WO2016024411A1 - 光学系、該光学系を備えた撮像装置、光学系の製造方法 - Google Patents

光学系、該光学系を備えた撮像装置、光学系の製造方法 Download PDF

Info

Publication number
WO2016024411A1
WO2016024411A1 PCT/JP2015/055013 JP2015055013W WO2016024411A1 WO 2016024411 A1 WO2016024411 A1 WO 2016024411A1 JP 2015055013 W JP2015055013 W JP 2015055013W WO 2016024411 A1 WO2016024411 A1 WO 2016024411A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
focal length
conditional expression
image
Prior art date
Application number
PCT/JP2015/055013
Other languages
English (en)
French (fr)
Inventor
陽子 小松原
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2016024411A1 publication Critical patent/WO2016024411A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an inner focus optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like, an imaging apparatus including the optical system, and a method for manufacturing the optical system.
  • the conventional inner focus optical system has a problem that focusing is performed by a plurality of lenses, which is disadvantageous in terms of speeding up of autofocus and cost.
  • a first lens having a negative refractive power in order from the object side along the optical axis, a first lens having a negative refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power, and the first lens
  • the third lens is an optical system that moves in the optical axis direction during focusing from an object at infinity to an object at a short distance.
  • an imaging apparatus provided with the above optical system is provided.
  • a first lens having a negative refractive power, a second lens having a negative refractive power, a third lens having a positive refractive power A method of manufacturing an optical system having a lens disposed on the image side of the third lens, wherein focusing from an object at infinity to a near object is performed by moving the third lens in the optical axis direction.
  • An optical system manufacturing method configured as described above was adopted.
  • FIG. 1 is a cross-sectional view showing the configuration of the optical system according to the first embodiment.
  • 2A and 2B are graphs showing various aberrations of the optical system according to the first example.
  • FIG. 2A shows when an object at infinity is in focus
  • FIG. 2B shows when an object at a short distance is in focus.
  • FIG. 3 is a cross-sectional view showing the configuration of the optical system according to the second embodiment.
  • 4A and 4B are graphs showing various aberrations of the optical system according to the second example.
  • FIG. 4A shows the time when an object at infinity is in focus
  • FIG. 4B shows the time when an object at short distance is in focus.
  • FIG. 5 is a cross-sectional view showing the configuration of the optical system according to the third example.
  • FIG. 6A and 6B are graphs showing various aberrations of the optical system according to the third example.
  • FIG. 6A shows the time when an object at infinity is in focus
  • FIG. 6B shows the time when an object at short distance is in focus.
  • FIG. 7 is a cross-sectional view showing the configuration of the optical system according to the fourth example.
  • 8A and 8B are graphs showing various aberrations of the optical system according to the fourth example.
  • FIG. 8A shows the time when an object at infinity is in focus
  • FIG. 8B shows the time when an object at short distance is in focus.
  • It is sectional drawing of the imaging device provided with the optical system of this application. It is a figure which shows the outline of the manufacturing method of the optical system of this application.
  • optical system an imaging apparatus, and a method for manufacturing the optical system according to the embodiment of the present application will be described.
  • the optical system according to the embodiment of the present application will be described.
  • the optical system according to the embodiment of the present application includes, in order from the object side along the optical axis, a first lens having a negative refractive power, a second lens having a negative refractive power, and a third lens having a positive refractive power. And a lens disposed on the image side of the third lens, and the third lens moves in the optical axis direction during focusing from an object at infinity to a near object.
  • the optical system according to the present embodiment realizes an inner focus method using only the third lens having a small number of lenses, that is, positive refractive power, by such a configuration.
  • high-speed focusing can be realized, and high imaging performance can be realized from an infinite object focusing state to a short-distance object focusing state.
  • the autofocus mechanism can be reduced in size, which is advantageous in terms of cost.
  • the optical system according to the present embodiment satisfies the following conditional expression (1).
  • (1) 0.01 ⁇ ( ⁇ Fln) / Fl3 ⁇ 1.00
  • Fln Composite focal length of the first lens and the second lens
  • Fl3 Focal length of the third lens
  • Conditional expression (1) defines a proper power arrangement of the first lens having negative refractive power, the second lens having negative refractive power, and the third lens having positive refractive power. It is.
  • optical systems in which three lenses of a negative lens, a negative lens, and a positive lens are arranged in order from the object side along the optical axis.
  • the optical system having such a configuration when focusing is performed with the third positive lens from the object side, the power of the two negative lenses on the object side and the power of the third positive lens are calculated. Due to the relationship, it has been difficult to ensure high optical performance from the infinite object focusing state to the short distance object focusing state.
  • the optical system according to the present embodiment satisfies the conditional expression (1), so that the first lens and the second lens having negative refractive power and the third lens having positive refractive power are appropriately Realizes the power arrangement.
  • the power of the first lens and the second lens becomes weak. That is, the power of the third lens having a positive refractive power is increased. As a result, the balance of aberration correction is lost, which is not preferable. In particular, it adversely affects field curvature and coma, which is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to 0.85.
  • the power of the first lens and the second lens is increased. That is, the power of the third lens having a positive refractive power is weakened. As a result, the balance of aberration correction is lost, which is not preferable. In particular, it adversely affects field curvature and coma, which is not preferable.
  • Conditional expression (2) is a conditional expression that prescribes an appropriate power arrangement between the third lens and all the lenses arranged on the image side of the third lens.
  • conditional expression (2) When the corresponding value of conditional expression (2) exceeds the upper limit value, the power of the third lens becomes strong. That is, the overall power of all the lenses arranged on the image side of the third lens is weakened. As a result, the balance of aberration correction is lost, which is not preferable. In particular, it adversely affects spherical aberration and coma aberration, which is not preferable.
  • conditional expression (2) When the corresponding value of conditional expression (2) is below the lower limit, the power of the third lens is weakened. That is, the overall power of all the lenses arranged on the image side of the third lens is increased. As a result, the balance of aberration correction is lost, which is not preferable. In particular, the spherical aberration and the coma aberration are adversely affected. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.20.
  • the lens disposed adjacent to the image side of the third lens is an object side surface. Is preferably concave.
  • the first lens and the second lens include at least one aspheric surface.
  • the optical system according to the present embodiment satisfies the following conditional expression (3).
  • (3) 0.5 ⁇ Rl4 / Fl3 ⁇ 2.5
  • Rl4 radius of curvature of the object side surface of the lens arranged adjacent to the image side of the third lens
  • Fl3 focal length of the third lens
  • Conditional expression (3) is a conditional expression that defines an appropriate power arrangement between the object-side surface of the lens arranged adjacent to the image side of the third lens and the third lens.
  • conditional expression (3) If the corresponding value of conditional expression (3) exceeds the upper limit value, the power of the object side surface of the lens arranged adjacent to the image side of the third lens becomes too weak, and the coma aberration cannot be corrected. It is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (3) to 2.0.
  • conditional expression (3) When the corresponding value of conditional expression (3) is below the lower limit value, the power of the object side surface of the lens arranged adjacent to the image side of the third lens becomes too strong, and the coma aberration is overcorrected. This is not preferable. In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 1.0.
  • the imaging apparatus includes the optical system having the above-described configuration. Accordingly, it is possible to realize an imaging apparatus including an inner focus optical system that performs focusing with a small number of lenses and has high imaging performance.
  • the optical system manufacturing method includes, in order from the object side along the optical axis, a first lens having negative refractive power, a second lens having negative refractive power, and positive refraction.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an optical system OS1 according to the first example.
  • an optical system OS1 according to the present embodiment includes, in order from the object side along the optical axis, a negative meniscus lens L1 having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side.
  • a biconvex lens L3 a cemented lens of a biconcave lens L4 and a biconvex lens L5, an aperture stop S, a cemented lens of a biconcave lens L6 and a biconvex lens L7, a biconvex lens L8, and a convex surface facing the image side Further, it is composed of a positive meniscus lens L9 and a filter group FL.
  • the filter group FL is composed of a low-pass filter, an infrared cut filter, and the like, and is arranged in the vicinity of the image plane I.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • the aperture stop S is disposed between the cemented lens of the biconcave lens L4 and the biconvex lens L5 and the cemented lens of the biconcave lens L6 and the biconvex lens L7.
  • the optical system OS1 performs focusing from the infinite object focusing state to the short distance object focusing state by moving the biconvex lens L3 to the image side.
  • Table 1 below lists specification values of the optical system OS1 according to the first example of the present embodiment.
  • m is the order of the lens surfaces counted from the object side
  • r is the radius of curvature of the lens surfaces
  • d is the distance between the lens surfaces
  • OP indicates the object plane
  • S indicates the aperture stop S
  • I indicates the image plane.
  • the lens surface is an aspheric surface, the surface number is marked with * and the paraxial radius of curvature is shown in the column of the radius of curvature r.
  • [Aspherical data] shows the conical coefficient and aspherical coefficient when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
  • X (y) (y 2 / r) / [1+ ⁇ 1- ⁇ (y 2 / r 2 ) ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10
  • the height in the direction perpendicular to the optical axis is y
  • the amount of displacement in the optical axis direction at the height y is X (y)
  • the paraxial radius of curvature which is the radius of curvature of the reference sphere, is r
  • the cone coefficient is ⁇
  • the secondary aspherical coefficient A2 is 0 and is not shown.
  • “E ⁇ n” indicates “ ⁇ 10 ⁇ n ”, for example, “1.234E-05” indicates “1.234 ⁇ 10 ⁇ 5
  • f is the focal length
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is “°”)
  • Y is the image height
  • air equivalent BF is the air equivalent back focus
  • TL is the total length of the optical system. Yes.
  • the air conversion BF is a value when the distance on the optical axis from the lens surface closest to the image side to the image plane I is measured in a state where an optical block such as a filter having no refractive power is removed from the optical path.
  • the total length TL of the optical system is the distance on the optical axis from the lens surface closest to the object side to the image plane I.
  • di (i is an integer) indicates a surface interval between the i-th surface and the (i + 1) -th surface. Further, ⁇ represents the photographing magnification, and d0 represents the distance from the object to the lens surface closest to the object.
  • mm is generally used as the unit of the focal length f, the radius of curvature r, and other lengths described in Table 1.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIGS. 2A and 2B are graphs showing various aberrations of the optical system OS1 according to the first example.
  • FIG. 2A shows when an object at infinity is in focus
  • FIG. 2B shows when an object at short distance is in focus.
  • FNO indicates an F number
  • A indicates a half angle of view (unit: “°”)
  • NA indicates a numerical aperture
  • HO indicates an object height.
  • the spherical aberration diagram shows the F-number value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height or object height
  • the coma diagram shows each half field angle or each object.
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • the solid line represents the meridional coma aberration with respect to the d-line and the g-line.
  • the same symbols are used, and the following description is omitted.
  • the optical system OS1 according to the first example has excellent optical performance with various aberrations corrected well.
  • FIG. 3 is a cross-sectional view showing the configuration of the optical system OS2 according to the second embodiment.
  • the optical system OS2 according to the present embodiment includes, in order from the object side along the optical axis, a negative meniscus lens L1 having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side.
  • a positive meniscus lens L3 having a convex surface facing the object side, a cemented lens of a biconcave lens L4 and a biconvex lens L5, an aperture stop S, a cemented lens of a biconcave lens L6 and a biconvex lens L7, and a biconvex lens L8 And a filter group FL.
  • the filter group FL is composed of a low-pass filter, an infrared cut filter, and the like, and is arranged in the vicinity of the image plane I.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • the aperture stop S is disposed between the cemented lens of the biconcave lens L4 and the biconvex lens L5 and the cemented lens of the biconcave lens L6 and the biconvex lens L7.
  • the optical system OS2 performs focusing from the infinite object focusing state to the short distance object focusing state by moving the positive meniscus lens L3 to the image side.
  • Table 2 below lists specification values of the optical system OS2 according to the second example of the present embodiment.
  • FIGS. 4A and 4B are graphs showing various aberrations of the optical system OS2 according to the second example.
  • FIG. 4A shows when an object at infinity is in focus
  • FIG. 4B shows when an object at short distance is in focus.
  • the optical system OS2 according to the second example has excellent optical performance with various aberrations corrected satisfactorily.
  • FIG. 5 is a cross-sectional view showing the configuration of the optical system OS3 according to the third embodiment.
  • the optical system OS3 according to the present embodiment includes, in order from the object side along the optical axis, a negative meniscus lens L1 having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side.
  • a positive meniscus lens L3 having a convex surface facing the object side
  • a biconcave lens L4 a biconvex lens L5, an aperture stop S
  • a cemented lens of a biconcave lens L6 and a biconvex lens L7 a biconvex lens L8, and an image It is composed of a positive meniscus lens L9 having a convex surface on the side and a filter group FL.
  • the filter group FL is composed of a low-pass filter, an infrared cut filter, and the like, and is arranged in the vicinity of the image plane I.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • the aperture stop S is disposed between the biconvex lens L5 and the cemented lens of the biconcave lens L6 and the biconvex lens L7, and is used for focusing from an infinite object focusing state to a short distance object focusing state. It is fixed with respect to I.
  • the optical system OS3 performs focusing from the infinite object focusing state to the short distance object focusing state by moving the positive meniscus lens L3 to the image side.
  • Table 3 below lists specification values of the optical system OS3 according to the third example of the present embodiment.
  • FIGS. 6A and 6B are graphs showing various aberrations of the optical system OS3 according to the third example.
  • FIG. 6A shows the time when the object at infinity is in focus
  • FIG. 6B shows the time when the object at short distance is in focus.
  • the optical system OS3 according to the third example has excellent optical performance with various aberrations corrected well.
  • FIG. 7 is a cross-sectional view showing a configuration of an optical system OS4 according to the fourth example.
  • the optical system OS4 according to the present embodiment includes, in order from the object side along the optical axis, a negative meniscus lens L1 having a convex surface facing the object side, and a negative meniscus lens having a convex surface facing the object side.
  • a biconvex lens L3 a cemented lens of a biconcave lens L4 and a biconvex lens L5, an aperture stop S, a biconcave lens L6, a biconvex lens L7, a biconvex lens L8, and a positive meniscus with a convex surface facing the image side It consists of a lens L9 and a filter group FL.
  • the filter group FL is composed of a low-pass filter, an infrared cut filter, and the like, and is arranged in the vicinity of the image plane I.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • the aperture stop S is disposed between the cemented lens of the biconcave lens L4 and the biconvex lens L5 and the biconcave lens L6, and is used for focusing from an infinite object focusing state to a short distance object focusing state. It is fixed with respect to I.
  • the optical system OS4 performs focusing from an infinite object focusing state to a short-distance object focusing state by moving the biconvex lens L3 to the image side.
  • Table 4 below lists specification values of the optical system OS4 according to the fourth example of the present embodiment.
  • FIGS. 8A and 8B are graphs showing various aberrations of the optical system OS4 according to the fourth example.
  • FIG. 8A shows the time when the object at infinity is in focus
  • FIG. 8B shows the time when the object at short distance is in focus.
  • the optical system OS4 according to the fourth example has excellent aberrations and excellent optical performance.
  • each of the above embodiments it is possible to realize an inner focus type optical system that performs focusing with a small number of lenses and has high imaging performance.
  • each said Example has shown one specific example of this embodiment, and this embodiment is not limited to these. The following contents can be appropriately adopted as long as the optical performance of the optical system of the present embodiment is not impaired.
  • either the entire lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or in an in-plane including the optical axis.
  • a configuration in which image blur caused by camera shake or the like is corrected by rotational movement, that is, swinging in a direction can be achieved.
  • it is preferable that at least a part of the lens group disposed on the image side of the focus lens is an anti-vibration lens group.
  • the lens group refers to a portion having at least one lens separated by an air interval.
  • the lens surface of the lens constituting the optical system according to the present embodiment may be a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop is disposed in the vicinity of the center of the entire system.
  • the role may be substituted by a lens frame without providing a member as the aperture stop.
  • an antireflection film having a high transmittance in a wide wavelength range may be provided on the lens surface of the lens constituting the optical system according to the present embodiment. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
  • FIG. 9 is a diagram illustrating a configuration of a camera including the optical system according to the embodiment.
  • the camera 1 is a so-called mirrorless camera of an interchangeable lens provided with the optical system OS ⁇ b> 1 according to the first embodiment as the photographing lens 2.
  • the photographing lens 2 In the camera 1, light from an object (not shown) (not shown) is collected by the photographing lens 2 and forms a subject image on the imaging surface of the imaging unit 3 via an optical low-pass filter (not shown).
  • the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject.
  • This image is displayed on the electronic viewfinder 4 provided in the camera 1.
  • the photographer can observe the subject through the electronic viewfinder 4.
  • an image photoelectrically converted by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
  • the optical system OS1 according to the first embodiment mounted on the camera 1 as the photographing lens 2 is an inner focus optical system that performs focusing with a small number of lenses and has high imaging performance. Therefore, the camera 1 can realize an imaging device that includes an optical system that performs focusing with a small number of lenses and has high imaging performance.
  • any one of the optical systems OS2, OS3, and OS4 according to the second, third, and fourth embodiments is mounted as the photographing lens 2 is the same as the camera 1 described above. There is an effect.
  • the photographic lens according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror in the camera body and observes a subject with a finder optical system. Even in this case, the same effect as the camera 1 can be obtained.
  • FIG. 10 is a diagram illustrating an outline of a method of manufacturing an optical system according to the embodiment.
  • the optical system manufacturing method includes, in order from the object side along the optical axis, a first lens having negative refractive power, a second lens having negative refractive power, and a first lens having positive refractive power.
  • This is a method for manufacturing an optical system having three lenses and a lens disposed on the image side of the third lens, and includes the following step S1 as shown in FIG. Step S1: The third lens is moved in the optical axis direction to perform focusing from an infinitely distant object to a close object.
  • an optical system of an inner focus system that performs focusing with a small number of lenses and has high imaging performance.

Abstract

 光学系は、光軸に沿って物体側から順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、第3レンズよりも像側に配置されたレンズとを有し、無限遠物体から近距離物体へのフォーカシングの際、第3レンズは光軸方向へ移動する。これにより、光学系は少ない数のレンズでフォーカシングを行い、且つ高い結像性能を有することができる。

Description

光学系、該光学系を備えた撮像装置、光学系の製造方法
 本発明は、写真用カメラや電子スチルカメラ、ビデオカメラ等に適したインナーフォーカス方式の光学系と、該光学系を備えた撮像装置、および該光学系の製造方法に関する。
 従来、写真用カメラやビデオカメラ等で、インナーフォーカス方式の光学系が提案されている。例えば、特開2013-125213号公報を参照。
特開2013-125213号公報
 しかしながら、従来のインナーフォーカス方式の光学系は、フォーカシングを複数のレンズで行っており、オートフォーカスの高速化やコストの面で不利であるという問題がある。
 本発明においては、光軸に沿って物体側から順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、前記第3レンズよりも像側に配置されたレンズとを有し、無限遠物体から近距離物体へのフォーカシングの際、前記第3レンズは光軸方向へ移動する光学系とした。
 また、本発明においては、上記光学系を備えた撮像装置とした。
 また、本発明においては、光軸に沿って物体側から順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、前記第3レンズよりも像側に配置されたレンズとを有する光学系の製造方法であって、前記第3レンズを光軸方向へ移動させることによって無限遠物体から近距離物体へのフォーカシングを行うように構成する光学系の製造方法とした。
図1は第1実施例に係る光学系の構成を示す断面図である。 図2A、図2Bは第1実施例に係る光学系の諸収差図であり、図2Aは無限遠物体合焦時を示し、図2Bは近距離物体合焦時を示している。 図3は第2実施例に係る光学系の構成を示す断面図である。 図4A、図4Bは第2実施例に係る光学系の諸収差図であり、図4Aは無限遠物体合焦時を示し、図4Bは近距離物体合焦時を示している。 図5は第3実施例に係る光学系の構成を示す断面図である。 図6A、図6Bは第3実施例に係る光学系の諸収差図であり、図6Aは無限遠物体合焦時を示し、図6Bは近距離物体合焦時を示している。 図7は第4実施例に係る光学系の構成を示す断面図である。 図8A、図8Bは第4実施例に係る光学系の諸収差図であり、図8Aは無限遠物体合焦時を示し、図8Bは近距離物体合焦時を示している。 本願の光学系を備えた撮像装置の断面図である。 本願の光学系の製造方法の概略を示す図である。
 以下、本願の実施形態に係る光学系、撮像装置、および光学系の製造方法について説明する。まず、本願の実施形態に係る光学系から説明する。
 本願の実施形態に係る光学系は、光軸に沿って物体側から順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、前記第3レンズよりも像側に配置されたレンズとを有し、無限遠物体から近距離物体へのフォーカシングの際、前記第3レンズは光軸方向へ移動する。
 本実施形態に係る光学系は、このような構成により、少ないレンズ枚数、すなわち正の屈折力を有する前記第3レンズのみでのインナーフォーカス方式を実現している。その結果、フォーカシングの高速化を実現し、無限遠物体合焦状態から近距離物体合焦状態まで高い結像性能を実現することができる。さらに、オートフォーカス機構を小型化することができるので、コスト面で有利である。
 また、本実施形態に係る光学系は、次の条件式(1)を満足することが好ましい。
 (1)0.01 < (-Fln)/Fl3 < 1.00
 ただし、
 Fln:前記第1レンズと前記第2レンズとの合成焦点距離
 Fl3:前記第3レンズの焦点距離
 条件式(1)は、負の屈折力を有する前記第1レンズと負の屈折力を有する前記第2レンズと正の屈折力を有する前記第3レンズとの適切なパワー配置を規定する条件式である。
 従来、光軸に沿って物体側から順に、負レンズ、負レンズ、正レンズの3枚のレンズが配置された光学系は多くあった。しかし、このような構成を有する光学系において、物体側から3枚目の正レンズでフォーカシングを行おうとすると、物体側の2枚の負レンズのパワーと該3枚目の正レンズのパワーとの関係により、無限遠物体合焦状態から近距離物体合焦状態まで高い光学性能を確保することが困難であった。本実施形態に係る光学系は、条件式(1)を満足することにより、負の屈折力を有する前記第1レンズおよび前記第2レンズと、正の屈折力を有する前記第3レンズとの適切なパワー配置を実現している。
 条件式(1)の対応値が上限値を上回ると、前記第1レンズおよび前記第2レンズのパワーが弱くなる。すなわち正の屈折力を有する前記第3レンズのパワーが強くなる。その結果、収差補正のバランスが崩れてしまい、好ましくない。特に、像面湾曲およびコマ収差に悪影響を及ぼしてしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の上限値を0.85にすることが好ましい。
 条件式(1)の対応値が下限値を下回ると、前記第1レンズおよび前記第2レンズのパワーが強くなる。すなわち正の屈折力を有する前記第3レンズのパワーが弱くなる。その結果、収差補正のバランスが崩れてしまい、好ましくない。特に、像面湾曲およびコマ収差に悪影響を及ぼしてしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(1)の下限値を0.30にすることが好ましい。また、本実施形態の効果をさらに確実にするために、条件式(1)の下限値を0.60にすることが好ましい。
 また、本実施形態に係る光学系は、前記第3レンズよりも像側に配置された全てのレンズの合成焦点距離をFbとしたとき、次の条件式(2)を満足することが好ましい。
 (2)1.0 < Fl3/Fb < 10.0
 ただし、
 Fl3:前記第3レンズの焦点距離
 条件式(2)は、前記第3レンズと、該第3レンズよりも像側に配置された全てのレンズとの適切なパワー配置を規定する条件式である。条件式(2)を満足することにより、前記第3レンズによるインナーフォーカス方式を実現し、かつ無限遠物体合焦状態から近距離物体合焦状態までの収差変動、特に球面収差、像面湾曲、コマ収差を良好に補正することができる。
 条件式(2)の対応値が上限値を上回ると、前記第3レンズのパワーが強くなる。すなわち該第3レンズよりも像側に配置された全てのレンズの全体のパワーが弱くなる。その結果、収差補正のバランスが崩れてしまい、好ましくない。特に、球面収差およびコマ収差に悪影響を及ぼしてしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の上限値を6.00にすることが好ましい。また、本実施形態の効果をさらに確実にするために、条件式(2)の上限値を4.00にすることが好ましい。
 条件式(2)の対応値が下限値を下回ると、前記第3レンズのパワーが弱くなる。すなわち該第3レンズよりも像側に配置された全てのレンズの全体のパワーが強くなる。その結果、収差補正のバランスが崩れてしまい、好ましくない。特に、球面収差およびコマ収差に悪影響を及ぼしてしまい好ましくない。なお、本実施形態の効果を確実にするために、条件式(2)の下限値を1.20にすることが好ましい。
 また、本実施形態に係る光学系は、前記第3レンズの像側に配置された前記全てのレンズのうち、前記第3レンズの像側に隣接して配置されたレンズは、物体側の面が凹面であることが好ましい。
 このような構成とすることにより、無限遠物体合焦状態から近距離物体合焦状態までの収差変動、特に下光線コマ収差および像面湾曲を良好に補正することができる。
 また、本実施形態に係る光学系は、前記第1レンズと前記第2レンズとは、少なくとも1面の非球面を含むことが好ましい。
 このような構成とすることにより、像面湾曲を良好に補正することができる。
 また、本実施形態に係る光学系は、次の条件式(3)を満足することが好ましい。
 (3)0.5 < -Rl4/Fl3 < 2.5
 ただし、
 Rl4:前記第3レンズの像側に隣接して配置されたレンズの物体側の面の曲率半径
 Fl3:前記第3レンズの焦点距離
 条件式(3)は、前記第3レンズの像側に隣接して配置されたレンズの物体側の面と、前記第3レンズとの適切なパワー配置を規定する条件式である。条件式(3)を満足することにより、高い結像性能を有する光学系を実現することができる。特に、コマ収差について、前記第3レンズと、該第3レンズの像側に隣接して配置されたレンズとが互いに逆方向の収差を発生させ、打消し合うことにより、良好に補正することができる。
 条件式(3)の対応値が上限値を上回ると、前記第3レンズの像側に隣接して配置されたレンズの物体側の面のパワーが弱くなりすぎて、コマ収差を補正しきれなくなり、好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の上限値を2.0にすることが好ましい。
 条件式(3)の対応値が下限値を下回ると、前記第3レンズの像側に隣接して配置されたレンズの物体側の面のパワーが強くなりすぎて、コマ収差が補正過剰になってしまい、好ましくない。なお、本実施形態の効果を確実にするために、条件式(3)の下限値を1.0にすることが好ましい。
 また、本願の実施形態に係る撮像装置は、上述した構成の光学系を備えている。これにより、少ない数のレンズでフォーカシングを行い、且つ高い結像性能を有するインナーフォーカス方式の光学系を備えた撮像装置を実現することができる。
 また、本願の実施形態に係る光学系の製造方法は、光軸に沿って物体側から順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、前記第3レンズよりも像側に配置されたレンズとを有する光学系の製造方法であって、前記第3レンズを光軸方向へ移動させることによって無限遠物体から近距離物体へのフォーカシングを行うように構成する。
 斯かる光学系の製造方法により、少ない数のレンズでフォーカシングを行い、且つ高い結像性能を有するインナーフォーカス方式の光学系を製造することができる。
(数値実施例)
 以下、本願の実施形態の数値実施例に係る光学系を添付図面に基づいて説明する。
(第1実施例)
 図1は、第1実施例に係る光学系OS1の構成を示す断面図である。
 図1に示すように、本実施例に係る光学系OS1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸レンズL3と、両凹レンズL4と両凸レンズL5との接合レンズと、開口絞りSと、両凹レンズL6と両凸レンズL7との接合レンズと、両凸レンズL8と、像側に凸面を向けた正メニスカスレンズL9と、フィルタ群FLとから構成されている。
 フィルタ群FLは、ローパスフィルタや赤外カットフィルタ等から構成され、像面Iの近傍に配置されている。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。また、開口絞りSは、両凹レンズL4と両凸レンズL5との接合レンズと、両凹レンズL6と両凸レンズL7との接合レンズとの間に配置され、無限遠物体合焦状態から近距離物体合焦状態へのフォーカシングに際して、像面Iに対して固定である。
 本実施例に係る光学系OS1は、両凸レンズL3を像側に移動することにより、無限遠物体合焦状態から近距離物体合焦状態へのフォーカシングを行っている。
 以下の表1に、本実施形態の第1実施例に係る光学系OS1の諸元値を掲げる。
 表1中の[面データ]において、mは物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、Sは開口絞りS、Iは像面をそれぞれ示している。なお、曲率半径r=∞は平面を示し、空気の屈折率d=1.00000の記載は省略している。また、レンズ面が非球面である場合には面番号に*印を付して曲率半径rの欄には近軸曲率半径を示している。
 [非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の円錐係数と非球面係数を示す。
 X(y)=(y2/r)/[1+{1-κ(y2/r2)}1/2]+A4y4+A6y6+A8y8+A10y10
 ここで、光軸に垂直な方向の高さをy、高さyにおける光軸方向の変位量をX(y)、基準球面の曲率半径である近軸曲率半径をr、円錐係数をκ、n次の非球面係数をAnとする。2次の非球面係数A2は0であり、記載を省略している。また、「E-n」は「×10-n」を示し、例えば、「1.234E-05」は、「1.234×10-5」を示す。
 [各種データ]において、fは焦点距離、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、空気換算BFは空気換算バックフォーカス、TLは光学系全長を示している。なお、これらの値は無限遠物体合焦時のものである。ここで、空気換算BFは最も像側のレンズ面から像面Iまでの光軸上の距離を、屈折力のないフィルタ等の光学ブロックを光路中から除去した状態で測ったときの値であり、光学系全長TLは最も物体側のレンズ面から像面Iまでの光軸上の距離である。
 [可変間隔データ]において、di(iは整数)は第i面と第(i+1)面との面間隔をそれぞれ示す。また、βは撮影倍率、d0は物体から最も物体側のレンズ面までの距離をそれぞれ示す。
 [条件式対応値]には、各条件式の対応値をそれぞれ示す。
 ここで、表1に記載されている焦点距離fや曲率半径r、およびその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大または比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
 (表1)第1実施例
 [面データ]
     m          r           d        nd        νd
  OP          ∞
      1)        101.2441     1.0000     1.589130     61.22
      2)         39.1364     1.2000
      3)        311.1684     1.0000     1.589130     61.25
    *4)          8.7351     d4
      5)         16.0653     3.2066     1.804400     39.61
      6)       -223.4510     d6
      7)        -19.4983     3.5070     1.517420     52.20
      8)         10.6341     3.6578     1.806100     40.97
      9)        -31.8028     2.0000
     10) (S)     ∞         2.4516
     11)         -6.4201     1.2486     1.846660     23.80
     12)         21.9419     2.0714     1.801387     45.45
   *13)        -12.7997     0.1000
     14)        419.3453     2.8863     1.804000     46.60
     15)        -10.8000     0.1000
     16)        -15.8017     2.0193     1.744000     44.80
     17)        -10.5061    10.4920
     18)          0.0000     0.5000     1.516800     63.88
     19)          0.0000     1.1100
     20)          0.0000     1.5900     1.516800     63.88
     21)          0.0000     0.3000
     22)          0.0000     0.7000     1.516800     63.88
     23)          0.0000     0.7000
   I           ∞
 
 [非球面データ]
  m:4
    κ  = 0.0725
    A4 = 3.28678E-06
    A6 = 1.87095E-07
    A8 =-1.22411E-09
    A10= 0.00000E+00
 
  m:13
    κ  =-9.0000
    A4 =-2.23534E-04
    A6 = 1.50254E-05
    A8 =-1.42033E-07
    A10= 0.00000E+00
 
 [各種データ]
      f        9.14
    FNO      1.82
     2ω      83.72
      Y        7.12
 空気換算BF  14.44
     TL      47.00
 
 [可変間隔データ]
      無限遠合焦  近距離合焦
 f又はβ     9.14         -0.07830
   d 0        ∞         102.9999
   d 4       1.70000       3.23264
   d 6       3.45902       1.92638
 
 [各条件式対応値]
 (1)(-Fln)/Fl3=0.70644
 (2)Fl3/Fb=1.63136
 (3)-Rl4/Fl3=1.04
 
 図2A、図2Bは、第1実施例に係る光学系OS1の諸収差図であり、図2Aは無限遠物体合焦時を示し、図2Bは近距離物体合焦時を示している。
 各収差図において、FNOはFナンバーを、Aは半画角(単位:「°」)を、NAは開口数を、HOは物体高をそれぞれ示している。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高または物体高の最大値をそれぞれ示し、コマ収差図では各半画角または各物体高の値を示す。またdはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。また、非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。また、コマ収差図において、実線はd線およびg線に対するメリディオナルコマ収差を表している。なお、以降の実施例においても同様の記号を使用し、以降の説明を省略する。
 各収差図より第1実施例に係る光学系OS1は、諸収差が良好に補正され、優れた光学性能を有していることがわかる。
 
 (第2実施例)
 図3は、第2実施例に係る光学系OS2の構成を示す断面図である。
 図3に示すように、本実施例に係る光学系OS2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、両凹レンズL4と両凸レンズL5との接合レンズと、開口絞りSと、両凹レンズL6と両凸レンズL7との接合レンズと、両凸レンズL8と、フィルタ群FLとから構成されている。
 フィルタ群FLは、ローパスフィルタや赤外カットフィルタ等から構成され、像面Iの近傍に配置されている。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。また、開口絞りSは、両凹レンズL4と両凸レンズL5との接合レンズと、両凹レンズL6と両凸レンズL7との接合レンズとの間に配置され、無限遠物体合焦状態から近距離物体合焦状態へのフォーカシングに際して、像面Iに対して固定である。
 本実施例に係る光学系OS2は、正メニスカスレンズL3を像側に移動することにより、無限遠物体合焦状態から近距離物体合焦状態へのフォーカシングを行っている。
 以下の表2に、本実施形態の第2実施例に係る光学系OS2の諸元値を掲げる。
 (表2)第2実施例
 [面データ]
     m          r           d        nd        νd
  OP          ∞
      1)         88.5209     1.0000     1.589130     61.22
      2)         14.8693     1.2000
      3)         22.3119     1.0000     1.589130     61.25
    *4)          9.4389     d4
      5)         15.2033     2.8846     1.804400     39.61
      6)        148.4190     d6
      7)        -19.2041     4.8416     1.517420     52.20
      8)          9.5688     1.9319     1.806100     40.97
      9)        -32.1367     2.0000
     10) (S)     ∞         2.3913
     11)         -6.1168     1.0000     1.846660     23.80
     12)         29.9021     1.9924     1.801387     45.45
   *13)        -11.0889     0.1000
     14)        239.7756     3.7697     1.788000     47.35
     15)         -8.6763    10.5877
     16)          0.0000     0.5000     1.516800     63.88
     17)          0.0000     1.1100
     18)          0.0000     1.5900     1.516800     63.88
     19)          0.0000     0.3000
     20)          0.0000     0.7000     1.516800     63.88
     21)          0.0000     0.7000
   I           ∞
 
 [非球面データ]
  m:4
    κ  = 0.0937
    A4 = 9.74742E-06
    A6 = 3.59466E-07
    A8 =-3.80516E-09
    A10= 0.00000E+00
 
  m:13
    κ  =-9.0000
    A4 =-4.99749E-04
    A6 = 2.63237E-05
    A8 =-2.53614E-07
    A10= 0.00000E+00
 
 [各種データ]
      f        9.14
    FNO      1.85
     2ω      83.72
      Y        7.11
 空気換算BF  14.54
     TL      45.00
 
 [可変間隔データ]
      無限遠合焦  近距離合焦
 f又はβ     9.14         -0.07688
   d 0        ∞         105.0031
   d 4       1.70000       3.45389
   d 6       3.69755       1.94367
 
 [各条件式対応値]
 (1)(-Fln)/Fl3=0.68214
 (2)Fl3/Fb=1.82270
 (3)-Rl4/Fl3=0.92
 
 図4A、図4Bは、第2実施例に係る光学系OS2の諸収差図であり、図4Aは無限遠物体合焦時を示し、図4Bは近距離物体合焦時を示している。
 各収差図より第2実施例に係る光学系OS2は、諸収差が良好に補正され、優れた光学性能を有していることがわかる。
 
(第3実施例)
 図5は、第3実施例に係る光学系OS3の構成を示す断面図である。
 図5に示すように、本実施例に係る光学系OS3は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、両凹レンズL4と、両凸レンズL5と、開口絞りSと、両凹レンズL6と両凸レンズL7との接合レンズと、両凸レンズL8と、像側に凸面を向けた正メニスカスレンズL9と、フィルタ群FLとから構成されている。
 フィルタ群FLは、ローパスフィルタや赤外カットフィルタ等から構成され、像面Iの近傍に配置されている。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。また、開口絞りSは、両凸レンズL5と、両凹レンズL6と両凸レンズL7との接合レンズとの間に配置され、無限遠物体合焦状態から近距離物体合焦状態へのフォーカシングに際して、像面Iに対して固定である。
 本実施例に係る光学系OS3は、正メニスカスレンズL3を像側に移動することにより、無限遠物体合焦状態から近距離物体合焦状態へのフォーカシングを行っている。
 以下の表3に、本実施形態の第3実施例に係る光学系OS3の諸元値を掲げる。
 (表3)第3実施例
 [面データ]
     m          r           d        nd        νd
  OP          ∞
      1)         53.5074     1.0000     1.589130     61.22
      2)         29.9726     1.2000
      3)         77.6401     1.0000     1.589130     61.25
    *4)          9.1881     d4
      5)         16.0459     2.9381     1.804400     39.61
      6)        124.0713     d6
      7)        -21.8117     1.0000     1.517420     52.20
      8)          9.1216     1.3202
      9)         10.1816     5.2751     1.806100     40.97
     10)        -31.8028     2.0000
     11) (S)     ∞         2.5000
     12)         -6.6169     1.0000     1.846660     23.80
     13)         20.2588     2.0050     1.801387     45.45
   *14)        -13.7433     0.2160
     15)        174.1895     2.8771     1.804000     46.60
     16)        -10.8821     0.1000
     17)        -17.8424     1.8649     1.744000     44.80
     18)        -11.4320     9.6420
     19)          0.0000     0.5000     1.516800     63.88
     20)          0.0000     1.1100
     21)          0.0000     1.5900     1.516800     63.88
     22)          0.0000     0.3000
     23)          0.0000     0.7000     1.516800     63.88
     24)          0.0000     1.1817
   I           ∞
 
 [非球面データ]
  m:4
    κ  = 0.1405
    A4 = 1.88312E-05
    A6 = 1.01527E-07
    A8 = 4.08243E-10
    A10= 0.00000E+00
 
  m:14
    κ  =-9.0000
    A4 =-1.09296E-04
    A6 = 1.18489E-05
    A8 =-1.03123E-07
    A10= 0.00000E+00
 
 [各種データ]
      f        9.14001
    FNO      1.84806
     2ω      95.44
      Y        7.13
 空気換算BF  14.07
     TL      47.00
 
 [可変間隔データ]
      無限遠合焦  近距離合焦
 f又はβ     9.14         -0.07749
   d 0        ∞         103.0005
   d 4       1.70000       3.77778
   d 6       3.97953       1.90176
 
 [各条件式対応値]
 (1)(-Fln)/Fl3=0.67692
 (2)Fl3/Fb=2.00614
 (3)-Rl4/Fl3=0.96
 
 図6A、図6Bは、第3実施例に係る光学系OS3の諸収差図であり、図6Aは無限遠物体合焦時を示し、図6Bは近距離物体合焦時を示している。
 各収差図より第3実施例に係る光学系OS3は、諸収差が良好に補正され、優れた光学性能を有していることがわかる。
 
 (第4実施例)
 図7は、第4実施例に係る光学系OS4の構成を示す断面図である。
 図7に示すように、本実施例に係る光学系OS4は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた負メニスカスレンズL2と、両凸レンズL3と、両凹レンズL4と両凸レンズL5との接合レンズと、開口絞りSと、両凹レンズL6と、両凸レンズL7と、両凸レンズL8と、像側に凸面を向けた正メニスカスレンズL9と、フィルタ群FLとから構成されている。
 フィルタ群FLは、ローパスフィルタや赤外カットフィルタ等から構成され、像面Iの近傍に配置されている。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。また、開口絞りSは、両凹レンズL4と両凸レンズL5との接合レンズと、両凹レンズL6との間に配置され、無限遠物体合焦状態から近距離物体合焦状態へのフォーカシングに際して、像面Iに対して固定である。
 本実施例に係る光学系OS4は、両凸レンズL3を像側に移動することにより、無限遠物体合焦状態から近距離物体合焦状態へのフォーカシングを行っている。
 以下の表4に、本実施形態の第4実施例に係る光学系OS4の諸元値を掲げる。
 (表4)第4実施例
 [面データ]
     m          r           d        nd        νd
  OP          ∞
      1)        180.0000     1.0000     1.589130     61.22
      2)          8.8203     3.0000
      3)         17.5000     2.0229     1.589130     61.25
    *4)         10.9560     d4
      5)         16.4302     3.2000     1.804400     39.61
      6)        -59.5811     d6
      7)        -16.5267     2.5949     1.517420     52.20
      8)         14.1480     4.8525     1.806100     40.97
      9)        -22.2235     1.5000
     10) (S)     ∞         2.0000
     11)         -6.8239     1.0000     1.846660     23.80
     12)         31.8940     0.1000
     13)         20.0186     2.3510     1.801387     45.45
     14)        -10.8864     0.7678
     15)        199.5156     1.5687     1.804000     46.60
   *16)        -19.1412     0.8111
     17)        -12.8878     1.5664     1.744000     44.80
     18)         -9.8937    10.3781
     19)          0.0000     0.5000     1.516800     63.88
     20)          0.0000     1.1100
     21)          0.0000     1.5900     1.516800     63.88
     22)          0.0000     0.3000
     23)          0.0000     0.7000     1.516800     63.88
     24)          0.0000     0.7000
   I           ∞
 
 [非球面データ]
  m:4
    κ  =-0.1428
    A4 =-7.70305E-05
    A6 =-4.83746E-07
    A8 =-1.75128E-08
    A10= 0.00000E+00
 
  m:16
    κ  =11.0000
    A4 = 4.30389E-04
    A6 = 1.61573E-06
    A8 = 2.39603E-07
    A10= 0.00000E+00
 
 [各種データ]
      f        9.13983
    FNO      1.85240
     2ω      83.73
      Y        7.13
 空気換算BF  14.33
     TL      48.00
 
 [可変間隔データ] 
      無限遠合焦  近距離合焦
 f又はβ     9.14         -0.07945
   d 0        ∞         102.0000
   d 4       1.70000       2.79940
   d 6       2.68646       1.58706
 
 [各条件式対応値]
 (1)(-Fln)/Fl3=0.68961
 (2)Fl3/Fb=1.26185
 (3)-Rl4/Fl3=1.01
 
 図8A、図8Bは、第4実施例に係る光学系OS4の諸収差図であり、図8Aは無限遠物体合焦時を示し、図8Bは近距離物体合焦時を示している。
 各収差図より第4実施例に係る光学系OS4は、諸収差が良好に補正され、優れた光学性能を有していることがわかる。上記各実施例によれば、少ない数のレンズでフォーカシングを行い、且つ高い結像性能を有するインナーフォーカス方式の光学系を実現することができる。なお、上記各実施例は本実施形態の一具体例を示しているものであり、本実施形態はこれらに限定されるものではない。以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本実施形態に係る光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動すなわち揺動させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることができる。特に、本実施形態に係る光学系では、フォーカスレンズよりも像側に配置されたレンズ群の少なくとも一部を防振レンズ群とすることが好ましい。なお、レンズ群とは、空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 また、本実施形態に係る光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
 また、本実施形態に係る光学系において、開口絞りは全系の中央近傍に配置されているが、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
 また、本実施形態に係る光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 次に、実施形態に係る光学系を備えた撮像装置について説明する。
 図9は、実施形態に係る光学系を備えたカメラの構成を示す図である。カメラ1は、図9に示すように、撮影レンズ2として上記第1実施例に係る光学系OS1を備えたレンズ交換式の所謂ミラーレスカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示の光学ローパスフィルタを介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられた電子ビューファインダ4に表示される。これにより撮影者は、電子ビューファインダ4を介して被写体を観察することができる。
 撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
 ここで、カメラ1に撮影レンズ2として搭載した上記第1実施例に係る光学系OS1は、少ない数のレンズでフォーカシングを行い、且つ高い結像性能を有するインナーフォーカス方式の光学系である。したがって、カメラ1は、少ない数のレンズでフォーカシングを行い、且つ高い結像性能を有する光学系を備えた撮像装置を実現することができる。
 なお、上記第2実施例、第3実施例、または第4実施例に係る光学系OS2、OS3、OS4の何れかを撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに上記各実施例に係る撮影レンズを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
 次に、実施形態に係る光学系の製造方法について説明する。図10は、実施形態に係る光学系の製造方法の概略を示す図である。
 実施形態に係る光学系の製造方法は、光軸に沿って物体側から順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、前記第3レンズよりも像側に配置されたレンズとを有する光学系の製造方法であって、図10に示すように、以下のステップS1を含むものである。
 ステップS1:第3レンズを光軸方向へ移動させることによって無限遠物体から近距離物体へのフォーカシングを行うように構成する。 
 斯かる実施形態に係る光学系の製造方法によれば、少ない数のレンズでフォーカシングを行い、且つ高い結像性能を有するインナーフォーカス方式の光学系を製造することができる。

Claims (12)

  1.  光軸に沿って物体側から順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、前記第3レンズよりも像側に配置されたレンズとを有し、
     無限遠物体から近距離物体へのフォーカシングの際、前記第3レンズは光軸方向へ移動する光学系。
  2.  次の条件式を満足する請求項1に記載の光学系。
      0.01 < (-Fln)/Fl3 < 1.00
     ただし、
     Fln:前記第1レンズと前記第2レンズとの合成焦点距離
     Fl3:前記第3レンズの焦点距離
  3.  前記第3レンズよりも像側に配置された全てのレンズの合成焦点距離をFbとしたとき、次の条件式を満足する請求項1に記載の光学系。
      1.0 < Fl3/Fb < 10.0
     ただし、
     Fl3:前記第3レンズの焦点距離
  4.  前記第3レンズの像側に配置された前記全てのレンズのうち、前記第3レンズの像側に隣接して配置されたレンズは、物体側の面が凹面である請求項1に記載の光学系。
  5.  前記第1レンズと前記第2レンズとは、少なくとも1面の非球面を含む請求項1に記載の光学系。
  6.  次の条件式を満足する請求項1に記載の光学系。
      0.5 < -Rl4/Fl3 <2.5
     ただし、
     Rl4:前記第3レンズの像側に隣接して配置されたレンズの物体側の面の曲率半径
     Fl3:前記第3レンズの焦点距離
  7.  無限遠物体から近距離物体へのフォーカシングの際、前記第1レンズと前記第2レンズとは像面に対して固定である請求項1に記載の光学系。
  8.  請求項1に記載の光学系を備えた撮像装置。
  9.  光軸に沿って物体側から順に、負の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズと、前記第3レンズよりも像側に配置されたレンズとを有する光学系の製造方法であって、
     前記第3レンズを光軸方向へ移動させることによって無限遠物体から近距離物体へのフォーカシングを行うように構成する光学系の製造方法。
  10.  次の条件式を満足するように構成する請求項9に記載の光学系の製造方法。
      0.01 < (-Fln)/Fl3 < 1.00
     ただし、
     Fln:前記第1レンズと前記第2レンズとの合成焦点距離
     Fl3:前記第3レンズの焦点距離
  11.  前記第3レンズよりも像側に配置された全てのレンズの合成焦点距離をFbとしたとき、次の条件式を満足するように構成する請求項9に記載の光学系の製造方法。
      1.0 < Fl3/Fb < 10.0
     ただし、
     Fl3:前記第3レンズの焦点距離
  12.  次の条件式を満足するように構成する請求項9に記載の光学系の製造方法。
      0.5 < -Rl4/Fl3 <2.5
     ただし、
     Rl4:前記第3レンズの像側に隣接して配置されたレンズの物体側の面の曲率半径
     Fl3:前記第3レンズの焦点距離
PCT/JP2015/055013 2014-08-11 2015-02-23 光学系、該光学系を備えた撮像装置、光学系の製造方法 WO2016024411A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-163773 2014-08-11
JP2014163773A JP2016038547A (ja) 2014-08-11 2014-08-11 光学系、該光学系を備えた撮像装置、光学系の製造方法

Publications (1)

Publication Number Publication Date
WO2016024411A1 true WO2016024411A1 (ja) 2016-02-18

Family

ID=55304046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055013 WO2016024411A1 (ja) 2014-08-11 2015-02-23 光学系、該光学系を備えた撮像装置、光学系の製造方法

Country Status (2)

Country Link
JP (1) JP2016038547A (ja)
WO (1) WO2016024411A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734344A4 (en) * 2017-12-28 2021-08-18 Nittoh Inc. LENS SYSTEM AND IMAGING DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868599B (zh) * 2018-03-27 2022-03-18 奥林巴斯株式会社 内窥镜用物镜光学系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468307A (ja) * 1990-07-09 1992-03-04 Chinon Ind Inc 超広角レンズ
JP2000352665A (ja) * 1999-06-09 2000-12-19 Olympus Optical Co Ltd 広角レンズ
JP2006337690A (ja) * 2005-06-01 2006-12-14 Olympus Imaging Corp 結像光学系
JP2009058904A (ja) * 2007-09-03 2009-03-19 Fujinon Corp 投影レンズおよびこれを用いた投写型表示装置
JP2009175603A (ja) * 2008-01-28 2009-08-06 Tamron Co Ltd 広角ズームレンズ
JP2010169885A (ja) * 2009-01-22 2010-08-05 Ricoh Co Ltd 結像レンズおよびカメラ装置および携帯情報端末装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468307A (ja) * 1990-07-09 1992-03-04 Chinon Ind Inc 超広角レンズ
JP2000352665A (ja) * 1999-06-09 2000-12-19 Olympus Optical Co Ltd 広角レンズ
JP2006337690A (ja) * 2005-06-01 2006-12-14 Olympus Imaging Corp 結像光学系
JP2009058904A (ja) * 2007-09-03 2009-03-19 Fujinon Corp 投影レンズおよびこれを用いた投写型表示装置
JP2009175603A (ja) * 2008-01-28 2009-08-06 Tamron Co Ltd 広角ズームレンズ
JP2010169885A (ja) * 2009-01-22 2010-08-05 Ricoh Co Ltd 結像レンズおよびカメラ装置および携帯情報端末装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3734344A4 (en) * 2017-12-28 2021-08-18 Nittoh Inc. LENS SYSTEM AND IMAGING DEVICE

Also Published As

Publication number Publication date
JP2016038547A (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
WO2016024412A1 (ja) 光学系、該光学系を備えた撮像装置、光学系の製造方法
JP5891912B2 (ja) 光学系、光学装置
JP6582535B2 (ja) 光学系、この光学系を有する撮像装置
JP5601586B2 (ja) 光学系および光学機器
JP6229259B2 (ja) 変倍光学系、光学装置
JP6127462B2 (ja) 変倍光学系、光学装置
JP5887995B2 (ja) レンズ系、光学機器、およびレンズ系の製造方法
JP2015152851A (ja) 光学系、該光学系を備えた撮像装置、光学系の製造方法
JP4624744B2 (ja) 広角ズームレンズ
JP2014021329A (ja) 光学系、光学装置、光学系の製造方法
JP5768522B2 (ja) 望遠レンズ、光学装置、および望遠レンズの製造方法
US10831005B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
WO2014077120A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6098176B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2016024411A1 (ja) 光学系、該光学系を備えた撮像装置、光学系の製造方法
JP6828252B2 (ja) 光学系および光学機器
JP6554759B2 (ja) 撮影レンズ、該撮影レンズを備えた光学機器、撮影レンズの製造方法
JP5682715B2 (ja) ズームレンズ系、及び、このズームレンズ系を備えた光学機器
JP5987543B2 (ja) ズームレンズ、光学装置
JP2015152614A (ja) 撮影レンズ、該撮影レンズを備えた光学機器、撮影レンズの製造方法
JP6451074B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP2015102733A (ja) リアコンバータレンズ、光学装置、リアコンバータレンズの製造方法
JP2015102734A (ja) リアコンバータレンズ、光学装置、リアコンバータレンズの製造方法
WO2015119252A1 (ja) 撮影レンズ、該撮影レンズを備えた光学機器、撮影レンズの製造方法
JP6311433B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831802

Country of ref document: EP

Kind code of ref document: A1