WO2016021685A1 - 線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体 - Google Patents

線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体 Download PDF

Info

Publication number
WO2016021685A1
WO2016021685A1 PCT/JP2015/072354 JP2015072354W WO2016021685A1 WO 2016021685 A1 WO2016021685 A1 WO 2016021685A1 JP 2015072354 W JP2015072354 W JP 2015072354W WO 2016021685 A1 WO2016021685 A1 WO 2016021685A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
deviation
line deviation
evaluation
cross
Prior art date
Application number
PCT/JP2015/072354
Other languages
English (en)
French (fr)
Inventor
雅寛 斎藤
吉田 亨
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016540738A priority Critical patent/JP6233522B2/ja
Priority to EP15829773.9A priority patent/EP3179207B1/en
Priority to KR1020177004329A priority patent/KR101920580B1/ko
Priority to CA2956811A priority patent/CA2956811C/en
Priority to BR112017002347A priority patent/BR112017002347A2/pt
Priority to US15/502,030 priority patent/US10508909B2/en
Priority to CN201580042215.2A priority patent/CN106662438B/zh
Priority to MX2017001574A priority patent/MX364096B/es
Priority to RU2017104996A priority patent/RU2665339C1/ru
Priority to ES15829773T priority patent/ES2763134T3/es
Publication of WO2016021685A1 publication Critical patent/WO2016021685A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/26Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/30Polynomial surface description
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9515Objects of complex shape, e.g. examined with use of a surface follower device

Definitions

  • the present invention relates to a line deviation evaluation method, a line deviation evaluation apparatus, a program, and a recording medium. More specifically, the present invention relates to a line deviation evaluation method, a line deviation evaluation apparatus, a program, and a recording medium for evaluating line deviation generated in a press-formed product in press forming for forming a character line.
  • This application claims priority based on Japanese Patent Application No. 2014-163022 for which it applied to Japan on August 8, 2014, and uses the content here.
  • the degree of line deviation is determined by sensory evaluation of workers on site. If the degree of line deviation is small, the product may be shipped even if line deviation occurs. The standard for line misalignment is not clarified, and there is a risk of product variations.
  • Patent Documents 1 and 2 disclose a technique for quantitatively evaluating surface distortion.
  • the techniques disclosed in Patent Documents 1 and 2 do not evaluate line deviation.
  • Patent Document 1 discloses a method of measuring the surface shape of a metal plate, calculating a Gaussian curvature using values on orthogonal lattice points, and evaluating surface distortion after filtering.
  • the Gaussian curvature of the surface shape of the metal plate captures the line shift phenomenon. Not suitable for.
  • Patent Document 2 a plurality of light and dark patterns moving on a measurement target surface are photographed to calculate a surface distortion distribution, the calculated inclination of the surface is approximated to a curve, and an inclination change amount (secondary differential coefficient) is calculated.
  • a technique is disclosed.
  • it is difficult to quantitatively evaluate the line deviation only with the curvature distribution.
  • the present invention has been made in view of the above points, and an object of the present invention is to make it possible to quantitatively evaluate line deviation generated in a press-formed product in press forming for forming a character line.
  • a line deviation evaluation method for evaluating a line deviation occurring in a press-formed product in press molding for forming a character line so as to cross the character line formed in the press-formed product.
  • a cross-sectional profile acquisition step for acquiring the measured cross-sectional profile of the press-formed product, a fourth-order differential coefficient calculation step for calculating a fourth-order derivative of the acquired cross-sectional profile, and a fourth-order derivative of the calculated cross-sectional profile
  • a line deviation evaluation step for evaluating the line deviation based on.
  • the fourth derivative of the cross-sectional profile on the side where the line deviation occurs across the character line in the line deviation evaluation step, the fourth derivative of the cross-sectional profile on the side where the line deviation occurs across the character line.
  • the peak value H and the deviation width L between the position where the peak value H appears and the R stop position of the design character line where the line deviation occurs are obtained, and the peak value H and the deviation width L are obtained. May be used to evaluate the line deviation.
  • the first line deviation evaluation parameter S is calculated by the following equation (1), and the calculated first deviation is calculated.
  • the line deviation may be evaluated using one line deviation evaluation parameter S.
  • S L ⁇
  • n is a predetermined weight index.
  • a curve radius R of the character line is further obtained, and the peak value H, the deviation width L, and the curve are calculated.
  • the line deviation may be evaluated using the radius R.
  • the second line deviation evaluation parameter SII is calculated by the following equation (2), and the calculated it may evaluate the line deviation by using the second line shift evaluation parameter S II.
  • S II L ⁇ (
  • the line deviation evaluation apparatus for evaluating the line deviation generated in the press-formed product in the press forming for forming the character line crosses the character line formed in the press-formed product.
  • a cross-sectional profile acquisition unit that acquires the measured cross-sectional profile of the press-formed product
  • a fourth-order differential coefficient calculation unit that calculates a fourth-order differential coefficient of the cross-sectional profile acquired by the cross-sectional profile acquisition unit
  • the fourth-order fine coefficient A line deviation evaluation parameter calculation unit that calculates a line deviation evaluation parameter for evaluating the line deviation based on the fourth derivative of the cross-sectional profile calculated by the coefficient calculation unit.
  • the line deviation evaluation apparatus further includes a line deviation evaluation unit that evaluates the line deviation based on the line deviation evaluation parameter calculated by the line deviation evaluation parameter calculation unit. May be.
  • the evaluation parameter calculation unit is configured to calculate 4 of the cross-sectional profile on the side where the line deviation occurs across the character line.
  • a peak value H of the second derivative, and a deviation width L between the position where the peak value H appears and the R stop position of the design character line where the line deviation occurs are obtained, and the peak value H and the deviation are obtained.
  • the line deviation evaluation parameter may be calculated using the width L.
  • the evaluation parameter calculation unit may calculate the line deviation evaluation parameter S by the following equation (1).
  • S L ⁇
  • n is a predetermined weight index.
  • the evaluation parameter calculation unit further obtains a curve radius R of the character line, and calculates the peak value H, the deviation width L, and the curve.
  • the line deviation evaluation parameter may be calculated using the radius R.
  • the line shift evaluation apparatus of the tenth aspect wherein the evaluation parameter calculation unit, by the following equation (2) may be calculated line deviations evaluation parameter S II.
  • S II L ⁇ (
  • the program for evaluating the line deviation generated in the press-formed product in the press forming for forming the character line is measured so as to cross the character line formed in the press-formed product.
  • the line deviation is evaluated on the basis of the process for obtaining the cross-sectional profile of the press-formed product obtained, the process for calculating the fourth-order derivative of the obtained cross-sectional profile, and the calculated fourth-order derivative of the cross-sectional profile.
  • the computer may further execute a process of evaluating the line deviation based on the calculated line deviation evaluation parameter.
  • the cross-sectional profile on the side where the line deviation occurs across the character line in the process of calculating the line deviation evaluation parameter, the cross-sectional profile on the side where the line deviation occurs across the character line.
  • the peak value H of the fourth derivative, and the deviation width L between the position where the peak value H appears and the R stop position of the design character line where the line deviation occurs are obtained, and the peak value H and the The line deviation evaluation parameter may be calculated using the deviation width L.
  • the line deviation evaluation parameter S may be calculated by the following equation (1) in the process of calculating the line deviation evaluation parameter.
  • S L ⁇
  • n is a predetermined weight index.
  • a curve radius R of the character line is further obtained, and the peak value H, the deviation width L, and the The line deviation evaluation parameter may be calculated using the curve radius R.
  • the computer-readable recording medium records any one program of the twelfth to seventeenth aspects.
  • the line deviation generated in the press-formed product can be quantitatively evaluated. As a result, stable product quality can be ensured.
  • FIG. 1 shows a functional configuration of a line deviation evaluation apparatus 100 according to an embodiment of the present invention.
  • the line misalignment evaluation apparatus 100 evaluates a line misalignment that occurs in a press-formed product in press forming for forming a character line.
  • FIG. 2A and FIG. 2B the outline
  • FIG. 2A is a diagram illustrating an example of molding (line shift) that impairs design properties.
  • FIG. 2B is a diagram illustrating an example of molding that does not impair the design properties.
  • the mold is composed of an upper mold 21a and a lower mold 21b, and a blank 20 is sandwiched between the upper mold 21a and the lower mold 21b and press-molded.
  • the blank 20 comes into contact with the design character line on the mold (initial hitting portion 22).
  • the initial contact portion 22 moves (shifts), and a cross-sectional shape different from the design design is generated outside the R stop 24 of the character line 23. This is a line shift phenomenon.
  • the initial contact portion 22 between the blank and the die shifts out of the R stop 24 of the character line 23 when the press molding is completed, thereby causing a line shift.
  • FIG. 2B when the initial contact portion 22 between the blank and the die is inside the R stop 24 of the design character line 23 when the press molding is completed, no line deviation occurs.
  • the line deviation evaluation device 100 includes a cross-sectional profile acquisition unit 101, a fourth derivative calculation unit 102, a line deviation evaluation parameter calculation unit 103, and a line deviation evaluation unit 104.
  • the line deviation evaluation unit 104 may not be provided.
  • the cross-sectional profile acquisition unit 101 acquires the cross-sectional profile of the press-formed product measured by the contour measuring instrument 200 so as to cross the character line formed in the press-formed product.
  • the cross-sectional profile acquisition unit 101 obtains the cross-sectional profile of the press-formed product from the surface data of the press-formed product measured by the contour measuring instrument 200 based on the cross-sectional contour data orthogonal to the character line. get.
  • “measured across the character line” means that the press formed product is along a straight line perpendicular to the character line (a straight line having an angle between 60 ° and 120 ° with respect to the character line). Means to make a measurement.
  • FIG. 3A is a diagram for explaining contour measurement of a press-formed product using a contour measuring instrument.
  • a contact-type three-dimensional shape measuring machine is used as an example of the contour measuring instrument 200.
  • the contour measuring device 200 is moved in a direction crossing the character line 201, that is, in a direction perpendicular to the character line 201 while the contour measuring device 200 is in contact with the press-formed product, and is pressed at a predetermined measurement length l. Measure the contour of the molded product. Line misalignment occurs on either side of the character line 201. In the example of FIG. 3A, it is assumed that a line shift occurs on the right side of the character line 201 in the drawing (downstream in the measurement direction by the contour measuring instrument). If necessary, the contour measuring device 200 may measure the contour a plurality of times while changing the position of one line-shifted portion in the extending direction of the character line 201.
  • the panel shape can be measured on the production line (inline). Further, either a non-contact measuring device or a contact measuring device may be used. However, when the degree of line deviation is very small, it is preferable to measure accurately with a contact-type measuring instrument. It is preferable that the line deviation is evaluated in a state where it is actually assembled in a product shipment state (finished product) after completion of press forming of the press-formed product.
  • the fourth-order derivative calculating unit 102 calculates the distribution of the curvature (second-order derivative of the cross-sectional profile) based on the cross-sectional profile acquired by the cross-sectional profile acquiring unit 101, and the second-order derivative of the curvature (fourth-order of the cross-sectional profile). (Derivative) is calculated. Considering that the rate of change in curvature and the second derivative of curvature (fourth derivative of the cross-sectional profile) have an effect on the sensory evaluation of line deviation, the fourth derivative of the cross-sectional profile is calculated.
  • FIG. 3B The relationship between curvature and line deviation will be described.
  • the upper part of FIG. 3B is a view of the state of line deviation seen from the side.
  • a gap is formed between the design shape 25 and the actual panel shape 26 outside the R stop 24 of the character line 23, and this is formed from the surface of the panel.
  • curvature inversion portion a curvature distribution opposite to the curvature distribution by the curve of the design character line occurs (curvature inversion portion). That is, the curvature is reversed in the region where the line deviation occurs.
  • light is shaded, giving the confirmation operator the impression that a line shift has occurred.
  • the way of returning the curvature distribution can be calculated from a quadratic function of the curvature distribution (fourth order function of the cross-sectional profile). Therefore, it is considered that the line deviation can be evaluated using the peak amount H of the second derivative of the curvature (fourth derivative of the cross-sectional profile).
  • FIG. 4 shows the curvature (second derivative of the cross-sectional profile) [mm ⁇ 1 ] calculated by the quaternary differential coefficient calculator 102, and the first derivative of curvature (third derivative of the cross-sectional profile) [mm ⁇ 2 ].
  • FIG. 4 is a diagram illustrating an example of a second derivative of curvature (a fourth derivative of a cross-sectional profile) [mm ⁇ 3 ].
  • the vertical axis shows the curvature (second derivative of the cross-sectional profile) [mm ⁇ 1 ], the first derivative of curvature (the third derivative of the cross-sectional profile) [mm ⁇ 2 ], and the second derivative of the curvature (cross section). 4th derivative of profile) [mm ⁇ 3 ] is shown.
  • the horizontal axis represents the position [mm] in the measuring direction of the contour (see FIG. 3A) by the contour measuring instrument.
  • a curvature peak 401 appears at a position 301 where the curve of the character line is the largest (position of the R vertex of the character line).
  • a peak 402 of the second derivative of curvature appears at the same position 301.
  • FIG. 5 is a diagram for explaining a method of calculating the curvature distribution.
  • the horizontal axis in FIG. 5 indicates the position in the measurement direction, and the vertical axis indicates the position in the height direction.
  • the line on the figure shows the cross-sectional profile.
  • the curvature calculation section X is composed of five predetermined sections x 1 , x 2 , x 3 , x 4 , x 5 ) and 3 points in the center (m 1, m 2, m 3 in FIG. 5) from the arc radius R (R 1, R 2, ⁇ ) , and calculates a curvature which is the inverse.
  • a predetermined section x starting from the curvature calculation section X is shifted by one (the curvature calculation section X is composed of five predetermined sections x 2 , x 3 , x 4 , x 5 , x 6 ).
  • the arc radius R is calculated from the three points (m 2 , m 3 , m 4 in FIG.
  • the curvature calculation section X is repeated while shifting the predetermined section x as the starting point of the curvature calculation section X by one.
  • the predetermined section x it is preferable to select the smallest section as a section that is as continuous as possible without including noise when calculating the distribution of curvature.
  • the line deviation evaluation parameter calculation unit 103 calculates a line deviation evaluation parameter based on the second derivative of curvature (fourth derivative of the cross-sectional profile) calculated by the fourth derivative calculation unit 102.
  • a peak 403 of the second derivative of curvature (fourth derivative of the sectional profile) appears on the side where the line deviation occurs across the character line. Therefore, the line deviation evaluation parameter calculation unit 103 calculates the value H [mm ⁇ 3 ] at the peak 403 of the second derivative of the curvature (fourth derivative of the cross-sectional profile) that appears on the side where the line deviation occurs, and the peak 403.
  • a deviation width L [mm] between the position 303 corresponding to the position R and the R stop position 302 of the design character line is obtained.
  • the line deviation evaluation parameter calculation unit 103 calculates a line deviation evaluation parameter based on the value H and the deviation width L.
  • the line deviation evaluation parameter S is calculated by the following equation (1).
  • Line deviation evaluation parameter S L ⁇
  • n is a predetermined weight index.
  • the reason why the deviation width L is used is that it is necessary to consider the movement amount of the initial contact point because the line deviation is a phenomenon of movement of the initial contact point of the mold as shown in FIG. 2A.
  • the distance from the position 303 corresponding to the peak 403 of the second-order derivative of curvature (fourth-order derivative of the cross-sectional profile) to the R-stop position 302 of the design character line is defined as the shift width L.
  • a similar index may be used.
  • the design when the size of the curve of the design character line does not change much between the panels to be compared, or when the distance from the R vertex position 301 of the character line to the R stop position 302 of the design character line is small, the design The distance from the position 301 of the R vertex of the character line to the position 303 corresponding to the peak 403 of the second derivative of curvature (fourth derivative of the cross-sectional profile) may be used as the deviation width L.
  • the reason for using the peak value H of the second derivative of curvature (fourth derivative of the cross-sectional profile) is that the peak of curvature and the peak of the second derivative of curvature (fourth derivative of the cross-sectional profile) are used. This is because the position is close and it is easy to catch the trend.
  • the sensory evaluation is based on the influence of the shadow (corresponding to the absolute value of H) due to the change in curvature on the side where the line deviation occurs and the influence of the size of the area where the line deviation occurs (corresponding to the deviation width L). receive.
  • the line deviation evaluation parameter S increases as the absolute value of H and L increase, and the calculation formula of the line deviation evaluation parameter S has a good form of addition or integration of the absolute value of H and L.
  • the relative difference for each sample is larger than the deviation width L, and the relative difference can be reduced by raising the power to n using the weighting coefficient n. That is, the equation for calculating the line deviation evaluation parameter S is as shown in equation (1).
  • an average of the line shift evaluation parameter S calculated each time is used as an index. It may be used.
  • the line deviation evaluation unit 104 evaluates the line deviation based on the line deviation evaluation parameter S calculated by the line deviation evaluation parameter calculation unit 103.
  • the evaluation of the line deviation may be performed by a person referring to the line deviation evaluation parameter, or may be automated by a computer or the like. *
  • the horizontal axis in FIG. 6 indicates the line deviation evaluation parameter S, and the line deviation evaluation parameter S increases as going to the right.
  • the vertical axis in FIG. 6 indicates the degree of sensory evaluation, and the degree of evaluation increases as it goes up. It means that the larger the evaluation degree is, the more noticeable line deviation is, and the smaller the evaluation degree is, the less noticeable line deviation is.
  • the correlation was confirmed that as the value of the line deviation evaluation parameter S increases, the degree of sensory evaluation increases.
  • line deviation evaluation parameter S includes the peak value H of the second derivative as the cross-section change factor and the deviation width L as the deviation width factor, both tendencies can be captured. .
  • the line deviation can be quantitatively evaluated by the line deviation evaluation parameter S. If the line deviation can be quantitatively evaluated, stable product quality can be secured.
  • the radius R of the curve of the character line on the surface of the panel may be used in addition to the value H and the deviation width L as a method of calculating the line deviation evaluation parameter.
  • the radius R of the curve of the character line of the panel may be compared, there may be a correlation between the radius R of the curve of the character line and the sensory evaluation of line deviation.
  • the sensory evaluation of the line deviation decreases as the radius R of the curve of the character line increases, that is, the line deviation tends to be inconspicuous. Therefore, it is preferable that the line deviation evaluation parameter tends to decrease as the radius R of the curve of the character line increases.
  • the calculation formula for the line deviation evaluation parameter is preferably in the form of R subtraction or division.
  • R may be the radius of the curve of the design character line.
  • the line deviation evaluation parameter SII is calculated by the following equation (2).
  • Line deviation evaluation parameter S II L ⁇ (
  • m is a predetermined weight index.
  • a steel plate is used as the plastic plate.
  • a metal material such as aluminum or titanium, a glass fiber reinforced resin material such as FRP or FRTP, or a composite thereof. Materials may be used.
  • the line deviation evaluation apparatus to which the present invention is applied can be realized by a computer apparatus including a CPU, a ROM, a RAM, and the like, for example.
  • the present invention also provides software (program) that realizes a line deviation evaluation function to a system or apparatus via a network or various storage media, and the system or apparatus computer reads out and executes the program. It is feasible.
  • the present invention can be widely applied to a method, an apparatus, a program, and a recording medium for evaluating a line deviation generated in a press-formed product in press forming for forming a character line. Thereby, it is possible to quantitatively evaluate the line deviation generated in the press-formed product, and it is possible to ensure stable product quality.

Abstract

 キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価する線ずれ評価方法であって、前記プレス成形品に成形された前記キャラクタラインを横切るように測定された前記プレス成形品の断面プロファイルを取得する断面プロファイル取得ステップと、取得した前記断面プロファイルの4次微係数を算出する4次微係数算出ステップと、算出した前記断面プロファイルの4次微係数に基づいて前記線ずれを評価する線ずれ評価ステップと、を有することを特徴とする線ずれ評価方法。

Description

線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体
 本発明は、線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体に関する。より詳しくは、キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価する線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体に関する。
 本願は、2014年8月8日に、日本に出願された特願2014-163022号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車などの外板パネルには高いデザイン性が要求されており、その要求を満たすために外板パネルにシャープなキャラクタラインを成形することがある。設計時のデザインを実現するためには、プレス成形時にキャラクタラインのR止まり(radius curve end、曲線と直線の境界)と隣接する面とを忠実に再現する必要がある。しかし、プレス成形時に鋼板又はアルミニウム合金板等の素材板がしわ押え部各所から流入する量によっては、キャラクタラインを成形する素材板とポンチ金型凸部との初期当たり部が、最終製品におけるキャラクタラインのR止まりの外に移動してしまう(位置ずれ)。この結果、素材版における初期あたり部近傍が曲げ癖として外板パネルの外観に残り、プレス成形後にキャラクタラインのR止まりの外に凹凸が残って外板パネルの外観品質を悪化させる。これが線ずれ(skid lines)現象である(非特許文献1を参照)。
日本国特許第5387491号公報 日本国特許第4957291号公報
中野伸哉,酒井明,山田泰生:マツダ技報,No.31(2013),38-43.
 現状では、線ずれの程度は現場の作業者の官能評価によって判別されている。線ずれの程度が小さい場合には、線ずれが生じていても製品出荷されることもある。線ずれの基準は明確化されておらず、製品にばらつきが生じるおそれがある。
 プレス成形後の外板パネル等の金属板を評価する技術として、例えば特許文献1、2に、面歪を定量評価する技術が開示されている。ただし、特許文献1、2に開示された技術は、線ずれを評価するものではない。
 特許文献1では、金属板の表面形状を測定し、直交格子点上の値を用いてガウス曲率を算出し、フィルタリングした後に面歪みを評価する手法が開示されている。しかしながら、キャラクタラインに沿った方向に存在するパネル形状の曲率か、線ずれによる断面の変化の曲率かを区別することは困難であるため、金属板の表面形状のガウス曲率は線ずれ現象を捉えるには不向きである。
 特許文献2では、測定対象面上に移る複数の明暗パタンを撮影して面歪分布を演算し、演算された面の傾きを曲線近似し、傾きの変化量(2次微係数)を算出する手法が開示されている。しかしながら、例えば曲面上にキャラクタラインが成形された断面形状(曲面+キャラクタライン+曲面の断面形状)の場合、曲率分布のみでは線ずれを定量的に評価することが困難である。
 本発明は上記のような点に鑑みてなされたものであり、キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを定量評価できるようにすることを目的とする。
 本発明の第1態様によれば、キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価する線ずれ評価方法は、前記プレス成形品に成形された前記キャラクタラインを横切るように測定された前記プレス成形品の断面プロファイルを取得する断面プロファイル取得ステップと、取得した前記断面プロファイルの4次微係数を算出する4次微係数算出ステップと、算出した前記断面プロファイルの4次微係数に基づいて前記線ずれを評価する線ずれ評価ステップと、を有する。
 本発明の第2態様によれば、第1態様の線ずれ評価方法において、前記線ずれ評価ステップでは、前記キャラクタラインを挟んで前記線ずれが発生する側の前記断面プロファイルの4次微係数のピーク値Hと、前記ピーク値Hが現れる位置と前記線ずれが発生する側の設計キャラクタラインのR止まりの位置とのずれ幅Lと、を求め、前記ピーク値Hと前記ずれ幅Lとを用いて前記線ずれを評価してもよい。
 本発明の第3態様によれば、第2態様の線ずれ評価方法において、前記線ずれ評価ステップでは、下式(1)により、第1の線ずれ評価パラメータSを算出し、算出した前記第1の線ずれ評価パラメータSを用いて前記線ずれを評価してもよい。
 S=L×│H│・・・(1)
 ただし、nはあらかじめ決められた重み指数。
 本発明の第4態様によれば、第2態様の線ずれ評価方法において、前記線ずれ評価ステップでは、前記キャラクタラインのカーブ半径Rを更に求め、前記ピーク値Hと前記ずれ幅Lと前記カーブ半径Rとを用いて前記線ずれを評価してもよい。
 本発明の第5態様によれば、第4態様の線ずれ評価方法において、前記線ずれ評価ステップでは、下式(2)により、第2の線ずれ評価パラメータSIIを算出し、算出した前記第2の線ずれ評価パラメータSIIを用いて前記線ずれを評価してもよい。
 SII=L×(│H│/R)・・・(2)
 ただし、mはあらかじめ決められた重み係数。
 本発明の第6態様によれば、キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価する線ずれ評価装置は、前記プレス成形品に成形された前記キャラクタラインを横切るように測定された前記プレス成形品の断面プロファイルを取得する断面プロファイル取得部と、前記断面プロファイル取得部で取得した前記断面プロファイルの4次微係数を算出する4次微係数算出部と、前記4次微係数算出部で算出した前記断面プロファイルの4次微係数に基づいて、前記線ずれを評価するための線ずれ評価パラメータを算出する線ずれ評価パラメータ算出部と、を備える。
 本発明の第7態様によれば、第6態様の線ずれ評価装置において、前記線ずれ評価パラメータ算出部で算出した線ずれ評価パラメータに基づいて前記線ずれを評価する線ずれ評価部を更に備えてもよい。
 本発明の第8態様によれば、第6態様または第7態様の線ずれ評価装置において、前記評価パラメータ算出部は、前記キャラクタラインを挟んで前記線ずれが発生する側の前記断面プロファイルの4次微係数のピーク値Hと、前記ピーク値Hが現れる位置と前記線ずれが発生する側の設計キャラクタラインのR止まりの位置とのずれ幅Lと、を求め、前記ピーク値Hと前記ずれ幅Lとを用いて前記線ずれ評価パラメータを算出してもよい。
 本発明の第9態様によれば、第8態様の線ずれ評価装置において、前記評価パラメータ算出部は、下式(1)により、線ずれ評価パラメータSを算出してもよい。
 S=L×│H│・・・(1)
 ただし、nはあらかじめ決められた重み指数。
 本発明の第10態様によれば、第8態様の線ずれ評価装置において、前記評価パラメータ算出部は、前記キャラクタラインのカーブ半径Rを更に求め、前記ピーク値Hと前記ずれ幅Lと前記カーブ半径Rとを用いて前記線ずれ評価パラメータを算出してもよい。
 本発明の第11態様によれば、第10態様の線ずれ評価装置において、前記評価パラメータ算出部は、下式(2)により、線ずれ評価パラメータSIIを算出してもよい。
 SII=L×(│H│/R)・・・(2)
 ただし、mはあらかじめ決められた重み係数。
 本発明の第12態様によれば、キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価するためのプログラムは、前記プレス成形品に成形された前記キャラクタラインを横切るように測定された前記プレス成形品の断面プロファイルを取得する処理と、取得した前記断面プロファイルの4次微係数を算出する処理と、算出した前記断面プロファイルの4次微係数に基づいて、前記線ずれを評価するための線ずれ評価パラメータを算出する処理と、をコンピュータに実行させる。
 本発明の第13態様によれば、第12態様のプログラムにおいて、算出した前記線ずれ評価パラメータに基づいて前記線ずれを評価する処理を更にコンピュータに実行させてもよい。
 本発明の第14態様によれば、第12態様または第13態様のプログラムにおいて、前記線ずれ評価パラメータを算出する処理において、前記キャラクタラインを挟んで前記線ずれが発生する側の前記断面プロファイルの4次微係数のピーク値Hと、前記ピーク値Hが現れる位置と前記線ずれが発生する側の設計キャラクタラインのR止まりの位置とのずれ幅Lと、を求め、前記ピーク値Hと前記ずれ幅Lとを用いて前記線ずれ評価パラメータを算出してもよい。
 本発明の第15態様によれば、第14態様のプログラムにおいて、前記線ずれ評価パラメータを算出する処理において、下式(1)により、線ずれ評価パラメータSを算出してもよい。
 S=L×│H│・・・(1)
 ただし、nはあらかじめ決められた重み指数。
 本発明の第16態様によれば、第14態様のプログラムにおいて、前記線ずれ評価パラメータを算出する処理において、前記キャラクタラインのカーブ半径Rを更に求め、前記ピーク値Hと前記ずれ幅Lと前記カーブ半径Rとを用いて前記線ずれ評価パラメータを算出してもよい。
 本発明の第17態様によれば、第16態様のプログラムにおいて、前記線ずれ評価パラメータを算出する処理において、下式(2)により、線ずれ評価パラメータSIIを算出してもよい。
 SII=L×(│H│/R)・・・(2)
 ただし、mはあらかじめ決められた重み係数。
 本発明の第18態様によれば、コンピュータ読み取り可能な記録媒体は、第12態様乃至第17態様の何れか一つのプログラムを記録する。
 本発明によれば、キャラクタラインを構成する断面プロファイルの曲率の2次微係数、すなわち断面プロファイルの4次微係数に基づいた線ずれ評価パラメータを使用することにより、プレス成形品に発生する線ずれを定量評価することができる。これにより安定した製品品質の確保が可能となる。
本発明の一実施形態に係る線ずれ評価装置の機能構成を示す図である。 線ずれ現象の概要を説明するための図である。 線ずれ現象の概要を説明するための図である。 輪郭測定器を用いたプレス成形品の輪郭測定を説明するための図である。 輪郭測定されたパネル形状の断面と曲率との関係を説明するための図である。 曲率(断面プロファイルの2次微係数)、曲率の1次微係数(断面プロファイルの3次微係数)、及び曲率の2次微係数(断面プロファイルの4次微係数)の一例を示す図である。 曲率の分布を算出する方法を説明するための図である。 線ずれ評価パラメータSと、官能評価の評価程度との関係を示す図である。 線ずれ評価パラメータSIIと、官能評価の評価程度との関係を示す図である。
 以下、添付図面を参照して、本発明の好適な実施形態について説明する。
 図1に、本発明の一実施形態に係る線ずれ評価装置100の機能構成を示す。線ずれ評価装置100は、キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価する。
 ここで、図2A及び図2Bを参照して、キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれ現象の概要を説明する。図2Aは意匠性を損なう成形(線ずれ)の一例を示す図である。図2Bは意匠性を損なわない成形の一例を示す図である。図2A及び図2Bにおいて、金型は上型21aと下型21bからなり、上型21aと下型21bの間にブランク20が挟まれてプレス成形される。
 プレス成形時、ブランク20が金型上の設計キャラクタラインと接触する(初期当たり部22)。キャラクタライン23の成形が進むにつれて初期当たり部22が移動し(ずれ)、キャラクタライン23のR止まり24の外に設計デザインとは異なる断面形状が発生する。これが線ずれ現象である。ブランクと金型との初期当たり部22がプレス成形完了時にキャラクタライン23のR止まり24の外にずれることで線ずれが起こるとされている。
 図2Bのように、ブランクと金型との初期当たり部22がプレス成形完了時に設計キャラクタライン23のR止まり24の内側にある場合は、線ずれは起こらない。
 図1に示すように、線ずれ評価装置100は、断面プロファイル取得部101と、4次微係数算出部102と、線ずれ評価パラメータ算出部103と、線ずれ評価部104とを備える。なお、線ずれ評価部104はなくてもよい。
 断面プロファイル取得部101は、プレス成形品に成形されたキャラクタラインを横切るようにして輪郭測定器200で測定されたプレス成形品の断面プロファイルを取得する。具体的には、断面プロファイル取得部101は、輪郭測定器200が測定したプレス成形品の面データからキャラクタラインに対して該直交する断面の輪郭データをもとに、プレス成形品の断面プロファイルを取得する。ここで、「キャラクタラインを横切るように測定する」とは、キャラクタラインに対し該直交する直線(キャラクタラインに対し60°と120°の間のある角度をなす直線)に沿ってプレス成形品の測定を行うことを意味する。
 図3Aは、輪郭測定器を用いたプレス成形品の輪郭測定を説明するための図である。図3Aでは、輪郭測定器200の一例として接触式3次元形状測定機を用いている。輪郭測定器200をプレス成形品に接触させながら、キャラクタライン201を横切る方向に、すなわちキャラクタライン201に対して該直交する方向に輪郭測定器200を移動させて、所定の測定長さlでプレス成形品の輪郭測定を実施する。線ずれはキャラクタライン201を挟んでいずれか一方の側で発生する。図3Aの例では、線ずれがキャラクタライン201の図中の右側(輪郭測定器による測定方向の下流側)で発生しているとする。
 なお、必要に応じて、輪郭測定器200が1つの線ずれ部位についてキャラクタライン201の延伸方向に位置を変えながら複数回、輪郭測定するようにしてもよい。
 なお、パネル形状の測定は、製造ライン上(インライン)で測定することが可能である。また、非接触測定機および接触測定器のどちらを用いてもよい。ただし、線ずれ程度が極めて微小な場合は接触式測定器により精密に測定することが好ましい。
 線ずれはプレス成形品のプレス成形完了後、実際に製品出荷状態(完成体)に組み立てた状態にて評価されることが好ましい。組み立て前のプレス成形品を評価した場合、プレス成形品の面剛性が低い場合には測定時のプレス成形品のセット方法によっては自重によるたわみが生じ、線ずれが生じている領域の形状に変化が現れ、輪郭測定結果が製品出荷状態(完成体)での輪郭形状と異なる場合がある。
 4次微係数算出部102は、断面プロファイル取得部101で取得した断面プロファイルに基づいて曲率(断面プロファイルの2次微係数)の分布を算出し、曲率の2次微係数(断面プロファイルの4次微係数)を算出する。曲率の変化率や曲率の2次微係数(断面プロファイルの4次微係数)が線ずれの官能評価に影響を与えていると考え、断面プロファイルの4次微係数を算出する。
 曲率と線ずれとの関係について説明する。図3Bの上方の図は、線ずれの様子を横から見た図である。図3Bの上方の図に描かれているように、キャラクタライン23のR止まり24の外で、設計形状25と実際のパネル形状26との間に隙間ができており、これをパネルの表面から見ると線ずれが現れて見える。
 線ずれが生じている領域には、設計キャラクタラインのカーブによる曲率分布とは逆向きの曲率分布が生じる(曲率逆転部位)。すなわち、線ずれが生じている領域で曲率は逆転している。曲率の逆転する領域では光の陰影がつき、線ずれが生じている印象を確認作業者に与える。
 線ずれが発生する側の曲率が逆転している領域において、曲率が逆転している領域から元の形状への戻り方が緩やかに戻る場合は、線ずれによる陰影が曖昧に見えるため、線ずれの印象は小さい。一方、曲率が逆転している領域から元の形状への戻り方が急激に戻る場合は、線ずれによる陰影が強調されるため、線ずれの印象が大きい。
 線ずれの官能評価結果と線ずれが発生している側の曲率分布との関係を比較した結果、線ずれの官能評価結果と曲率の逆転している領域からの曲率分布の戻り方との間に相関があることを突き止めた。曲率分布の戻り方は、曲率分布の2次微関数(断面プロファイルの4次微関数)から算出することができる。従って、曲率の2次微係数(断面プロファイルの4次微関数)のピーク量Hを用いて線ずれの評価が可能であると考えられる。
 図4は、4次微係数算出部102で算出した曲率(断面プロファイルの2次微係数)[mm-1]、曲率の1次微係数(断面プロファイルの3次微係数)[mm-2]、及び曲率の2次微係数(断面プロファイルの4次微係数)[mm-3]の一例を示す図である。縦軸は、曲率(断面プロファイルの2次微係数)[mm-1]、曲率の1次微係数(断面プロファイルの3次微係数)[mm-2]、及び曲率の2次微係数(断面プロファイルの4次微係数)[mm-3]を示す。横軸は、輪郭測定器による輪郭の測定方向(図3Aを参照)の位置[mm]を表わす。
 図4に示すように、キャラクタラインのカーブが最も大きい位置(キャラクタラインのR頂点の位置)301で、曲率のピーク401が現れる。同じ位置301で、曲率の2次微係数(断面プロファイルの4次微係数)のピーク402が現れる。
 4次微係数算出部102が曲率の分布を算出する方法を説明する。図5は、曲率の分布を算出する方法を説明するための図である。図5の横軸は測定方向の位置を示し、縦軸は高さ方向の位置を示す。図上の線は断面プロファイルを示している。曲率の分布を算出する際には、図5に示すように、断面プロファイル上の所定の区間x(x、x、・・・)ごとに平均座標点m(m、m、・・・)を算出する。そして、複数の所定の区間xからなる曲率算出区間X(図5の例では曲率算出区間Xが5つの所定の区間x、x、x、x、xからなる)の両端及び中央の3点(図5のm、m、m)から円弧半径R(R、R、・・・)を算出し、その逆数である曲率を算出する。次に、曲率算出区間Xの起点とする所定の区間xを隣に1つずらして(曲率算出区間Xが5つの所定の区間x、x、x、x、xからなる)、曲率算出区間Xの両端及び中央の3点(図5のm、m、m)から円弧半径Rを算出し、その逆数である曲率を算出する。以降、曲率算出区間Xの起点とする所定の区間xを隣に1つずらしながら、曲率算出区間Xでの曲率の算出を繰り返していく。所定の区間xは、曲率の分布を算出する際に、ノイズを含まずなるべく連続した点列データとなるような区間として最小のものを選ぶのが好ましい。
 線ずれ評価パラメータ算出部103は、4次微係数算出部102で算出した曲率の2次微係数(断面プロファイルの4次微関数)に基づいて線ずれ評価パラメータを算出する。線ずれが発生している場合、図4に示すように、キャラクタラインを挟んで線ずれが発生する側で、曲率の2次微係数(断面プロファイルの4次微関数)のピーク403が現れる。そこで、線ずれ評価パラメータ算出部103は、線ずれが発生する側で現れる曲率の2次微係数(断面プロファイルの4次微関数)のピーク403での値H[mm-3]と、ピーク403に対応する位置303と設計キャラクタラインのR止まりの位置302とのずれ幅L[mm]とを求める。そして、線ずれ評価パラメータ算出部103は、値Hとずれ幅Lとに基づいて、線ずれ評価パラメータを算出する。例えば、下式(1)により、線ずれ評価パラメータSを算出する。
   線ずれ評価パラメータS=L×│H│・・・(1)
 ただし、nはあらかじめ決められた重み指数である。
 ずれ幅Lを用いた理由は、線ずれは図2Aに示したように金型の初期接触点の移動現象のため、初期接触点の移動量を考慮する必要があると考えたためである。なお、本実施形態では、曲率の2次微係数(断面プロファイルの4次微関数)のピーク403に対応する位置303から設計キャラクタラインのR止まりの位置302までの距離をずれ幅Lとしたが、類似の指標を用いてもよい。例えば、比較するパネル間で、設計キャラクタラインのカーブの大きさがあまり変わらない場合や、キャラクタラインのR頂点の位置301から設計キャラクタラインのR止まりの位置302までの距離が小さい場合は、設計キャラクタラインのR頂点の位置301から曲率の2次微係数(断面プロファイルの4次微関数)のピーク403に対応する位置303までの距離をずれ幅Lとしてもよい。
 また、曲率の2次微係数(断面プロファイルの4次微関数)のピークの値Hを用いた理由は、曲率のピークと曲率の2次微係数(断面プロファイルの4次微関数)のピークの位置とが近く、傾向を捉えやすいと考えたためである。
 官能評価は、線ずれが発生している側の曲率の変化による陰影の影響(Hの絶対値に対応)と線ずれが発生している領域の大きさの影響(ずれ幅Lに対応)を受ける。Hの絶対値が大きくLが大きいほど、線ずれが目立ち、官能評価の結果は悪くなる傾向がある。
 すなわち、Hの絶対値とLが増加するに伴って線ずれ評価パラメータSが増加することが好ましく、線ずれ評価パラメータSの算出式はHの絶対値とLの加算あるいは積算の形式が良い。また、HまたはLのどちらか一方で評価することも可能だが、同程度のHまたはLであってももう一方の大小によって官能評価に差異が表れる場合があるため、HとLの両方を用いることが好ましい。
 Hは微小な値ではあるが、ずれ幅Lに比べてサンプルごとの相対的な差が大きく、重み係数nを用いてn乗することでその相対的な差を緩和できる。すなわち、線ずれ評価パラメータSの算出式は(1)式のようになる。なお、n=1/3とした場合、すなわち、線ずれ評価パラメータSの算出式としてS=L×│H│1/3を用いたした場合、線ずれの官能評価と線ずれ評価パラメータSとの間で特に高い相関を示すことを本発明者らは発見した。
 なお、上述したように1つの線ずれ部位についてキャラクタラインの延伸方向に位置を変えながら複数回、輪郭測定する場合は、例えば各回で算出された線ずれ評価パラメータSを平均化したものを指標として用いるようにすればよい。
 線ずれ評価部104は、線ずれ評価パラメータ算出部103で算出した線ずれ評価パラメータSに基づいて、線ずれを評価する。線ずれ評価パラメータが大きいほど線ずれが目立ち、線ずれ評価パラメータが小さいほど線ずれが目立たない。線ずれの評価は、人間が線ずれ評価パラメータを参照しながら行ってもよいし、コンピュータなどで自動化されていてもよい。 
 実際に線ずれが発生している自動車外板パネルについて、本発明を適用して線ずれ評価パラメータSを算出し、官能評価との相関性を確認した。図6は、線ずれ評価パラメータSの算出式としてS=L×|H|1/3 を用いた場合の、線ずれ評価パラメータSと、官能評価の評価程度との関係を示す特性図である。図6の横軸は線ずれ評価パラメータSを示し、右にいくほど線ずれ評価パラメータSが大きくなる。図6の縦軸は官能評価の評価程度を示し、上にいくほど評価程度が大きくなる。評価程度が大きいほど線ずれが目立ち、評価程度が小さいほど線ずれが目立たないことを意味する。図6に示すように、線ずれ評価パラメータSの値が大きくなると、官能評価の評価程度が大きくなるという相関性が確認された。
 線ずれの官能評価には、形状の厳しさによって決まる断面変化因子と、線ずれが発生した幅によって決まるずれ幅因子との2つがあると考えられる。線ずれ評価パラメータSは、断面変化因子として2次微係数のピークの値Hを、ずれ幅因子としてずれ幅Lを含んでおり、両者の傾向を捉えることができるので、官能評価と一致するといえる。
 以上のように、線ずれ評価パラメータSにより線ずれを定量評価できることがわかる。線ずれを定量評価できるようになれば、安定した製品品質の確保が可能となる。
 別の実施形態として、線ずれ評価パラメータの算出法として、上述の値Hと、ずれ幅Lに加えて、パネルの表面のキャラクタラインのカーブの半径Rを用いるようにしてもよい。比較するパネルのキャラクタラインのカーブの半径Rの大きさに差がある場合、キャラクタラインのカーブの半径Rと線ずれ官能評価に相関が表れることがある。このとき、キャラクタラインのカーブの半径Rが大きいほど線ずれの官能評価が低下する、すなわち線ずれが目立たない傾向がある。そこで、キャラクタラインのカーブの半径Rの増加に伴い、線ずれ評価パラメータは減少傾向となることが好ましい。例えば、線ずれ評価パラメータの算出式は、Rの減算あるいは除算の形式が良い。なお、Rは、設計キャラクタラインのカーブの半径を用いればよい。例えば、下式(2)により、線ずれ評価パラメータSIIを算出する。
 線ずれ評価パラメータSII=L×(│H│/R)・・・(2)
 ただし、mはあらかじめ決められた重み指数である。
 なお、本実施形態では、m=1/5の時、すなわち、線ずれ評価パラメータSIIの算出式としてSII=L×(│H│/R)1/5を用いた場合、線ずれの官能評価と線ずれ評価パラメータSIIとの間で特に高い相関を示すことを本発明者らは発見した。図7は、線ずれ評価パラメータSIIの算出式としてSII=L×(│H│/R)1/5を用いた場合の、線ずれ評価パラメータSIIと官能評価の評価程度との関係を示す特性図である。図7の横軸は線ずれ評価パラメータSIIを示し、右にいくほど線ずれ評価パラメータSIIが大きくなる。図7の縦軸は官能評価の評価程度を示し、上にいくほど評価程度が大きくなる。評価程度が大きいほど線ずれが目立ち、評価程度が小さいほど線ずれが目立たないことを意味する。図7に示すように、線ずれ評価パラメータSIIの値が大きくなると、官能評価の評価程度が大きくなるという相関性が確認された。また、線ずれ評価パラメータSIIを用いることにより、評価程度1と評価程度2とを明確に区別できるという効果が得られた。
 なお、上述の実施形態においては、可塑性板として鋼板を用いているが、可塑性板の材料としては、アルミやチタン等の金属材料、FRPやFRTP等のガラス繊維強化樹脂材料、更にはこれらの複合材料を用いてもよい。
 本発明を適用した線ずれ評価装置は、例えばCPU、ROM、RAM等を備えたコンピュータ装置により実現することが可能である。
 また、本発明は、線ずれ評価機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータがプログラムを読み出して実行することによっても実現可能である。
 本発明は、キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価する方法、装置、プログラム及び記録媒体に広く適用できる。これにより、プレス成形品に発生する線ずれを定量評価することができ、安定した製品品質の確保が可能となる。
 20 ブランク
 21a 上型
 21b 下型
 22 初期当たり部
 23 キャラクタライン
 24 R止まり
 25 設計形状
 26 パネル形状
 100 線ずれ評価装置
 101 断面プロファイル取得部
 102 4次微係数算出部
 103 線ずれ評価パラメータ算出部
 104 線ずれ評価部
 200 輪郭測定器
 201 キャラクタライン

Claims (18)

  1.  キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価する線ずれ評価方法であって、
     前記プレス成形品に成形された前記キャラクタラインを横切るように測定された前記プレス成形品の断面プロファイルを取得する断面プロファイル取得ステップと、
     取得した前記断面プロファイルの4次微係数を算出する4次微係数算出ステップと、
     算出した前記断面プロファイルの4次微係数に基づいて前記線ずれを評価する線ずれ評価ステップと、
     を有することを特徴とする線ずれ評価方法。
  2.  前記線ずれ評価ステップでは、
     前記キャラクタラインを挟んで前記線ずれが発生する側の前記断面プロファイルの4次微係数のピーク値Hと、前記ピーク値Hが現れる位置と前記線ずれが発生する側の設計キャラクタラインのR止まりの位置とのずれ幅Lと、を求め、
     前記ピーク値Hと前記ずれ幅Lとを用いて前記線ずれを評価する
     ことを特徴とする請求項1に記載の線ずれ評価方法。
  3.  前記線ずれ評価ステップでは、下式(1)により、第1の線ずれ評価パラメータSを算出し、算出した前記第1の線ずれ評価パラメータSを用いて前記線ずれを評価することを特徴とする請求項2に記載の線ずれ評価方法。
     S=L×│H│・・・(1)
     ただし、nはあらかじめ決められた重み指数。
  4.  前記線ずれ評価ステップでは、前記キャラクタラインのカーブ半径Rを更に求め、前記ピーク値Hと前記ずれ幅Lと前記カーブ半径Rとを用いて前記線ずれを評価することを特徴とする請求項2に記載の線ずれ評価方法。
  5.  前記線ずれ評価ステップでは、下式(2)により、第2の線ずれ評価パラメータSIIを算出し、算出した前記第2の線ずれ評価パラメータSIIを用いて前記線ずれを評価することを特徴とする請求項4に記載の線ずれ評価方法。
     SII=L×(│H│/R)・・・(2)
     ただし、mはあらかじめ決められた重み係数。
  6.  キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価する線ずれ評価装置であって、
     前記プレス成形品に成形された前記キャラクタラインを横切るように測定された前記プレス成形品の断面プロファイルを取得する断面プロファイル取得部と、
     前記断面プロファイル取得部で取得した前記断面プロファイルの4次微係数を算出する4次微係数算出部と、
     前記4次微係数算出部で算出した前記断面プロファイルの4次微係数に基づいて、前記線ずれを評価するための線ずれ評価パラメータを算出する線ずれ評価パラメータ算出部と、
     を備えたことを特徴とする線ずれ評価装置。
  7.  前記線ずれ評価パラメータ算出部で算出した線ずれ評価パラメータに基づいて前記線ずれを評価する線ずれ評価部
     を更に備えたことを特徴とする請求項6に記載の線ずれ評価装置。
  8.  前記評価パラメータ算出部は、前記キャラクタラインを挟んで前記線ずれが発生する側の前記断面プロファイルの4次微係数のピーク値Hと、前記ピーク値Hが現れる位置と前記線ずれが発生する側の設計キャラクタラインのR止まりの位置とのずれ幅Lと、を求め、前記ピーク値Hと前記ずれ幅Lとを用いて前記線ずれ評価パラメータを算出することを特徴とする請求項6または7に記載の線ずれ評価装置。
  9.  前記評価パラメータ算出部は、下式(1)により、線ずれ評価パラメータSを算出することを特徴とする請求項8に記載の線ずれ評価装置。
     S=L×│H│・・・(1)
     ただし、nはあらかじめ決められた重み指数。
  10.  前記評価パラメータ算出部は、前記キャラクタラインのカーブ半径Rを更に求め、前記ピーク値Hと前記ずれ幅Lと前記カーブ半径Rとを用いて前記線ずれ評価パラメータを算出することを特徴とする請求項8に記載の線ずれ評価装置。
  11.  前記評価パラメータ算出部は、下式(2)により、線ずれ評価パラメータSIIを算出することを特徴とする請求項10に記載の線ずれ評価装置。
     SII=L×(│H│/R)・・・(2)
     ただし、mはあらかじめ決められた重み係数。
  12.  キャラクタラインを成形するプレス成形においてプレス成形品に発生する線ずれを評価するためのプログラムであって、
     前記プレス成形品に成形された前記キャラクタラインを横切るように測定された前記プレス成形品の断面プロファイルを取得する処理と、
     取得した前記断面プロファイルの4次微係数を算出する処理と、
     算出した前記断面プロファイルの4次微係数に基づいて、前記線ずれを評価するための線ずれ評価パラメータを算出する処理と、
     をコンピュータに実行させるためのプログラム。
  13.  算出した前記線ずれ評価パラメータに基づいて前記線ずれを評価する処理
     を更にコンピュータに実行させる請求項12に記載のプログラム。
  14.  前記線ずれ評価パラメータを算出する処理において、前記キャラクタラインを挟んで前記線ずれが発生する側の前記断面プロファイルの4次微係数のピーク値Hと、前記ピーク値Hが現れる位置と前記線ずれが発生する側の設計キャラクタラインのR止まりの位置とのずれ幅Lと、を求め、前記ピーク値Hと前記ずれ幅Lとを用いて前記線ずれ評価パラメータを算出する、請求項12または13に記載のプログラム。
  15.  前記線ずれ評価パラメータを算出する処理において、下式(1)により、線ずれ評価パラメータSを算出する、請求項14に記載のプログラム。
     S=L×│H│・・・(1)
     ただし、nはあらかじめ決められた重み指数。
  16.  前記線ずれ評価パラメータを算出する処理において、前記キャラクタラインのカーブ半径Rを更に求め、前記ピーク値Hと前記ずれ幅Lと前記カーブ半径Rとを用いて前記線ずれ評価パラメータを算出する、請求項14に記載のプログラム。
  17.  前記線ずれ評価パラメータを算出する処理において、下式(2)により、線ずれ評価パラメータSIIを算出する、請求項16に記載のプログラム。
     SII=L×(│H│/R)・・・(2)
     ただし、mはあらかじめ決められた重み係数。
  18.  請求項12乃至17の何れか一項に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2015/072354 2014-08-08 2015-08-06 線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体 WO2016021685A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2016540738A JP6233522B2 (ja) 2014-08-08 2015-08-06 線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体
EP15829773.9A EP3179207B1 (en) 2014-08-08 2015-08-06 Line displacement evaluation method, line displacement evaluation device, program, and recording medium
KR1020177004329A KR101920580B1 (ko) 2014-08-08 2015-08-06 라인 변위 평가 방법, 라인 변위 평가 장치, 프로그램 및 기록 매체
CA2956811A CA2956811C (en) 2014-08-08 2015-08-06 Line displacement evaluation method, line displacement evaluation device, program, and recording medium
BR112017002347A BR112017002347A2 (pt) 2014-08-08 2015-08-06 método de avaliação de deslocamento de linha, dispositivo de avaliação de deslocamento de linha, programa, e meio de gravação
US15/502,030 US10508909B2 (en) 2014-08-08 2015-08-06 Line displacement evaluation method, line displacement evaluation device, program, and recording medium
CN201580042215.2A CN106662438B (zh) 2014-08-08 2015-08-06 线位移评价方法、线位移评价装置以及记录介质
MX2017001574A MX364096B (es) 2014-08-08 2015-08-06 Metodo de evaluacion de desplazamiento de linea, dispositivo de evaluacion, programa y medio de registro de desplazamiento de linea.
RU2017104996A RU2665339C1 (ru) 2014-08-08 2015-08-06 Способ оценки смещения линии, устройство оценки смещения линии, программа и носитель записей
ES15829773T ES2763134T3 (es) 2014-08-08 2015-08-06 Método de evaluación de desplazamiento de línea, dispositivo de evaluación de desplazamiento de línea, programa y soporte de registro

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-163022 2014-08-08
JP2014163022 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016021685A1 true WO2016021685A1 (ja) 2016-02-11

Family

ID=55263942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072354 WO2016021685A1 (ja) 2014-08-08 2015-08-06 線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体

Country Status (11)

Country Link
US (1) US10508909B2 (ja)
EP (1) EP3179207B1 (ja)
JP (1) JP6233522B2 (ja)
KR (1) KR101920580B1 (ja)
CN (1) CN106662438B (ja)
BR (1) BR112017002347A2 (ja)
CA (1) CA2956811C (ja)
ES (1) ES2763134T3 (ja)
MX (1) MX364096B (ja)
RU (1) RU2665339C1 (ja)
WO (1) WO2016021685A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159347A (ja) * 2015-03-04 2016-09-05 日産自動車株式会社 線ズレ評価方法
WO2019073614A1 (ja) * 2017-10-12 2019-04-18 新日鐵住金株式会社 キャラクターラインを有する外板パネルの製造方法および製造装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10878554B2 (en) 2017-10-26 2020-12-29 United Technologies Corporation Defect detection and measurement method
CN110501349B (zh) * 2018-05-18 2022-04-01 蓝思科技(长沙)有限公司 一种盖板弧边检测方法和系统及其检测设备
CN113913942A (zh) * 2021-01-13 2022-01-11 中国航发北京航空材料研究院 镍基单晶合金、用途和热处理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127610A (ja) * 2005-11-07 2007-05-24 Daihatsu Motor Co Ltd 形状認識装置及び歪評価装置
JP4957291B2 (ja) * 2006-09-08 2012-06-20 Jfeスチール株式会社 面歪の測定装置及び方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1151815A1 (ru) * 1983-07-06 1985-04-23 Пермский политехнический институт Устройство дл обнаружени абразивных включений на поверхности деталей
SU1763863A1 (ru) * 1990-08-02 1992-09-23 Научно-производственное объединение по комплексному технологическому проектированию станкостроительных предприятий "Оргстанкинпром" Способ определени величины зазора в штампах между матрицей и пуансоном
FR2887978B1 (fr) * 2005-06-29 2007-10-12 Snecma Moteurs Sa Procede de controle du profil de la zone de raccordement entre la partie cylindrique et la depouille d'un rouleau pour palier a roulement de turbomachine
JP4730836B2 (ja) * 2005-09-15 2011-07-20 Jfeスチール株式会社 面歪の測定装置及び方法
CA2666678A1 (en) * 2006-10-17 2008-04-24 Honda Motor Co., Ltd. Press-working method, and press-working apparatus
JP5387491B2 (ja) 2009-04-21 2014-01-15 新日鐵住金株式会社 金属板の面歪みの評価方法、金属板の面歪みの評価値演算装置及びプログラム
JP2011118961A (ja) * 2009-12-01 2011-06-16 Taiyo Yuden Co Ltd データ記録評価方法,装置及びプログラム、並びに光情報記録媒体
KR101441226B1 (ko) * 2010-05-18 2014-09-17 신닛테츠스미킨 카부시키카이샤 판재의 평탄도 측정 방법 및 이것을 이용한 강판의 제조 방법
JP5459362B2 (ja) * 2012-07-24 2014-04-02 Jfeスチール株式会社 成形品の解析モデルへの材料異方性情報および板厚情報の設定方法、剛性解析方法および衝突解析方法
RU2517149C2 (ru) * 2012-07-27 2014-05-27 Общество с ограниченной ответственностью "Газпром трансгаз Казань" Способ параметризации локальных углублений на цилиндрических телах и устройство для его осуществления
KR101692658B1 (ko) * 2013-01-16 2017-01-03 신닛테츠스미킨 카부시키카이샤 프레스 성형 방법
CN103604599A (zh) * 2013-12-05 2014-02-26 国家电网公司 基于断路器行程信号的机械特性状态评价装置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127610A (ja) * 2005-11-07 2007-05-24 Daihatsu Motor Co Ltd 形状認識装置及び歪評価装置
JP4957291B2 (ja) * 2006-09-08 2012-06-20 Jfeスチール株式会社 面歪の測定装置及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROAKI AGA ET AL.: "Optimization of Die Design Based on Statistical Analysis of Forming Defect", KATA GIJUTSU, vol. 13, no. 8, 1 July 1998 (1998-07-01), pages 130 - 131, XP008185497 *
See also references of EP3179207A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159347A (ja) * 2015-03-04 2016-09-05 日産自動車株式会社 線ズレ評価方法
WO2019073614A1 (ja) * 2017-10-12 2019-04-18 新日鐵住金株式会社 キャラクターラインを有する外板パネルの製造方法および製造装置
KR20200066694A (ko) 2017-10-12 2020-06-10 닛폰세이테츠 가부시키가이샤 캐릭터 라인을 갖는 외판 패널의 제조 방법 및 제조 장치
JPWO2019073614A1 (ja) * 2017-10-12 2020-11-05 日本製鉄株式会社 キャラクターラインを有する外板パネルの製造方法および製造装置
JP7140132B2 (ja) 2017-10-12 2022-09-22 日本製鉄株式会社 キャラクターラインを有する外板パネルの製造方法および製造装置
US11684963B2 (en) 2017-10-12 2023-06-27 Nippon Steel Corporation Method and apparatus for producing outer panel having character line

Also Published As

Publication number Publication date
MX2017001574A (es) 2017-04-27
EP3179207B1 (en) 2019-10-16
CA2956811C (en) 2019-07-02
US20170227356A1 (en) 2017-08-10
CA2956811A1 (en) 2016-02-11
EP3179207A1 (en) 2017-06-14
JP6233522B2 (ja) 2017-11-22
EP3179207A4 (en) 2018-04-18
ES2763134T3 (es) 2020-05-27
JPWO2016021685A1 (ja) 2017-06-22
MX364096B (es) 2019-04-12
KR101920580B1 (ko) 2018-11-20
CN106662438B (zh) 2019-05-07
BR112017002347A2 (pt) 2017-11-28
RU2665339C1 (ru) 2018-08-29
CN106662438A (zh) 2017-05-10
KR20170029620A (ko) 2017-03-15
US10508909B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
JP6233522B2 (ja) 線ずれ評価方法、線ずれ評価装置、プログラム及び記録媒体
US11046007B2 (en) Apparatus and method for calibrating optimum size of 3D printing
CN107530752B (zh) 冲压成型件的制造方法、冲压成型件以及冲压装置
KR102418207B1 (ko) 스프링백량 변동 요인 부위 특정 방법
CN106295058A (zh) 一种钣金零件弯曲角度的数字化检测方法
JP2017030038A (ja) プレス成形品の製造方法及びプレス成形型
KR20150043476A (ko) 스프링백량 평가 방법
JP6798380B2 (ja) キャラクターラインを有するパネルの製造装置および製造方法
CN105414436A (zh) 一种便于检测锻件错移量的叶片锻造模具
JP5387491B2 (ja) 金属板の面歪みの評価方法、金属板の面歪みの評価値演算装置及びプログラム
JP5028831B2 (ja) 表面形状定量化方法
KR100804962B1 (ko) 비틀림 스프링백의 측정장치
JP6036768B2 (ja) プレス成形方法
JP7409583B1 (ja) プレス成形品の製造方法
WO2024019168A1 (ja) プレス成形品の製造方法
JP7343015B1 (ja) プレス成形品の製造方法
JP6236297B2 (ja) 表面形状定量化方法
JP7306558B1 (ja) プレス成形品の外周形状評価方法、装置及びプログラム、並びにプレス成形品の製造方法
CN107774775B (zh) 一种车身棱线反凸成型方法
JP7405319B1 (ja) プレス成形品の製造方法
WO2024038850A1 (ja) プレス成形品の製造方法
Park et al. DIFFERENT METHODS IN ANALYZING ROLL FORMING PROCESS OF AUTOMOTIVE COMPONENT.
JP6447247B2 (ja) 線ズレ評価方法
JP2023108091A (ja) プレス成形品の外周形状評価方法、装置及びプログラム
JP6575980B2 (ja) 樹脂成形品における二次ウェルドの外観品質評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2956811

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016540738

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/001574

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015829773

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829773

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177004329

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017002347

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017104996

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017002347

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170206