JP2004331999A - 管の熱処理方法、及び熱処理装置 - Google Patents

管の熱処理方法、及び熱処理装置 Download PDF

Info

Publication number
JP2004331999A
JP2004331999A JP2003125173A JP2003125173A JP2004331999A JP 2004331999 A JP2004331999 A JP 2004331999A JP 2003125173 A JP2003125173 A JP 2003125173A JP 2003125173 A JP2003125173 A JP 2003125173A JP 2004331999 A JP2004331999 A JP 2004331999A
Authority
JP
Japan
Prior art keywords
pipe
processed
cooling
heating
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003125173A
Other languages
English (en)
Inventor
Noboru Saito
昇 齋藤
Nobuyoshi Yanagida
信義 柳田
Hideyo Saito
英世 斉藤
Shoji Hayashi
章二 林
Kunio Enomoto
邦夫 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003125173A priority Critical patent/JP2004331999A/ja
Publication of JP2004331999A publication Critical patent/JP2004331999A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

【課題】管の内面側及び外面側の両方で応力腐食割れの発生を抑制できる 管の熱処理技術を提供する。
【解決手段】処理対象となる管1の処理部位の外面側を冷却する外面冷却手段と、処理対象となる管1の処理部位を加熱する加熱手段とを備え、外面冷却手段は、処理対象となる管1の周囲に配設され、冷却用媒体が通流する冷却用媒体流路5と、冷却用媒体流路5内に冷却用媒体を供給する冷却用媒体供給部11とを有し、加熱手段は、処理対象となる管1の周囲に、処理対象となる管1の外面と間隔をおいて配設され、処理対象となる管に誘導電流を発生させる加熱コイル3と、加熱コイル3に電気的に接続された電源部7、9とを有し、処理対象となる管1内に冷却媒体が満たして、処理対象となる管1の処理部位の内面側と外面側とを冷却しながら処理対象となる管の処理部位を加熱し、処理対象となる管1の管壁の厚み方向に処理対象となる管1の処理部位の内面側及び外面側に生じる応力が引張側降伏応力近傍または引張側降伏応力以上に増加する温度差を生じさせる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、管の熱処理技術に係り、特に、プラントなどの腐食環境に設けられる配管などに好適な管の熱処理技術に関する。
【0002】
【従来の技術】
ステンレス鋼やニッケル基合金鋼などの鋼材の溶接部には、溶接熱によって結晶粒界にクローム炭化物が析出し、この結果、結晶粒界の極近傍にクローム欠乏層が形成され、このクローム欠乏層に、鋭敏化、つまり腐食に対し感受性が高くなる現象が発生する。一方、プラントの配管系などを構成する管の溶接部や溶接部近傍には、引張残留応力が生成される。このような引張残留応力の生成は、腐食環境下で使用される管に応力腐食割れを生じさせる原因となる。したがって、プラントの配管系などのように、管を溶接することで配管した場合、引張残留応力の生成に材料の鋭敏化が重畳し、管に応力腐食割れが発生し易くなる。
【0003】
また、管を溶接する場合に限らず、溶接以外の作業で加熱を受けた管でも、引張残留応力の生成に材料の鋭敏化が重畳し、応力腐食割れが発生し易くなる。さらに、エルボなどのように曲げ加工された管、切削加工や研磨加工された管などでも管に引張残留応力が生成されることによって応力腐食割れが発生する場合がある。
【0004】
このような応力腐食割れの発生を抑制するため、内部が腐食環境となる状態で使用される管に対する管の内面側に存在する引張残留応力を低減するか、または圧縮残留応力に代える方法が提案されている(例えば、特許文献1参照)。この方法では、例えばプラントの配管系を組立てた後、配管系を構成する管の内部に冷却用媒体を満たすかまたは通流させると共に管を加熱し、管の内面と管の外面との間に温度差を発生させている。
【0005】
【特許文献1】
特公昭53−38246号公報(第2−5頁、第2図、第3図)
【0006】
【発明が解決しようとする課題】
ところで、上記のような従来の管の熱処理技術は、管の内部が腐食環境となる場合に用いられる管において、内面に生成された引張残留応力を低減するものである。このため、管の外面に生成した引張残留応力の低減については考慮されていない。しかし、例えばプラントの配管系を構成する管などでは、管の内面のみならず、外面も腐食環境に曝されるような場所に配管される場合も生じており、このような場所の配管などを構成する管では、管の内外面側での応力腐食割れの発生が懸念される。このため、管の内面側及び外面側の両方で応力腐食割れの発生を抑制することが必要となっている。
【0007】
本発明の課題は、管の内面側及び外面側の両方で応力腐食割れの発生を抑制することにある。
【0008】
【課題を解決するための手段】
本発明の管の熱処理方法は、処理対象となる管の処理部位の内面側と外面側とを冷却しながら処理対象となる管の処理部位を加熱し、処理対象となる管の内面側及び外面側の温度を処理対象となる管の管壁の厚み方向の中央部分の温度よりも低くし、処理対象となる管の管壁の厚み方向に、処理対象となる管の処理部位の内面側及び外面側に生じる応力が引張側降伏応力近傍または引張側降伏応力以上に増加する温度差を生じさせることにより上記課題を解決する。
【0009】
このようにすれば、管の熱処理によって生じた処理対象となる管の管壁の厚み方向の温度差によって、処理対象となる管の管壁の内面側部分及び外面側部分で引張応力による歪みが生じ、管の内面側及び外面側の両方で引張残留応力を低減できるか、または、圧縮残留応力を生じさせることができる。したがって、管の内面側及び外面側の両方で応力腐食割れの発生を抑制できる
特に、処理対象となる管の管壁の厚み方向の前記温度差は、処理対象となる管の管壁の内面側及び外面側で引張側降伏応力以上となる温度差にすれば、管の内面側及び外面側に圧縮残留応力を生成できる。このため、応力腐食割れをより確実に抑制できるので好ましい。
【0010】
さらに、処理対象となる管の処理部位の内面側を冷却するとき、処理対象となる管内に冷却用媒体を満たす方法とする。また、処理対象となる管の処理部位の内面側を冷却するとき、処理対象となる管内に冷却用媒体を通流させる方法とする。処理対象となる管の処理部位の内面側を冷却する場合には、処理対象となる管内に冷却用媒体を満たす方法と、処理対象となる管内に冷却用媒体を通流させる方法とを用いることができるが、処理対象となる管内に冷却用媒体を通流させる方法の方が、冷却効率を向上できる。
【0011】
さらに、処理対象の管が原子炉の配管を構成している管であるとき、冷却用媒体として炉水を用いる方法とする。また、冷却用媒体は純水を用いる方法とする。このように処理対象となる管が、既にプラントなどに配管されているかいないか、そして配管された管の用途やプラントの種類などの条件に応じて適宜管の内面側の冷却方法や冷却用媒体を選択できる。
【0012】
さらに、処理対象となる管の処理部位の外面側を冷却するとき、処理対象となる管の外面に冷却用媒体を吹き付ければ、管の外面側部分の冷却効率を向上できる。また、処理対象となる管を冷却用媒体中に位置させれば、管の内外面を冷却するための装置の構成を簡略化できる。
【0013】
さらに、処理対象となる管の処理部位を加熱するとき、誘導加熱により処理対象となる管を加熱する。また、処理対象となる管の処理部位を加熱するとき、処理対象となる管に直接通電して加熱する。
【0014】
本発明の管の熱処理装置は、処理対象となる管の処理部位の外面側を冷却する外面冷却手段と、処理対象となる管の処理部位を加熱する加熱手段とを備えた構成とすることにより上記課題を解決する。
【0015】
また、本発明の管の熱処理装置は、処理対象となる管の処理部位の内面側を冷却するための内面冷却手段と、処理対象となる管の処理部位の外面側を冷却する外面冷却手段と、処理対象となる管の処理部位を加熱する加熱手段とを備えた構成とすることにより上記課題を解決する。
【0016】
プラントなどに配管された管を熱処理する場合、外面冷却手段と、加熱手段とを備えた熱処理装置を用いて、管の外面側部分の冷却と管の加熱を行い、管の内面側部分の冷却は、管内にプラント側の設備などを利用して冷却用媒体を満たしたり、通流させたりすることで行う。一方、配管されていない管の熱処理を行う場合、内面冷却手段と、外面冷却手段と、加熱手段とを備えた熱処理装置を用いて、管の外面側部分の冷却、管の外面側部分の冷却、そして管の加熱を行う。
【0017】
さらに、内面冷却手段は、処理対象となる管内に冷却用媒体を通流させる構成とすれば、管の内面側部分の冷却効率を向上できる。
【0018】
また、外面冷却手段は、処理対象となる管の周囲に配設され、冷却用媒体が通流する冷却用媒体流路と、この流路内に冷却用媒体を供給する冷却用媒体供給部とを有し、この冷却用媒体流路を画成する壁の処理対象となる管の外面に対向する部分に貫通穴が形成された構成とする。このような構成とすれば、冷却用媒体流路に冷却用媒体を通流させることで、処理対象となる管の外面に冷却用媒体を吹き付けて管の外面を冷却できる。
【0019】
また、外面冷却手段は、処理対象となる管を浸漬する冷却用媒体を含む構成とすれば、冷却用媒体流路などが不要となるため装置の構成を簡素化できる。
【0020】
さらに、処理対象となる管の外面の温度を検出する温度検出手段と、この温度検出手段で検出した温度に応じて加熱手段による処理対象となる管の加熱を制御する制御部とを備えた構成とする。これにより、管の管壁の厚み方向の中央部分と、管壁の外面側部分及び内面側部分との温度差を必要な温度差にすることができる。
【0021】
また、加熱手段は、処理対象となる管の周囲に、処理対象となる管の外面と間隔をおいて配設され、処理対象となる管に誘導電流を発生させる加熱コイルと、この加熱コイルに電気的に接続された電源部とを有する構成とする。このとき、加熱手段の加熱コイルは、導電性の材料からなる管路で形成されており、加熱手段は、加熱コイルを形成する管路内に冷却用媒体を供給する冷却用媒体供給部を有する構成とすれば、発熱した加熱手段の加熱コイルを冷却し、加熱効率を向上することができる。
【0022】
さらに、加熱手段は、処理対象となる管に取り付けられる2つの端子と、この2つの端子間に電圧を印可する電源部とを有する構成とすれば、加熱手段を簡素化できる。また、2つの端子は、処理対象となる管の外面に内面が接触する内径を有する環状に形成されている構成とすれば、処理対象となる管の加熱状態を均一化できる。
【0023】
【発明の実施の形態】
(第1の実施形態)
以下、本発明を適用してなる管の熱処理方法及び熱処理装置の第1の実施形態について図1乃至図8を参照して説明する。図1は、本発明を適用してなる管の熱処理装置の概略構成を示す模式図である。図2は、処理対象となる管に冷却用コイルと加熱コイルを取り付けるための支持部材の部分を拡大して示す斜視図である。図3は、本実施形態の熱処理装置を処理対象の管に取り付けたところを処理対象の管の横断面側から見た状態で示す図である。図4は、本実施形態の熱処理装置を構成する加熱コイルを分割したところを管の横断面側から見た状態で示す図である。図5は、本実施形態の熱処理装置を構成する支持部材のホルダーの内部構造を示す断面図である。図6は、本発明を適用してなる管の熱処理方法により処理対象となる管の熱処理を行ったときの管壁の厚み方向における温度分布を示す図である。図7は、本発明を適用してなる管の熱処理方法により処理対象となる管の熱処理を行ったときの管壁の厚み方向における管の軸に沿う方向の応力の分布を示す図である。図8は、応力と歪の関係を説明する図である。
【0024】
本実施形態の管の熱処理装置は、図1に示すように、処理対象となる管1の処理部位、例えば管の溶接部2と溶接部2の近傍部分の外面側に、この外面と間隔をおいて管1に螺旋状に巻き付けられた状態の管路である加熱コイル3と、冷却用コイル5とを備えている。さらに、本実施形態の管の熱処理装置は、加熱コイル3の両端部に電気的に接続された電源部を構成するトランス7と電源9、加熱コイル3の両端部及び冷却用コイル5の両端部に連結されたポンプ11、そして、電源9やポンプ11などの動作を制御する制御部13などを備えている。また、本実施形態の管の熱処理装置は、処理対象となる管1の処理部位の外面に取り付けられた熱電対15なども備えている。
【0025】
したがって、本実施形態では、処理対象となる管1の外面側を冷却する外面冷却手段は、冷却用コイル5及び冷却用媒体供給部を構成するポンプ11などからなり、処理対象となる管1の処理部位を加熱する加熱手段は、加熱コイル3、トランス7や電源9などからなる電源部、及びポンプ11などからなる。また、ポンプ11には、ポンプ11と共に冷却用媒体供給手段を構成する図示していない冷却用媒体供給系から冷却用媒体となる水などが供給される。
【0026】
さらに、本実施形態は、原子炉内の配管を処理対象の管として熱処理する場合を前提としている。このため、本実施形態の管の熱処理装置は、処理対象となる管1の内面側を冷却する内面冷却手段としては、原子力プラントに設けられた炉水の供給設備を流用しており、処理対象となる管1の内面側の冷却は、この管1内に冷却用媒体として炉水を通流させることで行う。
【0027】
原子炉に限らず、様々なプラントなどの配管といった既設の管を処理対象として熱処理する場合、本実施形態の管の熱処理装置は、プラント側の設備を内面冷却手段として利用して処理対象となる管1内に冷却用媒体となる液体、例えば純水などを処理対象となる管1内に供給することで行うことができる。さらに、工場などで製造中または製造後の管などを処理対象の管とする場合には、管の熱処理装置に専用の内面冷却手段を準備する。このときの内面冷却手段は、処理対象となる管内に冷却用媒体となる液体などを供給できればよく、例えば冷却用媒体の供給源、この供給源から冷却用媒体を処理対象となる管に送るポンプ、このポンプと処理対象となる管とを連結する流路を形成するホースなどで構成される。
【0028】
加熱コイル3は、熱伝導性と導電性を有する材料、例えば銅製の管で形成されている。加熱コイル3の両端部には、各々、トランス7からの配線17a、17bが電気的に接続されると共に、ポンプ11との間で冷却用媒体、例えば水などを加熱コイル3に供給そして排出するための管路であるホース19a、19bが連結された連結部21a、21bが設けられている。冷却用コイル5は、図2に示すように、処理対象の管1の外面に対向する面部分に複数の貫通穴23が穿設された管で形成されている。冷却用コイル5は、加熱コイル3と同じ材料の管を用いて形成することができるが、本実施形態の冷却用コイル5では、熱伝導性などを有している必要はないため、複数の貫通穴23が穿設された管であれば様々な材料の管を用いて形成することができる。冷却用コイル5の両端部には、図1に示すように、各々、ポンプ11との間で冷却用媒体となる水などを冷却用コイル5に供給そして排出するための管路であるホース25a、25bが連結された連結部27a、27bが設けられている。
【0029】
加熱コイル3と冷却用コイル5は、図1及び図2に示すように、処理対象となる管1の処理部位、例えば管の溶接部2と溶接部2の近傍部分の外面側に設置された複数の支持部材29、31によって、処理対象となる管1の外面と間隔をおいて支持されている。支持部材29、31は、各々、処理対象となる管1の外面に取り付けられる対向する2つの四角柱状のスペーサー部33、そして、対向する2つのスペーサー部33の間に設けられて加熱コイル3と冷却用コイル5とが取り付けられた四角柱状のホルダー部35で構成されている。
【0030】
2つのスペーサー部33は、各々、処理対象となる管1の外面に当接する端面が、処理対象となる管1の外面の円周方向の形状に応じた弧状に形成されている。ホルダー部35は、スペーサー部33の高さよりも高さが低くなっており、スペーサー部33の弧状に形成された端面と反対側の端面側に寄せて、2つのスペーサー部33間に固定されている。したがって、本実施形態では、加熱コイル3及び冷却用コイル5の設置に際しては、支持部材29、31のスペーサー部33の弧状に形成された端面を処理対象の管1の外面に当接させて取り付けることで、加熱コイル3及び冷却用コイル5と、処理対象の管1の外面との間の隙間を適切にとることが可能となる。
【0031】
本実施形態では、支持部材29と支持部材31とは外形は同じである。しかし、支持部材29は、図2乃至図4に示すように、加熱コイル3と冷却用コイル5の軸方向に交わる方向の面で支持部材片29aと支持部材片29bとに2分割された構造となっており、支持部材31は、分割されておらず、一体に形成されたものである。このような異なる構造の支持部材29と支持部材31とが交互に配設された状態で、望ましくは等間隔で配設された状態で加熱コイル3と冷却用コイル5が支持されている。支持部材31は、ホルダー部35に形成された貫通穴に加熱コイル3と冷却用コイル5が挿通された状態となっている。これに対して、2分割された構造の支持部材29は、図5に示すように、支持部材片29a、29bの各々のホルダー部35a、35b内に加熱コイル3と冷却用コイル5とに各々連通する2系統の流路37が形成されている。
【0032】
なお、図5では、冷却用コイル5と各支持部材片29a、29bとの連結状態を示しているため、ここでは、冷却用コイル5と各支持部材片29a、29bとの連結状態を例として説明する。しかし、各支持部材片29a、29bのホルダー部35a、35b内の流路37は、図示していないが、加熱コイル3が連通する別の系統のものも設けられており、加熱コイル3と各支持部材片29a、29bとの連結状態も、冷却用コイル5と各支持部材片29a、29bとの連結状態と同じである。
【0033】
支持部材29を構成する各支持部材片29a、29bは、各支持部材片29a、29bのホルダー部35a、35bの互いに当接する面と反対側の面に冷却用コイル5が固定されている。各支持部材片29a、29bに固定された冷却用コイル5は、各支持部材片29a、29b内に形成された流路37に連通している。流路37は、各支持部材片29a、29bの上面に向けて形成されている。ホルダー部29bの上面には、流路37に連続して円筒状に突出した出入口部39が形成されている。また、支持部材29各支持部材片29a、29bのホルダー部35に形成された流路37の下方には、各々対応する位置に、各支持部材片29a、29bを締結して支持部材29として組み立てるための図示していないボルトを挿通する貫通穴41が形成されている。
【0034】
このように本実施形態では、支持部材29が分割可能な各支持部材片29a、29bとなっているため、加熱コイル3及び冷却用コイル5は、図4に示すように、支持部材29で半円弧状に分割された状態となっている。したがって、処理対象の管が、プラントなどの配管といった既設の管である場合でも、その管を切断するといったような加工なしに、図4に示すような半円弧状に分割された加熱コイル3及び冷却用コイル5、そして支持部材片29a、29bと支持部材31を有するユニットを、処理対象の管1を両側から挟むように合わせ、各々のユニットの支持部材片29aと支持部材片29bとを連結して行くことで、処理対象の管1の周囲に螺旋状に加熱コイル3及び冷却用コイル5を設置することができる。
【0035】
処理対象の管1に加熱コイル3及び冷却用コイル5を各々のユニットの支持部材片29aと支持部材片29bとを連結することで設置した後、図2及び図3に示すように、支持部材片29aと支持部材片29bとに各々設けられた出入口部39に耐熱ホース43を取り付けて対応する出入口部39同士を接続することにより、加熱コイル3の冷却用媒体の回路と、冷却用コイル5の冷却用媒体の回路とを構成することができる。
【0036】
支持部材29のスペーサー部33は、絶縁性の材料、例えばベークライトなどの樹脂材料などで形成されており、支持部材29のホルダー部35は、導電性の材料で形成されている。このため、支持部材29の支持部材片29aと支持部材片29bとが接触した状態で連結されることにより、支持部材29で分割された加熱コイル3の電気的接続が可能となる。なお、支持部材31は、支持部材29と同様の材料で形成することができるが、支持部材31のホルダー部35は、電気的な接続に関係しないため、絶縁性の材料で形成することもできる。
【0037】
本実施形態の熱電対15は、処理対象の管1の溶接部2近傍に設けられており、配線45を介して制御部13と電気的に接続されている。また、制御部13は、電源9やポンプ11などとも配線45を介して電気的に接続されている。電源9は、配線47を介してトランス7と電気的に接続されている。
【0038】
このような構成の熱処理装置を用いた熱処理方法と本発明の特徴部について説明する。熱処理装置を図1に示した状態に設置した後、溶接部2で接合されている処理対象の管1内に冷却用媒体となる炉水を冷却水として満たし、通流させる。この後、ポンプ11を起動して加熱コイル3と冷却用コイル5への冷却用媒体となる水、つまり冷却水の供給を開始すると共に、電源47を起動して加熱コイル3へトランス7を介して高周波電流を供給する。これにより、冷却用コイル5では、冷却用コイル5に設けられた冷却水の噴射孔となる貫通穴23から処理対象の管1の外面への冷却水の噴射が開始され、処理対象の管1の外面に冷却水が吹き付けられることで、管1の外面が冷却される。一方、加熱コイル3は、加熱コイル3に供給された高周波電流により磁界を形成し、これにより、処理対象の管1には誘導電流が誘起されて処理対象の管1の発熱が起きる。
【0039】
このとき、処理対象となる管1の外面の温度が、熱電対15により測定される。つまり、熱電対15は、処理対象となる管1の外面の温度に対応する熱起電力による電圧を配線45を介して制御部13に送る。制御部13は、この熱電対15からの電圧、つまり熱電対15の出力と、予め設定した加熱時間とから、処理対象となる管1の管壁の、厚み方向の中央部分の温度を推定する。そして、制御部13は、処理対象となる管1の管壁の、厚み方向の中央部分が予め設定した温度以上に上昇したと判断すると、加熱コイル3への高周波電流の供給を停止する。
【0040】
ここで、制御部13は、管壁の厚み方向の中央部分の温度を判定して加熱コイル3による加熱を停止する。しかし、本熱処理では、管壁の厚み方向の中央部分の温度自体を所定の温度にしようとするものではなく、処理対象となる管1の内面側及び外面側の温度と、管壁の厚み方向の中央部分の温度との温度差を所定の温度にしようとするものである。したがって、加熱を停止するために制御部13に予め設定された温度は、使用する冷却用媒体の温度に応じて設定されたものである。
【0041】
例えば冷却用媒体が室温、20℃程度の水や炉水などであり、処理対象となる管の材質がステンレス鋼である場合、熱処理後に処理対象となる管の内面側及び外面側に圧縮残留応力を発生させるためには、処理対象となる管の内面側及び外面側の温度と、管壁の厚み方向の中央部分の温度との温度差を200℃程度以上にする必要があることから、加熱を停止するために制御部13に予め設定された温度は、220℃以上の温度に設定されている。このように、加熱温度は、圧縮残留応力の低減や熱処理後に圧縮残留応力を発生させるのに必要とされる管の内面側及び外面側の温度と管壁の厚み方向の中央部分の温度との温度差、そして冷却用媒体の温度などに応じて適宜決定する。
【0042】
このように加熱したときの処理対象となる管1の管壁の厚み方向、つまり管壁の半径方法の温度分布は、図6に示すように、冷却水により冷却されている管1の内面及び外面から管壁の厚み方向の中央部分に向かうに連れて漸次温度が高くなるような温度分布となり、管1の内面側及び外面側と、管1の管壁の厚み方向の中央部分との間に温度差が生じる。図6のような温度分布となることにより発生する応力分布の傾向は、図7に示すように、冷却水により冷却されている管1の内面及び外面から管壁の厚み方向の中央部分に向かうに連れて引張応力から圧縮応力に漸次変化するような分布となり、管1の内面側及び外面側では引張応力が生じ、管1の管壁の厚み方向の中央部分では圧縮応力が生じる。
【0043】
ここで、加熱により生じる応力と、残留応力を生じさせる歪みとの関係について説明する。処理前に引張残留応力が存在しない処理対象となる管1を熱処理した場合、熱処理装置により加熱した処理対象の管1の内面側及び外面側と、管壁の厚み方向の中央部分との温度差に応じて、管1の内面側及び外面側に生じる応力、そして管1の厚み方向の中央部分に生じる応力が変化する。処理対象の管1の内面側及び外面側と、管1の厚み方向の中央部分との温度差が、図7に示す曲線49のように、管1の内面側及び外面側で引張側降伏応力σyを越え、管1の厚み方向の中央部分で圧縮側降伏応力−σyを越えるような温度差である場合、管1の内面側及び外面側では、圧縮残留応力が生成され、管1の厚み方向の中央部分では、引張残留応力が生成される。
【0044】
すなわち、図8に示すように、管1の内面側及び外面側で引張側降伏応力σy以上になり、管1の厚み方向の中央部分で圧縮側降伏応力−σy以上になるような温度差になるまで管1を加熱し、管1の内面側及び外面側での応力がB1点、管1の厚み方向の中央部分での応力がB2点となったときに加熱を停止したとする。加熱を停止した後、管1が冷却されてくると、管1の内面側及び外面側では、B1点からE1点を通過する過程をたどり、管1全体が雰囲気温度まで低下したときC1点に達する。一方、管1の厚み方向の中央部分では、B2点からE2点を通過する過程をたどり、C2点に達する。このため、処理対象の管1の内面側及び外面側には正の歪が付与されることで圧縮残留応力が、管1の管壁の厚み方向の中央部分には負の歪が付与されることで引張残留応力が生じることとなる。
【0045】
処理対象の管1の内面側及び外面側と、管1の厚み方向の中央部分との温度差が、図7に示す曲線51のように、管1の内面側及び外面側で引張側降伏応力σyよりも小さく、管1の厚み方向の中央部分で圧縮側降伏応力−σyよりも小さいような温度差である場合、加熱停止後、応力と歪との関係は、D1及びD2から0に同じ直線上を戻ることになり、管1の内面側及び外面側、そして管1の厚み方向の中央部分ともに歪みは0に戻る。このため、熱処理後の処理対象の管1には、残留応力が存在しないままであり、処理対象の管1に使用中に引張残留応力が生じた場合、応力腐食割れを招く恐れがある。したがって、処理対象の管1の内面側や外面側に残留応力が存在しない場合には、処理対象の管1の内面側及び外面側と、管1の厚み方向の中央部分との温度差を、熱処理中に管1の内面側及び外面側に生じる応力が引張側降伏応力σy以上になるような温度差にする。
【0046】
図8に示した応力と歪との関係は、熱処理を行う前の処理対象の管1に残留応力が存在しない場合を示したものであるが、熱処理前に処理対象の管1の内面側及び外面側に引張残留応力が存在している場合に関しても、図8による説明と同様の考え方が成立する。このような熱処理前に処理対象の管1の内面側及び外面側に引張残留応力が存在している場合について、仮に図8を用いて説明する。処理対象の管1の内面側及び外面側と管1の厚み方向の中央部分との温度差が上記のような残留応力が変化しない場合よりも大きく、加熱により生じる応力が引張側降伏応力σyや圧縮側降伏応力−σy以上になる場合よりも小さい場合、管1の内面側及び外面側では、図8におけるD1とA1間の曲線となる部分上に応力と歪との関係が位置し、管1の厚み方向の中央部分ではD2とA2間の曲線となる部分上に応力と歪との関係が位置する。
【0047】
このとき、加熱により生じる応力が引張側降伏応力σyや圧縮側降伏応力−σy以上になる場合と同様に、加熱停止後、D1とA1間、D2とA2間の位置から歪みを示す軸に向かって直線的に変化する。このため、加熱により生じる応力が引張側降伏応力σyや圧縮側降伏応力−σy以上になる場合よりも小さいが、処理対象の管1の内面側及び外面側には正の歪が付与されることで、熱処理前に処理対象の管1の内面側及び外面側に存在していた引張残留応力が低減される。
【0048】
勿論、処理対象の管1の内面側及び外面側と管1の厚み方向の中央部分との温度差が、加熱により生じる応力が引張側降伏応力σyや圧縮側降伏応力−σy以上になる場合、管1の内面側及び外面側に圧縮残留応力を生じさせることができる。また、熱処理前に処理対象の管1の内面側及び外面側に引張残留応力が存在している場合、処理対象の管1の内面側及び外面側と管1の厚み方向の中央部分との温度差によって発生する応力が元々存在していた引張残留応力に重畳することになる。したがって、管1の内面側及び外面側に圧縮残留応力を生じさせるための処理対象の管1の内面側及び外面側と管1の厚み方向の中央部分との温度差は、熱処理前に処理対象の管1の内面側及び外面側に引張残留応力が存在していない場合に比べて少なくて済む。
【0049】
このように本実施形態の管の熱処理方法、及び熱処理装置では、処理対象となる管1の熱処理を行うとき、管1の内面側及び外面側の温度を、管壁の厚み方向の中央部分の温度よりも低くし、処理対象となる管1の管壁の厚み方向に、管1の処理部位の内面側及び外面側に生じる応力が引張側降伏応力近傍または引張側降伏応力以上に増加する温度差を生じさせる。これにより、管の内面側及び外面側の両方で引張残留応力を低減できるか、または、圧縮残留応力を生じさせることができ、管の内面側及び外面側の両方で応力腐食割れの発生を抑制できる。
【0050】
特に、処理対象となる管1の管壁の厚み方向の温度差を、熱処理中に生じる応力が処理対象となる管1の内面側及び外面側で引張側降伏応力以上とし、管1の管壁の厚み方向の中央部分で圧縮側降伏応力以上となる温度差にすることで、管の内面側及び外面側に圧縮残留応力を生成でき、応力腐食割れの発生をより確実に抑制することができる。
【0051】
また、本実施形態では、加熱コイル3と冷却用コイル5とを別個の管で形成しているが、加熱コイルと冷却用コイルとを、図9に示すように、一体に形成した構成にすることもできる。図9に示した例では、加熱コイル33に冷却用コイルの機能を付加したものであり、全体が熱伝導性と導電性を有する材料で形成されている。加熱コイル33には、冷却用媒体を通流させて処理対象の管1に向けて噴出するための管冷却用流路55と、加熱コイル33の冷却のために冷却用媒体を通流させるコイル冷却用流路57との2つの流路が設けてある。管冷却用流路55の処理対象の管1の外面に対向する部分には、冷却用媒体の噴射孔となる貫通穴23が設けられている。
【0052】
また、本実施形態では、誘導加熱により処理対象となる管1を加熱しているが、処理対象となる管の加熱は、様々な方法で行うことができる。例えば、図10に示すように、処理対象となる管に直接通電して加熱することもできる。この場合、本実施形態のように加熱コイル3は設けられておらず、冷却用コイル5のみが支持部材29、31により処理対象となる管1の周囲に螺旋状に巻き付いた状態で支持されている。処理対象となる管1の冷却用コイル5の両側方部分には、内周面を処理対象となる管1の外周面に接触させた状態でリング状端子59a、59bが取付けられる。リング状端子59a、59bは、内部に冷却用媒体が通流する流路が形成された中空管状となっている。
【0053】
したがって、リング状端子59a、59bには、各々、加熱コイル3の場合と同様に、トランス7からの配線17a、17bが電気的に接続されると共に、ポンプ11との間で冷却用媒体、例えば水などを各リング状端子59a、59bに供給するための管路であるホース61a、61bが連結された連結部63a、63bが設けられている。なお、リング状端子59a、59bには、図示していないが、冷却用媒体を排出する排出流路が各々設けられている。その他の構成は、本実施形態と同一であるので、同一の構成などには同じ符号を付して説明を省略する。
【0054】
このような管の熱処理装置では、処理対象の管1内に冷却用媒体となる冷却水を満たして通流させ、制御部13が冷却水循環ポンプ11を起動してリング状端子59a、59bと、冷却用コイル5への冷却用媒体となる冷却水の供給を開始し、冷却用コイル5から冷却水が処理対象の管1の外面への噴射が開始された後、リング状端子59a、59bに電流を流す。これにより、リング状端子59a、59bに間の管1の部分が通電加熱され、管1の発熱が起きる。管1の外面の温度は、熱電対15により測定され、制御部13に送られる。制御部13は、熱電対15の出力と、予め設定した加熱時間から管壁の厚み方向の中央部分の温度を推定する。そして、管1の管壁の厚み方向の中央部分の温度が予め設定した温度に上昇したと判断されると、制御部13は、リング状端子59a、59bへの電流供給を停止する。
【0055】
また、本実施形態では、冷却用コイル5は、処理対象の管1に冷却用媒体を吹き付けるものであるが、貫通孔が形成されていない伝熱性を有する管路からなる冷却用コイルを処理対象となる管の外面に接触させて螺旋状に巻き付けた構成などにすることもできる。ただし、本実施形態のように、処理対象の管1に冷却用媒体を吹き付ける構成の方が冷却効率が高い。
【0056】
(第2の実施形態)
以下、本発明を適用してなる管の熱処理方法及び熱処理装置の第2の実施形態について図11を参照して説明する。図11は、本発明を適用してなる管の熱処理装置の概略構成を示す模式図である。なお、本実施形態では、第1の実施形態と同一の構成などには同じ符号を付して説明を省略し、第1の実施形態と相違する構成や動作などについて説明する。
【0057】
本実施形態の管の熱処理方法及び熱処理装置が第1の実施形態と相違する点は、処理対象となる管1の外面の冷却を、管1を冷却用媒体となる水などの中に浸漬することで行うことにある。すなわち、本実施形態の管の熱処理装置は、図11に示すように、電源部を構成するトランス7と電源9、そして、電源9などの動作を制御する制御部13を備え、また、処理対象となる管1の処理部位の外面に取り付けられた熱電対15なども備えている構成などは、第1の実施形態と同じである。しかし、本実施形態の管の熱処理装置では、処理対象となる管1の外面を囲むように、この外面と間隔をおいて、加熱コイル65が螺旋状に支持部材67、69を用いて取り付けられている。
【0058】
本実施形態の加熱コイル65は、管1が冷却用媒体中に浸漬されることで、加熱コイル65も冷却用媒体中に浸漬された状態となり、加熱コイル65は、加熱コイル65の周囲の冷却用媒体で冷却されることになる。したがって、加熱コイル65は、内部に冷却用媒体を通流させる必要がないため、管状の部材で形成することもできるし、棒状の部材で形成することもできる。加熱コイル65の両端部には、各々、トランス7からの配線17a、17bを連結してトランス7と加熱コイル65とを電気的に接続する連結部70a、70bが設けられている。本実施形態の支持部材67、69は、第1の実施形態の支持部材29、31と同様に、各々、処理対象となる管1の外面に取り付けられる対向する2つの四角柱状のスペーサー部71、及び、対向する2つのスペーサー部69の間に設けられて加熱コイル65のみが取り付けられた四角柱状のホルダー部73で構成されている。
【0059】
支持部材67は、第1の実施形態の支持部材29と同様に2つの支持部材片で構成されている。しかし、加熱コイル65には冷却用媒体を通流させないため、支持部材67のホルダー部73内には、流路は形成されていない。したがって、支持部材67のホルダー部73には、第1の実施形態のように、円筒状に突出した出入口部などは形成されておらず、また、当接させた支持部材片の出入口部間に設けられる耐熱ホースなども必要ない。
【0060】
本実施形態では、処理対象となる管1の外面側を冷却するため、冷却用媒体75中に処理対象となる管1を浸漬する。このため、処理対象となる管1が製造中や製造後の管である場合などには、冷却用媒体を収容可能で、処理対象となる管1を冷却用媒体に浸漬することが可能な槽を準備する。一方、処理対象となる管1がプラントなどに配管された管である場合などで、プラントの設備などを利用して管1を冷却用媒体に浸漬した状態にできる場合、例えば原子炉の炉内の配管などである場合などには、槽を準備する必要はない。
【0061】
なお、第1の実施形態と同様に、プラントの配管といった既設の管を熱処理する場合、プラントなどの設備を利用して処理対象の管1内に冷却用媒体となる水などを供給するが、工場などで製造中または製造後の管を処理対象の管とする場合には、内面冷却手段を準備する。内面冷却手段は、処理対象となる管1内に冷却用媒体となる水などを供給できればよく、例えば冷却用媒体の供給源、この供給源から冷却用媒体を処理対象となる管に送るポンプ、このポンプと処理対象となる管とを連結する流路を形成するホースなどで構成される。さらに、管の長さが比較的短い場合など、処理対象となる管全体を、冷却用媒体を収容した槽内に入れることができる場合には、内面冷却手段を準備せず、槽内の冷却用媒体が処理対象の管内に侵入することで管の内面側を冷却することもできる。
【0062】
このような構成の熱処理装置を用いた熱処理方法では、冷却用媒体となる水中に没している処理対象の管1に、加熱コイル65を支持部材67、69などを用いて取り付けた後、溶接部2で接合されている管1の内部を冷却水で満たし、加熱コイル3に電流を流す。加熱コイル3を流れる電流により、処理対象となる管1には誘導電流が誘起され、この管1の発熱が起きる。管1の外面の温度は、熱電対15により測定され、制御部13に送られる。制御部13は、熱電対15の出力と、予め設定した加熱時間から管壁の厚み方向の中央部分の温度を推定する。制御部13は、処理部位の管壁の厚み方向の中央部分が所定の温度に上昇したと判断すると、加熱コイル3への電流供給を停止する。
【0063】
これにより、管1の内面側及び外面側の温度を、管1の管壁の厚み方向の中央部分の温度よりも低くし、管1の内面側及び外面側と管1の管壁の厚み方向の中央部分との間に温度差が生じ、熱処理中に生じる応力が管1の内面側及び外面側で引張側降伏応力に近づくか、または引張側降伏応力以上になることで、第1の実施形態と同じ効果を得ることができる。
【0064】
また、本実施形態でも、第1の実施形態と同様に、加熱コイル3を用いた誘導加熱に代えて、処理対象となる管1に直接通電してこの管1を加熱することもできる。この場合、図12に示すように、第1の実施形態で説明した図10の管の熱処理装置の場合と同様に2つリング状端子77a、77bを処理対象となる管1の処理部位を挟む状態で取り付ける。そして、これらのリング状端子77a、77bは、各々配線79a、79bを介して連結部70a、70bに電気的に接続される。リング状端子77a、77bは、加熱コイル65の場合と同様、管1が冷却用媒体中に浸漬されることで、冷却用媒体中に浸漬された状態となり、リング状端子77a、77bの周囲の冷却用媒体で冷却されることになる。したがって、リング状端子77a、77bは、内部に冷却用媒体を通流させる必要がないため、管状の部材で形成することもできるし、帯状の部材で形成することもできる。
【0065】
また、第1及び第2の実施形態では、処理対象となる管1の内側を冷却するとき、管1内に冷却用媒体を通流させているが、管1内に冷却用媒体を満たしただけの状態とすることもできる。ただし、処理対象となる管1内に冷却用媒体を通流させた方が、冷却効率を向上できる。同様に、第2の実施形態では、冷却媒体中に処理対象となる管1を配置し、冷却媒体の自然対流により処理対象となる管1の外面側を冷却しているが、処理対象となる管1の外面側を冷却する冷却媒体は強制対流させた方が冷却効率を向上できる。
【0066】
(第3の実施形態)
以下、本発明を適用してなる管の熱処理方法及び熱処理装置の第2の実施形態について図13を参照して説明する。図13は、本発明を適用してなる管の熱処理装置の概略構成を示す模式図である。図14は、本実施形態の熱処理装置によって熱処理したときの処理対象となる管の状態を説明する模式図である。なお、本実施形態では、第1及び第2の実施形態と同一の構成などには同じ符号を付して説明を省略し、第1及び第2の実施形態と相違する構成や動作などについて説明する。
【0067】
本実施形態では、冷却用媒体中に処理対象となる管を位置させて処理対象となる管の外面側を冷却する点は第2の実施形態と同じであるが、第1の実施形態及び第2の実施形態と相違する点は、処理対象となる管の内外両面側を冷却する冷却用媒体として、水などの液体に代えて空気などの気体を用いることにある。また、本実施形態では、第1の実施形態及び第2の実施形態において変形例として図10や図12に示したものと同様に、加熱を直接通電加熱で行っている。
【0068】
すなわち、本実施形態の管の熱処理装置は、図13に示すように、電源部を構成するトランス7と電源9、そして、電源9などの動作を制御する制御部13を備え、また、処理対象となる管1の処理部位の外面に取り付けられた熱電対15なども備えている構成などは、第1及び第2の実施形態と同じである。しかし、本実施形態の管の熱処理装置では、第1の実施形態の変形例として示したように、処理対象となる管1の処理部位を挟む位置に取り付けられる2つリング状端子59a、59bを備えている。また、図13には図示していないが、第1の実施形態の変形例として示したように、2つリング状端子59a、59bに冷却用媒体となる水を供給する冷却水循環ポンプ11などの冷却用媒体供給手段を有している。
【0069】
2つリング状端子59a、59bは、管状の部材で形成した各リング状端子59a、59bの内周面を、処理対象となる管1の外周面に接触させた状態で取り付けられる。リング状端子59a、59bには、各々、トランス7からの配線17a、17bが連結部63a、63bに電気的に接続されている。
【0070】
なお、本実施形態では、冷却用媒体となる空気中に管1を置いた状態、または、内外両面が冷却用媒体となる空気に接触した状態で熱処理するものである。しかし、第2の実施形態と同様に、プラントの配管といった既設の管を熱処理する場合、処理対象となる管1の内面側の冷却のため、プラントなどの設備を利用して処理対象の管1内に冷却用媒体となる空気などの気体を供給することもできる。また、工場などで製造中または製造後の管を処理対象の管とする場合には、内面冷却手段を準備して管1の内面側を冷却することもできる。内面冷却手段は、処理対象となる管1内に冷却用媒体となる空気などの気体を供給できればよく、例えば冷却用媒体の供給源、この供給源から冷却用媒体を処理対象となる管に送るポンプ、このポンプと処理対象となる管とを連結する流路を形成するホースなどで構成される。
【0071】
このような構成の熱処理装置を用いた熱処理方法では、冷却用媒体となる空気中に処理対象となる管1を配置し、リング状端子59a、59bを取り付けた後、溶接部2で接合されている管1の内部を冷却用媒体となる空気で満たした後、リング状端子59a、59bに電流を流す。リング状端子59a、59b間の処理対象となる管1の部分に電流が流れることにより、処理対象となる管1の発熱が起きる。管1の外面の温度は、熱電対15により測定され、制御部13に送られる。制御部13は、熱電対15の出力と、予め設定した加熱時間から管全体の温度を推定する。制御部13は、処理部位の管全体が所定の温度に上昇したと判断すると、リング状端子59a、59bへの電流供給を停止する点は他の実施形態と同様である。
【0072】
これにより、処理対象となる管1は、直接通電加熱によって、図14に示すように、径方向に外側に向かって膨張し、これにより、管1の外面側の溶接部2近傍部分には、引張応力が発生する。この引張応力が、第1の実施形態において説明した図8の引張側の降伏応力σyに近づき曲線となる部分に至るか、引張側降伏応力σy以上になるように加熱した後、自然冷却させると、熱処理前に処理対象となる管1に引張残留応力が存在していた場合、その引張残留応力を低減できる。
【0073】
さらに、引張側降伏応力σy以上になるように加熱すると、第1の実施形態において説明した図8の応力と歪の関係においてB1からE1への過程をたどり、管1全体が雰囲気温度まで低下すればC1点に達する。このため、処理対象の管1の外面側には正の歪が付与され、処理対象となる管1に圧縮残留応力を生じさせることができる。これにより、熱処理前に引張残留応力が存在していた管だけでなく、引張残留応力が存在していない管でも応力腐食割れの発生を抑制することができる。なお、上記と同様の理由で、リング状端子59a、59bを取り付けた管1の部分の内面側にも圧縮残留応力が生じる。
【0074】
このように、本実施形態でも、第1及び第2の実施形態と同じ効果を得ることができる。
【0075】
また、本発明を適用してなる管の熱処理方法は、第1乃至第3の実施形態に示した管の熱処理装置に限らず、様々な構成の熱処理装置を用いて行うことができる。ただし、第1の実施形態のような、冷却用コイルと加熱手段を備えた構成の熱処理装置を用いれば処理対象となる管の外面側の冷却効率を向上できる。
【0076】
【発明の効果】
本発明によれば、管の内面側及び外面側の両方で応力腐食割れの発生を抑制できる。
【図面の簡単な説明】
【図1】本発明を適用してなる管の熱処理装置の第1の実施形態の概略構成を示す模式図である。
【図2】処理対象となる管に冷却用コイルと加熱コイルを取り付けるための支持部材の部分を拡大して示す斜視図である。
【図3】第1の実施形態の熱処理装置を処理対象の管に取り付けたところを処理対象の管の横断面側から見た状態で示す図である。
【図4】第1の実施形態の熱処理装置を構成する加熱コイルを分割したところを管の横断面側から見た状態で示す図である。
【図5】第1の実施形態の熱処理装置を構成する支持部材のホルダーの内部構造を示す断面図である。
【図6】本発明を適用してなる管の熱処理方法により処理対象となる管の熱処理を行ったときの管壁の厚み方向における温度分布を示す図である。
【図7】本発明を適用してなる管の熱処理方法により処理対象となる管の熱処理を行ったときの管壁の厚み方向における管の軸に沿う方向の応力の分布を示す図である。
【図8】応力と歪の関係を説明する図である。
【図9】冷却用コイルと加熱コイルの一変形例の構成を示す図である。
【図10】第1の実施形態の一変形例の概略構成を示す模式図である。
【図11】本発明を適用してなる管の熱処理装置の第2の実施形態の概略構成を示す模式図である。
【図12】第2の実施形態の一変形例の概略構成を示す模式図である。
【図13】本発明を適用してなる管の熱処理装置の第3の実施形態の概略構成を示す模式図である。
【図14】本実施形態の熱処理装置によって熱処理したときの処理対象となる管の状態を説明する模式図である。
【符号の説明】
1 処理対象となる管
3 加熱コイル
5 冷却用コイル
7 トランス
9 電源
11 ポンプ
13 制御部
15 熱電対

Claims (14)

  1. 処理対象となる管の処理部位の内面側と外面側とを冷却しながら処理対象となる管の処理部位を加熱し、処理対象となる管の内面側及び外面側の温度を処理対象となる管の管壁の厚み方向の中央部分の温度よりも低くし、処理対象となる管の管壁の厚み方向に、処理対象となる管の処理部位の内面側及び外面側に生じる応力が引張側降伏応力近傍または引張側降伏応力以上に増加する温度差を生じさせる管の熱処理方法。
  2. 処理対象となる管の管壁の厚み方向の温度差は、熱処理中に生じる応力が処理対象となる管の管壁の内面側及び外面側で引張側降伏応力以上となる温度差にすることを特徴とする請求項1に記載の管の熱処理方法。
  3. 処理対象となる管の処理部位の外面側を冷却するため、処理対象となる管の外面に冷却用媒体を吹き付けることを特徴とする請求項1または2に記載の管の熱処理方法。
  4. 処理対象となる管の処理部位の外面側を冷却するため、処理対象となる管を冷却用媒体中に位置させることを特徴とする請求項1または2に記載の管の熱処理方法。
  5. 処理対象となる管の処理部位を加熱するとき、誘導加熱により処理対象となる管を加熱することを特徴とする請求項1乃至4のいずれか1項に記載の管の熱処理方法。
  6. 処理対象となる管の処理部位を加熱するとき、処理対象となる管に直接通電して加熱することを特徴とする請求項1乃至4のいずれか1項に記載の管の熱処理方法。
  7. 処理対象となる管の処理部位の外面側を冷却する外面冷却手段と、処理対象となる管の処理部位を加熱する加熱手段とを備えた管の熱処理装置。
  8. 処理対象となる管の処理部位の内面側を冷却するための内面冷却手段と、処理対象となる管の処理部位の外面側を冷却する外面冷却手段と、処理対象となる管の処理部位を加熱する加熱手段とを備えた管の熱処理装置。
  9. 前記外面冷却手段は、処理対象となる管の周囲に配設され、冷却用媒体が通流する冷却用媒体流路と、該冷却用媒体流路内に冷却用媒体を供給する冷却用媒体供給部とを有し、該冷却用媒体流路を画成する壁の処理対象となる管の外面に対向する部分に貫通穴が形成されたことを特徴とする請求項7または8に記載の管の熱処理装置。
  10. 前記外面冷却手段は、処理対象となる管を浸漬する冷却用媒体を含むことを特徴とする請求項7または8に記載の管の熱処理装置。
  11. 処理対象となる管の外面の温度を検出する温度検出手段と、該温度検出手段で検出した温度に応じて加熱手段による処理対象となる管の加熱を制御する制御部とを備えたことを特徴とする請求項9または10に記載の管の熱処理装置。
  12. 前記加熱手段は、処理対象となる管の周囲に、処理対象となる管の外面と間隔をおいて配設され、処理対象となる管に誘導電流を発生させる加熱コイルと、該加熱コイルに電気的に接続された電源部とを有することを特徴とする請求項7乃至11のいずれか1項に記載の管の熱処理装置。
  13. 前記加熱手段の加熱コイルは、導電性の材料からなる管路で形成されており、前記加熱手段は、前記加熱コイルを形成する管路内に冷却用媒体を供給する冷却用媒体供給部を有することを特徴とする請求項12に記載の管の熱処理装置。
  14. 前記加熱手段は、処理対象となる管に取り付けられる2つの端子と、該2つの端子間に電圧を印可する電源部とを有することを特徴とする請求項7乃至11のいずれか1項に記載の管の熱処理装置。
JP2003125173A 2003-04-30 2003-04-30 管の熱処理方法、及び熱処理装置 Withdrawn JP2004331999A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125173A JP2004331999A (ja) 2003-04-30 2003-04-30 管の熱処理方法、及び熱処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125173A JP2004331999A (ja) 2003-04-30 2003-04-30 管の熱処理方法、及び熱処理装置

Publications (1)

Publication Number Publication Date
JP2004331999A true JP2004331999A (ja) 2004-11-25

Family

ID=33502517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125173A Withdrawn JP2004331999A (ja) 2003-04-30 2003-04-30 管の熱処理方法、及び熱処理装置

Country Status (1)

Country Link
JP (1) JP2004331999A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152410A (ja) * 2004-12-01 2006-06-15 Hitachi Ltd 配管の熱処理方法および装置
JP2008195975A (ja) * 2007-02-08 2008-08-28 Hitachi-Ge Nuclear Energy Ltd 配管残留応力改善方法および高周波加熱装置
JP2014098198A (ja) * 2012-11-15 2014-05-29 Fuji Electronics Industry Co Ltd 誘導加熱コイル体
KR101624143B1 (ko) 2014-12-09 2016-05-25 한양대학교 에리카산학협력단 노화시험장치 및 노화시험방법
CN116377190A (zh) * 2023-03-10 2023-07-04 江苏凯乐金属科技有限公司 一种基于金属热处理加工用工件快速循环降温装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152410A (ja) * 2004-12-01 2006-06-15 Hitachi Ltd 配管の熱処理方法および装置
JP4491334B2 (ja) * 2004-12-01 2010-06-30 日立Geニュークリア・エナジー株式会社 配管の熱処理方法および装置
JP2008195975A (ja) * 2007-02-08 2008-08-28 Hitachi-Ge Nuclear Energy Ltd 配管残留応力改善方法および高周波加熱装置
JP2014098198A (ja) * 2012-11-15 2014-05-29 Fuji Electronics Industry Co Ltd 誘導加熱コイル体
KR101624143B1 (ko) 2014-12-09 2016-05-25 한양대학교 에리카산학협력단 노화시험장치 및 노화시험방법
CN116377190A (zh) * 2023-03-10 2023-07-04 江苏凯乐金属科技有限公司 一种基于金属热处理加工用工件快速循环降温装置
CN116377190B (zh) * 2023-03-10 2024-02-20 松森特殊金属(长沙)有限公司 一种基于金属热处理加工用工件快速循环降温装置

Similar Documents

Publication Publication Date Title
WO2021232618A1 (zh) 厚壁承压设备焊后局部感应热处理的加热均温方法
JP2882962B2 (ja) 高周波ボルトヒータ
EP1978112B1 (en) Systems and methods for providing localized heat treatment of gas turbine components
US4505763A (en) Heat-treating method of weld portion of piping system and heating coil for the heat treatment
US20060113010A1 (en) Heat treatment method and device for piping
JP2007063642A (ja) 残留応力改善方法と高周波誘導加熱用コイル
JP3649223B2 (ja) 配管系の熱処理方法および熱処理装置
JP2008134041A (ja) 流体加熱装置
JPS60255930A (ja) 枝付管の溶接部における残留応力改善のための加熱方法及び加熱装置
JP2009041885A (ja) 流体加熱装置
JP2004331999A (ja) 管の熱処理方法、及び熱処理装置
JP5205229B2 (ja) 多管式熱交換器の管取付け方法、及び、多管式熱交換器の管取付け装置
JP3746651B2 (ja) 溶接残留応力の低減方法とその装置
KR20180042538A (ko) 가동원전 배관의 현장(IN-Situ) 유도가열 열처리 장치
US6166359A (en) Induction heating apparatus and method for pipeline welding operations
CN111385931B (zh) 一种基于电磁感应的熔盐加热器
JP2008132521A (ja) 誘導加熱装置
JP2013527882A (ja) 原子炉の一次冷却システムの加圧器のためのヒータ・チューブの処理
JP3694365B2 (ja) 誘導加熱拡散接合方法
JP2005222781A (ja) 誘導加熱を用いた流動物加熱装置
JPS6364868B2 (ja)
CN219709546U (zh) 一种异型焊接接头的局部热处理装置
JPH09153392A (ja) 挿入型誘導加熱コイル
JP4187635B2 (ja) 高周波誘導加熱コイル
JPH0355790A (ja) 高周波加熱方法及びその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Effective date: 20060601

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060613

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904