnetic resonance imaging system 10.
- the sensitivity of the receive-only RF coil 131 may vary depending on the number of loops.
- the number of loops constituting the reception-only RF coil 131 may be formed according to the sensitivity of the RF coil 131 required for the magnetic resonance imaging system according to an embodiment. For example, when higher sensitivity is required in the central region, the RF coil 131 having a large number of loops may be used.
- a receive-only RF coil 131 includes a plurality of loops 51, 52, 53, and 54.
- the plurality of loops 51, 52, 53, 54 may be arranged radially. Referring to FIG. 5, at least some areas of each loop 51, 52, 53, 54 may overlap each other at the center of the radial structure.
- Each of the plurality of loops 51, 52, 53, 54 may be formed by winding the conductive lines 50 once and crossing each other.
- the plurality of loops 51, 52, 53, and 54 may be formed of one conductive line 50 connected to one RF channel ch1. That is, the plurality of loops 51, 52, 53, and 54 may be formed by twisting one conductive line several times, and may be connected to one channel ch1.
- the reception-only RF coil 131 connected to a plurality of channels can be used in a magnetic resonance imaging system without a limit on the number of channels, and if there is a limit on the number of channels shown in FIG. As such, the short channel RF coil 131 may be implemented.
- the receive-only RF coil 131 includes a plurality of loops 61, 62, 63, 64, 65, and 66.
- the plurality of loops 61, 62, 63, 64, 65, 66 may be arranged radially. Referring to FIG. 6, at least some areas of each loop 61, 62, 63, 64, 65, 66 may overlap each other at the center of the radial structure.
- Each of the plurality of loops 61, 62, 63, 64, 65, and 66 may be formed by the conductive lines 50 being wound and crossed alternately.
- the plurality of loops 61, 62, 63, 64, 65, and 66 may be formed of one conductive line 60 connected to one RF channel ch1. That is, the plurality of loops 61, 62, 63, 64, 65, and 66 may be formed by twisting one conductive line several times, and may be connected to one channel ch1.
- a plurality of loops may be formed by only one conductive line connected to one channel, and each loop may be disposed such that at least a portion of each loop overlaps at the center. Accordingly, even in a magnetic resonance imaging system having a limited number of channels, a desired number of loops can be formed.
- the receiving-only RF coil 131 may include a plurality of loops formed by one conductive line and connected to one channel, and loops formed by separate conductive lines and connected to separate channels, respectively. have.
- a plurality of loops included in the receive-only RF coil 131 may be arranged in a horizontal direction on the same plane.
- the receive-only RF coil 131 may be a planar coil.
- a plurality of loops included in the receive-only RF coil 131 may be disposed at an isometric angle on a radial structure.
- a receive-only RF coil 131 which is an array coil in which a plurality of loops are stacked, a sensitivity of a B1 field in a region of interest (ROI) in an image. And B1 + (RF excitation field) can be improved.
- a strong RF field is formed in the center, and a relatively weak RF field is formed in the remaining part.
- the receiving-only RF coil 131 by setting the number of loops, the shape of the loop, the position of the loop, the width of the overlapping area, and the like, the specifications required for the MRI system, For example, the desired B1 sensitivity may be implemented in the region of interest.
- the number of channels is limited in setting the number of loops, a plurality of loops may be formed using conductive lines connected to one channel as in the embodiments of FIGS. 5 and 6.
- the present invention can be applied to an RF coil and a magnetic resonance imaging system for magnetic resonance imaging.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Signal Processing (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
본 발명의 일 실시예는 자기공명영상 시스템용 RF(radio frequency) 코일에 있어서, 상기 RF 코일은 방사형으로 배치된 복수의 루프를 포함하고, 상기 복수의 루프 각각은 상기 방사형 구조의 중심부에서 적어도 일부 영역(area)이 겹쳐지는 자기공명영상용 RF 코일을 개시한다.
Description
본 발명의 실시예들은 자기공명영상용 RF 코일 및 자기공명영상 시스템에 관한 것이다.
핵자기 공명(Nuclear Magnetic Resonance: NMR) 현상을 이용하는 자기공명 시스템으로서 자기공명영상(Magnetic Resonance Imaging: MRI) 장치, 자기공명 분광(Magnetic Resonance Spectroscopy: MRS) 장치 등이 알려져 있다.
자기공명영상 장치는 핵자기 공명 현상을 이용하여 인체의 단면을 촬영한다. 인체 내에 존재하는 수소(1H), 인(31P), 나트륨(23Na), 탄소동위원소(13C) 등의 원자핵은 핵자기 공명현상에 의해 각기 고유한 회전자계상수를 가지므로, 주자기장(main magnetic field)의 방향으로 정렬된 원자핵의 자화 벡터(magnetization vector)에 RF 코일을 이용하여 고주파를 인가하고, 주파수 공명으로 인해 수직평면으로 자화벡터가 재정렬되면서 발생되는 자기공명 신호를 RF 코일이 수신함으로써 인체의 단면 영상을 획득할 수 있다.
RF 코일은 자화벡터를 공명시키기 위하여 고주파를 송신하고 자기공명 신호를 수신할 수 있는 RF 안테나를 포함할 수 있다. 한 개의 RF 코일(RF 안테나)로 자화벡터를 공명시키는 것(RF 송신 모드)과 자기공명 신호를 수신하는 것(RF 수신 모드)을 같이 수행할 수도 있다. 또는, RF 송신 모드 전용의 RF 코일과 RF 수신 모드 전용의 RF 코일 두 개를 각기 따로 사용하여 RF 송신 모드와 RF 수신 모드를 별개로 수행할 수도 있다. 한 개의 코일로 송신 및 수신모드를 다 수행하는 코일을 송수신(Tx/Rx) 코일이라 하며, 송신 전용의 코일을 송신 코일, 수신 전용의 코일을 수신 코일이라 한다. 대부분의 RF 송신 코일은 주자석의 내측에 설치되며, 인체가 들어 갈 수 있는 크기의 원형 혹은 원형 프레임 위에 새장(birdcage)형으로 만들어진다. 반면, RF 수신코일은 인체에 인접한 부분에 위치하며 인체의 부위별 형상에 따라 다양한 형태로 제작될 수 있다.
본 발명의 실시예들은 자기공명영상용 RF 코일 및 자기공명영상 시스템을 제공한다.
본 발명의 일 실시예는 자기공명영상 시스템용 RF(radio frequency) 코일에 있어서, 상기 RF 코일은 방사형으로 배치된 복수의 루프를 포함하고, 상기 복수의 루프 각각은 상기 방사형 구조의 중심부에서 적어도 일부 영역(area)이 겹쳐지는 자기공명영상용 RF 코일을 개시한다.
본 실시예에 있어서, 상기 RF 코일은 RF 신호에 의해 여기된(excited) 자기공명 신호를 획득하는 수신전용(Rx only) RF 코일일 수 있다.
본 실시예에 있어서, 상기 복수의 루프 각각은 별도의 RF 채널에 연결될 수 있다.
본 실시예에 있어서, 상기 복수의 루프 각각은 도전 선이 한바퀴 감기고 엇갈려 교차함으로써 형성되고, 상기 복수의 루프는 하나의 RF 채널에 연결된 하나의 도전 선으로 형성될 수 있다.
본 실시예에 있어서, 상기 복수의 루프는 동일 평면상에 수평 방향으로 배치될 수 있다.
본 실시예에 있어서, 상기 복수의 루프는 상기 방사형 구조 상에서 등각도로 배치될 수 있다.
본 발명의 다른 실시예는 자기공명영상 시스템에 있어서, 피검체를 향하여 RF 신호를 인가하는 송신전용(Tx only) RF 코일 및 상기 인가된 RF 신호에 의해 여기된(excited) 상기 피검체의 관심 영역으로부터 자기공명 신호를 획득하는 수신전용(Rx only) RF 코일을 포함하는 RF 코일 어셈블리; 상기 송신전용 RF 코일의 RF 송신 모드 및 상기 수신전용 RF 코일의 RF 수신 모드를 제어하는 RF 코일 제어부; 및 상기 획득된 상기 자기공명 신호에 기초하여 상기 피검체에 대한 자기공명영상을 생성하는 영상 처리부를 포함하고, 상기 수신전용 RF 코일은 방사형으로 배치된 복수의 루프를 포함하고, 상기 복수의 루프 각각은 상기 방사형 구조의 중심부에서 적어도 일부 영역(area)이 겹쳐지는 자기공명영상 시스템을 개시한다.
본 실시예에 있어서, 상기 복수의 루프 각각은 별도의 RF 채널에 연결될 수 있다.
본 실시예에 있어서, 상기 루프는 도전 선이 한바퀴 감기고 엇갈려 교차함으로써 형성되고, 상기 복수의 루프는 하나의 RF 채널에 연결된 하나의 도전 선으로 형성될 수 있다.
본 실시예에 있어서, 상기 복수의 루프는 동일 평면상에 수평 방향으로 배치될 수 있다.
본 실시예에 있어서, 상기 복수의 루프는 상기 방사형 구조 상에서 등각도로 배치될 수 있다.
본 실시예에 있어서, 상기 송신전용 RF 코일 및 상기 수신전용 RF 코일은 평행하게 오버랩되어 배치될 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명의 실시예들에 관한 자기공명영상용 RF 코일 및 자기공명영상 시스템은 관심영역의 B1 필드 민감도(sensitivity)가 향상된다.
도 1은 본 발명의 일 실시예에 따른 자기공명영상 시스템(10)의 구성도를 도시한 것이다.
도 2 내지 도 6은 본 발명의 실시예들에 따른 수신전용 RF 코일(131)을 도시한 것이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. 도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
도 1은 본 발명의 일 실시예에 따른 자기공명영상 시스템(10)의 구성도를 도시한 것이다.
도 1을 참조하면, 본 발명의 실시예들의 자기공명영상 시스템(10)은 컴퓨팅 장치(100) 및 원형 하우징(190)을 포함한다.
원형 하우징(190)은 내측으로부터 외측의 순서로, 송신전용(Tx only, transmit only)의 볼륨형 RF 코일 장치(140), 경사 자계 코일(150), 및 주자석(160)을 포함한다. 피검체는 테이블(170)상에 누운 상태로 원형 하우징(190)의 중공(190a) 속에 이동하게 되며, 이후 자기공명영상의 촬영이 이루어지게 된다.
자기공명영상 시스템(10)에서 원형 하우징(190)을 구성하는 송신전용(Tx only)의 볼륨형 RF 코일 장치(140), 경사 자계 코일(150), 및 주자석(160)은 컴퓨팅 장치(100)에 연결되어 구동 및 제어된다. 컴퓨팅 장치(100)는, 촬영된 피검체의 자기공명영상을 표시하거나 사용자의 조작 신호가 입력되는 콘솔(미도시)에 연결될 수 있다.
자기공명영상 시스템(10)에서 송신전용(Tx only)의 볼륨형 RF 코일 장치(140)는 피검체의 피검 부위에 설치되는 도 1의 RF 코일 어셈블리(130)와 함께 컴퓨팅 장치(100)의 RF 코일 제어부(110)에 의해 독립적으로 구동 및 제어될 수 있다.
주자석(160)은 인체 내에 분포해 있는 원소 중 자기공명 현상을 일으키는 원소, 즉 수소, 인, 나트륨, 카본 등의 원자핵을 자화시키기 위한 주자계를 발생시키는 것으로서, 초전도 전자석이나 영구 자석일 수 있다.
경사 자계 코일(150)은 자기공명영상을 촬영하기 위해서는 공간적으로 선형적인 경사 자계를 발생시키는 코일로서, 통상적으로 자기공명영상에는 x-, y-, z-방향으로 경사 자계를 각기 형성하는 세 개의 경사 자계 코일이 사용된다. 경사 자계 코일(150)은 자화 벡터가 횡평면에서 회전할 때 자화 벡터의 회전 주파수나 위상을 공간적으로 제어하여 자기공명영상 신호가 공간 주파수 영역, 즉 k-영역에서 표현되도록 하는 역할을 한다.
자기공명영상 신호를 만들기 위해 자화 벡터를 횡평면으로 정렬시켜야 하는데 이를 위해서는 라모(Larmor) 주파수를 중심 주파수로 하는 RF 자계를 발생시키는 볼륨형 RF 코일 장치(140)와 RF 코일 어셈블리(130)가 필요하다. 라모 주파수 대역의 RF 전류가 인가된 볼륨형 RF 코일 장치(140)와 RF 코일 어셈블리(130)는 라모 주파수로 회전하는 회전 자계를 형성한다. 이 회전 자계에 의하여 자화 벡터의 공명, 즉 핵자기 공명이 야기되면, 자화 벡터가 횡평면으로 정렬되게 된다. 자화 벡터가 일단 횡평면으로 정렬되게 되면 횡평면에서 라모 주파수로 회전하는 자화 벡터는 패러데이(Faraday) 법칙에 의해 볼륨형 RF 코일 장치(140)와 RF 코일 어셈블리(130)에 기전력을 발생시킨다. 이와 같은 기전력 신호, 즉 수신되는 RF 신호를 고주파 증폭기로 증폭한 뒤 라모 주파수의 정현파로 복조(demodulation)하면 기저 대역(base band)의 자기공명 신호를 얻을 수 있다. 기저 대역의 자기공명 신호는 컴퓨팅 장치(100)로 전송되어, 영상 처리부(120)에 의해 양자화 등의 처리를 거친 후 자기공명영상이 생성되게 된다.
위와 같이, 자기공명영상 시스템(10)에서 자기공명영상이 생성되는 일반적인 원리를 간략하게 설명하였다. 자기공명영상이 생성되는 과정에 관한 보다 상세한 설명은 당해 기술분야의 통상의 기술자에게 자명하므로, 본 실시예에서는 생략하도록 한다.
자기공명영상 시스템(10)에서 원형 하우징(190) 내에 구비된 볼륨형 RF 코일 장치(140)는 피검체의 전신에 대한 자기공명영상을 촬영하기 위해 사용될 수 있다. 이와 달리, 피검체의 신체 일부, 예를 들어 머리, 가슴, 다리 등의 국부에 대한 자기공명영상을 촬영하기 위해서는 피검체의 신체 일부에 설치되는 RF 코일 어셈블리(130)가 사용될 수 있다. RF 코일 어셈블리(130)는 원형 하우징(190) 외부에 구비된 별도의 독립적인 장치로서, 자기공명영상의 촬영을 원하는 피검체의 신체 일부에 위치되도록 이동 가능한 장치이다.
일반적으로 알려진, 피검체의 신체 일부에 설치되는 RF 코일의 종류로는 새장형 코일 (birdcage coil), 안장형 코일(saddle coil), TEM 코일(transverse electromagnetic coil), 수신 전용 표면 코일(Receive-only surface coil) 등이 있다.
한편, 자기공명영상 시스템(10)에서 운영되는(operated) 공진주파수는 다양할 수 있다. 자기공명영상 시스템(10)이 3T(tesla)로 운영되는 경우 127.74 MHz의 운영 주파수, 4.7T로 운영되는 경우 200 MHz의 운영 주파수, 7T로 운영되는 경우 300 MHz의 운영 주파수, 9.4T로 운영되는 경우 400 MHz의 운영 주파수를 갖는다.
하지만, 자기공명영상 시스템(10)이 7T 이상의 초고자기장으로 운영되고, 또한 RF 코일 어셈블리(130)가 하나의 RF 코일에서 송수신(Tx/Rx)를 겸용하는 경우에는, 하나의 RF 코일에 의해 형성되는 B1 자기장의 균일도(Homogeneity)가 낮아질 수 있다.
그러므로, 본 실시예에 따른 자기공명영상 시스템(10), 특히 RF 코일 어셈블리(130)는 송신전용(Tx only) RF 코일과 수신전용(Rx only) RF 코일을 따로 분리함으로써 7T 이상의 초고자기장 하에서도 RF 코일 어셈블리(130)에 의해 형성되는 B1 자기장의 균일도를 향상시킬 수 있다. 송신전용 RF 코일과 수신전용 RF 코일은 2차원 상으로 오버랩되어 배치될 수 있으나, 본 발명의 실시예들이 이에 한정되지 않는다.
도 2 내지 도 6은 본 발명의 실시예들에 따른 수신전용 RF 코일(131)을 도시한 것이다. 수신전용 RF 코일(131)은 RF 신호에 의해 여기된(excited) 자기공명 신호를 획득한다.
도 2 및 도 3을 참조하면, 일 실시예에 따른 수신전용 RF 코일(131)은 복수의 루프(21, 22, 23, 24)를 포함한다. 복수의 루프(21, 22, 23, 24)는 방사형으로 배치될 수 있다. 도 2를 참조하면, 각 루프(21, 22, 23, 24)의 적어도 일부 영역(area)은 방사형 구조의 중심부에서 서로 겹쳐질 수 있다. 복수의 루프(21, 22, 23, 24) 각각은 별도의 RF 채널에 연결될 수 있다. 예를 들어, 제1 루프(21)는 제1 채널(ch1)에, 제2 루프(22)는 제2 채널(ch2)에, 제3 루프(23)는 제3 채널(ch3)에, 제4 루프(24)는 제4 채널(ch4)에 연결될 수 있다.
한편, 중심부에서의 루프(21, 22, 23, 24)의 중첩영역의 크기는 일 실시예에 따른 자기공명 영상 시스템에 요구되는 사양에 따라 형성될 수 있다. 예를 들어, 일 실시예에 따른 자기공명 영상 시스템에서 피사체의 관심영역의 크기에 따라 RF 코일(131)의 중첩영역이 더 크게, 혹은 더 작게 형성될 수 있다. 예를 들어, 관심영역의 크기가 클수록 RF 코일(131)의 중첩영역을 더 크게 형성할 수 있다. 한편, 중첩영역의 크기는 신호대잡음비에 영향을 미칠 수 있다. 예컨대, 중첩영역의 크기가 작을수록 신호대잡음비가 향상되는 경향이 있다. 따라서, 일 실시예에 따른 자기공명 영상 시스템에서 요구되는 신호대잡음비의 사양에 따라, 적합한 크기의 중첩영역을 갖는 RF 코일(131)을 사용할 수 있다. 도 4를 참조하면, 일 실시예에 따른 수신전용 RF 코일(131)은 복수의 루프(21, 22, 23, 24, 25, 26)를 포함한다. 복수의 루프(21, 22, 23, 24, 25, 26)는 방사형으로 배치될 수 있다. 도 4를 참조하면, 각 루프(21, 22, 23, 24, 25, 26)의 적어도 일부 면적은 방사형 구조의 중심부에서 서로 겹쳐질 수 있다. 복수의 루프(21, 22, 23, 24) 각각은 별도의 RF 채널에 연결될 수 있다. 예를 들어, 제1 루프(21)는 제1 채널(ch1)에, 제2 루프(22)는 제2 채널(ch2)에, 제3 루프(23)는 제3 채널(ch3)에, 제4 루프(24)는 제4 채널(ch4)에, 제5 루프(25)는 제5 채널(ch5)에, 제6 루프(26)는 제6 채널(ch6)에 연결될 수 있다.본 발명의 실시예들에 따른 수신전용 RF 코일(131)에 포함되는 루프의 개수는, 도 2 내지 도 4에 예시된 것에 한정되지 않는다. 수신전용 RF 코일(131)에 포함되는 루프의 개수는, 수신전용 RF 코일(131)의 용도 및 자기공명영상 시스템(10)의 설계에 따라 다양하게 형성 가능하다. 예를 들어 루프의 개수에 따라 수신전용 RF 코일(131)의 민감도가 달라질 수 있다.
이에 따라, 수신전용 RF 코일(131)을 구성하는 루프의 개수는, 일 실시예에 따른 자기공명 영상 시스템에 요구되는 RF 코일(131)의 민감도(sensitivity) 에 따라 형성될 수 있다. 예를 들어, 중심영역에서 더 높은 민감도가 요구되는 경우에는 루프의 개수가 많은 RF 코일(131)을 사용할 수 있다.
도 5를 참조하면, 일 실시예에 따른 수신전용 RF 코일(131)은 복수의 루프(51, 52, 53, 54)를 포함한다. 복수의 루프(51, 52, 53, 54)는 방사형으로 배치될 수 있다. 도 5를 참조하면, 각 루프(51, 52, 53, 54)의 적어도 일부 면적은 방사형 구조의 중심부에서 서로 겹쳐질 수 있다. 복수의 루프(51, 52, 53, 54) 각각은, 도전 선(50)이 한바퀴 감기고 엇갈려 교차함으로써 형성될 수 있다. 복수의 루프(51, 52, 53, 54)는 하나의 RF 채널(ch1)에 연결된 하나의 도전선(50)으로 형성될 수 있다. 즉, 복수의 루프(51, 52, 53, 54)는 하나의 도전선이 여러 번 꼬이면서 형성된 것일 수 있으며, 하나의 채널(ch1)에 연결될 수 있다.
도 3 및 도 4와 같이, 복수의 채널에 연결되는 수신전용 RF 코일(131)은 채널 수의 제한이 없는 자기공명영상 시스템에서 사용 가능하며, 채널 수의 제한이 있는 경우에는 도 5에 도시된 것과 같이 단채널 RF 코일(131)을 구현할 수 있다.
도 6을 참조하면, 일 실시예에 따른 수신전용 RF 코일(131)은 복수의 루프(61, 62, 63, 64, 65, 66)를 포함한다. 복수의 루프(61, 62, 63, 64, 65, 66)는 방사형으로 배치될 수 있다. 도 6을 참조하면, 각 루프(61, 62, 63, 64, 65, 66)의 적어도 일부 면적은 방사형 구조의 중심부에서 서로 겹쳐질 수 있다. 복수의 루프(61, 62, 63, 64, 65, 66) 각각은, 도전 선(50)이 한바퀴 감기고 엇갈려 교차함으로써 형성될 수 있다. 복수의 루프(61, 62, 63, 64, 65, 66)는 하나의 RF 채널(ch1)에 연결된 하나의 도전선(60)으로 형성될 수 있다. 즉, 복수의 루프(61, 62, 63, 64, 65, 66)는 하나의 도전선이 여러 번 꼬이면서 형성된 것일 수 있으며, 하나의 채널(ch1)에 연결될 수 있다.
도 5 내지 도 6을 함께 참조하면, 1개의 채널에 연결된 하나의 도전선만으로도, 복수의 루프를 형성 가능하며, 각각의 루프의 적어도 일부 면적이 중심부에서 겹쳐지도록 각 루프를 배치할 수 있다. 이에 따르면, 채널 수의 제한이 있는 자기공명영상 시스템에서도 원하는 개수의 루프를 형성 가능한 효과가 있다.
도면에 도시되지 않았으나, 수신전용 RF 코일(131)은 하나의 도전선으로 형성되어 하나의 채널에 연결된 복수의 루프와, 각각 별개의 도전선으로 형성되어 별개의 채널에 연결된 루프를 모두 포함할 수 있다.
도 2 내지 도 6을 참조하면, 일 실시예에 따른 수신전용 RF 코일(131)에 포함된 복수의 루프들은, 동일 평면 상에 수평 방향으로 배치될 수 있다. 수신전용 RF 코일(131)은 평면 코일일 수 있다.
도 2 내지 도 6을 참조하면, 일 실시예에 따른 수신전용 RF 코일(131)에 포함된 복수의 루프들은, 방사형 구조 상에서 등각도로 배치될 수 있다.
도2 내지 도 6을 참조하면, 여러 개의 루프를 겹쳐놓은 형태의 어레이 코일인 수신전용 RF 코일(131)을 이용하면, 영상에서 관심영역(Region of interest; ROI)에 B1필드의 민감도(sensitivity)와 B1+(RF excitation field)를 향상시킬 수 있다. 방사형 구조의 수신전용 RF 코일(131)의 중심부에서 여러 코일이 겹쳐진 경우, 중심부에서는 강한 RF 필드가 형성되며, 나머지 부분에서는 상대적으로 약한 RF 필드가 형성된다.
일 실시예에 따른 수신전용 RF 코일(131)에 있어서, 루프의 개수와 루프의 형태, 루프의 위치, 루프가 겹쳐지는 면적의 넓이 등을 다양하게 설정함으로써, 자기공명 영상 시스템에서 요구되는 사양, 예컨대 관심영역에서 원하는 B1 민감도를 구현할 수 있다. 루프의 개수를 설정하는 데에 있어서 채널 수가 제한되는 경우, 도 5 및 도 6의 실시예와 같이 하나의 채널에 연결된 도전선을 이용하여 복수의 루프를 형성할 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
본 발명은 자기공명 영상용 RF 코일 및 자기공명영상 시스템에 적용될 수 있다.
이상에서는 본 발명의 예시적인 실시예들을 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Claims (12)
- 자기공명영상 시스템용 RF(radio frequency) 코일에 있어서,상기 RF 코일은 방사형으로 배치된 복수의 루프를 포함하고,상기 복수의 루프 각각은 상기 방사형 구조의 중심부에서 적어도 일부 영역(area)이 겹쳐지는자기공명영상용 RF 코일.
- 제1항에 있어서,상기 RF 코일은 RF 신호에 의해 여기된(excited) 자기공명 신호를 획득하는 수신전용(Rx only) RF 코일인자기공명영상용 RF 코일.
- 제1항에 있어서,상기 복수의 루프 각각은 별도의 RF 채널에 연결된자기공명영상용 RF 코일.
- 제1항에 있어서,상기 복수의 루프 각각은도전 선이 한바퀴 감기고 엇갈려 교차함으로써 형성되고,상기 복수의 루프는 하나의 RF 채널에 연결된 하나의 도전 선으로 형성된자기공명영상용 RF 코일.
- 제1항에 있어서,상기 복수의 루프는 동일 평면상에 수평 방향으로 배치된자기공명영상용 RF 코일.
- 제1항에 있어서,상기 복수의 루프는 상기 방사형 구조 상에서 등각도로 배치된자기공명영상용 RF 코일.
- 자기공명영상 시스템에 있어서,피검체를 향하여 RF 신호를 인가하는 송신전용(Tx only) RF 코일 및 상기 인가된 RF 신호에 의해 여기된(excited) 상기 피검체의 관심 영역으로부터 자기공명 신호를 획득하는 수신전용(Rx only) RF 코일을 포함하는 RF 코일 어셈블리;상기 송신전용 RF 코일의 RF 송신 모드 및 상기 수신전용 RF 코일의 RF 수신 모드를 제어하는 RF 코일 제어부; 및상기 획득된 상기 자기공명 신호에 기초하여 상기 피검체에 대한 자기공명영상을 생성하는 영상 처리부를 포함하고,상기 수신전용 RF 코일은 방사형으로 배치된 복수의 루프를 포함하고,상기 복수의 루프 각각은 상기 방사형 구조의 중심부에서 적어도 일부 영역(area)이 겹쳐지는자기공명영상 시스템.
- 제7항에 있어서,상기 복수의 루프 각각은 별도의 RF 채널에 연결된 것을자기공명영상 시스템.
- 제7항에 있어서,상기 루프는도전 선이 한바퀴 감기고 엇갈려 교차함으로써 형성되고,상기 복수의 루프는 하나의 RF 채널에 연결된 하나의 도전 선으로 형성된자기공명영상 시스템.
- 제7항에 있어서,상기 복수의 루프는 동일 평면상에 수평 방향으로 배치된자기공명영상 시스템.
- 제7항에 있어서,상기 복수의 루프는 상기 방사형 구조 상에서 등각도로 배치된자기공명영상 시스템.
- 제7항에 있어서,상기 송신전용 RF 코일 및 상기 수신전용 RF 코일은평행하게 오버랩되어 배치된자기공명영상 시스템.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/322,685 US20170160354A1 (en) | 2014-06-30 | 2014-04-10 | Radio frequency coil for magnetic resonance imaging and magnetic resonance imaging system |
US15/322,685 US10317483B2 (en) | 2014-06-30 | 2015-04-10 | Radio frequency coil for magnetic resonance imaging and magnetic resonance imaging system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0081210 | 2014-06-30 | ||
KR1020140081210A KR102207924B1 (ko) | 2014-06-30 | 2014-06-30 | 자기공명영상용 rf 코일 및 자기공명영상 시스템 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016003059A1 true WO2016003059A1 (ko) | 2016-01-07 |
Family
ID=55019553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/003595 WO2016003059A1 (ko) | 2014-06-30 | 2015-04-10 | 자기공명영상용 rf 코일 및 자기공명영상 시스템 |
Country Status (3)
Country | Link |
---|---|
US (2) | US20170160354A1 (ko) |
KR (1) | KR102207924B1 (ko) |
WO (1) | WO2016003059A1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101771220B1 (ko) | 2016-05-02 | 2017-08-24 | 가천대학교 산학협력단 | 자기공명영상 시스템 |
CN111060856B (zh) * | 2020-01-07 | 2021-03-16 | 厦门大学 | 核磁共振横向射频线圈定形装置及横向射频线圈定形方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1024025A (ja) * | 1996-07-15 | 1998-01-27 | Toshiba Corp | Mri用rfコイルユニットおよびコイル調整方法 |
US20080100297A1 (en) * | 2006-10-27 | 2008-05-01 | Manabu Ishii | High frequency coil device |
US20080238424A1 (en) * | 2005-10-19 | 2008-10-02 | Koninklijke Philips Electronics N. V. | Compact and Flexible Radio Frequency Coil Arrays |
US20090212774A1 (en) * | 2008-02-26 | 2009-08-27 | John Bosshard | Antenna arrangement for a magnetic resonance apparatus |
JP2013106862A (ja) * | 2011-11-22 | 2013-06-06 | Toshiba Corp | アレイ(array)コイル及び磁気共鳴イメージング装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006114923A1 (ja) | 2005-04-25 | 2006-11-02 | Hitachi, Ltd. | 磁気共鳴を用いた検査装置および核磁気共鳴信号受信用コイル |
US20060255804A1 (en) | 2005-05-13 | 2006-11-16 | General Electric | Three concentric coil array |
KR100900862B1 (ko) | 2007-11-22 | 2009-06-04 | 가천의과학대학교 산학협력단 | 자기공명영상 시스템용 rf 코일 어셈블리 |
JP2010119744A (ja) * | 2008-11-21 | 2010-06-03 | Ge Medical Systems Global Technology Co Llc | 磁気共鳴イメージング・システム及びrfコイル |
KR101505331B1 (ko) * | 2010-07-01 | 2015-03-23 | 바이엘 메디컬 케어 인크. | 다-채널 직장내 코일 및 연관된 인터페이스 장치 |
JP5705884B2 (ja) | 2011-02-14 | 2015-04-22 | 株式会社日立製作所 | Rfコイル及び磁気共鳴撮像装置 |
US10191128B2 (en) * | 2014-02-12 | 2019-01-29 | Life Services, LLC | Device and method for loops-over-loops MRI coils |
-
2014
- 2014-04-10 US US15/322,685 patent/US20170160354A1/en active Granted
- 2014-06-30 KR KR1020140081210A patent/KR102207924B1/ko active IP Right Grant
-
2015
- 2015-04-10 US US15/322,685 patent/US10317483B2/en active Active
- 2015-04-10 WO PCT/KR2015/003595 patent/WO2016003059A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1024025A (ja) * | 1996-07-15 | 1998-01-27 | Toshiba Corp | Mri用rfコイルユニットおよびコイル調整方法 |
US20080238424A1 (en) * | 2005-10-19 | 2008-10-02 | Koninklijke Philips Electronics N. V. | Compact and Flexible Radio Frequency Coil Arrays |
US20080100297A1 (en) * | 2006-10-27 | 2008-05-01 | Manabu Ishii | High frequency coil device |
US20090212774A1 (en) * | 2008-02-26 | 2009-08-27 | John Bosshard | Antenna arrangement for a magnetic resonance apparatus |
JP2013106862A (ja) * | 2011-11-22 | 2013-06-06 | Toshiba Corp | アレイ(array)コイル及び磁気共鳴イメージング装置 |
Also Published As
Publication number | Publication date |
---|---|
KR102207924B1 (ko) | 2021-01-26 |
US10317483B2 (en) | 2019-06-11 |
US20170160354A1 (en) | 2017-06-08 |
KR20160002548A (ko) | 2016-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8035384B2 (en) | Hybrid birdcage-TEM radio frequency (RF) coil for multinuclear MRI/MRS | |
US7109713B2 (en) | RF coil and magnetic resonance imaging apparatus | |
EP1085338B1 (en) | Magnetic resonance apparatus | |
US8929626B2 (en) | RF antenna arrangement and method for multi nuclei MR image reconstruction involving parallel MRI | |
US5280248A (en) | Biplanar RF coil for magnetic resonance imaging systems | |
EP0187389A2 (en) | Apparatus for obtaining image information through use of a nuclear magnetic resonance signal | |
CN111904420B (zh) | 磁共振断层扫描系统 | |
JP4588830B2 (ja) | 垂直磁場mri用のrfコイルアレイ装置 | |
WO2016035948A1 (ko) | 유전 구조체를 포함하는 rf 코일부 및 이를 포함하는 자기공명영상 시스템 | |
KR101709724B1 (ko) | 자기공명영상용 다중 주파수 RF(radio frequency) 코일 어셈블리 및 자기공명영상 시스템 | |
WO2016003059A1 (ko) | 자기공명영상용 rf 코일 및 자기공명영상 시스템 | |
WO2017191860A1 (ko) | 자기공명영상 시스템 | |
WO2015190816A1 (ko) | Rf 표면 코일부 및 이를 포함하는 자기공명영상 시스템 | |
WO2016003128A1 (ko) | 자기공명영상용 rf 코일, 자기공명영상 시스템, 및 자기공명영상 시스템의 영상 생성 방법 | |
JP2006523487A (ja) | 選択可能な直交結合を用いる位相配列コイル | |
US10345403B2 (en) | Radio frequency surface coil and magnetic resonance device employing the same | |
US10794970B2 (en) | Staggered parallel transmission radio frequency coil for magnetic resonance imaging | |
US20160124058A1 (en) | Rf assembly for an mrd device comprising a surface and a volume coil | |
JP2006525068A (ja) | 磁気共鳴イメージングシステムに用いられる無線周波コイルシステム | |
WO2016024677A1 (ko) | Rf 코일부 및 이를 포함하는 자기공명영상 시스템 | |
KR102103982B1 (ko) | 자기공명영상용 RF(radio frequency) 코일 어셈블리 및 자기공명영상 시스템 | |
KR101830008B1 (ko) | 자기공명영상용 rf 코일 어레이의 감결합 방법, 및 rf 코일 어셈블리, 및 자기공명영상 시스템 | |
GB2266775A (en) | MRI surface pick-up coil with reduced off-axis sensitivity | |
RU2574348C2 (ru) | Радиочастотная антенна для магнитно-резонансной визуализации со съемным проводником | |
Yang et al. | Constellation coil for multi-nuclear imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15814811 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15322685 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15814811 Country of ref document: EP Kind code of ref document: A1 |