WO2016024568A1 - 配管の熱処理方法及び装置 - Google Patents

配管の熱処理方法及び装置 Download PDF

Info

Publication number
WO2016024568A1
WO2016024568A1 PCT/JP2015/072646 JP2015072646W WO2016024568A1 WO 2016024568 A1 WO2016024568 A1 WO 2016024568A1 JP 2015072646 W JP2015072646 W JP 2015072646W WO 2016024568 A1 WO2016024568 A1 WO 2016024568A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat treatment
expanded
piping
heat
Prior art date
Application number
PCT/JP2015/072646
Other languages
English (en)
French (fr)
Inventor
川水 努
金巻 裕一
宏樹 大久保
英一 美坂
年宏 吉田
弘照 ▲高▼橋
浩司 石崎
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to RU2016150860A priority Critical patent/RU2660544C2/ru
Priority to KR1020167036131A priority patent/KR101933293B1/ko
Priority to CN201580022607.2A priority patent/CN106255769B/zh
Publication of WO2016024568A1 publication Critical patent/WO2016024568A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a heat treatment method for performing heat treatment of piping using a high-frequency induction heating method, and an apparatus used for the heat treatment method.
  • Patent Document 1 discloses an apparatus that performs heat treatment of a piping system using a high-frequency induction heating method.
  • heat treatment can be performed simply by winding a high frequency induction heating coil around the outer surface of the heat treatment region of the pipe via a heat insulating material. For this reason, there is an advantage that heat treatment can be performed on a part of the piping while being arranged in the field without cutting the piping incorporated in the plant or the like.
  • At least one embodiment of the present invention has been made in view of the problems of the prior art, and aims to eliminate temperature unevenness in the heat treatment region and suppress energy consumption during heat treatment of piping with simple and low-cost means. .
  • the heat treatment method for piping includes at least one that is made of a flexible material through at least one opening formed in the piping and can be expanded by supplying a fluid for expansion.
  • the expansion fluid is supplied to the at least one expanding body through a flexible supply tube inserted into the piping from at least one opening formed in the piping, and then expanded.
  • the inside of the pipe on at least one side of the heat treatment region is closed by the first step and the second step.
  • the air flow in the pipe can be stopped, and the outflow of the high temperature air in the pipe in the heat treatment area and the inflow of the normal temperature air from outside the heat treatment area can be eliminated.
  • the third step heat treatment step
  • temperature unevenness and heat loss of the piping in the heat treatment region can be suppressed.
  • the “flexible material” includes a material having elasticity or elasticity such as rubber.
  • open hole refers to openings such as inspection holes, drain holes, and air holes formed in the pipe.
  • the piping is arranged in the vertical direction,
  • the at least one spreading body includes only one spreading body;
  • the one expanded body is disposed above the heat treatment region.
  • the at least one spreader includes two spreaders; In the first step, the two expanded bodies are arranged on both sides of the heat treatment region of the pipe, In the second step, the inside of the pipe is closed on both sides of the heat treatment region of the pipe by the two expanded bodies that are expanded. According to the configuration (3), since the flow path in the pipe can be closed on both sides of the heat treatment region, it is possible to completely prevent outflow of high temperature air and normal temperature air in the heat treatment region. Therefore, it is possible to more effectively prevent the temperature unevenness and heat loss of the piping in the heat treatment region.
  • the at least one spreading body is constituted by a hollow body made of a flexible material; Using a coolant as the spreading fluid, During the third step, the expansion fluid is continuously supplied to the at least one expansion body, while the flexibility is inserted into the piping from at least one opening formed in the piping. The expansion fluid is discharged from the at least one expansion body through a discharge tube having a property.
  • the expansion body can be cooled by the expansion fluid by continuously supplying and discharging the expansion fluid into the expansion body. Therefore, even an expanded body having poor heat resistance can maintain durability against heat transmitted from the heat treatment region. Moreover, a cooling effect can be improved by using a cooling fluid. Accordingly, it is possible to use an expanded body having no heat resistance.
  • the cooling liquid discharged from the discharge tube can be cooled and recycled.
  • a plurality of magnets that can be attracted to the pipe when the at least one expanded body is expanded are mounted on the at least one expanded body.
  • the plurality of magnets are, for example, attached to a portion of the expanding body that has a maximum diameter at the time of expansion and is in contact with the inner wall of the pipe, and a portion where the maximum diameter of the expanding body is formed by the plurality of magnets in the second step It is adsorbed on the inner wall.
  • a heat insulating member that is disposed between the expanded body and the pipe when the at least one expanded body is expanded is attached to the expanded body. According to the said structure (6), even if the piping inner wall in which the expansion body is arrange
  • the expansion body and the supply tube are inserted into the pipe from the opening existing in the pipe, and the expansion body is a heat treatment area of the pipe in the flow path in the pipe. Arranged on at least one side. Then, the expansion fluid is supplied to the expansion body arranged in the pipe to expand the expansion body, thereby closing the pipe.
  • the flow of the gas in piping can be stopped and the exchange of the air in piping of a heat processing area
  • the apparatus further includes a plurality of magnets attached to the at least one expanding body and capable of being attracted to the pipe when the expanding body is expanded. According to the configuration (8), since the gap between the pipe and the expanding body can be reduced by the magnetic force of the plurality of magnets, the blocking performance of the pipe can be improved.
  • It further includes at least one heat insulating material that is attached to the at least one expanding body and is disposed between the at least one expanding body and the pipe when the at least one expanding body is expanded. According to the said structure (9), even if the piping inner wall in which the expansion body is arrange
  • the at least one heat insulating member has flexibility and a ring shape;
  • the at least one heat insulating member is fixed to the at least one expanding body at two locations that are separated in the diametrical direction when the at least one expanding body is expanded.
  • the heat insulating member since the heat insulating member has flexibility, it can be expanded following the expanding operation of the expanding body. Therefore, it is easy to insert into the opening before the expansion, and after the expansion, the surface shape of the expanded body can be closely attached.
  • the at least one expanded body is formed of a hollow body made of a flexible material.
  • the expansion body is configured by a hollow body, so that the expansion efficiency of the expansion body can be increased by the pressure of the expansion fluid supplied to the inside of the expansion body, and the piping The holding power of the expanding body in the inner channel can be increased.
  • the at least one spreader is An expandable sheet that can be expanded, A plurality of connecting bars, Each of the plurality of connecting bars includes one end connected to the peripheral edge of the expanding sheet and the other end connected to the distal end side of the supply tube so that the expanding sheet expands in a parachute shape.
  • the rigidity of an expansion sheet improves with a connection bar, and the expansion sheet expands in the shape of a parachute, and can hold
  • a magnet is attached to the connecting portion between the expansion sheet and the connecting bar, the blocking performance of the pipe by the expansion sheet can be further improved.
  • the configuration (12) it further has a framework attached to the spread sheet,
  • the frame can be bent to a size that can be inserted from at least one opening of the pipe at room temperature, and the expansion sheet can be closed inside the pipe in a temperature range of heat treatment of the pipe.
  • It is made of a shape memory alloy that can be further developed.
  • the rigidity of the expansion sheet can be improved by the framework, and the expansion sheet can be inserted into the pipe and the pipe can be reliably blocked by the expansion in the pipe. .
  • FIG. 13 is a schematic cross-sectional view taken along line AA in FIG. 12.
  • (A) to (C) are explanatory views sequentially showing the expansion process of the balloon shown in FIG. Show.
  • (A) is a front view which shows an example of an expansion sheet and a framework roughly,
  • (B) is a B direction arrow directional view in (A).
  • (A) is a front view which shows schematically another example of an expansion sheet and a framework, (B) is a C direction arrow view in (A).
  • an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
  • expressions representing shapes such as quadrangular shapes and cylindrical shapes represent not only geometrically strict shapes such as quadrangular shapes and cylindrical shapes, but also irregularities and chamfers as long as the same effects can be obtained. A shape including a part or the like is also expressed.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one constituent element are not exclusive expressions for excluding the existence of other constituent elements.
  • the pipes P to be heat-treated are arranged in the vertical direction.
  • a heat insulating material is wound on the entire outer peripheral surface of the pipe P to form a heat insulating material layer I.
  • the high frequency induction heating coil 12 constituting the heat treatment apparatus 10A is spirally wound in a state of being embedded in the heat insulating material layer I.
  • an inspection hole h is formed in advance in a partition wall of the pipe P for inspection of a welded portion, and an inspection plug 14 is attached to the inspection hole h.
  • the heat treatment apparatus 10 ⁇ / b> A includes two balloons 16 as expanded bodies inserted into the flow path in the pipe, a flexible tube 18 connected to the balloon 16, and the pipe P
  • the air pump 20 is provided outside.
  • the balloon 16 is made of a stretchable and heat-resistant material such as rubber and has a hollow portion capable of supplying air a therein.
  • the two balloons 16 are inserted into the pipe from the inspection plug 14 in a deflated state, and are respectively disposed in the pipe flow paths s2 and s3 on both sides of the heat treatment region R.
  • an air flow formed in the pipe P is used, or an appropriate position is selected from a plurality of openings h formed in the pipe P. It is possible to adopt a method in which an inspection hole is selected, the balloon 16 is inserted from the inspection hole, and the balloon 16 is arranged at a desired position using the air flow in the pipe P.
  • air a is supplied from the air pump 20 into the balloon 16 through the flexible tube 18.
  • the balloon 16 is inflated by the supplied air, shields the flow paths s2 and s3 in the piping, and until the balloon 16 is stably held between the partition walls of the piping P by the pressure of the air supplied to the inside of the balloon 16. Supply air.
  • a high-frequency alternating current is passed through the high-frequency induction heating coil 12 to heat-treat the heat treatment region R.
  • the pipe flow paths s2 and s3 are shielded by the balloons 16 on both sides in the pipe axial direction on the pipe flow path s1 in the heat treatment region R. Can be stopped. Therefore, it is possible to prevent the high-temperature air Ah that has become high temperature by the heat treatment from rising from the in-pipe flow path s1 and flowing out to the in-pipe flow path s2, and at the normal temperature of the in-pipe flow path s3 from below to the in-pipe flow path s1. Air Ac can be prevented from flowing in.
  • FIG. 2 shows an embodiment in which the heat treatment apparatus 10A is applied to a pipe P arranged in the horizontal direction. Also in this embodiment, two balloons 16 in a deflated state are inserted from the inspection plug 14 and the same operation as in the above embodiment is performed, and the two balloons 16 shield the pipe flow paths s2 and s3. . Thereafter, the heat treatment of the heat treatment region R of the pipe P is performed. Also in this embodiment, since the in-pipe flow path s1 in the heat treatment region R is completely blocked from the in-pipe flow paths s2 and s3, the outflow of the high-temperature air Ah existing in the in-pipe flow path s1 and the flow in the pipe It is possible to prevent room temperature air Ac from flowing into the path s1. Therefore, during the heat treatment process, it is possible to prevent the occurrence of temperature unevenness in the heat treatment region R of the pipe P and the heat loss due to the outflow of the high temperature air Ah in the pipe flow path s1.
  • FIG. 3 further illustrates another embodiment of the present invention.
  • heat treatment is performed on the pipes P arranged in the vertical direction using the heat treatment apparatus 10A.
  • one balloon 16 is inserted into the in-pipe flow path from the inspection plug 14 and disposed in the in-pipe flow path s2 located above the heat treatment region R. Then, after the in-pipe flow path s2 is closed by the same operation as in the above embodiment, the heat treatment of the pipe P in the heat treatment region R is performed.
  • the rising of the high temperature air Ah in the in-pipe flow path s1 can be prevented by the balloon 16, so that the room temperature air Ac can be prevented from entering the in-pipe flow path s1 from below. Therefore, it is possible to prevent occurrence of temperature unevenness and heat loss in the heat treatment region R of the pipe P.
  • the heat treatment apparatus 10A can be reduced in cost.
  • FIG. 4 shows yet another embodiment of the present invention.
  • the cooling water c is supplied from the water pump 22 to the balloon 16 inserted into the in-pipe flow path s ⁇ b> 1 through the flexible tube 18 using the heat treatment apparatus 10 ⁇ / b> B provided with the water pump 22.
  • Other configurations of the heat treatment apparatus 10B are the same as those of the heat treatment apparatus 10A.
  • the number of balloons 16 inserted into the in-pipe flow path s may be one or two.
  • illustration of piping P, the high frequency induction heating coil 12, etc. is abbreviate
  • the weight of the balloon 16 can be increased by using the cooling water having a larger specific gravity than the gas as the expansion fluid. Therefore, the balloon 16 can be stably brought into pressure contact with the inner wall of the pipe against fluctuations in pressure in the flow path in the pipe. Furthermore, since the balloon 16 can be cooled with the cooling water c, the balloon 16 can be protected from the heat generated in the heat treatment region R even if the balloon 16 is not made of a heat resistant material.
  • FIG. 5 shows yet another embodiment of the present invention.
  • the flexible tube 18 includes a supply flexible tube 18a and a discharge flexible tube 18b. Then, air a or cooling water c is continuously supplied from the air pump 20 or the water pump 22 to the balloon 16 via the supply tube 18a. The air a or the cooling water c supplied to the balloon 16 is continuously discharged outside through the discharge tube 18b. Other operations are performed in the same manner as in the above embodiment, and the balloon 16 is inflated to block the in-pipe channel s1 from the other in-pipe channels. The cooling water c discharged from the discharge tube 18b may be cooled and reused.
  • the balloon 16 can be cooled by the cooling effect of air or cooling water by continuously supplying the air a or the cooling water c to the balloon 16. Therefore, the balloon 16 can be protected from the heat generated in the heat treatment region R, and the balloon 16 can be disposed closer to the heat treatment region R. Therefore, heat dissipation from the heat treatment region R can be suppressed, and energy consumption required for the heat treatment can be reduced. Can be reduced.
  • FIG. 6 shows still another embodiment of the present invention.
  • the heat treatment apparatus 10 ⁇ / b> D according to the present embodiment includes a circular or hemispherical heat-resistant cloth 30 made of heat-resistant fibers as an expanded body.
  • One end of a plurality of connecting bars 32 is connected to the peripheral portion of the heat resistant cloth 30 at equal intervals, and the other ends of these connecting bars 32 are connected together at one place of the flexible tube 18.
  • the connecting bar 32 can be formed of a metal rod having a small diameter. Instead of the rigid connection bar 32, a heat-resistant and flexible string-like connection bar may be used.
  • the distal end of the flexible tube 18 is disposed so as to open toward the center of the heat resistant cloth 30.
  • the other configuration of the heat treatment apparatus 10D is the same as that of the heat treatment apparatus 10A shown in FIG.
  • the two heat resistant cloths 30 are folded and inserted into the pipe flow path from the inspection plug 14 and arranged in the pipe flow paths s2 and s3 on both sides of the pipe flow path s1 in the pipe axial direction. To do.
  • the two heat resistant cloths 30 are arranged such that the flexible tube 18 is positioned on the in-pipe flow path s1 side.
  • the direction and position of the heat resistant cloth 30 can be controlled by means as shown in FIG. 7, for example.
  • a string 34 made of a heat resistant material is connected to four peripheral portions of the heat resistant cloth 30 at equal intervals. The other end of the string 34 is led out of the pipe P from the inspection plug 14. And according to the direction and position of the heat-resistant cloth 30, the four strings 34 are appropriately selected outside the pipe P and pulled, and the amount of tension is adjusted.
  • air a is supplied from the air pump 20 to the inside of the heat resistant cloth 30 through the flexible tube 18.
  • the heat-resistant cloth 30 expands with the supplied air a until the peripheral edge comes into contact with the inner wall of the pipe, and closes the pipe flow path s2 or s3.
  • a high-frequency alternating current is passed through the high-frequency induction heating coil 12 to heat-treat the heat treatment region R of the pipe P.
  • the peripheral edge of the heat resistant cloth 30 is pressed against the inner wall of the pipe by the air a supplied from the flexible tube 18 and the shape of the heat resistant cloth 30 is maintained.
  • the inspection plug 14 may be covered (not shown) to seal the in-pipe flow path s1.
  • the in-pipe flow path s1 becomes a sealed space, and when the pressure in the sealed space increases, the shape of the heat resistant cloth 30 can be maintained by this pressure.
  • the temperature unevenness and heat loss of the heat treatment region R of the pipe P can be prevented by shielding both sides of the in-pipe flow path s1 with the heat-resistant cloth 30. Further, by expanding the heat resistant cloth 30 in a parachute shape, the shape of the heat resistant cloth 30 can be maintained using the pressure of the in-pipe flow path s1. Furthermore, the rigidity of the heat resistant cloth 30 can be increased by the connecting bar 32 connected to the peripheral edge portion of the heat resistant cloth 30, and the expanded state can be maintained.
  • FIG. 8 shows an embodiment in which heat treatment is performed on the pipes P arranged in the horizontal direction using a heat treatment apparatus 10D. Also in this embodiment, prior to the heat treatment step, the heat resistant cloth 30 is expanded by the same operation as in the embodiment shown in FIG. 6, and the in-pipe flow paths s2 and s3 on both sides of the in-pipe flow path s1 are closed. Thereby, temperature unevenness and heat loss in the heat treatment region R of the pipe P can be prevented.
  • FIG. 9 and 10 show still another embodiment of the present invention.
  • a permanent magnet 35 is further attached to the connection portion between the heat resistant cloth 30 and the plurality of connecting bars 32, and the other configuration is the same as that of the heat treatment apparatus 10D.
  • the peripheral edge of the heat resistant cloth 30 is attracted to the inner wall of the pipe by the attractive force of the permanent magnet 35. Therefore, the holding power of the parachute shape of the heat resistant cloth 30 and the blocking effect of the in-pipe flow paths s2 and s3 can be improved.
  • FIG. 9 shows an embodiment in which heat treatment is performed on pipes arranged in the vertical direction
  • FIG. 10 shows an embodiment in which heat treatment is carried out on pipes arranged in the horizontal direction.
  • FIG. 11 shows still another embodiment of the present invention.
  • heat treatment is performed on the pipes P arranged in the vertical direction using the heat treatment apparatus 10 ⁇ / b> E and using one heat-resistant cloth 30.
  • the heat-resistant cloth 30 has a plurality of permanent magnets 35 attached to the connection portion with the connecting bar 32.
  • One heat-resistant cloth 30 is disposed in the pipe flow path s2 above the heat treatment region R. After the heat-resistant cloth 30 is disposed at a predetermined position in the in-pipe flow path s2, air a is injected into the heat-resistant cloth 30 through the flexible tube 18 by the air pump 20, and the heat-resistant cloth 30 is expanded to be in the pipe.
  • the flow path s2 is closed.
  • the pipe internal flow path s3 below the pipe internal flow path s1 is not closed, but the pipe internal flow path s2 is closed to prevent the high-temperature air Ah existing in the pipe internal flow path s1 from rising. At the same time, room temperature air in the in-pipe channel s3 can be prevented from flowing into the in-pipe channel s1.
  • the heat processing apparatus 10F provided with the two balloons 16 is used as an expansion body inserted in piping.
  • the balloon 16 has two heat insulating bands 36 made of heat insulating material attached to the equator when the balloon 16 is expanded to the maximum diameter.
  • the two heat insulating bands 36 are band-like and flexible, and are configured to be semicircular when the balloon 16 is expanded to the maximum diameter, and to be circular together. Both ends of the two heat insulating bands 36 are bonded to the equator position.
  • the shapes of the two heat insulating bands 36 are determined in advance so as to be arranged around the entire equator position of the balloon 16 expanded together.
  • the material of the heat insulating band 36 is composed of, for example, ceramic fiber, glass wool, urethane foam, polystyrene foam, foamed rubber (FEF), or the like. In particular, foamed rubber having elasticity is suitable.
  • the heat treatment apparatus 10 ⁇ / b> F is the same as the heat treatment apparatus 10 ⁇ / b> A shown in FIG. 1 except for the configuration in which the heat insulating band 36 is attached to the balloon 16.
  • the two balloons 16 are inserted into the pipe flow path from the inspection plug 14 in a deflated state, and are disposed in the pipe flow paths s2 and s3, respectively.
  • the air a is supplied from the flexible tube 18 into the inside of the two balloons 16 in the pipe, and the balloons 16 are gradually expanded.
  • the heat insulating band 36 also expands. When the balloon 16 expands until it comes into contact with the inner wall of the pipe, the heat insulating band 36 comes into close contact with the entire circumference of the equator surface of the balloon 16.
  • the balloon 16 is in contact with the inner wall of the pipe via the heat insulating band 36, and is in pressure contact with the inner wall of the pipe by the internal air pressure, and the balloon 16 is not in direct contact with the inner wall of the pipe. Placed in.
  • the balloon 16 since the balloon 16 does not directly contact the inner wall of the pipe in the heat treatment step, the balloon 16 can be protected from the heat of the pipe P that has become high temperature.
  • the plurality of permanent magnets 35 used in FIGS. 9 to 11 may be partially attached to the heat insulating band 36 of the present embodiment. Thereby, the adhesive force between the balloon 16 and the inner wall of the pipe can be increased, and the shielding effect of the pipe flow path s2 or s3 can be enhanced.
  • the heat insulating band 36 of this embodiment may be attached to the peripheral portion of the heat resistant cloth 30. Thereby, the heat resistance of the heat resistant cloth 30 can be further increased, and the heat resistant cloth 30 can be protected against heat received from the heat treatment region R of the pipe P.
  • FIG. 15 and 16 show still another embodiment of the present invention. These embodiments are examples in which a rigid framework is provided on the heat resistant cloth 30 in order to ensure that the heat resistant cloth 30 is expanded in a parachute shape when the heat resistant cloth 30 is expanded.
  • a skeleton 40 is provided inside the heat resistant cloth 30.
  • the skeleton 40 includes a plurality of rigid metal bars coupled in an umbrella shape or a radial shape.
  • a framework 42 in which a rigid metal bar is spirally bent is provided inside the heat resistant cloth 30.
  • the skeletons 40 and 42 are folded into a size that can be inserted from the inspection plug 14 as indicated by a two-dot chain line at room temperature, and the heat-resistant cloth 30 can be closed in the piping in the temperature zone of the heat treatment process of the piping P. It consists of a shape memory alloy that expands in size.
  • the heat-resistant cloth 30 is inserted in the folded state before the heat treatment process, and the framework 40 or 42 is expanded in the heat treatment process, thereby assisting the expansion of the heat-resistant cloth 30.
  • the heat treatment region R is brought to room temperature, so that the frame 40 or 42 assists the heat resistant cloth 30 to be reduced to a two-dot chain line state, so that the heat resistant cloth 30 can be easily removed from the inspection plug 14. It can be taken out.
  • the rigidity of the heat resistant cloth 30 can be increased by providing the frame 40 or 42 on the heat resistant cloth 30.
  • the expanding body is inserted into the pipe using the inspection hole h.
  • openings other than the inspection hole such as drain holes and air holes, are provided. May be used.
  • the embodiments described so far may be appropriately combined to be used as a heat treatment apparatus, or a heat treatment step may be performed.
  • the temperature unevenness of the piping in the heat treatment region can be eliminated and the amount of energy consumed can be suppressed by heat treatment of the piping with simple and low-cost means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Heat Treatment Of Articles (AREA)
  • General Induction Heating (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Thermal Insulation (AREA)

Abstract

 配管に形成された少なくとも1つの点検孔から可撓性材料で構成され且つ拡開用流体の供給により拡開可能な少なくとも1つの拡開体を配管の内部に挿入し、拡開体を配管の熱処理領域の少なくとも一方の側に配置する第1工程と、配管に形成された点検孔から配管の内部に挿入された可撓性を有する供給チューブを介して、拡開体に拡開用流体を供給し、拡開した拡開体で熱処理領域の少なくとも一方の側にて配管の内部を閉塞する第2工程と、拡開体により前記配管の内部が閉塞された状態で、配管の熱処理領域の周りに配置された高周波誘導加熱コイルに通電し、配管の熱処理領域を熱処理する第3工程とを備える。

Description

配管の熱処理方法及び装置
 本開示は、高周波誘導加熱法を用いて配管の熱処理を行う熱処理方法及び該熱処理方法に用いられる装置に関する。
 被加熱物の周囲に配置されたコイルに交流電流を流すと、コイルの周囲に磁界が発生すると共に、交流電流によって変化する磁場中で、電磁誘導によって被加熱物の表面付近に高密度のうず電流が発生する。このうず電流のジュール熱によって被加熱物の表面が発熱する。高周波誘導加熱法は、この加熱原理を利用したものである。
 高周波誘導加熱法を用いて、配管の熱処理(例えば、焼入れ、焼鈍し等の熱処理)を行うことは従来公知である。例えば、特許文献1には、高周波誘導加熱法を用いて配管系の熱処理を行う装置が開示されている。
 高周波誘導加熱法は、配管の熱処理領域の外表面に断熱材などを介して高周波誘導加熱コイルを巻き付けるだけで熱処理を行うことができる。そのため、プラントなどに組み込まれた配管を切断せずに、配管の一部に対し現場配置のまま熱処理を行うことができる長所がある。
特開2005-195522号公報
 しかし、現場配置のまま、高周波誘導加熱法を用いて配管の一部に熱処理を行う場合、熱処理中に加熱された配管内の高温空気が配管内を移動し、同時に他から常温の空気が入り込む。このため、配管の熱処理領域において温度ムラが発生したり、あるいは消費エネルギ量が増加してしまうという問題がある。
 例えば、上下方向に配置された配管の熱処理では、熱処理で加熱された配管内の空気は軽くなって上昇し、下方から常温の空気が流入するので、低温部が発生しやすい。
 また、水平方向に配置された配管の熱処理では、配管内で加熱された高温空気が上方に移動し、周囲の常温空気が下方に流入するので、温度ムラが発生しやすい。
 本発明の少なくとも一実施形態は、かかる従来技術の課題に鑑み、簡易かつ低コストな手段で、配管の熱処理中に熱処理領域の温度ムラを無くし、かつ消費エネルギ量を抑制することを目的とする。
 (1)本発明の少なくとも一実施形態に係る配管の熱処理方法は、配管に形成された少なくとも1つの開孔から可撓性材料で構成され且つ拡開用流体の供給により拡開可能な少なくとも1つの拡開体を前記配管の内部に挿入し、前記少なくとも1つの拡開体を前記配管の熱処理領域の少なくとも一方の側に配置する第1工程と、
 前記配管に形成された少なくとも1つの開孔から前記配管の内部に挿入された可撓性を有する供給チューブを介して、前記少なくとも1つの拡開体に前記拡開用流体を供給し、拡開した前記少なくとも1つの拡開体で前記熱処理領域の少なくとも一方の側にて前記配管の内部を閉塞する第2工程と、
 前記少なくとも1つの拡開体により前記配管の内部が閉塞された状態で、前記配管の熱処理領域の周りに配置された高周波誘導加熱コイルに通電し、前記配管の熱処理領域を熱処理する第3工程と
を備えている。
 前記構成(1)によれば、第1工程及び第2工程によって、熱処理領域の少なくとも一方の側の配管内部が閉塞される。これによって、配管内空気流を止め、熱処理領域の配管内高温空気の流出と熱処理領域外からの常温空気の流入を無くすことができる。この結果、第3工程(熱処理工程)で、熱処理領域の配管の温度ムラ及び熱損失を抑制できる。
 また、高周波誘導加熱法を適用することで、プラントなどに組み込まれた配管を切断せずに、現場配置のまま熱処理を行うことができる。
 なお、ここで「可撓性材料」とは、ゴムのように伸縮性又は弾性を有する材料をも含むものとする。
 また、ここで「開孔」とは、配管に形成されている点検孔、ドレン抜き孔、空気抜き孔等の開孔を言う。
 また、拡開体を耐熱性材料で構成すれば、熱処理領域の高温雰囲気に対して拡開体の耐久性を向上できる。
 (2)幾つかの実施形態では、前記構成(1)において、
 前記配管が上下方向に配置され、
 前記少なくとも1つの拡開体は1つの拡開体のみを含み、
 前記第1工程で、前記1つの拡開体を前記熱処理領域の上方に配置する。
 前記構成(2)によれば、熱処理領域の上方で配管が拡開体で閉塞されるので、熱処理領域の配管内で加熱され軽くなった高温空気の上昇は阻止される。同時に下方の常温空気の上昇もなくなるので、熱処理領域の配管の温度ムラや熱損失を防止できる。
 (3)幾つかの実施形態では、前記構成(1)において、
 前記少なくとも1つの拡開体は2つの拡開体を含み、
 前記第1工程において、前記2つの拡開体を前記配管の熱処理領域の両側に配置し、
 前記第2工程において、拡開した前記2つの拡開体により前記配管の熱処理領域の両側にて前記配管の内部を閉塞する。
 前記構成(3)によれば、熱処理領域の両側で配管内流路を閉塞できるので、熱処理領域の高温空気の流出及び常温空気の流入を完全に防止できる。そのため、熱処理領域の配管の温度ムラ及び熱損失の発生をさらに効果的に防止できる。
 なお、配管内流路で拡開体を所望位置に配置する方法としては、例えば、配管内の空気流を利用したり、あるいは配管に形成された複数の開孔の中から適当な位置にある開孔を選び、この開孔から拡開体を挿入することで、拡開体を所望位置に配置する方法を採用することができる。
 (4)幾つかの実施形態では、前記構成(1)~(3)の何れかひとつにおいて、
 前記少なくとも1つの拡開体は可撓性材料で構成された中空体で構成され、
 前記拡開用流体として冷却液を使用し、
 前記第3工程の間、前記少なくとも1つの拡開体に連続的に前記拡開用流体を供給する一方、前記配管に形成された少なくとも1つの開孔から前記配管の内部に挿入された可撓性を有する排出チューブを介して、前記少なくとも1つの拡開体から前記拡開用流体を排出する。
 前記構成(4)によれば、拡開体の内部に拡開用流体を連続的に供給及び排出させることで、拡開用流体によって拡開体を冷却できる。そのため、耐熱性が乏しい拡開体でも熱処理領域から伝達される熱に対して耐久性を保持できる。また、冷却液を用いることで冷却効果を向上できる。従って、耐熱性のない拡開体でも使用可能になる。なお、排出チューブから排出された冷却液は冷却して循環利用できる。
 (5)幾つかの実施形態では、前記構成(1)~(4)の何れか一つにおいて、
 前記少なくとも1つの拡開体が拡開したときに前記配管に吸着可能な複数の磁石が、前記少なくとも1つの拡開体に装着されている。
 前記複数の磁石は、例えば、拡開時に最大径となり配管の内壁に接する拡開体の部位に装着され、前記第2工程で、前記複数の磁石によって拡開体の最大径となる部位が配管の内壁に吸着される。
 前記構成(5)によれば、前記複数の磁石の磁力によって配管と拡開体間の隙間を低減できるので、配管の閉塞性能を向上できる。
 (6)幾つかの実施形態では、前記構成(1)~(5)の何れか一つにおいて、
 前記少なくとも1の拡開体が拡開したときに前記拡開体と前記配管との間に配置される断熱部材が前記拡開体に装着されている。
 前記構成(6)によれば、熱処理領域から伝達される熱で拡開体が配置された配管内壁が加熱されても、拡開体を配管の熱から保護することができる。従って、耐熱性のない拡開体でも使用可能になる。
 (7)本発明の熱処理方法を直接実施するための本発明の少なくとも一実施形態に係る熱処理装置は、
 配管の熱処理領域の周りに配置可能な高周波誘導加熱コイルと、
 可撓性材料で構成され、前記配管に形成された少なくとも1つの開孔から前記配管の内部に挿入可能であり且つ拡開用流体の供給により拡開して前記配管の熱処理領域の少なくとも一方の側にて前記配管の内部を閉塞可能な少なくとも1つの拡開体と、
 可撓性を有し、前記配管に形成された少なくとも1つの開孔から前記配管の内部に挿入可能であり且つ前記少なくとも1つの拡開体に前記拡開用流体を供給可能な供給チューブと、
 前記供給チューブを介して前記拡開体に前記拡開用流体を供給するように構成された拡開用流体供給部と
を備える。
 前記構成(7)において、熱処理工程に先立って、前記拡開体及び前記供給チューブは前記配管に存在する開孔から配管の内部に挿入され、拡開体は配管内流路において配管の熱処理領域の少なくとも一方の側に配置される。そして、配管に配置された拡開体に拡開用流体を供給して拡開体を拡開させ、配管を閉塞する。
 前記構成(7)によれば、配管内のガスの流れを止め、熱処理領域の配管内の空気の入れ替わりを防止できる。そのため、熱処理領域外の配管内常温空気の流入による温度ムラの発生と、熱処理領域の配管内高温空気の流出による熱損失を抑制できる。
 (8)幾つかの実施形態では、前記構成(7)において、
 前記少なくとも1つの拡開体に装着され、前記拡開体が拡開したときに前記配管に吸着可能な複数の磁石を更に備える。
 前記構成(8)によれば、前記複数の磁石の磁力によって配管と拡開体間の隙間を低減できるので、配管の閉塞性能を向上できる。
 (9)幾つかの実施形態では、前記構成(7)又は(8)において、
 前記少なくとも1つの拡開体に装着され、前記少なくとも1つの拡開体が拡開したときに前記少なくとも1つの拡開体と前記配管との間に配置される少なくとも1つの断熱材を更に備える。
 前記構成(9)によれば、熱処理領域から伝達される熱で拡開体が配置された配管内壁が加熱されても、拡開体を配管の熱から保護することができる。従って、耐熱性のない拡開体でも使用可能になる。
 (10)幾つかの実施形態では、前記構成(9)において、
 前記少なくとも1つの断熱部材は可撓性を有するとともに環形状を有し、
 前記少なくとも1つの断熱部材は、前記少なくとも1つの拡開体が拡開したときに直径方向に離間する2箇所にて前記少なくとも1つの拡開体に固定されている。
 前記構成(10)において、前記断熱部材は可撓性を有しているので、拡開体の拡開動作に追従して拡開できる。そのため、拡開前の状態で開孔への挿入が容易になると共に、拡開後は拡開体の表面形状に密着配置できる。
 (11)幾つかの実施形態では、前記構成(7)~(10)の何れか一つにおいて、
 前記少なくとも1つの拡開体は可撓性材料で構成された中空体で構成されている。
 前記構成(11)によれば、拡開体を中空体で構成することで、拡開体の内部に供給される拡開用流体の圧力で、拡開体の膨張効率を増加できると共に、配管内流路での拡開体の保持力を増大できる。
 (12)幾つかの実施形態では、前記構成(7)~(10)の何れか一つにおいて、
 前記少なくとも1つの拡開体は、
 拡開可能な拡開シートと、
 複数の連結バーとを含み、
 前記複数の連結バーの各々は、前記拡開シートがパラシュート状に拡開するように、前記拡開シートの周縁部に連結された一端部と、前記供給チューブの先端側に連結された他端部とを有する。
 前記構成(12)によれば、連結バーによって拡開シートの剛性が向上し、かつ拡開シートがパラシュート状に拡開することで、拡開シートによる配管内流路の遮蔽性能を保持できる。
 さらに、拡開シートと連結バーとの接続部に磁石を装着すれば、拡開シートによる配管の閉塞性能を一層向上できる。
 (13)幾つかの実施形態では、前記構成(12)において、
 前記拡開シートに装着された骨組みを更に有し、
 前記骨組みは、常温で前記配管の少なくとも1つの開孔から挿入可能な大きさに屈曲可能であり、且つ、前記配管の熱処理の温度帯で前記拡開シートを前記配管の内部を閉塞可能な大きさに展開可能な形状記憶合金で構成されている。
 前記構成(13)によれば、前記骨組みで拡開シートの剛性を向上できると共に、拡開シートの配管内への挿入と、配管内での展開による配管の閉塞とを確実に行うことができる。
 本発明の少なくとも一実施形態によれば、簡易かつ低コストな手段で、配管の熱処理中に熱処理領域の温度ムラを無くし、かつ消費エネルギ量を抑制される。
上下方向に配置された配管に適用した本発明の一実施形態に係る熱処理装置を概略的に示す構成図である。 水平方向に配置された配管に適用した前記熱処理装置を概略的に示す構成図である。 上下方向に配置された配管に適用した本発明の別な一実施形態に係る熱処理装置を概略的に示す構成図である。 本発明のさらに別な一実施形態に係る熱処理装置の概略的な構成図である。 本発明のさらに別な一実施形態に係る熱処理装置の概略的な構成図である。 上下方向に配置された配管に適用した本発明のさらに別な一実施形態に係る熱処理装置を概略的に示す構成図である。 配管内流路に配置された拡開シートの上方視説明図である。 水平方向に配置した配管に適用した図6に示す熱処理装置を概略的に示す構成図である。 上下方向に配置された配管に適用した本発明のさらに別な一実施形態に係る熱処理装置の概略的な構成図である。 水平方向に配置した配管に適用した図9に示す熱処理装置を概略的に示す構成図である。 図9に示す熱処理装置のさらに別な使用例を概略的に示す構成図である。 上下方向に配置された配管に適用した本発明のさらに別な一実施形態に係る熱処理装置を概略的に示す構成図である。 図12中のA―A線に沿う概略的な断面図である。 (A)~(C)は図12に示す風船の膨張過程を順々に示す説明図であり、(A)はしぼんだ状態、(B)は膨張途中の状態、(C)は膨張状態を示している。 (A)は拡開シート及び骨組みの一例を概略的に示す正面図であり、(B)は(A)中のB方向矢視図である。 (A)は拡開シート及び骨組みの別な例を概略的に示す正面図であり、(B)は(A)中のC方向矢視図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載され又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 本発明の一実施形態を図1に基づいて説明する。本実施形態では、熱処理対象となる配管Pは上下方向に配置されている。配管Pの外周面には全域に断熱材が巻かれ、断熱材層Iを形成している。配管Pの熱処理領域Rには、熱処理装置10Aを構成する高周波誘導加熱コイル12が断熱材層Iに埋設された状態で螺旋状に巻かれている。熱処理領域Rの配管軸方向外側で、例えば、溶接部検査用として配管Pの隔壁に予め点検孔hが形成されており、点検孔hに検査用プラグ14が装着されている。
 熱処理装置10Aは、高周波誘導加熱コイル12のほかに、配管内流路に挿入される拡開体としての2個の風船16と、風船16に接続された可撓性チューブ18と、配管Pの外部に設けられた空気ポンプ20とで構成されている。
 風船16はゴムなどの伸縮性及び耐熱性のある材料で構成され、内部に空気aを供給可能な中空部を有している。
 2個の風船16はしぼんだ状態で検査用プラグ14から配管内に挿入され、夫々熱処理領域Rの両側の配管内流路s2及びs3に配置される。
 配管内流路で風船16を所望位置に配置する方法として、例えば、配管P内に形成された空気流を利用したり、あるいは配管Pに形成された複数の開孔hの中から適当な位置にある点検孔を選び、この点検孔から風船16を挿入し、配管P内の空気流を利用して風船16を所望位置に配置する方法を採用することができる。
 次に、空気ポンプ20から可撓性チューブ18を介して風船16の内部に空気aを供給する。供給された空気で風船16が膨張し、配管内流路s2及びs3を遮蔽すると共に、風船16の内部に供給された空気の圧力で風船16が安定して配管Pの隔壁に挟持されるまで空気を供給する。この状態となったら空気ポンプ20からの空気の供給を止める。
 次に、高周波誘導加熱コイル12に高周波の交流電流を流し、熱処理領域Rを熱処理する。
 本実施形態によれば、熱処理に先立ち、熱処理領域Rの配管内流路s1に配管軸方向両側で配管内流路s2及びs3を風船16で遮蔽するので、熱処理工程中、配管P内の空気の流れを止めることができる。そのため、熱処理により高温となった高温空気Ahが配管内流路s1から上昇して配管内流路s2に流出するのを防止できると共に、配管内流路s1に下方から配管内流路s3の常温空気Acが流入するのを防止できる。
 従って、熱処理中、配管内流路s1に低温部位が発生するのを防止でき、配管Pの熱処理領域Rに温度ムラが発生するのを抑制できる。また、高温空気Ahの流出に伴う熱損失を防止できる。
 さらに、高周波誘導加熱法を適用することで、配管Pを切断して設置位置から移動させることなく、設置されたままの状態で熱処理を行うことができる。
 図2は、熱処理装置10Aを水平方向に配置された配管Pに適用した場合の実施形態を示している。本実施形態においても、しぼんだ状態の2個の風船16を検査用プラグ14から挿入し、前記実施形態と同様の操作を行い、2個の風船16で配管内流路s2及びs3を遮蔽する。その後、配管Pの熱処理領域Rの熱処理を行う。
 本実施形態においても、熱処理領域Rの配管内流路s1を配管内流路s2及びs3に対して完全に遮断するので、配管内流路s1に存在する高温空気Ahの流出と、配管内流路s1への常温空気Acの流入とを防止できる。そのため、熱処理工程中、配管Pの熱処理領域Rの温度ムラの発生、及び配管内流路s1の高温空気Ahの流出に伴う熱損失を防止できる。
 図3は、さらに本発明の別な実施形態を示している。本実施形態では、上下方向に配置された配管Pに対し、熱処理装置10Aを用いて熱処理を行う。この実施形態では1個の風船16を検査用プラグ14から配管内流路に挿入し、熱処理領域Rの上方に位置する配管内流路s2に配置する。そして、前記実施形態と同様の操作で、配管内流路s2を閉塞した後、熱処理領域Rの配管Pの熱処理を行う。
 本実施形態では、配管内流路s1の高温空気Ahの上昇を風船16で阻止できるので、配管内流路s1に下方から常温空気Acが侵入するのを防止できる。そのため、配管Pの熱処理領域Rの温度ムラの発生や熱損失を防止できる。また、1個の風船16のみを用いるので、熱処理装置10Aを低コストにできる。
 図4は、本発明のさらに別な実施形態を示している。本実施形態では、水ポンプ22を備えた熱処理装置10Bを用い、水ポンプ22から可撓性チューブ18を介して配管内流路s1に挿入された風船16に冷却水cを供給する。熱処理装置10Bのその他の構成は熱処理装置10Aと同一である。
 本実施形態では、配管内流路sに挿入される風船16の数は1個又は2個のどちらでもよい。なお、図4では、配管Pや高周波誘導加熱コイル12等の図示は省略されている。
 本実施形態によれば、拡開用流体として気体と比べて比重が大きい冷却水を用いることで、風船16の重量を増加できる。そのため、配管内流路の圧力変動に抗して、風船16を安定して配管内壁に圧接させることができる。さらには、風船16を冷却水cで冷却できるので、風船16が耐熱性材料で構成されていなくても、風船16を熱処理領域Rで発生する熱から保護することができる。
 図5は、本発明のさらに別な実施形態を示している。本実施形態に係る熱処理装置10Cは、可撓性チューブ18が供給用の可撓性チューブ18aと排出用の可撓性チューブ18bとで構成されている。そして、空気ポンプ20又は水ポンプ22から供給用チューブ18aを介し風船16に空気a又は冷却水cを連続的に供給する。風船16に供給された空気a又は冷却水cは、排出用チューブ18bを介して外部に連続的に排出される。その他の操作は前記実施形態と同様に行い、風船16を膨張させて配管内流路s1を他の配管内流路から遮断する。
 なお、排出用チューブ18bから排出された冷却水cを冷却して再利用してもよい。
 本実施形態では、風船16に空気a又は冷却水cを連続的に供給することで、空気又は冷却水の冷却効果で風船16を冷却できる。そのため、風船16を熱処理領域Rで発生する熱から保護できると共に、その分風船16を熱処理領域Rに接近して配置できるので、熱処理領域Rからの熱の放散を抑制でき、熱処理に要するエネルギ消費を低減できる。
 図6は、本発明のさらに別な実施形態を示す。本実施形態に係る熱処理装置10Dは、拡開体として、耐熱性の繊維で構成された円形若しくは半球形の耐熱クロス30を備えている。耐熱クロス30の周縁部には複数の連結バー32の一端が等間隔で接続され、これら連結バー32の他端は可撓性チューブ18の1箇所に集合して接続されている。連結バー32は小径の剛性を有する金属棒で構成することができる。なお、剛性の連結バー32の代わりに、耐熱性で柔軟性のある紐状体の連結バーを用いてもよい。可撓性チューブ18の先端は耐熱クロス30の中央に向かって開口するように配置されている。熱処理装置10Dのその他の構成は、図1に示す熱処理装置10Aと同一である。
 本実施形態では、2個の耐熱クロス30を折り畳んだ状態で検査用プラグ14から配管内流路に挿入し、夫々配管内流路s1の配管軸方向両側の配管内流路s2及びs3に配置する。2個の耐熱クロス30は夫々可撓性チューブ18が配管内流路s1側に位置するように配置される。
 耐熱クロス30の向きや位置の制御は、例えば、図7に示すような手段で制御することができる。図7において、耐熱クロス30の周縁部4か所に等間隔に耐熱性材料で構成されたひも34を接続する。ひも34の他端は検査用プラグ14から配管Pの外部へ導出する。そして、耐熱クロス30の向きや位置に応じて、配管Pの外で4本のひも34を適宜選択して引っ張り、かつ引張量を調整する。
 次に、空気ポンプ20から可撓性チューブ18を介して耐熱クロス30の内部に空気aを供給する。耐熱クロス30は、供給された空気aで周縁部が配管内壁に接するまで拡開し、配管内流路s2又はs3を閉塞する。その後、高周波誘導加熱コイル12に高周波の交流電流を流し、配管Pの熱処理領域Rを熱処理する。
 熱処理工程が始まるまでは、可撓性チューブ18から供給される空気aによって耐熱クロス30の周縁部が配管内壁に押し付けられ、耐熱クロス30の形状を保持する。
 例えば、熱処理開始後、検査用プラグ14に蓋(不図示)をし、配管内流路s1を密閉するようにしてもよい。こうして配管内流路s1は密閉空間となり、該密閉空間の圧力が高まると、この圧力によっても耐熱クロス30の形状を保持できる。
 本実施形態では、配管内流路s1の両側を耐熱クロス30で遮蔽することで、配管Pの熱処理領域Rの温度ムラと熱損失を防止できる。
 また、耐熱クロス30をパラシュート状に拡開させることで、配管内流路s1の圧力を利用して、耐熱クロス30の形状を保持できる。さらに、耐熱クロス30の周縁部に接続された連結バー32によって耐熱クロス30の剛性を高め、拡開状態を維持できる。
 図8は、水平方向に配置された配管Pに熱処理装置10Dを用いて熱処理を行う実施形態である。この実施形態においても、熱処理工程に先立ち、図6に示す実施形態と同様の操作で耐熱クロス30を拡開させ、配管内流路s1の両側の配管内流路s2及びs3を閉塞する。これによって、配管Pの熱処理領域Rの温度ムラと熱損失を防止できる。
 図9及び図10は、夫々本発明のさらに別な実施形態を示している。この実施形態で用いられる熱処理装置10Eは、耐熱クロス30と複数の連結バー32との接続部に、さらに永久磁石35を装着したものであり、その他の構成は熱処理装置10Dと同一である。
 本実施形態では、配管内流路s2及びs3で耐熱クロス30を拡開させた後、永久磁石35の吸着力で耐熱クロス30の周縁部を配管内壁に吸着させる。
 そのため、耐熱クロス30のパラシュート形状の保持力と、配管内流路s2及びs3の閉塞効果を向上できる。
 なお、図9は上下方向に配置された配管に熱処理を行う実施形態であり、図10は水平方向に配置された配管に熱処理を行う実施形態である。
 図11は本発明のさらに別な実施形態を示している。この実施形態は、上下方向に配置された配管Pに対して、熱処理装置10Eを用い、且つ1個の耐熱クロス30を用いて熱処理を行うものである。耐熱クロス30は、連結バー32との接続部に複数の永久磁石35が装着されている。1個の耐熱クロス30を熱処理領域Rより上方の配管内流路s2に配置する。耐熱クロス30を配管内流路s2の所定位置に配置した後、空気ポンプ20で可撓性チューブ18を介し耐熱クロス30の内部に空気aを噴射し、耐熱クロス30を拡開して配管内流路s2を閉塞する。
 本実施形態では、配管内流路s1の下方の配管内流路s3を閉塞しないが、配管内流路s2を閉塞することで、配管内流路s1に存在する高温空気Ahの上昇を防止できると共に、配管内流路s3の常温空気が配管内流路s1に流入するのを防止できる。
 図12~図14は、本発明のさらに別な実施形態を示している。本実施形態では、配管内に挿入される拡開体として2個の風船16を備えた熱処理装置10Fを用いている。
 風船16は最大径に拡開したときの赤道位置に断熱材からなる2本の断熱帯36が付着されている。2本の断熱帯36は帯状で可撓性を有し、かつ風船16が最大径に拡開したときそれぞれ半円形となり、合わせて円形となるように構成されている。2本の断熱帯36は、夫々の両端が前記赤道位置に接着されている。2本の断熱帯36は、合せて拡開した風船16の赤道位置全周に配置されるように予めその形状を決定される。断熱帯36の材質は、例えば、セラミックファイバー、グラスウール、ウレタンフォーム、ポリスチレンフォーム、発泡ゴム(FEF)等で構成される。特に、伸縮性をもつ発泡ゴムなどが好適である。
 熱処理装置10Fは、風船16に断熱帯36を付着させる構成以外は、図1に示す熱処理装置10Aと同一である。
 かかる構成において、2個の風船16はしぼんだ状態で検査用プラグ14から配管内流路に挿入され、夫々配管内流路s2及びs3に配置される。
 図14に示すように、配管内で2個の風船16の内部に可撓性チューブ18から空気aが供給され、風船16は徐々に膨張する。風船16の膨張につれて断熱帯36も拡開し、風船16が配管内壁に接するまで膨張すると、断熱帯36は風船16の赤道部表面の全周に密着する。
 そして、図12及び図13に示すように、風船16は断熱帯36を介して配管内壁に接した状態で、内部の空気圧により配管内壁に圧接すると共に、風船16は配管内壁に直接接触しない状態に置かれる。
 こうして、本実施形態では、熱処理工程で風船16が直接配管内壁に接触しないので、風船16を高温となった配管Pの熱から保護できる。
 なお、図9~図11で用いられた複数の永久磁石35を本実施形態の断熱帯36に部分的に装着するようにしてもよい。これによって、風船16と配管内壁との付着力を増加でき、配管内流路s2又はs3の遮蔽効果を高めることができる。
 あるいは、図6~図8に示す実施形態、又は図9~図11に示す実施形態において、耐熱クロス30の周縁部に本実施形態の断熱帯36を装着させるようにしてもよい。これによって、耐熱クロス30の耐熱性をさらに高めることができ、配管Pの熱処理領域Rから受ける熱に対して耐熱クロス30を保護することができる。
 図15及び図16は夫々本発明のさらに別な実施形態を示す。これら実施形態は、耐熱クロス30の拡開時に、耐熱クロス30を確実にパラシュート状に拡開するために剛性の骨組みを耐熱クロス30に設けた例である。
 図15に示す例では、耐熱クロス30の内側に、複数の剛性の金属バーが雨傘状若しくは放射状に結合されて構成された骨組み40が設けられている。
 図16に示す例では、耐熱クロス30の内側に、剛性の金属バーが螺旋状に曲折された骨組み42が設けられている。
 骨組み40及び42は、常温では二点鎖線で示すように検査用プラグ14から挿入可能な大きさに折り畳まれ、配管Pの熱処理工程の温度帯で耐熱クロス30を配管内流路を閉塞可能な大きさに展開する形状記憶合金で構成されている。
 こうして、熱処理工程前に耐熱クロス30を折り畳んだ状態で検査用プラグ14から挿入し、熱処理工程には骨組み40又は42が展開することで、耐熱クロス30の拡開を補助する。また、熱処理工程後、熱処理領域Rが常温となることで、骨組み40又は42が耐熱クロス30が二点鎖線の状態に縮小するのを補助するので、耐熱クロス30を検査用プラグ14から容易に取り出すことができる。また、耐熱クロス30に骨組み40又は42を設けることで、耐熱クロス30の剛性を高めることができる。
 なお、前記いずれの実施形態でも、点検孔hを利用して、拡開体を配管の内部に挿入しているが、点検孔以外の開孔、例えば、ドレン抜き孔、空気抜き孔等の開孔を利用するようにしてもよい。
 また、今まで説明した各実施形態を適宜組み合わせて熱処理装置として用い、あるいは熱処理工程を実施してもよい。
 本発明の少なくとも一実施形態によれば、簡易かつ低コストな手段で、配管の熱処理に際して熱処理領域の配管の温度ムラを無くし、かつ消費エネルギ量を抑制できる。
 10A、10B、10C、10D、10E、10F  熱処理装置
 12                高周波誘導加熱コイル
 14                検査用プラグ
 16                風船(中空体)
 18                可撓性チューブ
  18a              供給用チューブ
  18b              排出用チューブ
 20                空気ポンプ(拡開用流体供給部)
 22                水ポンプ(拡開用流体供給部)
 30                耐熱クロス(拡開シート)
 32                連結バー
 34                ひも
 35                永久磁石
 36                断熱帯
 40,42             骨組み
 Ah                高温空気
 Ac                常温空気
 I                 断熱材層
 P                 配管
 R                 熱処理領域
 a                 空気(拡開用流体)
 c                 冷却水(拡開用流体)
 h                 点検孔(開孔)
 s1、s2,s3          配管内流路

Claims (13)

  1.  配管に形成された少なくとも1つの開孔から可撓性材料で構成され且つ拡開用流体の供給により拡開可能な少なくとも1つの拡開体を前記配管の内部に挿入し、前記少なくとも1つの拡開体を前記配管の熱処理領域の少なくとも一方の側に配置する第1工程と、
     前記配管に形成された少なくとも1つの開孔から前記配管の内部に挿入された可撓性を有する供給チューブを介して、前記少なくとも1つの拡開体に前記拡開用流体を供給し、拡開した前記少なくとも1つの拡開体で前記熱処理領域の少なくとも一方の側にて前記配管の内部を閉塞する第2工程と、
     前記少なくとも1つの拡開体により前記配管の内部が閉塞された状態で、前記配管の熱処理領域の周りに配置された高周波誘導加熱コイルに通電し、前記配管の熱処理領域を熱処理する第3工程と
    を備えることを特徴とする配管の熱処理方法。
  2.  前記配管が上下方向に配置され、
     前記少なくとも1つの拡開体は1つの拡開体のみを含み、
     前記第1工程で、前記1つの拡開体を前記熱処理領域の上方に配置することを特徴とする請求項1に記載の配管の熱処理方法。
  3.  前記少なくとも1つの拡開体は2つの拡開体を含み、
     前記第1工程において、前記2つの拡開体を前記配管の熱処理領域の両側に配置し、
     前記第2工程において、拡開した前記2つの拡開体により前記配管の熱処理領域の両側にて前記配管の内部を閉塞することを特徴とする請求項1に記載の配管の熱処理方法。
  4.  前記少なくとも1つの拡開体は可撓性材料で構成された中空体で構成され、
     前記拡開用流体として冷却液を使用し、
     前記第3工程の間、前記少なくとも1つの拡開体に連続的に前記拡開用流体を供給する一方、前記配管に形成された少なくとも1つの開孔から前記配管の内部に挿入された可撓性を有する排出チューブを介して、前記少なくとも1つの拡開体から前記拡開用流体を排出することを特徴とする請求項1~3の何れか1項に記載の配管の熱処理方法。
  5.  前記少なくとも1つの拡開体が拡開したときに前記配管に吸着可能な複数の磁石が、前記少なくとも1つの拡開体に装着されていることを特徴とする請求項1~4の何れか1項に記載の配管の熱処理方法。
  6.  前記少なくとも1の拡開体が拡開したときに前記拡開体と前記配管との間に配置される断熱部材が前記拡開体に装着されている
    ことを特徴とする請求項1~5の何れか1項に記載の配管の熱処理方法。
  7.  配管の熱処理領域の周りに配置可能な高周波誘導加熱コイルと、
     可撓性材料で構成され、前記配管に形成された少なくとも1つの開孔から前記配管の内部に挿入可能であり且つ拡開用流体の供給により拡開して前記配管の熱処理領域の少なくとも一方の側にて前記配管の内部を閉塞可能な少なくとも1つの拡開体と、
     可撓性を有し、前記配管に形成された少なくとも1つの開孔から前記配管の内部に挿入可能であり且つ前記少なくとも1つの拡開体に前記拡開用流体を供給可能な供給チューブと、
     前記供給チューブを介して前記拡開体に前記拡開用流体を供給するように構成された拡開用流体供給部と
    を備えることを特徴とする配管の熱処理装置。
  8.  前記少なくとも1つの拡開体に装着され、前記拡開体が拡開したときに前記配管に吸着可能な複数の磁石を更に備えることを特徴とする請求項7に記載の配管の熱処理装置。
  9.  前記少なくとも1つの拡開体に装着され、前記少なくとも1つの拡開体が拡開したときに前記少なくとも1つの拡開体と前記配管との間に配置される少なくとも1つの断熱材を更に備えることを特徴とする請求項7又は8に記載の配管の熱処理装置。
  10.  前記少なくとも1つの断熱部材は可撓性を有するとともに環形状を有し、
     前記少なくとも1つの断熱部材は、前記少なくとも1つの拡開体が拡開したときに直径方向に離間する2箇所にて前記少なくとも1つの拡開体に固定されている
    ことを特徴とする請求項9に記載の配管の熱処理装置。
  11.  前記少なくとも1つの拡開体は可撓性材料で構成された中空体で構成されていることを特徴とする請求項7~10の何れか1項に記載の配管の熱処理装置。
  12.  前記少なくとも1つの拡開体は、
     拡開可能な拡開シートと、
     複数の連結バーとを含み、
     前記複数の連結バーの各々は、前記拡開シートがパラシュート状に拡開するように、前記拡開シートの周縁部に連結された一端部と、前記供給チューブの先端側に連結された他端部とを有する
    ことを特徴とする請求項7~10の何れか1項に記載の配管の熱処理装置。
  13.  前記拡開シートに装着された骨組みを更に有し、
     前記骨組みは、常温で前記配管の少なくとも1つの開孔から挿入可能な大きさに屈曲可能であり、且つ、前記配管の熱処理の温度帯で前記拡開シートを前記配管の内部を閉塞可能な大きさに展開可能な形状記憶合金で構成されていることを特徴とする請求項12に記載の配管の熱処理装置。
PCT/JP2015/072646 2014-08-12 2015-08-10 配管の熱処理方法及び装置 WO2016024568A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2016150860A RU2660544C2 (ru) 2014-08-12 2015-08-10 Способ и устройство для тепловой обработки трубы
KR1020167036131A KR101933293B1 (ko) 2014-08-12 2015-08-10 배관의 열처리 방법 및 장치
CN201580022607.2A CN106255769B (zh) 2014-08-12 2015-08-10 配管的热处理方法以及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-164293 2014-08-12
JP2014164293A JP6329846B2 (ja) 2014-08-12 2014-08-12 配管の熱処理方法及び装置

Publications (1)

Publication Number Publication Date
WO2016024568A1 true WO2016024568A1 (ja) 2016-02-18

Family

ID=55304195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072646 WO2016024568A1 (ja) 2014-08-12 2015-08-10 配管の熱処理方法及び装置

Country Status (5)

Country Link
JP (1) JP6329846B2 (ja)
KR (1) KR101933293B1 (ja)
CN (1) CN106255769B (ja)
RU (1) RU2660544C2 (ja)
WO (1) WO2016024568A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248350A (ja) * 1992-12-28 1994-09-06 Jgc Corp 配管溶接継手の熱処理方法
JP2008014389A (ja) * 2006-07-05 2008-01-24 Hitachi Metals Ltd 流路閉塞用工具及び供給管の更新工法
JP2008195975A (ja) * 2007-02-08 2008-08-28 Hitachi-Ge Nuclear Energy Ltd 配管残留応力改善方法および高周波加熱装置
JP2009242817A (ja) * 2008-03-28 2009-10-22 Jfe Steel Corp 工業炉の熱風本管補修用遮蔽プラグおよびその熱風本管補修方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU742475A1 (ru) * 1977-10-06 1980-06-25 Всесоюзный Проектно-Конструкторский Технологический Институт Атомного Машиностроения И Котлостроения Способ термической обработки сварных соединений
JPS5952213B2 (ja) * 1978-09-11 1984-12-18 株式会社日立製作所 溶接構造物の局部焼鈍方法
RU2037539C1 (ru) * 1992-09-04 1995-06-19 Зислин Григорий Семенович Устройство для автоматического управления термической обработкой труб
JP3389137B2 (ja) * 1999-03-30 2003-03-24 大阪瓦斯株式会社 ガスバッグ
JP2001004389A (ja) * 1999-06-23 2001-01-12 Alps Electric Co Ltd 動画表示装置
JP2001116183A (ja) * 1999-10-15 2001-04-27 Tokyo Gas Co Ltd 埋設管の漏洩検査方法
JP3510167B2 (ja) * 1999-12-06 2004-03-22 熱産ヒート株式会社 高周波加熱方法
JP3764052B2 (ja) * 2001-01-16 2006-04-05 Jfeスチール株式会社 炉補修用熱遮蔽装置
JP2005195522A (ja) 2004-01-09 2005-07-21 Hitachi Ltd 配管系の熱処理装置
RU2364485C2 (ru) * 2006-10-11 2009-08-20 Казанский государственный технический университет им. А.Н. Туполева Способ восстановления технологических трубопроводов из аустенитных сталей
CN102071300B (zh) * 2009-11-24 2012-10-10 贵州航天红光机械制造有限公司 消除管状带端面齿零件感应淬火裂纹的方法
FR2958659B1 (fr) * 2010-04-08 2013-01-11 Electricite De France Traitement d'une canne chauffante destinee a un pressuriseur du circuit primaire d'un reacteur nucleaire.
IT1403263B1 (it) * 2010-12-16 2013-10-17 Tesi Srl Dispositivo per il riscaldamento localizzato di parti di tubi metallici rivestiti e di parti del loro rivestimento protettivo

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248350A (ja) * 1992-12-28 1994-09-06 Jgc Corp 配管溶接継手の熱処理方法
JP2008014389A (ja) * 2006-07-05 2008-01-24 Hitachi Metals Ltd 流路閉塞用工具及び供給管の更新工法
JP2008195975A (ja) * 2007-02-08 2008-08-28 Hitachi-Ge Nuclear Energy Ltd 配管残留応力改善方法および高周波加熱装置
JP2009242817A (ja) * 2008-03-28 2009-10-22 Jfe Steel Corp 工業炉の熱風本管補修用遮蔽プラグおよびその熱風本管補修方法

Also Published As

Publication number Publication date
CN106255769B (zh) 2018-05-29
RU2660544C2 (ru) 2018-07-06
KR101933293B1 (ko) 2018-12-27
RU2016150860A3 (ja) 2018-06-25
JP6329846B2 (ja) 2018-05-23
JP2016040399A (ja) 2016-03-24
KR20170013313A (ko) 2017-02-06
CN106255769A (zh) 2016-12-21
RU2016150860A (ru) 2018-06-25

Similar Documents

Publication Publication Date Title
KR101230784B1 (ko) 타이어 가황기
US20100213190A1 (en) Flow-through induction heater
TWI623960B (zh) 半導體製造設備及其處理方法
WO2014020586A2 (en) Auxiliary conduit assembly
JP2004211187A5 (ja)
JP6329846B2 (ja) 配管の熱処理方法及び装置
KR101962282B1 (ko) 공기조화기용 동파방지 장치
KR101469079B1 (ko) 배관 급속 결빙 방법
ES2672730T3 (es) Recipiente de presión y método de calentamiento de un gas a presión que fluye
KR20120004367U (ko) 코일 냉각 방법, 코일 냉각 시스템, 및 액체 냉각 코일
JP2016008663A (ja) 断熱多重管及びその製造方法
KR20130053756A (ko) 엔진의 배기관 구조
KR102141875B1 (ko) 자동차용 인덕션 히터
KR101556214B1 (ko) 냉각 시스템이 구비된 착자 요크 장치
KR101433824B1 (ko) 용접용 열처리장치
CN102890972A (zh) 对开式试验堆辐照装置
JP2010104479A (ja) 核磁気共鳴イメージング装置
WO2015029095A1 (ja) 溶接構造物の熱処理方法および装置
CN103407153A (zh) 一种复合材料布带缠绕机热风装置
JP2004331999A (ja) 管の熱処理方法、及び熱処理装置
ITMI20102309A1 (it) Dispositivo per il riscaldamento localizzato di parti di tubi metallici rivestiti e di parti del loro rivestimento protettivo
KR102141876B1 (ko) 자동차용 인덕션 히터
JP2017139161A (ja) 加熱コイル
KR101187013B1 (ko) 베어링을 시험하는 방법 및 장치
JP2003168547A (ja) 流体の電磁誘導加熱方法及びその装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016150860

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020167036131

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831359

Country of ref document: EP

Kind code of ref document: A1