WO2016024621A1 - 磁気センサ - Google Patents

磁気センサ Download PDF

Info

Publication number
WO2016024621A1
WO2016024621A1 PCT/JP2015/072882 JP2015072882W WO2016024621A1 WO 2016024621 A1 WO2016024621 A1 WO 2016024621A1 JP 2015072882 W JP2015072882 W JP 2015072882W WO 2016024621 A1 WO2016024621 A1 WO 2016024621A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
detection unit
magnetic detection
magnetic field
axis direction
Prior art date
Application number
PCT/JP2015/072882
Other languages
English (en)
French (fr)
Inventor
佳彦 渡邉
田中 健
山下 昌哉
石田 一裕
Original Assignee
旭化成エレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成エレクトロニクス株式会社 filed Critical 旭化成エレクトロニクス株式会社
Priority to JP2016542607A priority Critical patent/JP6423438B2/ja
Publication of WO2016024621A1 publication Critical patent/WO2016024621A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic sensor.
  • Patent Documents 1 to 8 Japanese Patent Application Laid-Open No. 2006-3116 Patent Document 2 Japanese Patent Application Laid-Open No. 2006-10461 Patent Document 3 Japanese Patent Application Laid-Open No. Hei 7-169026 Patent Document 4 Japanese Patent Application Laid-Open No. 2002-71381 Patent Document 6 JP 2003-282996 A Patent Document 7 International Publication No. 2011/068146 Patent Document 8 US Patent Application Publication No. 2011/0309829
  • a magnetic sensor including a first magnetic detection unit, wherein the first magnetic detection unit includes a first magnetic focusing member extending in a first direction, and a first magnetic focusing member.
  • a first magnetic flux concentrator having a second magnetic flux concentrator member connected to an end on the positive side in one direction and extending in a negative side in a second direction different from the first direction; and a first direction of the first magnetic flux concentrator member Closer to the positive side in the first direction than the negative side end, closer to the negative side in the first direction than the second magnetic focusing member, closer to the negative side in the second direction than the first magnetic focusing member, and Connected to the negative end of the second magnetic converging member in the second direction and the third magnetic converging member extending from the negative end of the second magnetic converging member to the negative side of the second direction.
  • a fourth magnetic flux concentrating member that extends to the positive side in the first direction from the positive side end in the first direction of the first magnetic flux concentrating member.
  • a first magnetic detector disposed between the magnetic converging unit, the second magnetic converging member and the third magnetic converging member and extending in the second direction; and on the positive side in the first direction relative to the second magnetic converging member
  • a magnetic sensor including a second magnetic detection unit that is disposed close to and extends in a second direction.
  • the magnetic sensor includes the first magnetic detection unit, and when the magnetic field component is input in the first direction, the magnetic field component is changed to the first magnetic field component in the first direction.
  • the magnetic field component is converted into the second magnetic field component in the first direction and in the opposite direction, and the magnetic field component is input in the second direction different from the first direction, the magnetic field component is converted into the third magnetic field component in the first direction and the first direction.
  • a first magnetic field for detecting one of the first and second magnetic field components and one of the third and fourth magnetic field components.
  • a magnetic sensor is provided that includes a detection unit, and a second magnetic detection unit that detects the other of the first and second magnetic field components and the other of the third and fourth magnetic field components.
  • the first magnetic focusing member extending in the first direction and the second magnetic focusing connected to the end of the first magnetic focusing member and extending in the second direction different from the first direction.
  • the magnetic sensor may include a first magnetic detection unit.
  • the first magnetic detection unit may include a first magnetic convergence unit.
  • the first magnetic flux concentrator may include a first magnetic flux concentrator member that extends in the first direction.
  • the first magnetic flux concentrator may include a second magnetic flux concentrator member that is connected to an end portion on the positive side in the first direction of the first magnetic flux concentrator member and extends to the negative side in the second direction different from the first direction. .
  • the first magnetic detection unit may include a second magnetic convergence unit.
  • the second magnetic flux concentrating portion is closer to the positive side in the first direction than the end portion on the negative side in the first direction of the first magnetic flux concentrating member, is closer to the negative side in the first direction than the second magnetic converging member,
  • a third magnetic converging member that extends closer to the negative side in the second direction than the one magnetic converging member and extends to the negative side in the second direction from the negative end of the second magnetic converging member in the second direction It's okay.
  • the second magnetic flux concentrator is connected to the negative end portion of the third magnetic flux concentrator member in the second direction, and is more positive in the first direction than the positive end portion of the first magnetic converging member in the first direction. You may have the 4th magnetic focusing member extended.
  • the first magnetic detection unit may include a first magnetic detection unit that is disposed between the second magnetic focusing member and the third magnetic focusing member and extends in the second direction.
  • the first magnetic detection unit may include a second magnetic detection unit that is disposed closer to the positive side in the first direction than the second magnetic flux concentrating member and extends in the second direction.
  • the first magnetic detection unit may include a third magnetic detection unit disposed between the second magnetic focusing member and the third magnetic focusing member.
  • the first magnetic detection unit may have a smaller distance to the third magnetic focusing member than the second magnetic focusing member.
  • the third magnetic detection unit may have a smaller distance to the second magnetic focusing member than the third magnetic focusing member.
  • the first magnetic detection unit may include a first sub magnetic flux concentrator member that is connected to a negative end of the second magnetic flux concentrator member in the second direction and extends in the first direction.
  • the first magnetic detection unit may include a second sub magnetic flux concentrator member that is connected to the positive end of the third magnetic flux concentrator member in the second direction and extends in the first direction.
  • the second magnetic flux concentrator may include a fifth magnetic flux concentrator member that is connected to an end portion on the positive side in the first direction of the fourth magnetic flux concentrator member and extends to the positive side in the second direction.
  • the second magnetic detection unit may be disposed between the second magnetic focusing member and the fifth magnetic focusing member.
  • the first magnetic detection unit may include a fourth magnetic detection unit disposed between the second magnetic focusing member and the fifth magnetic focusing member.
  • the second magnetic detection unit may have a smaller distance to the second magnetic focusing member than the fifth magnetic focusing member.
  • the distance from the fourth magnetic detection unit to the fifth magnetic focusing member may be smaller than that of the second magnetic focusing member.
  • the first magnetic detection unit may include a third sub magnetic flux concentrator member that is connected to the positive end of the fifth magnetic flux concentrator member in the second direction and extends in the first direction.
  • the magnetic sensor is arranged to be substantially mirror image with the first magnetic detection unit with respect to a surface substantially orthogonal to the first direction at the negative end of the first magnetic converging member in the first direction.
  • a magnetic detection unit may be provided.
  • the magnetic sensor is arranged so as to be a substantially mirror image with the first magnetic detection unit with respect to the first magnetic flux concentrator member or a surface substantially perpendicular to the second direction on the positive side in the second direction with respect to the first magnetic flux concentrator member.
  • a second magnetic sensing unit may be provided.
  • the magnetic sensor is arranged so as to be a substantially mirror image with the first magnetic detection unit with respect to a surface substantially perpendicular to the first direction on the positive side in the first direction with respect to the fifth magnetic converging member.
  • a unit may be provided.
  • the magnetic sensor is arranged so as to be a substantially mirror image of the first magnetic detection unit with respect to the fourth magnetic flux concentrator member or a surface substantially perpendicular to the second direction on the negative side in the second direction relative to the fourth magnetic flux concentrator member.
  • a second magnetic sensing unit may be provided.
  • the magnetic sensor is configured such that each magnetic converging member to which the first magnetic detecting unit and the second magnetic detecting unit are connected has a surface substantially orthogonal to the second direction, or a positive side in the second direction from each magnetic converging member. You may provide the 3rd magnetic detection unit arrange
  • the magnetic sensor is configured such that each magnetic converging member to which the first magnetic detecting unit and the second magnetic detecting unit are connected has a surface substantially orthogonal to the second direction, or a positive side in the second direction from each magnetic converging member. You may provide the 4th magnetic detection unit arrange
  • the magnetic sensor is disposed so as to be a substantially mirror image with the first magnetic detection unit with respect to a plane substantially orthogonal to the first direction on the positive side in the first direction with respect to the first magnetic detection unit and the second magnetic detection unit.
  • a third magnetic detection unit may be provided.
  • the magnetic sensor is disposed so as to be a substantially mirror image with the second magnetic detection unit with respect to a surface substantially perpendicular to the first direction on the positive side in the first direction with respect to the first magnetic detection unit and the second magnetic detection unit.
  • a fourth magnetic detection unit may be provided.
  • the magnetic sensor includes a first magnetic detection unit and a second magnetic detection unit on the negative side magnetic convergence member in the second direction, a surface substantially orthogonal to the second direction, or the first magnetic detection unit and the second magnetic detection unit.
  • a third magnetic detection unit may be provided which is arranged so as to be substantially a mirror image with the first magnetic detection unit with respect to a surface substantially orthogonal to the second direction on the negative side of the second direction.
  • the magnetic sensor includes a first magnetic detection unit and a second magnetic detection unit on the negative side magnetic convergence member in the second direction, a surface substantially orthogonal to the second direction, or the first magnetic detection unit and the second magnetic detection unit.
  • a fourth magnetic detection unit may be provided which is arranged so as to be substantially a mirror image with the second magnetic detection unit with respect to a surface substantially orthogonal to the second direction on the negative side of the second direction.
  • Each magnetic detection unit in the first to fourth magnetic detection units may form a Wheatstone bridge.
  • the magnetic sensor may include a plurality of first to fourth magnetic detection units.
  • the magnetic sensor may further include an auxiliary magnetic converging member disposed outside the first and second magnetic detection units.
  • the magnetic sensor may further include an auxiliary magnetic converging member disposed outside the first and fourth magnetic detection units.
  • the auxiliary magnetic flux concentrator member may be disposed outside the first direction.
  • the magnetic sensor may include a calculation unit that calculates a magnetic field component in the first direction and a magnetic field component in the second direction based on outputs of the magnetic detection units in the first and second magnetic detection units.
  • the calculation unit may calculate a magnetic field component in a third direction different from the first and second directions based on outputs of the magnetic detection units in the first and second magnetic detection units.
  • the magnetic sensor may include a calculation unit that calculates a magnetic field component in the first direction and a magnetic field component in the second direction based on outputs of the magnetic detection units in the first to fourth magnetic detection units.
  • the calculation unit may calculate a magnetic field component in a third direction different from the first and second directions based on outputs of the magnetic detection units in the first to fourth magnetic detection units.
  • the calculation unit may calculate each magnetic field component by linearly combining the outputs of the magnetic detection units.
  • the magnetic sensor may include a first magnetic detection unit. When a magnetic field component is input in the first direction, the first magnetic detection unit converts the magnetic field component into a first magnetic field component in the first direction and a second magnetic field component in the opposite direction to the first direction, When a magnetic field component is input in a second direction different from the first direction, the magnetic field direction conversion converts the magnetic field component into a third magnetic field component in the first direction and a fourth magnetic field component in the direction opposite to the first direction, respectively. May be provided.
  • the first magnetic detection unit may include a first magnetic detection unit that detects one of the first and second magnetic field components and one of the third and fourth magnetic field components.
  • the first magnetic detection unit may include a second magnetic detection unit that detects the other of the first and second magnetic field components and the other of the third and fourth magnetic field components.
  • the magnetic sensor may include a second magnetic detection unit.
  • the second magnetic detection unit may include a magnetic field direction conversion unit.
  • the second magnetic detection unit may include a third magnetic detection unit that detects the other of the first and second magnetic field components and one of the third and fourth magnetic field components.
  • the second magnetic detection unit may include a fourth magnetic detection unit that detects one of the first and second magnetic field components and the other of the third and fourth magnetic field components.
  • the magnetic sensor may include a plurality of first and second magnetic detection units.
  • the magnetic sensor may include a calculation unit that calculates a magnetic field component in the first direction and a magnetic field component in the second direction based on outputs of the magnetic detection units in the plurality of first and second magnetic detection units.
  • the magnetic field direction conversion unit converts the magnetic field component to the fifth and sixth magnetic field components in the first direction and the direction opposite to the first direction. You may convert into a 7th and 8th magnetic field component, respectively.
  • the first magnetic detection unit may detect one of the fifth and seventh magnetic field components.
  • the second magnetic detection unit may detect one of the sixth and eighth magnetic field components.
  • the first magnetic detection unit detects fifth magnetic detection for detecting one of the first and second magnetic field components, one of the third and fourth magnetic field components, and the other of the fifth and seventh magnetic field components. May be provided.
  • the first magnetic detection unit detects the other of the first and second magnetic field components, the other of the third and fourth magnetic field components, and the other of the sixth and eighth magnetic field components. May be provided.
  • the third magnetic detection unit may detect one of the fifth and seventh magnetic field components.
  • the fourth magnetic detection unit may detect one of the sixth and eighth magnetic field components.
  • the second magnetic detection unit detects the other of the first and second magnetic field components, one of the third and fourth magnetic field components, and the other of the fifth and seventh magnetic field components.
  • a magnetic detection unit may be provided.
  • the second magnetic detection unit detects one of the first and second magnetic field components, the other of the third and fourth magnetic field components, and the other of the sixth and eighth magnetic field components.
  • a detection unit may be provided.
  • the calculation unit may calculate a magnetic field component in the third direction based on outputs of the magnetic detection units in the plurality of first and second magnetic detection units.
  • the calculation unit may calculate each magnetic field component by linearly combining the outputs of the magnetic detection units.
  • the first direction and the second direction may be orthogonal to each other.
  • the first to third directions may be orthogonal to each other.
  • the magnetic sensor may include a first magnetic flux concentrating member that extends in the first direction.
  • the magnetic sensor may include a second magnetic focusing member connected to an end of the first magnetic focusing member and extending in a second direction different from the first direction.
  • a magnetic sensor may be provided with the 1st magnetic sensing part arranged near the negative side of the 1st direction of the 2nd magnetic converging member.
  • the magnetic sensor may include a second magnetic detection unit that is disposed closer to the positive side of the second magnetic flux concentrating member in the first direction.
  • the magnetic sensor may include a first sub magnetic flux concentrator member that is connected to the negative end of the second magnetic flux concentrator member in the second direction and extends in the first direction.
  • the 1st structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • An example of a cross-sectional view taken along line AA of the magnetic sensor 100 shown in FIG. 1 is shown.
  • An example of a cross-sectional view taken along line BB of the magnetic sensor 100 shown in FIG. 1 is shown.
  • In the + X-axis direction of the magnetic sensor 100 of the present embodiment shows an example of a magnetic path when given a magnetic field B X.
  • An example of a cross-sectional view taken along line AA of the magnetic sensor 100 shown in FIG. 4 is shown.
  • An example of a magnetic path when a magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100 according to the present embodiment is shown.
  • FIG. 6 An example of a cross-sectional view taken along line AA of the magnetic sensor 100 shown in FIG. 6 is shown. An example of a magnetic path when a magnetic field BZ is applied in the + Z-axis direction of the magnetic sensor 100 according to the present embodiment is shown.
  • FIG. 9 shows an example of a cross-sectional view taken along line AA of the magnetic sensor 100 shown in FIG.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • An example in which a wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment is shown.
  • FIG. 13 An example of the circuit structure connected to the magnetic sensor 100 which concerns on this embodiment is shown. It is. The 2nd structural example of the magnetic sensor 100 which concerns on this embodiment is shown. An example of a cross-sectional view taken along line AA of the magnetic sensor 100 shown in FIG. 13 is shown. An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown. An example in which a wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment is shown. The 3rd structural example of the magnetic sensor 100 which concerns on this embodiment is shown. FIG.
  • FIG. 18 shows an example of a cross-sectional view taken along line AA of the magnetic sensor 100 shown in FIG.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • An example in which a wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment is shown.
  • the 4th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • FIG. 1 An example in which a wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment is shown.
  • the 5th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • An example in which a wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment is shown.
  • An example in which a calculation unit 300 is connected to the magnetic sensor 100 according to the present embodiment is shown.
  • the 6th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • the 7th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • the 8th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • An example in which a wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment is shown.
  • the 9th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • 10th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • An eleventh configuration example of the magnetic sensor 100 according to this embodiment will be described.
  • An example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment is shown.
  • the 12th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • a thirteenth configuration example of the magnetic sensor 100 according to this embodiment will be described.
  • 14th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • the 15th structural example of the magnetic sensor 100 which concerns on this embodiment is shown.
  • a sixteenth configuration example of the magnetic sensor 100 according to the present embodiment will be described.
  • the schematic structural example of the change of the magnetic gain with respect to the position of the Y direction of the 1st magnetic detection part 210 which concerns on this embodiment is shown.
  • a seventeenth configuration example of the magnetic sensor 100 according to the present embodiment will be described.
  • An eighteenth exemplary configuration of the magnetic sensor 100 according to this embodiment will be described.
  • FIG. 1 shows a first configuration example of a magnetic sensor 100 according to this embodiment.
  • the magnetic sensor 100 detects a magnetic signal in which magnetic fields directed in three orthogonal directions are mixed (synthesized).
  • FIG. 1 shows three orthogonal directions by X, Y, and Z axes, and shows a plan view of the XY plane of the magnetic sensor 100 (a plan view seen in the Y axis direction). That is, FIG. 1 shows an example of a top view when the magnetic sensor 100 is formed on one surface of a substrate or the like.
  • the magnetic sensor 100 includes a first magnetic detection unit 10.
  • FIG. 1 shows an example in which the magnetic sensor 100 includes one first magnetic detection unit 10.
  • the first magnetic detection unit 10 includes a first magnetic convergence unit 110, a second magnetic convergence unit 120, a first magnetic detection unit 210, a second magnetic detection unit 220, and a third magnetic detection unit 230.
  • FIG. 1 shows an example of an arrangement pattern of the first magnetic focusing unit 110, the second magnetic focusing unit 120, the first magnetic detection unit 210, the second magnetic detection unit 220, and the third magnetic detection unit 230.
  • the first magnetic converging part 110 and the second magnetic converging part 120 are formed on the same plane parallel to the XY plane.
  • the first magnetic converging part 110 and the second magnetic converging part 120 are made of a magnetic material such as permalloy, and change the direction of the lines of magnetic force in the vicinity of the magnetic converging part.
  • the first magnetic focusing unit 110 and the second magnetic focusing unit 120 are preferably formed of a soft magnetic material such as NiFe, NiFeB, NiFeCo, and CoFe.
  • the first magnetic focusing unit 110 includes a first magnetic focusing member 111 and a second magnetic focusing member 112.
  • the first magnetic flux concentrator member 111 extends in the first direction.
  • FIG. 1 shows an example in which the first direction is the + X-axis direction.
  • the second magnetic flux concentrator member 112 is connected to the positive end of the first magnetic flux concentrator member 111 in the first direction, and extends to the negative side in the second direction different from the first direction.
  • the end portion of the magnetic flux concentrating member is a portion of one end of the magnetic flux concentrating member, and includes a side surface close to one end of the magnetic flux concentrating member.
  • FIG. 1 shows an example in which the first direction and the second direction are orthogonal to each other and the second direction is the + Y-axis direction. That is, FIG.
  • 1 is a plan view seen from the Z-axis direction, and the + X-axis direction end of the first magnetic focusing member 111 and the + Y-axis direction end of the second magnetic focusing member 112 are connected, The example in which the 1st magnetic convergence part 110 is formed is shown.
  • the second magnetic convergence unit 120 includes a third magnetic convergence member 113 and a fourth magnetic convergence member 114.
  • the third magnetic flux concentrator member 113 is closer to the positive side in the first direction than the negative end portion of the first magnetic flux concentrator member 111 in the first direction, and is closer to the negative side in the first direction than the second magnetic flux concentrator member 112.
  • the first magnetic flux concentrator 111 extends closer to the negative side in the second direction, and the second magnetic flux concentrator member 112 extends toward the negative side in the second direction than the negative end portion in the second direction.
  • the third magnetic flux concentrator member 113 extends in the second direction and is disposed so as to partially overlap the second magnetic flux concentrator member 112 when viewed from the first direction.
  • the third magnetic flux concentrator member 113 is formed so as to be shifted from the second magnetic flux concentrator member 112 in the ⁇ Y axis direction by a predetermined distance.
  • the third magnetic flux concentrator member 113 is disposed so as to overlap the first magnetic flux concentrator member 111 when viewed from the second direction. That is, the arrangement of the X axis of the third magnetic flux concentrator member 113 is within the range where the first magnetic flux concentrator member 111 is arranged on the X axis.
  • the fourth magnetic flux concentrator member 114 is connected to the third magnetic flux concentrator member 113 and the negative end of the third magnetic flux concentrator member 113 in the second direction, and is connected to the positive side of the first magnetic flux concentrator member 111 in the first direction. It extends
  • FIG. 1 is a plan view as viewed from the Z-axis direction, where the ⁇ Y-axis direction end of the third magnetic focusing member 113 and the ⁇ X-axis direction end of the fourth magnetic focusing member 114 are connected, The example in which the 2nd magnetic convergence part 120 is formed is shown.
  • the second magnetic focusing member 112 and the third magnetic focusing member 112 are arranged in the order of the third magnetic focusing member 113 and the second magnetic focusing member 112 so that the second magnetic focusing member 112 and the third magnetic focusing member 113 are substantially parallel to each other in the Y-axis direction. Thus, they are arranged side by side from the ⁇ X axis direction side to the + X axis direction side. Further, the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113 are arranged so that the other of the two adjacent ones is shifted in the longitudinal direction (Y-axis direction) in a plan view as viewed from the Z-axis direction. .
  • the second magnetic focusing member 112 and the third magnetic focusing member 113 extend in the Y-axis direction, and the ⁇ Y-axis direction end of the third magnetic focusing member 113 is 2
  • the magnetic converging member 112 protrudes in the ⁇ Y-axis direction from the ⁇ Y-axis direction end, and the + Y-axis direction end of the second magnetic converging member 112 is the + Y-axis direction side of the third magnetic converging member 113. It arrange
  • the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113 have a rectangular shape with the longitudinal direction in the Y-axis direction, and are arranged in parallel in directions parallel to the Y-axis direction.
  • An example is shown.
  • the shape of the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113 is not limited to a rectangle, but may be any of a quadrilateral, a parallelogram, and a trapezoid having a longitudinal direction in a direction substantially parallel to the Y-axis direction. There may be.
  • the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113 are each parallel to the Y-axis direction, and each long side parallel to the Y-axis direction has the same length. However, instead of this, each long side may have a different length.
  • the 2nd magnetic focusing member 112 and the 3rd magnetic focusing member 113 showed the example in which each short side parallel to a X-axis direction has the same length, instead of this, each short side is shown. It may be a different length.
  • the magnetic sensor 100 will be described in detail later by providing the second magnetic focusing member 112 and the third magnetic focusing member 113 as described above.
  • the third magnetic focusing member A magnetic path from 113 to the second magnetic flux concentrator member 112 is formed. That is, the magnetic field input in the + Y axis direction generates a magnetic field in the + X axis direction between the second magnetic focusing member 112 and the third magnetic focusing member 113.
  • first magnetic flux concentrator member 111 and the fourth magnetic flux concentrator member 114 are arranged in the order of the fourth magnetic flux concentrator member 114 and the first magnetic flux concentrator member 111 so that they are substantially parallel to each other in the X axis direction. They are arranged side by side on the + Y axis direction side from the direction side.
  • the first magnetic flux concentrator 111 is connected to the end of the second magnetic flux concentrator 112 on the + Y axis direction side, and extends to the ⁇ X axis direction side (the third magnetic flux concentrator member side in the X axis direction).
  • the first magnetic flux concentrator 111 protrudes beyond the ⁇ X axis direction end of the third magnetic flux concentrator member 113 and / or the fourth magnetic flux concentrator member 114 of the second magnetic flux concentrator 120 when viewed from the Y-axis direction. Formed.
  • the fourth magnetic flux concentrator member 114 is connected to the end of the third magnetic flux concentrator member 113 on the ⁇ Y axis direction side, and extends toward the + X axis direction side (the second magnetic flux concentrator member 112 side in the X axis direction).
  • the fourth magnetic focusing member 114 protrudes from the + X-axis direction side end of the first magnetic focusing member 111 and / or the second magnetic focusing member 112 of the first magnetic focusing unit 110 when viewed from the Y-axis direction. It is formed.
  • the first magnetic converging member 111 and the fourth magnetic converging member 114 are rectangles having a longitudinal direction in the X-axis direction, and are arranged in parallel in directions parallel to the X-axis direction.
  • An example is shown.
  • the shape of the first magnetic flux concentrator member 111 and the fourth magnetic flux concentrator member 114 is not limited to a rectangle, but any of a quadrilateral, a parallelogram, and a trapezoid having a longitudinal direction in a direction substantially parallel to the X-axis direction. There may be.
  • first magnetic focusing member 111 and the fourth magnetic focusing member 114 are each parallel to the X-axis direction, and each long side parallel to the X-axis direction has the same length. However, instead of this, each long side may have a different length. Moreover, although the 1st magnetic focusing member 111 and the 4th magnetic focusing member 114 showed the example in which each short side parallel to a Y-axis direction has the same length, instead of this, each short side is shown. It may be a different length.
  • the magnetic sensor 100 will be described in detail later by providing the first magnetic focusing member 111 to the fourth magnetic focusing member 114 as described above, but when the magnetic field is applied in the + X-axis direction, the second magnetic focusing member A magnetic path from 112 to the third magnetic flux concentrator member 113 is formed. That is, the magnetic field input in the + X axis direction generates a magnetic field in the ⁇ X axis direction between the second magnetic focusing member 112 and the third magnetic focusing member 113. Further, the first magnetic converging part 110 and the second magnetic converging part 120 constituted by the first magnetic converging member 111 to the fourth magnetic converging member 114 are arranged so as to be substantially parallel to the substrate plane (XY plane). If the magnetic field is input in the + X-axis direction or the + Y-axis direction, a magnetic field having good symmetry can be formed on the XY plane with the point Q as the center.
  • the first magnetic detection unit 210 is disposed between the second magnetic focusing member 112 and the third magnetic focusing member 113 and extends in the second direction.
  • the first magnetic detection unit 210 is arranged such that the distance to the third magnetic focusing member 113 is smaller than the second magnetic focusing member 112.
  • the second magnetic detection unit 220 is disposed closer to the positive side in the first direction than the second magnetic convergence member 112 and extends in the second direction. That is, the first magnetic detection unit 210 and the second magnetic detection unit 220 are arranged to translate with the second magnetic focusing member 112 and sandwich the second magnetic focusing member 112.
  • the third magnetic detection unit 230 is disposed between the second magnetic focusing member 112 and the third magnetic focusing member 113, and extends in the second direction.
  • the third magnetic detection unit 230 is arranged so that the distance to the second magnetic focusing member 112 is smaller than the third magnetic focusing member 113.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 detect a magnetic field in the X-axis direction parallel to the first direction. That is, the first magnetic detection unit 210 to the third magnetic detection unit 230 have a magnetosensitive axis that senses a magnetic field parallel to the first direction in the XY plane, and is parallel to the XY plane and in the first direction. The magnetic field in the second direction perpendicular to the first direction and the third direction (Z-axis direction) perpendicular to the first direction and the second direction is not sensed. In other words, the first magnetic detection unit 210 to the third magnetic detection unit 230 have a magnetosensitive axis in the X-axis direction without a magnetic converging unit or the like.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 may be elements that sense only the magnetic field in one axis direction and change the resistance value.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 may be any of a giant magnetoresistance (GMR) element, a tunneling magnetoresistance (TMR) element, an anisotropic magnetoresistance (AMR) element, and the like. Good. Therefore, the first magnetic detection unit 210 to the third magnetic detection unit 230 both increase in resistance value when a magnetic field in the + X-axis direction is input, and any resistance value increases when a magnetic field in the -X-axis direction is input. Both are formed to decrease.
  • GMR giant magnetoresistance
  • TMR tunneling magnetoresistance
  • AMR anisotropic magnetoresistance
  • each may be substantially orthogonal or may be bent with respect to each other.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 are preferably flat.
  • Each of the shapes of the first magnetic detection unit 210 to the third magnetic detection unit 230 is a rectangular shape in a plan view as viewed from the Z-axis direction, but instead, a rectangular shape, a square shape, a parallelogram shape are used. Any of a trapezoid, a triangle, a polygon, a circle, and an ellipse may be used.
  • at least one of the first magnetic detection unit 210 to the third magnetic detection unit 230 may include a plurality of magnetic detection units that are subdivided and divided in the Y-axis direction.
  • the plurality of divided magnetic detection units are connected by metal wiring or the like so as to function as a single magnetic detection unit.
  • at least one of the first magnetic detection unit 210 to the third magnetic detection unit 230 is not limited to a single magnetic detection unit, and two or more magnetic detection units are connected in series with a metal wiring. May be formed.
  • the first magnetic detection unit 210 is between the second magnetic converging member 112 of the first magnetic converging unit 110 and the third magnetic converging member 113 of the second magnetic converging unit 120 in a plan view viewed from the Z-axis direction. It arrange
  • the third magnetic detection unit 230 is disposed between the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113 in a plan view as viewed from the Z-axis direction so as to be close to the second magnetic flux convergent member 112. Be placed.
  • a line that is the middle of the sides where the shape of the second magnetic flux concentrator member 112 and the shape of the third magnetic flux concentrator member 113 are closest to each other is a virtual midline C Assuming ⁇ C, the shape of the first magnetic detection unit 210 is arranged so as to be closer to the third magnetic convergence member 113 than the virtual midline CC.
  • the shape of the third magnetic detection unit 230 is disposed so as to be closer to the second magnetic convergence member 112 than the virtual center line CC.
  • the second magnetic detection unit 220 is disposed in the + X axis direction between the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113, and is disposed so as to be close to the second magnetic flux concentrator member 112.
  • the second magnetic detection unit 220 is preferably disposed at a position symmetrical to the third magnetic detection unit 230 with respect to a center line parallel to the Y-axis direction of the second magnetic flux concentrator member 112.
  • the first magnetic detection unit 210 is disposed close to the end side along the longitudinal direction of the third magnetic flux concentrator member 113 in a plan view viewed from the Z-axis direction. More preferably, a part of the first magnetic detection unit 210 along the long side direction is covered with the third magnetic flux concentrator member 113. That is, at least a part of the first magnetic detection unit 210 and the third magnetic flux concentrator member 113 may overlap in a plan view as viewed from the Z-axis direction. The same applies to the positional relationship between the second magnetic detection unit 220 and the second magnetic focusing member 112 and the positional relationship between the third magnetic detection unit 230 and the second magnetic focusing member 112.
  • a plane perpendicular to the Y-axis direction between the second magnetic focusing member 112 and the third magnetic focusing member 113 intersects both the second magnetic focusing member 112 and the third magnetic focusing member 113.
  • a range along the direction is defined as a range R1. That is, when viewed from the first direction, a range in the Y-axis direction where the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113 overlap is defined as a range R1.
  • Each of the first magnetic detection unit 210 to the third magnetic detection unit 230 is at least partially arranged in the range R1 when viewed from the first direction, and the magnetic detection unit in the range R1 is a magnetic field in the X-axis direction. It is preferable to sense. More preferably, all of the first magnetic detection unit 210 to the third magnetic detection unit 230 are arranged in a range R1 along the Y-axis direction.
  • FIG. 1 shows an example in which the first magnetic detection unit 210 to the third magnetic detection unit 230 are arranged in the range R1 and formed in the same shape.
  • FIG. 2 shows an example of a sectional view taken along line AA of the magnetic sensor 100 shown in FIG. That is, a plan view viewed from the Y-axis direction is shown.
  • FIG. 3 shows an example of a cross-sectional view taken along line BB of the magnetic sensor 100 shown in FIG. That is, it is a plan view seen from the X-axis direction.
  • 2 and 3 show an example of the magnetic sensor 100 formed on the substrate plane 22 which is one surface of the substrate 20.
  • the substrate plane 22 is formed as a plane substantially parallel to the XY plane.
  • the substrate 20 may be any of a silicon substrate, a compound semiconductor substrate, a ceramic substrate, and the like.
  • the substrate 20 may be a substrate on which an electronic circuit such as an IC is mounted.
  • An insulating layer 30 or the like is formed on the substrate plane 22 of the substrate 20.
  • the upper surface of the insulating layer 30 is formed as a surface substantially parallel to the XY plane, and is a first plane 32 in this example.
  • the first magnetic focusing member 111 to the fourth magnetic focusing member 114 are formed on the first plane 32. 2 and 3, the first magnetic focusing member 111 to the fourth magnetic focusing member 114 have a thickness in the Z-axis direction and overlap (intersect or contact) the first plane 32. Further, each of the first magnetic flux concentrator member 111 to the fourth magnetic flux concentrator member 114 may be disposed so that the bottom surface is in contact with the first plane 32, and each part thereof intersects the first plane 32. It may be arranged. Moreover, although the 1st magnetic focusing member 111 to the 4th magnetic focusing member 114 show the example in which the thickness of a Z-axis direction is formed in the substantially same thickness, it replaces with this and each thickness is uneven. There may be.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 are formed, for example, inside the insulating layer 30 formed on the substrate plane 22. That is, the first magnetic detection unit 210 to the third magnetic detection unit 230 are formed so as to be electrically insulated from the first magnetic convergence member 111 to the fourth magnetic convergence member 114 and the substrate 20.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 are disposed on the second plane 34 substantially parallel to the XY plane of the insulating layer 30 and are formed so as to detect only the magnetic field in the X-axis direction.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 may be arranged so that the bottom surfaces thereof are in contact with the second plane 34, and are arranged so that a part of each crosses the second plane 34. May be. 2 and 3, the first magnetic detection unit 210 to the third magnetic detection unit 230 show an example in which the thickness in the Z-axis direction is formed to be substantially the same, but instead, Each thickness may be uneven.
  • the first plane 32 and the second plane 34 are arranged in the order of the substrate plane 22, the second plane 34, and the first plane 32 in the + Z-axis direction.
  • a simple method of forming a magnetic converging unit after forming a magnetic detection unit that senses only the magnetic field in the X-axis direction on the substrate 20 Such a simple method is preferable from the viewpoint of production and performance, but is not limited thereto.
  • the magnetic sensor 100 of the present embodiment described above includes the first magnetic convergence unit 110 and the second magnetic convergence unit 120, and the first magnetic detection unit 210 to the third magnetic detection unit 230, and thus the magnetic sensor 100.
  • the sensitivity of each magnetic detection unit with respect to the magnetic field input to is increased.
  • FIG. 4 shows an example of a magnetic path in the case where the + X-axis direction of the magnetic sensor 100 according to this embodiment gave a magnetic field B X.
  • FIG. 4 is a top view of the magnetic sensor 100 (plan view as viewed in the Z-axis direction).
  • 5 shows an example of a cross-sectional view taken along the line AA of the magnetic sensor 100 shown in FIG. 4 (plan view as viewed in the Y-axis direction).
  • the same reference numerals are given to substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 1 and 2, and description thereof is omitted.
  • the first magnetic focusing member 111 of the first magnetic focusing unit 110 protruding in the ⁇ X-axis direction is a space in the vicinity thereof.
  • the magnetic field converged on the first magnetic focusing member 111 passes through the second magnetic focusing member 112 connected to the first magnetic focusing member 111 and is emitted from the second magnetic focusing member 112 in the ⁇ X axis direction and the + X axis direction. Is done.
  • the magnetic field focused on the first magnetic focusing member 111 in the magnetic field B X is emitted from the second magnetic focusing member 112 in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted in the ⁇ X axis direction from the second magnetic focusing member 112 is the + X axis from the second magnetic focusing member 112 because the third magnetic focusing member 113 having a high magnetic permeability is on the ⁇ X axis direction side. It becomes larger than the magnetic field emitted in the direction.
  • the magnetic field emitted from the second magnetic focusing member 112 in the ⁇ X-axis direction is generated between the third magnetic detection unit 230 and the first magnetic detection unit 210 between the second magnetic focusing member 112 and the third magnetic focusing member 113. It passes through and is captured by the third magnetic flux concentrator member 113.
  • the magnetic field captured by the third magnetic focusing member 113 is released in the + X axis direction through the fourth magnetic focusing member 114 connected to the third magnetic focusing member 113.
  • the magnetic field emitted from the second magnetic flux concentrator member 112 in the + X-axis direction passes through the second magnetic detection unit 220.
  • the magnetic field input to the third magnetic focusing member 113 of the second magnetic focusing unit 120 is emitted from the third magnetic focusing member 113 in the + X-axis direction, and the third magnetic focusing member 113. And is released in the + X-axis direction through the fourth magnetic flux concentrating member 114 connected to the.
  • the magnetic field emitted from the third magnetic focusing member 113 in the + X-axis direction passes through the fourth magnetic focusing member 114. It becomes smaller than the emitted magnetic field.
  • the magnetic field emitted from the third magnetic focusing member 113 in the + X-axis direction passes through the first magnetic detection unit 210 and the third magnetic detection unit 230 between the second magnetic focusing member 112 and the third magnetic focusing member 113. And captured by the second magnetic flux concentrator member 112. Then, the magnetic field captured by the second magnetic flux concentrator member 112 is emitted in the + X axis direction and passes through the second magnetic detection unit 220.
  • the magnetic field to be input to the first magnetic flux concentrator member 111 of the magnetic field B X is input to the third magnetic flux concentrator member 113 of the magnetic field B X Larger than the magnetic field Therefore, the magnetic field emitted from the second magnetic focusing member 112 in the ⁇ X-axis direction is generated by the first magnetic focusing member 111 that converges more magnetic fields than the magnetic field input to the third magnetic focusing member 113. Therefore, it is larger than the magnetic field emitted from the third magnetic flux concentrator member 113 in the + X axis direction.
  • the first magnetic detection unit 210 and the third magnetic The detection unit 230 generally detects a magnetic field in the ⁇ X axis direction.
  • the second magnetic detection unit 220 detects a magnetic field in the + X axis direction as a whole.
  • the first magnetic detection portion 210 third magnetic detection unit 230 senses the first direction and the magnetic field parallel which is redirecting according to the magnetic field B X to be input to the + X-axis direction.
  • the first magnetic detection portion 210 from the third magnetic detection unit 230 senses the magnetic field strength is proportional to the intensity of the magnetic field B X to be input to the + X-axis direction, respectively.
  • FIG. 6 shows an example of a magnetic path when the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100 according to the present embodiment.
  • FIG. 6 is a top view of the magnetic sensor 100 (plan view as viewed in the Z-axis direction).
  • FIG. 7 shows an example of a cross-sectional view taken along line AA of the magnetic sensor 100 shown in FIG. 6 (plan view as viewed in the Y-axis direction).
  • the same reference numerals are given to the substantially same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 1 and 2, and the description thereof is omitted.
  • the third magnetic converging member 113 protruding in the ⁇ Y-axis direction converges the magnetic field in the space in the vicinity thereof.
  • the magnetic field converged on the fourth magnetic focusing member 114 is converged on the third magnetic focusing member 113.
  • the magnetic field focused on the third magnetic focusing member 113 is emitted from the third magnetic focusing member 113 in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted from the third magnetic focusing member 113 in the + X-axis direction is from the third magnetic focusing member 113 to the ⁇ X-axis direction because the second magnetic focusing member 112 having a high magnetic permeability is on the + X-axis direction side. Becomes larger than the magnetic field emitted to
  • the magnetic field emitted from the third magnetic focusing member 113 in the + X-axis direction passes through the first magnetic detection unit 210 and the third magnetic detection unit 230 between the second magnetic focusing member 112 and the third magnetic focusing member 113. And captured by the second magnetic flux concentrator member 112. Further, the magnetic field captured by the second magnetic focusing member 112 is coupled to the second magnetic focusing member 112 together with the magnetic field focused on the second magnetic focusing member 112 through the second magnetic detection unit 220 in the ⁇ X axis direction. The first magnetic flux concentrating member 111 is released.
  • the first magnetic detection unit 210 and the third magnetic detection unit 230 detect the magnetic field in the + X axis direction according to the magnetic field emitted from the third magnetic focusing member 113 in the + X axis direction. Further, the second magnetic detection unit 220 detects a magnetic field in the ⁇ X axis direction according to the magnetic field converged on the second magnetic flux concentrator member 112 in the ⁇ X axis direction. From the above, the first magnetic detection unit 210 to the third magnetic detection unit 230 detect a magnetic field parallel to the first direction, the direction of which is changed according to the magnetic field BY input in the + Y-axis direction. The first magnetic detection unit 210 to the third magnetic detection unit 230 detect the magnetic field strength proportional to the strength of the magnetic field BY input in the + Y axis direction.
  • FIG. 8 shows an example of a magnetic path when the magnetic field BZ is applied in the + Z-axis direction of the magnetic sensor 100 according to the present embodiment.
  • FIG. 8 is a top view of the magnetic sensor 100 (plan view seen in the Z-axis direction).
  • FIG. 9 shows an example of a cross-sectional view taken along the line AA of the magnetic sensor 100 shown in FIG. 8 (plan view seen in the Y-axis direction).
  • the same reference numerals are given to the same components as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 1 and 2, and the description thereof is omitted.
  • the magnetic field B Z is given in the + Z-axis direction of the magnetic sensor 100, as shown in FIGS. 8 and 9, a portion of the magnetic field B Z is bent in the -X-axis direction, the first magnetic detection portion 210 It is converged to the third magnetic flux concentrating member 113 and released.
  • Part of the magnetic field B Z, + X-axis direction bent is converged on the second magnetic flux concentrator member 112 through the third magnetic detection unit 230, and released.
  • Part of the magnetic field B Z, bent in the -X-axis direction is converged to the second magnetic flux concentrator member 112 through the second magnetic detection unit 220, and released.
  • Part of the magnetic field B Z, bent in the + X-axis direction is converged on the third magnetic flux concentrator member 113, and released.
  • the first magnetic detection unit 210 detects a magnetic field in the ⁇ X-axis direction among the magnetic fields converged by the third magnetic focusing member 113.
  • the third magnetic detection unit 230 detects a magnetic field in the + X-axis direction among the magnetic fields converged by the second magnetic focusing member 112.
  • the second magnetic detection unit 220 detects a magnetic field in the ⁇ X-axis direction among magnetic fields converged by the second magnetic focusing member 112.
  • the first magnetic detection portion 210 third magnetic detection unit 230 senses the first direction and the magnetic field parallel which is redirecting depending on the magnetic field B Z which is input to the + Z-axis direction. Then, the first magnetic detection portion 210 third magnetic detection unit 230 senses the magnetic field strength is proportional to the intensity of the magnetic field B Z which inputs in the + Z-axis direction.
  • the first magnetic converging part 110 has an L-shape formed by the first magnetic converging member 111 and the second magnetic converging member 112 in a plan view viewed from the Z-axis direction.
  • the second magnetic flux concentrator 120 has an L-shape formed by the third magnetic flux concentrator member 113 and the fourth magnetic flux convergent member 114.
  • the L-shape is used as a general term including an L-shaped transposition or a mirror image.
  • the first magnetic focusing member 111 may protrude toward the + X-axis direction side from the end of the second magnetic focusing member 112 on the + X-axis direction side when viewed from the Y-axis direction. That is, the first magnetic flux concentrator 110 may have a T shape. In this case, if the first magnetic flux concentrator member 111 does not protrude beyond the end of the fourth magnetic flux concentrator member 114 on the + X-axis direction side, the large difference from the magnetic field flow method (magnetic path) shown in FIGS. Does not occur. For example, even if another magnetic converging member is connected to the + Y-axis direction end of the first magnetic converging member 111, there is no significant difference from the magnetic field flow shown in FIGS.
  • FIG. 10 illustrates the X-axis direction sensed by the first magnetic detection unit 210 to the third magnetic detection unit 230 when magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment.
  • An example of a magnetic field is shown.
  • the same reference numerals are given to substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 1, and description thereof is omitted.
  • the first magnetic detection unit 210 and the third magnetic detection unit 230 detect the magnetic field in the ⁇ X-axis direction.
  • the second magnetic detection unit 220 detects a magnetic field in the + X axis direction.
  • the first magnetic detection unit 210 and the third magnetic detection unit 230 detect the magnetic field in the + X-axis direction.
  • the second magnetic detector 220 detects a magnetic field in the ⁇ X axis direction.
  • the first magnetic detection unit 210 and the second magnetic detection unit 220 detect the magnetic field in the ⁇ X-axis direction.
  • the third magnetic detection unit 230 detects a magnetic field in the + X axis direction.
  • Such a magnetic sensor 100 uses the first magnetic converging unit 110 and the second magnetic converging unit 120 to convert the direction of the input magnetic field into the magnetic sensitive axis direction of the magnetic detection unit. That is, the magnetic sensor 100 includes a first magnetic convergence unit 110 and a second magnetic convergence unit 120 that function as a magnetic field direction conversion unit. In other words, when a magnetic field component is input in the first direction (+ X axis direction), the magnetic sensor 100 converts the magnetic field component into the first magnetic field component in the first direction and the second magnetic field component in the direction opposite to the first direction. When the magnetic field component is input in a second direction (+ Y-axis direction) different from the first direction, the magnetic field component is converted into the third magnetic field component in the first direction and the first direction opposite to the first direction.
  • a magnetic field direction conversion unit for converting each of the four magnetic field components is provided.
  • the magnetic field direction conversion unit converts the magnetic field component into the first direction magnetic field component and the first direction. And reverse magnetic field components.
  • the first magnetic detection unit 210 detects one of the first magnetic field component and the second magnetic field component and one of the third magnetic field component and the fourth magnetic field component
  • the second magnetic detection unit 220 May detect the other of the first magnetic field component and the second magnetic field component and the other of the third magnetic field component and the fourth magnetic field component
  • the third magnetic detection unit 230 detects the other of the first magnetic field component and the second magnetic field component and one of the third magnetic field component and the fourth magnetic field component.
  • the magnetic sensor 100 further includes a fourth magnetic detection unit that detects one of the first magnetic field component and the second magnetic field component and the other of the third magnetic field component and the fourth magnetic field component. Good. The fourth magnetic detector will be described later.
  • FIG. 11 shows an example in which the wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment.
  • the wiring part 130 may be a metal wiring.
  • the wiring unit 130 is formed inside the insulating layer 30 and connected from the first magnetic detection unit 210 to the third magnetic detection unit 230.
  • the wiring part 130 may be formed on the second plane 34 and may be formed on a different plane in the insulating layer 30 instead.
  • the wiring part 130 may be formed so as to electrically connect different planes.
  • the wiring part 130 may be formed on the second plane 34 and may be formed on a different plane in the insulating layer 30 instead.
  • the wiring part 130 may be formed so as to electrically connect different planes.
  • the wiring unit 130 is connected to a terminal indicated by a rectangle in FIG. 11, and electrically connects the terminal and the magnetic detection unit. More specifically, the wiring unit 130 connects the first magnetic detection unit 210 to the third magnetic detection unit 230 and the terminal S, respectively. The wiring unit 130 connects the first magnetic detection unit 210 and the terminal A, the second magnetic detection unit 220 and the terminal B, and the third magnetic detection unit 230 and the terminal C, respectively.
  • the terminals A, B, C, and the terminal S are made of metal and electrically connected to the outside, and exchange electric signals, power supply voltages, and / or reference potentials with the outside.
  • the terminals A, B, C, and the terminal S may be formed on the first plane 32. Instead, they are formed inside the insulating layer 30, and a part of the insulating layer 30 is processed by etching or the like. It may be formed so as to be exposed to the outside.
  • the terminals A, B, C, and the terminal S may be part of the wiring unit 130.
  • R 0 is the resistance value of the magnetoresistive element in the absence of magnetic field
  • [Delta] R X is the resistance change amount corresponding to the magnetic field B X of + X-axis direction
  • the amount ⁇ R Z is a resistance change amount according to the magnetic field B Z in the + Z-axis direction.
  • Each of the magnetic resistances of the equations (Equation 1) to (Equation 3) includes resistance change amounts ⁇ R X , ⁇ R Y , and ⁇ R Z corresponding to the magnetic field of the triaxial component.
  • the symbols ⁇ R X , ⁇ R Y , and ⁇ R Z correspond to the direction of the magnetic field in the X-axis direction across the first magnetic detection unit 210 and the third magnetic detection unit 230, as shown in FIG.
  • the magnetic sensor 100 can extract the output signals as they are mixed without separating the orthogonal three-axis component magnetic signals. That is, the magnetic sensor 100 according to the present embodiment detects a magnetic field obtained by mixing at least a magnetic field perpendicular to the substrate and a parallel magnetic field. Here, the magnetic sensor 100 can also separate each magnetic field component from the detected result.
  • the magnetic field component parallel to the substrate can be separated from each mixed magnetic field component.
  • the magnetic field component perpendicular to the substrate can be separated from the mixed magnetic field components.
  • the magnetic field component perpendicular to the substrate can be separated by subtracting (Equation 1) from (Equation 3).
  • the magnetic sensor 100 can acquire a magnetic field component parallel to the substrate if at least one magnetic detection unit is disposed between the second magnetic focusing member 112 and the third magnetic focusing member 113. .
  • the magnetic sensor 100 omits the third magnetic detection unit 230 and includes the first magnetic detection unit 210 and the second magnetic detection unit 220, so that the output signals of the formulas (1) and (2) can be output.
  • the output signal corresponding to the equation (5) can be obtained.
  • the magnetic sensor 100 omits the first magnetic detection unit 210 and includes the second magnetic detection unit 220 and the third magnetic detection unit 230, so that the output signals of the formulas (2) and (3) can be output.
  • the output signal corresponding to the equation (4) can be obtained.
  • the magnetic sensor 100 omits the second magnetic detection unit 220 and includes the first magnetic detection unit 210 and the third magnetic detection unit 230, so that the output signals of the equations (1) and (3) can be output. By obtaining and subtracting, a component perpendicular to the substrate can be obtained.
  • the wiring part 130 is a metal wiring, but instead of this, a wiring made of the same material as the magnetic detection part may be used, or both wirings may be mixed.
  • connecting one terminal of the first magnetic detection unit 210 to the third magnetic detection unit 230 to one point and connecting it to the terminal S reduces the number of output terminals.
  • one terminal of each of the first magnetic detection unit 210 to the third magnetic detection unit 230 may be connected to the output terminal.
  • FIG. 12 shows an example of a circuit configuration connected to the magnetic sensor 100 according to the present embodiment.
  • the description of the magnetic convergence portion is omitted.
  • a first potential is applied to the terminal S.
  • the first potential may be a ground potential.
  • one terminal of the first constant current source 310 is electrically connected to the terminal A
  • one terminal of the second constant current source 312 is electrically connected to the terminal B
  • one terminal of the third constant current source 314 is electrically connected to the terminal C. Connected to.
  • the other terminals of the first constant current source 310 to the third constant current source 314 are electrically coupled to one point to be given a second potential.
  • the second potential may be a predetermined power supply potential.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 are preliminarily generated from the first constant current source 310 to the third constant current source 314 through terminals A, B, and C connected thereto, respectively.
  • constant current magnitude defined is I S are supplied.
  • a signal is obtained.
  • the voltage V BS and V CS that occurs each between the CS, respectively (number 2) the signal is obtained by multiplying the I S in equation (3).
  • the magnetic sensor 100 can extract the output signals that are mixed without separating the orthogonal three-axis component magnetic signals.
  • the first magnetic detection unit 210 to the third magnetic detection unit 230 are connected to the third constant current source 314 from the first constant current source 310, and the example in which the current is supplied has been described.
  • a switch may be provided for each of the terminals A, B, and C, and the current may be supplied to each magnetic detection unit by switching the switch from a common constant current source. Thereby, the number of constant current sources can be reduced.
  • the magnetic sensor 100 of this embodiment can respond to a magnetic field in an arbitrary direction (that is, an input magnetic field expressed by a combination of X, Y, and Z-axis components of the magnetic field). That is, the magnetic sensor 100 can detect a magnetic field in an arbitrary direction without being arranged corresponding to the direction of the magnetic field to be detected, so that the degree of freedom in designing the device is improved and the device is further downsized. And space saving can be realized. Furthermore, it is possible to realize a magnetic sensor that is small, has low power consumption, has high sensitivity, and has high accuracy, and that outputs magnetic signals of orthogonal three-axis components without being separated.
  • FIG. 13 shows a second configuration example (plan view seen in the Z-axis direction) of the magnetic sensor 100 according to the present embodiment.
  • FIG. 14 shows an example of a cross-sectional view (plan view as seen in the Y-axis direction) taken along line AA of the magnetic sensor 100 shown in FIG.
  • the same reference numerals are given to substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 1 and FIG.
  • the magnetic sensor 100 of the second configuration example shown in FIG. 13 includes one first magnetic detection unit 10 as in the case of the magnetic sensor 100 of the first configuration example.
  • the first magnetic detection unit 10 is substantially parallel to the substrate plane 22 and the first to fourth magnetic detection units 210 to 240 formed on the second plane 34 substantially parallel to the substrate plane 22.
  • a first magnetic flux concentrator 110 having a first magnetic flux concentrator member 111 and a second magnetic flux concentrator member 112 formed on the first plane 32, and a second magnetic magnet having a third magnetic flux concentrator member 113 to a fifth magnetic flux concentrator member 115.
  • a converging unit 120 that is, the magnetic sensor 100 of the second configuration example further includes the fifth magnetic convergence member 115 and the fourth magnetic detection unit 240 in addition to the magnetic sensor 100 of the first configuration example illustrated in FIG.
  • the second magnetic flux concentrator 120 further includes a fifth magnetic flux concentrator member 115 connected to the positive end of the fourth magnetic concentrator member 114 in the first direction and extending to the positive side in the second direction.
  • the fifth magnetic flux concentrator member 115 is arranged so that the second magnetic flux concentrator member 112 is sandwiched between the third magnetic flux convergent member 113 and the fifth magnetic flux convergent member 115.
  • the second magnetic detection unit 220 is disposed between the second magnetic focusing member 112 and the fifth magnetic focusing member.
  • the fifth magnetic flux concentrator member 115 may be formed of the same material as the first magnetic flux convergent member 111 to the fourth magnetic flux convergent member 114.
  • the second magnetic focusing member 112, the third magnetic focusing member 113, the fifth magnetic focusing member 113, and the fifth magnetic focusing member 115 are substantially parallel to each other in the Y-axis direction.
  • 5 Magnetic converging members 115 are arranged in the order from the ⁇ X axis direction side to the + X axis direction side, and the other side is shifted in the longitudinal direction (Y axis direction) with respect to two adjacent ones in a plan view as viewed from the Z axis direction. Arranged.
  • the second magnetic focusing member 112, the third magnetic focusing member 113, and the fifth magnetic focusing member 115 extend in the Y-axis direction, and the third magnetic focusing member 113 and the fifth magnetic focusing member 115 are extended.
  • the ⁇ Y-axis direction end of the second magnetic flux concentrator member 112 is disposed so as to protrude in the ⁇ Y-axis direction from the ⁇ Y-axis direction end of the second magnetic flux concentrator member 112. Further, the end on the + Y-axis direction side of the second magnetic focusing member 112 is disposed so as to protrude to the + Y-axis direction side from the + Y-axis direction end of the third magnetic focusing member 113 and the fifth magnetic focusing member 115.
  • the fifth magnetic flux concentrator member 115 has a thickness in the Z-axis direction and overlaps (intersects with or touches) the first plane 32, similarly to the second magnetic flux convergent member 112 and the third magnetic flux convergent member 113. Further, the fifth magnetic flux concentrator member 115 is a rectangle whose longitudinal direction is in the Y-axis direction, and is arranged in a direction parallel to the Y-axis direction. The shape of the fifth magnetic flux concentrator member 115 is not limited to a rectangle, and may be any of a quadrilateral having a longitudinal direction in a direction substantially parallel to the Y-axis direction, a parallelogram, and a trapezoid. In FIG.
  • the fifth magnetic flux concentrator member 115 shows an example in which the long sides parallel to the Y-axis direction have substantially the same length as the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113. Instead of this, the long sides may be different lengths.
  • the fifth magnetic focusing member 115 shows an example in which each short side parallel to the X-axis direction has the same length as the second magnetic focusing member 112 and the third magnetic focusing member 113. May be of different lengths. Further, the fifth magnetic flux concentrator member 115 shows an example in which the bottom surface is disposed so as to contact the first plane 32, but may be disposed so that a part of the bottom surface intersects the first plane 32. Moreover, although the example which made the thickness of the Z-axis direction of the 2nd magnetic focusing member 112, the 3rd magnetic focusing member 113, and the 5th magnetic focusing member 115 substantially the same is shown, instead of this, each thickness is It may be uneven.
  • the fourth magnetic detection unit 240 is disposed between the second magnetic focusing member 112 and the fifth magnetic focusing member 115.
  • the second magnetic detection unit 220 has a smaller distance to the second magnetic focusing member 112 than the fifth magnetic focusing member 115, and the fourth magnetic detection unit 240 has the fifth magnetic level than the second magnetic focusing member 112. The distance to the converging member 115 is small.
  • the fourth magnetic detection unit 240 has a magnetosensitive axis for detecting a magnetic field in the X-axis direction parallel to the substrate plane 22, similarly to the first magnetic detection unit 210 to the third magnetic detection unit 230. It does not sense the magnetic field in the Y-axis direction and the Z-axis direction.
  • the fourth magnetic detection unit 240 is disposed on the second plane 34 and is formed to detect only the magnetic field in the X-axis direction. In other words, the fourth magnetic detection unit 240 has a magnetosensitive axis in the X-axis direction without a magnetic converging unit or the like.
  • the fourth magnetic detector 240 may be formed of the same material as the first magnetic detector 210 to the third magnetic detector 230.
  • the fourth magnetic detector 240 increases in resistance when a magnetic field in the + X-axis direction is input, and receives a magnetic field in the -X-axis direction. Then, it forms so that resistance value may decrease.
  • the 4th magnetic detection part 240 is flat form.
  • the shape of the fourth magnetic detection unit 240 that overlaps the second plane 34 is a more preferable shape in a plan view as viewed from the Z-axis direction, but instead, for example, a quadrangle, a square, a parallelogram, Any of a trapezoid, a triangle, a polygon, a circle, and an ellipse may be used.
  • the fourth magnetic detection unit 240 may include a plurality of magnetic detection units that are subdivided and divided in the Y-axis direction. In this case, the plurality of divided magnetic detection units are connected by metal wiring or the like so as to function as a single magnetic detection unit. In other words, for example, the fourth magnetic detection unit 240 is not limited to a single magnetic detection unit, and may be formed by connecting two or more magnetic detection units in series with metal wiring.
  • the fourth magnetic detection unit 240 is arranged so that the bottom surface is in contact with the second plane 34, but may be arranged so that a part of the bottom surface intersects the second plane 34. Moreover, in FIG. 14, although the thickness of the Z-axis direction of the 1st magnetic detection part 210 to the 4th magnetic detection part 240 is shown substantially the same, it replaces with this and each thickness is uneven. Good.
  • a virtual middle line DD is a line in which the shape of the second magnetic flux concentrator member 112 and the shape of the fifth magnetic flux concentrator member 115 are in the middle of the sides closest to each other in a plan view as viewed from the Z-axis direction
  • the two magnetic detectors 220 are arranged so as to be closer to the second magnetic convergence member 112 than the virtual midline DD.
  • the fourth magnetic detector 240 is arranged so as to be closer to the fifth magnetic converging member 115 than the virtual midline DD.
  • the second magnetic detection unit 220 and the fourth magnetic detection unit 240 are connected to the third magnetic detection unit 230 and the first magnetic detection unit 210 with respect to the center line parallel to the Y-axis direction of the second magnetic convergence member 112. It is preferable to arrange at a line symmetrical position.
  • the fourth magnetic detector 240 is disposed close to the end along the longitudinal direction of the fifth magnetic flux concentrator member 115 in a plan view as viewed from the Z-axis direction. More preferably, a part of the fourth magnetic detector 240 along the long side direction is covered with the fifth magnetic flux concentrator member 115. That is, the fourth magnetic detector 240 and the fifth magnetic flux concentrator 115 may overlap at least partially in a plan view as viewed from the Z-axis direction.
  • a plane perpendicular to the Y-axis direction between the second magnetic focusing member 112 and the fifth magnetic focusing member 115 intersects both the second magnetic focusing member 112 and the fifth magnetic focusing member 115.
  • a range along the direction is defined as a range R2. That is, when viewed from the first direction, a range in the Y-axis direction where the second magnetic flux concentrator member 112 and the fifth magnetic flux concentrator member 115 overlap is defined as a range R2.
  • Each of the second magnetic detection unit 220 and the fourth magnetic detection unit 240 is at least partially disposed in the range R2 when viewed from the first direction, and the magnetic detection unit in the range R2 is a magnetic field in the X-axis direction. It is preferable to sense. More preferably, all of the second magnetic detection unit 220 and the fourth magnetic detection unit 240 are arranged in a range R2 along the Y-axis direction.
  • FIG. 13 shows an example in which the second magnetic detection unit 220 and the fourth magnetic detection unit 240 are arranged in the range R2 and formed in the same shape.
  • FIG. 13 shows an example in which the first magnetic detection unit 210 and the third magnetic detection unit 230 are arranged in the range R1 and formed in the same shape. More preferably, the range R1 and the range R2 are substantially the same range, and the first magnetic detection unit 210 to the fourth magnetic detection unit 240 are arranged in the ranges R1 and R2 and formed in the same shape.
  • FIG. 15 illustrates the X-axis direction sensed by the first magnetic detection unit 210 to the fourth magnetic detection unit 240 when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment.
  • An example of a magnetic field is shown.
  • the same reference numerals are given to substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 13, and description thereof is omitted.
  • the magnetic sensor 100 of the second configuration example has a configuration in which the magnetic sensor 100 of the first configuration example includes the fifth magnetic converging member 115 and the fourth magnetic detection unit 240, so that the magnetic fields B X , B Y , and magnetic path when the B Z is input is substantially the same as FIGS. 4 to 9, the description thereof is omitted for substantially the same operation.
  • the magnetic field B X is given in the + X-axis direction of the magnetic sensor 100, the magnetic field B X is converged to the first magnetic flux concentrator member 111 that protrudes in the -X axis direction.
  • the magnetic field converged on the first magnetic focusing member 111 passes through the second magnetic focusing member 112 connected to the first magnetic focusing member 111 and is emitted from the second magnetic focusing member 112 in the ⁇ X axis direction and the + X axis direction. Is done.
  • the magnetic field emitted from the second magnetic focusing member 112 in the ⁇ X-axis direction is generated between the third magnetic detection unit 230 and the first magnetic detection unit 210 between the second magnetic focusing member 112 and the third magnetic focusing member 113. It passes through and is captured by the third magnetic flux concentrator member 113. Further, the magnetic field captured by the third magnetic focusing member 113 is released through the fourth magnetic focusing member 114 connected to the third magnetic focusing member 113.
  • the magnetic field emitted from the second magnetic flux concentrator member 112 in the + X-axis direction is the second magnetic detector 220 and the fourth magnetic detector 240 between the second magnetic concentrator 112 and the fifth magnetic concentrator 115. And is captured and released by the fifth magnetic focusing member 115.
  • the first magnetic detection portion 210 fourth magnetic detection unit 240 senses the first direction and the magnetic field parallel which is redirecting according to the magnetic field B X to be input to the + X-axis direction.
  • the first magnetic detection unit 210 and the third magnetic detection unit 230 detect the magnetic field in the ⁇ X-axis direction.
  • the second magnetic detection unit 220 and the fourth magnetic detection unit 240 detect a magnetic field in the + X-axis direction.
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100, the magnetic field BY is applied to the third magnetic converging member 113 and the fifth magnetic converging member 115 of the second magnetic converging unit 120 protruding in the ⁇ Y-axis direction. Each converges.
  • the magnetic field converged on the third magnetic converging member 113 is emitted from the third magnetic converging member 113 in the + X axis direction.
  • the magnetic field emitted from the third magnetic focusing member 113 in the + X-axis direction passes through the first magnetic detection unit 210 and the third magnetic detection unit 230 between the second magnetic focusing member 112 and the third magnetic focusing member 113. And captured by the second magnetic flux concentrator member 112.
  • the magnetic field focused on the fifth magnetic flux concentrator member 115 is emitted from the fifth magnetic flux concentrator member 115 in the ⁇ X axis direction.
  • the magnetic field emitted from the fifth magnetic focusing member 115 in the ⁇ X-axis direction is generated between the second magnetic detection member 240 and the second magnetic detection unit 220 between the second magnetic focusing member 112 and the fifth magnetic focusing member 115. It passes through and is captured by the second magnetic flux concentrator member 112.
  • the magnetic field captured by the second magnetic focusing member 112 is emitted through the first magnetic focusing member 111 connected to the second magnetic focusing member 112.
  • the first magnetic detection unit 210 to the fourth magnetic detection unit 240 detect a magnetic field parallel to the first direction, the direction of which is changed according to the magnetic field BY input in the + Y-axis direction.
  • the first magnetic detection unit 210 and the third magnetic detection unit 230 detect the magnetic field in the + X-axis direction.
  • the second magnetic detection unit 220 and the fourth magnetic detection unit 240 detect a magnetic field in the ⁇ X axis direction.
  • the first magnetic detection portion 210 fourth magnetic detection unit 240 senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B Z which is input to the + Z-axis direction.
  • the first magnetic detection unit 210 and the second magnetic detection unit 220 detect the magnetic field in the ⁇ X-axis direction.
  • the third magnetic detection unit 230 and the fourth magnetic detection unit 240 detect a magnetic field in the + X-axis direction.
  • FIG. 16 shows an example in which the wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 16 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 11, FIG. 13, and FIG.
  • the wiring unit 130 electrically connects the fourth magnetic detection unit 240 and the terminal S similarly to the first magnetic detection unit 210 to the third magnetic detection unit 230. Further, the wiring unit 130 electrically connects the fourth magnetic detection unit 240 and the terminal D. Similarly to the terminals A, B, C, and the terminal S, the terminal D may be formed of substantially the same material on substantially the same plane.
  • Each of the magnetic resistances of the equations (Equation 6) to (Equation 9) includes resistance change amounts ⁇ R X , ⁇ R Y , and ⁇ R Z corresponding to the magnetic field of the triaxial component.
  • the signs of ⁇ R X , ⁇ R Y , and ⁇ R Z correspond to the direction of the magnetic field in the X-axis direction across the first magnetic detection unit 210 to the fourth magnetic detection unit 240, as shown in FIG.
  • the magnetic sensor 100 can take out the output signals as they are mixed without separating the orthogonal three-axis component magnetic signals. That is, the magnetic sensor 100 of the second configuration example can detect each magnetic field component in a state where it can be separated by mixing at least a magnetic field perpendicular to the substrate and a parallel magnetic field. Then, by adding (Equation 10) and (Equation 11), the magnetic field component parallel to the substrate can be separated from each mixed magnetic field component, and by subtracting (Equation 11) from (Equation 10), mixing is performed. A magnetic field component perpendicular to the substrate can be separated from each magnetic field component.
  • At least one magnetic detection unit is disposed between the second magnetic focusing member 112 and the third magnetic focusing member 113, and between the second magnetic focusing member 112 and the fifth magnetic focusing member 115, respectively. You may make it the structure which carried out. For example, if the first magnetic detector 210 is provided between the second magnetic flux concentrator member 112 and the third magnetic flux concentrator member 113, an output signal of the formula (6) can be obtained. If the fourth magnetic detection unit 240 is provided between the fifth magnetic flux concentrator members 115, an output signal of Formula (9) can be obtained, and an output signal corresponding to Formula (11) can be obtained. Similarly, by providing the second magnetic detection unit 220 and the third magnetic detection unit 230, the magnetic sensor 100 acquires the output signals of the formulas (7) and (8), and corresponds to the formula (10). Output signal can be obtained.
  • a circuit is connected to the terminals A, B, C, D and the terminal S in the same manner as in the description of FIG. More specifically, the terminal S is supplied with the first potential.
  • the output terminals A, B, C, and D are respectively connected to one terminals of the corresponding constant current sources.
  • the other terminal of each corresponding constant current source is electrically coupled to one point to be given a second potential. In this case, the number of constant current sources may be reduced by combining constant current sources and switches.
  • the first magnetic detection unit 210 to the fourth magnetic detection unit 240 may have a predetermined size I generated by a corresponding constant current source through terminals A, B, C, and D connected to the first magnetic detection unit 210 to the fourth magnetic detection unit 240, respectively.
  • S constant currents are respectively supplied.
  • a signal multiplied by is obtained.
  • V BS , V CS , and V DS generated between the output terminals B-S, C-S, and D-S are respectively expressed by (Equation 7), (Equation 8), and (Equation 8). 9) obtained as a signal multiplied by I S in formula.
  • the differential voltage V AD obtained by the voltage V AS and the voltage V DS is obtained as a signal obtained by multiplying the equation (11) by I S.
  • the magnetic sensor 100 can take out output signals that remain mixed without separating magnetic signals of orthogonal three-axis components.
  • the magnetic sensor 100 can obtain a signal obtained by multiplying the I S in (11) below.
  • the magnetic sensor 100 can obtain a signal multiplied by I S (the number 10).
  • FIG. 17 shows a third configuration example (plan view as viewed in the Z-axis direction) of the magnetic sensor 100 according to the present embodiment.
  • FIG. 18 shows an example of a cross-sectional view (plan view seen in the Y-axis direction) taken along line AA of the magnetic sensor 100 shown in FIG.
  • the same reference numerals are given to the substantially same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 1 and 2, and the description thereof is omitted.
  • the magnetic sensor 100 of the third configuration example includes a first magnetic detection unit 10a, a substantially mirror image, and a surface substantially orthogonal to the first direction at the negative end of the first magnetic converging member 111 in the first direction.
  • the second magnetic detection unit 10b is further provided. That is, the first magnetic detection unit 10 described in FIG. 1 and FIG. 2 is shown as a first magnetic detection unit 10a in FIG. 17, and the second magnetic detection unit is a mirror image of the first magnetic detection unit 10a. 10b is shown.
  • the magnetic sensor 100 of the third configuration example includes three magnetic detection units of the first magnetic detection unit 10a formed on the second plane 34, and the second magnetic detection unit 10b corresponding to the three magnetic detection units. Three magnetic detection units, a magnetic convergence member of the first magnetic detection unit 10a formed on the first plane 32, and a magnetic convergence member of the second magnetic detection unit 10b corresponding to the magnetic convergence member are provided.
  • the 1st magnetic flux concentrator member 111 does not have a boundary in the 1st magnetic detection unit 10a and the 2nd magnetic detection unit 10b, and shows the example formed as a common magnetic convergence member. That is, the first magnetic flux concentrator 110 is disposed on the common first magnetic flux concentrator member 111, the second magnetic flux concentrator member 112a disposed on the first magnetic sensing unit 10a side, and the second magnetic sensing unit 10b side. And a seventh magnetic flux concentrator member 112b.
  • the second magnetic convergence unit 120a of the first magnetic detection unit 10a includes a third magnetic convergence member 113a and a fourth magnetic convergence member 114a, and the second magnetic detection unit 10b corresponding to the second magnetic convergence unit 120a.
  • the fourth magnetic focusing portion 120b includes an eighth magnetic focusing member 113b and a ninth magnetic focusing member 114b.
  • the first magnetic detection unit 10a includes the first magnetic detection unit 210a to the third magnetic detection unit 230a, and the second magnetic detection unit 10b corresponding to the first magnetic detection unit 10a is the fifth magnetic detection unit 210b.
  • the magnetic sensor 100 of the third configuration example is an example of a sensor having a plurality of magnetic detection units.
  • the first magnetic detection unit 10a has substantially the same arrangement pattern as the first magnetic detection unit 10 described in FIG.
  • the arrangement pattern of the second magnetic detection unit 10b is arranged so as to have a plane-symmetrical positional relationship on the YZ plane perpendicular to the substrate plane including the point Q located at the same distance from the first magnetic detection unit 10a.
  • the first magnetic detection unit 10 a and the second magnetic detection unit 10 b are separated from each other by a predetermined distance and are disposed on the first plane 32 and the second plane 34.
  • the magnetic convergence member and the magnetic detection unit included in the second magnetic detection unit 10b correspond to the magnetic convergence member and the magnetic detection unit included in the first magnetic detection unit 10a, respectively, and may have substantially the same shape and material.
  • FIG. 19 shows an example of the magnetic field in the X-axis direction sensed by each of the magnetic sensing units when the magnetic sensors B X , B Y , and B Z are given to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 19 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG.
  • the first magnetic detection unit 10a has substantially the same configuration as the first magnetic detection unit 10 of the magnetic sensor 100 of the first configuration example, and thus the magnetic fields B X and B
  • the magnetic path when Y 1 and B Z are input is the same as that shown in FIGS.
  • the magnetic path when the magnetic fields B X , B Y , and B Z are input to the second magnetic detection unit 10b will be described next.
  • the magnetic field B X of the magnetic sensor 100 If the + X-axis direction to the magnetic field B X of the magnetic sensor 100 is given, a part of the magnetic field B X is converged to a ninth magnetic convergence element 114b of the fourth magnetic converging portion 120b which protrudes in the -X axis direction.
  • the magnetic field focused on the ninth magnetic focusing member 114b passes through the eighth magnetic focusing member 113b connected to the ninth magnetic focusing member 114b and is emitted from the eighth magnetic focusing member 113b in the ⁇ X-axis direction.
  • the magnetic field emitted from the eighth magnetic focusing member 113b in the ⁇ X-axis direction is generated by the fifth magnetic detection unit 210b and the seventh magnetic detection unit 230b between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b. It passes through and is captured by the seventh magnetic flux concentrator member 112b.
  • the magnetic field captured by the seventh magnetic focusing member 112b passes through the first magnetic focusing member 111 connected to the seventh magnetic focusing member 112b and the second magnetic focusing member 112a connected to the first magnetic focusing member 111. Released from the second magnetic flux concentrator member 112a in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted from the second magnetic flux concentrator member 112a in the ⁇ X-axis direction passes through the third magnetic detector 230a and the first magnetic detector 210a between the second magnetic concentrator member 112a and the third magnetic concentrator member 113a. It passes through and is captured by the third magnetic flux concentrator member 113a.
  • the magnetic field captured by the third magnetic focusing member 113a is released through the fourth magnetic focusing member 114a connected to the third magnetic focusing member 113a.
  • the magnetic field emitted from the second magnetic flux concentrator member 112a in the + X axis direction passes through the second magnetic detector 220a.
  • the seventh magnetic detection unit 230b from the first magnetic detection portion 210a third magnetic detection unit 230a and the fifth magnetic detection unit 210b includes a first directionally converted according to the magnetic field B X to be input to the + X-axis direction Sensing a magnetic field parallel to one direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the fifth magnetic detection unit 210b, and the seventh magnetic detection unit 230b Sense the magnetic field. Further, the second magnetic detection unit 220a and the sixth magnetic detection unit 220b detect a magnetic field in the + X-axis direction.
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100, a part of the magnetic field BY is converged on the third magnetic converging member 113a of the second magnetic converging part 120a protruding in the ⁇ Y-axis direction.
  • the magnetic field converged on the third magnetic focusing member 113a is emitted in the + X-axis direction from the third magnetic focusing member 113a.
  • the magnetic field emitted from the third magnetic focusing member 113a in the + X-axis direction passes through the first magnetic detection unit 210a and the third magnetic detection unit 230a between the second magnetic focusing member 112a and the third magnetic focusing member 113a.
  • the second magnetic flux concentrator member 112a is captured by the second magnetic flux concentrator member 112a. Further, a part of the magnetic field BY is captured by the second magnetic converging member 112a through the second magnetic detector 220a in the ⁇ X axis direction. The magnetic field captured by the second magnetic focusing member 112a is released through the first magnetic focusing member 111 connected to the second magnetic focusing member 112a.
  • a part of the magnetic field BY is converged on the eighth magnetic converging member 113b of the fourth magnetic converging part 120b protruding in the ⁇ Y axis direction.
  • the magnetic field focused on the eighth magnetic focusing member 113b is emitted from the eighth magnetic focusing member 113b in the ⁇ X axis direction.
  • the magnetic field emitted from the eighth magnetic focusing member 113b in the ⁇ X-axis direction is generated by the fifth magnetic detection unit 210b and the seventh magnetic detection unit 230b between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b. It passes through and is captured by the seventh magnetic flux concentrator member 112b.
  • a part of the magnetic field BY passes through the sixth magnetic detector 220b in the + X-axis direction and is captured by the seventh magnetic convergence member 112b.
  • the magnetic field captured by the seventh magnetic focusing member 112b is released through the first magnetic focusing member 111 connected to the seventh magnetic focusing member 112b.
  • the first magnetic detection unit 210a to the third magnetic detection unit 230a and the fifth magnetic detection unit 210b to the seventh magnetic detection unit 230b are changed in direction according to the magnetic field BY input in the + Y-axis direction. Sensing a magnetic field parallel to one direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, and the sixth magnetic detection unit 220b detect the magnetic field in the + X-axis direction. Further, the second magnetic detector 220a, the fifth magnetic detector 210b, and the seventh magnetic detector 230b detect a magnetic field in the ⁇ X-axis direction.
  • the part of the magnetic field B Z is converged on the third magnetic flux concentrator member 113a through the first magnetic detection portion 210a to the -X-axis direction, and Released.
  • Part of the magnetic field B Z is converged on the second magnetic flux concentrator member 112a through the second magnetic detection portion 220a to the -X-axis direction, and released.
  • Part of the magnetic field B Z is converged on the second magnetic flux concentrator member 112a through the third magnetic detection unit 230a to the + X-axis direction, and released.
  • Part of the magnetic field B Z is converged to the eighth magnetic converging member 113b through the fifth magnetic detection unit 210b in the + X-axis direction, and released.
  • Part of the magnetic field B Z is converged to a seventh magnetic converging member 112b through the sixth magnetic detection unit 220b in the + X-axis direction, and released.
  • Part of the magnetic field B Z, 7 is converged to the magnetic flux concentrator member 112b through the seventh magnetic detection unit 230b in the -X axis direction and released.
  • the seventh magnetic detection unit 230b from the first magnetic detection portion 210a third magnetic detection unit 230a and the fifth magnetic detection unit 210b includes a first directionally converted according to the magnetic field B Z which is input to the + Z-axis direction Sensing a magnetic field parallel to one direction.
  • the first magnetic detection unit 210a, the second magnetic detection unit 220a, and the seventh magnetic detection unit 230b detect the magnetic field in the ⁇ X-axis direction.
  • the third magnetic detection unit 230a, the fifth magnetic detection unit 210b, and the sixth magnetic detection unit 220b detect a magnetic field in the + X-axis direction.
  • FIG. 20 shows an example in which the wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment.
  • the same reference numerals are given to substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 11, 17, and 19, and the description thereof is omitted.
  • the wiring unit 130 connects the fifth magnetic detection unit 210b to the seventh magnetic detection unit 230b to the terminal S, similarly to the first magnetic detection unit 210a to the third magnetic detection unit 230a.
  • the wiring unit 130 electrically connects the fifth magnetic detection unit 210b to the seventh magnetic detection unit 230b and the terminals E, F, and G in a one-to-one correspondence.
  • the terminals E, F, and G may be formed of substantially the same material on substantially the same plane.
  • each magnetic resistance can be calculated as follows.
  • Each of the magnetic resistances of the equations (12) to (17) includes resistance change amounts ⁇ R X , ⁇ R Y , and ⁇ R Z corresponding to the magnetic field of the three-axis component.
  • the signs of ⁇ R X , ⁇ R Y , and ⁇ R Z cross the first magnetic detection unit 210a to the third magnetic detection unit 230a and the fifth magnetic detection unit 210b to the seventh magnetic detection unit 230b, as shown in FIG. This corresponds to the direction of the magnetic field in the X-axis direction.
  • the magnetic sensor 100 can take out the output signals as they are mixed without separating the orthogonal three-axis component magnetic signals. That is, the magnetic sensor 100 according to the third configuration example can detect at least a magnetic field perpendicular to the substrate and a magnetic field parallel to each other and separate each magnetic field component. Then, from (Equation 19) or (Equation 21), the magnetic field component parallel to the substrate can be separated from the mixed magnetic field components, and (Equation 19) is subtracted from (Equation 18) or (Equation 20). By subtracting the equation (21), the magnetic field component perpendicular to the substrate can be separated from the mixed magnetic field components.
  • the magnetic sensor 100 includes one magnetic detection unit between at least one of the second magnetic focusing member 112a and the third magnetic focusing member 113a and between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b. You may make it the structure arrange
  • an output signal corresponding to the resistance change amount corresponding to the magnetic field of each axis can be taken out.
  • two or more magnetic detection units are provided between the second magnetic focusing member 112a and the third magnetic focusing member 113a and between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b.
  • one of (Expression 22), (Expression 24), and (Expression 25), or (Expression 23), (Expression 24), and (Expression 25) can be acquired.
  • the development of the expression for obtaining the output signal corresponding to the resistance change amount corresponding to the magnetic field of each axis obtained here is an example, and is not limited to this.
  • a circuit is connected to the terminals A, B, C, E, F, G, and the terminal S as in the description of FIG. More specifically, the terminal S is supplied with the first potential.
  • the terminals A, B, C, E, F, and G are connected to one terminal of the corresponding constant current source.
  • the other terminal of each corresponding constant current source is electrically coupled to one point to be given a second potential. In this case, the number of constant current sources may be reduced by combining constant current sources and switches.
  • the first magnetic detection unit 210a to the third magnetic detection unit 230a and the fifth magnetic detection unit 210b to the seventh magnetic detection unit 230b are connected to terminals A, B, C, E, F, and G, respectively. through a constant current of magnitude I S a predetermined generated by corresponding constant current sources are supplied.
  • a multiplied signal is obtained.
  • a differential voltage V AB obtained by the voltage V AS and the voltage V BS a differential voltage V GF obtained by the voltage V GS and the voltage V FS, and a differential voltage obtained by the voltage V ES and the voltage V FS and V EF, each (number 19) is obtained as a signal multiplied by I S (the number 20), and (expression 21) below.
  • the magnetic sensor 100 can take out output signals that remain mixed without separating magnetic signals of orthogonal three-axis components.
  • the magnetic sensor 100 includes one magnetic detection unit between at least one of the second magnetic focusing member 112a and the third magnetic focusing member 113a and between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b. It may be arranged in a single configuration. For example, between the second magnetic flux concentrator member 112a and the third magnetic flux concentrator member 113a, by providing the third magnetic detection unit 230a, to obtain an output signal multiplied by I S (the number 14), further second By providing the magnetic detection unit 220a, to obtain an output signal multiplied by I S in equation (18).
  • FIG. 21 shows a fourth configuration example (plan view seen in the Z-axis direction) of the magnetic sensor 100 according to the present embodiment.
  • the same reference numerals are given to substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 1 and 13, and the description thereof is omitted.
  • the magnetic sensor 100 of the fourth configuration example is substantially perpendicular to the first direction at the negative end of the first magnetic converging member 111 in the first direction in the magnetic sensor 100 of the second configuration example shown in FIG. And a second magnetic detection unit 10b disposed so as to be a substantially mirror image with the first magnetic detection unit 10a. That is, the first magnetic detection unit 10 described in FIG. 13 is shown as the first magnetic detection unit 10a in FIG. 21, and the second magnetic detection unit 10b is shown to be a mirror image of the first magnetic detection unit 10a. .
  • the magnetic sensor 100 of the fourth configuration example includes four magnetic detection units of the first magnetic detection unit 10a formed on the second plane 34, and two second magnetic detection units 10b corresponding to the four magnetic detection units.
  • Four magnetic detection units, a magnetic convergence member of the first magnetic detection unit 10a formed on the first plane 32, and a magnetic convergence member of the second magnetic detection unit 10b corresponding to the magnetic convergence member are provided.
  • FIG. 21 shows an example in which the first magnetic flux concentrator member 111 is formed as a common magnetic flux concentrator member without a boundary in the first magnetic detection unit 10a and the second magnetic detection unit 10b. That is, the first magnetic flux concentrator 110 is disposed on the common first magnetic flux concentrator member 111, the second magnetic flux concentrator member 112a disposed on the first magnetic sensing unit 10a side, and the second magnetic sensing unit 10b side. And a seventh magnetic flux concentrator member 112b.
  • the second magnetic focusing unit 120a of the first magnetic detection unit 10a includes the third magnetic focusing member 113a to the fifth magnetic focusing member 115a, and the second magnetic detection unit 10b corresponding to the second magnetic focusing unit 120a.
  • the fourth magnetic flux concentrator 120b includes the eighth magnetic flux concentrator member 113b to the tenth magnetic flux convergent member 115b.
  • the first magnetic detection unit 10a includes the first magnetic detection unit 210a to the fourth magnetic detection unit 240a, and the second magnetic detection unit 10b corresponding to the first magnetic detection unit 10a is the fifth magnetic detection unit 210b.
  • the magnetic sensor 100 of the fourth configuration example is an example of a sensor having a plurality of magnetic detection units.
  • the first magnetic detection unit 10a has substantially the same arrangement pattern as the first magnetic detection unit 10 described in FIG.
  • the arrangement pattern of the second magnetic detection unit 10b is arranged so as to have a plane-symmetrical positional relationship on the YZ plane perpendicular to the substrate plane including the point Q located at the same distance from the first magnetic detection unit 10a.
  • the first magnetic detection unit 10 a and the second magnetic detection unit 10 b are separated from each other by a predetermined distance and are disposed on the first plane 32 and the second plane 34.
  • the magnetic convergence member and the magnetic detection unit included in the second magnetic detection unit 10b correspond to the magnetic convergence member and the magnetic detection unit included in the first magnetic detection unit 10a, respectively, and may have substantially the same shape and material.
  • FIG. 22 shows an example of the magnetic field in the X-axis direction sensed by each of the magnetic sensing units when the magnetic sensors B X , B Y , and B Z are given to the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 21 are denoted by the same reference numerals, and description thereof is omitted.
  • the first magnetic detection unit 10a has substantially the same configuration as the first magnetic detection unit 10 of the magnetic sensor 100 of the second configuration example, so that the magnetic fields B X and B
  • the magnetic field in the X-axis direction sensed by each magnetic detection unit when Y 1 and B Z are input is the same as in FIG.
  • the magnetic field in the X-axis direction sensed by each magnetic detection unit when the magnetic fields B X , B Y , and B Z in the second magnetic detection unit 10b are input will be described.
  • the magnetic field B X is converged to a tenth magnetic convergence element 115b of the fourth magnetic converging portion 120b on the end of the -X-axis direction.
  • a part of the magnetic field converged on the tenth magnetic flux concentrator member 115b includes a ninth magnetic flux concentrator member 114b coupled to the tenth magnetic flux concentrator member 115b and an eighth magnetic flux concentrator member 113b coupled to the ninth magnetic flux concentrator member 114b. Then, it is emitted in the ⁇ X axis direction from the eighth magnetic flux concentrator member 113b.
  • the magnetic field emitted from the eighth magnetic focusing member 113b in the ⁇ X-axis direction is generated by the fifth magnetic detection unit 210b and the seventh magnetic detection unit 230b between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b. It passes through and is captured by the seventh magnetic flux concentrator member 112b. A part of the magnetic field converged on the tenth magnetic flux concentrator member 115b is also emitted from the tenth magnetic flux concentrator member 115b in the + X-axis direction.
  • the magnetic field emitted from the tenth magnetic focusing member 115b in the + X-axis direction passes through the eighth magnetic detection unit 240b and the sixth magnetic detection unit 220b between the seventh magnetic focusing member 112b and the tenth magnetic focusing member 115b. And captured by the seventh magnetic flux concentrator member 112b.
  • the magnetic field captured by the seventh magnetic focusing member 112b passes through the first magnetic focusing member 111 connected to the seventh magnetic focusing member 112b and the second magnetic focusing member 112a connected to the first magnetic focusing member 111.
  • the second magnetic flux concentrating member 112a emits in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted from the second magnetic flux concentrator member 112a in the ⁇ X-axis direction passes through the third magnetic detector 230a and the first magnetic detector 210a between the second magnetic concentrator member 112a and the third magnetic concentrator member 113a. It passes through and is captured by the third magnetic flux concentrator member 113a.
  • the magnetic field captured by the third magnetic flux concentrator member 113a is released through the fourth magnetic flux concentrator member 114a connected to the third magnetic flux convergent member 113a.
  • the magnetic field emitted from the second magnetic flux concentrator member 112a in the + X-axis direction includes the second magnetic detector 220a and the fourth magnetic detector 240a between the second magnetic concentrator member 112a and the fifth magnetic concentrator member 115a. Passed through and captured by the fifth magnetic focusing member 115a and released.
  • the eighth magnetic detection unit 240b from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B X to be input to the + X-axis direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the fifth magnetic detection unit 210b, and the seventh magnetic detection unit 230b Sense the magnetic field.
  • the second magnetic detection unit 220a, the fourth magnetic detection unit 240a, the sixth magnetic detection unit 220b, and the eighth magnetic detection unit 240b detect a magnetic field in the + X-axis direction.
  • a part of the magnetic field BY partially includes the third magnetic converging member 113a and the fifth magnetic converging member of the second magnetic converging part 120a protruding in the ⁇ Y-axis direction. It converges on each member 115a.
  • the magnetic fields after being focused on the third magnetic focusing member 113a and the fifth magnetic focusing member 115a have been described with reference to FIG.
  • a part of the magnetic field BY is converged on the eighth magnetic converging member 113b and the tenth magnetic converging member 115b of the fourth magnetic converging part 120b protruding in the ⁇ Y-axis direction.
  • the magnetic field focused on the eighth magnetic focusing member 113b is emitted from the eighth magnetic focusing member 113b in the ⁇ X axis direction.
  • the magnetic field emitted from the eighth magnetic focusing member 113b in the ⁇ X-axis direction is generated by the fifth magnetic detection unit 210b and the seventh magnetic detection unit 230b between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b. It passes through and is captured by the seventh magnetic flux concentrator member 112b.
  • the magnetic field focused on the tenth magnetic flux concentrator member 115b is emitted from the tenth magnetic flux concentrator member 115b in the + X-axis direction.
  • the magnetic field emitted in the + X-axis direction from the tenth magnetic flux concentrator member 115b passes through the eighth magnetic detector 240b and the sixth magnetic detector 220b between the seventh magnetic concentrator member 112b and the tenth magnetic concentrator member 115b. It passes through and is captured by the seventh magnetic flux concentrator member 112b. Further, the magnetic field captured by the seventh magnetic focusing member 112b is released through the first magnetic focusing member 111 connected to the seventh magnetic focusing member 112b.
  • the first magnetic detection unit 210a to the eighth magnetic detection unit 240b detect a magnetic field parallel to the first direction, the direction of which is changed according to the magnetic field BY input in the + Y-axis direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the sixth magnetic detection unit 220b, and the eighth magnetic detection unit 240b are in the + X-axis direction. Sensing a magnetic field.
  • the second magnetic detector 220a, the fourth magnetic detector 240a, the fifth magnetic detector 210b, and the seventh magnetic detector 230b detect a magnetic field in the ⁇ X axis direction.
  • the magnetic sensor 100 + Z-axis direction to the magnetic field B Z is given, the part of the magnetic field B Z, is converged on the third magnetic flux concentrator member 113a through the first magnetic detection portion 210a to the -X-axis direction, and Released.
  • the magnetic field B Z from the second through the fourth magnetic detection unit 240a omitted here since described in FIG 15.
  • Part of the magnetic field B Z is converged to the eighth magnetic converging member 113b through the fifth magnetic detection unit 210b in the + X-axis direction, and released.
  • Part of the magnetic field B Z is converged to a seventh magnetic converging member 112b through the sixth magnetic detection unit 220b in the + X-axis direction, and released.
  • Part of the magnetic field B Z, 7 is converged to the magnetic flux concentrator member 112b through the seventh magnetic detection unit 230b in the -X axis direction and released.
  • Part of the magnetic field B Z is converged to the 10 magnetic converging member 115b through the eighth magnetic detection unit 240b in the -X axis direction and released.
  • the eighth magnetic detection unit 240b from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B Z which is input to the + Z-axis direction.
  • the first magnetic detection unit 210a, the second magnetic detection unit 220a, the seventh magnetic detection unit 230b, and the eighth magnetic detection unit 240b are in the ⁇ X-axis direction.
  • the third magnetic detector 230a, the fourth magnetic detector 240a, the fifth magnetic detector 210b, and the sixth magnetic detector 220b detect a magnetic field in the + X-axis direction.
  • FIG. 23 shows an example in which the wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 23 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 16, 21, and 22 are denoted by the same reference numerals, and description thereof is omitted.
  • the wiring unit 130 connects the fifth magnetic detection unit 210b to the eighth magnetic detection unit 240b to the terminal S, similarly to the first magnetic detection unit 210a to the fourth magnetic detection unit 240a.
  • the wiring unit 130 electrically connects the fifth magnetic detection unit 210b to the eighth magnetic detection unit 240b and the terminal E to the terminal H in a one-to-one correspondence.
  • the terminals E to H may be formed of substantially the same material on substantially the same plane.
  • each magneto resistance can be calculated as follows.
  • R A R 0 - ⁇ R X + ⁇ R Y - ⁇ R Z
  • R B R 0 + ⁇ R X ⁇ R Y ⁇ R Z
  • R C R 0 ⁇ R X + ⁇ R Y + ⁇ R Z
  • R D R 0 + ⁇ R X ⁇ R Y + ⁇ R Z
  • R E R 0 ⁇ R X ⁇ R Y + ⁇ R Z
  • R F R 0 + ⁇ R X + ⁇ R Y + ⁇ R Z
  • R G R 0 ⁇ R X + ⁇ R Y ⁇ R Z
  • R H R 0 + ⁇ R X + ⁇ R Y ⁇ R Z
  • Each of the magnetic resistances of the equations (26) to (33) includes resistance change amounts ⁇ R X , ⁇ R Y , and ⁇ R Z corresponding to the magnetic field of the triaxial component.
  • the signs of ⁇ R X , ⁇ R Y , and ⁇ R Z correspond to the direction of the magnetic field in the X-axis direction across the first magnetic detection unit 210a to the eighth magnetic detection unit 240b, as shown in FIG.
  • the magnetic sensor 100 can acquire magnetic signals of three orthogonal axis components. That is, by solving the simultaneous equations relating to each magnetic resistance, each of the resistance change amounts corresponding to the magnetic field of the three-axis component can be obtained.
  • the expansion of the simultaneous equations described here is an example, and is not limited to this.
  • a circuit is connected from the terminal A to the terminal H and the terminal S as in the description of FIG. More specifically, the terminal S is supplied with the first potential.
  • Terminals A to H are connected to one terminal of the corresponding constant current source.
  • the other terminal of each corresponding constant current source is electrically coupled to one point to be given a second potential. In this case, the number of constant current sources may be reduced by combining constant current sources and switches.
  • Eighth magnetic detection unit 240b from the first magnetic detection unit 210a, as an example, through the terminal H from the terminal A connected to each constant current of corresponding magnitude I S a predetermined generated by the constant current source Are supplied respectively.
  • a multiplied signal is obtained.
  • V HS from the voltage V BS generated each between HS from between the terminals BS, the signal multiplied by I S is obtained from each equation (27) into equation (33) below.
  • I S the number 37
  • I S the number 40
  • the output signal [Delta] R X in the X-axis direction, 8 ⁇ R X (- V CB -V AD -V GF - can be obtained as V EH) / I S.
  • the differential voltages V CB , V AD , V GF , and V EH are, in other words, voltages generated between the terminals CB , between AD , between GF , and between E and H, respectively. That is, between terminals C-B, between A-D, between G-F, by measuring the voltage generated between E-H directly, the signal multiplied by I S (the number 37) expression (Expression 34) The output signal of each axis can be obtained by taking out.
  • the above-described method for obtaining ⁇ R X , ⁇ R Y , and ⁇ R Z is an example, and does not limit how to establish or solve simultaneous equations related to the resistance value of the magnetic detection unit.
  • FIG. 24 shows an example in which the calculation unit 300 is connected to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 24 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG.
  • the calculation unit 300 calculates a magnetic field component in the first direction and a magnetic field component in the second direction based on the outputs of the magnetic detection units in the first magnetic detection unit 10a and the second magnetic detection unit 10b.
  • the calculation unit 300 further calculates a magnetic field component in a third direction different from the first direction and the second direction based on the outputs of the magnetic detection units in the first magnetic detection unit 10a and the second magnetic detection unit 10b.
  • the calculation unit 300 includes a signal acquisition unit 320, a calculation unit 330, and an addition / subtraction unit 340.
  • the signal acquisition unit 320 acquires the signal output of the eighth magnetic detection unit 240b from the first magnetic detection unit 210a.
  • a plurality of signal acquisition units 320 are provided corresponding to the number of magnetic detection units included in the magnetic sensor 100, and are connected to the first magnetic detection unit 210a to the eighth magnetic detection unit 240b, respectively.
  • Signal acquiring unit 320 in accordance with the constant current I S supplied from the outside of the constant current source to each magnetic detection unit, corresponding magnetic detection unit acquires a signal output for outputting.
  • the signal acquisition unit 320 has a constant current source, the in accordance with the constant current I S supplied from the constant current source may acquire a corresponding signal output by the magnetic detection unit outputs.
  • the signal acquisition unit 320 supplies the acquired signal output to the calculation unit 330.
  • the calculation unit 330 calculates the signal output received from the signal acquisition unit 320.
  • Calculation unit 330CB the calculated signal V CB is divided by the current value I S, may calculate the signal S CB corresponding to (number 34).
  • the calculation unit 330CB supplies the calculated signal S CB (or signal V CB ) to the addition / subtraction unit 340.
  • the calculation unit 330AD, the calculation unit 330GF, and the calculation unit 330EH are connected to the corresponding two signal acquisition units 320, and based on the received two signal outputs, the calculated signals S AD , S GF , and S EH. Is supplied to the adder / subtractor 340. That is, the calculation unit 330 calculates a signal corresponding to Equations (34) to (37).
  • the adder / subtractor 340 is connected to the calculator 330 and adds / subtracts the received signal to calculate and output a magnetic field component in the third direction from the first direction.
  • the adder / subtractor 340 uses the signals S CB , S AD , S GF , and S EH to perform operations corresponding to the equations (Equation 38) to (Equation 40), and performs the X-axis direction, the Y-axis direction, and Outputs the magnetic field component in the Z-axis direction.
  • the magnetic sensor 100 of the present embodiment described above can detect magnetic signals of three orthogonal components on the same substrate and reduce the current consumption of the entire sensor.
  • the magnetic sensor 100 can realize a small and high-resolution three-dimensional magnetic sensor using a magnetic detection unit having a magnetosensitive axis in one direction.
  • FIG. 25 shows a fifth configuration example (plan view seen in the Z-axis direction) of the magnetic sensor 100 according to the present embodiment.
  • the same reference numerals are given to substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 1 and 13, and the description thereof is omitted.
  • the magnetic sensor 100 of the fifth configuration example is the same as the first magnetic focusing member 111 or the first magnetic focusing member 111 on the positive side in the second direction in the magnetic sensor 100 of the second configuration example shown in FIG.
  • a second magnetic detection unit 10c is further provided so as to be a substantially mirror image with the first magnetic detection unit 10a with respect to a surface substantially orthogonal to the two directions. That is, the first magnetic detection unit 10 described in FIG. 13 is shown as the first magnetic detection unit 10a in FIG. 25, and the second magnetic detection unit 10c is shown to be a mirror image of the first magnetic detection unit 10a. .
  • the magnetic sensor 100 of the fifth configuration example includes four magnetic detection units of the first magnetic detection unit 10a formed on the second plane 34, and the second magnetic detection unit 10c corresponding to the four magnetic detection units.
  • Four magnetic detection units, a magnetic convergence member of the first magnetic detection unit 10a formed on the first plane 32, and a magnetic convergence member of the second magnetic detection unit 10c corresponding to the magnetic convergence member are provided.
  • the first magnetic focusing unit 110a of the first magnetic detection unit 10a includes a first magnetic focusing member 111a and a second magnetic focusing member 112a, and the second magnetic detection unit 10c corresponding to the first magnetic focusing unit 110a
  • the fifth magnetic flux concentrator 110c includes an eleventh magnetic flux concentrator member 111c and a twelfth magnetic flux convergent member 112c.
  • the second magnetic convergence unit 120a of the first magnetic detection unit 10a includes the third magnetic convergence member 113a to the fifth magnetic convergence member 115a, and the second magnetic detection unit 10c corresponding to the second magnetic convergence unit 120a.
  • the sixth magnetic flux concentrator 120c includes a thirteenth magnetic flux concentrator member 113c to a fifteenth magnetic flux concentrator member 115c.
  • the first magnetic detection unit 10a includes the first magnetic detection unit 210a to the fourth magnetic detection unit 240a, and the second magnetic detection unit 10c corresponding to the first magnetic detection unit 10a is the ninth magnetic detection unit 210c.
  • the magnetic sensor 100 of the fifth configuration example is an example of a sensor having a plurality of magnetic detection units.
  • the first magnetic detection unit 10a has substantially the same arrangement pattern as the first magnetic detection unit 10 described in FIG.
  • the arrangement pattern of the second magnetic detection unit 10c is arranged so as to have a plane-symmetrical positional relationship in the XZ plane perpendicular to the substrate plane including the point Q located equidistant from the first magnetic detection unit 10a.
  • the first magnetic detection unit 10 a and the second magnetic detection unit 10 c are separated from each other by a predetermined distance and are disposed on the first plane 32 and the second plane 34.
  • first magnetic detection unit 10a and the second magnetic detection unit 10c may be arranged so that the first magnetic focusing member 111a and the eleventh magnetic focusing member 111c are in contact with each other.
  • the first magnetic detection unit 10a and the second magnetic detection unit 10c may be arranged so that the first magnetic focusing member 111a and the eleventh magnetic focusing member 111c overlap.
  • the second magnetic detection unit 10c does not have the eleventh magnetic flux concentrator member 111c, and the end of the twelfth magnetic flux concentrator member 112c on the ⁇ Y axis direction side is the end of the first magnetic flux concentrator member 111a on the + X axis direction side. May be connected.
  • the first magnetic flux concentrator member 111a is shared by the first magnetic detection unit 10a and the second magnetic detection unit 10c.
  • the magnetic convergence member and the magnetic detection unit included in the second magnetic detection unit 10c may correspond to the magnetic convergence member and the magnetic detection unit included in the first magnetic detection unit 10a, respectively, and may have substantially the same shape and material.
  • FIG. 26 shows an example of the magnetic field in the X-axis direction sensed by each of the magnetic detectors when the magnetic fields B X , B Y , and B Z are respectively given to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 26 substantially the same operation as that of the magnetic sensor 100 according to the present embodiment shown in FIG.
  • the first magnetic detection unit 10a has substantially the same configuration as the first magnetic detection unit 10 of the magnetic sensor 100 of the second configuration example. Therefore, the magnetic field in the X-axis direction sensed by each magnetic detection unit when the magnetic fields B X , B Y , and B Z are input is also the same as that in FIG. Next, the magnetic field in the X-axis direction sensed by each magnetic detection unit when the magnetic fields B X , B Y , and B Z are input in the second magnetic detection unit 10c will be described.
  • the magnetic field B X is given in the + X-axis direction of the magnetic sensor 100, a portion of the magnetic field B X is converged to the 11 magnetic convergence element 111c of the fifth magnetic convergence 110c projecting in -X direction.
  • the magnetic field focused on the eleventh magnetic focusing member 111c passes through the twelfth magnetic focusing member 112c connected to the eleventh magnetic focusing member 111c, and is emitted from the twelfth magnetic focusing member 112c in the ⁇ X axis direction and the + X axis direction. Is done.
  • the magnetic field emitted from the twelfth magnetic flux concentrator member 112c in the ⁇ X-axis direction passes through the eleventh magnetic detector 230c and the ninth magnetic detector 210c between the twelfth magnetic concentrator member 112c and the thirteenth magnetic concentrator member 113c. It passes through and is captured by the thirteenth magnetic flux concentrator member 113c. Further, the magnetic field captured by the thirteenth magnetic focusing member 113c is released through the fourteenth magnetic focusing member 114c connected to the thirteenth magnetic focusing member 113c.
  • the magnetic field emitted from the twelfth magnetic flux concentrator member 112c in the + X-axis direction is the tenth magnetic detector 220c and the twelfth magnetic detector 240c between the twelfth magnetic concentrator member 112c and the fifteenth magnetic concentrator member 115c. Passed through and captured by the fifteenth magnetic focusing member 115c and released.
  • the fourth magnetic detection unit 240a and the ninth twelfth magnetic detection unit 240c from the magnetic detection unit 210c from the first magnetic detection unit 210a is first directionally converted according to the magnetic field B X to be input to the + X-axis direction Sensing a magnetic field parallel to one direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the ninth magnetic detection unit 210c, and the eleventh magnetic detection unit 230c Sense the magnetic field.
  • the second magnetic detection unit 220a, the fourth magnetic detection unit 240a, the tenth magnetic detection unit 220c, and the twelfth magnetic detection unit 240c detect a magnetic field in the + X-axis direction.
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100, the magnetic field BY is converged on the second magnetic converging unit 120a of the first magnetic detection unit 10a and then the first magnetic converging unit 110a. It is emitted from the magnetic flux concentrator 111a in the + Y-axis direction (details are omitted here since they have been described in FIG. 15).
  • the magnetic field emitted from the first magnetic focusing member 111a is focused on the twelfth magnetic focusing member 112c of the fifth magnetic focusing portion 110c protruding in the ⁇ Y axis direction.
  • the magnetic field focused on the twelfth magnetic focusing member 112c is emitted from the twelfth magnetic focusing member 112c in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted from the twelfth magnetic flux concentrator member 112c in the ⁇ X-axis direction passes through the eleventh magnetic detector 230c and the ninth magnetic detector 210c between the twelfth magnetic concentrator member 112c and the thirteenth magnetic concentrator member 113c. It passes through and is captured by the thirteenth magnetic flux concentrator member 113c. Further, the magnetic field captured by the thirteenth magnetic focusing member 113c is released through the fourteenth magnetic focusing member 114c connected to the thirteenth magnetic focusing member 113c.
  • the magnetic field emitted from the twelfth magnetic flux concentrator member 112c in the + X-axis direction is the tenth magnetic detector 220c and the twelfth magnetic detector 240c between the twelfth magnetic concentrator member 112c and the fifteenth magnetic concentrator member 115c. And is captured by the fifteenth magnetic flux concentrator member 115c. Further, the magnetic field captured by the fifteenth magnetic focusing member 115c is released through the fourteenth magnetic focusing member 114c connected to the fifteenth magnetic focusing member 115c.
  • the first magnetic detection unit 210a to the fourth magnetic detection unit 240a and the ninth magnetic detection unit 210c to the twelfth magnetic detection unit 240c change the direction according to the magnetic field BY input in the + Y-axis direction. Sensing a magnetic field parallel to one direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the tenth magnetic detection unit 220c, and the twelfth magnetic detection unit 240c are in the + X-axis direction. Sensing a magnetic field.
  • the second magnetic detection unit 220a, the fourth magnetic detection unit 240a, the ninth magnetic detection unit 210c, and the eleventh magnetic detection unit 230c detect a magnetic field in the ⁇ X axis direction.
  • the magnetic sensor 100 + Z-axis direction to the magnetic field B Z is given (so for the first magnetic detection unit 10a described in FIG. 15 will be omitted here)
  • the part of the magnetic field B Z the -X-axis direction
  • the light is converged on the thirteenth magnetic flux concentrator member 113c through the ninth magnetic detector 210c and then released.
  • Part of the magnetic field B Z is converged to the 12 magnetic convergence element 112c through the tenth magnetic detection unit 220c in the -X axis direction and released.
  • Part of the magnetic field B Z is converged to the 12 magnetic convergence element 112c through the eleventh magnetic detection unit 230c in the + X-axis direction, and released.
  • the fourth magnetic detection unit 240a and the ninth twelfth magnetic detection unit 240c from the magnetic detection unit 210c from the first magnetic detection unit 210a is first directionally converted according to the magnetic field B Z which is input to the + Z-axis direction Sensing a magnetic field parallel to one direction.
  • the first magnetic detection unit 210a, the second magnetic detection unit 220a, the ninth magnetic detection unit 210c, and the tenth magnetic detection unit 220c Sense the magnetic field.
  • the third magnetic detector 230a, the fourth magnetic detector 240a, the eleventh magnetic detector 230c, and the twelfth magnetic detector 240c detect a magnetic field in the + X-axis direction.
  • FIG. 27 shows an example in which the wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 23 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 16, 25, and 26 are denoted by the same reference numerals, and description thereof is omitted.
  • the wiring unit 130 connects the ninth magnetic detection unit 210c to the twelfth magnetic detection unit 240c to the terminal S, similarly to the first magnetic detection unit 210a to the fourth magnetic detection unit 240a.
  • the wiring unit 130 electrically connects the ninth magnetic detection unit 210c to the twelfth magnetic detection unit 240c and the terminal I to the terminal L in a one-to-one correspondence.
  • the terminals I to L may be formed of substantially the same material on substantially the same plane.
  • Each of the magnetoresistances of the equations (41) to (48) includes resistance change amounts ⁇ R X , ⁇ R Y , and ⁇ R Z corresponding to the magnetic field of the three-axis component.
  • the symbols ⁇ R X , ⁇ R Y , and ⁇ R Z indicate the first magnetic detection unit 210a to the fourth magnetic detection unit 240a, and the ninth magnetic detection unit 210c to the twelfth magnetic detection unit 240c.
  • the magnetic sensor 100 can acquire magnetic signals of three orthogonal axis components. That is, by solving the simultaneous equations relating to each magnetic resistance, each of the resistance change amounts corresponding to the magnetic field of the three-axis component can be obtained.
  • the expansion of the simultaneous equations described here is an example, and is not limited to this.
  • each output signal can be extracted in the amount of resistance change corresponding to the magnetic field of the three-axis component, similarly to the magnetic sensor 100 of the fourth configuration example.
  • a circuit is connected from the terminal A to the terminal D, from the terminal I to the terminal L, and to the terminal S, as in the description of FIGS. More specifically, the terminal S is supplied with the first potential. Further, the terminal A to the terminal D and the terminal I to the terminal L are respectively connected to one terminal of the corresponding constant current source. In addition, the other terminal of each corresponding constant current source is electrically coupled to one point to be given a second potential. In this case, the number of constant current sources may be reduced by combining constant current sources and switches.
  • the first magnetic detection unit 210a to the fourth magnetic detection unit 240a, and the ninth magnetic detection unit 210c to the twelfth magnetic detection unit 240c are connected to the terminal A to the terminal D and the terminal I to the terminal L, respectively. through a constant current of magnitude I S a predetermined generated by corresponding constant current sources are supplied.
  • a constant current of magnitude I S a predetermined generated by corresponding constant current sources are supplied.
  • FIG. 28 shows an example in which the calculation unit 300 is connected to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 24 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG.
  • the output of the magnetic resistance of the magnetic sensor 100 of the fifth configuration example is the fourth configuration.
  • the output is substantially the same as the output in which the order of the magnetic resistance of the magnetic sensor 100 in the example is changed. Therefore, the circuit configuration for signal detection of the magnetic sensor 100 of the fifth configuration example is similar to the calculation unit 300 of the magnetic sensor 100 of the fourth configuration example shown in FIG. Therefore, in the calculation unit 300 shown in FIG. 28, the same reference numerals are given to the substantially same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG.
  • the signal acquisition unit 320 acquires signal outputs of the first magnetic detection unit 210a to the fourth magnetic detection unit 240a and the ninth magnetic detection unit 210c to the twelfth magnetic detection unit 240c.
  • the signal acquisition unit 320 supplies the acquired signal output to the calculation unit 330.
  • Calculation unit 330 is divided by the current value I S after subtracting the signal output received from the signal acquisition unit 320 calculates respectively a signal corresponding to (number 52) expression (Expression 49), subtraction section 340 To supply.
  • the adder / subtractor 340 uses the signal received from the calculator 330 to perform calculations corresponding to the equations (Equation 53) to (Equation 55), and generates magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction. Is output.
  • the magnetic sensor 100 can detect magnetic signals having three orthogonal axes on the same substrate.
  • FIG. 29 shows a sixth configuration example (plan view seen in the Z-axis direction) of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 1 and 13 are denoted by the same reference numerals, and description thereof is omitted.
  • the magnetic sensor 100 of the sixth configuration example is a surface that is substantially orthogonal to the first direction on the positive side of the first direction with respect to the fifth magnetic converging member 115 in the magnetic sensor 100 of the second configuration example shown in FIG.
  • the first magnetic detection unit 10a is further provided with a second magnetic detection unit 10b arranged so as to be a substantially mirror image. That is, the first magnetic detection unit 10 described in FIG. 13 is shown as the first magnetic detection unit 10a in FIG. 29, and the second magnetic detection unit 10b is shown as a mirror image of the first magnetic detection unit 10a. .
  • the magnetic sensor 100 of the sixth configuration example includes four magnetic detection units of the first magnetic detection unit 10a formed on the second plane 34, and the second magnetic detection unit 10b corresponding to the four magnetic detection units.
  • Four magnetic detection units, a magnetic convergence member of the first magnetic detection unit 10a formed on the first plane 32, and a magnetic convergence member of the second magnetic detection unit 10b corresponding to the magnetic convergence member are provided.
  • the third magnetic focusing unit 110b of the second magnetic detection unit 10b corresponding to the first magnetic focusing unit 110a of the first magnetic detection unit 10a includes a sixth magnetic focusing member 111b and a seventh magnetic focusing member 112b. Further, the fourth magnetic converging part 120b of the second magnetic detecting unit 10b corresponding to the second magnetic converging part 120a of the first magnetic detecting unit 10a includes the eighth magnetic converging member 113b to the tenth magnetic converging member 115b. The second magnetic detection unit 10b corresponding to the first magnetic detection unit 10a includes the fifth magnetic detection unit 210b to the eighth magnetic detection unit 240b.
  • the magnetic sensor 100 of the sixth configuration example is an example of a sensor having a plurality of magnetic detection units.
  • the first magnetic detection unit 10a has substantially the same arrangement pattern as the first magnetic detection unit 10 described in FIG.
  • the arrangement pattern of the second magnetic detection unit 10b is arranged so as to have a plane-symmetrical positional relationship on the YZ plane perpendicular to the substrate plane including the point Q located at the same distance from the first magnetic detection unit 10a.
  • the first magnetic detection unit 10 a and the second magnetic detection unit 10 b are separated from each other by a predetermined distance and are disposed on the first plane 32 and the second plane 34.
  • the magnetic convergence member and the magnetic detection unit included in the second magnetic detection unit 10b correspond to the magnetic convergence member and the magnetic detection unit included in the first magnetic detection unit 10a, respectively, and may have substantially the same shape and material.
  • FIG. 30 shows an example of the magnetic field in the X-axis direction sensed by each of the magnetic detectors when the magnetic fields B X , B Y , and B Z are respectively given to the magnetic sensor 100 according to the present embodiment.
  • the same reference numerals are given to substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 29, and the description thereof is omitted.
  • the first magnetic detection unit 10a has substantially the same configuration as the first magnetic detection unit 10 of the magnetic sensor 100 of the second configuration example.
  • the magnetic field B X in the + X-axis direction of the magnetic sensor 100, the magnetic field B X, after being converged to the first magnetic flux concentrator member 111a and the third magnetic flux concentrator member 113a of the first magnetic detection unit 10a, It is emitted from the fifth magnetic flux concentrator member 115a in the + X-axis direction (details have been described with reference to FIG. 15 and are omitted here). That is, the magnetic field B X is released from the first magnetic detection unit 10a to the second magnetic detection unit 10b.
  • the magnetic field B X is converged to a tenth magnetic convergence element 115b of the fourth magnetic converging portion 120b in the -X-axis direction of the end of the second magnetic detection unit 10b.
  • a part of the magnetic field converged on the tenth magnetic flux concentrator member 115b includes a ninth magnetic flux concentrator member 114b coupled to the tenth magnetic flux concentrator member 115b and an eighth magnetic flux concentrator member 113b coupled to the ninth magnetic flux concentrator member 114b. Then, it is emitted in the ⁇ X axis direction from the eighth magnetic flux concentrator member 113b.
  • the magnetic field emitted from the eighth magnetic focusing member 113b in the ⁇ X-axis direction is generated by the fifth magnetic detection unit 210b and the seventh magnetic detection unit 230b between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b. It passes through and is captured by the seventh magnetic flux concentrator member 112b.
  • a part of the magnetic field converged on the tenth magnetic flux concentrator member 115b is emitted from the tenth magnetic flux concentrator member 115b in the + X-axis direction.
  • the magnetic field emitted from the tenth magnetic focusing member 115b in the + X-axis direction passes through the eighth magnetic detection unit 240b and the sixth magnetic detection unit 220b between the seventh magnetic focusing member 112b and the tenth magnetic focusing member 115b. And captured by the seventh magnetic flux concentrator member 112b.
  • the magnetic field captured by the seventh magnetic focusing member 112b is released through the sixth magnetic focusing member 111b connected to the seventh magnetic focusing member 112b.
  • the eighth magnetic detection unit 240b from the first magnetic detection unit 210a senses the first direction and the magnetic field parallel which is redirecting according to the magnetic field B X to be input to the + X-axis direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the fifth magnetic detection unit 210b, and the seventh magnetic detection unit 230b Sense the magnetic field.
  • the second magnetic detection unit 220a, the fourth magnetic detection unit 240a, the sixth magnetic detection unit 220b, and the eighth magnetic detection unit 240b detect a magnetic field in the + X-axis direction.
  • the first magnetic flux concentrating member 111a emits in the + Y-axis direction (details have been described with reference to FIG. 15 and are omitted here).
  • a part of the magnetic field BY is converged on the eighth magnetic converging member 113b and the tenth magnetic converging member 115b of the fourth magnetic converging part 120b protruding in the ⁇ Y axis direction of the second magnetic detection unit 10b.
  • the magnetic field focused on the eighth magnetic focusing member 113b is emitted from the eighth magnetic focusing member 113b in the ⁇ X axis direction.
  • the magnetic field emitted from the eighth magnetic focusing member 113b in the ⁇ X-axis direction is generated by the fifth magnetic detection unit 210b and the seventh magnetic detection unit 230b between the seventh magnetic focusing member 112b and the eighth magnetic focusing member 113b. It passes through and is captured by the seventh magnetic flux concentrator member 112b.
  • the magnetic field focused on the tenth magnetic flux concentrator member 115b is emitted from the tenth magnetic flux concentrator member 115b in the + X-axis direction.
  • the magnetic field emitted in the + X-axis direction from the tenth magnetic focusing member 115b passes through the eighth magnetic detection unit 240b and the sixth magnetic detection unit 220b between the seventh magnetic convergence member 112b and the tenth magnetic detection unit 115b. And captured by the seventh magnetic flux concentrator member 112b.
  • the magnetic field captured by the seventh magnetic focusing member 112b is released through the sixth magnetic focusing member 111b connected to the seventh magnetic focusing member 112b.
  • the first magnetic detection unit 240a to the eighth magnetic detection unit 240b detect a magnetic field parallel to the first direction, the direction of which is changed according to the magnetic field BY input in the + Y-axis direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the sixth magnetic detection unit 220b, and the eighth magnetic detection unit 240b are in the + X-axis direction. Sensing a magnetic field.
  • the second magnetic detector 220a, the fourth magnetic detector 240a, the fifth magnetic detector 210b, and the seventh magnetic detector 230b detect a magnetic field in the ⁇ X axis direction.
  • the magnetic sensor 100 + Z-axis direction to the magnetic field B Z is given (so for the first magnetic detection unit 10a described in FIG. 15 will be omitted here)
  • the part of the magnetic field B Z, first the + X-axis direction 5 is passed through the magnetic detection unit 210b, converged to the eighth magnetic focusing member 113b, and released.
  • Part of the magnetic field B Z is converged to a seventh magnetic converging member 112b through the sixth magnetic detection unit 220b in the + X-axis direction, and released.
  • Part of the magnetic field B Z, 7 is converged to the magnetic flux concentrator member 112b through the seventh magnetic detection unit 230b in the -X axis direction and released.
  • the eighth magnetic detection unit 240b from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B Z which is input to the + Z-axis direction.
  • the first magnetic detection unit 210a, the second magnetic detection unit 220a, the seventh magnetic detection unit 230b, and the eighth magnetic detection unit 240b are in the ⁇ X-axis direction.
  • the third magnetic detector 230a, the fourth magnetic detector 240a, the fifth magnetic detector 210b, and the sixth magnetic detector 220b detect a magnetic field in the + X-axis direction.
  • the wiring unit 130 is connected from the first magnetic detection unit 210a to the eighth magnetic detection unit 240b, and the value of the magnetic resistance is output to the outside.
  • the magnetic sensor 100 is connected to the calculation unit 300 or the like by the wiring unit 130 and outputs magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the wiring unit 130 and the calculation unit 300 can be configured and operated in the same manner as the configuration examples of FIGS. 23 and 24, and thus description thereof is omitted here.
  • the magnetic sensor 100 according to the present embodiment can detect three orthogonal magnetic signals on the same substrate.
  • FIG. 31 shows a seventh configuration example (plan view seen in the Z-axis direction) of the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 31 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 1 and FIG.
  • the magnetic sensor 100 of the seventh configuration example is similar to the magnetic sensor 100 of the second configuration example shown in FIG. 13 on the negative side in the second direction with respect to the fourth magnetic focusing member 114a or the fourth magnetic focusing member 114a.
  • a second magnetic detection unit 10c is further provided so as to be a substantially mirror image of the first magnetic detection unit 10a with respect to a surface substantially orthogonal to the second direction. That is, the first magnetic detection unit 10 described in FIG. 13 is shown as the first magnetic detection unit 10a in FIG. 31, and the second magnetic detection unit 10c is shown to be a mirror image of the first magnetic detection unit 10a. .
  • the magnetic sensor 100 of the seventh configuration example includes four magnetic detection units of the first magnetic detection unit 10a formed on the second plane 34, and the second magnetic detection unit 10c corresponding to the four magnetic detection units.
  • Four magnetic detection units, a magnetic convergence member of the first magnetic detection unit 10a formed on the first plane 32, and a magnetic convergence member of the second magnetic detection unit 10c corresponding to the magnetic convergence member are provided.
  • the fifth magnetic focusing unit 110c of the second magnetic detection unit 10c corresponding to the first magnetic focusing unit 110a of the first magnetic detection unit 10a includes an eleventh magnetic focusing member 111c and a twelfth magnetic focusing member 112c.
  • the sixth magnetic focusing unit 120c of the second magnetic detection unit 10c corresponding to the second magnetic focusing unit 120a of the first magnetic detection unit 10a includes the thirteenth magnetic focusing member 113c to the fifteenth magnetic focusing member 115c.
  • the second magnetic detection unit 10b corresponding to the first magnetic detection unit 10a includes the ninth magnetic detection unit 210c to the twelfth magnetic detection unit 240c.
  • the magnetic sensor 100 of the seventh configuration example is an example of a sensor having a plurality of magnetic detection units.
  • the first magnetic detection unit 10a is substantially the same arrangement pattern as the first magnetic detection unit 10 described in FIG.
  • the arrangement pattern of the second magnetic detection unit 10c is arranged so as to have a plane-symmetrical positional relationship in the XZ plane perpendicular to the substrate plane including the point Q located equidistant from the first magnetic detection unit 10a.
  • the first magnetic detection unit 10 a and the second magnetic detection unit 10 c are separated from each other by a predetermined distance and are disposed on the first plane 32 and the second plane 34.
  • the first magnetic detection unit 10a and the second magnetic detection unit 10c may be arranged such that the fourth magnetic focusing member 114a and the fourteenth magnetic focusing member 114c are in contact with each other. Further, the first magnetic detection unit 10a and the second magnetic detection unit 10c may be arranged such that the fourth magnetic focusing member 114a and the fourteenth magnetic focusing member 114c overlap. Instead, the first magnetic detection unit 10a and the second magnetic detection unit 10c may not be provided with the fourteenth magnetic focusing member 114c but may be arranged so as to share the fourth magnetic focusing member 114a. In this case, the fourth magnetic flux concentrator member 114a is connected to the + Y-axis direction ends of the thirteenth magnetic flux concentrator member 113c and the fifteenth magnetic flux convergent member 115c.
  • the magnetic convergence member and the magnetic detection unit included in the second magnetic detection unit 10c correspond to the magnetic convergence member and the magnetic detection unit included in the first magnetic detection unit 10a, respectively, and may have substantially the same shape and material.
  • the second magnetic detection unit 10c shown in FIG. 31 is different from the second magnetic detection unit 10c described in FIG. 25 with respect to the first magnetic detection unit 10a, but may be formed in substantially the same shape. .
  • FIG. 32 shows an example of the magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic sensors B X , B Y , and B Z are respectively given to the magnetic sensor 100 according to the present embodiment.
  • the first magnetic detection unit 10a is substantially the same configuration as the first magnetic detection unit 10 of the magnetic sensor 100 of the second configuration example, and thus description thereof is omitted.
  • the magnetic field B X is given in the + X-axis direction of the magnetic sensor 100, a portion of the magnetic field B X is converged to the 11 magnetic convergence element 111c of the fifth magnetic convergence 110c projecting in -X direction.
  • the magnetic field converged on the eleventh magnetic flux concentrator member 111c is described in the same manner as the magnetic field converged on the eleventh magnetic flux concentrator member 111c of the second magnetic detection unit 10c described with reference to FIG.
  • the first magnetic detection portion 210a, a third magnetic detection unit 230a, the ninth magnetic detection unit 210c, and the 11 magnetic detection unit 230c is the -X-axis direction Sensing a magnetic field.
  • the second magnetic detection unit 220a, the fourth magnetic detection unit 240a, the tenth magnetic detection unit 220c, and the twelfth magnetic detection unit 240c detect a magnetic field in the + X-axis direction.
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100, the magnetic field BY is converged on the twelfth magnetic converging member 112c of the fifth magnetic converging unit 110c protruding in the ⁇ Y-axis direction.
  • the magnetic field converged on the twelfth magnetic focusing member 112c is described in the same manner as the magnetic field converged on the twelfth magnetic focusing member 112c of the second magnetic detection unit 10c described in FIG. 26, and passes through the fourteenth magnetic focusing member 114c. (Detailed explanation is omitted).
  • the magnetic field emitted from the fourteenth magnetic focusing member 114c is input to the first magnetic detection unit 10a and is the same as the magnetic sensor 100 of the second configuration example shown in FIG.
  • the first magnetic detection portion 210a, a third magnetic detection unit 230a, the 10 magnetic detection unit 220c, and a 12 magnetic detection unit 240c is, + X-axis direction of the magnetic field Sense.
  • the second magnetic detection unit 220a, the fourth magnetic detection unit 240a, the ninth magnetic detection unit 210c, and the eleventh magnetic detection unit 230c detect a magnetic field in the ⁇ X axis direction.
  • the magnetic field B Z is given in the + Z-axis direction of the magnetic sensor 100 is similar to the case where the magnetic field B Z is given in the + Z-axis direction of the magnetic sensor 100 described in FIG. 26, the description here Omitted. That, + Z-axis direction when the magnetic field B Z is given, the first magnetic detection unit 210a, the second magnetic detection unit 220a, the ninth magnetic detection unit 210c, and a tenth magnetic detection unit 220c is the -X-axis direction Sensing a magnetic field.
  • the third magnetic detector 230a, the fourth magnetic detector 240a, the eleventh magnetic detector 230c, and the twelfth magnetic detector 240c detect a magnetic field in the + X-axis direction.
  • the wiring unit 130 is connected to the first magnetic detection unit 210a to the fourth magnetic detection unit 240a, and the ninth to twelfth magnetic detection unit 240c, and the magnetic resistance value is set. Output to the outside.
  • the magnetic sensor 100 is connected to the calculation unit 300 or the like by the wiring unit 130 and outputs magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the wiring unit 130 and the calculation unit 300 can be configured and operated in the same manner as the configuration examples of FIGS. 27 and 28, and thus description thereof is omitted here.
  • the magnetic sensor 100 according to the present embodiment can detect three orthogonal magnetic signals on the same substrate.
  • FIG. 33 shows an eighth configuration example of the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 of the eighth configuration example includes a first magnetic detection unit 10a, a substantially mirror image, and a surface substantially orthogonal to the first direction at the negative end of the first magnetic converging member 111 in the first direction.
  • the 2nd magnetic detection unit 10b arrange
  • the magnetic sensor 100 has a surface that is substantially orthogonal to the second direction in each magnetic converging member to which the first magnetic detecting unit 10a and the second magnetic detecting unit 10b are connected, or a second direction than these magnetic converging members.
  • the third magnetic detection unit 10c, the second magnetic detection unit 10b, and the substantially mirror image are arranged so as to be substantially mirror images of the first magnetic detection unit 10a with respect to a surface that is substantially orthogonal to the second direction on the positive side.
  • a fourth magnetic detection unit 10d arranged so as to be.
  • the magnetic sensor 100 of the eighth configuration example is more positive in the second direction than the first magnetic focusing member 111 or the first magnetic focusing member 111 in the magnetic sensor 100 of the fourth configuration example shown in FIG.
  • the third magnetic detection unit 10c and the fourth magnetic detection unit are arranged so as to be substantially mirror images of the first magnetic detection unit 10a and the second magnetic detection unit 10b with respect to a surface substantially orthogonal to the second direction on the side. 10d. That is, in FIG. 33, in addition to the first magnetic detection unit 10a and the second magnetic detection unit 10b described in FIG. 21, the third magnetic detection unit 10a and the second magnetic detection unit 10b are mirror images of the first magnetic detection unit 10a and the second magnetic detection unit 10b.
  • the detection unit 10c and the 4th magnetic detection unit 10d are shown. In addition, description is abbreviate
  • the magnetic sensor 100 of the eighth configuration example corresponds to the eight magnetic detection units of the first magnetic detection unit 10a and the second magnetic detection unit 10b formed on the second plane 34, and the eight magnetic detection units.
  • the fifth magnetic flux concentrator 110c is formed as a common magnetic concentrator with no boundaries in the third magnetic detector unit 10c and the fourth magnetic detector unit 10d, like the first magnetic concentrator 110a.
  • An example is shown. That is, the fifth magnetic flux concentrator 110c is disposed on the common eleventh magnetic flux concentrator member 111c, the twelfth magnetic flux concentrator member 112c disposed on the third magnetic sensing unit 10c side, and the fourth magnetic sensing unit 10d side. And a seventeenth magnetic flux concentrator member 112d.
  • the sixth magnetic converging part 120c of the third magnetic detecting unit 10c corresponding to the second magnetic converging part 120a of the first magnetic detecting unit 10a includes the thirteenth magnetic converging member 113c to the fifteenth magnetic converging member 115c.
  • the eighth magnetic converging unit 120d of the fourth magnetic detecting unit 10d corresponding to the fourth magnetic converging unit 120b of the second magnetic detecting unit 10b includes the eighteenth magnetic converging member 113d to the twentieth magnetic converging member 115d.
  • the third magnetic detection unit 10c includes the ninth magnetic detection unit 210c to the twelfth magnetic detection unit 240c
  • the fourth magnetic detection unit 10d includes the thirteenth magnetic detection unit 210d to the sixteenth magnetic detection unit 240d.
  • the magnetic sensor 100 of the eighth configuration example is an example of a sensor having a plurality of magnetic detection units.
  • the arrangement pattern of the third magnetic detection unit 10c and the fourth magnetic detection unit 10d is in a positional relationship that is plane-symmetric with the first magnetic detection unit 10a and the second magnetic detection unit 10b in the XZ plane perpendicular to the substrate plane including the point Q. It is arranged to be.
  • the magnetic detection unit formed by the first magnetic detection unit 10a and the second magnetic detection unit 10b and the magnetic detection unit formed by the third magnetic detection unit 10c and the fourth magnetic detection unit 10d are determined in advance. They are spaced apart by a specified distance.
  • the magnetic detection unit formed by the first magnetic detection unit 10a and the second magnetic detection unit 10b and the magnetic detection unit formed by the third magnetic detection unit 10c and the fourth magnetic detection unit 10d are: You may arrange
  • the magnetic convergence member and the magnetic detection unit included in the third magnetic detection unit 10c and the fourth magnetic detection unit 10d correspond to the magnetic convergence member and the magnetic detection unit included in the first magnetic detection unit 10a and the second magnetic detection unit 10b, respectively.
  • the shape and material may be formed substantially the same.
  • FIG. 34 shows an example of a magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic sensors B X , B Y , and B Z are respectively given to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 34 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG.
  • the magnetic field B X is given in the + X-axis direction of the magnetic sensor 100, a portion of the magnetic field B X, is converged to the second magnetic detection unit 10b, it is discharged from the first magnetic detection unit 10a.
  • the magnetic field B X is converged to the fourth magnetic detection units 10d, it is discharged from the third magnetic detection unit 10c. More specifically, the magnetic field B X is converged on the twentieth magnetic converging member 115d of the eighth magnetic converging portion 120d located at the end in the ⁇ X axis direction.
  • a part of the magnetic field converged on the twentieth magnetic flux concentrator member 115d includes a nineteenth magnetic flux concentrator member 114d coupled to the twentieth magnetic flux concentrator member 115d and an eighteenth magnetic flux concentrator member 113d coupled to the nineteenth magnetic flux concentrator member 114d. Then, it is emitted from the eighteenth magnetic flux concentrator member 113d in the ⁇ X axis direction.
  • the magnetic field emitted from the eighteenth magnetic flux concentrator member 113d in the ⁇ X-axis direction passes through the thirteenth magnetic flux detection member 210d and the fifteenth magnetic flux detection member 230d between the seventeenth magnetic flux convergence member 112d and the eighteenth magnetic flux convergence member 113d. It is captured by the 17th magnetic flux concentrator member 112d.
  • a part of the magnetic field focused on the twentieth magnetic focusing member 115d is emitted from the twentieth magnetic focusing member 115d in the + X-axis direction.
  • the magnetic field emitted in the + X-axis direction from the twentieth magnetic focusing member 115d passes through the sixteenth magnetic detection unit 240d and the fourteenth magnetic detection unit 220d between the seventeenth magnetic focusing member 112d and the twentieth magnetic focusing member 115d. And captured by the seventeenth magnetic flux concentrator member 112d.
  • the magnetic field captured by the seventeenth magnetic focusing member 112d passes through the eleventh magnetic focusing member 111c connected to the seventeenth magnetic focusing member 112d and the twelfth magnetic focusing member 112c connected to the eleventh magnetic focusing member 111c. It is emitted from the twelfth magnetic flux concentrator member 112c in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted from the twelfth magnetic flux concentrator member 112c in the ⁇ X-axis direction passes through the eleventh magnetic detector 230c and the ninth magnetic detector 210c between the twelfth magnetic concentrator member 112c and the thirteenth magnetic concentrator member 113c. It passes through and is captured by the thirteenth magnetic flux concentrator member 113c. Further, the magnetic field captured by the thirteenth magnetic focusing member 113c is released through the fourteenth magnetic focusing member 114c connected to the thirteenth magnetic focusing member 113c.
  • the magnetic field emitted from the twelfth magnetic flux concentrator member 112c in the + X-axis direction is the tenth magnetic detector 220c and the twelfth magnetic detector 240c between the twelfth magnetic concentrator member 112c and the fifteenth magnetic concentrator member 115c. Passed through and captured by the fifteenth magnetic focusing member 115c and released.
  • the 16 magnetic detection unit 240d from the first magnetic detection unit 210a senses the first direction and the magnetic field parallel which is redirecting according to the magnetic field B X to be input to the + X-axis direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the fifth magnetic detection unit 210b, the seventh magnetic detection unit 230b, and the ninth magnetic detection unit 210c detect a magnetic field in the ⁇ X-axis direction.
  • the sixteenth magnetic detector 240d detects a magnetic field in the + X-axis direction.
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100, the magnetic field BY is converged on the first magnetic detection unit 10a and the second magnetic detection unit 10b and emitted from the first magnetic convergence member 111a.
  • the magnetic field BY applied to the first magnetic detection unit 10a and the second magnetic detection unit 10b has been described with reference to FIG.
  • a part of the magnetic field BY emitted from the first magnetic convergence member 111a is converged on the twelfth magnetic convergence member 112c of the fifth magnetic convergence portion 120c protruding in the ⁇ Y-axis direction.
  • the magnetic field focused on the twelfth magnetic focusing member 112c is emitted from the twelfth magnetic focusing member 112c in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted from the twelfth magnetic flux concentrator member 112c in the ⁇ X-axis direction passes through the eleventh magnetic detector 230c and the ninth magnetic detector 210c between the twelfth magnetic concentrator member 112c and the thirteenth magnetic concentrator member 113c. It passes through and is captured by the thirteenth magnetic flux concentrator member 113c. Further, the magnetic field captured by the thirteenth magnetic focusing member 113c is released through the fourteenth magnetic focusing member 114c connected to the thirteenth magnetic focusing member 113c.
  • the magnetic field emitted from the twelfth magnetic flux concentrator member 112c in the + X-axis direction is the tenth magnetic detector 220c and the twelfth magnetic detector 240c between the twelfth magnetic concentrator member 112c and the fifteenth magnetic concentrator member 115c. And is captured by the fifteenth magnetic flux concentrator member 115c. Further, the magnetic field captured by the fifteenth magnetic focusing member 115c is released through the fourteenth magnetic focusing member 114c connected to the fifteenth magnetic focusing member 115c.
  • a part of the magnetic field BY emitted from the first magnetic flux concentrator member 111a is converged on the seventeenth magnetic flux concentrator member 112d protruding in the ⁇ Y axis direction.
  • the magnetic field converged on the seventeenth magnetic focusing member 112d is emitted from the seventeenth magnetic focusing member 112d in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted from the seventeenth magnetic flux concentrator member 112d in the ⁇ X-axis direction passes through the fourteenth magnetic detector 220d and the sixteenth magnetic detector 240d between the seventeenth magnetic concentrator member 112d and the twentieth magnetic concentrator member 115d. It is captured by the 20th magnetic flux concentrator member 115d. Furthermore, the magnetic field captured by the twentieth magnetic focusing member 115d is released through the nineteenth magnetic focusing member 114d connected to the twentieth magnetic focusing member 115d.
  • the magnetic field emitted from the seventeenth magnetic flux concentrator member 112d in the + X-axis direction is the fifteenth magnetic detector 230d and the thirteenth magnetic detector 210d between the seventeenth magnetic concentrator member 112d and the eighteenth magnetic concentrator member 113d. And is captured by the eighteenth magnetic flux concentrator member 113d. Further, the magnetic field captured by the eighteenth magnetic focusing member 113d is released through the nineteenth magnetic focusing member 114d connected to the eighteenth magnetic focusing member 113d.
  • the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d detect a magnetic field parallel to the first direction, the direction of which is changed according to the magnetic field BY input in the + Y-axis direction.
  • the first magnetic detector 210a, the third magnetic detector 230a, the sixth magnetic detector 220b, the eighth magnetic detector 240b, and the tenth magnetic detector 220c detect a magnetic field in the + X-axis direction.
  • the twelfth magnetic detection unit 240c, the thirteenth magnetic detection unit 210d, and the fifteenth magnetic detection unit 230d detect a magnetic field in the + X-axis direction.
  • the second magnetic detector 220a, the fourth magnetic detector 240a, the fifth magnetic detector 210b, the seventh magnetic detector 230b, the ninth magnetic detector 210c, the eleventh magnetic detector 230c, and the fourteenth magnetic detector 220d detects a magnetic field in the ⁇ X axis direction.
  • Some of the magnetic field B Z is 13 is converged to the magnetic flux concentrator member 113c through the ninth magnetic detection unit 210c in the -X axis direction and released. Some of the magnetic field B Z is converged to the 12 magnetic convergence element 112c through the tenth magnetic detection unit 220c in the -X axis direction and released. Some of the magnetic field B Z is converged to the 12 magnetic convergence element 112c through the eleventh magnetic detection unit 230c in the + X-axis direction, and released. Some of the magnetic field B Z is converged to the 15 magnetic convergence element 115c through the twelfth magnetic detection unit 240c in the + X-axis direction, and released.
  • Part of the magnetic field B Z is converged to the 18 magnetic convergence element 113d through the second 13 magnetic detection unit 210d in the + X-axis direction, and released. Some of the magnetic field B Z is converged to the 17 magnetic convergence element 112d through the second 14 magnetic detection unit 220d in the + X-axis direction, and released. A part of the magnetic field ZZ passes through the fifteenth magnetic detector 230d in the ⁇ X axis direction, is converged to the seventeenth magnetic converging member 112d, and is released. Some of the magnetic field B Z is converged to the 20 magnetic convergence element 115d through the second 16 magnetic detection unit 240d in the -X axis direction and released. Thus, the 16 magnetic detection unit 240d from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B Z which is input to the + Z-axis direction.
  • the first magnetic detector 210a, the second magnetic detector 220a, the seventh magnetic detector 230b, the eighth magnetic detector 240b, and the ninth magnetic detector 210c when the magnetic field BZ is applied in the + Z-axis direction, the first magnetic detector 210a, the second magnetic detector 220a, the seventh magnetic detector 230b, the eighth magnetic detector 240b, and the ninth magnetic detector 210c.
  • the tenth magnetic detection unit 220c, the fifteenth magnetic detection unit 230d, and the sixteenth magnetic detection unit 240d detect a magnetic field in the ⁇ X-axis direction.
  • the fourteenth magnetic detection unit 220d detects a magnetic field in the + X-axis direction.
  • the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d have two magnetic detection units in which the directions of the magnetic fields for detecting the three-axis components are substantially the same, and the directions of the magnetic fields of the three-axis components are different. It can be seen that there are eight groups of magnetic detection units.
  • the first magnetic detection unit 210a and the fifteenth magnetic detection unit 230d have magnetic fields in the ⁇ X axis direction, the + X axis direction, and the ⁇ X axis direction with respect to the three-axis component magnetic fields B X , B Y , and B Z , respectively.
  • Sense the first magnetic detection unit 210a and the fifteenth magnetic detection unit 230d have magnetic fields in the ⁇ X axis direction, the + X axis direction, and the ⁇ X axis direction with respect to the three-axis component magnetic fields B X , B Y , and B Z , respectively.
  • the second magnetic detection unit 220a and the sixteenth magnetic detection unit 240d, the third magnetic detection unit 230a and the thirteenth magnetic detection unit 210d, the fourth magnetic detection unit 240a and the fourteenth magnetic detection unit 220d each have a three-axis component.
  • the direction of the magnetic field to be sensed is substantially the same with respect to the input of the magnetic field.
  • the tenth magnetic detection unit 220c has substantially the same direction of the detected magnetic field with respect to the input of the magnetic field of the three-axis component.
  • FIG. 35 shows an example in which the wiring unit 130 is connected to the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 35 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 23, 33, and 34 are denoted by the same reference numerals, and description thereof is omitted.
  • the wiring unit 130 connects, in series, two magnetic detection units in which the directions of the detected magnetic fields are substantially the same with respect to the input of the magnetic field of the three-axis component. That is, for example, one end of the first magnetic detection unit 210a is connected to the other end of the fifteenth magnetic detection unit 230d. As described above, the wiring unit 130 is connected to one end of the first magnetic detection unit 210a to the eighth magnetic detection unit 240b, and the corresponding magnetic detection unit among the ninth magnetic detection unit 210c to the sixteenth magnetic detection unit 240d. Connect to the other end.
  • the wiring unit 130 connects one end of each of the ninth magnetic detection unit 210c to the sixteenth magnetic detection unit 240d to the terminal S. Also, the wiring section 130 is electrically connected to the other ends of the first magnetic detection section 210a to the eighth magnetic detection section 240b and the terminals A to H in a one-to-one correspondence as shown in FIG. Connect to.
  • the terminals A to H and the terminal S may be formed of substantially the same material on substantially the same plane.
  • each of the magnetic resistance is as follows.
  • each magneto resistance can be calculated as follows.
  • Each of the magnetic resistances of the equations (64) to (71) includes resistance change amounts ⁇ R X , ⁇ R Y , and ⁇ R Z corresponding to the magnetic field of the three-axis component.
  • the signs of ⁇ R X , ⁇ R Y , and ⁇ R Z correspond to the direction of the magnetic field in the X-axis direction across the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d, as shown in FIG.
  • the magnetic sensor 100 can acquire magnetic signals of three orthogonal axis components. That is, by solving the simultaneous equations relating to each magnetic resistance, each of the resistance change amounts corresponding to the magnetic field of the three-axis component can be obtained.
  • the expansion of the simultaneous equations described here is an example, and is not limited to this.
  • the magnetic sensor 100 of the present embodiment has been described with respect to an example in which two corresponding magnetic detection units among the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d are connected in series. Instead of this, the magnetic sensor 100 may connect two corresponding magnetic detection units in parallel. Instead, the magnetic sensor 100 may include 16 terminals and output the magnetic resistances of the first magnetic detection unit 210a to the 16th magnetic detection unit 240d, respectively.
  • the magnetic sensor 100 of the eighth configuration example is connected to the calculation unit 300 or the like by the wiring unit 130, and outputs magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the calculation unit 300 calculates a magnetic field component in the first direction and a magnetic field component in the second direction based on the outputs of the magnetic detection units in the first magnetic detection unit 10a to the fourth magnetic detection unit 10d.
  • the calculation unit 300 further calculates a magnetic field component in a third direction different from the first direction and the second direction based on the outputs of the magnetic detection units in the first magnetic detection unit 10a to the fourth magnetic detection unit 10d. .
  • the calculation unit 300 may calculate each magnetic field component by linearly combining the outputs of the respective magnetic detection units.
  • the wiring unit 130 and the calculation unit 300 can be configured and operated in the same manner as the configuration examples of FIGS. 23 and 24, and thus description thereof is omitted here.
  • the magnetic sensor 100 according to the present embodiment can detect three orthogonal magnetic signals on the same substrate.
  • FIG. 36 shows a ninth configuration example of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 13 and 25 are denoted by the same reference numerals, and description thereof is omitted.
  • the magnetic sensor 100 of the ninth configuration example includes the first magnetic detection unit 111 or the first magnetic detection unit with respect to a surface substantially orthogonal to the second direction on the positive side in the second direction with respect to the first magnetic convergence member 111.
  • the second magnetic detection unit 10c is arranged so as to be a substantially mirror image of 10a.
  • the magnetic sensor 100 is substantially mirror image of the first magnetic detection unit 10a with respect to a surface that is substantially orthogonal to the first direction on the positive side of the first direction with respect to the first magnetic detection unit 10a and the second magnetic detection unit 10c.
  • a third magnetic detection unit 10b arranged so as to become a fourth magnetic detection unit 10d arranged so as to be substantially a mirror image with the second magnetic detection unit 10c.
  • the magnetic sensor 100 of the ninth configuration example is more positive in the first direction than the first magnetic detection unit 10a and the second magnetic detection unit 10c in the magnetic sensor 100 of the fifth configuration example shown in FIG.
  • the third magnetic detection unit 10b and the fourth magnetic detection unit are arranged so as to be substantially mirror images of the first magnetic detection unit 10a and the second magnetic detection unit 10c with respect to a surface substantially orthogonal to the first direction on the side. 10d. That is, in FIG. 36, in addition to the first magnetic detection unit 10a and the second magnetic detection unit 10c described in FIG. 25, the third magnetic detection unit 10a and the second magnetic detection unit 10c are mirror images of the first magnetic detection unit 10a and the second magnetic detection unit 10c.
  • the detection unit 10b and the 4th magnetic detection unit 10d are shown.
  • the magnetic sensor 100 of the ninth configuration example is more similar to the magnetic sensor 100 of the sixth configuration example shown in FIG. 29 than the first magnetic detection unit 10a and the second magnetic detection unit 10b.
  • the third magnetic detection unit 10c is arranged so as to be a substantially mirror image of the first magnetic detection unit 10a and the second magnetic detection unit 10b with respect to a plane substantially orthogonal to the second direction on the positive side of the second direction.
  • a fourth magnetic detection unit 10d that is, in FIG. 36, the second magnetic detection unit 10b described in FIG. 29 is changed to the third magnetic detection unit 10b, and in addition to this, the first magnetic detection unit 10a and the third magnetic detection unit 10b are mirror images. The second magnetic detection unit 10c and the fourth magnetic detection unit 10d are shown.
  • the magnetic sensor 100 of the ninth configuration example corresponds to the eight magnetic detection units of the first magnetic detection unit 10a and the second magnetic detection unit 10c formed on the second plane 34, and the eight magnetic detection units.
  • the fourth magnetic converging part 120b of the third magnetic detecting unit 10b corresponding to the second magnetic converging part 120a of the first magnetic detecting unit 10a includes the eighth magnetic converging member 113b to the tenth magnetic converging member 115b. Further, the eighth magnetic converging part 120d of the fourth magnetic detecting unit 10d corresponding to the sixth magnetic converging part 120c of the second magnetic detecting unit 10c has the eighteenth magnetic converging member 113d to the twentieth magnetic converging member 115d.
  • the third magnetic detection unit 10b includes the fifth magnetic detection unit 210b to the eighth magnetic detection unit 240b, and the fourth magnetic detection unit 10d includes the thirteenth magnetic detection unit 210d to the sixteenth magnetic detection unit 240d. .
  • the magnetic sensor 100 of the ninth configuration example is an example of a sensor having a plurality of magnetic detection units.
  • the arrangement pattern of the third magnetic detection unit 10b and the fourth magnetic detection unit 10d is a positional relationship that is plane-symmetric with the first magnetic detection unit 10a and the second magnetic detection unit 10c in the YZ plane perpendicular to the substrate plane including the point Q. It arrange
  • the magnetic detection unit formed by the first magnetic detection unit 10a and the second magnetic detection unit 10c and the magnetic detection unit formed by the third magnetic detection unit 10b and the fourth magnetic detection unit 10d are determined in advance. They are spaced apart by a specified distance.
  • the first magnetic detection unit 10a and the second magnetic detection unit 10c may be arranged to be connected. That is, the end of the first magnetic flux concentrator 111a on the + Y axis direction side may be arranged so as to contact the end of the eleventh magnetic flux concentrator member 111c on the ⁇ Y axis direction side.
  • the + Y-axis direction end of the sixth magnetic focusing member 111b is disposed so as to contact the ⁇ Y-axis direction end of the sixteenth magnetic focusing member 111d, and the third magnetic detection unit 10b and the fourth magnetic detection unit are arranged.
  • the unit 10d is also arranged to be connected. Further, the first magnetic detection unit 10a to the fourth magnetic detection unit 10d do not have the eleventh magnetic convergence member 111c and the sixteenth magnetic convergence member 111d, and share the first magnetic convergence member 111a and the sixth magnetic convergence member 111b. May be.
  • the magnetic convergence member and the magnetic detection unit included in the third magnetic detection unit 10b and the fourth magnetic detection unit 10d correspond to the magnetic convergence member and the magnetic detection unit included in the first magnetic detection unit 10a and the second magnetic detection unit 10c, respectively.
  • the shape and material may be formed substantially the same.
  • FIG. 37 shows an example of the magnetic field in the X-axis direction sensed by each of the magnetic detectors when the magnetic fields B X , B Y , and B Z are respectively applied to the magnetic sensor 100 according to the present embodiment.
  • substantially the same operation as that of the magnetic sensor 100 according to the present embodiment shown in FIGS. 26, 30, and 36 is denoted by the same reference numeral, and description thereof is omitted.
  • the first magnetic detection unit 10a and the second magnetic detection unit 10c shown in FIG. 37 have been described with reference to FIG. Also, the third magnetic detection unit 10b shown in FIG. 37 is the same as the second magnetic detection unit 10b described in FIG.
  • a part of the magnetic field converged on the twentieth magnetic flux concentrator member 115d includes a nineteenth magnetic flux concentrator member 114d coupled to the twentieth magnetic flux concentrator member 115d and an eighteenth magnetic flux concentrator member 113d coupled to the nineteenth magnetic flux concentrator member 114d. Then, it is emitted from the eighteenth magnetic flux concentrator member 113d in the ⁇ X axis direction.
  • the magnetic field emitted from the eighteenth magnetic flux concentrator member 113d in the ⁇ X-axis direction passes through the thirteenth magnetic flux detection member 210d and the fifteenth magnetic flux detection member 230d between the seventeenth magnetic flux convergence member 112d and the eighteenth magnetic flux convergence member 113d. It is captured by the 17th magnetic flux concentrator member 112d.
  • a part of the magnetic field converged on the twentieth magnetic flux concentrator member 115d is emitted from the twentieth magnetic flux concentrator member 115d in the + X-axis direction.
  • the magnetic field emitted in the + X-axis direction from the twentieth magnetic focusing member 115d passes through the sixteenth magnetic detection unit 240d and the fourteenth magnetic detection unit 220d between the seventeenth magnetic focusing member 112d and the twentieth magnetic focusing member 115d. And captured by the seventeenth magnetic flux concentrator member 112d.
  • the magnetic field captured by the seventeenth magnetic focusing member 112d is emitted through the sixteenth magnetic focusing member 111d connected to the seventeenth magnetic focusing member 112d.
  • the 16 magnetic detection unit 240d from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B X to be input to the + X-axis direction.
  • the first magnetic detection unit 210a, the third magnetic detection unit 230a, the fifth magnetic detection unit 210b, the seventh magnetic detection unit 230b, and the ninth magnetic detection unit 210c detect a magnetic field in the ⁇ X-axis direction.
  • the sixteenth magnetic detector 240d detects a magnetic field in the + X-axis direction.
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100, a part of the magnetic field BY is converged on the eighth magnetic convergence member 113b and the tenth magnetic convergence member 115b of the third magnetic detection unit 10b. , And is emitted from the sixth magnetic flux concentrator member 111b in the + Y-axis direction. Then, the magnetic field BY emitted in the + Y-axis direction from the sixth magnetic focusing member 111b converges on the seventeenth magnetic focusing member 112d of the seventh magnetic focusing unit 110d protruding in the ⁇ Y-axis direction of the fourth magnetic detection unit 10d. Is done. The magnetic field converged on the seventeenth magnetic focusing member 112d is emitted from the seventeenth magnetic focusing member 112d in the ⁇ X axis direction and the + X axis direction.
  • the magnetic field emitted from the seventeenth magnetic flux concentrator member 112d in the ⁇ X-axis direction passes through the fourteenth magnetic detector 220d and the sixteenth magnetic detector 240d between the seventeenth magnetic concentrator member 112d and the twentieth magnetic concentrator member 115d. It is captured by the 20th magnetic flux concentrator member 115d. Furthermore, the magnetic field captured by the twentieth magnetic focusing member 115d is released through the nineteenth magnetic focusing member 114d connected to the twentieth magnetic focusing member 115d.
  • the magnetic field emitted from the seventeenth magnetic flux concentrator member 112d in the + X-axis direction is the fifteenth magnetic detector 230d and the thirteenth magnetic detector 210d between the seventeenth magnetic concentrator member 112d and the eighteenth magnetic concentrator member 113d. And is captured by the eighteenth magnetic flux concentrator member 113d. Further, the magnetic field captured by the eighteenth magnetic focusing member 113d is released through the nineteenth magnetic focusing member 114d connected to the eighteenth magnetic focusing member 113d.
  • the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d detect a magnetic field parallel to the first direction, the direction of which is changed according to the magnetic field BY input in the + Y-axis direction.
  • the first magnetic detector 210a, the third magnetic detector 230a, the sixth magnetic detector 220b, the eighth magnetic detector 240b, and the tenth magnetic detector 220c detect a magnetic field in the + X-axis direction.
  • the twelfth magnetic detection unit 240c, the thirteenth magnetic detection unit 210d, and the fifteenth magnetic detection unit 230d detect a magnetic field in the + X-axis direction.
  • the second magnetic detector 220a, the fourth magnetic detector 240a, the fifth magnetic detector 210b, the seventh magnetic detector 230b, the ninth magnetic detector 210c, the eleventh magnetic detector 230c, and the fourteenth magnetic detector 220d detects a magnetic field in the ⁇ X axis direction.
  • the magnetic field B Z is given in the + Z-axis direction of the magnetic sensor 100, a portion of the magnetic field B Z is converged to the 18 magnetic convergence element 113d through the second 13 magnetic detection unit 210d in the + X-axis direction, and release Is done. Some of the magnetic field B Z is converged to the 17 magnetic convergence element 112d through the second 14 magnetic detection unit 220d in the + X-axis direction, and released. A part of the magnetic field ZZ passes through the fifteenth magnetic detector 230d in the ⁇ X axis direction, is converged to the seventeenth magnetic converging member 112d, and is released.
  • the 16 magnetic detection unit 240d from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B Z which is input to the + Z-axis direction.
  • the first magnetic detector 210a, the second magnetic detector 220a, the seventh magnetic detector 230b, the eighth magnetic detector 240b, and the ninth magnetic detector 210c when the magnetic field BZ is applied in the + Z-axis direction, the first magnetic detector 210a, the second magnetic detector 220a, the seventh magnetic detector 230b, the eighth magnetic detector 240b, and the ninth magnetic detector 210c.
  • the tenth magnetic detection unit 220c, the fifteenth magnetic detection unit 230d, and the sixteenth magnetic detection unit 240d detect a magnetic field in the ⁇ X-axis direction.
  • the fourteenth magnetic detection unit 220d detects a magnetic field in the + X-axis direction.
  • the magnetic sensor 100 of the ninth configuration example described above can obtain the same signal as the magnetic sensor 100 of the eighth configuration example shown in FIG. Therefore, in the magnetic sensor 100, the wiring unit 130 is connected from the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d, and the resistance change amount corresponding to the magnetic field of the three-axis component is obtained by acquiring the value of the magnetic resistance. Each can be calculated.
  • the magnetic sensor 100 is connected to the calculation unit 300 or the like by the wiring unit 130 and outputs magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the wiring unit 130 and the calculation unit 300 can be configured and operated in the same manner as the configuration examples of FIGS. 23 and 24, and thus description thereof is omitted here.
  • the magnetic sensor 100 according to the present embodiment can detect three orthogonal magnetic signals on the same substrate.
  • FIG. 38 shows a tenth configuration example of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 21 and 33 are denoted by the same reference numerals, and description thereof is omitted.
  • the magnetic sensor 100 includes a first magnetic detection unit 10a, a substantially mirror image, and a surface substantially orthogonal to the first direction at the negative end of the first magnetic converging member 111 in the first direction.
  • the 2nd magnetic detection unit 10b arrange
  • the magnetic sensor 100 includes a first magnetic detection unit 10a and a second magnetic detection unit 10b on the negative side magnetic convergence member in the second direction, a surface substantially orthogonal to the second direction, or the first magnetic detection unit 10a.
  • the third magnetic detection unit 10c is arranged so as to be a substantially mirror image with the first magnetic detection unit 10a with respect to a surface substantially orthogonal to the second direction on the negative side in the second direction with respect to the second magnetic detection unit 10b.
  • a fourth magnetic detection unit 10d arranged to be substantially mirror image with the second magnetic detection unit 10b.
  • the magnetic sensor 100 of the tenth configuration example is more negative in the second direction than the first magnetic detection unit 10a and the second magnetic detection unit 10b in the magnetic sensor 100 of the fourth configuration example shown in FIG.
  • the third magnetic detection unit 10c and the fourth magnetic detection unit are arranged so as to be substantially mirror images of the first magnetic detection unit 10a and the second magnetic detection unit 10b with respect to a surface substantially orthogonal to the second direction on the side. 10d. That is, in FIG. 38, in addition to the first magnetic detection unit 10a and the second magnetic detection unit 10b described in FIG. 21, the third magnetic detection unit 10a and the second magnetic detection unit 10b are mirror images of the first magnetic detection unit 10a and the second magnetic detection unit 10b.
  • the detection unit 10c and the 4th magnetic detection unit 10d are shown.
  • the magnetic sensor 100 of the tenth configuration example is similar to the magnetic sensor 100 of the eighth configuration example shown in FIG. 33 in the first magnetic detection unit 10a and the second magnetic detection unit 10b.
  • An arrangement in which the arrangement and the arrangement of the third magnetic detection unit 10c and the fourth magnetic detection unit 10d are exchanged is shown. That is, the first to fourth magnetic detection units 10d included in the magnetic sensor 100 of the tenth configuration example have been described with reference to FIG.
  • FIG. 39 shows an example of a magnetic field in the X-axis direction sensed by each of the magnetic detection units when the magnetic fields B X , B Y , and B Z are respectively given to the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 22, 34, and 38 are denoted by the same reference numerals, and description thereof is omitted.
  • the magnetic field B X is given in the + X-axis direction of the magnetic sensor 100, a portion of the magnetic field B X is converged to the 10 magnetic converging member 115b of the second magnetic detection unit 10b, discharged through the first magnetic detection unit 10a Is done. A part of the magnetic field B X is converged to the 20 magnetic convergence element 115d of the fourth magnetic detection units 10d, it is discharged through the third magnetic detection unit 10c.
  • the 16 magnetic detection unit 240d from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B X to be input to the + X-axis direction.
  • the eleventh magnetic detection unit 230c, the thirteenth magnetic detection unit 210d, and the fifteenth magnetic detection unit 230d detect a magnetic field in the ⁇ X-axis direction.
  • the second magnetic detector 220a, the fourth magnetic detector 240a, the sixth magnetic detector 220b, the eighth magnetic detector 240b, the tenth magnetic detector 220c, the twelfth magnetic detector 240c, and the fourteenth magnetic detector 220d detects a magnetic field in the + X-axis direction.
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100, the magnetic field BY is converged on the twelfth magnetic converging member 112c and the seventeenth magnetic converging member 112d protruding in the ⁇ Y-axis direction.
  • the process in which the magnetic field BY is converged on the twelfth magnetic focusing member 112c and the seventeenth magnetic focusing member 112d and emitted from the third magnetic detection unit 10c and the fourth magnetic detection unit 10d has been described with reference to FIG. This is omitted here.
  • the magnetic field BY emitted in the + Y-axis direction from the third magnetic detection unit 10c and the fourth magnetic detection unit 10d is converged to the first magnetic detection unit 10a and the second magnetic detection unit 10b, and the second magnetic convergence member 112a and It is emitted from the seventh magnetic flux concentrator member 112b.
  • the magnetic field BY applied to the first magnetic detection unit 10a and the second magnetic detection unit 10b has been described with reference to FIG.
  • the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d detect a magnetic field parallel to the first direction, the direction of which is changed according to the magnetic field BY input in the + Y-axis direction.
  • the twelfth magnetic detection unit 240c, the thirteenth magnetic detection unit 210d, and the fifteenth magnetic detection unit 230d detect a magnetic field in the + X-axis direction.
  • the sixteenth magnetic detection unit 240d detects a magnetic field in the ⁇ X axis direction.
  • the magnetic field B Z is applied in the + Z-axis direction of the magnetic sensor 100
  • an example in which the magnetic field B Z is applied from the first magnetic detection unit 210a to the 16th magnetic detection unit 240d is the same as FIG. . That is, the 16 magnetic detection unit 240d from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B Z which is input to the + Z-axis direction.
  • the tenth magnetic detector 220c, the fifteenth magnetic detector 230d, and the sixteenth magnetic detector 240d detect a magnetic field in the ⁇ X-axis direction.
  • the fourteenth magnetic detection unit 220d detects a magnetic field in the + X-axis direction.
  • the magnetic sensor 100 of the above tenth configuration example can obtain the same signal as the magnetic sensor 100 of the eighth configuration example shown in FIG. Therefore, in the magnetic sensor 100, the wiring unit 130 is connected from the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d, and the resistance change amount corresponding to the magnetic field of the three-axis component is obtained by acquiring the value of the magnetic resistance. Each can be calculated.
  • the magnetic sensor 100 is connected to the calculation unit 300 or the like by the wiring unit 130 and outputs magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the wiring unit 130 and the calculation unit 300 can be configured and operated in the same manner as the configuration examples of FIGS. 23 and 24, and thus description thereof is omitted here.
  • the magnetic sensor 100 according to the present embodiment can detect three orthogonal magnetic signals on the same substrate.
  • FIG. 40 shows an eleventh configuration example of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 29 and 36 are denoted by the same reference numerals, and description thereof is omitted.
  • the magnetic sensor 100 of the eleventh configuration example forms a substantially mirror image with the first magnetic detection unit 10a with respect to a surface that is substantially perpendicular to the first direction on the positive side in the first direction with respect to the fifth magnetic converging member 115. Is provided with the second magnetic detection unit 10b. Further, in the negative side magnetic convergence member in the second direction of the first magnetic detection unit 10a and the second magnetic detection unit 10b, a surface substantially orthogonal to the second direction, or the first magnetic detection unit 10a and the second magnetic detection member.
  • a third magnetic detection unit 10c disposed so as to be substantially a mirror image of the first magnetic detection unit 10a with respect to a surface substantially perpendicular to the second direction on the negative side of the second direction with respect to the unit 10b; And a fourth magnetic detection unit 10d arranged so as to be a substantially mirror image with the detection unit 10b.
  • the magnetic sensor 100 of the eleventh configuration example is more negative in the second direction than the first magnetic detection unit 10a and the second magnetic detection unit 10b in the magnetic sensor 100 of the sixth configuration example shown in FIG.
  • the third magnetic detection unit 10c and the fourth magnetic detection unit are arranged so as to be substantially mirror images of the first magnetic detection unit 10a and the second magnetic detection unit 10b with respect to a surface substantially orthogonal to the second direction on the side. 10d. That is, in FIG. 40, in addition to the first magnetic detection unit 10a and the second magnetic detection unit 10b described in FIG. 29, the third magnetic detection unit 10a and the second magnetic detection unit 10b are mirror images of the first magnetic detection unit 10a and the second magnetic detection unit 10b.
  • the detection unit 10c and the 4th magnetic detection unit 10d are shown.
  • the magnetic sensor 100 of the eleventh configuration example is the same as the magnetic sensor 100 of the ninth configuration example shown in FIG. 36 in that the first magnetic detection unit 10a and the third magnetic detection unit 10b.
  • An arrangement in which the arrangement and the arrangement of the second magnetic detection unit 10c and the fourth magnetic detection unit 10d are exchanged is shown. That is, the first magnetic detection unit 10a to the fourth magnetic detection unit 10d included in the magnetic sensor 100 of the eleventh configuration example have been described with reference to FIG.
  • the second magnetic detection unit 10b shown in FIG. 40 corresponds to the third magnetic detection unit 10b shown in FIG. 36
  • the third magnetic detection unit 10c shown in FIG. 40 is shown in FIG. In the following description, it corresponds to the second magnetic detection unit 10c.
  • FIG. 41 shows an example of the magnetic field in the X-axis direction sensed by each of the magnetic sensing units when the magnetic sensors B X , B Y , and B Z are given to the magnetic sensor 100 according to the present embodiment.
  • FIG. 39 substantially the same operations as those of the magnetic sensor 100 according to this embodiment shown in FIGS. 30, 37, and 40 are denoted by the same reference numerals, and description thereof is omitted.
  • the magnetic sensor 100 + X-axis direction to the magnetic field B X is given, a part of the magnetic field B X is converged to the first magnetic flux concentrator member 111a of the first magnetic detection unit 10a, discharge through the second magnetic detection unit 10b Is done. A part of the magnetic field B X is converged to the 11 magnetic convergence element 111c of the third magnetic detection unit 10c, it is released through the fourth magnetic detection units 10d.
  • a part of the magnetic field B X is converged to the first magnetic detection unit 10a, the process of being released from the second magnetic detection unit 10b, so as described in FIG. 30, omitted here. Further, a part of the magnetic field B X is converged to the third magnetic detection unit 10c, the process of being released from the fourth magnetic detection units 10d, since as described in Fig. 37, omitted here.
  • the 16 magnetic detection unit 240d from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B X to be input to the + X-axis direction.
  • the eleventh magnetic detection unit 230c, the thirteenth magnetic detection unit 210d, and the fifteenth magnetic detection unit 230d detect a magnetic field in the ⁇ X-axis direction.
  • the second magnetic detector 220a, the fourth magnetic detector 240a, the sixth magnetic detector 220b, the eighth magnetic detector 240b, the tenth magnetic detector 220c, the twelfth magnetic detector 240c, and the fourteenth magnetic detector 220d detects a magnetic field in the + X-axis direction.
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of the magnetic sensor 100, the magnetic field BY is converged on the twelfth magnetic converging member 112c and the seventeenth magnetic converging member 112d protruding in the ⁇ Y-axis direction.
  • the process in which the magnetic field BY is converged on the twelfth magnetic focusing member 112c and the seventeenth magnetic focusing member 112d and emitted from the third magnetic detection unit 10c and the fourth magnetic detection unit 10d has been described with reference to FIG. This is omitted here.
  • the magnetic field BY emitted in the + Y-axis direction from the third magnetic detection unit 10c and the fourth magnetic detection unit 10d is converged to the first magnetic detection unit 10a and the second magnetic detection unit 10b, and the second magnetic convergence member 112a and It is emitted from the seventh magnetic flux concentrator member 112b.
  • the magnetic field BY applied to the first magnetic detection unit 10a and the second magnetic detection unit 10b has been described with reference to FIG.
  • the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d detect a magnetic field parallel to the first direction, the direction of which is changed according to the magnetic field BY input in the + Y-axis direction.
  • the twelfth magnetic detection unit 240c, the thirteenth magnetic detection unit 210d, and the fifteenth magnetic detection unit 230d detect a magnetic field in the + X-axis direction.
  • the sixteenth magnetic detection unit 240d detects a magnetic field in the ⁇ X axis direction.
  • the magnetic sensor 100 When the magnetic field B Z is applied in the + Z-axis direction of the magnetic sensor 100, an example in which the magnetic sensor 100 is applied from the first magnetic detection unit 210a to the 16th magnetic detection unit 240d is the same as that in FIG. . That is, the 16 magnetic detection unit 240d from the first magnetic detection unit 210a senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B Z which is input to the + Z-axis direction.
  • the tenth magnetic detector 220c, the fifteenth magnetic detector 230d, and the sixteenth magnetic detector 240d detect a magnetic field in the ⁇ X-axis direction.
  • the fourteenth magnetic detection unit 220d detects a magnetic field in the + X-axis direction.
  • the magnetic sensor 100 of the above eleventh configuration example can obtain the same signal as the magnetic sensor 100 of the eighth configuration example shown in FIG. Therefore, in the magnetic sensor 100, the wiring unit 130 is connected from the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d, and the resistance change amount corresponding to the magnetic field of the three-axis component is obtained by acquiring the value of the magnetic resistance. Each can be calculated.
  • the magnetic sensor 100 is connected to the calculation unit 300 or the like by the wiring unit 130 and outputs magnetic field components in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the wiring unit 130 and the calculation unit 300 can be configured and operated in the same manner as the configuration examples of FIGS. 23 and 24, and thus description thereof is omitted here.
  • the magnetic sensor 100 according to the present embodiment can detect three orthogonal magnetic signals on the same substrate.
  • the magnetic sensors 100 of the fourth to eleventh configuration examples described above bring about an effect of suppressing the other-axis sensitivity in which a part of the other axis component is output to the output signal of the one axis component. Therefore, it is possible to realize a magnetic sensor that detects a magnetic signal of a three-axis component with high accuracy.
  • FIG. 42 shows a twelfth configuration example of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 33 and 35 are denoted by the same reference numerals, and description thereof is omitted.
  • the magnetic sensor 100 of the twelfth configuration example includes a plurality of first magnetic detection units 10a to 10d.
  • FIG. 42 shows an example in which the magnetic sensor 100 includes two first to fourth magnetic detection units 10d to 10d of the eighth configuration example shown in FIGS.
  • an arrangement pattern having one each of the first magnetic detection unit 10a to the fourth magnetic detection unit 10d is referred to as a first arrangement pattern 40a and a second arrangement pattern 40b.
  • the two arrangement patterns are separated so as to have a predetermined interval, and are arranged from the ⁇ X axis direction side to the + X axis direction side in the order of the first arrangement pattern 40a and the second arrangement pattern 40b.
  • An example is shown.
  • the first arrangement pattern 40a and the second arrangement pattern 40b may be arranged in the second direction (from the ⁇ Y axis direction side to the + Y direction side).
  • FIG. 42 shows an example in which the wiring part 130 is connected to the first arrangement pattern 40a and the second arrangement pattern 40b.
  • the plurality of magnetic detection units included in the first arrangement pattern 40a and the second arrangement pattern 40b have two corresponding magnetic detection units connected in series by the wiring unit 130, as shown in FIG.
  • the wiring unit 130 connects, in series, two magnetic detection units in which the directions of the magnetic fields to be detected are substantially the same with respect to the input of the magnetic field of the three-axis component.
  • one end of the first magnetic detection unit 210a is connected to the other end of the fifteenth magnetic detection unit 230d.
  • the corresponding specific combination of the other magnetic detection units has been described with reference to FIG.
  • the wiring part 130 connects two magnetic detection parts connected in series in the first arrangement pattern 40a and two corresponding magnetic detection parts connected in series in the second arrangement pattern 40b.
  • the first magnetic detection unit 210a and the fifteenth magnetic detection unit 230d of the first arrangement pattern 40a and the first magnetic detection unit 210a and the fifteenth magnetic detection unit 230d of the second arrangement pattern 40a are connected in series.
  • the wiring unit 130 may connect one terminals of the two fifteenth magnetic detection units 230d in the first arrangement pattern 40a and the second arrangement pattern 40b.
  • the wiring unit 130 includes a combination of two magnetic detection units connected in series in the first arrangement pattern 40a and two magnetic detection units in the second arrangement pattern 40b that is the same as the combination of the two magnetic detection units. Are connected in series. That is, the wiring unit 130 performs wiring from 32 magnetic detection units so as to form eight sets of circuits in which four magnetic detection units are connected in series. The wiring unit 130 connects one of the eight sets of circuits to the terminal S and connects the other from the terminal A to the terminal H.
  • the wiring unit 130 includes the terminal A—the first magnetic detection unit 210d of the first arrangement pattern 40a—the fifteenth magnetic detection unit 230d of the first arrangement pattern 40a—the fifteenth magnetic detection unit 230d of the second arrangement pattern 40b.
  • the first magnetic detection unit 210a-terminal S of the second arrangement pattern 40b is wired.
  • the magnetic sensor 100 of the twelfth configuration example includes four magnetic detection units connected in series between the terminals A to H and the terminal S, respectively. And the four magnetic detection units connected in series are combinations of two magnetic detection units respectively provided between the terminals A to S of the terminals A to H in the eighth configuration example shown in FIG. 2 sets each.
  • the magnetic sensor 100 of the twelfth configuration example connects in series the combination of two magnetic detection units used for detection in one arrangement pattern and the same combination in another arrangement pattern. Thereby, the magnetic sensor 100 can detect the magnetic field of the three-axis component orthogonal to each other with higher sensitivity than the detection by one arrangement pattern.
  • the magnetic sensor 100 includes two arrangement patterns, but does not increase the number of terminals. Therefore, for example, the magnetic sensor 100 is connected to the calculation unit 300 shown in FIG. 24, and is connected to the X axis direction, the Y axis direction, and the Z axis. An axial magnetic field component can be output. In this case, the calculation unit 300 calculates each magnetic field component based on the output of each magnetic detection unit linearly coupled.
  • the magnetic sensor 100 may include three or more arrangement patterns.
  • the magnetic sensor 100 is arranged in parallel with the first direction and / or the second direction so that the plurality of arrangement patterns do not overlap each other.
  • the wiring unit 130 includes a combination of two magnetic detection units in one arrangement pattern and another (n ⁇ 1) arrangements that are the same as the combination. (N-1) sets of combinations of two magnetic detection units may be connected in series.
  • the wiring unit 130 connects two corresponding magnetic detection units in one arrangement pattern in series. Instead, the wiring unit 130 may connect two corresponding magnetic detection units in one arrangement pattern in parallel.
  • the magnetic sensor 100 of the twelfth configuration example has been described that the wiring unit 130 appropriately connects a plurality of magnetic detection units in two or more arrangement patterns.
  • the arrangement pattern an example is shown in which two arrangement patterns of the eighth configuration example shown in FIG. 33 are provided.
  • the magnetic sensor 100 may be provided with two arrangement patterns of the first to seventh and ninth to eleventh configuration examples.
  • FIG. 43 shows a thirteenth configuration example of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 33 and 35 are denoted by the same reference numerals, and description thereof is omitted.
  • the magnetic sensor 100 according to the thirteenth configuration example further includes an auxiliary magnetic converging member disposed outside the first magnetic detection unit 10a and the second magnetic detection unit 10b.
  • FIG. 43 further includes, as an example, an auxiliary magnetic converging member disposed outside the first magnetic detection unit 10a and the fourth magnetic detection unit 10d.
  • the auxiliary magnetic flux concentrating member is disposed outside the first direction.
  • the magnetic sensor 100 has one arrangement pattern 40 of the magnetic sensor 100 of the eighth configuration example shown in FIGS. 33 and 35, and the magnetic sensor 100 of the eighth configuration example on both sides in the X-axis direction.
  • Two auxiliary arrangement patterns 50 composed of only the magnetic convergence portion are provided.
  • the auxiliary arrangement pattern 50 may function as an auxiliary magnetic converging member, and instead, a part of the auxiliary arrangement pattern 50 may function as an auxiliary magnetic converging member.
  • the specific configuration of the arrangement pattern 40 and the auxiliary arrangement pattern 50 has been described with reference to FIGS.
  • two auxiliary arrangement patterns 50 are arranged in order of the first auxiliary arrangement pattern 50a and the second auxiliary arrangement pattern 50b from the ⁇ X axis direction side to the + X axis direction side so as to sandwich the arrangement pattern 40 therebetween.
  • the arrangement pattern 40 and the first auxiliary arrangement pattern 50a are separated so as to have a predetermined interval.
  • the tenth magnetic flux concentrator member 115b of the arrangement pattern 40 and the fifth magnetic flux concentrator member 115a of the first auxiliary arrangement pattern 50a are arranged so as to be separated by a predetermined distance.
  • the arrangement pattern 40 and the second auxiliary arrangement pattern 50b are separated so as to have a predetermined interval.
  • the fifth magnetic flux concentrator member 115a of the arrangement pattern 40 and the tenth magnetic flux concentrator member 115b of the second auxiliary arrangement pattern 50b are arranged so as to be separated by a predetermined distance.
  • the predetermined distance is preferably approximately the same as the distance between the first magnetic detection unit 10a and the second magnetic detection unit 10b, for example.
  • the tenth magnetic flux concentrator member 115b of the second magnetic detection unit 10b at the end of the arrangement pattern 40 on the ⁇ X axis direction side is a magnetic field in the space on the ⁇ X axis direction side of the tenth magnetic flux concentrator member 115b. Converge. Then, the magnetic field that converges on the tenth magnetic flux concentrator member 115b may be larger than the magnetic field that converges on the eighth magnetic flux concentrator member 113b at the end of the second magnetic detection unit 10b on the + X-axis direction side. . Similarly, the magnetic field converging on the twentieth magnetic converging member 115d of the fourth magnetic detection unit 10d may be larger than the magnetic field converging on the eighteenth magnetic converging member 113d.
  • the magnetic field that converges on the fifth magnetic converging member 115a of the first magnetic detection unit 10a at the end on the + X-axis direction side of the arrangement pattern 40 is slightly larger than the magnetic field that converges on the third magnetic converging member 113a. May end up.
  • the magnetic field that converges on the fifteenth magnetic focusing member 115c of the third magnetic detection unit 10c may be slightly larger than the magnetic field that converges on the thirteenth magnetic focusing member 113c.
  • the noise component may be affected. Therefore, in the magnetic sensor 100 of the present embodiment, in order to eliminate such an imbalance of the magnetic field converging on the magnetic focusing member, the vicinity of the tenth magnetic focusing member 115b at the end on the ⁇ X-axis direction side of the arrangement pattern 40 is used. In addition, at least a part of the first auxiliary arrangement pattern 50a is arranged.
  • the magnetic sensor 100 of the thirteenth configuration example can uniformly input the magnetic field in the + Y axis direction to each magnetic converging member provided in the arrangement pattern 40, and the magnetic field in the + Y axis direction is high. It can be detected with accuracy.
  • the second auxiliary arrangement pattern 50b is arranged in the vicinity of the fifth magnetic flux concentrating member 115a at the end of the arrangement pattern 40 on the + X axis direction side. At least a part of the second auxiliary arrangement pattern 50b converges the magnetic field in the space on the + X axis direction side of the fifth magnetic convergence member 115a, so that the magnetic field converged by the fifth magnetic convergence member 115a is reduced,
  • the magnetic field can be set to the same level as the magnetic field converged on the third magnetic flux concentrator member 113a.
  • At least a part of the second auxiliary arrangement pattern 50b is arranged in the vicinity of the fifteenth magnetic flux concentrator member 115c at the end of the arrangement pattern 40 on the + X axis direction side, and the end of the arrangement pattern 40 on the ⁇ X axis direction side is arranged.
  • the first auxiliary arrangement pattern 50a is arranged in the vicinity of the twentieth magnetic flux concentrator member 115d.
  • the magnetic sensor 100 of the above thirteenth configuration example has been described as including one arrangement pattern 40 of the magnetic sensor 100 of the eighth configuration example, it may include a plurality of arrangement patterns 40 instead. Good. Instead of this, the magnetic sensor 100 may be provided with the arrangement patterns of the first to seventh and ninth to eleventh configuration examples.
  • FIG. 44 shows a fourteenth configuration example of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIGS. 33 and 35 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 44 shows the first magnetic detection units 210a to 16d of the magnetic sensor 100 of the eighth configuration example.
  • One terminal of the 16-magnetic detection unit 240d is electrically coupled to one point and connected to the terminal S.
  • one terminal of the second magnetic detector 220a and the thirteenth magnetic detector 210d is electrically coupled to one point and connected to the terminal M.
  • One terminal of the fourth magnetic detector 240a and the fifteenth magnetic detector 230d is electrically coupled to one point and connected to the terminal N.
  • One terminal of the sixth magnetic detection unit 220b and the ninth magnetic detection unit 210c is electrically coupled to one point and connected to the terminal O.
  • One terminal of the eighth magnetic detection unit 240b and the eleventh magnetic detection unit 230c is electrically coupled to one point and connected to the terminal P.
  • the other terminals of the second magnetic detection unit 220a and the third magnetic detection unit 230a are electrically coupled to one point and connected to the terminal C.
  • the other terminals of the first magnetic detection unit 210a and the fourth magnetic detection unit 240a are electrically coupled to one point and connected to the terminal A.
  • the other terminals of the thirteenth magnetic detection unit 210d and the sixteenth magnetic detection unit 240d are electrically coupled to one point and connected to the terminal B.
  • the other terminals of the fourteenth magnetic detector 220d and the fifteenth magnetic detector 230d are electrically coupled to one point and connected to the terminal D.
  • the other terminals of the sixth magnetic detector 220b and the seventh magnetic detector 230b are electrically coupled to one point and connected to the terminal G.
  • the other terminals of the fifth magnetic detector 210b and the eighth magnetic detector 240b are electrically coupled to one point and connected to the terminal E.
  • the other terminals of the ninth magnetic detector 210c and the twelfth magnetic detector 240c are electrically coupled to one point and connected to the terminal F.
  • the other terminals of the tenth magnetic detection unit 220c and the eleventh magnetic detection unit 230c are electrically coupled to one point and connected to the terminal H.
  • a predetermined first potential is applied to the terminal S. Further, the terminals M, N, O, and P are electrically coupled to one point and given a predetermined second potential.
  • the magnetic sensor 100 of the fourteenth configuration example forms four Wheatstone bridges using the first magnetic detection unit 210a to the sixteenth magnetic detection unit 240d.
  • the first bridge includes a second magnetic detection unit 220a, a third magnetic detection unit 230a, a thirteenth magnetic detection unit 210d, and a sixteenth magnetic detection unit 240d, and terminals B, C, M, and S.
  • the second bridge includes a first magnetic detection unit 210a, a fourth magnetic detection unit 240a, a fourteenth magnetic detection unit 220d, a fifteenth magnetic detection unit 230d, and terminals A, D, N, and S.
  • the third bridge includes a sixth magnetic detection unit 220b, a seventh magnetic detection unit 230b, a ninth magnetic detection unit 210c, and a twelfth magnetic detection unit 240c, and terminals F, G, O, and S.
  • the fourth bridge includes a fifth magnetic detector 210b, an eighth magnetic detector 240b, a tenth magnetic detector 220c, an eleventh magnetic detector 230c, and terminals E, H, P, and S.
  • the first bridge to the fourth bridge are supplied with a voltage V S predetermined by a voltage source or the like between the first potential and the second potential. That is, the voltage V S is supplied between the terminals MS, NS, OS, and PS.
  • the voltage between terminals AS , B-S, CS , DS , DS , ES , FS , GS , and HS is expressed as V AS , V BS , V CS , V DS , V ES , V FS , V GS , and V HS , the respective voltages are expressed by the following equations.
  • Each of the voltages in the equations (79) to (86) includes resistance change amounts ⁇ R X , ⁇ R Y , and ⁇ R Z corresponding to the magnetic field of the three-axis component.
  • the signs of ⁇ R X , ⁇ R Y , and ⁇ R Z correspond to the direction of the magnetic field in the X-axis direction across the first magnetic detector 210a to the sixteenth magnetic detector 240d.
  • the magnetic sensor 100 can acquire magnetic signals of three orthogonal axis components. That is, by solving the simultaneous equations for each voltage, each resistance change amount corresponding to the magnetic field of the three-axis component can be obtained.
  • the expansion of the simultaneous equations described here is an example, and is not limited to this.
  • the differential voltages V CB , V AD , V GF , and V EH are, in other words, voltages generated between the terminals CB , AD , GF , and EH , respectively. . That is, by directly measuring the voltage generated between the terminals CB, AD, GF, and EH, the signal of the formula (90) to the formula (90) can be acquired. The output signal of each axis can be obtained.
  • the first bridge to the fourth bridge are each supplied with the second potential.
  • each of the terminals M, N, O, and P is provided with a switch, and each switch is switched while the switch is switched.
  • a voltage may be supplied to the bridge.
  • a plurality of terminals S are provided, and each magnetic detection unit or One of the two magnetic detection units may be connected to one of the plurality of terminals S, respectively.
  • the magnetic sensor 100 of the above 14th structural example demonstrated the example using the arrangement pattern of the magnetic sensor 100 of the 8th structural example. Instead, the magnetic sensor 100 may use the arrangement patterns of the first to seventh and ninth to eleventh configuration examples.
  • FIG. 45 shows a fifteenth configuration example of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operation as that of the magnetic sensor 100 according to the present embodiment shown in FIG. 45 substantially the same operation as that of the magnetic sensor 100 according to the present embodiment shown in FIG.
  • the magnetic sensor 100 includes a first magnetic flux concentrator member 111 extending in a first direction and a first magnetic flux concentrator member 111 connected to an end of the first magnetic flux concentrator member 111 and extending in a second direction different from the first direction. 2 near the positive side in the first direction of the second magnetic flux concentrator member 112, the first magnetic detector 210 disposed near the negative side in the first direction of the second magnetic flux concentrator member 112 And a second magnetic detection unit 220 arranged. 45 shows an arrangement pattern in which the second magnetic convergence unit 120 and the third magnetic detection unit 230 are excluded from the magnetic sensor 100 of the first configuration example shown in FIG. 1 as the magnetic sensor 100 of the fifteenth configuration example. Indicates.
  • the first magnetic detection unit 210 and the second magnetic detection unit 220 may be arranged so as to be separated from the second magnetic convergence member 112 by a predetermined distance and sandwich the second magnetic convergence member 112 therebetween.
  • the first magnetic detection unit 210 is arranged on the ⁇ X axis direction side of the second magnetic flux concentrator member 112 so as to be close to the second magnetic flux concentrator member 112 in a plan view seen from the Z axis direction.
  • the second magnetic detection unit 220 is disposed on the + X axis direction side of the second magnetic flux concentrator member 112 so as to be close to the second magnetic flux concentrator member 112 in a plan view seen from the Z axis direction.
  • the first magnetic flux concentrating member 111 protruding in the ⁇ X-axis direction converges the magnetic field in the space in the vicinity thereof. That is, not only the magnetic field in the XY plane close to the first magnetic focusing member 111 but also the magnetic field in the XZ plane close to the first magnetic focusing member 111 is converged on the first magnetic focusing member 111.
  • the magnetic field converged on the first magnetic focusing member 111 passes through the second magnetic focusing member 112 connected to the first magnetic focusing member 111 and is emitted from the second magnetic focusing member 112 in the ⁇ X axis direction and the + X axis direction. Is done.
  • the magnetic field emitted from the second magnetic focusing member 112 in the ⁇ X-axis direction passes through the first magnetic detection unit 210, and the magnetic field emitted from the second magnetic focusing member 112 in the + X-axis direction is the second magnetic detection unit 220. Go through.
  • the first magnetic detection portion 210 and the second magnetic sensor 220 senses the magnetic field parallel to a first direction which is the direction changing in response to the magnetic field B X to be input to the + X-axis direction. That is, the first magnetic detector 210 detects a magnetic field in the ⁇ X axis direction.
  • the second magnetic detection unit 220 detects a magnetic field in the + X axis direction.
  • the first magnetic detection unit 210 and the second magnetic detection unit 220 do not detect the magnetic field in the + Y-axis direction. That is, since there is no magnetic flux concentrator member to bend the magnetic field B Y of the supplied + Y-axis direction in the X-axis direction, the magnetic sensor 100 does not sense the magnetic field.
  • the magnetic field B Z is given in the + Z-axis direction of the magnetic sensor 100, the magnetic field B Z is converged on the second magnetic flux concentrator member 112 through the first magnetic detection portion 210 in the + X-axis direction, and released. Further, the magnetic field B Z is converged on the second magnetic flux concentrator member 112 through the second magnetic detection portion 220 in the -X-axis direction, and released.
  • the first magnetic detection portion 210 and the second magnetic sensor 220 senses the first direction and the magnetic field parallel which is redirecting depending on the magnetic field B Z which is input to the + Z-axis direction. That is, the first magnetic detection unit 210 detects a magnetic field in the + X axis direction.
  • the second magnetic detector 220 detects a magnetic field in the ⁇ X axis direction.
  • the magnetic sensor 100 includes the L-shaped magnetic converging unit, and when the magnetic field BX is supplied in the + X axis direction, the magnetic sensor 100 generates a magnetic field in the ⁇ X axis direction together with the magnetic field in the + X axis direction.
  • the magnetic detection unit can sense the magnetic fields in the + X axis direction and the ⁇ X axis direction.
  • FIG. 46 shows a sixteenth configuration example of the magnetic sensor 100 according to the present embodiment.
  • substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 46 substantially the same operations as those of the magnetic sensor 100 according to the present embodiment shown in FIG. 46.
  • the magnetic sensor 100 according to the sixteenth configuration example includes one first magnetic detection unit 10 as with the magnetic sensor 100 according to the first configuration example.
  • the magnetic sensor 100 of the sixteenth configuration example further includes a first sub magnetic flux concentrating member 116 and a second sub magnetic detection unit 117 in addition to the magnetic sensor 100 of the first configuration example shown in FIG.
  • the first sub magnetic flux concentrator member 116 is connected to the negative end of the second magnetic flux concentrator member 112 in the second direction and extends in the first direction.
  • the first sub magnetic flux concentrator member 116 may extend in the first direction so as to overlap the second magnetic detection unit 220 and the third magnetic detection unit 230 when viewed from the second direction.
  • the first sub magnetic flux concentrator member 116 may extend on the negative side in the first direction to the extent that it does not reach the first magnetic detector 210 when viewed from the second direction. In other words, the first sub magnetic flux concentrator member 116 projects more negatively in the first direction than the second magnetic flux concentrator member 112 when viewed from the second direction.
  • first sub magnetic flux concentrator member 116 may extend on the positive side in the first direction to the extent that it does not exceed the fourth magnetic flux concentrator member 114.
  • the first sub magnetic flux concentrator member 116 may be formed to have substantially the same thickness as the second magnetic flux concentrator member 112 in the Z-axis direction.
  • the first sub magnetic flux concentrator member 116 may be formed of substantially the same material as the second magnetic flux concentrator member 112.
  • the second sub magnetic flux concentrator member 117 is connected to the positive end of the third magnetic flux concentrator member 113 in the second direction and extends in the first direction.
  • the second sub magnetic flux concentrator member 117 may extend in the first direction to the extent that it overlaps the first magnetic detection unit 210 when viewed from the second direction.
  • the second sub magnetic flux concentrating member 117 may extend on the positive side in the first direction to the extent that it does not reach the third magnetic detection unit 230 when viewed from the second direction.
  • the second sub magnetic flux concentrator member 117 may be stretched on the negative side in the first direction so as not to exceed the first magnetic flux concentrator member 111. That is, the second sub magnetic flux concentrator member 117 protrudes more negatively in the first direction than the third magnetic flux concentrator member 113 when viewed from the second direction.
  • the second sub magnetic flux concentrator member 117 may be formed to have substantially the same thickness as the third magnetic flux concentrator member 113 in the Z-axis direction. Further, the second sub magnetic flux concentrator member 117 may be formed of substantially the same material as the third magnetic flux concentrator member 113.
  • the first sub magnetic flux concentrator member 116 and the second sub magnetic flux concentrator member 117 may be formed in substantially the same shape.
  • the third magnetic focusing member 113 protruding in the ⁇ Y-axis direction is the third magnetic focusing member 113.
  • the magnetic field in the space near is converged.
  • the fourth magnetic flux concentrator member 114 converges the magnetic field in the vicinity of the fourth magnetic flux concentrator member 114 and converges it to the third magnetic flux concentrator member 113.
  • the magnetic field focused on the third magnetic flux concentrator member 113 is emitted from the third magnetic flux convergent member 113 in the ⁇ X axis direction and the + X axis direction.
  • the first sub magnetic flux concentrator member 116 converges by attracting a part of the magnetic field that converges to the end of the third magnetic detector 230 on the ⁇ Y axis direction side.
  • the second sub magnetic flux concentrator member 117 converges a part of the magnetic field that converges to the end portion on the + Y axis direction side of the first magnetic detector 210 to the first magnetic flux concentrator member 111 and the second magnetic flux concentrator member 112.
  • the magnetic sensor 100 according to the sixteenth configuration example includes the first sub magnetic focusing member 116 and the second sub magnetic focusing member 117, and thus the magnetic field emitted from the third magnetic focusing member 113 in the + X-axis direction. Are concentrated on the + Y-axis direction end of the first magnetic detection unit 210 and the ⁇ Y-axis direction end of the third magnetic detection unit 230.
  • FIG. 47 shows a schematic configuration example of a change in magnetic gain with respect to the position in the Y direction of the first magnetic detection unit 210 according to the present embodiment.
  • the horizontal axis in FIG. 47 corresponds to the position in the Y direction of the first magnetic detector 210 shown in FIG. More specifically, when the length of the first magnetic detection unit 210 is R1, the position in the Y direction is indicated by a range from 0 to R1.
  • FIG. 47 shows, as an example, the position of the end on the + Y direction side of the first magnetic detection unit 210 on the origin side and the position of the end on the ⁇ Y direction side of the first magnetic detection unit 210 on the horizontal axis in FIG. The position is R1 away from the position on the direction side toward the + side.
  • FIG. 47 indicates the magnetic amplification factor.
  • the magnetic amplification factor is an example of a value obtained by magnetic field numerical analysis or the like.
  • 47 shows the magnetic amplification factor of the first magnetic detection unit 210 included in the magnetic sensor 100 of the first configuration example shown in FIG. 1 by a solid line.
  • 47 shows the magnetic amplification factor of the first magnetic detection unit 210 included in the magnetic sensor 100 of the sixteenth configuration example described in FIG. 46 by a dotted line. That is, FIG. 47 shows an example of a comparison result between the magnetic sensor 100 of the first configuration example described in FIG. 1 and the magnetic sensor 100 of the sixteenth configuration example described in FIG.
  • the magnetic sensor 100 of the sixteenth configuration example reduces the magnetic amplification factor on the + Y direction side of the first magnetic detection unit 210 as compared with the magnetic sensor 100 of the first configuration example. Further, the magnetic sensor 100 of the sixteenth configuration example increases the magnetic amplification factor in the vicinity of the end portion on the ⁇ Y direction side of the first magnetic detection unit 210 as compared with the magnetic sensor 100 of the first configuration example. That is, the magnetic sensor 100 of the sixteenth configuration example can prevent the magnetic gain of the first magnetic detection unit 210 from locally increasing.
  • 47 shows an example of the change in the magnetic amplification factor of the first magnetic detection unit 210
  • the magnetic sensor 100 of the sixteenth configuration example includes the second magnetic detection unit 220 and the third magnetic detection unit 230. Similarly, the magnetic gain can be prevented from locally increasing.
  • FIG. 48 shows a seventeenth configuration example of the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 according to the seventeenth configuration example includes one first magnetic detection unit 10 as with the magnetic sensor 100 according to the second configuration example.
  • the magnetic sensor 100 of the seventeenth configuration example is similar to the magnetic sensor 100 of the second configuration example shown in FIG. 13 in that the first sub magnetic convergence member 116, the second sub magnetic detection unit 117, and the third sub magnetic convergence. And a member 118.
  • the operations of the first sub magnetic flux concentrating member 116 and the second sub magnetic flux sensing unit 117 may be substantially the same as the operations of the sub magnetic flux converging member described in FIGS. 46 and 47, and the description thereof is omitted here. To do.
  • the third sub magnetic flux concentrator member 118 is connected to the positive end of the fifth magnetic flux concentrator member 115 in the second direction and extends in the first direction.
  • the third sub magnetic flux concentrator member 118 may extend in the first direction to the extent that it overlaps the fourth magnetic detector 240 as viewed from the second direction.
  • the third sub magnetic flux concentrator member 118 may extend on the negative side in the first direction to the extent that it does not reach the second magnetic detection unit 220 when viewed from the second direction. That is, the third sub magnetic flux concentrator member 118 protrudes more negatively in the first direction than the fifth magnetic flux concentrator member 115 when viewed from the second direction.
  • the third sub magnetic flux concentrator member 118 may extend on the positive side in the first direction so as to protrude from the fifth magnetic flux concentrator member 115.
  • the third sub magnetic flux concentrator member 118 may be formed to have substantially the same thickness as the fifth magnetic flux concentrator member 115 in the Z-axis direction.
  • the third sub magnetic flux concentrator member 118 may be formed of substantially the same material as the fifth magnetic flux concentrator member 115.
  • the first sub magnetic flux concentrator member 116, the second sub magnetic flux concentrator member 117, and the third sub magnetic flux concentrator member 118 may be formed in substantially the same shape.
  • the first sub-magnetic focusing member 116, the second sub-magnetic focusing member 117, and the third sub-magnetic focusing member 118 are line symmetric with respect to the middle line parallel to the Y-axis direction of the second magnetic focusing member 112. It is preferable to arrange
  • the magnetic field BY When the magnetic field BY is applied in the + Y-axis direction of such a magnetic sensor 100, the magnetic field BY is protruded in the ⁇ Y-axis direction as in the case of the magnetic sensor 100 of the second configuration example.
  • the first and second magnetic flux concentrator members 113 and 115 are respectively converged to 120.
  • the magnetic field converged on the third magnetic converging member 113 is emitted from the third magnetic converging member 113 in the + X axis direction.
  • the magnetic field emitted from the third magnetic focusing member 113 in the + X-axis direction passes through the first magnetic detection unit 210 and the third magnetic detection unit 230 between the second magnetic focusing member 112 and the third magnetic focusing member 113. And captured by the second magnetic flux concentrator member 112.
  • the magnetic sensor 100 of the seventeenth configuration example includes the first sub magnetic focusing member 116 and the second sub magnetic focusing member 117, similarly to the magnetic sensor 100 of the sixteenth configuration example.
  • the magnetic field emitted from the member 113 in the + X-axis direction is prevented from concentrating on the + Y-axis direction end of the first magnetic detection unit 210 and the ⁇ Y-axis direction end of the third magnetic detection unit 230. .
  • the magnetic field focused on the fifth magnetic flux concentrator member 115 is emitted from the fifth magnetic flux concentrator member 115 in the ⁇ X axis direction.
  • the magnetic field emitted from the fifth magnetic focusing member 115 in the ⁇ X-axis direction is generated between the second magnetic detection member 240 and the second magnetic detection unit 220 between the second magnetic focusing member 112 and the fifth magnetic focusing member 115. It passes through and is captured by the second magnetic flux concentrator member 112.
  • the magnetic field captured by the second magnetic focusing member 112 is emitted through the first magnetic focusing member 111 connected to the second magnetic focusing member 112.
  • the first sub magnetic flux concentrator member 116 and the third sub magnetic flux concentrator member 118 are the ends of the magnetic detection unit in the Y-axis direction, similarly to the operations of the first sub magnetic flux concentrator member 116 and the second sub magnetic flux convergent member 117. A part of the magnetic field that converges to the part is drawn and converged. That is, since the magnetic sensor 100 of the seventeenth configuration example includes the first sub magnetic focusing member 116 and the third sub magnetic focusing member 118, the magnetic field emitted from the fifth magnetic focusing member 115 in the ⁇ X-axis direction is reduced.
  • the magnetic sensor 100 of the seventeenth configuration example can prevent the magnetic amplification factor of the magnetic detection unit from locally increasing.
  • FIG. 49 shows an eighteenth configuration example of the magnetic sensor 100 according to the present embodiment.
  • the magnetic sensor 100 shown in FIG. 49 substantially the same operations as those of the magnetic sensor 100 of the fifteenth configuration example shown in FIG.
  • the magnetic sensor 100 of the eighteenth configuration example is similar to the magnetic sensor 100 of the first configuration example shown in FIG. An arrangement pattern excluding the magnetic detection unit 230 is shown.
  • the magnetic sensor 100 of the eighteenth configuration example further includes a first sub magnetic flux concentrating member 116 in addition to the magnetic sensor 100 of the fifteenth configuration example shown in FIG.
  • the operation of the first sub magnetic flux concentrator member 116 may be substantially the same as the operation described with reference to FIGS. 46 and 47, and the description thereof is omitted here.
  • the magnetic sensor 100 senses a magnetic field in the X-axis direction, like the magnetic sensor 100 according to the fifteenth configuration example. That, + Y-axis direction when the magnetic field B Y is given, the first magnetic detection unit 210 senses the magnetic field of the + X-axis direction. The second magnetic detector 220 detects a magnetic field in the ⁇ X axis direction. The first sub magnetic flux concentrator member 116 prevents the magnetic field traveling in the X-axis direction from concentrating on the ⁇ Y-axis direction side ends of the first magnetic detection unit 210 and the second magnetic detection unit 220.
  • the magnetic sensor 100 of the fifteenth to eighteenth configuration examples according to the present embodiment includes one first magnetic detection unit 10
  • the magnetic sensor 100 is not limited to this, and may include two or more magnetic detection units 10, and in this case, may include a plurality of types of magnetic detection units 10.
  • 10 magnetic detection unit 20 substrate, 22 substrate plane, 30 insulating layer, 32 first plane, 34 second plane, 40 arrangement pattern, 50 auxiliary arrangement pattern, 100 magnetic sensor, 110 magnetic converging part, 111-115 magnetic converging member , 116 to 118, sub magnetic convergence member, 120 magnetic convergence unit, 130 wiring unit, 210 to 240 magnetic detection unit, 300 calculation unit, 310, 312, 314, constant current source, 320 signal acquisition unit, 330 calculation unit, 340 addition / subtraction unit

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 直交する3方向をそれぞれ向く磁場が混在した磁気信号を精度良く検出する磁気センサ。第1磁気検知ユニットを含む磁気センサであって、第1磁気検知ユニットは、第1方向に延伸する第1磁気収束部材と、第1磁気収束部材の第1方向の正側の端部に接続される第2磁気収束部材とを有する第1磁気収束部と、第2磁気収束部材の第2方向の負側の端部よりも第2方向の負側へ延伸する第3磁気収束部材と、第3磁気収束部材の第2方向の負側の端部に接続される第4磁気収束部材とを有する第2磁気収束部と、第2磁気収束部材と第3磁気収束部材との間に配置され、第2方向に延伸する第1磁気検知部と、第2磁気収束部材よりも第1方向の正側に寄って配置され、第2方向に延伸する第2磁気検知部と、を備える磁気センサを提供する。

Description

磁気センサ
 本発明は、磁気センサに関する。
 従来、予め定められた一方向の磁気の有無を検出する巨大磁気抵抗(GMR:Giant Magneto-Resistance)素子及びトンネル磁気抵抗(TMR:Tunnel Magneto-Resistance)素子が知られていた。また、これらの磁気抵抗素子と、磁気収束部とを組み合わせた磁気センサが知られていた。(例えば、特許文献1~8参照)。
 特許文献1 特開2006-3116号公報
 特許文献2 特開2006-10461号公報
 特許文献3 特開平7-169026号公報
 特許文献4 特開2002-71381号公報
 特許文献5 特開2004-6752号公報
 特許文献6 特開2003-282996号公報
 特許文献7 国際公開第2011/068146号
 特許文献8 米国特許出願公開第2011/0309829号明細書
 しかしながら、このような磁気センサを用いて例えばXYZ方向といった直交する3方向の磁場を検出する場合、複数の磁気センサを検出すべき方向に対応して一方向毎に配置していたので、実装面積等が増加していた。
 本発明の第1の態様においては、第1磁気検知ユニットを含む磁気センサであって、第1磁気検知ユニットは、第1方向に延伸する第1磁気収束部材と、第1磁気収束部材の第1方向の正側の端部に接続されて第1方向と異なる第2方向の負側に延伸する第2磁気収束部材とを有する第1磁気収束部と、第1磁気収束部材の第1方向の負側の端部よりも第1方向の正側に寄り、第2磁気収束部材よりも第1方向の負側に寄り、第1磁気収束部材よりも第2方向の負側に寄り、且つ第2磁気収束部材の第2方向の負側の端部よりも第2方向の負側へ延伸する第3磁気収束部材と、第3磁気収束部材の第2方向の負側の端部に接続されて第1磁気収束部材の第1方向の正側の端部よりも第1方向の正側に延伸する第4磁気収束部材とを有する第2磁気収束部と、第2磁気収束部材と第3磁気収束部材との間に配置され、第2方向に延伸する第1磁気検知部と、第2磁気収束部材よりも第1方向の正側に寄って配置され、第2方向に延伸する第2磁気検知部と、を備える磁気センサを提供する。
 本発明の第2の態様においては、第1磁気検知ユニットを含む磁気センサであって、第1方向に磁場成分が入力された場合に、当該磁場成分を第1方向の第1磁場成分と第1方向と逆方向の第2磁場成分とにそれぞれ変換し、第1方向と異なる第2方向に磁場成分が入力された場合に、当該磁場成分を第1方向の第3磁場成分と第1方向と逆方向の第4磁場成分とにそれぞれ変換する磁場方向変換部と、第1及び第2磁場成分のうちの一方と、第3及び第4磁場成分のうちの一方とを検知する第1磁気検知部と、第1及び第2磁場成分のうちの他方と、第3及び第4磁場成分のうちの他方とを検知する第2磁気検知部と、を備える磁気センサを提供する。
 本発明の第3の態様においては、第1方向に延伸する第1磁気収束部材と、第1磁気収束部材の端部に接続されて第1方向と異なる第2方向に延伸する第2磁気収束部材と、第2磁気収束部材の第1方向の正側に寄って配置されている第1磁気検知部と、第2磁気収束部材の第1方向の負側に寄って配置されている第2磁気検知部と、を備える磁気センサを提供する。
(一般的開示)
 磁気センサは、第1磁気検知ユニットを含んでよい。
 第1磁気検知ユニットは、第1磁気収束部を備えてよい。
 第1磁気収束部は、第1方向に延伸する第1磁気収束部材を有してよい。
 第1磁気収束部は、第1磁気収束部材の第1方向の正側の端部に接続されて第1方向と異なる第2方向の負側に延伸する第2磁気収束部材を有してよい。
 第1磁気検知ユニットは、第2磁気収束部を備えてよい。
 第2磁気収束部は、第1磁気収束部材の第1方向の負側の端部よりも第1方向の正側に寄り、第2磁気収束部材よりも第1方向の負側に寄り、第1磁気収束部材よりも第2方向の負側に寄り、且つ第2磁気収束部材の第2方向の負側の端部よりも第2方向の負側へ延伸する第3磁気収束部材を有してよい。
 第2磁気収束部は、第3磁気収束部材の第2方向の負側の端部に接続されて第1磁気収束部材の第1方向の正側の端部よりも第1方向の正側に延伸する第4磁気収束部材を有してよい。
 第1磁気検知ユニットは、第2磁気収束部材と第3磁気収束部材との間に配置され、第2方向に延伸する第1磁気検知部を備えてよい。
 第1磁気検知ユニットは、第2磁気収束部材よりも第1方向の正側に寄って配置され、第2方向に延伸する第2磁気検知部を備えてよい。
 第1磁気検知ユニットは、第2磁気収束部材と第3磁気収束部材との間に配置されている第3磁気検知部を備えてよい。
 第1磁気検知部は、第2磁気収束部材よりも第3磁気収束部材までの距離が小さくてよい。
 第3磁気検知部は、第3磁気収束部材よりも第2磁気収束部材までの距離が小さくてよい。
 第1磁気検知ユニットは、第2磁気収束部材の第2方向の負側の端部に接続されて、第1方向に延伸する第1サブ磁気収束部材を備えてよい。
 第1磁気検知ユニットは、第3磁気収束部材の第2方向の正側の端部に接続されて、第1方向に延伸する第2サブ磁気収束部材を備えてよい。
 第2磁気収束部は、第4磁気収束部材の第1方向の正側の端部に接続されて第2方向の正側に延伸する第5磁気収束部材を備えてよい。
 第2磁気検知部は、第2磁気収束部材と第5磁気収束部材との間に配置されてよい。
 第1磁気検知ユニットは、第2磁気収束部材と第5磁気収束部材との間に配置されている第4磁気検知部を備えてよい。
 第2磁気検知部は、第5磁気収束部材よりも第2磁気収束部材までの距離が小さくてよい。
 第4磁気検知部は、第2磁気収束部材よりも第5磁気収束部材までの距離が小さくてよい。
 第1磁気検知ユニットは、第5磁気収束部材の第2方向の正側の端部に接続されて、第1方向に延伸する第3サブ磁気収束部材を備えてよい。
 磁気センサは、第1磁気収束部材の第1方向の負側の端部で第1方向と略直交する面に対して、第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットを備えてよい。
 磁気センサは、第1磁気収束部材または第1磁気収束部材よりも第2方向の正側で第2方向と略直交する面に対して、第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットを備えてよい。
 磁気センサは、第5磁気収束部材よりも第1方向の正側で第1方向と略直交する面に対して、第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットを備えてよい。
 磁気センサは、第4磁気収束部材または第4磁気収束部材よりも第2方向の負側で第2方向と略直交する面に対して、第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットを備えてよい。
 磁気センサは、第1磁気検知ユニットと第2磁気検知ユニットとが接続される各磁気収束部材において第2方向に略直交する面、またはこれら各磁気収束部材よりも第2方向の正側において第2方向に略直交する面に対して、第1磁気検知ユニットと略鏡像となるように配置された第3磁気検知ユニットを備えてよい。
 磁気センサは、第1磁気検知ユニットと第2磁気検知ユニットとが接続される各磁気収束部材において第2方向に略直交する面、またはこれら各磁気収束部材よりも第2方向の正側において第2方向に略直交する面に対して、第2磁気検知ユニットと略鏡像となるように配置されている第4磁気検知ユニットを備えてよい。
 磁気センサは、第1磁気検知ユニット及び第2磁気検知ユニットよりも第1方向の正側で第1方向に略直交する面に対して、第1磁気検知ユニットと略鏡像となるように配置された第3磁気検知ユニットを備えてよい。
 磁気センサは、第1磁気検知ユニット及び第2磁気検知ユニットよりも第1方向の正側で第1方向に略直交する面に対して、第2磁気検知ユニットと略鏡像となるように配置された第4磁気検知ユニットを備えてよい。
 磁気センサは、第1磁気検知ユニット及び第2磁気検知ユニットの第2方向の負側の磁気収束部材において、第2方向に略直交する面、または、第1磁気検知ユニット及び第2磁気検知ユニットよりも第2方向の負側において第2方向に略直交する面に対して、第1磁気検知ユニットと略鏡像となるように配置された第3磁気検知ユニットを備えてよい。
 磁気センサは、第1磁気検知ユニット及び第2磁気検知ユニットの第2方向の負側の磁気収束部材において、第2方向に略直交する面、または、第1磁気検知ユニット及び第2磁気検知ユニットよりも第2方向の負側において第2方向に略直交する面に対して、第2磁気検知ユニットと略鏡像となるように配置された第4磁気検知ユニットを備えてよい。
 第1から第4磁気検知ユニットにおける各磁気検知部は、それぞれホイーストン・ブリッジを形成してよい。
 磁気センサは、第1から第4磁気検知ユニットを複数備えてよい。
 磁気センサは、第1及び第2磁気検知ユニットよりも外側に配置された補助磁気収束部材をさらに備えてよい。
 磁気センサは、第1及び第4磁気検知ユニットよりも外側に配置された補助磁気収束部材をさらに備えてよい。
 補助磁気収束部材は、第1方向の外側に配置されてよい。
 磁気センサは、第1及び第2磁気検知ユニットにおける各磁気検知部の出力に基づいて、第1方向の磁場成分と第2方向の磁場成分とを算出する算出部を備えてよい。
 算出部は、第1及び第2磁気検知ユニットにおける各磁気検知部の出力に基づいて、第1及び第2方向と異なる第3方向の磁場成分を算出してよい。
 磁気センサは、第1から第4磁気検知ユニットにおける各磁気検知部の出力に基づいて、第1方向の磁場成分と第2方向の磁場成分とを算出する算出部を備えてよい。
 算出部は、第1から第4磁気検知ユニットにおける各磁気検知部の出力に基づいて、第1及び第2方向と異なる第3方向の磁場成分を算出してよい。
 算出部は、各磁気検知部の出力を線形結合することで、各磁場成分を算出してよい。
 磁気センサは、第1磁気検知ユニットを含んでよい。
 第1磁気検知ユニットは、第1方向に磁場成分が入力された場合に、当該磁場成分を第1方向の第1磁場成分と第1方向と逆方向の第2磁場成分とにそれぞれ変換し、第1方向と異なる第2方向に磁場成分が入力された場合に、当該磁場成分を第1方向の第3磁場成分と第1方向と逆方向の第4磁場成分とにそれぞれ変換する磁場方向変換部を備えてよい。
 第1磁気検知ユニットは、第1及び第2磁場成分のうちの一方と、第3及び第4磁場成分のうちの一方とを検知する第1磁気検知部を備えてよい。
 第1磁気検知ユニットは、第1及び第2磁場成分のうちの他方と、第3及び第4磁場成分のうちの他方とを検知する第2磁気検知部を備えてよい。
 磁気センサは、第2磁気検知ユニットを含んでよい。
 第2磁気検知ユニットは、磁場方向変換部を備えてよい。
 第2磁気検知ユニットは、第1及び第2磁場成分のうちの他方と、第3及び第4磁場成分のうちの一方とを検知する第3磁気検知部を備えてよい。
 第2磁気検知ユニットは、第1及び第2磁場成分のうちの一方と、第3及び第4磁場成分のうちの他方とを検知する第4磁気検知部を備えてよい。
 磁気センサは、第1及び第2磁気検知ユニットを複数備えてよい。
 磁気センサは、複数の第1及び第2磁気検知ユニットにおける各磁気検知部の出力に基づいて、第1方向の磁場成分と第2方向の磁場成分とを算出する算出部を備えてよい。
 磁場方向変換部は、第1及び第2方向と異なる第3方向に磁場成分が入力された場合に、当該磁場成分を第1方向の第5及び第6磁場成分と第1方向と逆方向の第7及び第8磁場成分とにそれぞれ変換してよい。
 第1磁気検知部は、第5及び第7磁場成分のうちの一方を検知してよい。
 第2磁気検知部は、第6及び第8磁場成分のうちの一方を検知してよい。
 第1磁気検知ユニットは、第1及び第2磁場成分のうちの一方と第3及び第4磁場成分のうちの一方と第5及び第7磁場成分のうちの他方とを検知する第5磁気検知部を備えてよい。
 第1磁気検知ユニットは、第1及び第2磁場成分のうちの他方と第3及び第4磁場成分のうちの他方と第6及び第8磁場成分のうちの他方とを検知する第6磁気検知部を備えてよい。
 第3磁気検知部は、第5及び第7磁場成分のうちの一方を検知してよい。
 第4磁気検知部は、第6及び第8磁場成分のうちの一方を検知してよい。
 第2磁気検知ユニットは、第1及び第2磁場成分のうちの他方と、第3及び第4磁場成分のうちの一方と、第5及び第7磁場成分のうちの他方とを検知する第7磁気検知部を備えてよい。
 第2磁気検知ユニットは、第1及び第2磁場成分のうちの一方と、第3及び第4磁場成分のうちの他方と第6及び第8磁場成分のうちの他方とを検知する第8磁気検知部を備えてよい。
 算出部は、複数の第1及び第2磁気検知ユニットにおける各磁気検知部の出力に基づいて、第3方向の磁場成分を算出してよい。
 算出部は、各磁気検知部の出力を線形結合することで、各磁場成分を算出してよい。
 第1方向と第2方向は、互いに直交してよい。
 第1から第3方向は、互いに直交してよい。
 磁気センサは、第1方向に延伸する第1磁気収束部材を備えてよい。
 磁気センサは、第1磁気収束部材の端部に接続されて第1方向と異なる第2方向に延伸する第2磁気収束部材を備えてよい。
 磁気センサは、第2磁気収束部材の第1方向の負側に寄って配置されている第1磁気検知部を備えてよい。
 磁気センサは、第2磁気収束部材の第1方向の正側に寄って配置されている第2磁気検知部を備えてよい。
 磁気センサは、第2磁気収束部材の第2方向の負側の端部に接続されて、第1方向に延伸する第1サブ磁気収束部材を備えてよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
本実施形態に係る磁気センサ100の第1の構成例を示す。 図1に示す磁気センサ100のA-A線の断面図の一例を示す。 図1に示す磁気センサ100のB-B線の断面図の一例を示す。 本実施形態に係る磁気センサ100の+X軸方向に磁場Bを与えた場合の磁路の一例を示す。 図4に示す磁気センサ100のA-A線断面図の一例を示す。 本実施形態に係る磁気センサ100の+Y軸方向に磁場Bを与えた場合の磁路の一例を示す。 図6に示す磁気センサ100のA-A線断面図の一例を示す。 本実施形態に係る磁気センサ100の+Z軸方向に磁場Bを与えた場合の磁路の一例を示す。 図8に示す磁気センサ100のA-A線断面図の一例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。 本実施形態に係る磁気センサ100に接続される回路構成の一例を示す。である。 本実施形態に係る磁気センサ100の第2の構成例を示す。 図13に示す磁気センサ100のA-A線の断面図の一例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。 本実施形態に係る磁気センサ100の第3の構成例を示す。 図17に示す磁気センサ100のA-A線の断面図の一例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。 本実施形態に係る磁気センサ100の第4の構成例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。 本実施形態に係る磁気センサ100に算出部300が接続された一例を示す。 本実施形態に係る磁気センサ100の第5の構成例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。 本実施形態に係る磁気センサ100に算出部300が接続された一例を示す。 本実施形態に係る磁気センサ100の第6の構成例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100の第7の構成例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100の第8の構成例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。 本実施形態に係る磁気センサ100の第9の構成例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100の第10の構成例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100の第11の構成例を示す。 本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。 本実施形態に係る磁気センサ100の第12の構成例を示す。 本実施形態に係る磁気センサ100の第13の構成例を示す。 本実施形態に係る磁気センサ100の第14の構成例を示す。 本実施形態に係る磁気センサ100の第15の構成例を示す。 本実施形態に係る磁気センサ100の第16の構成例を示す。 本実施形態に係る第1磁気検知部210のY方向の位置に対する磁気増幅率の変化の概略構成例を示す。 本実施形態に係る磁気センサ100の第17の構成例を示す。 本実施形態に係る磁気センサ100の第18の構成例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、本実施形態に係る磁気センサ100の第1の構成例を示す。磁気センサ100は、直交する3方向をそれぞれ向く磁場が混在した(合成された)磁気信号を検出する。図1は、直交する3方向をX、Y、Z軸で示し、磁気センサ100のXY平面の平面視(Y軸方向で見た平面視)を示す。即ち、図1は、基板等の一方の面に磁気センサ100が形成された場合の上面図の一例を示す。磁気センサ100は、第1磁気検知ユニット10を備える。図1は、磁気センサ100が1つの第1磁気検知ユニット10を備える例を示す。
 第1磁気検知ユニット10は、第1磁気収束部110と、第2磁気収束部120と、第1磁気検知部210と、第2磁気検知部220と、第3磁気検知部230とを有する。図1は、第1磁気収束部110、第2磁気収束部120、第1磁気検知部210、第2磁気検知部220、第3磁気検知部230の配置パターンの一例を示すことになる。
 第1磁気収束部110及び第2磁気収束部120は、XY面に平行な同一の面に形成される。第1磁気収束部110及び第2磁気収束部120は、パーマロイ等の磁性材料で形成され、当該磁気収束部の近傍の磁力線の向きを変化させる。例えば、第1磁気収束部110及び第2磁気収束部120は、NiFe、NiFeB、NiFeCo、及びCoFe等の軟磁性材料で形成されることが望ましい。第1磁気収束部110は、第1磁気収束部材111と、第2磁気収束部材112とを含む。第1磁気収束部材111は、第1方向に延伸する。図1は、第1方向を+X軸方向とした例を示す。
 第2磁気収束部材112は、第1磁気収束部材111の第1方向の正側の端部に接続され、第1方向と異なる第2方向の負側に延伸する。ここで、磁気収束部材の端部とは、磁気収束部材の一端の部分であり、磁気収束部材の一端に近接する側面も含む。図1は、第1方向と第2方向が互いに直交し、第2方向を+Y軸方向とした例を示す。即ち、図1は、Z軸方向から見た平面視で、第1磁気収束部材111の+X軸方向側の端と、第2磁気収束部材112の+Y軸方向側の端とが連結されて、第1磁気収束部110が形成される例を示す。
 第2磁気収束部120は、第3磁気収束部材113と、第4磁気収束部材114とを含む。第3磁気収束部材113は、第1磁気収束部材111の第1方向の負側の端部よりも第1方向の正側に寄り、第2磁気収束部材112よりも第1方向の負側に寄り、第1磁気収束部材111よりも第2方向の負側に寄り、且つ第2磁気収束部材112の第2方向の負側の端部よりも第2方向の負側へ延伸する。
 即ち、第3磁気収束部材113は、第2方向に延伸し、第1方向から見て、第2磁気収束部材112と一部が重なるように配置される。例えば、第3磁気収束部材113は、第2磁気収束部材112に対して、予め定められた距離だけ-Y軸方向にずらして形成される。また、第3磁気収束部材113は、第2方向から見て、第1磁気収束部材111と重なるように配置される。即ち、第3磁気収束部材113のX軸の配置は、第1磁気収束部材111がX軸に配置される範囲内となる。
 第4磁気収束部材114は、第3磁気収束部材113と、第3磁気収束部材113の第2方向の負側の端部に接続され、第1磁気収束部材111の第1方向の正側の端部よりも第1方向の正側に延伸する。即ち、第4磁気収束部材114は、第1方向に延伸し、第2方向から見て、第1磁気収束部材111と一部が重なるように配置される。例えば、第4磁気収束部材114は、第1磁気収束部材111に対して、予め定められた距離だけ+X軸方向にずらして形成される。図1は、Z軸方向から見た平面視で、第3磁気収束部材113の-Y軸方向側の端と、第4磁気収束部材114の-X軸方向側の端とが連結されて、第2磁気収束部120が形成される例を示す。
 より具体的には、第2磁気収束部材112と、第3磁気収束部材113とは、互いにY軸方向に略平行となるように、第3磁気収束部材113、第2磁気収束部材112の順で-X軸方向側から+X軸方向側に並んで配置される。また、第2磁気収束部材112及び第3磁気収束部材113は、Z軸方向から見た平面視で、隣り合う2つの一方に対して他方が長手方向(Y軸方向)にずれて配置される。即ち、Z軸方向から見た平面視で、第2磁気収束部材112及び第3磁気収束部材113はY軸方向に延伸し、第3磁気収束部材113の-Y軸方向側の端が、第2磁気収束部材112の-Y軸方向側の端よりも-Y軸方向に突出し、且つ、第2磁気収束部材112の+Y軸方向側の端が、第3磁気収束部材113の+Y軸方向側の端よりも+Y軸方向側に突出するように配置される。
 図1において、第2磁気収束部材112及び第3磁気収束部材113は、形状がY軸方向に長手方向をもった矩形であり、各々がY軸方向に平行な向きに、並列に配置される例を示す。これに代えて、第2磁気収束部材112及び第3磁気収束部材113の形状は、矩形に限らず、Y軸方向に略平行な向きに長手方向をもつ四角形、平行四辺形、台形のいずれであってもよい。また、第2磁気収束部材112及び第3磁気収束部材113は、各々がY軸方向に平行であり、尚且つ、Y軸方向に平行な各々の長辺が同一の長さを有する例を示したが、これに代えて、各々の長辺が異なる長さであってもよい。また、第2磁気収束部材112及び第3磁気収束部材113は、X軸方向に平行な各々の短辺が同一の長さを有する例を示したが、これに代えて、各々の短辺が異なる長さであってもよい。
 磁気センサ100は、以上のような第2磁気収束部材112及び第3磁気収束部材113を設けることにより、後に詳細に説明するが、+Y軸方向に磁場を与えた場合に、第3磁気収束部材113から第2磁気収束部材112に向かう磁路が形成される。即ち、+Y軸方向に入力した磁場は、第2磁気収束部材112と第3磁気収束部材113との間で、+X軸方向の磁場を生じさせる。
 また、第1磁気収束部材111と、第4磁気収束部材114とは、互いにX軸方向に略平行となるように、第4磁気収束部材114、第1磁気収束部材111の順で-Y軸方向側から+Y軸方向側に並んで配置される。第1磁気収束部材111は、第2磁気収束部材112の+Y軸方向側の端に接続され、-X軸方向側(X軸方向の第3磁気収束部材側)に延伸する。第1磁気収束部材111は、Y軸方向から見て、第2磁気収束部120の第3磁気収束部材113及び/または第4磁気収束部材114の-X軸方向側の端よりも突出するように形成される。
 また、第4磁気収束部材114は、第3磁気収束部材113の-Y軸方向側の端に接続され、+X軸方向側(X軸方向の第2磁気収束部材112側)に延伸する。第4磁気収束部材114は、Y軸方向から見て、第1磁気収束部110の第1磁気収束部材111及び/または第2磁気収束部材112の+X軸方向側の端よりも突出するように形成される。
 図1において、第1磁気収束部材111及び第4磁気収束部材114は、形状がX軸方向に長手方向をもった矩形であり、各々がX軸方向に平行な向きに、並列に配置される例を示す。これに代えて、第1磁気収束部材111及び第4磁気収束部材114の形状は、矩形に限らず、X軸方向に略平行な向きに長手方向をもつ四角形、平行四辺形、台形のいずれであってもよい。また、第1磁気収束部材111及び第4磁気収束部材114は、各々がX軸方向に平行であり、尚且つ、X軸方向に平行な各々の長辺が同一の長さを有する例を示したが、これに代えて、各々の長辺が異なる長さであってもよい。また、第1磁気収束部材111及び第4磁気収束部材114は、Y軸方向に平行な各々の短辺が同一の長さを有する例を示したが、これに代えて、各々の短辺が異なる長さであってもよい。
 磁気センサ100は、以上のような第1磁気収束部材111から第4磁気収束部材114を設けることにより、後に詳細に説明するが、+X軸方向に磁場を与えた場合に、第2磁気収束部材112から第3磁気収束部材113へと向かう磁路が形成される。すなわち、+X軸方向に入力した磁場は、第2磁気収束部材112と第3磁気収束部材113との間で、-X軸方向の磁場を生じさせる。また、第1磁気収束部材111から第4磁気収束部材114で構成される第1磁気収束部110及び第2磁気収束部120は、基板平面(XY平面)に略平行となるように、点Qの位置で点対称に形成すると、+X軸方向あるいは+Y軸方向に磁場が入力した場合に、点Qを中心にして、XY平面で対称性のよい磁場を形成することができる。
 第1磁気検知部210は、第2磁気収束部材112と第3磁気収束部材113との間に配置され、第2方向に延伸する。第1磁気検知部210は、第2磁気収束部材112よりも第3磁気収束部材113までの距離が小さくなるように配置される。
 第2磁気検知部220は、第2磁気収束部材112よりも第1方向の正側に寄って配置され、第2方向に延伸する。即ち、第1磁気検知部210及び第2磁気検知部220は、第2磁気収束部材112と並進し、第2磁気収束部材112を挟むように配置される。
 第3磁気検知部230は、第2磁気収束部材112と第3磁気収束部材113との間に配置され、第2方向に延伸する。第3磁気検知部230は、第3磁気収束部材113よりも第2磁気収束部材112までの距離が小さくなるように配置される。
 第1磁気検知部210から第3磁気検知部230は、第1方向と平行なX軸方向の磁場を検知する。即ち、第1磁気検知部210から第3磁気検知部230は、XY平面において第1方向と平行な磁場を感知する感磁軸を有しており、XY平面に対して平行かつ第1方向に対して垂直な第2方向と、第1方向及び第2方向に垂直な第3方向(Z軸方向)の磁場を感知しない。別の言い方をすると、第1磁気検知部210から第3磁気検知部230は、磁気収束部等の無い状態でX軸方向に感磁軸を有する。
 第1磁気検知部210から第3磁気検知部230は、1軸方向の磁場にのみ感知して抵抗値を変化させる素子であればよい。第1磁気検知部210から第3磁気検知部230は、例えば、巨大磁気抵抗(GMR)素子、トンネル磁気抵抗(TMR)素子、及び異方性磁気抵抗(AMR)素子等のいずれであってもよい。したがって、第1磁気検知部210から第3磁気検知部230は、+X軸方向の磁場が入力すると、いずれの抵抗値がともに増加し、-X軸方向の磁場が入力すると、いずれの抵抗値がともに減少するように形成される。
 図1の例において、第1方向、第2方向、及び第3方向は、それぞれ互いに直交している例を示すが、これに代えて、互いの方向が異なっていればよい。つまり、それぞれが略直交となっていてもよいし、互いに屈曲していてもよい。
 また、第1磁気検知部210から第3磁気検知部230は、平板状であることが好ましい。第1磁気検知部210から第3磁気検知部230のそれぞれの形状は、Z軸方向から見た平面視で、矩形がより好ましい形状であるが、これに代えて、四角形、正方形、平行四辺形、台形、三角形、多角形、円形、及び楕円形等のいずれであってもよい。また、第1磁気検知部210から第3磁気検知部230のうちの少なくとも1つは、Y軸方向に小分けに分割区分された複数の磁気検知部を有してよい。この場合、分割区分された複数の磁気検知部は、1かたまりの磁気検知部として機能するようにメタル配線等で接続される。言い換えると、例えば、第1磁気検知部210から第3磁気検知部230のうちの少なくとも1つは、単一の磁気検知部に限らず、2つ以上の磁気検知部をメタル配線で直列に接続して形成されてもよい。
 第1磁気検知部210は、Z軸方向から見た平面視で、第1磁気収束部110の第2磁気収束部材112と、第2磁気収束部120の第3磁気収束部材113との間に配置され、第3磁気収束部材113に近接するように配置される。第3磁気検知部230は、Z軸方向から見た平面視で、第2磁気収束部材112と、第3磁気収束部材113との間に配置され、第2磁気収束部材112に近接するように配置される。別の言い方をすると、Z軸方向から見た平面視で、第2磁気収束部材112の形状及び第3磁気収束部材113の形状が、互いに最も近くなる辺の中間となる線を仮想中線C-Cとすると、第1磁気検知部210の形状は、仮想中線C-Cよりも、第3磁気収束部材113寄りに在るように配置される。
 また、Z軸方向から見た平面視で、第3磁気検知部230の形状は、仮想中線C-Cよりも、第2磁気収束部材112寄りに在るように配置される。また、第2磁気検知部220は、第2磁気収束部材112及び第3磁気収束部材113の間よりも+X軸方向に配置され、第2磁気収束部材112に近接するように配置される。また、第2磁気検知部220は、第2磁気収束部材112のY軸方向に平行な中線に対して、第3磁気検知部230と線対称な位置に配置されることが好ましい。
 第1磁気検知部210は、Z軸方向から見た平面視で、第3磁気収束部材113の長手方向に沿った端辺に近接して配置される。より好ましくは、第1磁気検知部210の長辺方向に沿った一部分が、第3磁気収束部材113に覆われる。つまり、第1磁気検知部210と第3磁気収束部材113とが、Z軸方向から見た平面視で、少なくとも一部が重なり合ってよい。これは、第2磁気検知部220と第2磁気収束部材112との位置関係、及び第3磁気検知部230と第2磁気収束部材112との位置関係においても同様である。
 ここで、第2磁気収束部材112及び第3磁気収束部材113の間において、Y軸方向に直交する平面が、第2磁気収束部材112及び第3磁気収束部材113のいずれにも交差するY軸方向に沿った範囲を、範囲R1とする。即ち、第1方向から見て、第2磁気収束部材112及び第3磁気収束部材113が重なるY軸方向の範囲を範囲R1とする。
 第1磁気検知部210から第3磁気検知部230のそれぞれは、第1方向から見て、当該範囲R1内に少なくとも一部が配置され、当該範囲R1にある磁気検知部でX軸方向の磁場を感知することが好ましい。より好ましくは、第1磁気検知部210から第3磁気検知部230の全てが、Y軸方向に沿った範囲R1内に配置される。図1は、第1磁気検知部210から第3磁気検知部230が範囲R1内に配列され、同一形状で形成される例を示す。
 図2は、図1に示す磁気センサ100のA-A線の断面図の一例を示す。即ち、Y軸方向から見た平面視を示す。また、図3は、図1に示す磁気センサ100のB-B線の断面図の一例を示す。即ち、X軸方向から見た平面視である。図2及び図3は、基板20の一方の面である基板平面22に形成された磁気センサ100の一例を示す。ここで、基板平面22は、XY平面に略平行な面として形成される。
 基板20は、シリコン基板、化合物半導体基板、及びセラミック基板等のいずれであってもよい。また、基板20は、IC等の電子回路を搭載した基板であってもよい。基板20の基板平面22には、絶縁層30等が形成される。絶縁層30の上面は、XY平面に略平行な面として形成され、本例において第1平面32とする。
 第1磁気収束部材111から第4磁気収束部材114は、第1平面32に形成される。図2及び図3において、第1磁気収束部材111から第4磁気収束部材114は、Z軸方向に厚さをもち、第1平面32に重なる(交差する、または、接する)。また、第1磁気収束部材111から第4磁気収束部材114のそれぞれは、底面が第1平面32に接するように配置されてよく、また、それぞれの一部が第1平面32に交差するように配置されてもよい。また、第1磁気収束部材111から第4磁気収束部材114は、Z軸方向の厚さが略同一の厚さに形成される例を示すが、これに代えて、各々の厚さが不揃いであってもよい。
 第1磁気検知部210から第3磁気検知部230は、例えば、基板平面22に形成された絶縁層30の内部に形成される。即ち、第1磁気検知部210から第3磁気検知部230は、第1磁気収束部材111から第4磁気収束部材114及び基板20とはそれぞれ電気的に絶縁されて形成される。第1磁気検知部210から第3磁気検知部230は、絶縁層30のXY平面に略平行な第2平面34上に配置され、X軸方向の磁場にのみ感知するように形成される。
 第1磁気検知部210から第3磁気検知部230は、各々の底面が第2平面34に接するように配置されてよく、また、各々の一部が第2平面34に交差するように配置されてもよい。また、図2及び図3において、第1磁気検知部210から第3磁気検知部230は、Z軸方向の厚さが略同一の厚さに形成される例を示すが、これに代えて、各々の厚さが不揃いであってもよい。
 第1平面32及び第2平面34は、+Z軸方向において、基板平面22、第2平面34、及び第1平面32の順に配置されている。この場合、基板20の上に、X軸方向の磁場にのみ感知する磁気検知部を形成した後、次に、磁気収束部を形成する、というシンプルな手法を適用することができる。製造と性能の観点からこのような簡素な方法が好ましいが、これに限定されるものではない。以上の本実施形態の磁気センサ100は、第1磁気収束部110及び第2磁気収束部120と、第1磁気検知部210から第3磁気検知部230と、を備えることより、当該磁気センサ100に入力する磁場に対する各々の磁気検知部の感度を大きくする。
 図4は、本実施形態に係る磁気センサ100の+X軸方向に磁場Bを与えた場合の磁路の一例を示す。図4は、磁気センサ100の上面図(Z軸方向で見た平面視)を示す。また、図5は、図4に示す磁気センサ100のA-A線断面図(Y軸方向で見た平面視)の一例を示す。図4及び図5に示す磁気センサ100において、図1及び図2に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、図4に示すように、-X軸方向に突出した第1磁気収束部110の第1磁気収束部材111は、その近傍の空間に在る磁場を収束する。つまり、第1磁気収束部材111に近いXY平面の磁場だけでなく、第1磁気収束部材111に近いXZ平面の磁場も、第1磁気収束部材111に収束される。第1磁気収束部材111に収束された磁場は、第1磁気収束部材111に連結した第2磁気収束部材112を通って、第2磁気収束部材112から-X軸方向と+X軸方向とに放出される。このように、磁場Bのうち、第1磁気収束部材111に収束される磁場は、第2磁気収束部材112から-X軸方向と+X軸方向とに放出される。
 この場合、第2磁気収束部材112から-X軸方向に放出される磁場は、透磁率の高い第3磁気収束部材113が-X軸方向側にあるので、第2磁気収束部材112から+X軸方向に放出される磁場よりも大きくなる。第2磁気収束部材112から-X軸方向に放出される磁場は、第2磁気収束部材112及び第3磁気収束部材113の間にある第3磁気検知部230と第1磁気検知部210とを通って、第3磁気収束部材113に捕獲される。さらに、第3磁気収束部材113に捕獲される磁場は、第3磁気収束部材113に連結した第4磁気収束部材114を通って+X軸方向に放出される。また、第2磁気収束部材112から+X軸方向に放出される磁場は、第2磁気検知部220を通り抜ける。
 また、磁場Bのうち、第2磁気収束部120の第3磁気収束部材113に入力する磁場は、第3磁気収束部材113から+X軸方向に放出されるものと、第3磁気収束部材113に連結した第4磁気収束部材114を通って+X軸方向に放出されるものとに分けられる。この場合、入力した磁場は、透磁率の高い第4磁気収束部材114に収束されるので、第3磁気収束部材113から+X軸方向に放出される磁場は、第4磁気収束部材114を通って放出される磁場よりも小さくなる。
 第3磁気収束部材113から+X軸方向に放出される磁場は、第2磁気収束部材112及び第3磁気収束部材113の間にある第1磁気検知部210と第3磁気検知部230とを通って、第2磁気収束部材112に捕獲される。そして、第2磁気収束部材112に捕獲された磁場は、+X軸方向に放出され、第2磁気検知部220を通り抜ける。
 ここで、第1磁気収束部材111が-X軸方向に突出しているので、磁場Bのうち第1磁気収束部材111に入力する磁場は、磁場Bのうち第3磁気収束部材113に入力する磁場よりも大きい。したがって、第2磁気収束部材112から-X軸方向に放出される磁場は、第3磁気収束部材113に入力する磁場と比較して、より多くの磁場を収束する第1磁気収束部材111が源であるので、第3磁気収束部材113から+X軸方向に放出される磁場よりも大きい。即ち、第2磁気収束部材112から-X軸方向に放出される磁場と、第3磁気収束部材113から+X軸方向に放出される磁場との和として、第1磁気検知部210及び第3磁気検知部230は全体的に-X軸方向の磁場を感知する。
 また、第1磁気収束部材111に収束された後に第2磁気収束部材112から+X軸方向に放出される磁場と、第3磁気収束部材113から+X軸方向に放出される磁場との和として、第2磁気検知部220は全体的に+X軸方向の磁場を感知する。以上より、第1磁気検知部210から第3磁気検知部230は、+X軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。そして、第1磁気検知部210から第3磁気検知部230は、+X軸方向に入力する磁場Bの強度に比例する磁場強度をそれぞれ感知する。
 図6は、本実施形態に係る磁気センサ100の+Y軸方向に磁場Bを与えた場合の磁路の一例を示す。図6は、磁気センサ100の上面図(Z軸方向で見た平面視)を示す。また、図7は、図6に示す磁気センサ100のA-A線断面図(Y軸方向で見た平面視)の一例を示す。図6及び図7に示す磁気センサ100において、図1及び図2に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、図6に示すように、-Y軸方向に突出した第3磁気収束部材113は、その近傍の空間に在る磁場を収束する。また、第4磁気収束部材114に収束された磁場は、第3磁気収束部材113へと収束される。第3磁気収束部材113に収束された磁場は、第3磁気収束部材113から-X軸方向と+X軸方向とに放出される。この場合、第3磁気収束部材113から+X軸方向に放出される磁場は、透磁率の高い第2磁気収束部材112が+X軸方向側にあるので、第3磁気収束部材113から-X軸方向に放出される磁場よりも大きくなる。
 第3磁気収束部材113から+X軸方向に放出される磁場は、第2磁気収束部材112及び第3磁気収束部材113の間にある第1磁気検知部210と第3磁気検知部230とを通って、第2磁気収束部材112に捕獲される。さらに、第2磁気収束部材112に捕獲された磁場は、-X軸方向に第2磁気検知部220を通って第2磁気収束部材112に収束される磁場とともに、第2磁気収束部材112に連結した第1磁気収束部材111を通って放出される。
 したがって、第1磁気検知部210及び第3磁気検知部230は、第3磁気収束部材113から+X軸方向に放出される磁場に応じて、+X軸方向の磁場を感知する。また、第2磁気検知部220は、-X軸方向に第2磁気収束部材112に収束される磁場に応じて、-X軸方向の磁場を感知する。以上より、第1磁気検知部210から第3磁気検知部230は、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。そして、第1磁気検知部210から第3磁気検知部230は、+Y軸方向に入力する磁場Bの強度に比例する磁場強度をそれぞれ感知する。
 図8は、本実施形態に係る磁気センサ100の+Z軸方向に磁場Bを与えた場合の磁路の一例を示す。図8は、磁気センサ100の上面図(Z軸方向で見た平面視)を示す。また、図9は、図8に示す磁気センサ100のA-A線断面図(Y軸方向で見た平面視)の一例を示す。図8及び図9に示す磁気センサ100において、図1及び図2に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合、図8及び図9に示すように、磁場Bの一部は、-X軸方向に曲げられ、第1磁気検知部210を通って第3磁気収束部材113に収束され、そして放出される。また、磁場Bの一部は、+X軸方向に曲げられ、第3磁気検知部230を通って第2磁気収束部材112に収束され、そして放出される。また、磁場Bの一部は、-X軸方向に曲げられ、第2磁気検知部220を通って第2磁気収束部材112に収束され、そして放出される。また、磁場Bの一部は、+X軸方向に曲げられ、第3磁気収束部材113に収束され、そして放出される。
 このように、第1磁気検知部210は、第3磁気収束部材113が収束する磁場のうち、-X軸方向の磁場を感知する。また、第3磁気検知部230は、第2磁気収束部材112が収束する磁場のうち、+X軸方向の磁場を感知する。また、第2磁気検知部220は、第2磁気収束部材112が収束する磁場のうち、-X軸方向の磁場を感知する。
 したがって、第1磁気検知部210から第3磁気検知部230は、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。そして、第1磁気検知部210から第3磁気検知部230は、+Z軸方向に入力する磁場Bの強度に比例する磁場強度をそれぞれ感知する。
 以上の本実施形態の磁気センサ100において、第1磁気収束部110は、Z軸方向から見た平面視で、第1磁気収束部材111及び第2磁気収束部材112によるL字型の形状を有する。また同様に、第2磁気収束部120は、第3磁気収束部材113及び第4磁気収束部材114によるL字型の形状を有している。ここで、本実施形態において、L字型とは、L字形状の転置または鏡像も含む総称として用いている。
 ここで、例えば、第1磁気収束部材111が、Y軸方向から見て、第2磁気収束部材112の+X軸方向側の端よりも+X軸方向側に突出してもよい。即ち、第1磁気収束部110は、T字型の形状を有してもよい。この場合、第1磁気収束部材111が、第4磁気収束部材114の+X軸方向側の端よりも突出していなければ、図4から図9に示す磁場の流れ方(磁路)と大きな差異は生じない。また、例えば、第1磁気収束部材111の+Y軸方向側の端に他の磁気収束部材が接続したとしても、図4から図9に示す磁場の流れ方と大きな差異は生じない。
 図10は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、第1磁気検知部210から第3磁気検知部230が感知するX軸方向の磁場の一例を示す。図10に示す磁気センサ100において、図1に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、第1磁気検知部210及び第3磁気検知部230は、-X軸方向の磁場を感知する。また、第2磁気検知部220は、+X軸方向の磁場を感知する。磁気センサ100の+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210及び第3磁気検知部230は、+X軸方向の磁場を感知する。また、第2磁気検知部220は、-X軸方向の磁場を感知する。磁気センサ100の+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210及び第2磁気検知部220は、-X軸方向の磁場を感知する。また、第3磁気検知部230は、+X軸方向の磁場を感知する。
 このような磁気センサ100は、第1磁気収束部110及び第2磁気収束部120を用いて、入力される磁場の方向を磁気検知部の感磁軸方向に変換する。即ち、磁気センサ100は、磁場方向変換部として機能する第1磁気収束部110及び第2磁気収束部120を備える。言い換えると、磁気センサ100は、第1方向(+X軸方向)に磁場成分が入力された場合に、当該磁場成分を第1方向の第1磁場成分と第1方向と逆方向の第2磁場成分とにそれぞれ変換し、第1方向と異なる第2方向(+Y軸方向)に磁場成分が入力された場合に、当該磁場成分を第1方向の第3磁場成分と第1方向と逆方向の第4磁場成分とにそれぞれ変換する磁場方向変換部を備える。また、当該磁場方向変換部は、第1方向及び第2方向と異なる第3方向(+Z軸方向)に磁場成分が入力された場合に、当該磁場成分を第1方向の磁場成分と第1方向と逆方向の磁場成分とにそれぞれ変換する。
 この場合、第1磁気検知部210は、第1磁場成分及び第2磁場成分のうちの一方と、第3磁場成分及び第4磁場成分のうちの一方とを検知し、第2磁気検知部220は、第1磁場成分及び第2磁場成分のうちの他方と、第3磁場成分及び第4磁場成分のうちの他方とを検知してよい。この場合、第3磁気検知部230は、第1磁場成分及び第2磁場成分のうちの他方と、第3磁場成分及び第4磁場成分のうちの一方とを検知する。また、磁気センサ100は、さらに、第1磁場成分及び第2磁場成分のうちの一方と、第3磁場成分及び第4磁場成分のうちの他方とを検知する第4磁気検知部を備えてもよい。なお、第4磁気検知部については後に説明する。
 図11は、本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。配線部130は、メタル配線でよい。配線部130は、一例として、絶縁層30内部に形成され、第1磁気検知部210から第3磁気検知部230に接続される。配線部130は、第2平面34上に形成されてよく、これに代えて、絶縁層30内の異なる平面に形成されてよい。配線部130は、異なる平面間を電気的に接続するように形成されてよい。配線部130は、第2平面34上に形成されてよく、これに代えて、絶縁層30内の異なる平面に形成されてよい。配線部130は、異なる平面間を電気的に接続するように形成されてよい。
 配線部130は、図11において矩形で示される端子に接続され、当該端子と磁気検知部とを電気的に接続する。より具体的には、配線部130は、第1磁気検知部210から第3磁気検知部230と端子Sとをそれぞれ接続する。また、配線部130は、第1磁気検知部210と端子A、第2磁気検知部220と端子B、及び第3磁気検知部230と端子Cを、それぞれ接続する。
 端子A、B、C、及び端子Sは、金属で形成され、外部と電気的に接続され、外部と電気信号、電源電圧、及び/または基準電位等を授受する。端子A、B、C、及び端子Sは、第1平面32に形成されてよく、これに代えて、絶縁層30の内部に形成され、当該絶縁層30の一部がエッチング等によって加工され、外部に露出するように形成されてもよい。端子A、B、C、及び端子Sは、配線部130の一部であってもよい。
 端子A-S間、B-S間、及びC-S間の磁気抵抗をR、R、及びRとすると、それぞれの磁気抵抗は次式のように算出できる。
 (数1)
 R=R-ΔR+ΔR-ΔR
 (数2)
 R=R+ΔR-ΔR-ΔR
 (数3)
 R=R-ΔR+ΔR+ΔR
 ここで、Rは磁場のない場合の磁気抵抗素子の抵抗値、ΔRは+X軸方向の磁場Bに応じた抵抗変化量、ΔRは+Y軸方向の磁場Bに応じた抵抗変化量、ΔRは+Z軸方向の磁場Bに応じた抵抗変化量である。(数1)から(数3)式の磁気抵抗は、いずれも3軸成分の磁場に応じた抵抗変化量ΔR、ΔR、及びΔRが含まれる。ΔR、ΔR、及びΔRの符号は、図10に示したように、第1磁気検知部210から第3磁気検知部230を横切るX軸方向の磁場の向きに対応する。
 (数3)-(数2)式、(数1)-(数2)式より、次式を得る。
 (数4)
 SCB=R-R=2(-ΔR+ΔR+ΔR
 (数5)
 SAB=R-R=2(-ΔR+ΔR
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号を分離することなく、混在したままの出力信号として取り出せることが理解できる。つまり、本実施形態の磁気センサ100は、少なくとも基板に垂直な磁場と平行な磁場とを混合した磁場を検知する。ここで、磁気センサ100は、検知した結果から各磁場成分を分離することもできる。
 例えば、(数5)式を算出することで、混合した各磁場成分から基板に平行な磁場成分を分離することができる。また、(数4)式から(数5)式を減算すれば、混合した各磁場成分から基板に垂直な磁場成分を分離することができる。また、(数3)式から(数1)式を減算しても、基板に垂直な磁場成分を分離することができる。
 ここで、磁気センサ100は、第2磁気収束部材112及び第3磁気収束部材113の間に、磁気検知部が少なくとも1つ配置されていれば、基板に平行な磁場成分を取得することができる。磁気センサ100は、例えば、第3磁気検知部230を省略して、第1磁気検知部210及び第2磁気検知部220を備えることで、(数1)及び(数2)式の出力信号を取得し、(数5)式に相当する出力信号を得ることができる。
 また、磁気センサ100は、第1磁気検知部210を省略して、第2磁気検知部220及び第3磁気検知部230を備えることで、(数2)及び(数3)式の出力信号を取得し、(数4)式に相当する出力信号を得ることができる。また、磁気センサ100は、第2磁気検知部220を省略して、第1磁気検知部210及び第3磁気検知部230を備えることで、(数1)及び(数3)式の出力信号を取得し、減算することで基板に垂直な成分を取得することができる。
 図11において、配線部130は、メタル配線であることを説明したが、これに代えて、磁気検知部と同一材料の配線でもよく、また、両者の配線が混在してもよい。また、図11に示すように、第1磁気検知部210から第3磁気検知部230の一方の端子を電気的に1点に結合して端子Sに接続することは、出力端子数を減らすことができるので、より好ましい形態であるが、これに代えて、第1磁気検知部210から第3磁気検知部230の一方の端子を各々出力端子に接続してもよい。
 図12は、本実施形態に係る磁気センサ100に接続される回路構成の一例を示す。図12において、磁気収束部の記載は省略する。
 端子Sは、第1電位が与えられる。第1電位は、グラウンド電位でよい。また、端子Aには第1定電流源310の一方の端子、端子Bには第2定電流源312の一方の端子、端子Cには第3定電流源314の一方の端子がそれぞれ電気的に接続される。また、第1定電流源310から第3定電流源314の他方の端子は、電気的に1点に結合されて、第2電位が与えられる。第2電位は、予め定められた電源電位でよい。
 第1磁気検知部210から第3磁気検知部230は、一例として、各々に接続された端子A、B、及びCを通して、第1定電流源310から第3定電流源314で生成される予め定められた大きさIの定電流がそれぞれ供給される。これにより、端子A-S間に生じる電圧VASは、VAS=I=I(R-ΔR+ΔR-ΔR)となり、(数1)式にIを掛けた信号が得られる。同様に、端子B-S間、C-S間の各々に生じる電圧VBS及びVCSは、各々(数2)、(数3)式にIを掛けた信号が得られる。
 そして、電圧VCSと電圧VBSとで得られる差分電圧VCBは、VCB=VCS-VBS=ICB=2I(-ΔR+ΔR+ΔR)となり、(数4)式にIを掛けた信号が得られる。同様に、電圧VASと電圧VBSとで得られる差分電圧VABは、(数5)式にIを掛けた信号が得られる。
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号を分離することなく、混在したままの出力信号を取り出すことができる。ここで、第3磁気検知部230を省略しても、図11の説明と同様に、磁気センサ100は、(数5)式にIを掛けた信号を得ることができる。
 図12において、第1磁気検知部210から第3磁気検知部230は、第1定電流源310から第3定電流源314が接続され、電流が供給される例を説明した。これに代えて、例えば、端子A、B、及びCの各々にスイッチを設け、共通の定電流源からスイッチを切替えて各々の磁気検知部に電流を供給してもよい。これにより、定電流源の個数を低減させることができる。
 以上より、本実施形態の磁気センサ100は、任意の方向の磁場(即ち、磁場のX、Y、及びZ軸成分の合成で表される入力磁場)に反応することが可能である。即ち、磁気センサ100は、検出すべき磁場の方向に対応して配置することなく、任意の方向の磁場を検出することができるので、機器の設計の自由度を向上させ、機器のさらなる小型化や省スペース化を実現することができる。さらには、小型、低消費電力、高感度及び高精度で、直交する3軸成分の磁気信号を分離することなく混在したまま出力するようにした磁気センサを実現することができる。
 図13は、本実施形態に係る磁気センサ100の第2の構成例(Z軸方向で見た平面視)を示す。また、図14は、図13に示す磁気センサ100のA-A線の断面図(Y軸方向で見た平面視)の一例を示す。図13及び図14に示す磁気センサ100において、図1及び図2に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 図13に示す第2の構成例の磁気センサ100は、第1の構成例の磁気センサ100と同様に、1つの第1磁気検知ユニット10を備える。第1磁気検知ユニット10は、基板平面22に対して略平行な第2平面34上に形成された第1磁気検知部210から第4磁気検知部240と、基板平面22に対して略平行な第1平面32上に形成された第1磁気収束部材111及び第2磁気収束部材112を有する第1磁気収束部110と、第3磁気収束部材113から第5磁気収束部材115を有する第2磁気収束部120と、を有する。つまり、第2の構成例の磁気センサ100は、図1に示した第1の構成例の磁気センサ100に、第5磁気収束部材115と、第4磁気検知部240とをさらに備える。
 第2磁気収束部120は、第4磁気収束部材114の第1方向の正側の端部に接続されて第2方向の正側に延伸する第5磁気収束部材115をさらに備える。第5磁気収束部材115は、第3磁気収束部材113と第5磁気収束部材115とで第2磁気収束部材112を挟むように配置される。即ち、第2磁気検知部220は、第2磁気収束部材112と第5磁気収束部材との間に配置されることになる。第5磁気収束部材115は、第1磁気収束部材111から第4磁気収束部材114と同様の材料で形成されてよい。
 第2磁気収束部材112、第3磁気収束部材113、及び第5磁気収束部材115は、互いにY軸方向に略平行となるように、第3磁気収束部材113、第2磁気収束部材112、第5磁気収束部材115の順で-X軸方向側から+X軸方向側に並び、Z軸方向から見た平面視で、隣り合う2つの一方に対して他方が長手方向(Y軸方向)にずれて配置される。別の言い方をすれば、第2磁気収束部材112、第3磁気収束部材113、及び第5磁気収束部材115は、Y軸方向に延伸し、第3磁気収束部材113及び第5磁気収束部材115の-Y軸方向側の端が、第2磁気収束部材112の-Y軸方向側の端よりも-Y軸方向に突出するように配置される。また、第2磁気収束部材112の+Y軸方向側の端が、第3磁気収束部材113及び第5磁気収束部材115の+Y軸方向側の端よりも+Y軸方向側に突出するように配置される。
 第5磁気収束部材115は、第2磁気収束部材112及び第3磁気収束部材113と同様に、Z軸方向に厚さをもち、第1平面32に重なる(交差する、或いは、接する)。また、第5磁気収束部材115は、磁気収束部材の形状がY軸方向に長手方向をもった矩形であり、Y軸方向に平行な向きに配置される。第5磁気収束部材115の形状は、矩形に限らず、Y軸方向に略平行な向きに長手方向をもつ四角形、平行四辺形、台形のいずれであってもよい。また、図13において、第5磁気収束部材115は、Y軸方向に平行な長辺が第2磁気収束部材112及び第3磁気収束部材113と略同一の長さを有する例を示すが、これに代えて、各々の長辺が異なる長さであってもよい。
 また、第5磁気収束部材115は、X軸方向に平行な各々の短辺が第2磁気収束部材112及び第3磁気収束部材113と同一の長さを有する例を示すが、各々の短辺が異なる長さであってもよい。また、第5磁気収束部材115は、底面が第1平面32に接するように配置される例を示すが、底面の一部が第1平面32に交差するように配置されてもよい。また、第2磁気収束部材112、第3磁気収束部材113、及び第5磁気収束部材115のZ軸方向の厚さを略同一にした例を示すが、これに代えて、各々の厚さが不揃いであってもよい。
 第4磁気検知部240は、第2磁気収束部材112と第5磁気収束部材115との間に配置される。ここで、第2磁気検知部220は、第5磁気収束部材115よりも第2磁気収束部材112までの距離が小さく、第4磁気検知部240は、第2磁気収束部材112よりも第5磁気収束部材115までの距離が小さく配置される。
 第4磁気検知部240は、第1磁気検知部210から第3磁気検知部230と同様に、基板平面22に対して平行なX軸方向の磁場を感知する感磁軸を有しており、Y軸方向及びZ軸方向の磁場には感知しない。第4磁気検知部240は、第2平面34上に配置され、X軸方向の磁場にのみ感知するように形成される。別の言い方をすると、第4磁気検知部240は、磁気収束部等の無い状態でX軸方向に感磁軸を有する。第4磁気検知部240は、第1磁気検知部210から第3磁気検知部230と同様の材料で形成されてよい。また、第4磁気検知部240は、第1磁気検知部210から第3磁気検知部230と同様に、+X軸方向の磁場が入力すると、抵抗値が増加し、-X軸方向の磁場が入力すると、抵抗値が減少するように形成される。
 また、第4磁気検知部240は、平板状であることが好ましい。第2平面34に重なる第4磁気検知部240の形状は、Z軸方向から見た平面視で、矩形がより好ましい形状であるが、これに代えて、例えば、四角形、正方形、平行四辺形、台形、三角形、多角形、円形、楕円形のいずれであってもよい。第4磁気検知部240は、Y軸方向に小分けに分割区分された複数の磁気検知部を有してよい。この場合、分割区分された複数の磁気検知部は、1かたまりの磁気検知部として機能するようにメタル配線等で接続される。言い換えると、例えば、第4磁気検知部240は、単一の磁気検知部に限らず、2つ以上の磁気検知部をメタル配線で直列に接続して形成されてもよい。
 また、第4磁気検知部240は、底面が第2平面34に接するように配置されているが、底面の一部が第2平面34に交差するように配置されてもよい。また、図14において、第1磁気検知部210から第4磁気検知部240のZ軸方向の厚さを略同一に示しているが、これに代えて、各々の厚さが不揃いであってもよい。
 Z軸方向から見た平面視で、第2磁気収束部材112の形状及び第5磁気収束部材115の形状が、互いに最も近くなる辺の中間となる線を仮想中線D-Dとすると、第2磁気検知部220は、仮想中線D-Dよりも、第2磁気収束部材112寄りに在るように配置される。また、第4磁気検知部240は、仮想中線D-Dよりも、第5磁気収束部材115寄りに在るように配置される。また、第2磁気検知部220及び第4磁気検知部240は、第2磁気収束部材112のY軸方向に平行な中線に対して、第3磁気検知部230及び第1磁気検知部210と線対称な位置に配置されることが好ましい。
 第4磁気検知部240は、Z軸方向から見た平面視で、第5磁気収束部材115の長手方向に沿った端辺に近接して配置される。より好ましくは、第4磁気検知部240の長辺方向に沿った一部分が、第5磁気収束部材115に覆われる。つまり、第4磁気検知部240と第5磁気収束部材115とが、Z軸方向から見た平面視で、少なくとも一部が重なり合ってよい。
 ここで、第2磁気収束部材112及び第5磁気収束部材115の間において、Y軸方向に直交する平面が、第2磁気収束部材112及び第5磁気収束部材115のいずれにも交差するY軸方向に沿った範囲を、範囲R2とする。即ち、第1方向から見て、第2磁気収束部材112及び第5磁気収束部材115が重なるY軸方向の範囲を範囲R2とする。
 第2磁気検知部220及び第4磁気検知部240のそれぞれは、第1方向から見て、当該範囲R2内に少なくとも一部が配置され、当該範囲R2にある磁気検知部でX軸方向の磁場を感知することが好ましい。より好ましくは、第2磁気検知部220及び第4磁気検知部240の全てが、Y軸方向に沿った範囲R2内に配置される。図13は、第2磁気検知部220及び第4磁気検知部240が範囲R2内に配列され、同一形状で形成される例を示す。
 また、図13は、第1磁気検知部210及び第3磁気検知部230が範囲R1内に配列され、同一形状で形成される例を示す。より好ましくは、範囲R1及び範囲R2が略同一の範囲であり、第1磁気検知部210から第4磁気検知部240が範囲R1及びR2内に配列され、同一形状で形成される。
 図15は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、第1磁気検知部210から第4磁気検知部240が感知するX軸方向の磁場の一例を示す。図15に示す磁気センサ100において、図13に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。また、第2の構成例の磁気センサ100は、第1の構成例の磁気センサ100が第5磁気収束部材115及び第4磁気検知部240を備えた構成なので、磁場B、B、及びBが入力された場合の磁路は、図4から図9とほぼ同じであり、略同一の動作については説明を省略する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bは、-X軸方向に突出した第1磁気収束部材111に収束される。第1磁気収束部材111に収束された磁場は、第1磁気収束部材111に連結した第2磁気収束部材112を通って、第2磁気収束部材112から-X軸方向と+X軸方向とに放出される。第2磁気収束部材112から-X軸方向に放出される磁場は、第2磁気収束部材112及び第3磁気収束部材113の間にある第3磁気検知部230と第1磁気検知部210とを通って、第3磁気収束部材113に捕獲される。さらに、第3磁気収束部材113に捕獲される磁場は、第3磁気収束部材113に連結した第4磁気収束部材114を通って放出される。
 また、第2磁気収束部材112から+X軸方向に放出される磁場は、第2磁気収束部材112及び第5磁気収束部材115の間にある第2磁気検知部220と第4磁気検知部240とを通って、第5磁気収束部材115に捕獲され、そして放出される。このように、第1磁気検知部210から第4磁気検知部240は、+X軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。以上より、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210及び第3磁気検知部230は、-X軸方向の磁場を感知する。また、第2磁気検知部220及び第4磁気検知部240は、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bは、-Y軸方向に突出した第2磁気収束部120の第3磁気収束部材113及び第5磁気収束部材115にそれぞれ収束される。第3磁気収束部材113に収束された磁場は、第3磁気収束部材113から+X軸方向に放出される。第3磁気収束部材113から+X軸方向に放出される磁場は、第2磁気収束部材112及び第3磁気収束部材113の間にある第1磁気検知部210と第3磁気検知部230とを通って、第2磁気収束部材112に捕獲される。
 また、第5磁気収束部材115に収束された磁場は、第5磁気収束部材115から-X軸方向に放出される。第5磁気収束部材115から-X軸方向に放出される磁場は、第2磁気収束部材112及び第5磁気収束部材115の間にある第4磁気検知部240と第2磁気検知部220とを通って、第2磁気収束部材112に捕獲される。第2磁気収束部材112に捕獲される磁場は、第2磁気収束部材112に連結した第1磁気収束部材111を通って放出される。
 このように、第1磁気検知部210から第4磁気検知部240は、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。以上より、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210及び第3磁気検知部230は、+X軸方向の磁場を感知する。また、第2磁気検知部220及び第4磁気検知部240は、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合、磁場Bの一部は、-X軸方向に第1磁気検知部210を通って第3磁気収束部材113に収束され、そして放出される。また、磁場Bの一部は、+X軸方向に第3磁気検知部230を通って第2磁気収束部材112に収束され、そして放出される。また、磁場Bの一部は、-X軸方向に第2磁気検知部220を通って第2磁気収束部材112に収束され、そして放出される。また、磁場Bの一部は、+X軸方向に第4磁気検知部240を通って第5磁気収束部材115に収束され、そして放出される。
 このように、第1磁気検知部210から第4磁気検知部240は、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。以上より、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210及び第2磁気検知部220は、-X軸方向の磁場を感知する。また、第3磁気検知部230及び第4磁気検知部240は、+X軸方向の磁場を感知する。
 図16は、本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。図16に示す磁気センサ100において、図11、図13、及び図15に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 配線部130は、第1磁気検知部210から第3磁気検知部230と同様に、第4磁気検知部240と端子Sとを電気的に接続する。また、配線部130は、第4磁気検知部240と端子Dとを電気的に接続する。端子Dは、端子A、B、C、及び端子Sと同様に、略同一の平面に略同一の材料で形成されてよい。
 端子A-S間、B-S間、C-S間、及びD-S間の磁気抵抗をR、R、R、及びRとすると、それぞれの磁気抵抗は次式のように算出できる。
 (数6)
 R=R-ΔR+ΔR-ΔR
 (数7)
 R=R+ΔR-ΔR-ΔR
 (数8)
 R=R-ΔR+ΔR+ΔR
 (数9)
 R=R+ΔR-ΔR+ΔR
 (数6)から(数9)式の磁気抵抗は、いずれも3軸成分の磁場に応じた抵抗変化量ΔR、ΔR、及びΔRが含まれる。ΔR、ΔR、及びΔRの符号は、図15に示したように、第1磁気検知部210から第4磁気検知部240を横切るX軸方向の磁場の向きに対応する。
 (数8)-(数7)式、及び(数6)-(数9)式より、次式を得る。
 (数10)
 SCB=R-R=2(-ΔR+ΔR+ΔR
 (数11)
 SAD=R-R=2(-ΔR+ΔR-ΔR
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号を分離することなく混在したままの出力信号が取り出せることが理解できる。つまり、第2の構成例の磁気センサ100は、少なくとも基板に垂直な磁場と平行な磁場とを混合して各磁場成分を分離可能な状態で検知できる。そして、(数10)と(数11)式を加算すれば、混合した各磁場成分から基板に平行な磁場成分を分離でき、(数10)から(数11)式を減算すれば、混合した各磁場成分から基板に垂直な磁場成分を分離できる。
 また、磁気センサ100は、第2磁気収束部材112及び第3磁気収束部材113の間と、第2磁気収束部材112及び第5磁気収束部材115の間に、それぞれ磁気検知部が少なくとも1つ配置した構成にしてもよい。例えば、第2磁気収束部材112及び第3磁気収束部材113の間に、第1磁気検知部210を設ければ、(数6)式の出力信号が得られ、さらに第2磁気収束部材112及び第5磁気収束部材115の間に、第4磁気検知部240を設ければ、(数9)式の出力信号が得られ、(数11)式に相当する出力信号を得ることができる。同様に、磁気センサ100は、第2磁気検知部220及び第3磁気検知部230を設けることで、(数7)及び(数8)式の出力信号を取得し、(数10)式に相当する出力信号を得ることができる。
 磁気センサ100は、図12の説明と同様に、端子A、B、C、D、及び端子Sに回路が接続される。より具体的には、端子Sは、第1電位が与えられる。また、出力端子A、B、C、Dは、それぞれ対応する定電流源の一方の端子に各々に接続される。また、対応するそれぞれの定電流源の他方の端子は、電気的に1点に結合されて、第2電位が与えられる。この場合において、定電流源とスイッチを組み合わせて、定電流源の数を低減させてもよい。
 第1磁気検知部210から第4磁気検知部240は、一例として、各々に接続された端子A、B、C、及びDを通して、対応する定電流源で生成される予め定められた大きさIの定電流がそれぞれ供給される。これにより、例えば、出力端子A-S間に生じる電圧VASは、VAS=I=I(R-ΔR+ΔR-ΔR)となり、(数6)式にIを掛けた信号が得られる。同様に、出力端子B-S間、C-S間、及びD-S間の各々に生じる電圧VBS、VCS、及びVDSは、各々(数7)、(数8)、及び(数9)式にIを掛けた信号として得られる。
 そして、電圧VCSと電圧VBSとで得られる差分電圧VCBは、VCB=VCS-VBS=ICB=2I(-ΔR+ΔR+ΔR)となり、(数10)式にIを掛けた信号として得られる。同様に、電圧VASと電圧VDSとで得られる差分電圧VADは、(数11)式にIを掛けた信号として得られる。
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号を分離することなく混在したままの出力信号を取り出すことができる。ここで、第2磁気検知部220及び第3磁気検知部230を省略しても、磁気センサ100は、(数11)式にIを掛けた信号を得ることができる。また、第1磁気検知部210及び第4磁気検知部240を省略しても、磁気センサ100は、(数10)式にIを掛けた信号を得ることができる。
 図17は、本実施形態に係る磁気センサ100の第3の構成例(Z軸方向で見た平面視)を示す。図18は、図17に示す磁気センサ100のA-A線の断面図(Y軸方向で見た平面視)の一例を示す。図17及び図18に示す磁気センサ100において、図1及び図2に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第3の構成例の磁気センサ100は、第1磁気収束部材111の第1方向の負側の端部で第1方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10bをさらに備える。即ち、図1及び図2で説明した第1磁気検知ユニット10を、図17において、第1磁気検知ユニット10aとして示し、当該第1磁気検知ユニット10aの鏡像となるように、第2磁気検知ユニット10bを示す。
 第3の構成例の磁気センサ100は、第2平面34上に形成された第1磁気検知ユニット10aの3つの磁気検知部と、当該3つの磁気検知部に対応する第2磁気検知ユニット10bの3つの磁気検知部と、第1平面32上に形成された第1磁気検知ユニット10aの磁気収束部材と、当該磁気収束部材に対応する第2磁気検知ユニット10bの磁気収束部材と、を備える。
 なお、図17において、第1磁気収束部材111は、第1磁気検知ユニット10a及び第2磁気検知ユニット10bにおいて境界がなく、共通の磁気収束部材として形成される例を示す。即ち、第1磁気収束部110は、共通の第1磁気収束部材111と、第1磁気検知ユニット10a側に配置される第2磁気収束部材112aと、第2磁気検知ユニット10b側に配置される第7磁気収束部材112bと、を有する。
 また、第1磁気検知ユニット10aの第2磁気収束部120aは、第3磁気収束部材113a及び第4磁気収束部材114aを有し、当該第2磁気収束部120aに対応する第2磁気検知ユニット10bの第4磁気収束部120bは、第8磁気収束部材113b及び第9磁気収束部材114bを有する。また、第1磁気検知ユニット10aは、第1磁気検知部210aから第3磁気検知部230aを有し、第1磁気検知ユニット10aに対応する第2磁気検知ユニット10bは、第5磁気検知部210bから第7磁気検知部230bを備える。第3の構成例の磁気センサ100は、磁気検知ユニットを複数有するセンサの一例である。
 第1磁気検知ユニット10aは、図1で説明した第1磁気検知ユニット10と略同一の配置パターンであるので、説明は省略する。第2磁気検知ユニット10bの配置パターンは、第1磁気検知ユニット10aと等距離に位置する点Qを含む基板平面に垂直なYZ平面に、面対称な位置関係となるように配置される。ここで、第1磁気検知ユニット10a及び第2磁気検知ユニット10bは、予め定められた距離だけ離間され、第1平面32及び第2平面34に配置される。第2磁気検知ユニット10bが有する磁気収束部材及び磁気検知部は、第1磁気検知ユニット10aが有する磁気収束部材及び磁気検知部にそれぞれ対応し、形状及び材質も略同一に形成されてよい。
 図19は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図19に示す磁気センサ100において、図17に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 また、第3の構成例の磁気センサ100のうち、第1磁気検知ユニット10aは、第1の構成例の磁気センサ100の第1磁気検知ユニット10と略同一の構成なので、磁場B、B、及びBが入力された場合の磁路も、図4から図9と同様となる。第2磁気検知ユニット10bに磁場B、B、及びBが入力された場合の磁路は、次に説明する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bの一部は、-X軸方向に突出した第4磁気収束部120bの第9磁気収束部材114bに収束される。第9磁気収束部材114bに収束された磁場は、第9磁気収束部材114bに連結した第8磁気収束部材113bを通って、第8磁気収束部材113bから-X軸方向に放出される。第8磁気収束部材113bから-X軸方向に放出される磁場は、第7磁気収束部材112b及び第8磁気収束部材113bの間にある第5磁気検知部210bと第7磁気検知部230bとを通って、第7磁気収束部材112bに捕獲される。
 また、磁場Bの一部は、+X軸方向に進んで第6磁気検知部220bを通り、第7磁気検知部112bに捕獲される。第7磁気収束部材112bに捕獲される磁場は、第7磁気収束部材112bに連結した第1磁気収束部材111と、第1磁気収束部材111に連結した第2磁気収束部材112aとを通って、第2磁気収束部材112aから-X軸方向と+X軸方向とに放出される。第2磁気収束部材112aから-X軸方向に放出される磁場は、第2磁気収束部材112a及び第3磁気収束部材113aの間にある第3磁気検知部230aと第1磁気検知部210aとを通って、第3磁気収束部材113aに捕獲される。
 第3磁気収束部材113aに捕獲される磁場は、第3磁気収束部材113aに連結した第4磁気収束部材114aを通って放出される。また、第2磁気収束部材112aから+X軸方向に放出される磁場は、第2磁気検知部220aを通り抜ける。このように、第1磁気検知部210aから第3磁気検知部230a及び第5磁気検知部210bから第7磁気検知部230bは、+X軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第5磁気検知部210b、及び第7磁気検知部230bは、-X軸方向の磁場を感知する。また、第2磁気検知部220a及び第6磁気検知部220bは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bの一部は、-Y軸方向に突出した第2磁気収束部120aの第3磁気収束部材113aに収束される。第3磁気収束部材113aに収束された磁場は、第3磁気収束部材113aから+X軸方向に放出される。第3磁気収束部材113aから+X軸方向に放出される磁場は、第2磁気収束部材112a及び第3磁気収束部材113aの間にある第1磁気検知部210aと第3磁気検知部230aとを通って、第2磁気収束部材112aに捕獲される。また、磁場Bの一部は、-X軸方向に第2磁気検知部220aを通って第2磁気収束部材112aに捕獲される。第2磁気収束部材112aに捕獲される磁場は、第2磁気収束部材112aに連結した第1磁気収束部材111を通って放出される。
 同様に、磁場Bの一部は、-Y軸方向に突出した第4磁気収束部120bの第8磁気収束部材113bに収束される。第8磁気収束部材113bに収束された磁場は、第8磁気収束部材113bから-X軸方向に放出される。第8磁気収束部材113bから-X軸方向に放出される磁場は、第7磁気収束部材112b及び第8磁気収束部材113bの間にある第5磁気検知部210bと第7磁気検知部230bとを通って、第7磁気収束部材112bに捕獲される。
 また、磁場Bの一部は、+X軸方向に第6磁気検知部220bを通って、第7磁気収束部材112bに捕獲される。第7磁気収束部材112bに捕獲される磁場は、第7磁気収束部材112bに連結した第1磁気収束部材111を通って放出される。このように、第1磁気検知部210aから第3磁気検知部230a及び第5磁気検知部210bから第7磁気検知部230bは、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、及び第6磁気検知部220bは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第5磁気検知部210b、及び第7磁気検知部230bは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合、磁場Bの一部は、-X軸方向に第1磁気検知部210aを通って第3磁気収束部材113aに収束され、そして放出される。また、磁場Bの一部は、-X軸方向に第2磁気検知部220aを通って第2磁気収束部材112aに収束され、そして放出される。また、磁場Bの一部は、+X軸方向に第3磁気検知部230aを通って第2磁気収束部材112aに収束され、そして放出される。
 また、磁場Bの一部は、+X軸方向に第5磁気検知部210bを通って第8磁気収束部材113bに収束され、そして放出される。また、磁場Bの一部は、+X軸方向に第6磁気検知部220bを通って第7磁気収束部材112bに収束され、そして放出される。また、磁場Bの一部は、-X軸方向に第7磁気検知部230bを通って第7磁気収束部材112bに収束され、そして放出される。このように、第1磁気検知部210aから第3磁気検知部230a及び第5磁気検知部210bから第7磁気検知部230bは、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、及び第7磁気検知部230bは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第5磁気検知部210b、及び第6磁気検知部220bは、+X軸方向の磁場を感知する。
 図20は、本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。図20に示す磁気センサ100において、図11、図17、及び図19に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 配線部130は、第1磁気検知部210aから第3磁気検知部230aと同様に、第5磁気検知部210bから第7磁気検知部230bを端子Sにそれぞれ接続する。また、配線部130は、第5磁気検知部210bから第7磁気検知部230bと、端子E、F、及びGとを1対1に対応させてそれぞれ電気的に接続する。端子E、F、及びGは、端子A、B、C、及び端子Sと同様に、略同一の平面に略同一の材料で形成されてよい。
 端子A-S間、B-S間、C-S間、E-S間、F-S間、及びG-S間の磁気抵抗をR、R、R、R、R、Rとすると、それぞれの磁気抵抗は次式のように算出できる。
 (数12)
 R=R-ΔR+ΔR-ΔR
 (数13)
 R=R+ΔR-ΔR-ΔR
 (数14)
 R=R-ΔR+ΔR+ΔR
 (数15)
 R=R-ΔR-ΔR+ΔR
 (数16)
 R=R+ΔR+ΔR+ΔR
 (数17)
 R=R-ΔR-ΔR-ΔR
 (数12)から(数17)式の磁気抵抗は、いずれも3軸成分の磁場に応じた抵抗変化量ΔR、ΔR、及びΔRが含まれる。ΔR、ΔR、及びΔRの符号は、図19に示したように、第1磁気検知部210aから第3磁気検知部230a及び第5磁気検知部210bから第7磁気検知部230bを横切るX軸方向の磁場の向きに対応する。
 (数14)-(数13)式、(数12)-(数13)式、(数17)-(数16)式、及び(数15)-(数16)式より、次式を得る。
 (数18)
 SCB=R-R=2(-ΔR+ΔR+ΔR
 (数19)
 SAB=R-R=2(-ΔR+ΔR
 (数20)
 SGF=R-R=2(-ΔR-ΔR-ΔR
 (数21)
 SEF=R-R=2(-ΔR-ΔR
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号を分離することなく混在したままの出力信号が取り出せることが理解できる。つまり、第3の構成例の磁気センサ100は、少なくとも基板に垂直な磁場と平行な磁場とを混合して各磁場成分を分離可能な状態で検知できる。そして、(数19)または(数21)式より、混合した各磁場成分から基板に平行な磁場成分を分離でき、(数18)から(数19)式を減算、または、(数20)から(数21)式を減算することで、混合した各磁場成分から基板に垂直な磁場成分を分離できる。
 また、磁気センサ100は、第2磁気収束部材112a及び第3磁気収束部材113aの間と、第7磁気収束部材112b及び第8磁気収束部材113bの間の少なくとも一方において、磁気検知部を1つに配置した構成にしてもよい。例えば、第2磁気収束部材112a及び第3磁気収束部材113aの間に、第3磁気検知部230aを設ければ、(数14)式の出力信号が得られ、さらに第2磁気検知部220aを設ければ、(数18)式の出力信号が得られる。
 なお、さらに、(数18)-(数19)式、-(数20)+(数21)式、-(数19)-(数21)式、及び(数19)-(数21)式を計算することにより、次式を得る。
 (数22)
 2ΔR=SCB-SAB
 (数23)
 2ΔR=-SGF+SEF
 (数24)
 4ΔR=-SAB-SEF
 (数25)
 4ΔR=SAB-SEF
 このように、各軸の磁場に応じた抵抗変化量に相当する出力信号が取り出せることが理解できる。この場合、第2磁気収束部材112a及び第3磁気収束部材113aの間と、第7磁気収束部材112b及び第8磁気収束部材113bの間と、のいずれか一方に、磁気検知部を2つ以上配置することによって、(数22)と(数24)と(数25)式、または(数23)と(数24)と(数25)式のいずれか一方を取得することができる。なお、ここで得た各軸の磁場に応じた抵抗変化量に相当する出力信号を取得する式の展開は、一例であって、この限りではない。
 磁気センサ100は、図12の説明と同様に、端子A、B、C、E、F、G、及び端子Sに回路が接続される。より具体的には、端子Sは、第1電位が与えられる。また、端子A、B、C、E、F、及びGは、それぞれ対応する定電流源の一方の端子に各々に接続される。また、対応するそれぞれの定電流源の他方の端子は、電気的に1点に結合されて、第2電位が与えられる。この場合において、定電流源とスイッチを組み合わせることで、定電流源の数を低減させてもよい。
 第1磁気検知部210aから第3磁気検知部230a及び第5磁気検知部210bから第7磁気検知部230bは、一例として、各々に接続された端子A、B、C、E、F、及びGを通して、対応する定電流源で生成される予め定められた大きさIの定電流がそれぞれ供給される。これにより、例えば、端子A-S間に生じる電圧VASは、VAS=I=I(R-ΔR+ΔR-ΔR)となり、(数12)式にIを掛けた信号が得られる。同様に、端子B-S間、C-S間、E-S間、F-S間、及びG-S間の各々に生じる電圧VBS、VCS、VES、VFS、及びVGSは、各々(数13)から(数17)式にIを掛けた信号が得られる。
 また、電圧VCSと電圧VBSとで得られる差分電圧VCBは、VCB=VCS-VBS=ICB=2I(-ΔR+ΔR+ΔR)となり、(数18)式にIを掛けた信号が得られる。同様に、電圧VASと電圧VBSとで得られる差分電圧VABと、電圧VGSと電圧VFSとで得られる差分電圧VGFと、電圧VESと電圧VFSとで得られる差分電圧VEFと、は、各々(数19)、(数20)、及び(数21)式にIを掛けた信号として得られる。
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号を分離することなく混在したままの出力信号を取り出すことができる。ここで、磁気センサ100は、第2磁気収束部材112a及び第3磁気収束部材113aの間と、第7磁気収束部材112b及び第8磁気収束部材113bの間の少なくとも一方において、磁気検知部を1つに配置した構成にしてもよい。例えば、第2磁気収束部材112a及び第3磁気収束部材113aの間に、第3磁気検知部230aを設ければ、(数14)式にIを掛けた出力信号が得られ、さらに第2磁気検知部220aを設ければ、(数18)式にIを掛けた出力信号が得られる。
 図21は、本実施形態に係る磁気センサ100の第4の構成例(Z軸方向で見た平面視)を示す。図21に示す磁気センサ100において、図1及び図13に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第4の構成例の磁気センサ100は、図13に示した第2の構成例の磁気センサ100において、第1磁気収束部材111の第1方向の負側の端部で第1方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10bをさらに備える。即ち、図13で説明した第1磁気検知ユニット10を、図21において、第1磁気検知ユニット10aとして示し、当該第1磁気検知ユニット10aの鏡像となるように、第2磁気検知ユニット10bを示す。
 第4の構成例の磁気センサ100は、第2平面34上に形成された第1磁気検知ユニット10aの4つの磁気検知部と、当該4つの磁気検知部に対応する第2磁気検知ユニット10bの4つの磁気検知部と、第1平面32上に形成された第1磁気検知ユニット10aの磁気収束部材と、当該磁気収束部材に対応する第2磁気検知ユニット10bの磁気収束部材と、を備える。
 なお、図21において、第1磁気収束部材111は、第1磁気検知ユニット10a及び第2磁気検知ユニット10bにおいて境界がなく、共通の磁気収束部材として形成される例を示す。即ち、第1磁気収束部110は、共通の第1磁気収束部材111と、第1磁気検知ユニット10a側に配置される第2磁気収束部材112aと、第2磁気検知ユニット10b側に配置される第7磁気収束部材112bと、を有する。
 また、第1磁気検知ユニット10aの第2磁気収束部120aは、第3磁気収束部材113aから第5磁気収束部材115aを有し、当該第2磁気収束部120aに対応する第2磁気検知ユニット10bの第4磁気収束部120bは、第8磁気収束部材113bから第10磁気収束部材115bを有する。また、第1磁気検知ユニット10aは、第1磁気検知部210aから第4磁気検知部240aを有し、第1磁気検知ユニット10aに対応する第2磁気検知ユニット10bは、第5磁気検知部210bから第8磁気検知部240bを備える。第4の構成例の磁気センサ100は、磁気検知ユニットを複数有するセンサの一例である。
 第1磁気検知ユニット10aは、図13で説明した第1磁気検知ユニット10と略同一の配置パターンであるので、説明は省略する。第2磁気検知ユニット10bの配置パターンは、第1磁気検知ユニット10aと等距離に位置する点Qを含む基板平面に垂直なYZ平面に、面対称な位置関係となるように配置される。ここで、第1磁気検知ユニット10a及び第2磁気検知ユニット10bは、予め定められた距離だけ離間され、第1平面32及び第2平面34に配置される。第2磁気検知ユニット10bが有する磁気収束部材及び磁気検知部は、第1磁気検知ユニット10aが有する磁気収束部材及び磁気検知部にそれぞれ対応し、形状及び材質も略同一に形成されてよい。
 図22は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図22に示す磁気センサ100において、図21に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 また、第4の構成例の磁気センサ100のうち、第1磁気検知ユニット10aは、第2の構成例の磁気センサ100の第1磁気検知ユニット10と略同一の構成なので、磁場B、B、及びBが入力された場合の各磁気検知部が感知するX軸方向の磁場も、図15と同様となる。第2磁気検知ユニット10bにおける磁場B、B、及びBが入力された場合の各磁気検知部が感知するX軸方向の磁場を、次に説明する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bは、-X軸方向の端にある第4磁気収束部120bの第10磁気収束部材115bに収束される。第10磁気収束部材115bに収束された磁場の一部は、第10磁気収束部材115bに連結した第9磁気収束部材114bと、第9磁気収束部材114bに連結した第8磁気収束部材113bとを通って、第8磁気収束部材113bから-X軸方向に放出される。
 第8磁気収束部材113bから-X軸方向に放出される磁場は、第7磁気収束部材112b及び第8磁気収束部材113bの間にある第5磁気検知部210bと第7磁気検知部230bとを通って、第7磁気収束部材112bに捕獲される。また、第10磁気収束部材115bに収束された磁場の一部は、第10磁気収束部材115bから+X軸方向にも放出される。第10磁気収束部材115bから+X軸方向に放出される磁場は、第7磁気収束部材112b及び第10磁気収束部材115bの間にある第8磁気検知部240bと第6磁気検知部220bとを通って、第7磁気収束部材112bに捕獲される。
 また、第7磁気収束部材112bに捕獲される磁場は、第7磁気収束部材112bに連結した第1磁気収束部材111と、第1磁気収束部材111に連結した第2磁気収束部材112aとを通って、第2磁気収束部材112aから-X軸方向と+X軸方向とに放出される。第2磁気収束部材112aから-X軸方向に放出される磁場は、第2磁気収束部材112a及び第3磁気収束部材113aの間にある第3磁気検知部230aと第1磁気検知部210aとを通って、第3磁気収束部材113aに捕獲される。さらに、第3磁気収束部材113aに捕獲される磁場は、第3磁気収束部材113aに連結した第4磁気収束部材114aを通って放出される。
 また、第2磁気収束部材112aから+X軸方向に放出される磁場は、第2磁気収束部材112a及び第5磁気収束部材115aの間にある第2磁気検知部220aと第4磁気検知部240aとを通って、第5磁気収束部材115aに捕獲され、そして放出される。このように、第1磁気検知部210aから第8磁気検知部240bは、+X軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第5磁気検知部210b、及び第7磁気検知部230bは、-X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第6磁気検知部220b、及び第8磁気検知部240bは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bの一部は、-Y軸方向に突出した第2磁気収束部120aの第3磁気収束部材113a及び第5磁気収束部材115aにそれぞれ収束される。第3磁気収束部材113a及び第5磁気収束部材115aにそれぞれ収束された後の磁場については、図15で説明したのでここでは省略する。
 また、磁場Bの一部は、-Y軸方向に突出した第4磁気収束部120bの第8磁気収束部材113b及び第10磁気収束部材115bにそれぞれ収束される。第8磁気収束部材113bに収束された磁場は、第8磁気収束部材113bから-X軸方向に放出される。第8磁気収束部材113bから-X軸方向に放出される磁場は、第7磁気収束部材112b及び第8磁気収束部材113bの間にある第5磁気検知部210bと第7磁気検知部230bとを通って、第7磁気収束部材112bに捕獲される。
 また、第10磁気収束部材115bに収束された磁場は、第10磁気収束部材115bから+X軸方向に放出される。第10磁気収束部材115bから+X軸方向に放出される磁場は、第7磁気収束部材112b及び第10磁気収束部材115bとの間にある第8磁気検知部240bと第6磁気検知部220bとを通って、第7磁気収束部材112bに捕獲される。さらに、第7磁気収束部材112bに捕獲される磁場は、第7磁気収束部材112bに連結した第1磁気収束部材111を通って放出される。このように、第1磁気検知部210aから第8磁気検知部240bは、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。
 以上より、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第6磁気検知部220b、及び第8磁気検知部240bは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第5磁気検知部210b、及び第7磁気検知部230bは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合、磁場Bの一部は、-X軸方向に第1磁気検知部210aを通って第3磁気収束部材113aに収束され、そして放出される。このように、第2から第4磁気検知部240aを通る磁場Bについては、図15で説明したのでここでは省略する。
 また、磁場Bの一部は、+X軸方向に第5磁気検知部210bを通って第8磁気収束部材113bに収束され、そして放出される。また、磁場Bの一部は、+X軸方向に第6磁気検知部220bを通って第7磁気収束部材112bに収束され、そして放出される。また、磁場Bの一部は、-X軸方向に第7磁気検知部230bを通って第7磁気収束部材112bに収束され、そして放出される。また、磁場Bの一部は、-X軸方向に第8磁気検知部240bを通って第10磁気収束部材115bに収束され、そして放出される。このように、第1磁気検知部210aから第8磁気検知部240bは、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、第7磁気検知部230b、及び第8磁気検知部240bは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第4磁気検知部240a、第5磁気検知部210b、及び第6磁気検知部220bは、+X軸方向の磁場を感知する。
 図23は、本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。図23に示す磁気センサ100において、図16、図21、及び図22に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 配線部130は、第1磁気検知部210aから第4磁気検知部240aと同様に、第5磁気検知部210bから第8磁気検知部240bを端子Sにそれぞれ接続する。また、配線部130は、第5磁気検知部210bから第8磁気検知部240bと、端子Eから端子Hとを1対1に対応させてそれぞれ電気的に接続する。端子Eから端子Hは、端子Aから端子D、及び端子Sと同様に、略同一の平面に略同一の材料で形成されてよい。
 端子A-S間からH-S間の磁気抵抗をRからRとすると、それぞれの磁気抵抗は次式のように算出できる。
 (数26)
 R=R-ΔR+ΔR-ΔR
 (数27)
 R=R+ΔR-ΔR-ΔR
 (数28)
 R=R-ΔR+ΔR+ΔR
 (数29)
 R=R+ΔR-ΔR+ΔR
 (数30)
 R=R-ΔR-ΔR+ΔR
 (数31)
 R=R+ΔR+ΔR+ΔR
 (数32)
 R=R-ΔR-ΔR-ΔR
 (数33)
 R=R+ΔR+ΔR-ΔR
 (数26)から(数33)式の磁気抵抗は、いずれも3軸成分の磁場に応じた抵抗変化量ΔR、ΔR、及びΔRが含まれる。ΔR、ΔR、及びΔRの符号は、図22に示したように、第1磁気検知部210aから第8磁気検知部240bを横切るX軸方向の磁場の向きに対応する。
 (数28)-(数27)式、(数26)-(数29)式、(数32)-(数31)式、及び(数30)-(数33)式より、次式を得る。
 (数34)
 SCB=R-R=2(-ΔR+ΔR+ΔR
 (数35)
 SAD=R-R=2(-ΔR+ΔR-ΔR
 (数36)
 SGF=R-R=2(-ΔR-ΔR-ΔR
 (数37)
 SEH=R-R=2(-ΔR-ΔR+ΔR
 さらに、-(数34)-(数35)-(数36)-(数37)式、(数34)+(数35)-(数36)-(数37)式、及び(数34)-(数35)-(数36)+(数37)式より、次式を得る。
 (数38)
 8ΔR=-SCB-SAD-SGF-SEH
 (数39)
 8ΔR=SCB+SAD-SGF-SEH
 (数40)
 8ΔR=SCB-SAD-SGF+SEH
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号をそれぞれ取得することができる。即ち、各磁気抵抗に関する連立方程式を解くことで、3軸成分の磁場に応じた抵抗変化量の各々が求まる。ここに記した連立方程式の展開は、一例であり、この限りではない。
 磁気センサ100は、図12の説明と同様に、端子Aから端子H、及び端子Sに回路が接続される。より具体的には、端子Sは、第1電位が与えられる。また、端子Aから端子Hは、それぞれ対応する定電流源の一方の端子に各々に接続される。また、対応するそれぞれの定電流源の他方の端子は、電気的に1点に結合されて、第2電位が与えられる。この場合において、定電流源とスイッチを組み合わせることで、定電流源の数を低減させてもよい。
 第1磁気検知部210aから第8磁気検知部240bは、一例として、各々に接続された端子Aから端子Hを通して、対応する定電流源で生成される予め定められた大きさIの定電流がそれぞれ供給される。これにより、例えば、端子A-S間に生じる電圧VASは、VAS=I=I(R-ΔR+ΔR-ΔR)となり、(数26)式にIを掛けた信号が得られる。同様に、端子B-S間からH-S間の各々に生じる電圧VBSからVHSは、各々(数27)から(数33)式にIを掛けた信号が得られる。
 また、電圧VCSと電圧VBSとで得られる差分電圧VCBは、VCB=VCS-VBS=ICB=2I(-ΔR+ΔR+ΔR)となり、(数34)式にIを掛けた信号が得られる。同様に、(数35)から(数37)式にIを掛けた信号も得ることができる。また、(数38)から(数40)式にIを掛けた信号も得ることができるので、X軸方向の出力信号ΔRは、8ΔR=(-VCB-VAD-VGF-VEH)/Iとして得ることができる。同様に、Y軸方向の出力信号ΔRは、8ΔR=(VCB+VAD-VGF-VEH)/Iとして、Z軸方向の出力信号ΔRは、8ΔR=(VCB-VAD-VGF+VEH)/Iとして、得ることができる。
 ここで、差分電圧VCB、VAD、VGF、及びVEHは、言い換えると、各々、端子C-B間、A-D間、G-F間、E-H間に生じる電圧である。つまり、端子C-B間、A-D間、G-F間、E-H間に生じる電圧を直接測定することで、(数34)から(数37)式にIを掛けた信号を取り出して、各軸の出力信号を得ることができる。以上のΔR、ΔR、ΔRの求め方は一例であり、磁気検知部の抵抗値に関する連立方程式の立て方や解き方を限定するものではない。
 図24は、本実施形態に係る磁気センサ100に算出部300が接続された一例を示す。図24に示す磁気センサ100において、図23に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 算出部300は、第1磁気検知ユニット10a及び第2磁気検知ユニット10bにおける各磁気検知部の出力に基づいて、第1方向の磁場成分と第2方向の磁場成分とを算出する。また、算出部300は、第1磁気検知ユニット10a及び第2磁気検知ユニット10bにおける各磁気検知部の出力に基づいて、第1方向及び第2方向と異なる第3方向の磁場成分をさらに算出する。算出部300は、信号取得部320と、演算部330と、加減算部340とを備える。
 信号取得部320は、第1磁気検知部210aから第8磁気検知部240bの信号出力を取得する。信号取得部320は、一例として、磁気センサ100が有する磁気検知部の数に対応して複数設けられ、第1磁気検知部210aから第8磁気検知部240bにそれぞれ接続される。信号取得部320は、外部の定電流源から各磁気検知部に供給される定電流Iに応じて、対応する磁気検知部が出力する信号出力を取得する。これに代えて、信号取得部320は、定電流源を有し、当該定電流源から供給する定電流Iに応じて、対応する磁気検知部が出力する信号出力を取得してもよい。信号取得部320は、取得した信号出力を演算部330に供給する。
 演算部330は、信号取得部320から受け取った信号出力を演算する。図24において、演算部330は、2つの信号取得部320に接続され、受け取った2つの信号出力を減算する。より具体的には、演算部330CBは、信号取得部320C及び信号取得部320Bに接続され、受け取った信号出力(VCS及びVBS)を減算して信号VCB(=VCS-VBS)を算出する。演算部330CBは、算出した信号VCBを電流値Iで除算して、(数34)式に相当する信号SCBを算出してよい。演算部330CBは、算出した信号SCB(または信号VCB)を加減算部340に供給する。
 同様に、演算部330AD、演算部330GF、及び演算部330EHは、対応する2つの信号取得部320に接続され、受け取った2つの信号出力に基づき、算出した信号SAD、SGF、及びSEHを加減算部340に供給する。即ち、演算部330は、(数34)から(数37)式に相当する信号を演算する。
 加減算部340は、演算部330に接続され、受け取った信号を加減算して第1方向から第3方向の磁場成分を算出して出力する。加減算部340は、信号SCB、SAD、SGF、及びSEHを用いて、(数38)から(数40)式に相当する演算を実行して、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力する。
 以上の本実施形態の磁気センサ100は、直交する3軸成分の磁気信号を同一基板上で検知し、センサ全体の消費電流を低減することができる。また、磁気センサ100は、一方向に感磁軸を有する磁気検知部を用いて、小型で高分解能な3次元磁気センサを実現することができる。
 図25は、本実施形態に係る磁気センサ100の第5の構成例(Z軸方向で見た平面視)を示す。図21に示す磁気センサ100において、図1及び図13に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第5の構成例の磁気センサ100は、図13に示した第2の構成例の磁気センサ100において、第1磁気収束部材111または第1磁気収束部材111よりも第2方向の正側で第2方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10cをさらに備える。即ち、図13で説明した第1磁気検知ユニット10を、図25において、第1磁気検知ユニット10aとして示し、当該第1磁気検知ユニット10aの鏡像となるように、第2磁気検知ユニット10cを示す。
 第5の構成例の磁気センサ100は、第2平面34上に形成された第1磁気検知ユニット10aの4つの磁気検知部と、当該4つの磁気検知部に対応する第2磁気検知ユニット10cの4つの磁気検知部と、第1平面32上に形成された第1磁気検知ユニット10aの磁気収束部材と、当該磁気収束部材に対応する第2磁気検知ユニット10cの磁気収束部材と、を備える。
 第1磁気検知ユニット10aの第1磁気収束部110aは、第1磁気収束部材111a及び第2磁気収束部材112aを有し、当該第1磁気収束部110aに対応する第2磁気検知ユニット10cの第5磁気収束部110cは、第11磁気収束部材111c及び第12磁気収束部材112cを有する。また、第1磁気検知ユニット10aの第2磁気収束部120aは、第3磁気収束部材113aから第5磁気収束部材115aを有し、当該第2磁気収束部120aに対応する第2磁気検知ユニット10cの第6磁気収束部120cは、第13磁気収束部材113cから第15磁気収束部材115cを有する。
 また、第1磁気検知ユニット10aは、第1磁気検知部210aから第4磁気検知部240aを有し、第1磁気検知ユニット10aに対応する第2磁気検知ユニット10cは、第9磁気検知部210cから第12磁気検知部240cを備える。第5の構成例の磁気センサ100は、磁気検知ユニットを複数有するセンサの一例である。
 第1磁気検知ユニット10aは、図13で説明した第1磁気検知ユニット10と略同一の配置パターンであるので、説明は省略する。第2磁気検知ユニット10cの配置パターンは、第1磁気検知ユニット10aと等距離に位置する点Qを含む基板平面に垂直なXZ平面に、面対称な位置関係となるように配置される。ここで、第1磁気検知ユニット10a及び第2磁気検知ユニット10cは、予め定められた距離だけ離間され、第1平面32及び第2平面34に配置される。
 これに代えて、第1磁気検知ユニット10a及び第2磁気検知ユニット10cは、第1磁気収束部材111a及び第11磁気収束部材111cが接するように配置されてもよい。また、第1磁気検知ユニット10a及び第2磁気検知ユニット10cは、第1磁気収束部材111a及び第11磁気収束部材111cが重なるように配置されてもよい。
 また、第2磁気検知ユニット10cは、第11磁気収束部材111cを有さず、第12磁気収束部材112cの-Y軸方向側の端が、第1磁気収束部材111aの+X軸方向側の端に接続されてもよい。この場合、第1磁気収束部材111aは、第1磁気検知ユニット10a及び第2磁気検知ユニット10cに共有される。第2磁気検知ユニット10cが有する磁気収束部材及び磁気検知部は、第1磁気検知ユニット10aが有する磁気収束部材及び磁気検知部にそれぞれ対応し、形状及び材質も略同一に形成されてよい。
 図26は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図26に示す磁気センサ100において、図25に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 また、第5の構成例の磁気センサ100のうち、第1磁気検知ユニット10aは、第2の構成例の磁気センサ100の第1磁気検知ユニット10と略同一の構成である。したがって、磁場B、B、及びBが入力された場合の各磁気検知部が感知するX軸方向の磁場も、図15と同様となるので、ここでは説明を省略する。第2磁気検知ユニット10cにおいて磁場B、B、及びBが入力された場合の各磁気検知部が感知するX軸方向の磁場を、次に説明する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bの一部は、-X軸方向に突出した第5磁気収束部110cの第11磁気収束部材111cに収束される。第11磁気収束部材111cに収束された磁場は、第11磁気収束部材111cに連結した第12磁気収束部材112cを通って、第12磁気収束部材112cから-X軸方向と+X軸方向とに放出される。
 第12磁気収束部材112cから-X軸方向に放出される磁場は、第12磁気収束部材112c及び第13磁気収束部材113cの間にある第11磁気検知部230cと第9磁気検知部210cとを通って、第13磁気収束部材113cに捕獲される。さらに、第13磁気収束部材113cに捕獲される磁場は、第13磁気収束部材113cに連結した第14磁気収束部材114cを通って放出される。
 また、第12磁気収束部材112cから+X軸方向に放出される磁場は、第12磁気収束部材112c及び第15磁気収束部材115cの間にある第10磁気検知部220cと第12磁気検知部240cとを通って、第15磁気収束部材115cに捕獲され、そして放出される。このように、第1磁気検知部210aから第4磁気検知部240a及び第9磁気検知部210cから第12磁気検知部240cは、+X軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第9磁気検知部210c、及び第11磁気検知部230cは、-X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第10磁気検知部220c、及び第12磁気検知部240cは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bは、第1磁気検知ユニット10aの第2磁気収束部120aに収束された後、第1磁気収束部110aの第1磁気収束部材111aから+Y軸方向に放出される(詳細は図15で説明したのでここでは省略する)。
 そして、第1磁気収束部材111aから放出される磁場は、-Y軸方向に突出した第5磁気収束部110cの第12磁気収束部材112cに収束される。第12磁気収束部材112cに収束された磁場は、第12磁気収束部材112cから-X軸方向と+X軸方向とに放出される。
 第12磁気収束部材112cから-X軸方向に放出される磁場は、第12磁気収束部材112c及び第13磁気収束部材113cの間にある第11磁気検知部230cと第9磁気検知部210cとを通って、第13磁気収束部材113cに捕獲される。さらに、第13磁気収束部材113cに捕獲される磁場は、第13磁気収束部材113cに連結した第14磁気収束部材114cを通って放出される。
 また、第12磁気収束部材112cから+X軸方向に放出される磁場は、第12磁気収束部材112c及び第15磁気収束部材115cの間にある第10磁気検知部220cと第12磁気検知部240cとを通って、第15磁気収束部材115cに捕獲される。さらに、第15磁気収束部材115cに捕獲される磁場は、第15磁気収束部材115cに連結した第14磁気収束部材114cを通って放出される。このように、第1磁気検知部210aから第4磁気検知部240a及び第9磁気検知部210cから第12磁気検知部240cは、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第10磁気検知部220c、及び第12磁気検知部240cは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第9磁気検知部210c、及び第11磁気検知部230cは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合(第1磁気検知ユニット10aについては図15で説明したのでここでは省略する)、磁場Bの一部は、-X軸方向に第9磁気検知部210cを通って第13磁気収束部材113cに収束され、そして放出される。また、磁場Bの一部は、-X軸方向に第10磁気検知部220cを通って第12磁気収束部材112cに収束され、そして放出される。また、磁場Bの一部は、+X軸方向に第11磁気検知部230cを通って第12磁気収束部材112cに収束され、そして放出される。また、磁場Bの一部は、+X軸方向に第12磁気検知部240cを通って第15磁気収束部材115cに収束され、そして放出される。このように、第1磁気検知部210aから第4磁気検知部240a及び第9磁気検知部210cから第12磁気検知部240cは、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、第9磁気検知部210c、及び第10磁気検知部220cは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第4磁気検知部240a、第11磁気検知部230c、及び第12磁気検知部240cは、+X軸方向の磁場を感知する。
 図27は、本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。図23に示す磁気センサ100において、図16、図25、及び図26に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 配線部130は、第1磁気検知部210aから第4磁気検知部240aと同様に、第9磁気検知部210cから第12磁気検知部240cを端子Sにそれぞれ接続する。また、配線部130は、第9磁気検知部210cから第12磁気検知部240cと、端子Iから端子Lとを1対1に対応させてそれぞれ電気的に接続する。端子Iから端子Lは、端子Aから端子D、及び端子Sと同様に、略同一の平面に略同一の材料で形成されてよい。
 端子A-S間からD-S間の磁気抵抗をRからRとし、端子I-S間からL-S間の磁気抵抗をRからRとすると、それぞれの磁気抵抗は次式のように算出できる。
 (数41)
 R=R-ΔR+ΔR-ΔR
 (数42)
 R=R+ΔR-ΔR-ΔR
 (数43)
 R=R-ΔR+ΔR+ΔR
 (数44)
 R=R+ΔR-ΔR+ΔR
 (数45)
 R=R-ΔR-ΔR-ΔR
 (数46)
 R=R+ΔR+ΔR-ΔR
 (数47)
 R=R-ΔR-ΔR+ΔR
 (数48)
 R=R+ΔR+ΔR+ΔR
 (数41)から(数48)式の磁気抵抗は、いずれも3軸成分の磁場に応じた抵抗変化量ΔR、ΔR、及びΔRが含まれる。ΔR、ΔR、及びΔRの符号は、図26に示したように、第1磁気検知部210aから第4磁気検知部240a、及び第9磁気検知部210cから第12磁気検知部240cを横切るX軸方向の磁場の向きに対応する。
 (数43)-(数42)式、(数41)-(数44)式、(数45)-(数48)式、及び(数47)-(数46)式より、次式を得る。
 (数49)
 SCB=R-R=2(-ΔR+ΔR+ΔR
 (数50)
 SAD=R-R=2(-ΔR+ΔR-ΔR
 (数51)
 SIL=R-R=2(-ΔR-ΔR-ΔR
 (数52)
 SKJ=R-R=2(-ΔR-ΔR+ΔR
 さらに、-(数49)-(数50)-(数51)-(数52)式、(数49)+(数50)-(数51)-(数52)式、及び(数49)-(数50)-(数51)+(数52)式より、次式を得る。
 (数53)
 8ΔR=-SCB-SAD-SIL-SKJ
 (数54)
 8ΔR=SCB+SAD-SIL-SKJ
 (数55)
 8ΔR=SCB-SAD-SIL+SKJ
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号をそれぞれ取得することができる。即ち、各磁気抵抗に関する連立方程式を解くことで、3軸成分の磁場に応じた抵抗変化量の各々が求まる。ここに記した連立方程式の展開は、一例であり、この限りではない。
 ここで、(数26)から(数33)式と、(数41)から(数48)式とを比較すると、第5の構成例の磁気センサ100の磁気抵抗R,R,R,R,R,R,R,Rは、第4の構成例の磁気センサ100の磁気抵抗を並べ替えたR,R,R,R,R,R,R,Rにそれぞれ相当する出力が得られる。このように、第5の構成例の磁気センサ100は、第4の構成例の磁気センサ100と同様に、3軸成分の磁場に応じた抵抗変化量に各々の出力信号が取り出すことができる。
 磁気センサ100は、図12及び図23の説明と同様に、端子Aから端子D、端子Iから端子L、及び端子Sに回路が接続される。より具体的には、端子Sは、第1電位が与えられる。また、端子Aから端子D、及び端子Iから端子Lは、それぞれ対応する定電流源の一方の端子に各々に接続される。また、対応するそれぞれの定電流源の他方の端子は、電気的に1点に結合されて、第2電位が与えられる。この場合において、定電流源とスイッチを組み合わせることで、定電流源の数を低減させてもよい。
 第1磁気検知部210aから第4磁気検知部240a、及び第9磁気検知部210cから第12磁気検知部240cは、一例として、各々に接続された端子Aから端子D、及び端子Iから端子Lを通して、対応する定電流源で生成される予め定められた大きさIの定電流がそれぞれ供給される。これにより、図23の説明と同様に、端子A-S間からD-S間、及び端子I-S間からL-S間の各々に生じる電圧VASからVDS、及びVISからVLSは、各々(数41)から(数48)式にIを掛けた信号が得られる。
 同様に、差分電圧も、(数49)から(数52)式にIを掛けた信号が得られる。したがって、X軸方向の出力信号ΔRは、8ΔR=(-VCB-VAD-VIL-VKJ)/Iとして、Y軸方向の出力信号ΔRは、8ΔR=(VCB+VAD-VIL-VKJ)/Iとして、Z軸方向の出力信号ΔRは、8ΔR=(VCB-VAD-VIL+VKJ)/Iとして、得ることができる。
 図28は、本実施形態に係る磁気センサ100に算出部300が接続された一例を示す。図24に示す磁気センサ100において、図23に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 ここで、(数26)から(数33)式と、(数41)から(数48)式の比較結果より、第5の構成例の磁気センサ100の磁気抵抗の出力は、第4の構成例の磁気センサ100の磁気抵抗の順番を入れ替えた出力と略同一である。したがって、第5の構成例の磁気センサ100の信号検出のための回路構成は、図24に示された第4の構成例の磁気センサ100の算出部300と類似する。そこで、図28に示す算出部300において、図24に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 信号取得部320は、第1磁気検知部210aから第4磁気検知部240a、及び第9磁気検知部210cから第12磁気検知部240cの信号出力を取得する。信号取得部320は、取得した信号出力を演算部330に供給する。演算部330は、信号取得部320から受け取った信号出力を減算した後に電流値Iで除算して、(数49)から(数52)式に相当する信号をそれぞれ算出して、加減算部340に供給する。加減算部340は、演算部330から受け取った信号を用いて、(数53)から(数55)式に相当する演算を実行して、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力する。
 以上のように、本実施形態の磁気センサ100は、直交する3軸成分の磁気信号を同一基板上で検知することができる。
 図29は、本実施形態に係る磁気センサ100の第6の構成例(Z軸方向で見た平面視)を示す。図29に示す磁気センサ100において、図1及び図13に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第6の構成例の磁気センサ100は、図13に示した第2の構成例の磁気センサ100において、第5磁気収束部材115よりも第1方向の正側で第1方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10bをさらに備える。即ち、図13で説明した第1磁気検知ユニット10を、図29において、第1磁気検知ユニット10aとして示し、当該第1磁気検知ユニット10aの鏡像となるように、第2磁気検知ユニット10bを示す。
 第6の構成例の磁気センサ100は、第2平面34上に形成された第1磁気検知ユニット10aの4つの磁気検知部と、当該4つの磁気検知部に対応する第2磁気検知ユニット10bの4つの磁気検知部と、第1平面32上に形成された第1磁気検知ユニット10aの磁気収束部材と、当該磁気収束部材に対応する第2磁気検知ユニット10bの磁気収束部材と、を備える。
 第1磁気検知ユニット10aの第1磁気収束部110aに対応する第2磁気検知ユニット10bの第3磁気収束部110bは、第6磁気収束部材111b及び第7磁気収束部材112bを有する。また、第1磁気検知ユニット10aの第2磁気収束部120aに対応する第2磁気検知ユニット10bの第4磁気収束部120bは、第8磁気収束部材113bから第10磁気収束部材115bを有する。また、第1磁気検知ユニット10aに対応する第2磁気検知ユニット10bは、第5磁気検知部210bから第8磁気検知部240bを備える。第6の構成例の磁気センサ100は、磁気検知ユニットを複数有するセンサの一例である。
 第1磁気検知ユニット10aは、図13で説明した第1磁気検知ユニット10と略同一の配置パターンであるので、説明は省略する。第2磁気検知ユニット10bの配置パターンは、第1磁気検知ユニット10aと等距離に位置する点Qを含む基板平面に垂直なYZ平面に、面対称な位置関係となるように配置される。ここで、第1磁気検知ユニット10a及び第2磁気検知ユニット10bは、予め定められた距離だけ離間され、第1平面32及び第2平面34に配置される。第2磁気検知ユニット10bが有する磁気収束部材及び磁気検知部は、第1磁気検知ユニット10aが有する磁気収束部材及び磁気検知部にそれぞれ対応し、形状及び材質も略同一に形成されてよい。
 図30は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図30に示す磁気センサ100において、図29に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 また、第6の構成例の磁気センサ100のうち、第1磁気検知ユニット10aは、第2の構成例の磁気センサ100の第1磁気検知ユニット10と略同一の構成である。したがって、磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bは、第1磁気検知ユニット10aの第1磁気収束部材111a及び第3磁気収束部材113aに収束された後、第5磁気収束部材115aから+X軸方向に放出される(詳細は図15で説明したのでここでは省略する)。即ち、磁場Bは、第1磁気検知ユニット10aから第2磁気検知ユニット10bへ放出される。
 そして、磁場Bは、第2磁気検知ユニット10bの-X軸方向の端にある第4磁気収束部120bの第10磁気収束部材115bに収束される。第10磁気収束部材115bに収束された磁場の一部は、第10磁気収束部材115bに連結した第9磁気収束部材114bと、第9磁気収束部材114bに連結した第8磁気収束部材113bとを通って、第8磁気収束部材113bから-X軸方向に放出される。第8磁気収束部材113bから-X軸方向に放出される磁場は、第7磁気収束部材112b及び第8磁気収束部材113bの間にある第5磁気検知部210bと第7磁気検知部230bとを通って、第7磁気収束部材112bに捕獲される。
 また、第10磁気収束部材115bに収束された磁場の一部は、第10磁気収束部材115bから+X軸方向に放出される。第10磁気収束部材115bから+X軸方向に放出される磁場は、第7磁気収束部材112b及び第10磁気収束部材115bの間にある第8磁気検知部240bと第6磁気検知部220bとを通って、第7磁気収束部材112bに捕獲される。第7磁気収束部材112bに捕獲される磁場は、第7磁気収束部材112bに連結した第6磁気収束部材111bを通って放出される。このように、第1磁気検知部210aから第8磁気検知部240bは、+X軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。
 以上より、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第5磁気検知部210b、及び第7磁気検知部230bは、-X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第6磁気検知部220b、及び第8磁気検知部240bは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bの一部は、第1磁気検知ユニット10aの第2磁気収束部120aに収束された後、第1磁気収束部110aの第1磁気収束部材111aから+Y軸方向に放出される(詳細は図15で説明したのでここでは省略する)。
 また、磁場Bの一部は、第2磁気検知ユニット10bの-Y軸方向に突出した第4磁気収束部120bの第8磁気収束部材113b及び第10磁気収束部材115bにそれぞれ収束される。第8磁気収束部材113bに収束された磁場は、第8磁気収束部材113bから-X軸方向に放出される。第8磁気収束部材113bから-X軸方向に放出される磁場は、第7磁気収束部材112b及び第8磁気収束部材113bの間にある第5磁気検知部210bと第7磁気検知部230bとを通って、第7磁気収束部材112bに捕獲される。
 また、第10磁気収束部材115bに収束された磁場は、第10磁気収束部材115bから+X軸方向に放出される。第10磁気収束部材115bから+X軸方向に放出される磁場は、第7磁気収束部材112b及び第10磁気検知部115bの間にある第8磁気検知部240bと第6磁気検知部220bとを通って、第7磁気収束部材112bに捕獲される。さらに、第7磁気収束部材112bに捕獲される磁場は、第7磁気収束部材112bに連結した第6磁気収束部材111bを通って放出される。このように、第1磁気検知部240aから第8磁気検知部240bは、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。
 以上より、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第6磁気検知部220b、及び第8磁気検知部240bは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第5磁気検知部210b、及び第7磁気検知部230bは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合(第1磁気検知ユニット10aについては図15で説明したのでここでは省略する)、磁場Bの一部は、+X軸方向に第5磁気検知部210bを通って第8磁気収束部材113bに収束され、そして放出される。また、磁場Bの一部は、+X軸方向に第6磁気検知部220bを通って第7磁気収束部材112bに収束され、そして放出される。また、磁場Bの一部は、-X軸方向に第7磁気検知部230bを通って第7磁気収束部材112bに収束され、そして放出される。また、磁場Bの一部は、-X軸方向に第8磁気検知部240bを通って第10磁気収束部材115bに収束され、そして放出される。このように、第1磁気検知部210aから第8磁気検知部240bは、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、第7磁気検知部230b、及び第8磁気検知部240bは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第4磁気検知部240a、第5磁気検知部210b、及び第6磁気検知部220bは、+X軸方向の磁場を感知する。
 以上の第6の構成例の磁気センサ100は、第1磁気検知部210aから第8磁気検知部240bに配線部130が接続され、磁気抵抗の値を外部に出力する。例えば、磁気センサ100は、配線部130によって算出部300等に接続され、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力する。ここで、配線部130及び算出部300については、図23及び図24の構成例と同様に構成して動作させることができるので、ここでは説明を省略する。以上のように、本実施形態の磁気センサ100は、直交する3軸成分の磁気信号を同一基板上で検知することができる。
 図31は、本実施形態に係る磁気センサ100の第7の構成例(Z軸方向で見た平面視)を示す。図31に示す磁気センサ100において、図1及び図13に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第7の構成例の磁気センサ100は、図13に示した第2の構成例の磁気センサ100において、第4磁気収束部材114aまたは第4磁気収束部材114aよりも第2の方向の負側で第2方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10cをさらに備える。即ち、図13で説明した第1磁気検知ユニット10を、図31において、第1磁気検知ユニット10aとして示し、当該第1磁気検知ユニット10aの鏡像となるように、第2磁気検知ユニット10cを示す。
 第7の構成例の磁気センサ100は、第2平面34上に形成された第1磁気検知ユニット10aの4つの磁気検知部と、当該4つの磁気検知部に対応する第2磁気検知ユニット10cの4つの磁気検知部と、第1平面32上に形成された第1磁気検知ユニット10aの磁気収束部材と、当該磁気収束部材に対応する第2磁気検知ユニット10cの磁気収束部材と、を備える。
 第1磁気検知ユニット10aの第1磁気収束部110aに対応する第2磁気検知ユニット10cの第5磁気収束部110cは、第11磁気収束部材111c及び第12磁気収束部材112cを有する。また、第1磁気検知ユニット10aの第2磁気収束部120aに対応する第2磁気検知ユニット10cの第6磁気収束部120cは、第13磁気収束部材113cから第15磁気収束部材115cを有する。また、第1磁気検知ユニット10aに対応する第2磁気検知ユニット10bは、第9磁気検知部210cから第12磁気検知部240cを備える。第7の構成例の磁気センサ100は、磁気検知ユニットを複数有するセンサの一例である。
 第1磁気検知ユニット10aは、図13で説明した第1磁気検知ユニット10と略同一の配置パターンなので、説明は省略する。第2磁気検知ユニット10cの配置パターンは、第1磁気検知ユニット10aと等距離に位置する点Qを含む基板平面に垂直なXZ平面に、面対称な位置関係となるように配置される。ここで、第1磁気検知ユニット10a及び第2磁気検知ユニット10cは、予め定められた距離だけ離間され、第1平面32及び第2平面34に配置される。
 これに代えて、第1磁気検知ユニット10a及び第2磁気検知ユニット10cは、第4磁気収束部材114a及び第14磁気収束部材114cが接するように配置されてよい。また、第1磁気検知ユニット10a及び第2磁気検知ユニット10cは、第4磁気収束部材114a及び第14磁気収束部材114cが重なるように配置されてもよい。これに代えて、第1磁気検知ユニット10a及び第2磁気検知ユニット10cは、第14磁気収束部材114cを有さず、第4磁気収束部材114aを共有するように配置されてよい。この場合、第4磁気収束部材114aは、第13磁気収束部材113c及び第15磁気収束部材115cの+Y軸方向側の端に接続される。
 第2磁気検知ユニット10cが有する磁気収束部材及び磁気検知部は、第1磁気検知ユニット10aが有する磁気収束部材及び磁気検知部にそれぞれ対応し、形状及び材質も略同一に形成されてよい。ここで、図31に示した第2磁気検知ユニット10cは、図25で説明した第2磁気検知ユニット10cと、第1磁気検知ユニット10aに対する配置は異なるが、形状は略同一に形成されてよい。
 図32は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図32に示す磁気センサ100において、図31に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。また、第7の構成例の磁気センサ100のうち、第1磁気検知ユニット10aは、第2の構成例の磁気センサ100の第1磁気検知ユニット10と略同一の構成なので、説明は省略する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bの一部は、-X軸方向に突出した第5磁気収束部110cの第11磁気収束部材111cに収束される。第11磁気収束部材111cに収束された磁場は、図26で説明した第2磁気検知ユニット10cの第11磁気収束部材111cに収束された磁場と同様に説明されるので、ここでは省略する。
 即ち、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第9磁気検知部210c、及び第11磁気検知部230cは、-X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第10磁気検知部220c、及び第12磁気検知部240cは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bは、-Y軸方向に突出した第5磁気収束部110cの第12磁気収束部材112cに収束される。第12磁気収束部材112cに収束された磁場は、図26で説明した第2磁気検知ユニット10cの第12磁気収束部材112cに収束された磁場と同様に説明され、第14磁気収束部材114cを通って放出される(詳細な説明は省略する)。第14磁気収束部材114cから放出される磁場は、第1磁気検知ユニット10aに入力され、図13に示した第2の構成例の磁気センサ100と同様となるので、ここでは説明を省略する。
 即ち、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第10磁気検知部220c、及び第12磁気検知部240cは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第9磁気検知部210c、及び第11磁気検知部230cは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合の説明は、図26で説明した磁気センサ100の+Z軸方向に磁場Bが与えられた場合と同様であり、ここでは説明を省略する。即ち、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、第9磁気検知部210c、及び第10磁気検知部220cは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第4磁気検知部240a、第11磁気検知部230c、及び第12磁気検知部240cは、+X軸方向の磁場を感知する。
 以上の第7の構成例の磁気センサ100は、第1磁気検知部210aから第4磁気検知部240a、及び第9から第12磁気検知部240cに配線部130が接続され、磁気抵抗の値を外部に出力する。例えば、磁気センサ100は、配線部130によって算出部300等に接続され、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力する。ここで、配線部130及び算出部300については、図27及び図28の構成例と同様に構成して動作させることができるので、ここでは説明を省略する。以上のように、本実施形態の磁気センサ100は、直交する3軸成分の磁気信号を同一基板上で検知することができる。
 図33は、本実施形態に係る磁気センサ100の第8の構成例を示す。図33に示す磁気センサ100において、図13及び図21に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第8の構成例の磁気センサ100は、第1磁気収束部材111の第1方向の負側の端部で第1方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10bを備える。また、磁気センサ100は、第1磁気検知ユニット10aと第2磁気検知ユニット10bとが接続される各磁気収束部材において第2方向に略直交する面、またはこれら各磁気収束部材よりも第2方向の正側において第2方向に略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置された第3磁気検知ユニット10cと、第2磁気検知ユニット10bと略鏡像となるように配置されている第4磁気検知ユニット10dと、をさらに備える。
 即ち、第8の構成例の磁気センサ100は、図21に示された第4の構成例の磁気センサ100において、第1磁気収束部材111または第1磁気収束部材111よりも第2方向の正側で第2方向と略直交する面に対して、第1磁気検知ユニット10a及び第2磁気検知ユニット10bと略鏡像となるように配置されている第3磁気検知ユニット10c及び第4磁気検知ユニット10dを備える。即ち、図33において、図21で説明した第1磁気検知ユニット10a及び第2磁気検知ユニット10bに加え、第1磁気検知ユニット10a及び第2磁気検知ユニット10bの鏡像となるように、第3磁気検知ユニット10c及び第4磁気検知ユニット10dを示す。なお、第1磁気検知ユニット10a及び第2磁気検知ユニット10bの配置については、説明を省略する。
 第8の構成例の磁気センサ100は、第2平面34上に形成された第1磁気検知ユニット10a及び第2磁気検知ユニット10bの8つの磁気検知部と、当該8つの磁気検知部に対応する第3磁気検知ユニット10c及び第4磁気検知ユニット10dの8つの磁気検知部と、第1平面32上に形成された第1磁気検知ユニット10a及び第2磁気検知ユニット10bの磁気収束部材と、当該磁気収束部材に対応する第3磁気検知ユニット10c及び第4磁気検知ユニット10dの磁気収束部材と、を備える。
 なお、図33において、第5磁気収束部110cは、第1磁気収束部110aと同様に、第3磁気検知ユニット10c及び第4磁気検知ユニット10dにおいて境界がなく、共通の磁気収束部として形成される例を示す。即ち、第5磁気収束部110cは、共通の第11磁気収束部材111cと、第3磁気検知ユニット10c側に配置される第12磁気収束部材112cと、第4磁気検知ユニット10d側に配置される第17磁気収束部材112dと、を有する。
 また、第1磁気検知ユニット10aの第2磁気収束部120aに対応する第3磁気検知ユニット10cの第6磁気収束部120cは、第13磁気収束部材113cから第15磁気収束部材115cを有する。また、第2磁気検知ユニット10bの第4磁気収束部120bに対応する第4磁気検知ユニット10dの第8磁気収束部120dは、第18磁気収束部材113dから第20磁気収束部材115dを有する。また、第3磁気検知ユニット10cは、第9磁気検知部210cから第12磁気検知部240cを有し、第4磁気検知ユニット10dは、第13磁気検知部210dから第16磁気検知部240dを備える。第8の構成例の磁気センサ100は、磁気検知ユニットを複数有するセンサの一例である。
 第3磁気検知ユニット10c及び第4磁気検知ユニット10dの配置パターンは、点Qを含む基板平面に垂直なXZ平面に、第1磁気検知ユニット10a及び第2磁気検知ユニット10bと面対称な位置関係となるように配置される。ここで、第1磁気検知ユニット10a及び第2磁気検知ユニット10bで形成される磁気検知ユニットと、第3磁気検知ユニット10c及び第4磁気検知ユニット10dで形成される磁気検知ユニットとは、予め定められた距離だけ離間されて配置される。
 これに代えて、第1磁気検知ユニット10a及び第2磁気検知ユニット10bで形成される磁気検知ユニットと、第3磁気検知ユニット10c及び第4磁気検知ユニット10dで形成される磁気検知ユニットとは、接続されるように配置されてもよい。即ち、第1磁気収束部材111aの+Y軸方向側の端が、第11磁気収束部材111cの-Y軸方向側の端に接するように配置されてよい。また、第1磁気検知ユニット10aから第4磁気検知ユニット10dは、第11磁気収束部材111cを有さず、第1磁気収束部材111aを共有してもよい。この場合、第1磁気収束部材111aは、第12磁気収束部材112c及び第17磁気収束部材112dの-Y軸方向側の端に接続される。
 第3磁気検知ユニット10c及び第4磁気検知ユニット10dが有する磁気収束部材及び磁気検知部は、第1磁気検知ユニット10a及び第2磁気検知ユニット10bが有する磁気収束部材及び磁気検知部にそれぞれ対応し、形状及び材質も略同一に形成されてよい。
 図34は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図34に示す磁気センサ100において、図33に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bの一部は、第2磁気検知ユニット10bに収束され、第1磁気検知ユニット10aから放出される。第1磁気検知ユニット10a及び第2磁気検知ユニット10bに与えられる磁場Bについては、図22で説明したので、ここでは省略する。
 また、磁場Bの一部は、第4磁気検知ユニット10dに収束され、第3磁気検知ユニット10cから放出される。より具体的には、磁場Bは、-X軸方向の端にある第8磁気収束部120dの第20磁気収束部材115dに収束される。
 第20磁気収束部材115dに収束される磁場の一部は、第20磁気収束部材115dに連結した第19磁気収束部材114dと、第19磁気収束部材114dに連結した第18磁気収束部材113dとを通って、第18磁気収束部材113dから-X軸方向に放出される。第18磁気収束部材113dから-X軸方向に放出される磁場は、第17磁気収束部材112d及び第18磁気収束部材113dの間にある第13磁気検知部210dと第15磁気検知部230dとを通って、第17磁気収束部材112dに捕獲される。
 また、第20磁気収束部材115dに収束される磁場の一部は、第20磁気収束部材115dから+X軸方向に放出される。第20磁気収束部材115dから+X軸方向に放出される磁場は、第17磁気収束部材112d及び第20磁気収束部材115dの間にある第16磁気検知部240dと第14磁気検知部220dとを通って、第17磁気収束部材112dに捕獲される。
 第17磁気収束部材112dに捕獲される磁場は、第17磁気収束部材112dに連結した第11磁気収束部材111cと、第11磁気収束部材111cに連結した第12磁気収束部材112cとを通って、第12磁気収束部材112cから-X軸方向と+X軸方向とに放出される。第12磁気収束部材112cから-X軸方向に放出される磁場は、第12磁気収束部材112c及び第13磁気収束部材113cの間にある第11磁気検知部230cと第9磁気検知部210cとを通って、第13磁気収束部材113cに捕獲される。さらに、第13磁気収束部材113cに捕獲される磁場は、第13磁気収束部材113cに連結した第14磁気収束部材114cを通って放出される。
 また、第12磁気収束部材112cから+X軸方向に放出される磁場は、第12磁気収束部材112c及び第15磁気収束部材115cの間にある第10磁気検知部220cと第12磁気検知部240cとを通って、第15磁気収束部材115cに捕獲され、そして放出される。このように、第1磁気検知部210aから第16磁気検知部240dは、+X軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。
 以上より、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第5磁気検知部210b、第7磁気検知部230b、第9磁気検知部210c、第11磁気検知部230c、第13磁気検知部210d、及び第15磁気検知部230dは、-X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第6磁気検知部220b、第8磁気検知部240b、第10磁気検知部220c、第12磁気検知部240c、第14磁気検知部220d、及び第16磁気検知部240dは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bは、第1磁気検知ユニット10a及び第2磁気検知ユニット10bに収束され、第1磁気収束部材111aから放出される。第1磁気検知ユニット10a及び第2磁気検知ユニット10bに与えられる磁場Bについては、図22で説明したので、ここでは省略する。
 そして、第1磁気収束部材111aから放出される磁場Bの一部は、-Y軸方向に突出した第5磁気収束部120cの第12磁気収束部材112cに収束される。第12磁気収束部材112cに収束された磁場は、第12磁気収束部材112cから-X軸方向と+X軸方向とに放出される。
 第12磁気収束部材112cから-X軸方向に放出される磁場は、第12磁気収束部材112c及び第13磁気収束部材113cの間にある第11磁気検知部230cと第9磁気検知部210cとを通って、第13磁気収束部材113cに捕獲される。さらに、第13磁気収束部材113cに捕獲される磁場は、第13磁気収束部材113cに連結した第14磁気収束部材114cを通って放出される。
 また、第12磁気収束部材112cから+X軸方向に放出される磁場は、第12磁気収束部材112c及び第15磁気収束部材115cの間にある第10磁気検知部220cと第12磁気検知部240cとを通って、第15磁気収束部材115cに捕獲される。さらに、第15磁気収束部材115cに捕獲される磁場は、第15磁気収束部材115cに連結した第14磁気収束部材114cを通って放出される。
 同様に、第1磁気収束部材111aから放出される磁場Bの一部は、-Y軸方向に突出した第17磁気収束部材112dに収束される。第17磁気収束部材112dに収束される磁場は、第17磁気収束部材112dから-X軸方向と+X軸方向とに放出される。
 第17磁気収束部材112dから-X軸方向に放出される磁場は、第17磁気収束部材112d及び第20磁気収束部材115dの間にある第14磁気検知部220dと第16磁気検知部240dとを通って、第20磁気収束部材115dに捕獲される。さらに、第20磁気収束部材115dに捕獲される磁場は、第20磁気収束部材115dに連結した第19磁気収束部材114dを通って放出される。
 また、第17磁気収束部材112dから+X軸方向に放出される磁場は、第17磁気収束部材112d及び第18磁気収束部材113dの間にある第15磁気検知部230dと第13磁気検知部210dとを通って、第18磁気収束部材113dに捕獲される。さらに、第18磁気収束部材113dに捕獲される磁場は、第18磁気収束部材113dに連結した第19磁気収束部材114dを通って放出される。このように、第1磁気検知部210aから第16磁気検知部240dは、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。
 以上より、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第6磁気検知部220b、第8磁気検知部240b、第10磁気検知部220c、第12磁気検知部240c、第13磁気検知部210d、及び第15磁気検知部230dは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第5磁気検知部210b、第7磁気検知部230b、第9磁気検知部210c、第11磁気検知部230c、第14磁気検知部220d、及び第16磁気検知部240dは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合において、磁場Bの一部が、第1及び第2磁気検知ユニット10bに与えられる例は、図22で説明したので、ここでは省略する。
 磁場Bの一部は、-X軸方向に第9磁気検知部210cを通って第13磁気収束部材113cに収束され、そして放出される。磁場Bの一部は、-X軸方向に第10磁気検知部220cを通って第12磁気収束部材112cに収束され、そして放出される。磁場Bの一部は、+X軸方向に第11磁気検知部230cを通って第12磁気収束部材112cに収束され、そして放出される。磁場Bの一部は、+X軸方向に第12磁気検知部240cを通って第15磁気収束部材115cに収束され、そして放出される。
 また、磁場Bの一部は、+X軸方向に第13磁気検知部210dを通って第18磁気収束部材113dに収束され、そして放出される。磁場Bの一部は、+X軸方向に第14磁気検知部220dを通って第17磁気収束部材112dに収束され、そして放出される。磁場Bの一部は、-X軸方向に第15磁気検知部230dを通って第17磁気収束部材112dに収束され、そして放出される。磁場Bの一部は、-X軸方向に第16磁気検知部240dを通って第20磁気収束部材115dに収束され、そして放出される。このように、第1磁気検知部210aから第16磁気検知部240dは、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、第7磁気検知部230b、第8磁気検知部240b、第9磁気検知部210c、第10磁気検知部220c、第15磁気検知部230d、及び第16磁気検知部240dは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第4磁気検知部240a、第5磁気検知部210b、第6磁気検知部220b、第11磁気検知部230c、第12磁気検知部240c、第13磁気検知部210d、及び第14磁気検知部220dは、+X軸方向の磁場を感知する。
 以上より、第1磁気検知部210aから第16磁気検知部240dは、3軸成分を感知する磁場の向きが略同一となる磁気検知部が2つずつあり、3軸成分の磁場の向きが異なる磁気検知部のグループが8つあることがわかる。例えば、第1磁気検知部210a及び第15磁気検知部230dは、3軸成分の磁場B、B、Bに対して、それぞれ-X軸方向、+X軸方向、-X軸方向の磁場を感知する。
 同様に、第2磁気検知部220a及び第16磁気検知部240d、第3磁気検知部230a及び第13磁気検知部210d、第4磁気検知部240a及び第14磁気検知部220dは、それぞれ3軸成分の磁場の入力に対して、感知する磁場の向きが略同一となる。また、第5磁気検知部210b及び第11磁気検知部230c、第6磁気検知部220b及び第12磁気検知部240c、第7磁気検知部230b及び第9磁気検知部210c、第8磁気検知部240b及び第10磁気検知部220cは、それぞれ3軸成分の磁場の入力に対して、感知する磁場の向きが略同一となる。
 図35は、本実施形態に係る磁気センサ100に配線部130が接続された一例を示す。図35に示す磁気センサ100において、図23、図33、及び図34に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 配線部130は、3軸成分の磁場の入力に対して、感知する磁場の向きが略同一となる2つの磁気検知部を、直列に接続する。即ち、例えば、第1磁気検知部210aの一方の端は、第15磁気検知部230dの他方の端に接続される。このように、配線部130は、第1磁気検知部210aから第8磁気検知部240bの一方の端を、第9磁気検知部210cから第16磁気検知部240dのうちの対応する磁気検知部の他方の端に、それぞれ接続する。
 また、配線部130は、第9磁気検知部210cから第16磁気検知部240dの一方の端を、端子Sにそれぞれ接続する。また、配線部130は、第1磁気検知部210aから第8磁気検知部240bの他方の端と、端子Aから端子Hとを、図35に示すように1対1に対応させてそれぞれ電気的に接続する。端子Aから端子H、及び端子Sは、略同一の平面に略同一の材料で形成されてよい。
 ここで、第1磁気検知部210aから第16磁気検知部240dの磁気抵抗をRからR16とすると、それぞれの磁気抵抗は以下のようになる。
 (数56)
 R=R15=R-ΔR+ΔR-ΔR
 (数57)
 R=R16=R+ΔR-ΔR-ΔR
 (数58)
 R=R13=R-ΔR+ΔR+ΔR
 (数59)
 R=R14=R+ΔR-ΔR+ΔR
 (数60)
 R=R11=R-ΔR-ΔR+ΔR
 (数61)
 R=R12=R+ΔR+ΔR+ΔR
 (数62)
 R=R=R-ΔR-ΔR-ΔR
 (数63)
 R=R10=R+ΔR+ΔR-ΔR
 端子A-S間からH-S間の磁気抵抗をRからRとすると、それぞれの磁気抵抗は次式のように算出できる。
 (数64)
 R=R+R15=2(R-ΔR+ΔR-ΔR
 (数65)
 R=R+R16=2(R+ΔR-ΔR-ΔR
 (数66)
 R=R+R13=2(R-ΔR+ΔR+ΔR
 (数67)
 R=R+R14=2(R+ΔR-ΔR+ΔR
 (数68)
 R=R+R11=2(R-ΔR-ΔR+ΔR
 (数69)
 R=R+R12=2(R+ΔR+ΔR+ΔR
 (数70)
 R=R+R=2(R-ΔR-ΔR-ΔR
 (数71)
 R=R+R10=2(R+ΔR+ΔR-ΔR
 (数64)から(数71)式の磁気抵抗は、いずれも3軸成分の磁場に応じた抵抗変化量ΔR、ΔR、及びΔRが含まれる。ΔR、ΔR、及びΔRの符号は、図34に示したように、第1磁気検知部210aから第16磁気検知部240dを横切るX軸方向の磁場の向きに対応する。
 (数66)-(数65)式、(数64)-(数67)式、(数70)-(数69)式、及び(数68)-(数71)式より、次式を得る。
 (数72)
 SCB=R-R=4(-ΔR+ΔR+ΔR
 (数73)
 SAD=R-R=4(-ΔR+ΔR-ΔR
 (数74)
 SGF=R-R=4(-ΔR-ΔR-ΔR
 (数75)
 SEH=R-R=4(-ΔR-ΔR+ΔR
 さらに、-(数72)-(数73)-(数74)-(数75)式、(数72)+(数73)-(数74)-(数75)式、及び(数72)-(数73)-(数74)+(数75)式より、次式を得る。
 (数76)
 16ΔR=-SCB-SAD-SGF-SEH
 (数77)
 16ΔR=SCB+SAD-SGF-SEH
 (数78)
 16ΔR=SCB-SAD-SGF+SEH
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号をそれぞれ取得することができる。即ち、各磁気抵抗に関する連立方程式を解くことで、3軸成分の磁場に応じた抵抗変化量の各々が求まる。ここに記した連立方程式の展開は、一例であり、この限りではない。
 図35に示すように、本実施形態の磁気センサ100は、第1磁気検知部210aから第16磁気検知部240dのうち、対応する2つの磁気検知部を直列接続する例を説明した。これに代えて、磁気センサ100は、対応する2つの磁気検知部を並列接続してもよい。これに代えて、磁気センサ100は、16の端子を備え、第1磁気検知部210aから第16磁気検知部240dの磁気抵抗をそれぞれ出力してもよい。
 第8の構成例の磁気センサ100は、配線部130によって算出部300等に接続され、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力する。算出部300は、第1磁気検知ユニット10aから第4磁気検知ユニット10dにおける各磁気検知部の出力に基づいて、第1方向の磁場成分と第2方向の磁場成分とを算出する。また、算出部300は、第1磁気検知ユニット10aから第4磁気検知ユニット10dにおける各磁気検知部の出力に基づいて、第1方向及び第2方向と異なる第3方向の磁場成分をさらに算出する。
 また、算出部300は、各磁気検知部の出力を線形結合することで、各磁場成分を算出してよい。ここで、配線部130及び算出部300については、図23及び図24の構成例と同様に構成して動作させることができるので、ここでは説明を省略する。以上のように、本実施形態の磁気センサ100は、直交する3軸成分の磁気信号を同一基板上で検知することができる。
 図36は、本実施形態に係る磁気センサ100の第9の構成例を示す。図36に示す磁気センサ100において、図13及び図25に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第9の構成例の磁気センサ100は、第1磁気収束部材111または第1磁気収束部材111よりも第2方向の正側で第2方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10cを備える。また、磁気センサ100は、第1磁気検知ユニット10a及び第2磁気検知ユニット10cよりも第1方向の正側で第1方向に略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置された第3磁気検知ユニット10bと、第2磁気検知ユニット10cと略鏡像となるように配置された第4磁気検知ユニット10dと、をさらに備える。
 即ち、第9の構成例の磁気センサ100は、図25に示された第5の構成例の磁気センサ100において、第1磁気検知ユニット10a及び第2磁気検知ユニット10cよりも第1方向の正側で第1方向と略直交する面に対して、第1磁気検知ユニット10a及び第2磁気検知ユニット10cと略鏡像となるように配置されている第3磁気検知ユニット10b及び第4磁気検知ユニット10dを備える。即ち、図36において、図25で説明した第1磁気検知ユニット10a及び第2磁気検知ユニット10cに加え、第1磁気検知ユニット10a及び第2磁気検知ユニット10cの鏡像となるように、第3磁気検知ユニット10b及び第4磁気検知ユニット10dを示す。
 また、別の言い方をすると、第9の構成例の磁気センサ100は、図29に示された第6の構成例の磁気センサ100において、第1磁気検知ユニット10a及び第2磁気検知ユニット10bよりも第2方向の正側で第2方向と略直交する面に対して、第1磁気検知ユニット10a及び第2磁気検知ユニット10bと略鏡像となるように配置されている第3磁気検知ユニット10c及び第4磁気検知ユニット10dを備える。即ち、図36は、図29で説明した第2磁気検知ユニット10bを第3磁気検知ユニット10bとし、これに加え、第1磁気検知ユニット10a及び第3磁気検知ユニット10bの鏡像となるように、第2磁気検知ユニット10c及び第4磁気検知ユニット10dを示すことになる。
 第9の構成例の磁気センサ100は、第2平面34上に形成された第1磁気検知ユニット10a及び第2磁気検知ユニット10cの8つの磁気検知部と、当該8つの磁気検知部に対応する第3磁気検知ユニット10b及び第4磁気検知ユニット10dの8つの磁気検知部と、第1平面32上に形成された第1磁気検知ユニット10a及び第2磁気検知ユニット10cの磁気収束部材と、当該磁気収束部材に対応する第3磁気検知ユニット10b及び第4磁気検知ユニット10dの磁気収束部材と、を備える。
 また、第1磁気検知ユニット10aの第2磁気収束部120aに対応する第3磁気検知ユニット10bの第4磁気収束部120bは、第8磁気収束部材113bから第10磁気収束部材115bを有する。また、第2磁気検知ユニット10cの第6磁気収束部120cに対応する第4磁気検知ユニット10dの第8磁気収束部120dは、第18磁気収束部材113dから第20磁気収束部材115dを有する。また、第3磁気検知ユニット10bは、第5磁気検知部210bから第8磁気検知部240bを有し、第4磁気検知ユニット10dは、第13磁気検知部210dから第16磁気検知部240dを備える。第9の構成例の磁気センサ100は、磁気検知ユニットを複数有するセンサの一例である。
 第3磁気検知ユニット10b及び第4磁気検知ユニット10dの配置パターンは、点Qを含む基板平面に垂直なYZ平面に、第1磁気検知ユニット10a及び第2磁気検知ユニット10cと面対称な位置関係となるように配置される。ここで、第1磁気検知ユニット10a及び第2磁気検知ユニット10cで形成される磁気検知ユニットと、第3磁気検知ユニット10b及び第4磁気検知ユニット10dで形成される磁気検知ユニットとは、予め定められた距離だけ離間されて配置される。
 これに代えて、第1磁気検知ユニット10a及び第2磁気検知ユニット10cは、接続されるように配置されてもよい。即ち、第1磁気収束部材111aの+Y軸方向側の端が、第11磁気収束部材111cの-Y軸方向側の端に接するように配置されてよい。この場合、第6磁気収束部材111bの+Y軸方向側の端が、第16磁気収束部材111dの-Y軸方向側の端に接するように配置され、第3磁気検知ユニット10b及び第4磁気検知ユニット10dも、接続されるように配置される。また、第1磁気検知ユニット10aから第4磁気検知ユニット10dは、第11磁気収束部材111c及び第16磁気収束部材111dを有さず、第1磁気収束部材111a及び第6磁気収束部材111bを共有してもよい。
 第3磁気検知ユニット10b及び第4磁気検知ユニット10dが有する磁気収束部材及び磁気検知部は、第1磁気検知ユニット10a及び第2磁気検知ユニット10cが有する磁気収束部材及び磁気検知部にそれぞれ対応し、形状及び材質も略同一に形成されてよい。
 図37は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図37に示す磁気センサ100において、図26、図30、及び図36に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 図37に示した第1磁気検知ユニット10a及び第2磁気検知ユニット10cについては、図26で説明したのでここでは省略する。また、図37に示した第3磁気検知ユニット10bについても、図30で説明した第2磁気検知ユニット10bと同様なので、ここでは省略する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bの一部は、第2磁気検知ユニット10cの第11磁気収束部材111cに収束され、第15磁気収束部材115cから放出される。そして、放出される磁場Bの一部は、第4磁気検知ユニット10dの-X軸方向の端にある第8磁気収束部120dの第20磁気収束部材115dに収束される。
 第20磁気収束部材115dに収束された磁場の一部は、第20磁気収束部材115dに連結した第19磁気収束部材114dと、第19磁気収束部材114dに連結した第18磁気収束部材113dとを通って、第18磁気収束部材113dから-X軸方向に放出される。第18磁気収束部材113dから-X軸方向に放出される磁場は、第17磁気収束部材112d及び第18磁気収束部材113dの間にある第13磁気検知部210dと第15磁気検知部230dとを通って、第17磁気収束部材112dに捕獲される。
 また、第20磁気収束部材115dに収束された磁場の一部は、第20磁気収束部材115dから+X軸方向に放出される。第20磁気収束部材115dから+X軸方向に放出される磁場は、第17磁気収束部材112d及び第20磁気収束部材115dの間にある第16磁気検知部240dと第14磁気検知部220dとを通って、第17磁気収束部材112dに捕獲される。第17磁気収束部材112dに捕獲される磁場は、第17磁気収束部材112dに連結した第16磁気収束部材111dを通って放出される。このように、第1磁気検知部210aから第16磁気検知部240dは、+X軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第5磁気検知部210b、第7磁気検知部230b、第9磁気検知部210c、第11磁気検知部230c、第13磁気検知部210d、及び第15磁気検知部230dは、-X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第6磁気検知部220b、第8磁気検知部240b、第10磁気検知部220c、第12磁気検知部240c、第14磁気検知部220d、及び第16磁気検知部240dは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bの一部は、第3磁気検知ユニット10bの第8磁気収束部材113b及び第10磁気収束部材115bに収束された後、第6磁気収束部材111bから+Y軸方向に放出される。そして、第6磁気収束部材111bから+Y軸方向に放出される磁場Bは、第4磁気検知ユニット10dの-Y軸方向に突出した第7磁気収束部110dの第17磁気収束部材112dに収束される。第17磁気収束部材112dに収束された磁場は、第17磁気収束部材112dから-X軸方向と+X軸方向とに放出される。
 第17磁気収束部材112dから-X軸方向に放出される磁場は、第17磁気収束部材112d及び第20磁気収束部材115dの間にある第14磁気検知部220dと第16磁気検知部240dとを通って、第20磁気収束部材115dに捕獲される。さらに、第20磁気収束部材115dに捕獲される磁場は、第20磁気収束部材115dに連結した第19磁気収束部材114dを通って放出される。
 また、第17磁気収束部材112dから+X軸方向に放出される磁場は、第17磁気収束部材112d及び第18磁気収束部材113dの間にある第15磁気検知部230dと第13磁気検知部210dとを通って、第18磁気収束部材113dに捕獲される。さらに、第18磁気収束部材113dに捕獲される磁場は、第18磁気収束部材113dに連結した第19磁気収束部材114dを通って放出される。このように、第1磁気検知部210aから第16磁気検知部240dは、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第6磁気検知部220b、第8磁気検知部240b、第10磁気検知部220c、第12磁気検知部240c、第13磁気検知部210d、及び第15磁気検知部230dは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第5磁気検知部210b、第7磁気検知部230b、第9磁気検知部210c、第11磁気検知部230c、第14磁気検知部220d、及び第16磁気検知部240dは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合、磁場Bの一部は、+X軸方向に第13磁気検知部210dを通って第18磁気収束部材113dに収束され、そして放出される。磁場Bの一部は、+X軸方向に第14磁気検知部220dを通って第17磁気収束部材112dに収束され、そして放出される。磁場Bの一部は、-X軸方向に第15磁気検知部230dを通って第17磁気収束部材112dに収束され、そして放出される。磁場Bの一部は、-X軸方向に第16磁気検知部240dを通って第20磁気収束部材115dに収束され、そして放出される。このように、第1磁気検知部210aから第16磁気検知部240dは、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。
 以上より、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、第7磁気検知部230b、第8磁気検知部240b、第9磁気検知部210c、第10磁気検知部220c、第15磁気検知部230d、及び第16磁気検知部240dは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第4磁気検知部240a、第5磁気検知部210b、第6磁気検知部220b、第11磁気検知部230c、第12磁気検知部240c、第13磁気検知部210d、及び第14磁気検知部220dは、+X軸方向の磁場を感知する。
 以上の第9の構成例の磁気センサ100は、図33に示す第8の構成例の磁気センサ100と同様な信号を得ることができる。したがって、磁気センサ100は、第1磁気検知部210aから第16磁気検知部240dに配線部130が接続され、磁気抵抗の値を取得することで、3軸成分の磁場に応じた抵抗変化量の各々を算出することができる。
 また、例えば、磁気センサ100は、配線部130によって算出部300等に接続され、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力する。ここで、配線部130及び算出部300については、図23及び図24の構成例と同様に構成して動作させることができるので、ここでは説明を省略する。以上のように、本実施形態の磁気センサ100は、直交する3軸成分の磁気信号を同一基板上で検知することができる。
 図38は、本実施形態に係る磁気センサ100の第10の構成例を示す。図38に示す磁気センサ100において、図21及び図33に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第10の構成例の磁気センサ100は、第1磁気収束部材111の第1方向の負側の端部で第1方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10bを備える。また、磁気センサ100は、第1磁気検知ユニット10a及び第2磁気検知ユニット10bの第2方向の負側の磁気収束部材において、第2方向に略直交する面、または、第1磁気検知ユニット10a及び第2磁気検知ユニット10bよりも第2方向の負側において第2方向に略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置された第3磁気検知ユニット10cと、第2磁気検知ユニット10bと略鏡像となるように配置された第4磁気検知ユニット10dと、をさらに備える。
 即ち、第10の構成例の磁気センサ100は、図21に示された第4の構成例の磁気センサ100において、第1磁気検知ユニット10a及び第2磁気検知ユニット10bよりも第2方向の負側で第2方向と略直交する面に対して、第1磁気検知ユニット10a及び第2磁気検知ユニット10bと略鏡像となるように配置されている第3磁気検知ユニット10c及び第4磁気検知ユニット10dを備える。即ち、図38において、図21で説明した第1磁気検知ユニット10a及び第2磁気検知ユニット10bに加え、第1磁気検知ユニット10a及び第2磁気検知ユニット10bの鏡像となるように、第3磁気検知ユニット10c及び第4磁気検知ユニット10dを示す。
 また、別の言い方をすると、第10の構成例の磁気センサ100は、図33に示された第8の構成例の磁気センサ100において、第1磁気検知ユニット10a及び第2磁気検知ユニット10bの配置と、第3磁気検知ユニット10c及び第4磁気検知ユニット10dの配置と、を交換した配置を示す。即ち、第10の構成例の磁気センサ100が備える第1から第4磁気検知ユニット10dは、図33で説明したのでここでは省略する。
 図39は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図39に示す磁気センサ100において、図22、図34、及び図38に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bの一部は第2磁気検知ユニット10bの第10磁気収束部材115bに収束され、第1磁気検知ユニット10aを経て放出される。また、磁場Bの一部は第4磁気検知ユニット10dの第20磁気収束部材115dに収束され、第3磁気検知ユニット10cを経て放出される。
 ここで、磁場Bの一部が第2磁気検知ユニット10bに収束され、第1磁気検知ユニット10aから放出される過程は、図22において説明したので、ここでは省略する。また、磁場Bの一部が第4磁気検知ユニット10dに収束され、第3磁気検知ユニット10cから放出される過程は、図34において説明したので、ここでは省略する。
 即ち、第1磁気検知部210aから第16磁気検知部240dは、+X軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。そして、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第5磁気検知部210b、第7磁気検知部230b、第9磁気検知部210c、第11磁気検知部230c、第13磁気検知部210d、及び第15磁気検知部230dは、-X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第6磁気検知部220b、第8磁気検知部240b、第10磁気検知部220c、第12磁気検知部240c、第14磁気検知部220d、及び第16磁気検知部240dは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bは、-Y軸方向に突出した第12磁気収束部材112c及び第17磁気収束部材112dに収束される。ここで、磁場Bが第12磁気収束部材112c及び第17磁気収束部材112dに収束され、第3磁気検知ユニット10c及び第4磁気検知ユニット10dから放出される過程は、図34において説明したので、ここでは省略する。
 第3磁気検知ユニット10c及び第4磁気検知ユニット10dから+Y軸方向に放出される磁場Bは、第1磁気検知ユニット10a及び第2磁気検知ユニット10bに収束され、第2磁気収束部材112a及び第7磁気収束部材112bからそれぞれ放出される。第1磁気検知ユニット10a及び第2磁気検知ユニット10bに与えられる磁場Bについては、図22で説明したので、ここでは省略する。
 即ち、第1磁気検知部210aから第16磁気検知部240dは、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。そして、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第6磁気検知部220b、第8磁気検知部240b、第10磁気検知部220c、第12磁気検知部240c、第13磁気検知部210d、及び第15磁気検知部230dは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第5磁気検知部210b、第7磁気検知部230b、第9磁気検知部210c、第11磁気検知部230c、第14磁気検知部220d、及び第16磁気検知部240dは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合において、第1磁気検知部210aから第16磁気検知部240dに与えられる場合の例は、図33と同様であり、ここでは省略する。即ち、第1磁気検知部210aから第16磁気検知部240dは、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。そして、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、第7磁気検知部230b、第8磁気検知部240b、第9磁気検知部210c、第10磁気検知部220c、第15磁気検知部230d、及び第16磁気検知部240dは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第4磁気検知部240a、第5磁気検知部210b、第6磁気検知部220b、第11磁気検知部230c、第12磁気検知部240c、第13磁気検知部210d、及び第14磁気検知部220dは、+X軸方向の磁場を感知する。
 以上の第10の構成例の磁気センサ100は、図33に示す第8の構成例の磁気センサ100と同様な信号を得ることができる。したがって、磁気センサ100は、第1磁気検知部210aから第16磁気検知部240dに配線部130が接続され、磁気抵抗の値を取得することで、3軸成分の磁場に応じた抵抗変化量の各々を算出することができる。
 また、例えば、磁気センサ100は、配線部130によって算出部300等に接続され、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力する。ここで、配線部130及び算出部300については、図23及び図24の構成例と同様に構成して動作させることができるので、ここでは説明を省略する。以上のように、本実施形態の磁気センサ100は、直交する3軸成分の磁気信号を同一基板上で検知することができる。
 図40は、本実施形態に係る磁気センサ100の第11の構成例を示す。図40に示す磁気センサ100において、図29及び図36に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第11の構成例の磁気センサ100は、第5磁気収束部材115よりも第1方向の正側で第1方向と略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置されている第2磁気検知ユニット10bを備える。また、第1磁気検知ユニット10a及び第2磁気検知ユニット10bの第2方向の負側の磁気収束部材において、第2方向に略直交する面、または、第1磁気検知ユニット10a及び第2磁気検知ユニット10bよりも第2方向の負側において第2方向に略直交する面に対して、第1磁気検知ユニット10aと略鏡像となるように配置された第3磁気検知ユニット10cと、第2磁気検知ユニット10bと略鏡像となるように配置された第4磁気検知ユニット10dと、をさらに備える。
 即ち、第11の構成例の磁気センサ100は、図29に示された第6の構成例の磁気センサ100において、第1磁気検知ユニット10a及び第2磁気検知ユニット10bよりも第2方向の負側で第2方向と略直交する面に対して、第1磁気検知ユニット10a及び第2磁気検知ユニット10bと略鏡像となるように配置されている第3磁気検知ユニット10c及び第4磁気検知ユニット10dを備える。即ち、図40において、図29で説明した第1磁気検知ユニット10a及び第2磁気検知ユニット10bに加え、第1磁気検知ユニット10a及び第2磁気検知ユニット10bの鏡像となるように、第3磁気検知ユニット10c及び第4磁気検知ユニット10dを示す。
 また、別の言い方をすると、第11の構成例の磁気センサ100は、図36に示された第9の構成例の磁気センサ100において、第1磁気検知ユニット10a及び第3磁気検知ユニット10bの配置と、第2磁気検知ユニット10c及び第4磁気検知ユニット10dの配置と、を交換した配置を示す。即ち、第11の構成例の磁気センサ100が備える第1磁気検知ユニット10aから第4磁気検知ユニット10dは、図36で説明したのでここでは省略する。なお、ここでは、図40に示す第2磁気検知ユニット10bは、図36に示された第3磁気検知ユニット10bに相当し、図40に示す第3磁気検知ユニット10cは、図36に示された第2磁気検知ユニット10cに相当するとして説明する。
 図41は、本実施形態に係る磁気センサ100に磁場B、B、及びBをそれぞれ与えた場合の、磁気検知部のそれぞれが感知するX軸方向の磁場の一例を示す。図39に示す磁気センサ100において、図30、図37、及び図40に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、磁場Bの一部は第1磁気検知ユニット10aの第1磁気収束部材111aに収束され、第2磁気検知ユニット10bを経て放出される。また、磁場Bの一部は第3磁気検知ユニット10cの第11磁気収束部材111cに収束され、第4磁気検知ユニット10dを経て放出される。
 ここで、磁場Bの一部が第1磁気検知ユニット10aに収束され、第2磁気検知ユニット10bから放出される過程は、図30において説明したので、ここでは省略する。また、磁場Bの一部が第3磁気検知ユニット10cに収束され、第4磁気検知ユニット10dから放出される過程は、図37において説明したので、ここでは省略する。
 即ち、第1磁気検知部210aから第16磁気検知部240dは、+X軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。そして、+X軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第5磁気検知部210b、第7磁気検知部230b、第9磁気検知部210c、第11磁気検知部230c、第13磁気検知部210d、及び第15磁気検知部230dは、-X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第6磁気検知部220b、第8磁気検知部240b、第10磁気検知部220c、第12磁気検知部240c、第14磁気検知部220d、及び第16磁気検知部240dは、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、磁場Bは、-Y軸方向に突出した第12磁気収束部材112c及び第17磁気収束部材112dに収束される。ここで、磁場Bが第12磁気収束部材112c及び第17磁気収束部材112dに収束され、第3磁気検知ユニット10c及び第4磁気検知ユニット10dから放出される過程は、図37において説明したので、ここでは省略する。
 第3磁気検知ユニット10c及び第4磁気検知ユニット10dから+Y軸方向に放出される磁場Bは、第1磁気検知ユニット10a及び第2磁気検知ユニット10bに収束され、第2磁気収束部材112a及び第7磁気収束部材112bからそれぞれ放出される。第1磁気検知ユニット10a及び第2磁気検知ユニット10bに与えられる磁場Bについては、図30で説明したので、ここでは省略する。
 即ち、第1磁気検知部210aから第16磁気検知部240dは、+Y軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。そして、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第3磁気検知部230a、第6磁気検知部220b、第8磁気検知部240b、第10磁気検知部220c、第12磁気検知部240c、第13磁気検知部210d、及び第15磁気検知部230dは、+X軸方向の磁場を感知する。また、第2磁気検知部220a、第4磁気検知部240a、第5磁気検知部210b、第7磁気検知部230b、第9磁気検知部210c、第11磁気検知部230c、第14磁気検知部220d、及び第16磁気検知部240dは、-X軸方向の磁場を感知する。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合において、第1磁気検知部210aから第16磁気検知部240dに与えられる場合の例は、図37と同様であり、ここでは省略する。即ち、第1磁気検知部210aから第16磁気検知部240dは、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。そして、+Z軸方向に磁場Bが与えられた場合、第1磁気検知部210a、第2磁気検知部220a、第7磁気検知部230b、第8磁気検知部240b、第9磁気検知部210c、第10磁気検知部220c、第15磁気検知部230d、及び第16磁気検知部240dは、-X軸方向の磁場を感知する。また、第3磁気検知部230a、第4磁気検知部240a、第5磁気検知部210b、第6磁気検知部220b、第11磁気検知部230c、第12磁気検知部240c、第13磁気検知部210d、及び第14磁気検知部220dは、+X軸方向の磁場を感知する。
 以上の第11の構成例の磁気センサ100は、図33に示す第8の構成例の磁気センサ100と同様な信号を得ることができる。したがって、磁気センサ100は、第1磁気検知部210aから第16磁気検知部240dに配線部130が接続され、磁気抵抗の値を取得することで、3軸成分の磁場に応じた抵抗変化量の各々を算出することができる。
 また、例えば、磁気センサ100は、配線部130によって算出部300等に接続され、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力する。ここで、配線部130及び算出部300については、図23及び図24の構成例と同様に構成して動作させることができるので、ここでは説明を省略する。以上のように、本実施形態の磁気センサ100は、直交する3軸成分の磁気信号を同一基板上で検知することができる。
 また、以上の第4から第11の構成例の磁気センサ100は、一の軸の成分の出力信号に、他の軸の成分の一部が出力されてしまう他軸感度を抑制する効果をもたらすため、高い精度で3軸成分の磁気信号を検知する磁気センサが実現できる。
 図42は、本実施形態に係る磁気センサ100の第12の構成例を示す。図42に示す磁気センサ100において、図33及び図35に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第12の構成例の磁気センサ100は、第1磁気検知ユニット10aから第4磁気検知ユニット10dを複数備える。図42は、磁気センサ100が、図33及び図35に示された第8の構成例の第1磁気検知ユニット10aから第4磁気検知ユニット10dをそれぞれ2つ備える例を示す。図42において、第1磁気検知ユニット10aから第4磁気検知ユニット10dを1つずつ有する配置パターンを、第1配置パターン40a及び第2配置パターン40bとする。
 図42において、2つの配置パターンは、予め定められた間隔を有するように離間され、第1配置パターン40a、第2配置パターン40bの順で-X軸方向側から+X軸方向側に配列される例を示す。これに代えて、第1配置パターン40a及び第2配置パターン40bは、第2方向に(-Y軸方向側から+Y方向側に)配列されてもよい。
 また、図42は、第1配置パターン40a及び第2配置パターン40bに配線部130が接続された一例を示す。第1配置パターン40a及び第2配置パターン40bが有する複数の磁気検知部は、図35に示されるように、対応する2つの磁気検知部が配線部130により直列に接続される。例えば、配線部130は、3軸成分の磁場の入力に対して、感知する磁場の向きが略同一となる2つの磁気検知部を、直列に接続する。例えば、第1磁気検知部210aの一方の端は、第15磁気検知部230dの他方の端に接続される。ここで、他の磁気検知部の対応する具体的な組み合わせについては、図35で説明したのでここでは省略する。
 そして、配線部130は、第1配置パターン40aにおいて直列に接続した2つの磁気検知部と、第2配置パターン40bにおいて直列に接続した対応する2つの磁気検知部とを、直列に接続する。例えば、第1配置パターン40aの第1磁気検知部210a及び第15磁気検知部230dと、第2配置パターン40aの第1磁気検知部210a及び第15磁気検知部230dとを、直列に接続する。この場合、配線部130は、第1配置パターン40a及び第2配置パターン40bにおける2つの第15磁気検知部230dの一方の端子同士を接続してよい。
 このように、配線部130は、第1配置パターン40aにおいて直列に接続した2つの磁気検知部と、当該2つの磁気検知部の組み合わせと同一の第2配置パターン40bにおける2つの磁気検知部の組み合わせとを、直列に接続する。即ち、配線部130は、32の磁気検知部から、4つの磁気検知部を直列接続した8組の回路を構成するように配線する。そして、配線部130は、8組の回路の一方を端子Sに接続し、他方を端子Aから端子Hにそれぞれ接続する。
 一例として、配線部130は、端子A-第1配置パターン40aの第1磁気検知部210d-第1配置パターン40aの第15磁気検知部230d-第2配置パターン40bの第15磁気検知部230d-第2配置パターン40bの第1磁気検知部210a-端子Sと、配線する。これにより、第12の構成例の磁気センサ100は、端子Aから端子Hの各端子と、端子Sとの端子間に、直列接続された4つの磁気検知部をそれぞれ有する。そして、直列接続された4つの磁気検知部は、図35に示された第8の構成例の端子Aから端子Hの各端子と端子Sとの端子間にそれぞれ有する2つの磁気検知部の組み合わせを、それぞれ2組有する。
 このように、第12の構成例の磁気センサ100は、1つの配置パターンにおいて検出に用いる2つの磁気検知部の組み合わせと、他の配置パターンにおける同一の組み合わせとを、直列接続する。これによって、磁気センサ100は、1つの配置パターンによる検出よりも、直交する3軸成分の磁場を高い感度で検出することができる。また、当該磁気センサ100は、配置パターンを2つ備えるが、端子の数は増加させないので、例えば、図24に示された算出部300等に接続され、X軸方向、Y軸方向、及びZ軸方向の磁場成分を出力することができる。この場合、算出部300は、線形結合された各磁気検知部の出力に基づき、各磁場成分を算出する。
 本実施形態において、磁気センサ100は、2つの配置パターンを備える例を説明した。これに変えて、磁気センサ100は、3つ以上の配置パターンを備えてもよい。この場合、磁気センサ100は、複数の配置パターンを互いに重なり合わないように、例えば、第1方向及び/または第2方向と平行に配列する。また、磁気センサ100がn個の配置パターンを備える場合、配線部130は、1つの配置パターン内の2つの磁気検知部の組み合わせと、当該組み合わせと同一の他の(n-1)個の配置パターンの(n-1)組の2つの磁気検知部の組み合わせとを、直列に接続してよい。
 また、以上の磁気センサ100は、配線部130が1つの配置パターン内の対応する2つの磁気検知部を直列に接続することを説明した。これに代えて、配線部130は、1つの配置パターン内の対応する2つの磁気検知部を並列に接続してもよい。
 また、第12の構成例の磁気センサ100は、2以上の配置パターンにおいて、配線部130が複数の磁気検知部を適切に接続することを説明した。ここで、配置パターンの例として、図33に示す第8の構成例の配置パターンを2つ設けた例を示した。これに代えて、磁気センサ100は、第1から第7、及び第9から第11の構成例の配置パターンを2つ設けてもよい。
 図43は、本実施形態に係る磁気センサ100の第13の構成例を示す。図43に示す磁気センサ100において、図33及び図35に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第13の構成例の磁気センサ100は、第1磁気検知ユニット10a及び第2磁気検知ユニット10bよりも外側に配置された補助磁気収束部材をさらに備える。図43は、一例として、第1磁気検知ユニット10a及び第4磁気検知ユニット10dよりも外側に配置された補助磁気収束部材をさらに備える。ここで、補助磁気収束部材は、第1方向の外側に配置される。
 図43は、磁気センサ100が、図33及び図35に示す第8の構成例の磁気センサ100の配置パターン40を1つと、X軸方向の両側に、第8の構成例の磁気センサ100の磁気収束部だけで構成する補助配置パターン50を2つ備えている。ここで、補助配置パターン50は、補助磁気収束部材として機能してよく、これに代えて、補助配置パターン50の一部が補助磁気収束部材として機能してもよい。配置パターン40及び補助配置パターン50の具体的な構成は、図33及び図35で説明したのでここでは省略する。
 図43において、2つの補助配置パターン50は、第1補助配置パターン50a、第2補助配置パターン50bの順で-X軸方向側から+X軸方向側に並び、配置パターン40を挟むように配置される。配置パターン40及び第1補助配置パターン50aは、予め定められた間隔を有するように離間される。例えば、配置パターン40の第10磁気収束部材115bと、第1補助配置パターン50aの第5磁気収束部材115aとの間が、予め定められた距離だけ離間するように配置される。
 同様に、配置パターン40及び第2補助配置パターン50bは、予め定められた間隔を有するように離間される。例えば、配置パターン40の第5磁気収束部材115aと、第2補助配置パターン50bの第10磁気収束部材115bとの間が、予め定められた距離だけ離間するように配置される。ここで、予め定められた距離は、例えば、第1磁気検知ユニット10a及び第2磁気検知ユニット10bの間の距離と同程度であることが好ましい。
 ここで、補助配置パターン50がない場合において、+Y軸方向の磁場が配置パターン40に供給される例を説明する。この場合、配置パターン40の-X軸方向側の端にある第2磁気検知ユニット10bの第10磁気収束部材115bが、当該第10磁気収束部材115bよりも-X軸方向側の空間にある磁場を収束する。すると、当該第10磁気収束部材115bに収束する磁場は、第2磁気検知ユニット10bの+X軸方向側の端にある第8磁気収束部材113bに収束する磁場に比べて大きくなってしまうことがある。同様に、第4磁気検知ユニット10dの第20磁気収束部材115dに収束する磁場は、第18磁気収束部材113dに収束する磁場に比べて大きくなってしまうことがある。
 また、配置パターン40の+X軸方向側の端にある第1磁気検知ユニット10aの第5磁気収束部材115aに収束する磁場は、第3磁気収束部材113aに収束する磁場に比べてやや大きくなってしまうことがある。また、第3磁気検知ユニット10cの第15磁気収束部材115cに収束する磁場は、第13磁気収束部材113cに収束する磁場に比べてやや大きくなってしまうことがある。
 このようなアンバランスがあると、例えば、直交する3軸成分の磁気信号をそれぞれ算出する場合等に、雑音成分として影響を及ぼしてしまうことがある。そこで、本実施形態の磁気センサ100は、このような磁気収束部材に収束する磁場のアンバランスを解消すべく、配置パターン40の-X軸方向側の端にある第10磁気収束部材115bの近傍に、第1補助配置パターン50aの少なくとも一部が配置される。
 即ち、当該第1補助配置パターン50aの少なくとも一部は、第10磁気収束部材115bよりも-X軸方向側の空間にある磁場を収束させるので、第10磁気収束部材115bが収束する磁場を低減させて、第8磁気収束部材113bに収束する磁場と同程度にすることができる。これによって、第13の構成例の磁気センサ100は、配置パターン40に設けられた各々の磁気収束部材に、+Y軸方向の磁場を一様に入力させることができ、+Y軸方向の磁場を高い精度で検出することができる。
 同様に、配置パターン40の+X軸方向側の端にある第5磁気収束部材115aの近傍に、第2補助配置パターン50bの少なくとも一部が配置される。当該第2補助配置パターン50bの少なくとも一部は、第5磁気収束部材115aよりも+X軸方向側の空間にある磁場を収束させるので、第5磁気収束部材115aが収束する磁場を低減させて、第3磁気収束部材113aに収束する磁場と同程度にすることができる。
 また、配置パターン40の+X軸方向側の端にある第15磁気収束部材115cの近傍には、第2補助配置パターン50bの少なくとも一部が配置され、配置パターン40の-X軸方向側の端にある第20磁気収束部材115dの近傍には、第1補助配置パターン50aの少なくとも一部が配置される。これによって、配置パターン40に設けられた各々の磁気収束部材に、+Y軸方向の磁場を一様に入力させることができる。
 以上の第13の構成例の磁気センサ100は、第8の構成例の磁気センサ100の配置パターン40を1つ備える例を説明したが、これに代えて、複数の配置パターン40を備えてもよい。また、これに代えて、磁気センサ100は、第1から第7、及び第9から第11の構成例の配置パターンを設けてもよい。
 図44は、本実施形態に係る磁気センサ100の第14の構成例を示す。図44に示す磁気センサ100において、図33及び図35に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第14の構成例の磁気センサ100は、図33及び図35に示す第8の構成例の磁気センサ100の配置パターンを備えている例を説明する。図44は、第8の構成例の磁気センサ100が備える第1磁気検知部210aから16磁気検知部240dを示す。第1磁気検知部210a及び第3磁気検知部230a、第5磁気検知部210b及び第7磁気検知部230b、第10磁気検知部220c及び第12磁気検知部240c、及び第14磁気検知部220d及び16磁気検知部240dの一方の端子は、電気的に1点に結合されて、端子Sに接続される。
 また、第2磁気検知部220a及び第13磁気検知部210dの一方の端子は、電気的に1点に結合されて、端子Mに接続される。第4磁気検知部240a及び第15磁気検知部230dの一方の端子は、電気的に1点に結合されて、端子Nに接続される。第6磁気検知部220b及び第9磁気検知部210cの一方の端子は、電気的に1点に結合されて、端子Oに接続される。第8磁気検知部240b及び第11磁気検知部230cの一方の端子は、電気的に1点に結合されて、端子Pに接続される。
 また、第2磁気検知部220a及び第3磁気検知部230aの他方の端子は、電気的に1点に結合されて、端子Cに接続される。第1磁気検知部210a及び第4磁気検知部240aの他方の端子は、電気的に1点に結合されて、端子Aに接続される。第13磁気検知部210d及び第16磁気検知部240dの他方の端子は、電気的に1点に結合されて、端子Bに接続される。第14磁気検知部220d及び第15磁気検知部230dの他方の端子は、電気的に1点に結合されて、端子Dに接続される。第6磁気検知部220b及び第7磁気検知部230bの他方の端子は、電気的に1点に結合されて、端子Gに接続される。第5磁気検知部210b及び第8磁気検知部240bの他方の端子は、電気的に1点に結合されて、端子Eに接続される。第9磁気検知部210c及び第12磁気検知部240cの他方の端子は、電気的に1点に結合されて、端子Fに接続される。第10磁気検知部220c及び第11磁気検知部230cの他方の端子は、電気的に1点に結合されて、端子Hに接続される。
 さらに、端子Sは、予め定められた第1電位が与えられる。また、端子M、N、O、Pは、電気的に1点に結合されて、予め定められた第2電位が与えられる。
 このように、第14の構成例の磁気センサ100は、第1磁気検知部210aから第16磁気検知部240dを用いて、4つのホイーストン・ブリッジを形成する。第1ブリッジは、第2磁気検知部220a、第3磁気検知部230a、第13磁気検知部210d、及び第16磁気検知部240dと、端子B、C、M、及びSとを有する。第2ブリッジは、第1磁気検知部210a、第4磁気検知部240a、第14磁気検知部220d、及び第15磁気検知部230dと、端子A、D、N、及びSとを有する。第3ブリッジは、第6磁気検知部220b、第7磁気検知部230b、第9磁気検知部210c、及び第12磁気検知部240cと、端子F、G、O、及びSとを有する。第4ブリッジは、第5磁気検知部210b、第8磁気検知部240b、第10磁気検知部220c、及び第11磁気検知部230cと、端子E、H、P、及びSとを有する。
 第1ブリッジから第4ブリッジは、第1電位及び第2電位の間に、電圧源等によって予め定められた電圧Vが供給される。即ち、端子M-S間、N-S間、O-S間、及びP-S間に、電圧Vが供給される。
 端子A-S間、B-S間、C-S間、D-S間、E-S間、F-S間、G-S間、及びH-S間の電圧を、VAS、VBS、VCS、VDS、VES、VFS、VGS、及びVHSとすると、それぞれの電圧は次式で示される。
 (数79)
 VAS=V/(R+R)=(R-ΔR+ΔR-ΔR)V/2R
 (数80)
 VBS=V16/(R13+R16)=(R+ΔR-ΔR-ΔR)V/2R
 (数81)
 VCS=V/(R+R)=(R-ΔR+ΔR+ΔR)V/2R
 (数82)
 VDS=V14/(R14+R15)=(R+ΔR-ΔR+ΔR)V/2R
 (数83)
 VES=V/(R+R)=(R-ΔR-ΔR+ΔR)V/2R
 (数84)
 VFS=V12/(R+R12)=(R+ΔR+ΔR+ΔR)V/2R
 (数85)
 VGS=V/(R+R)=(R-ΔR-ΔR-ΔR)V/2R
 (数86)
 VHS=V10/(R10+R11)=(R+ΔR+ΔR-ΔR)V/2R
 (数79)から(数86)式の電圧は、いずれも3軸成分の磁場に応じた抵抗変化量ΔR、ΔR、及びΔRが含まれる。ΔR、ΔR、及びΔRの符号は、第1磁気検知部210aから第16磁気検知部240dを横切るX軸方向の磁場の向きに対応する。
 (数81)-(数80)式、(数79)-(数82)式、(数85)-(数84)式、及び(数83)-(数86)式より、次式を得る。
 (数87)
 VCB=VCS-VBS=(-ΔR+ΔR+ΔR)V/R
 (数88)
 VAD=VAS-VDS=(-ΔR+ΔR-ΔR)V/R
 (数89)
 VGF=VGS-VFS=(-ΔR-ΔR-ΔR)V/R
 (数90)
 VEH=VES-VHS=(-ΔR-ΔR+ΔR)V/R
 さらに、-(数87)-(数88)-(数89)-(数90)式、(数87)+(数88)-(数89)-(数90)式、及び(数87)-(数88)-(数89)+(数90)式より、次式を得る。
 (数91)
 4ΔR=(-VCB-VAD-VGF-VEH)R/V
 (数92)
 4ΔR=(VCB+VAD-VGF-VEH)R/V
 (数93)
 4ΔR=(VCB-VAD-VGF+VEH)R/V
 このようにして、磁気センサ100は、直交する3軸成分の磁気信号をそれぞれ取得することができる。即ち、各電圧に関する連立方程式を解くことで、3軸成分の磁場に応じた抵抗変化量の各々が求まる。ここに記した連立方程式の展開は、一例であり、この限りではない。
 ここで、差分電圧VCB、VAD、VGF、及びVEHは、言い換えると、各々、端子C-B間、A-D間、G-F間、及びE-H間に生じる電圧である。つまり、端子C-B間、A-D間、G-F間、及びE-H間に生じる電圧を直接測定することで、(数87)から(数90)式の信号を取得することができ、各軸の出力信号を得ることができる。
 図44において、第1ブリッジから第4ブリッジは、各々に第2電位が供給されているが、例えば、端子M、N、O、及びPの各々にスイッチを設けて、スイッチを切替えながら各々のブリッジに電圧を供給してもよい。また、複数の磁気検知部が、端子Sに接続することは、端子数を減らすことができるので、好ましい形態ではあるが、これに代えて、複数の端子Sを備え、各磁気検知部、または2つの磁気検知部の一方を複数の端子Sのいずれかにそれぞれ接続してもよい。
 以上の第14の構成例の磁気センサ100は、第8の構成例の磁気センサ100の配置パターンを用いる例を説明した。これに代えて、磁気センサ100は、第1から第7、及び第9から第11の構成例の配置パターンを用いてよい。
 図45は、本実施形態に係る磁気センサ100の第15の構成例を示す。図45に示す磁気センサ100において、図1に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第15の構成例の磁気センサ100は、第1方向に延伸する第1磁気収束部材111と、第1磁気収束部材111の端部に接続されて第1方向と異なる第2方向に延伸する第2磁気収束部材112と、第2磁気収束部材112の第1方向の負側に寄って配置されている第1磁気検知部210と、第2磁気収束部材112の第1方向の正側に寄って配置されている第2磁気検知部220と、を備える。図45は、第15の構成例の磁気センサ100として、図1に示された第1の構成例の磁気センサ100から、第2磁気収束部120及び第3磁気検知部230を除いた配置パターンを示す。
 なお、第1磁気検知部210及び第2磁気検知部220は、第2磁気収束部材112から予め定められた距離だけ離間されて配置され、第2磁気収束部材112を挟むように配置されてよい。好ましくは、第1磁気検知部210は、Z軸方向から見た平面視で、第2磁気収束部材112の-X軸方向側に、第2磁気収束部材112に近接するように配置される。また、第2磁気検知部220は、Z軸方向から見た平面視で、第2磁気収束部材112の+X軸方向側に、第2磁気収束部材112に近接するように配置される。
 磁気センサ100の+X軸方向に磁場Bが与えられた場合、-X軸方向に突出した第1磁気収束部材111は、その近傍の空間に在る磁場を収束する。つまり、第1磁気収束部材111に近いXY平面の磁場だけでなく、第1磁気収束部材111に近いXZ平面の磁場が、第1磁気収束部材111に収束される。第1磁気収束部材111に収束された磁場は、第1磁気収束部材111に連結した第2磁気収束部材112を通って、第2磁気収束部材112から-X軸方向と+X軸方向とに放出される。
 第2磁気収束部材112から-X軸方向に放出される磁場は、第1磁気検知部210を通り抜け、第2磁気収束部材112から+X軸方向に放出される磁場は、第2磁気検知部220を通り抜ける。このように、第1磁気検知部210及び第2磁気検知部220は、+X軸方向に入力する磁場Bに応じて方向変換された第1方向に平行な磁場を感知する。即ち、第1磁気検知部210は、-X軸方向の磁場を感知する。また、第2磁気検知部220は、+X軸方向の磁場を感知する。
 磁気センサ100の+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210及び第2磁気検知部220は、当該+Y軸方向の磁場を感知しない。即ち、供給される+Y軸方向の磁場BをX軸方向に曲げる磁気収束部材が無いので、磁気センサ100は、磁場を感知しない。
 磁気センサ100の+Z軸方向に磁場Bが与えられた場合、磁場Bは、+X軸方向に第1磁気検知部210を通って第2磁気収束部材112に収束され、そして放出される。また、磁場Bは、-X軸方向に第2磁気検知部220を通って第2磁気収束部材112に収束され、そして放出される。このように、第1磁気検知部210及び第2磁気検知部220は、+Z軸方向に入力する磁場Bに応じて方向変換された第1方向と平行な磁場を感知する。即ち、第1磁気検知部210は、+X軸方向の磁場を感知する。また、第2磁気検知部220は、-X軸方向の磁場を感知する。
 このように、磁気センサ100は、L字状の磁気収束部を備え、+X軸方向に磁場Bが供給された場合に、+X軸方向の磁場と共に、-X軸方向の磁場を作り出し、当該+X軸方向及び-X軸方向の磁場を磁気検知部に感知させることができる。これにより、第1~15の構成例の磁気センサ100で説明したように、3軸成分の磁場に応じた符号の異なる抵抗変化量を作り出すことができ、さらに、演算によって3軸成分の磁気信号をそれぞれ取得することができる。
 図46は、本実施形態に係る磁気センサ100の第16の構成例を示す。図46に示す磁気センサ100において、図1に示された本実施形態に係る磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第16の構成例の磁気センサ100は、第1の構成例の磁気センサ100と同様に、1つの第1磁気検知ユニット10を備える。第16の構成例の磁気センサ100は、図1に示した第1の構成例の磁気センサ100に、第1サブ磁気収束部材116と、第2サブ磁気検知部117とをさらに備える。
 第1サブ磁気収束部材116は、第2磁気収束部材112の第2方向の負側の端部に接続されて、第1方向に延伸する。第1サブ磁気収束部材116は、第2方向から見て、第2磁気検知部220及び第3磁気検知部230と重なる程度に、第1方向に延伸してよい。第1サブ磁気収束部材116は、第2方向から見て、第1磁気検知部210には達しない程度に、第1方向の負側において延伸してよい。即ち、第1サブ磁気収束部材116は、第2方向から見て、第2磁気収束部材112よりも第1方向の負側に突出する。
 また、第1サブ磁気収束部材116は、第4磁気収束部材114を超えない程度に、第1方向の正側において延伸してよい。第1サブ磁気収束部材116は、第2磁気収束部材112とZ軸方向の厚さが略同一の厚さに形成されてよい。また、第1サブ磁気収束部材116は、第2磁気収束部材112と略同一の材料で形成されてよい。
 第2サブ磁気収束部材117は、第3磁気収束部材113の第2方向の正側の端部に接続されて、第1方向に延伸する。第2サブ磁気収束部材117は、第2方向から見て、第1磁気検知部210と重なる程度に、第1方向に延伸してよい。第2サブ磁気収束部材117は、第2方向から見て、第3磁気検知部230には達しない程度に、第1方向の正側において延伸してよい。
 また、第2サブ磁気収束部材117は、第1磁気収束部材111を超えない程度に、第1方向の負側において延伸してよい。即ち、第2サブ磁気収束部材117は、第2方向から見て、第3磁気収束部材113よりも第1方向の負側に突出する。第2サブ磁気収束部材117は、第3磁気収束部材113とZ軸方向の厚さが略同一の厚さに形成されてよい。また、第2サブ磁気収束部材117は、第3磁気収束部材113と略同一の材料で形成されてよい。なお、第1サブ磁気収束部材116及び第2サブ磁気収束部材117は、略同一の形状に形成されてよい。
 このような磁気センサ100の+Y軸方向に磁場Bが与えられた場合、図6でも説明したように、-Y軸方向に突出した第3磁気収束部材113は、当該第3磁気収束部材113の近傍の空間の磁場を収束する。また、第4磁気収束部材114は、当該第4磁気収束部材114の近傍の磁場を収束し、第3磁気収束部材113へと収束させる。そして、第3磁気収束部材113に収束された磁場は、第3磁気収束部材113から-X軸方向と+X軸方向とに放出される。
 ここで、第1サブ磁気収束部材116は、第3磁気検知部230の-Y軸方向側の端部へと収束する磁場の一部を引き寄せて収束する。また、第2サブ磁気収束部材117は、第1磁気検知部210の+Y軸方向側の端部へと収束する磁場の一部を第1磁気収束部材111及び第2磁気収束部材112へと収束させる。このように、第16の構成例の磁気センサ100は、第1サブ磁気収束部材116及び第2サブ磁気収束部材117を有するので、第3磁気収束部材113から+X軸方向へと放出される磁場が第1磁気検知部210の+Y軸方向側の端部と第3磁気検知部230の-Y軸方向側の端部に集中することを防止する。
 図47は、本実施形態に係る第1磁気検知部210のY方向の位置に対する磁気増幅率の変化の概略構成例を示す。図47の横軸は、図46に示す第1磁気検知部210のY方向の位置に対応する。より具体的には、第1磁気検知部210の長さをR1とすると、当該Y方向の位置を0からR1の範囲で示す。図47は、一例として、図46の横軸において、第1磁気検知部210の+Y方向側の端の位置を原点側とし、第1磁気検知部210の-Y方向側の端の位置を+Y方向側の端の位置から+側にR1離間した位置とする。
 また、図47の縦軸は、磁気増幅率を示す。磁気増幅率は、磁場数値解析等にて求めた値の例である。そして、図47は、図1で示した第1の構成例の磁気センサ100が有する第1磁気検知部210の磁気増幅率を実線で示す。また、図47は、図46で説明した第16の構成例の磁気センサ100が有する第1磁気検知部210の磁気増幅率を点線で示す。即ち、図47は、図1で説明した第1の構成例の磁気センサ100と、図46で説明した第16の構成例の磁気センサ100との、比較結果の一例を示す。
 図47より、例えば、第16の構成例の磁気センサ100は、第1磁気検知部210の+Y方向側の磁気増幅率を、第1の構成例の磁気センサ100と比較して低減させる。また、第16の構成例の磁気センサ100は、第1磁気検知部210の-Y方向側の端部近辺の磁気増幅率を、第1の構成例の磁気センサ100と比較して増加させる。即ち、第16の構成例の磁気センサ100は、第1磁気検知部210の磁気増幅率が局所的に増加することを防止することができる。なお、図47は、第1磁気検知部210の磁気増幅率の変化を一例として示したが、第16の構成例の磁気センサ100は、第2磁気検知部220及び第3磁気検知部230についても同様に、磁気増幅率が局所的に増加することを防止できる。
 図48は、本実施形態に係る磁気センサ100の第17の構成例を示す。図48に示す磁気センサ100において、図13に示された第2の構成例の磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第17の構成例の磁気センサ100は、第2の構成例の磁気センサ100と同様に、1つの第1磁気検知ユニット10を備える。第17の構成例の磁気センサ100は、図13に示した第2の構成例の磁気センサ100に、第1サブ磁気収束部材116と、第2サブ磁気検知部117と、第3サブ磁気収束部材118と、をさらに備える。ここで、第1サブ磁気収束部材116及び第2サブ磁気検知部117の動作については、図46及び図47で説明したサブ磁気収束部材の動作と略同一の動作でよく、ここでは説明を省略する。
 第3サブ磁気収束部材118は、第5磁気収束部材115の第2方向の正側の端部に接続されて、第1方向に延伸する。第3サブ磁気収束部材118は、第2方向から見て、第4磁気検知部240と重なる程度に、第1方向に延伸してよい。第3サブ磁気収束部材118は、第2方向から見て、第2磁気検知部220には達しない程度に、第1方向の負側において延伸してよい。即ち、第3サブ磁気収束部材118は、第2方向から見て、第5磁気収束部材115よりも第1方向の負側に突出する。
 また、第3サブ磁気収束部材118は、第5磁気収束部材115から突出するように、第1方向の正側において延伸してよい。第3サブ磁気収束部材118は、第5磁気収束部材115とZ軸方向の厚さが略同一の厚さに形成されてよい。また、第3サブ磁気収束部材118は、第5磁気収束部材115と略同一の材料で形成されてよい。また、第1サブ磁気収束部材116、第2サブ磁気収束部材117、及び第3サブ磁気収束部材118は、略同一の形状に形成されてよい。この場合、第1サブ磁気収束部材116、第2サブ磁気収束部材117、及び第3サブ磁気収束部材118は、第2磁気収束部材112のY軸方向に平行な中線に対して、線対称に配置されることが好ましい。
 このような磁気センサ100の+Y軸方向に磁場Bが与えられた場合、第2の構成例の磁気センサ100と同様に、磁場Bは、-Y軸方向に突出した第2磁気収束部120の第3磁気収束部材113及び第5磁気収束部材115にそれぞれ収束される。第3磁気収束部材113に収束された磁場は、第3磁気収束部材113から+X軸方向に放出される。第3磁気収束部材113から+X軸方向に放出される磁場は、第2磁気収束部材112及び第3磁気収束部材113の間にある第1磁気検知部210と第3磁気検知部230とを通って、第2磁気収束部材112に捕獲される。
 ここで、第17の構成例の磁気センサ100は、第16の構成例の磁気センサ100と同様に、第1サブ磁気収束部材116及び第2サブ磁気収束部材117を有するので、第3磁気収束部材113から+X軸方向へと放出される磁場が第1磁気検知部210の+Y軸方向側の端部と第3磁気検知部230の-Y軸方向側の端部に集中することを防止する。
 また、第5磁気収束部材115に収束された磁場は、第5磁気収束部材115から-X軸方向に放出される。第5磁気収束部材115から-X軸方向に放出される磁場は、第2磁気収束部材112及び第5磁気収束部材115の間にある第4磁気検知部240と第2磁気検知部220とを通って、第2磁気収束部材112に捕獲される。第2磁気収束部材112に捕獲される磁場は、第2磁気収束部材112に連結した第1磁気収束部材111を通って放出される。
 ここで、第1サブ磁気収束部材116及び第3サブ磁気収束部材118は、第1サブ磁気収束部材116及び第2サブ磁気収束部材117の動作と同様に、磁気検知部のY軸方向の端部へと収束する磁場の一部を引き寄せて収束する。即ち、第17の構成例の磁気センサ100は、第1サブ磁気収束部材116及び第3サブ磁気収束部材118を有するので、第5磁気収束部材115から-X軸方向へと放出される磁場が第4磁気検知部240の+Y軸方向側の端部と第2磁気検知部220の-Y軸方向側の端部に集中することを防止する。したがって、第17の構成例の磁気センサ100は、磁気検知部の磁気増幅率が局所的に増加することを防止できる。
 図49は、本実施形態に係る磁気センサ100の第18の構成例を示す。図49に示す磁気センサ100において、図45に示された第15の構成例の磁気センサ100の動作と略同一のものには同一の符号を付け、説明を省略する。
 第18の構成例の磁気センサ100は、第15の構成例の磁気センサ100と同様に、図1に示された第1の構成例の磁気センサ100から、第2磁気収束部120及び第3磁気検知部230を除いた配置パターンを示す。そして、第18の構成例の磁気センサ100は、図45に示した第15の構成例の磁気センサ100に、第1サブ磁気収束部材116をさらに備える。なお、第1サブ磁気収束部材116の動作は、図46及び図47で説明した動作と略同一の動作をしてよく、ここでは説明を省略する。
 第18の構成例の磁気センサ100は、第15の構成例の磁気センサ100と同様に、X軸方向の磁場を感知する。即ち、+Y軸方向に磁場Bが与えられた場合、第1磁気検知部210は、+X軸方向の磁場を感知する。また、第2磁気検知部220は、-X軸方向の磁場を感知する。そして、第1サブ磁気収束部材116は、X軸方向へ進む磁場が第1磁気検知部210及び第2磁気検知部220の-Y軸方向側の端部に集中することを防止する。
 以上、本実施形態に係る第15から第18の構成例の磁気センサ100が、1つの第1磁気検知ユニット10を備える例を説明した。磁気センサ100は、これに限定されず、2つ以上の磁気検知ユニット10を備えてよく、また、このばあい、複数種類の磁気検知ユニット10を備えてもよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、及び図面中において示した装置、システム、プログラム、及び方法における動作、手順、ステップ、及び段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、及び図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
10 磁気検知ユニット、20 基板、22 基板平面、30 絶縁層、32 第1平面、34 第2平面、40 配置パターン、50 補助配置パターン、100 磁気センサ、110 磁気収束部、111~115 磁気収束部材、116~118 サブ磁気収束部材、120 磁気収束部、130 配線部、210~240 磁気検知部、300 算出部、310、312、314 定電流源、320 信号取得部、330 演算部、340 加減算部

Claims (37)

  1.  第1磁気検知ユニットを含む磁気センサであって、
     前記第1磁気検知ユニットは、
     第1方向に延伸する第1磁気収束部材と、前記第1磁気収束部材の前記第1方向の正側の端部に接続されて前記第1方向と異なる第2方向の負側に延伸する第2磁気収束部材とを有する第1磁気収束部と、
     前記第1磁気収束部材の前記第1方向の負側の端部よりも前記第1方向の正側に寄り、前記第2磁気収束部材よりも前記第1方向の負側に寄り、前記第1磁気収束部材よりも前記第2方向の負側に寄り、且つ前記第2磁気収束部材の前記第2方向の負側の端部よりも前記第2方向の負側へ延伸する第3磁気収束部材と、前記第3磁気収束部材の前記第2方向の負側の端部に接続されて前記第1磁気収束部材の前記第1方向の正側の端部よりも前記第1方向の正側に延伸する第4磁気収束部材とを有する第2磁気収束部と、
     前記第2磁気収束部材と前記第3磁気収束部材との間に配置され、第2方向に延伸する第1磁気検知部と、
     前記第2磁気収束部材よりも前記第1方向の正側に寄って配置され、第2方向に延伸する第2磁気検知部と、
     を備える磁気センサ。
  2.  前記第1磁気検知ユニットは、
     前記第2磁気収束部材と前記第3磁気収束部材との間に配置されている第3磁気検知部をさらに備え、
     前記第1磁気検知部は、前記第2磁気収束部材よりも前記第3磁気収束部材までの距離が小さく、
     前記第3磁気検知部は、前記第3磁気収束部材よりも前記第2磁気収束部材までの距離が小さい請求項1に記載の磁気センサ。
  3.  前記第1磁気検知ユニットは、
     前記第2磁気収束部材の前記第2方向の負側の端部に接続されて、前記第1方向に延伸する第1サブ磁気収束部材と、
     前記第3磁気収束部材の前記第2方向の正側の端部に接続されて、前記第1方向に延伸する第2サブ磁気収束部材と、を更に備える請求項1または2に記載の磁気センサ。
  4.  前記第2磁気収束部は、
     前記第4磁気収束部材の前記第1方向の正側の端部に接続されて前記第2方向の正側に延伸する第5磁気収束部材をさらに備え、
     前記第2磁気検知部は、前記第2磁気収束部材と前記第5磁気収束部材との間に配置されている請求項2または3に記載の磁気センサ。
  5.  前記第1磁気検知ユニットは、
     前記第2磁気収束部材と前記第5磁気収束部材との間に配置されている第4磁気検知部をさらに備え、
     前記第2磁気検知部は、前記第5磁気収束部材よりも前記第2磁気収束部材までの距離が小さく、
     前記第4磁気検知部は、前記第2磁気収束部材よりも前記第5磁気収束部材までの距離が小さい請求項4に記載の磁気センサ。
  6.  前記第1磁気検知ユニットは、前記第5磁気収束部材の前記第2方向の正側の端部に接続されて、前記第1方向に延伸する第3サブ磁気収束部材をさらに備える請求項5に記載の磁気センサ。
  7.  前記第1磁気収束部材の前記第1方向の負側の端部で前記第1方向と略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットをさらに備える請求項1から4のいずれか一項に記載の磁気センサ。
  8.  前記第1磁気収束部材の前記第1方向の負側の端部で前記第1方向と略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットをさらに備える請求項5または6に記載の磁気センサ。
  9.  前記第1磁気収束部材または前記第1磁気収束部材よりも前記第2方向の正側で前記第2方向と略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットをさらに備える請求項5または6に記載の磁気センサ。
  10.  前記第5磁気収束部材よりも前記第1方向の正側で前記第1方向と略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットをさらに備える請求項5または6に記載の磁気センサ。
  11.  前記第4磁気収束部材または前記第4磁気収束部材よりも前記第2方向の負側で前記第2方向と略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置されている第2磁気検知ユニットをさらに備える請求項5または6に記載の磁気センサ。
  12.  前記第1磁気検知ユニットと前記第2磁気検知ユニットとが接続される各磁気収束部材において前記第2方向に略直交する面、またはこれら各磁気収束部材よりも前記第2方向の正側において前記第2方向に略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置された第3磁気検知ユニットと、前記第2磁気検知ユニットと略鏡像となるように配置されている第4磁気検知ユニットと、をさらに備える請求項8に記載の磁気センサ。
  13.  前記第1磁気検知ユニット及び前記第2磁気検知ユニットよりも前記第1方向の正側で前記第1方向に略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置された第3磁気検知ユニットと、前記第2磁気検知ユニットと略鏡像となるように配置された第4磁気検知ユニットと、をさらに備える請求項9に記載の磁気センサ。
  14.  前記第1磁気検知ユニット及び前記第2磁気検知ユニットの前記第2方向の負側の磁気収束部材において、前記第2方向に略直交する面、または、前記第1磁気検知ユニット及び前記第2磁気検知ユニットよりも前記第2方向の負側において前記第2方向に略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置された第3磁気検知ユニットと、前記第2磁気検知ユニットと略鏡像となるように配置された第4磁気検知ユニットと、をさらに備える請求項8に記載の磁気センサ。
  15.  前記第1磁気検知ユニット及び前記第2磁気検知ユニットの前記第2方向の負側の磁気収束部材において、前記第2方向に略直交する面、または、前記第1磁気検知ユニット及び前記第2磁気検知ユニットよりも前記第2方向の負側において前記第2方向に略直交する面に対して、前記第1磁気検知ユニットと略鏡像となるように配置された第3磁気検知ユニットと、前記第2磁気検知ユニットと略鏡像となるように配置された第4磁気検知ユニットと、をさらに備える請求項10に記載の磁気センサ。
  16.  前記第1から第4磁気検知ユニットにおける各磁気検知部は、それぞれホイーストン・ブリッジを形成している請求項12から15のいずれか一項に記載の磁気センサ。
  17.  前記第1から第4磁気検知ユニットを複数備える請求項12から16のいずれか一項に記載の磁気センサ。
  18.  前記第1及び第2磁気検知ユニットよりも外側に配置された補助磁気収束部材をさらに備える請求項8から11のいずれか一項に記載の磁気センサ。
  19.  前記第1及び第4磁気検知ユニットよりも外側に配置された補助磁気収束部材をさらに備える請求項12から17のいずれか一項に記載の磁気センサ。
  20.  前記補助磁気収束部材は、前記第1方向の外側に配置されている請求項18または19に記載の磁気センサ。
  21.  前記第1及び第2磁気検知ユニットにおける各磁気検知部の出力に基づいて、前記第1方向の磁場成分と前記第2方向の磁場成分とを算出する算出部をさらに備える請求項8から11のいずれか一項に記載の磁気センサ。
  22.  前記算出部は、
     前記第1及び第2磁気検知ユニットにおける各磁気検知部の出力に基づいて、前記第1及び第2方向と異なる第3方向の磁場成分をさらに算出する請求項21に記載の磁気センサ。
  23.  前記第1から第4磁気検知ユニットにおける各磁気検知部の出力に基づいて、前記第1方向の磁場成分と前記第2方向の磁場成分とを算出する算出部をさらに備える請求項12から17、19のいずれか一項に記載の磁気センサ。
  24.  前記算出部は、
     前記第1から第4磁気検知ユニットにおける各磁気検知部の出力に基づいて、前記第1及び第2方向と異なる第3方向の磁場成分をさらに算出する請求項23に記載の磁気センサ。
  25.  前記算出部は、
     前記各磁気検知部の出力を線形結合することで、各磁場成分を算出する請求項21から24のいずれか一項に記載の磁気センサ。
  26.  第1磁気検知ユニットを含む磁気センサであって、
     前記第1磁気検知ユニットは、
     第1方向に磁場成分が入力された場合に、当該磁場成分を前記第1方向の第1磁場成分と前記第1方向と逆方向の第2磁場成分とにそれぞれ変換し、前記第1方向と異なる第2方向に磁場成分が入力された場合に、当該磁場成分を前記第1方向の第3磁場成分と前記第1方向と逆方向の第4磁場成分とにそれぞれ変換する磁場方向変換部と、
     前記第1及び第2磁場成分のうちの一方と、前記第3及び第4磁場成分のうちの一方とを検知する第1磁気検知部と、
     前記第1及び第2磁場成分のうちの他方と、前記第3及び第4磁場成分のうちの他方とを検知する第2磁気検知部と、
     を備える磁気センサ。
  27.  前記磁場方向変換部と、
     前記第1及び第2磁場成分のうちの前記他方と、前記第3及び第4磁場成分のうちの前記一方とを検知する第3磁気検知部と、
     前記第1及び第2磁場成分のうちの前記一方と、前記第3及び第4磁場成分のうちの前記他方とを検知する第4磁気検知部と、
     を備える第2磁気検知ユニットをさらに含む請求項26に記載の磁気センサ。
  28.  前記第1及び第2磁気検知ユニットを複数備える請求項27に記載の磁気センサ。
  29.  前記複数の前記第1及び第2磁気検知ユニットにおける各磁気検知部の出力に基づいて、前記第1方向の磁場成分と前記第2方向の磁場成分とを算出する算出部をさらに備える請求項27または28に記載の磁気センサ。
  30.  前記磁場方向変換部は、
     前記第1及び第2方向と異なる第3方向に磁場成分が入力された場合に、当該磁場成分を前記第1方向の第5及び第6磁場成分と前記第1方向と逆方向の第7及び第8磁場成分とにそれぞれ変換し、
     前記第1磁気検知部は、前記第5及び第7磁場成分のうちの一方をさらに検知し、
     前記第2磁気検知部は、前記第6及び第8磁場成分のうちの一方をさらに検知し、
     前記第1磁気検知ユニットは、
     前記第1及び第2磁場成分のうちの前記一方と前記第3及び第4磁場成分のうちの前記一方と前記第5及び第7磁場成分のうちの他方とを検知する第5磁気検知部と、
     前記第1及び前記第2磁場成分のうちの前記他方と前記第3及び第4磁場成分のうちの前記他方と前記第6及び第8磁場成分のうちの他方とを検知する第6磁気検知部と、
     をさらに備える請求項29に記載の磁気センサ。
  31.  前記第3磁気検知部は、前記第5及び第7磁場成分のうちの前記一方をさらに検知し、
     前記第4磁気検知部は、前記第6及び第8磁場成分のうちの前記一方をさらに検知し、
     前記第2磁気検知ユニットは、
     前記第1及び第2磁場成分のうちの前記他方と、前記第3及び第4磁場成分のうちの前記一方と、前記第5及び第7磁場成分のうちの前記他方とを検知する第7磁気検知部と、
     前記第1及び第2磁場成分のうちの前記一方と、前記第3及び第4磁場成分のうちの前記他方と前記第6及び第8磁場成分のうちの前記他方とを検知する第8磁気検知部と、
     をさらに備える請求項30に記載の磁気センサ。
  32.  前記算出部は、
     前記複数の前記第1及び第2磁気検知ユニットにおける各磁気検知部の出力に基づいて、前記第3方向の磁場成分をさらに算出する請求項31に記載の磁気センサ。
  33.  前記算出部は、
     前記各磁気検知部の出力を線形結合することで、各磁場成分を算出する請求項29から32のいずれか一項に記載の磁気センサ。
  34.  前記第1方向と前記第2方向は、互いに直交している請求項1から33のいずれか一項に記載の磁気センサ。
  35.  前記第1から第3方向は、互いに直交している請求項22、24、30から32のいずれか一項に記載の磁気センサ。
  36.  第1方向に延伸する第1磁気収束部材と、
     前記第1磁気収束部材の端部に接続されて前記第1方向と異なる第2方向に延伸する第2磁気収束部材と、
     前記第2磁気収束部材の前記第1方向の負側に寄って配置されている第1磁気検知部と、
     前記第2磁気収束部材の前記第1方向の正側に寄って配置されている第2磁気検知部と、
     を備える磁気センサ。
  37.  前記第2磁気収束部材の前記第2方向の負側の端部に接続されて、前記第1方向に延伸する第1サブ磁気収束部材をさらに備える請求項36に記載の磁気センサ。
PCT/JP2015/072882 2014-08-13 2015-08-12 磁気センサ WO2016024621A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016542607A JP6423438B2 (ja) 2014-08-13 2015-08-12 磁気センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014164708 2014-08-13
JP2014-164708 2014-08-13

Publications (1)

Publication Number Publication Date
WO2016024621A1 true WO2016024621A1 (ja) 2016-02-18

Family

ID=55304248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072882 WO2016024621A1 (ja) 2014-08-13 2015-08-12 磁気センサ

Country Status (2)

Country Link
JP (1) JP6423438B2 (ja)
WO (1) WO2016024621A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074481A (ja) * 2017-10-19 2019-05-16 Tdk株式会社 磁気センサ
CN109764796A (zh) * 2017-11-09 2019-05-17 Tdk株式会社 磁传感器
KR20200112914A (ko) * 2018-03-01 2020-10-05 요코가와 덴키 가부시키가이샤 전류 측정 장치, 전류 측정 방법, 및 컴퓨터 판독 가능한 비일시적 기록 매체

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118498A1 (ja) * 2012-02-07 2013-08-15 旭化成エレクトロニクス株式会社 磁気センサ及びその磁気検出方法
JP2013178226A (ja) * 2012-02-07 2013-09-09 Asahi Kasei Electronics Co Ltd 磁気センサ及びその磁気検出方法
JP2014081318A (ja) * 2012-10-18 2014-05-08 Asahi Kasei Electronics Co Ltd 磁気センサ及びその磁気検出方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009008265B4 (de) * 2009-02-10 2011-02-03 Sensitec Gmbh Anordnung zur Messung mindestens einer Komponente eines Magnetfeldes
EP2520945B1 (en) * 2009-12-28 2016-06-01 TDK Corporation Magnetic field detecting apparatus and current sensor
JP5876583B2 (ja) * 2013-03-26 2016-03-02 旭化成エレクトロニクス株式会社 磁気センサ及びその磁気検出方法
WO2016010120A1 (ja) * 2014-07-16 2016-01-21 旭化成エレクトロニクス株式会社 磁気センサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118498A1 (ja) * 2012-02-07 2013-08-15 旭化成エレクトロニクス株式会社 磁気センサ及びその磁気検出方法
JP2013178226A (ja) * 2012-02-07 2013-09-09 Asahi Kasei Electronics Co Ltd 磁気センサ及びその磁気検出方法
JP2014081318A (ja) * 2012-10-18 2014-05-08 Asahi Kasei Electronics Co Ltd 磁気センサ及びその磁気検出方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019074481A (ja) * 2017-10-19 2019-05-16 Tdk株式会社 磁気センサ
CN109764796A (zh) * 2017-11-09 2019-05-17 Tdk株式会社 磁传感器
JP2019086463A (ja) * 2017-11-09 2019-06-06 Tdk株式会社 磁気センサ
US11054283B2 (en) 2017-11-09 2021-07-06 Tdk Corporation Magnetic sensor
KR20200112914A (ko) * 2018-03-01 2020-10-05 요코가와 덴키 가부시키가이샤 전류 측정 장치, 전류 측정 방법, 및 컴퓨터 판독 가능한 비일시적 기록 매체
KR102412180B1 (ko) 2018-03-01 2022-06-22 요코가와 덴키 가부시키가이샤 전류 측정 장치, 전류 측정 방법, 및 컴퓨터 판독 가능한 비일시적 기록 매체

Also Published As

Publication number Publication date
JPWO2016024621A1 (ja) 2017-06-22
JP6423438B2 (ja) 2018-11-14

Similar Documents

Publication Publication Date Title
JP5876583B2 (ja) 磁気センサ及びその磁気検出方法
JP5531215B2 (ja) 電流センサ
US9599681B2 (en) Magnetic sensor and magnetic detecting method of the same
US9964601B2 (en) Magnetic sensor
US9933462B2 (en) Current sensor and current measuring device
JP6597370B2 (ja) 磁気センサ
TWI747285B (zh) 磁場感測裝置
JP6427588B2 (ja) 磁気センサ
KR20150102053A (ko) 자기 센서 장치 및 자기 감지 방법
US11009562B2 (en) Magnetic field sensing apparatus
JP6423438B2 (ja) 磁気センサ
JP6321323B2 (ja) 磁気センサ
US20210382124A1 (en) Magnetic sensor device
US20190173002A1 (en) Two-dimensional magnetic field sensor with a single integrated magnetic field concentrator
JP2017181403A (ja) 磁気センサ
JP6185298B2 (ja) 磁気センサ
JP5504483B2 (ja) 電流センサ
JP6387104B2 (ja) 磁気センサ
JP2015169460A (ja) 磁気センサおよび電流センサ
JP6721393B2 (ja) 磁気センサ
JP6701047B2 (ja) 磁気センサおよび磁気センサの製造方法
JP2018165703A (ja) 磁気センサ
TWI703337B (zh) 磁場感測裝置
US11899047B1 (en) Magnetic field shaping for magnetic field current sensor
US20240133981A1 (en) Dual current magnetic field sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831380

Country of ref document: EP

Kind code of ref document: A1