WO2017191860A1 - 자기공명영상 시스템 - Google Patents

자기공명영상 시스템 Download PDF

Info

Publication number
WO2017191860A1
WO2017191860A1 PCT/KR2016/004901 KR2016004901W WO2017191860A1 WO 2017191860 A1 WO2017191860 A1 WO 2017191860A1 KR 2016004901 W KR2016004901 W KR 2016004901W WO 2017191860 A1 WO2017191860 A1 WO 2017191860A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic resonance
system controller
control unit
system control
Prior art date
Application number
PCT/KR2016/004901
Other languages
English (en)
French (fr)
Inventor
정준영
김경남
류연철
한예지
Original Assignee
가천대학교 산학협력단
(의료)길의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단, (의료)길의료재단 filed Critical 가천대학교 산학협력단
Publication of WO2017191860A1 publication Critical patent/WO2017191860A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3628Tuning/matching of the transmit/receive coil
    • G01R33/3635Multi-frequency operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils

Definitions

  • Embodiments of the present disclosure relate to a magnetic resonance imaging system including a plurality of system controllers.
  • MRI magnetic resonance imaging
  • the magnetic resonance imaging apparatus photographs a cross section of a subject, such as a human body, using a nuclear magnetic resonance phenomenon. Since various kinds of nuclei exist in the human body, each of them has its own rotor field constant due to nuclear magnetic resonance, so that the magnetization vector is applied to the magnetization vector of these nuclei, By receiving a magnetic resonance signal to make an image inside the human body can be obtained.
  • an RF coil is used to apply an electromagnetic wave to the human body to resonate the magnetization vector in the human body, and to receive a magnetic resonance signal generated by the magnetization vector lying on a vertical plane due to resonance.
  • the RF coil is also called an RF antenna in the sense of transmitting an electromagnetic wave and receiving a magnetic resonance signal to resonate the magnetization vector.
  • Resonating the magnetization vector with one RF coil (transmit mode) and receiving a magnetic resonance signal (receive mode) can be performed together.
  • the transmission mode and the reception mode may also be used separately.
  • a coil that performs both transmission and reception modes with one coil is called a transmission / reception coil, and a coil dedicated to transmission is called a transmission coil and a coil dedicated to reception is called a reception coil.
  • magnetic resonance imaging systems transfer magnetic nuclei such as hydrogen, sodium, phosphorus, etc. from the low energy state to the high energy state in order to obtain a magnetic resonance image of the subject.
  • the operation of acquiring the signal is performed.
  • the present embodiment provides a magnetic resonance imaging system capable of simultaneous imaging of multiple nuclides for magnetic resonance imaging.
  • the technical problem to be solved by the present embodiment is not limited to the technical problems as described above, and other technical problems may exist.
  • a system controller for controlling the main magnet, the gradient magnetic coil, and the RF coil.
  • the system controller provides a magnetic resonance image system including different system controllers capable of simultaneously or sequentially obtaining magnetic resonance images of different elements.
  • the system control unit includes a first system control unit for acquiring a magnetic resonance signal of a first element; And a second system controller for acquiring a magnetic resonance signal of a second element different from the first element.
  • the operating frequency of the first system control unit and the second system control unit may be different.
  • the first system controller controls a first RF coil element of the RF coil
  • the second system controller may control a second RF coil element different from the first RF coil element of the RF coil.
  • the first RF coil element and the second RF coil element may be formed independently of each other on the base of the RF coil.
  • the first RF coil element and the second RF coil element may be formed to overlap each other on the base of the RF coil.
  • the first RF coil element and the second RF coil element may be formed in a loop shape.
  • Magnetic resonance signals generated by the first RF coil element and the second RF coil element may be obtained by decoupling each other.
  • the system controller may further include a third system controller for acquiring a magnetic resonance image of an element different from the first element and the second element.
  • the apparatus may further include a surface gradient magnetic field coil independently connected to the first system controller and the second system controller.
  • the apparatus may further include a cylindrical gradient magnetic field coil connected to the first system control unit and the second system control unit.
  • the target elements may be two or more elements different from each other, and the system controller may include a plurality of elements, and magnetic resonance images of the target elements may be simultaneously acquired using a system controller of a number corresponding to the target elements.
  • the target elements may be two or more elements different from each other, and the system controller may include a plurality of elements, and magnetic resonance images of the target elements may be sequentially obtained using at least one of the system controllers.
  • a magnetic resonance imaging system capable of simultaneously acquiring magnetic resonance signals of various elements present in a subject may be provided.
  • the diagnosis time for the subject can be shortened, thereby preventing problems that may occur during long-term diagnosis of the subject. Can be.
  • FIG. 1 is a view schematically showing a magnetic resonance imaging system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a system controller and an RF coil unit of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • FIG. 3 is a diagram illustrating in detail a system controller of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of an RF coil unit of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • FIG. 5 is a view showing a second embodiment of the RF coil unit of the magnetic resonance imaging system according to the embodiment of the present invention.
  • FIG. 6 is a view illustrating a surface gradient magnetic field coil of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • FIG. 7 is a view illustrating a cylindrical gradient magnetic coil of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • FIG. 1 is a view schematically showing a magnetic resonance imaging system according to an embodiment of the present invention.
  • a magnetic resonance imaging system includes a main magnet 220, a gradient coil 230, and a body type RF coil formed in a housing 210.
  • body type Radio Frequency coil body type Radio Frequency coil
  • the main magnet 220 is an element causing magnetic resonance among the elements distributed in the object 320, for example hydrogen ( 1 H), phosphorus ( 31 P), sodium ( 23 Na). , To generate a static magnetic field for aligning the direction of the magnetic dipole moment of the atomic nucleus of elements such as carbon isotopes ( 13 C) in a certain direction.
  • a superconducting magnet may be used as the main magnet 210.
  • the magnetic field generated by the main magnet 220 is stronger and more uniform, a relatively precise and accurate magnetic resonance image of the subject 320 can be obtained.
  • the test object 320 may be seated on the table 310 as a magnetic resonance image measuring object and transferred into the bore 260 of the housing 210.
  • the subject 320 may include a person, an animal, or a part of a person or an animal.
  • the subject 320 may include organs such as liver, heart, uterus, brain, breast, abdomen, or blood vessels.
  • a gradient coil 230 may be formed inside the main magnet 220.
  • the gradient magnetic coil 230 may include three gradient coils that may generate gradient magnetic fields in the x-axis, y-axis, and z-axis directions that are perpendicular to each other.
  • Gradient magnetic field coil 230 may generate a spatially linear gradient magnetic field to take a magnetic resonance image.
  • the gradient magnetic coil 230 may induce resonance frequencies differently for each part of the subject 320 to provide location information of each part of the subject 320.
  • An RF coil 240 may be formed inside the gradient magnetic coil 230.
  • the main magnet 220, the gradient magnetic field coil 230, and the RF coil 240 may be positioned in the housing 210 to form a cylindrical magnetic structure.
  • additional RF coils 320 and 340 may be formed to be adjacent to the subject 320 mounted on the table 310.
  • the RF coils 240, 320, and 340 are formed in close contact with a region of the body type RF coil 240 and the object 320 formed around the gradient magnetic coil 230 and the bore 260. 330 or surface type RF coil 340.
  • the RF coils 240, 320, and 340 are devices capable of generating a high frequency magnetic field having a Larmor frequency as a center frequency.
  • the RF coils 240, 320, and 340 excite an RF signal to the subject 320 and emit the RF signal from the subject 320.
  • the RF coils 240, 320, and 340 generate an electromagnetic wave signal having a radio frequency corresponding to the type of the atomic nucleus, for example, an RF signal, in order to transition the atomic nucleus from the low energy state to the high energy state. ) Can be applied.
  • the nucleus When the electromagnetic signal generated by the RF coils 240, 320, 340 is applied to the nucleus, the nucleus may transition from a low energy state to a high energy state.
  • the electromagnetic waves generated by the RF coils 240, 320, and 340 disappear, the nuclear nucleus to which the electromagnetic waves are applied may emit an electromagnetic wave having a Lamor frequency while transitioning from a high energy state to a low energy state. That is, when the application of the electromagnetic wave signal to the atomic nucleus is stopped, an electromagnetic wave having a Lamore frequency may be radiated while a change in energy level from high energy to low energy occurs in the atomic nucleus to which the electromagnetic wave is applied.
  • the RF coils 240, 320, and 340 may receive electromagnetic wave signals radiated from atomic nuclei inside the object 320.
  • the received electromagnetic wave signal is amplified by a high frequency amplifier and demodulated by a sine wave of the LMO frequency to obtain a base band magnetic resonance signal.
  • the baseband magnetic resonance signal may be imaged to generate a magnetic resonance image.
  • the body type RF coil 240 may be fixed to the inside of the gradient magnetic coil 230 of the housing 210.
  • the volume RF coil 330 or the surface type RF coil 340 may be a subject 320.
  • the table 310 may be detachable from the seat 310.
  • the volumetric RF coil 330 may be used to diagnose a specific part of the subject 320, for example, a head, a face, a leg, or an ankle of the subject 320, or diagnose a subject having a relatively small size. have.
  • the housing 210 including the main magnet 220, the gradient magnetic coil 230, and the body-shaped RF coil 240 may have a cylindrical cylinder shape.
  • the subject 320 may be seated on the table 310 to enter the bore 260 of the housing 210 for magnetic resonance imaging.
  • the bore 260 may be formed to extend in the z-direction inside the body RF coil unit 240, the diameter of the bore 260 is the main magnet 220, the gradient magnetic field coil 230 and the body RF coil ( 240 may be determined according to the size.
  • a display may be mounted outside the housing 210 of the magnetic resonance imaging system, and an additional display may be further included inside the housing 210. Predetermined information may be transmitted to the user or the subject 290 through a display positioned inside and / or outside the housing 210.
  • the MRI system may include a system controller 100 and a monitoring unit 110.
  • FIG. 2 is a diagram illustrating a system controller and an RF coil unit of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • the system controller 100 of the magnetic resonance imaging system may have at least two system controllers 120 and 130.
  • the first system controller 120 may acquire the magnetic resonance signal of the first element
  • the second system controller 130 may acquire the magnetic resonance signal of the second element different from the first element.
  • a magnetic resonance imaging system in order to acquire a magnetic resonance image of various elements, an operation of sequentially obtaining a magnetic resonance signal for each element is performed. For example, after acquiring a magnetic resonance signal of an atomic nucleus of, for example, a hydrogen ( 1 H) element among the elements distributed in the subject 320, another element, for example, phosphorus ( 31 P), sodium ( 23 Na Or magnetic resonance signals of carbon isotopes ( 13 C).
  • the magnetic resonance imaging system according to the exemplary embodiment of the present invention has various elements distributed in the subject 320, for example, hydrogen ( 1 H), phosphorus ( 31 P), sodium ( 23 Na), or carbon isotope. This operation for acquiring the magnetic resonance signal of the elements (13 C) may be carried out at the same time.
  • the magnetic resonance imaging system may be formed in various numbers according to the type of elements to be measured by the system controller 100.
  • the first system controller 120 may be for acquiring a magnetic resonance image signal of hydrogen ( 1 H) element as the first element
  • the second system controller 130 may be sodium ( 23 Na) as the second element. ) May be used to acquire an MR image signal of an element.
  • the first system controller 120 and the second system controller 130 may include signal transmission lines L11, L12, L21, and L22 that transmit signals to the RF coil 140, respectively.
  • the lines L11 and L21 may be reception-only lines based on the RF coil 140, and the lines L12 and L22 may be transmission-only lines.
  • the magnetic resonance imaging system may acquire magnetic resonance images of elements different from the first and second elements in addition to the first system controller 120 and the second system controller 130 as necessary. And a third system controller, a fourth system controller, and the like. When the third system controller and the fourth system controller are added, they may be added in the form of systems that are physically separated from each other, such as the first system controller 120 and the second system controller 130.
  • system controller 100 includes the first system controller 120 and the second system controller 130.
  • the first system controller 120 and the second system controller 130 of the magnetic resonance imaging system have the same configuration.
  • the present invention is not limited thereto and various numbers of cyste controllers may be employed according to the type of element to be measured.
  • the console 121 may be connected to a spectrometer 122.
  • the spectrometer 122 may include a transmission Tx board 122a, a coil bias 122b, and a reception Rx board 122c.
  • the image parameter generated in the console 121 is transferred from the Tx board 122a through the RF amplifier 127 and the mechanical relay 128 to be passed through the switch 125 toward the RF coil 140. do.
  • a magnetic field is formed in the RF coil 140 according to the image parameter generated by the console 121.
  • the magnetic field may be formed in the RF coil 140 to generate a magnetic resonance image signal of a specific element of a subject located inside the RF coil 140.
  • the generated magnetic resonance image signal enters the Rx board 122c via the Tr switching 124 and the Tx / Rx control board 123.
  • the coil bias 122b serves to operate the RF coil 140 when the Tx scene signal is applied.
  • the second system controller 130 is also driven.
  • the operation of the second system controller is similar to that of the first system controller 120.
  • the imaging parameter is generated in the console 131 of the second system controller 130
  • the signal is transmitted to the RF coil 140 to receive image information of a specific element to make an MR image.
  • 3 illustrates that the console 121 of the first system controller 120 and the console 131 of the second system controller 130 are formed in separate configurations, but may operate as one console.
  • the console 131 of the second system controller 130 may be connected to the spectrometer 132.
  • the spectrometer 132 may include a transmission Tx board 132a, a coil bias 132b, and a reception Rx board 132c.
  • the image parameter generated in the console 131 is transferred from the Tx board 132a through the RF amplifier 137 and the mechanical relay 138 to the RF coil 140 via the switch 135.
  • the magnetic field is formed in the RF coil 140 according to the image parameter generated by the console 131.
  • the magnetic field may be formed in the RF coil 140 to generate a magnetic resonance image signal of a specific element of a subject located inside the RF coil 140.
  • the generated magnetic resonance image signal enters the Rx board 132c through the Tx / Rx control board 133 through the TR switching (134).
  • the first system controller 120 and the second system controller 130 may be connected to the RF coil 140, respectively.
  • the RF coil 140 shown in FIG. 3 may be a body type RF coil 140.
  • the first system controller 120 is connected to the first RF coil elements 151, 152, 153, 154, 155, 156, 157, and 158, which are some of the RF coil elements, in the body type RF coil 140. Receiving magnetic resonance imaging signals for specific elements.
  • the second system controller 130 may further include a second RF coil element 161, 162, 163, 164, 165, 166, different from the first RF coil element 151, 152, 153, 154, 155, 156, 157, 158. 167, 168.
  • the system is configured to acquire an anatomical or morphological MR image of a specific element of the subject 320, for example, hydrogen ( 1 H). And if you want to acquire a magnetic resonance image of the other elements of hydrogen (1 H)
  • the external is used to convert the system settings. Therefore, when the magnetic resonance images of the different elements are to be obtained, they operate sequentially. For example, after acquiring a magnetic resonance image of hydrogen ( 1 H), an operation for acquiring a magnetic resonance image of another element may be performed.
  • magnetic resonance images of different elements may be sequentially obtained with a time difference.
  • the respective system controllers 120 and 130 may simultaneously acquire magnetic resonance image information of different elements.
  • the first system controller 120 may acquire a magnetic resonance image of hydrogen ( 1 H) as the element X 1
  • the second system controller 130 may be an element other than hydrogen ( 1 H) as the X 2 element.
  • magnetic resonance images of any one of phosphorus ( 31 P), sodium ( 23 Na), and carbon isotope ( 13 C) (X) may be acquired. That is, in the magnetic resonance imaging system according to an exemplary embodiment of the present invention, magnetic resonance images of different elements may be sequentially obtained, and magnetic resonance images of different elements may be simultaneously acquired. This can be chosen arbitrarily by the user.
  • a nuclide and an element to be acquired are determined.
  • the kind of the element may be a hydrogen (H 1), the (31 P), sodium (23 Na), a carbon isotope (13 C), or any other element.
  • the target MR images to be acquired it is determined whether the MR images are acquired simultaneously or sequentially.
  • the magnetic resonance image of the target elements may be obtained by driving the system controller 100 of the magnetic resonance imaging system according to the exemplary embodiment of the present invention. If the magnetic resonance images of different elements are to be sequentially obtained with a time difference, they may be performed using one of the first system controller 120 and the second system controller 130. If magnetic resonance images of two or more different elements are to be acquired at the same time, the magnetic resonance images may be acquired using a system control unit having a number corresponding to the number of elements to be measured.
  • FIG. 4 is a diagram illustrating an example of an RF coil unit of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • the RF coil 140 is formed in a structure including a plurality of RF coil elements 151, 152, 153, 154, 161, 162, 163, and 164 formed on the base 142. Can be.
  • the RF coil elements 151, 152, 153, 154, 161, 162, 163, and 164 may be formed in various shapes.
  • the RF coil elements 151, 152, 153, 154, 161, 162, 163, 164 are shown as having a rectangular loop shape.
  • the shape of the RF coil elements 151, 152, 153, 154, 161, 162, 163, and 164 is not limited thereto, but is not limited to such shapes as circular loops, elliptical loops, and straight beam shapes.
  • the base 142 may be formed of a non-magnetic material having a cylindrical shape having a cylindrical shape having a circular or elliptical end portion and having good corrosion resistance and formability, and may be formed of an insulating polymer material.
  • the RF coil elements 151, 152, 153, 154, 161, 162, 163, 164 may be formed of an electrically conductive material.
  • the RF coil elements 151, 152, 153, 154, 161, 162, 163, and 164 are metals of high electrical conductivity, such as copper, silver, and gold coated copper.
  • the base 142 may be patterned, but is not limited thereto.
  • FIG. 5 is a diagram illustrating another example of an RF coil unit of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • the arrangement form of the RF coil elements of the body-type RF coil 140 is arranged in a form overlapping each other as shown in FIG. 4, or a shape overlapping each other in some regions as shown in FIG. 5.
  • the first RF coil elements 151, 152, and 153 controlled by the first system control unit 120 and the second RF coil elements 161, 162 and 163 controlled by the second system control unit 130 are mutually different. Even when overlapping in some regions, the resonance frequencies of the first RF coil elements 151, 152, and 153 and the second RF coil elements 161, 162, and 163 are different from each other, thereby simultaneously acquiring magnetic resonance images of two or more elements. Even if the operation is performed, it can operate without coupling between the magnetic resonance image signals.
  • the resonance frequency of the RF coil of the magnetic resonance imaging system depends on the operating frequency of the magnetic resonance imaging system.
  • the first system controller 120 may operate at 7T (tesla)
  • the operating frequency may be about 300 MHz
  • the second system controller 130 may operate at 3T, operating at 127.74 MHz. Can operate at a frequency.
  • FIG. 6 illustrates a surface gradient coil of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • the method may further include a surface G-coil 170 connected to the first system controller 120 and the second system controller 130, respectively.
  • the first system controller 120 may include the gradient coil board 122d in the spectrometer 121 that controls the surface gradient magnetic coil 170, and may further include a gradient amplifier 129.
  • the second system controller 130 may include the gradient coil board 122d in the spectrometer 131 for controlling the surface gradient magnetic field coil 170, and may further include a gradient amplifier 129.
  • the surface gradient magnetic coil 170 may generate gradient magnetic fields in the x-axis, y-axis, and z-axis directions that are orthogonal to each other. It may include two inclined coils.
  • three axes may be required when the second system controller 130 attempts to obtain a magnetic resonance image of the X2 element, and may generate gradient magnetic fields in the x ', y', and z 'axis directions. It may include three warp coils.
  • the surface gradient magnetic field coil 170 formed by patterning a conductive material on a cylindrical insulating former outside the RF coil 140 may be located.
  • FIG. 7 illustrates a cylindrical gradient magnetic field coil of a magnetic resonance imaging system according to an exemplary embodiment of the present invention.
  • a gradient magnetic coil 180 having a cylindrical shape connected to the first system controller 120 and the second system controller 130 may be further included.
  • the surface gradient magnetic field coil 170 illustrated in FIG. 6 shows that the first system control unit 120 and the second system control unit 130 have different surface gradient magnetic field coils 170, respectively. It has been shown that the first system controller 120 and the second system controller 130 operate using the same cylindrical gradient magnetic coil 180.
  • the cylindrical gradient magnetic coil 180 may have, for example, a structure in which a conductive material is formed in a cage shape or a net form in a cylindrical shape.
  • the cylindrical gradient magnetic field coil 180 may operate as a single resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Signal Processing (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

자기공명영상 시스템이 개시된다. 개시된 자기공명영상 시스템은 피검체에 존재하는 서로 다른 원소들에 대한 자기공명 영상 신호를 독립적으로 획득할 수 있는 시스템 제어부를 포함한다. 시스템 제어부는 제 1원소의 자기공명 신호를 획득할 수 있는 제 1시스템 제어부 및 상기 제 1원소와 서로 다른 제 2원소의 자기공명 신호를 획득할 수 있는 제 2시스템 제어부를 포함한다. 제 1시스템 제어부 및 제 2시스템 제어부는 물리적으로 독립적으로 구성된다. 제 1시스템 제어부 및 제 2시스템 제어부의 각각 RF 코일의 제 1RF 코일 요소 및 제 2RF코일 요소를 독립적으로 제어한다.

Description

자기공명영상 시스템
본원의 실시예에서는 다수의 시스템 제어부를 포함하는 자기공명영상 시스템에 관한 것이다.
질병의 예방 또는 치료를 위해 인체 내부의 이상을 진단하기 위한 다양한 진단용 장치가 사용되고 있다. 이 중 자력에 의해 발생한 자기장을 이용하는 것으로 자기공명영상(Magnetic resonance imaging: MRI) 장치가 널리 사용되고 있다.
자기 공명 영상 장치는 핵자기 공명 현상을 이용하여 피검체, 가령 인체의 단면을 촬영한다. 인체 내에 존재하는 다양한 종류의 원자핵은 핵자기 공명현상에 의해 각기 고유한 회전자계상수를 가지므로, 이들 원자핵의 자화 벡터(magnetization vector)에 전자파를 인가하고, 공명으로 인해 수직평면에 누운 자화벡터가 만드는 자기 공명신호를 수신함으로써 인체 내부의 영상을 획득할 수 있다.
이때, 인체 내의 자화 벡터를 공명시키기 위해 인체에 전자파를 인가하고, 또, 공명으로 인해 수직평면에 누운 자화벡터가 만드는 자기 공명신호를 수신하는데 RF 코일이 사용된다. RF 코일은 자화벡터를 공명시키기 위하여 전자파를 송신하고 자기 공명신호를 수신한다는 의미에서 RF 안테나라고 불리우기도 한다. 한 개의 RF 코일로 자화벡터를 공명시키는 일(송신모드)과 자기 공명신호를 수신하는 일(수신모드)을 같이 수행할 수도 있고, 송신모드 전용의 RF 코일과 수신모드 전용의 RF 코일 두 개를 각기 따로 사용하여 송신모드와 수신모드를 수행할 수도 있다. 또한 한 개의 코일로 송신 및 수신모드를 다 수행하는 코일을 송수신 코일이라 부르며, 송신 전용의 코일을 송신 코일, 수신 전용의 코일을 수신 코일이라 부른다.
일반적인 자기공명영상 시스템은 피검체의 자기공명영상을 얻기 위하여 피검체에 존재하는 다양한 원소들, 예를 들어 수소, 나트륨, 인 등의 원자핵을 낮은 에너지 상태로부터 높은 에너지 상태로 천이시켜 이들의 자기공명 신호를 획득하는 동작을 진행한다.
본 실시예에서는 자기공명영상용 다중 핵종의 동시 촬영을 할 수 있는 자기공명영상 시스템을 제공한다. 본 실시예가 해결하려는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
개시된 실시예에서는 자기공명영상 시스템에 있어서,
하우징 내에 형성된 주자석, 경사자계 코일 및 RF코일; 및
상기 주자석, 경사자계 코일 및 RF 코일을 제어하는 시스템 제어부;를 포함하며,
상기 시스템 제어부는 서로 다른 원소의 자기공명영상을 동시에 또는 순차적으로 획득할 수 있는 서로 다른 시스템 제어부를 포함하는 자기공명상 시스템을 제공한다.
상기 시스템 제어부는 제 1원소의 자기공명 신호를 획득하는 제 1시스템 제어부; 및 상기 제 1원소와 다른 제 2원소의 자기공명 신호를 획득하는 제 2시스템 제어부;를 포함할 수 있다.
상기 제 1시스템 제어부 및 상기 제 2시스템 제어부의 운용 주파수는 서로 다른 것일 수 있다.
상기 제 1시스템 제어부는 상기 RF 코일의 제 1RF 코일 요소를 제어하며,
상기 제 2시스템 제어부는 상기 RF 코일의 상기 제 1RF 코일 요소와 서로 다른 제 2RF 코일 요소를 제어할 수 있다.
상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 RF 코일의 베이스 상에 서로 독립적으로 형성된 것일 수 있다.
상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 상기 RF 코일의 베이스 상에 서로 겹치도록 형성된 것일 수 있다.
상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 루프 형상으로 형성된 것일 수 있다.
상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소에 의해 발생되는 자기공명 신호는 서로 디커플링되어 획득될 수 있다.
상기 시스템 제어부는 상기 제 1원소 및 상기 제 2원소와 서로 다른 원소의 자기공명영상을 획득하기 위한 제 3시스템 제어부;를 더 포함할 수 있다.
상기 제 1시스템 제어부 및 상기 제 2시스템 제어부와 각각 독립적으로 연결된 표면형 경사자계 코일을 더 포함할 수 있다.
상기 제 1시스템 제어부 및 상기 제 2시스템 제어부와 함께 연결된 실린더형 경사자계 코일을 더 포함할 수 있다.
또한, 자기공명영상 시스템의 구동 방법에 있어서,
획득하고자 하는 피검체의 자기공명영상 대상 원소를 결정하는 단계;
상기 결정된 대상 원소의 자기공명영상을 동시에 측정할지 또는 순차적으로 측정할지 여부를 결정하는 단계; 및
자기공명영상의 시스템 제어부를 구동하여 피검체의 대상 원소의 자기공명영상을 획득하는 단계;를 포함하는 자기공명영상 시스템의 구동 방법을 제공한다.
상기 대상 원소가 서로 다른 2개 이상의 원소이며, 상기 시스템 제어부는 다수개로 구성되며, 상기 대상 원소에 각각 대응되는 숫자의 시스템 제어부를 이용하여 상기 대상 원소의 자기공명영상들을 동시에 획득할 수 있다.
상기 대상 원소가 서로 다른 2개 이상의 원소이며, 상기 시스템 제어부는 다수개로 구성되며, 상기 시스템 제어부 중 적어도 하나를 이용하여 상기 대상 원소의 자기공명영상들을 순차적으로 획득할 수 있다.
실시예에 따르면, 피검체 내에 존재하는 다종의 원소들의 자기공명 신호을 동시에 획득할 수 있는 자기공명영상 시스템을 제공할 수 있다.
물리적으로 별개의 시스템 제어부를 이용하여 피검체 내의 다수의 원소들의 자기공명 신호를 독립적으로 동시에 획득함으로써 피검체에 대한 진단 시간을 단축시킬 수 있어 피검체에 대한 장시간 진단 시 발생할 수 있는 문제점을 방지할 수 있다. 그리고, 다수의 원소들의 자기공명 영상 및 신호 획득을 통한 진단의 다양성을 극대화 할 수 있다.
도 1은 본 발명의 일 실시예에 따른 자기공명영상 시스템을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 자기공명영상 시스템의 시스템 제어부 및 RF 코일부를 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 자기공명 영상 시스템의 시스템 제어부를 상세히 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 자기공명 영상 시스템의 RF 코일부의 일예를 나타낸 도면이다.
도 5는 본 발명의 실시예에 따른 자기공명 영상 시스템의 RF 코일부의 제 2실시예를 나타낸 도면이다.
도 6은 본 발명의 실시예에 따른 자기공명 영상 시스템의 표면형 경사자계 코일이 포함된 것을 나타낸 도면이다.
도 7은 본 발명의 실시예에 따른 자기공명 영상 시스템의 실린더 형상의 경사자계 코일이 포함된 것을 나타낸 도면이다.
이하 본 발명의 실시예에 의한 자기공명 영상 시스템에 대해 보다 상세히 설명하고자 한다. 이하의 설명들 및 첨부된 도면들은 본 실시예에 따른 동작을 이해하기 위한 것이며, 당해 기술 분야의 통상의 기술자가 용이하게 구현할 수 있는 부분은 생략될 수 있다.
또한, 본 명세서 및 도면은 본 실시예를 제한하기 위한 목적으로 제공된 것은 아니고, 본 실시예의 범위는 청구의 범위에 의하여 정해져야 한다. 그러나, 이는 본 실시예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 실시예의 기술적 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 자기공명영상 시스템을 개략적으로 나타낸 도면이다.
도 1을 참조하면, 본 발명의 실시예에 따른 자기공명영상 시스템은, 하우징(210) 내에 형성된 주자석(main magnet)(220), 경사 자계 코일(gradient coil)(230) 및 바디형 RF 코일(body type Radio Frequency coil)(240)을 포함할 수 있다.
주자석(main magnet)(220)은 피검체(object)(320) 내에 분포해 있는 원소 중 자기공명현상을 일으키는 원소, 예를 들어 수소(1H), 인(31P), 나트륨(23Na), 탄소동위원소(13C) 등의 원소들의 원자핵의 자기 쌍극자 모멘트(magnetic dipole moment)의 방향을 일정한 방향으로 정렬하기 위한 정자장(static magnetic field)을 생성할 수 있다. 주자석(210)으로는 예를 들어 초전도 자석이 사용될 수 있다. 주자석(220)에 의하여 생성된 자장이 강하고 균일할수록 피검체(320)에 대한 비교적 정밀하고 정확한 자기공명 영상을 얻을 수 있다.
여기서 피검체(320)는 자기공명 영상 측정 대상으로서 테이블(310) 상에 안착되어 하우징(210)의 보어(260) 내부로 이송될 수 있다. 피검체(320)는 사람, 동물, 또는 사람이나 동물의 일부를 포함할 수 있다. 예를 들어, 피검체(320)는 간, 심장, 자궁, 뇌, 유방, 복부 등의 장기, 또는 혈관을 포함할 수 있다.
주자석(220) 내측에는 경사자계 코일(gradient coil)(230)이 형성될 수 있다. 경사자계 코일(230)은 서로 직교하는 x축, y축 및 z축 방향의 경사자계를 발생시킬 수 있는 세 개의 경사코일을 포함할 수 있다. 경사자계 코일(230)은 자기공명영상을 촬영하기 위해서 공간적으로 선형적인 경사자계를 발생시킬 수 있다. 경사 자계 코일(230)는 피검체(320)의 부위 별로 공명 주파수를 서로 다르게 유도하여 피검체(320)의 각 부위의 위치 정보를 제공할 수 있다.
경사자계 코일(230) 내측에는 RF 코일(240)이 형성될 수 있다. 주자석(220), 경사 자계 코일(230) 및 RF 코일(240)은 하우징(210) 내에 위치하며 원통형 자기 구조체를 이루 수 있다. 그리고, 테이블(310) 상에 안착되는 피검체(320)에 인접하도록 추가적인 RF 코일(320, 340)이 형성될 수 있다. RF 코일(240, 320, 340)은 경사자계 코일(230) 내측 및 보어(260)를 둘러싸며 형성된 바디형 RF 코일(240)과 피검체(320)의 일 영역에 밀착되어 형성된 체적형 RF 코일(330)이나 표면형 RF 코일(340)을 포함할 수 있다.
RF 코일(240, 320, 340)은 라모어(Larmor) 주파수를 중심주파수로 하는 고주파자계를 발생시킬 수 있는 장치로서, 피검체(320)에 RF 신호를 여기시키고, 피검체(320)로부터 방출되는 자기공명 신호를 수신할 수 있다. RF 코일(240, 320, 340)은 원자핵을 낮은 에너지 상태로부터 높은 에너지 상태로 천이시키기 위하여 원자핵의 종류에 대응하는 무선 주파수(Radio Frequency)를 갖는 전자파 신호, 예컨대 RF 신호를 생성하여 피검체(320)에 인가할 수 있다. RF 코일(240, 320, 340)에 의해 생성된 전자파 신호가 원자핵에 가해지면, 원자핵은 낮은 에너지 상태로부터 높은 에너지 상태로 천이될 수 있다. RF 코일(240, 320, 340)에 의해 생성된 전자파가 사라지면, 전자파가 가해졌던 원자핵은 높은 에너지 상태로부터 낮은 에너지 상태로 천이하면서 라모어 주파수를 갖는 전자파를 방사할 수 있다. 즉, 원자핵에 대하여 전자파 신호의 인가가 중단되면, 전자파가 가해졌던 원자핵에서는 높은 에너지에서 낮은 에너지로의 에너지 준위의 변화가 발생하면서 라모어 주파수를 갖는 전자파가 방사될 수 있다. RF 코일(240, 320, 340)는 피검체(320) 내부의 원자핵들로부터 방사된 전자파 신호를 수신할 수 있다. 이와같이 수신된 전자파 신호를 고주파 증폭기로 증폭한 뒤 라모 주파수의 정현파로 복조(demodulation)하면 기저 대역(base band)의 자기공명 신호를 얻을 수 있다. 기저 대역의 자기공명 신호는 영상 처리되어 자기 공명 영상이 생성되게 될 수 있게 된다.
바디형 RF 코일(240)는 하우징(210)의 경사 자계 코일(230) 내측에 고정된 형태일 수 있으며, 체적형 RF 코일(330)이나 표면형 RF 코일(340)는 피검체(320)가 안착되는 테이블(310)에 탈착이 가능한 형태일 수 있다. 체적형 RF 코일(330)은 피검체(320)의 특정 부위, 예를 들어 피검체(320)의 머리, 얼굴, 다리 또는 발목 등을 진단하거나, 크기가 비교적 작은 피검체를 진단하기 위해 사용될 수 있다.
주자석(220), 경사자계 코일(230) 및 바디형 RF 코일(240)를 포함하는 하우징(210)은 원통형 실린더 형상을 지닐 수 있다. 자기공명 영상 촬영을 위하여 피검체(320)는 테이블(310) 상에 안착되어 하우징(210)의 보어(bore)(260) 내부로 진입할 수 있다. 보어(260)는 바디형 RF 코일부(240) 내측으로 z방향으로 연장되어 형성될 수 있으며, 보어(260)의 직경은 주자석(220), 경사 자계 코일(230) 및 바디형 RF 코일부(240)의 크기에 따라 결정될 수 있다.
자기공명영상 시스템의 하우징(210) 외측에는 디스플레이가 장착될 수 있으며, 하우징(210)의 내측에도 추가적인 디스플레이가 더 포함될 수 있다. 하우징(210)의 내측 및/또는 외측에 위치하는 디스플레이를 통하여 사용자 또는 피검체(290)에게 소정의 정보를 전달할 수 있다.
그리고, 자기공명 영상 시스템은 시스템 제어부(100) 및 모니터링부(110)를 포함할 수 있다.
도 2는 본 발명의 일 실시예에 따른 자기공명영상 시스템의 시스템 제어부 및 RF 코일부를 나타낸 도면이다.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 자기공명 영상 시스템의 시스템 제어부(100)는 적어도 두 개 이상의 시스템 제어부(120, 130)를 지닐 수 있다. 제 1시스템 제어부(120)는 제 1원소의 자기공명 신호를 획득할 수 있으며, 제 2시스템 제어부(130)는 제 1원소와 서로 다른 제 2원소의 자기공명 신호를 획득할 수 있다.
일반적인 자기공명 영상 시스템에서는 다양한 원소들의 자기공명 영상을 획득하기 위하여, 각각의 원소에 대해 순차적으로 자기공명 신호를 얻는 동작을 실시한다. 예를 들어 피검체(320) 내에 분포해 있는 원소 중 예를 들어 수소(1H) 원소의 원자핵의 자기공명 신호를 획득한 후, 다른 원소, 예를 들어 인(31P), 나트륨(23Na) 또는 탄소동위원소(13C)의 자기공명 신호를 획득한다. 그러나, 본 발명의 실시예에 따른 자기공명 영상 시스템은 피검체(320) 내에 분포해 있는 다양한 원소들, 예를 들어 수소(1H), 인(31P), 나트륨(23Na) 또는 탄소동위원소(13C)들의 자기공명 신호를 획득하는 작업이 동시에 진행할 수 있다. 이를 위하여 본 발명의 실시예에 따른 자기공명 영상 시스템은 시스템 제어부(100)를 측정하고자 하는 원소의 종류에 따라 다양한 갯수로 형성할 수 있다. 예를 들어, 제 1시스템 제어부(120)는 제 1원소로 수소(1H) 원소의 자기공명 영상 신호 획득을 위한 것일 수 있으며, 제 2시스템 제어부(130)는 제 2원소로 나트륨(23Na) 원소의 자기공명 영상 신호 획득을 위한 것일 수 있다.
제 1시스템 제어부(120) 및 제 2시스템 제어부(130)는 제 RF 코일(140)에 각각 신호를 전송하는 신호 전송 라인(L11, L12, L21, L22)를 포함할 수 있다. RF 코일(140) 기준으로 라인 L11, L21은 수신 전용 라인이며, 라인 L12, L22는 송신 전용 라인일 수 있다.
본 발명의 실시예에 따른 자기공명영상 시스템은 필요에 따라 제 1시스템 제어부(120) 및 제 2시스템 제어부(130)에 추가적으로 제 1 및 제 2원소와 서로 다른 원소의 자기공명영상을 획득할 수 있는 제 3시스템 제어부, 제 4시스템 제어부 등을 더 포함할 수 있다. 제 3시스템 제어부 및 제 4시스템 제어부 등이 추가되는 경우, 제 1시스템 제어부(120) 및 제 2시스템 제어부(130)와 같이 물리적으로 서로 분리된 시스템 형태로 추가될 수 있다.
도 3은 본 발명의 일 실시예에 따른 자기공명 영상 시스템의 시스템 제어부를 상세히 나타낸 도면이다. 여기서는 실시예에 따른 시스템 제어부(100)가 제 1시스템 제어부(120) 및 제 2시스템 제어부(130)를 포함하는 것에 대해 설명하고자 한다.
도 3을 참조하면, 자기공명 영상 시스템의 제 1시스템 제어부(120) 및 제 2시스템 제어부(130)는 서로 동일한 구성을 지닌 것으로 나타내었다. 다만 이에 한정되지 않으며 측정하고자 하는 원소의 종류에 따라 다양한 갯수의 시스테 제어부를 채용할 수 있다.
제 1시스템 제어부(120)의 콘솔(console)(121)에서 이미징 파라미터(imaging parameteer)를 생성시키면 이러한 신호가 RF 코일(140)에 전달되어 특정 원소의 이미지 정보를 수신하여 MR 영상을 만들게 된다. 콘솔(121)은 스펙트로미터(spectrometer)(122)연결될 수 있다. 스펙트로미터(122)는 송신용 Tx보드(transmission board)(122a), 코일 바이어스(coil bias)(122b) 및 수신용 Rx보드(receiving board)(122c)를 포함할 수 있다. 콘솔(121)에서 만들어진 영상 파라미터는 Tx보드(122a)에서 RF 엠플리파이어(amplifier)(127) 및 미케니컬 릴레이(128)를 통하여 전달되어 스위치(125)를 거쳐 RF 코일(140) 쪽으로 전달된다. 콘솔(121)에서 생성된 영상 파라미터에 따라 RF 코일(140)에서는 자기장이 형성된다. RF 코일(140)에서 자기장을 형성하여 RF 코일(140) 내부에 위치하는 피검체의 특정 원소의 자기공명 영상 신호를 발생시킬 수 있다.
발생된 자기공명 영상 신호는 Tr 스위칭(124)를 거쳐서 Tx/Rx 컨트롤 보드(123)를 거쳐 Rx보드(122c)로 들어오게 된다. 여기서 코일 바이어스(122b)는 Tx 신 신호를 인가하는 경우 RF 코일(140)을 작동시키는 역할을 한다.
제 1시스템 제어부(120)의 동작과 동시에 제 2시스템 제어부(130)도 함께 구동한다. 제 2시스템 제어부의 동작은 제 1시스템 제어부(120)의 동작 과정과 유사한다. 제 2시스템 제어부(130)의 콘솔(console)(131)에서 이미징 파라미터를 생성시키면 이러한 신호가 RF 코일(140)에 전달되어 특정 원소의 이미지 정보를 수신하여 MR 영상을 만들게 된다. 도 3에서는 제 1시스템 제어부(120)의 콘솔(121)과 제 2시스템 제어부(130)의 콘솔(131)이 별개의 구성으로 형성된 것을 나타내었으나, 하나의 콘솔로 동작할 수 있다. 제 2시스템 제어부(130)의 콘솔(131)은 스펙트로미터(132)연결될 수 있다. 스펙트로미터(132)는 송신용 Tx보드(132a), 코일 바이어스(132b) 및 수신용 Rx보드(132c)를 포함할 수 있다. 콘솔(131)에서 만들어진 영상 파라미터는 Tx보드(132a)에서 RF 엠플리파이어(137) 및 미케니컬 릴레이(138)를 통하여 전달되어 스위치(135)를 거쳐 RF 코일(140) 쪽으로 전달된다. 콘솔(131)에서 생성된 영상 파라미터에 따라 RF 코일(140)에서는 자기장이 형성된다. RF 코일(140)에서 자기장을 형성하여 RF 코일(140) 내부에 위치하는 피검체의 특정 원소의 자기공명 영상 신호를 발생시킬 수 있다. 발생된 자기공명 영상 신호는 TR 스위칭(Tx/Rx switching)(134)을 거쳐서 Tx/Rx 컨트롤 보드(133)를 거쳐 Rx보드(132c)로 들어오게 된다.
제 1시스템 제어부(120) 및 제 2시스템 제어부(130)는 RF 코일(140)과 각각 개별적으로 연결될 수 있다. 도 3에 나타낸 RF 코일(140)은 바디형 RF 코일(140)일 수 있다. 제 1시스템 제어부(120)는 바디형 RF 코일(140)에서 일부의 RF 코일 요소인 제 1RF 코일 요소(151, 152, 153, 154, 155, 156, 157, 158)들과 연결되어 신호를 주고 받으면서 특정 원소에 대한 자기공명 영상 신호를 얻을 수 있다. 그리고, 제 2시스템 제어부(130)는 제 1RF 코일 요소(151, 152, 153, 154, 155, 156, 157, 158)와 다른 제 2RF 코일 요소(161, 162, 163, 164, 165, 166, 167, 168)들과 연결될 수 있다.
일반적인 자기공명 영상 시스템에서는 피검체(320)의 특정 원소, 예를 들어 수소(1H)에 대한 해부학적 또는 형태학적 MR영상을 획득할 수 있도록 시스템이 설정되어 있다. 그리고 수소(1H) 외외의 다른 원소의 자기공명 영상을 획득하고자 하는 경우에는 시스템 설정을 변환하여 사용된다. 따라서, 서로 다른 원소의 자기공명 영상을 획득하고자 하는 경우에는 순차적으로 작동하게 된다. 예를 들어, 수소(1H)에 대한 자기공명 영상을 획득한 후, 다른 원소의 자기공명 영상을 획득하기 위한 동작을 실시할 수 있다.
본 발명의 실시예에 따른 자기공명영상 시스템에서는 서로 다른 원소의 자기공명영상을 시간차를 두고 순차적으로 획득할 수 있다. 그리고, 적어도 2개 이상의 독립적으로 구동할 수 있는 개별 시스템 제어부들이 형성됨으로써, 각각의 시스템 제어부(120, 130)에서는 동시에 서로 다른 원소의 자기공명 영상 정보를 획득할 수 있다. 예를 들어, 제 1시스템 제어부(120)는 X1원소로 수소(1H)의 자기공명 영상을 획득할 수 있으며, 제 2시스템 제어부(130)는 X2원소로 수소(1H) 이외의 다른 원소, 예를 들어 인(31P), 나트륨(23Na) 또는 탄소동위원소(13C) 중 어느 하나(X)의 자기공명 영상을 획득할 수 있다. 즉, 본 발명의 실시예에 따른 자기공명영상 시스템에서는 서로 다른 원소의 자기공명영상을 순차적으로 획득할 수 있으며, 또한 서로 다른 원소의 자기공명영상을 동시에 획득할 수 있다. 이는 사용자가 임의로 선택할 수 있다.
본 발명의 실시예에 따른 자기공명영상 시스템을 이용하여 피검체의 자기공명영상을 획득하고자 하는 경우, 먼저 획득하고자 하는 자기공명영상 대상 핵종, 원소를 결정한다. 원소의 종류로는 수소(1H), 인(31P), 나트륨(23Na), 탄소동위원소(13C) 또는 기타 다른 원소일 수 있다. 획득하고자 하는 자기공명영상 대상 핵종이 결정되면, 자기공명영상을 동시에 획득할지 아니면 순차적으로 획득할지 여부를 결정한다. 그리고, 결정된 바에 따라 본 발명의 실시예에 따른 자기공명영상 시스템의 시스템 제어부(100)를 구동하여 대상 원소들의 자기공명영상을 획득할 수 있다. 만일 서로 다른 원소의 자기공명영상을 시간차를 두고 순차적으로 획득하고자 하는 경우에는, 제 1시스템 제어부(120) 및 제 2시스템 제어부(130) 중 하나를 이용하여 실시할 수 있다. 그리고, 만일 서로 다른 2개 이상의 원소에 대한 자기공명영상을 동시에 획득하고자 하는 경우에는 측정하고자 하는 원소의 갯수에 대응되는 숫자의 시스템 제어부를 이용하여 자기공명영상을 획득할 수 있다.
도 4는 본 발명의 실시예에 따른 자기공명 영상 시스템의 RF 코일부의 일예를 나타낸 도면이다.
도 3 및 도 4를 참조하면, RF 코일(140)은 베이스(142) 상에 형성된 다수의 RF 코일 요소(151, 152, 153, 154, 161, 162, 163, 164)들을 포함하는 구조로 형성될 수 있다. RF 코일 요소(151, 152, 153, 154, 161, 162, 163, 164)는 다양한 형태로 형성될 수 있으며, 도 4에서는 RF 코일 요소(151, 152, 153, 154, 161, 162, 163, 164)들이 사각 루프 형상을 지닌 것으로 도시하였다. RF 코일 요소(151, 152, 153, 154, 161, 162, 163, 164)들의 형상은 이에 제한되는 것은 아니며, 원형 루프, 타원형 루프, 일자형 빔 형상 등 그 형상에는 제한되지 않는다.
베이스(142)는 단부가 원형 또는 타원형인 실린더 형태의 원통 형상을 지니며 내식성 및 성형성이 좋은 비자성 물질로 형성될 수 있으며, 절연성 폴리머 재질로 형성될 수 있다. RF 코일 요소(151, 152, 153, 154, 161, 162, 163, 164)들은 전기 전도성 물질로 형성될 수 있다. 예를 들어 RF 코일 요소(151, 152, 153, 154, 161, 162, 163, 164)들은 구리(copper), 은(silver), 골드 코팅된 구리(gold coated copper) 등의 전기 전도성이 높은 금속이 베이스(142) 상에 패턴된 것일 수 있으며, 이에 한정되는 것은 아니다.
도 5는 본 발명의 실시예에 따른 자기공명 영상 시스템의 RF 코일부의 다른 예를 나타낸 도면이다.
도 3 내지 도 5를 참조하면, 바디형 RF 코일(140)의 RF 코일 요소의 배열 형태는 도 4에 나타낸 바와 같이 서로 겹쳐진 형태로 배열되거나, 도 5에 나타낸 바와 같이 일부 영역에서 서로 겹쳐진 형상이 될 수 있다. 제 1시스템 제어부(120)에 의해 제어되는 제 1 RF 코일 요소(151, 152, 153)들과 제 2시스템 제어부(130)에 의해 제어되는 제 2 RF 코일 요소(161, 162, 163)들은 서로 일부 영역에서 겹쳐지더라도 제 1 RF 코일 요소(151, 152, 153)들과 제 2 RF 코일 요소(161, 162, 163)들의 공진 주파수가 서로 다르기 때문에 동시에 두가지 이상의 원소들의 자기 공명 영상을 획득하기 위한 작동을 시키더라도 자기공명 영상 신호들 사이의 커플링없이 동작할 수 있다. 자기공명영상 시스템의 RF 코일의 공진주파수는 자기공명영상 시스템의 운영 주파수(operating frequency)에 따라 달라지게 된다. 예를 들어, 제 1시스템 제어부(120)은 7T(tesla)로 동작할 수 있으며 운영 주파수는 약 300 MHz일 수 있으며, 제 2시스템 제어부(130)는 3T로 동작할 수 있으며, 127.74 MHz의 운영 주파수로 동작할 수 있다.
도 6은 본 발명의 실시예에 따른 자기공명 영상 시스템의 표면 경사 코일을 나타낸 도면이다.
도 6을 참조하면, 제 1시스템 제어부(120) 및 제 2시스템 제어부(130)와 각각 연결된 표면형 경사자계 코일(surface G-coil)(170)을 더 포함할 수 있다. 제 1시스템 제어부(120)는 표면형 경사자계 코일(170)을 제어하는 스펙트로미터(121) 내에 경사 코일 보드(122d)를 포함할 수 있으며, 그레디언트 엠프(129)를 더 포함할 수 있다. 제 2시스템 제어부(130)는 표면형 경사자계 코일(170)을 제어하는 스펙트로미터(131) 내에 경사 코일 보드(122d)를 포함할 수 있으며, 그레디언트 엠프(129)를 더 포함할 수 있다. 제 1시스템 제어부(120)가 X1 원소의 자기공명 영상을 얻고자 하는 경우, 표면형 경사자계 코일(170)은 서로 직교하는 x축, y축 및 z축 방향의 경사자계를 발생시킬 수 있는 세 개의 경사코일을 포함할 수 있다. 그리고, 제 2시스템 제어부(130)가 X2 원소의 자기공명 영상을 얻고자 하는 경우에도 3개의 축이 요구될 수 있으며, x'축, y'축 및 z'축 방향의 경사자계를 발생시킬 수 있도록 세 개의 경사코일을 포함할 수 있다. 이를 위하여, RF 코일(140) 외측에 실린더 형상의 절연성 포머(former) 상에 전도성 물질이 패턴되어 형성된 표면형 경사자계 코일(170)이 위치할 수 있다.
도 7은 본 발명의 실시예에 따른 자기공명 영상 시스템의 원통형 경사자계 코일을 나타낸 도면이다.
도 7을 참조하면, 제 1시스템 제어부(120) 및 제 2시스템 제어부(130)와 연결된 실린더 형태의 경사자계 코일(180)을 더 포함할 수 있다. 도 6에 나타낸 표면형 경사자계 코일(170)은 제 1시스템 제어부(120) 및 제 2시스템 제어부(130)가 각각 서로 다른 표면형 경사자계 코일(170)을 지닌 것을 나타내었으나, 도 7에서는 제 1시스템 제어부(120) 및 제 2시스템 제어부(130)가 동일한 실린더형 경사자계 코일(180)을 이용하여 동작하는 것을 나타내었다. 실린더형 경사자계 코일(180)은 예를 들어 전도성 물질이 실린더 형상으로 새장(birdcage) 또는 그물망 형태로 형성된 구조를 지닐 수 있다. 실린더형 경사자계 코일(180)은 전체적으로 하나의 레조네이터(resonater)로 동작할 수 있다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 자기공명영상 시스템에 있어서,
    하우징 내에 형성된 주자석, 경사자계 코일 및 RF코일; 및
    상기 주자석, 경사자계 코일 및 RF 코일을 제어하는 시스템 제어부;를 포함하며,
    상기 시스템 제어부는 서로 다른 원소의 자기공명영상을 동시에 또는 순차적으로 획득할 수 있는 서로 다른 시스템 제어부를 포함하는 자기공명상 시스템.
  2. 제 1항에 있어서,
    상기 시스템 제어부는 제 1원소의 자기공명 신호를 획득하는 제 1시스템 제어부; 및 상기 제 1원소와 다른 제 2원소의 자기공명 신호를 획득하는 제 2시스템 제어부;를 포함하는 자기공명영상 시스템.
  3. 제 2항에 있어서,
    상기 제 1시스템 제어부 및 상기 제 2시스템 제어부의 운용 주파수는 서로 다른 자기공명영상 시스템.
  4. 제 2항에 있어서,
    상기 제 1시스템 제어부는 상기 RF 코일의 제 1RF 코일 요소를 제어하며,
    상기 제 2시스템 제어부는 상기 RF 코일의 상기 제 1RF 코일 요소와 서로 다른 제 2RF 코일 요소를 제어하는 자기공명영상 시스템.
  5. 제 4항에 있어서,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 RF 코일의 베이스 상에 서로 독립적으로 형성된 자기공명영상 시스템.
  6. 제 5항에 있어서,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 상기 RF 코일의 베이스 상에 서로 겹치도록 형성된 자기공명영상 시스템.
  7. 제 5항에 있어서,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소는 루프 형상으로 형성된 자기공명영상 시스템.
  8. 제 5항에 있어서,
    상기 제 1RF 코일 요소 및 상기 제 2RF 코일 요소에 의해 발생되는 자기공명 신호는 서로 디커플링되어 획득되는 자기공명영상 시스템.
  9. 제 1항에 있어서,
    상기 시스템 제어부는 상기 제 1원소 및 상기 제 2원소와 서로 다른 원소의 자기공명영상을 획득하기 위한 제 3시스템 제어부;를 더 포함하는 자기공명영상 시스템.
  10. 제 1항에 있어서,
    상기 제 1시스템 제어부 및 상기 제 2시스템 제어부와 각각 독립적으로 연결된 표면형 경사자계 코일을 더 포함하는 자기공명영상 시스템.
  11. 제 1항에 있어서,
    상기 제 1시스템 제어부 및 상기 제 2시스템 제어부와 함께 연결된 실린더형 경사자계 코일을 더 포함하는 자기공명영상 시스템.
  12. 자기공명영상 시스템의 구동 방법에 있어서,
    획득하고자 하는 피검체의 자기공명영상 대상 원소를 결정하는 단계;
    상기 결정된 대상 원소의 자기공명영상을 동시에 측정할지 또는 순차적으로 측정할지 여부를 결정하는 단계; 및
    자기공명영상의 시스템 제어부를 구동하여 피검체의 대상 원소의 자기공명영상을 획득하는 단계;를 포함하는 자기공명영상 시스템의 구동 방법.
  13. 제 12항에 있어서,
    상기 대상 원소는 수소(1H), 인(31P), 나트륨(23Na), 탄소동위원소(13C)인 자기공명영상 시스템의 구동 방법.
  14. 제 12항에 있어서,
    상기 대상 원소가 서로 다른 2개 이상의 원소이며, 상기 시스템 제어부는 다수개로 구성되며,
    상기 대상 원소에 각각 대응되는 숫자의 시스템 제어부를 이용하여 상기 대상 원소의 자기공명영상들을 동시에 획득하는 자기공명영상 시스템의 구동 방법.
  15. 제 12항에 있어서,
    상기 대상 원소가 서로 다른 2개 이상의 원소이며, 상기 시스템 제어부는 다수개로 구성되며,
    상기 시스템 제어부 중 적어도 하나를 이용하여 상기 대상 원소의 자기공명영상들을 순차적으로 획득하는 자기공명영상 시스템의 구동 방법.
PCT/KR2016/004901 2016-05-02 2016-05-11 자기공명영상 시스템 WO2017191860A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0054268 2016-05-02
KR1020160054268A KR101771220B1 (ko) 2016-05-02 2016-05-02 자기공명영상 시스템

Publications (1)

Publication Number Publication Date
WO2017191860A1 true WO2017191860A1 (ko) 2017-11-09

Family

ID=57281128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004901 WO2017191860A1 (ko) 2016-05-02 2016-05-11 자기공명영상 시스템

Country Status (6)

Country Link
US (1) US10444312B2 (ko)
EP (1) EP3242140B1 (ko)
JP (1) JP6425702B2 (ko)
KR (1) KR101771220B1 (ko)
CN (1) CN107340485B (ko)
WO (1) WO2017191860A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186815A1 (en) * 2017-04-06 2018-10-11 İhsan Doğramaci Bi̇lkent Üni̇versi̇tesi̇ Minimization of current ripples in a gradient array system by applying an optimum-phase shift pulse width modulation pattern
EP3736591A1 (de) * 2019-05-09 2020-11-11 Siemens Healthcare GmbH Grundfeldmagnetanordnung für ein magnetresonanztomographie-system
JP7408351B2 (ja) * 2019-11-06 2024-01-05 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902107B2 (ja) * 1989-04-24 1999-06-07 ハフスルンド・ニコメド・イノベーション・アーベー 磁気共鳴作像装置
KR20120131571A (ko) * 2011-05-26 2012-12-05 국립암센터 다중 공명 라디오 주파수 코일
KR20130070536A (ko) * 2011-12-19 2013-06-27 제너럴 일렉트릭 캄파니 자기공명 분광 시스템을 사용하는 화학 평형비의 측정
KR20140096917A (ko) * 2013-01-29 2014-08-06 삼성전자주식회사 자기 공명 이미징 시스템 및 자기 공명 이미징 방법
KR20150139796A (ko) * 2014-06-04 2015-12-14 지멘스 악티엔게젤샤프트 동시 mr 이미징 방법 및 동시 다중 핵 mr 이미징 장치

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558727B2 (ja) 1987-08-25 1996-11-27 株式会社東芝 磁気共鳴診断装置
US5277182A (en) * 1988-03-14 1994-01-11 Hitachi, Ltd. Coronory artery imaging method and apparatus
JP2878721B2 (ja) * 1989-08-09 1999-04-05 株式会社東芝 磁気共鳴映像装置
US5208534A (en) 1989-08-09 1993-05-04 Kabushiki Kaisha Toshiba Magnetic resonance imaging system
US5293126A (en) * 1992-11-09 1994-03-08 General Electric Company Local transverse gradient coil
US5497089A (en) * 1994-03-15 1996-03-05 Picker International, Inc. Wide aperture gradient set
US6163152A (en) * 1998-06-15 2000-12-19 General Electric Company Method and system for correcting errors in MR images due to regions of gradient non-uniformity for parametric imaging such as quantitative flow analysis
DE10134171A1 (de) * 2001-07-13 2003-01-23 Philips Corp Intellectual Pty Hochfrequenz-Spulenanordnung für ein MR-Gerät
CN104656046A (zh) 2004-05-03 2015-05-27 皇家飞利浦电子股份有限公司 磁共振成像系统和方法
WO2006112497A1 (ja) * 2005-04-20 2006-10-26 Hitachi Medical Corporation 磁気共鳴イメージング装置及び方法
JP5319745B2 (ja) * 2005-06-14 2013-10-16 株式会社東芝 高周波コイルユニットおよびそれを備えた磁気共鳴撮像装置
CN101208610A (zh) 2005-06-24 2008-06-25 皇家飞利浦电子股份有限公司 同时多核磁共振成像
JP5179733B2 (ja) * 2006-09-12 2013-04-10 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Rfコイルとそれを用いた磁気共鳴撮像装置
WO2008135878A1 (en) * 2007-05-03 2008-11-13 Koninklijke Philips Electronics N.V. Multifrequency magnetic resonance device and method
US8731635B2 (en) * 2007-11-07 2014-05-20 University of Pittsburgh—of the Commonwealth System of Higher Education Coils for magnetic resonance spectroscopy and imaging of human breast
CN101896830A (zh) * 2007-12-13 2010-11-24 皇家飞利浦电子股份有限公司 适于提供端环模式的双调谐体积线圈
US8035384B2 (en) 2008-10-23 2011-10-11 General Electric Company Hybrid birdcage-TEM radio frequency (RF) coil for multinuclear MRI/MRS
RU2570219C2 (ru) * 2009-04-20 2015-12-10 Тайм Медикал Холдингз Компани Лимитед Комплект сверхпроводящих рч-катушек с криогенным охлаждением для головы и система магнитно-резонансной томографии (мрт) только для головы, использующая такой комплект рч-катушек
US8198891B2 (en) * 2009-06-15 2012-06-12 General Electric Company System, method, and apparatus for magnetic resonance RF-field measurement
US20120150019A1 (en) * 2009-08-11 2012-06-14 Koninklijke Philips Electronics N.V. Mri by direct transverse hyperpolarization using light endowed with orbital angular momentum
EP2539726B1 (en) * 2010-02-22 2020-05-13 Koninklijke Philips N.V. Rf antenna arrangement and method for multi nuclei mr image reconstruction involving parallel mri
KR20120070479A (ko) 2010-12-21 2012-06-29 한국전자통신연구원 화면 내 예측 방향 정보 부호화/복호화 방법 및 그 장치
WO2012140536A1 (en) * 2011-04-11 2012-10-18 Koninklijke Philips Electronics N.V. Mr imaging with b1mapping
DE102011080254B4 (de) * 2011-08-02 2013-06-27 Siemens Aktiengesellschaft Bewegungskorrigierte Multi-Shot-Verfahren zur diffusionsgewichteten MR-Bildgebung mit zusätzlichen Referenz-Rohdaten und entsprechende Vorrichtungen
KR101453297B1 (ko) * 2011-08-19 2014-10-22 삼성전자주식회사 복수 타입의 자기 공명 영상들을 동시에 생성하는 장치 및 방법
JP6233815B2 (ja) * 2013-03-07 2017-11-29 国立大学法人京都大学 多核多重磁気共鳴画像化方法および画像化装置
US9995808B2 (en) * 2014-03-10 2018-06-12 Vanderbilt University MRI using RF gradients for spatial encoding
US20170160354A1 (en) 2014-06-30 2017-06-08 Samsung Electronics Co., Ltd. Radio frequency coil for magnetic resonance imaging and magnetic resonance imaging system
KR102237827B1 (ko) * 2014-09-01 2021-04-08 삼성전자주식회사 유전 구조체를 포함하는 rf 코일부 및 이를 포함하는 자기공명영상 시스템
DE102015204955B4 (de) * 2015-03-19 2019-05-16 Siemens Healthcare Gmbh Verfahren zur Magnetresonanz-Bildgebung
JP2016198392A (ja) * 2015-04-13 2016-12-01 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置
US10048340B2 (en) * 2015-06-03 2018-08-14 The General Hospital Corporation System and method for superfast chemical exchange saturation transfer spectral imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902107B2 (ja) * 1989-04-24 1999-06-07 ハフスルンド・ニコメド・イノベーション・アーベー 磁気共鳴作像装置
KR20120131571A (ko) * 2011-05-26 2012-12-05 국립암센터 다중 공명 라디오 주파수 코일
KR20130070536A (ko) * 2011-12-19 2013-06-27 제너럴 일렉트릭 캄파니 자기공명 분광 시스템을 사용하는 화학 평형비의 측정
KR20140096917A (ko) * 2013-01-29 2014-08-06 삼성전자주식회사 자기 공명 이미징 시스템 및 자기 공명 이미징 방법
KR20150139796A (ko) * 2014-06-04 2015-12-14 지멘스 악티엔게젤샤프트 동시 mr 이미징 방법 및 동시 다중 핵 mr 이미징 장치

Also Published As

Publication number Publication date
JP6425702B2 (ja) 2018-11-21
US10444312B2 (en) 2019-10-15
CN107340485B (zh) 2020-01-07
US20170315192A1 (en) 2017-11-02
CN107340485A (zh) 2017-11-10
EP3242140C0 (en) 2023-10-18
EP3242140B1 (en) 2023-10-18
KR101771220B1 (ko) 2017-08-24
EP3242140A1 (en) 2017-11-08
JP2017200559A (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
WO2016035948A1 (ko) 유전 구조체를 포함하는 rf 코일부 및 이를 포함하는 자기공명영상 시스템
EP0273484B1 (en) Magnetic resonance imaging apparatus comprising a stacked surface coil system
WO2002039896A1 (fr) Systeme d'imagerie par resonance magnetique
JP6073606B2 (ja) 磁気共鳴イメージング装置、及び、デジタル無線通信装置
WO2017191860A1 (ko) 자기공명영상 시스템
CN102375132A (zh) 具有可断开导体结构的机械柔韧的磁共振线圈
CN102129054A (zh) 以改善的成像可能性用于磁共振设备应用的脊柱线圈装置
JP2015020075A5 (ko)
KR20150011325A (ko) 복수의 tx 코일들의 사용
EP2887088A1 (en) Magnetic resonance imaging apparatus with a gradient coil unit including a shim tray
EP2517035B1 (en) RF antenna for MRI with a removable conductor
WO2015190816A1 (ko) Rf 표면 코일부 및 이를 포함하는 자기공명영상 시스템
US7602188B2 (en) System of electric coils for transmitting and receiving radio-frequency magnetic fields in a magnetic-resonance imaging apparatus, and magnetic-resonance imaging apparatus provided with such a system of electric coils
WO2016190518A1 (en) Radio frequency surface coil and magnetic resonance imaging system including the same
WO2016003059A1 (ko) 자기공명영상용 rf 코일 및 자기공명영상 시스템
WO2016024677A1 (ko) Rf 코일부 및 이를 포함하는 자기공명영상 시스템
KR20130001392A (ko) Pet-mri 융합시스템
WO2015190818A1 (ko) Rf 표면 코일부 및 이를 포함하는 자기공명영상 시스템
WO2015194700A1 (ko) 고주파 표면 코일 및 이를 채용한 자기 공명 장치
JPH0947444A (ja) 磁気共鳴装置用rfプローブ
WO2016003128A1 (ko) 자기공명영상용 rf 코일, 자기공명영상 시스템, 및 자기공명영상 시스템의 영상 생성 방법
JPH0654826A (ja) Rfプローブ及びmri装置
Sakthisudhan et al. Survey on RF Coils for MRI Diagnosis System
WO2016085207A1 (ko) 자기 공명 영상 시스템용 표면 코일 및 이를 포함하는 자기 공명 영상 시스템
Quan et al. A Detachable and Rotatable 14-channel Coil Array for Human Brain Intraoperative/Interventional MRI at 3 T

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901086

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901086

Country of ref document: EP

Kind code of ref document: A1