WO2016021169A1 - スポット溶接性に優れた冷延鋼板およびその製造方法 - Google Patents

スポット溶接性に優れた冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2016021169A1
WO2016021169A1 PCT/JP2015/003881 JP2015003881W WO2016021169A1 WO 2016021169 A1 WO2016021169 A1 WO 2016021169A1 JP 2015003881 W JP2015003881 W JP 2015003881W WO 2016021169 A1 WO2016021169 A1 WO 2016021169A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
cold
rolled steel
steel
Prior art date
Application number
PCT/JP2015/003881
Other languages
English (en)
French (fr)
Inventor
植田 圭治
金子 真次郎
正美 岩▲崎▼
杉原 玲子
横田 毅
瀬戸 一洋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580042291.3A priority Critical patent/CN106661693B/zh
Priority to US15/329,026 priority patent/US20170204492A1/en
Priority to MX2017001687A priority patent/MX2017001687A/es
Priority to EP15829208.6A priority patent/EP3178954B1/en
Publication of WO2016021169A1 publication Critical patent/WO2016021169A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a cold-rolled steel sheet having a thickness of 0.4 mm or more and 3.0 mm or less suitable for use in automobiles, electric machines, etc., and in particular, a cold-rolled steel sheet excellent in spot weldability having a tensile strength of 980 MPa or more and its It relates to a manufacturing method.
  • the weld metal becomes a coarse columnar solidified martensite single phase structure by heating the steel sheet to the melting point and then rapidly cooling it.
  • a welding heat-affected zone heated to a temperature range of Ac 3 or higher (hereinafter also referred to as a weld heat-affected zone of Ac 3 or higher) also has a relatively coarse martensitic structure. For this reason, the weld metal and the weld heat-affected zone at Ac 3 or higher have a higher hardness than the base metal and are easily embrittled.
  • the base material is high strength As the value becomes, the degree of softening of the base material tends to increase.
  • the welded portion has a discontinuous shape, so that stress tends to concentrate, and generation of residual stress due to welding heat history is inevitable.
  • discontinuity in the strength of the region extending from the weld metal, the weld heat-affected zone, and the base metal becomes prominent, and the fracture strength of the spot weld is likely to decrease compared to the base metal.
  • JP 2012-167338 A Japanese Patent No. 4530606 Japanese Patent No. 4883216 Japanese Patent No. 514068 Japanese Patent No. 5323552
  • the high strength steel sheets proposed in Patent Documents 1 to 5 and the like have high tensile strength of 980 MPa or more and sufficient improvement of spot weldability under sufficient economy and productivity.
  • the current situation is that it has not been achieved.
  • the present invention was developed in view of the above-mentioned present situation, and without causing an increase in manufacturing cost and a decrease in productivity, a cold-rolled steel sheet excellent in spot weldability having a tensile strength of 980 MPa or more, It is intended to provide with its advantageous manufacturing method.
  • excellent spot weldability means that, in a cross tension test in accordance with JIS Z 3137 (1999), the cross tension force is 10 kN / spot or more, and the rupture form is plug rupture. In the cross-sectional test of the spot welded part according to 3139 (2009), it means that the difference ⁇ HV between the maximum value and the minimum value of Vickers hardness in the region from the weld metal part to the base metal part is less than 120.
  • Tensile strength In order to achieve 980 MPa or more, it is important to strictly adjust the chemical composition of the steel sheet and to properly control the mass% ratio (Ti / N) of Ti and N. This is because, by properly controlling Ti / N, grain refinement strengthening and precipitation strengthening due to the formation of TiN appear. In addition, through the suppression of Nb nitride formation, it becomes possible to secure Nb in a solid solution state during the annealing process, which has the effect of delaying the recrystallization progress during heating, which increases the strength of the steel sheet. It is because it contributes to.
  • the gist configuration of the present invention is as follows. 1. % By mass C: 0.05 to 0.13%, Si: 0.05 to 2.0%, Mn: 1.5 to 4.0%, P: 0.05% or less, S: 0.005% or less, Al: 0.01 to 0.10%, Cr: 0.05 to 1.0%, Nb: 0.010 to 0.070%, Ti: 0.005 to 0.040% and N: 0.0005 to 0.0065%
  • the mass ratio of Ti and N: Ti / N is 2.5 or more and 7.5 or less, and the balance has a steel composition consisting of Fe and inevitable impurities, While 70 mass% or more of Ti in steel exists as precipitates, 15 mass% or more of Nb in steel exists as solute Nb, A cold-rolled steel sheet excellent in spot weldability having a tensile strength of 980 MPa or more.
  • the steel composition is further mass%, Mo: 0.01 to 1.0%, Cu: 1.0% or less,
  • the steel material having the steel composition described in 1 or 2 above is heated to a temperature range of (Ts ⁇ 50) ° C. or more and (Ts + 200) ° C. when Ts is set to a temperature represented by the following formula (1).
  • Rolling end temperature after performing hot rolling at 850 ° C. or higher, and then winding at a temperature of 650 ° C. or lower to form a hot rolled steel sheet, Cold rolling the hot-rolled steel sheet to form a cold-rolled steel sheet;
  • the cold-rolled steel sheet is heated to a temperature range of 700 ° C. to 900 ° C., and in the subsequent cooling process, the average cooling rate: 12 ° C./s to 100 ° C./s to 200 ° C. to 450 ° C.
  • a method for producing a cold-rolled steel sheet having excellent spot weldability comprising: a step of cooling and holding for 30 seconds to 600 seconds in the temperature range and performing a continuous annealing.
  • Ts (° C.) 6770 / [2.26 ⁇ log 10 ⁇ [% Nb] ⁇ ([% C] +0.86 [% N]) ⁇ ]-273 (1)
  • [% Nb], [% C] and [% N] indicate the contents (mass%) of Nb, C and N in the steel, respectively.
  • a cold-rolled steel sheet excellent in spot weldability with a tensile strength of 980 MPa or more can be obtained without causing an increase in production cost or a decrease in productivity.
  • the cold-rolled steel sheet of the present invention it is possible to improve the production efficiency when manufacturing a steel structure such as an automobile and the safety for passengers of the automobile, and further contribute greatly to the reduction of the environmental load accompanying the improvement of fuel consumption. Can do.
  • C 0.05 to 0.13% C is the most important element for strengthening steel and has a high solid solution strengthening ability. In order to acquire such an effect, 0.05% or more of C is required.
  • the amount of C exceeds 0.13%, the martensite phase in the base material is increased and markedly hardened, and the hole expandability deteriorates.
  • the C content is limited to a range of 0.05 to 0.13%. Preferably it is 0.06 to 0.12% of range.
  • Si 0.05-2.0%
  • Si is a necessary element in steelmaking that acts as a deoxidizing material. Moreover, Si has the effect of increasing the strength of a steel sheet by solid solution in steel and solid solution strengthening. In order to obtain such an effect, it is necessary to contain 0.05% or more of Si.
  • the amount of Si exceeds 2.0%, the toughness of the weld metal and the weld heat affected zone is significantly deteriorated, and the fracture strength of the weld is lowered. For this reason, the amount of Si is limited to the range of 0.05 to 2.0%. Preferably it is 0.10 to 1.60% of range.
  • Mn 1.5 to 4.0% Mn has the effect of increasing the hardenability of steel at a relatively low cost, and in order to ensure a base material strength of tensile strength: 980 MPa or more, it is necessary to make the amount of Mn 1.5% or more. is there.
  • the amount of Mn exceeds 4.0%, the fracture strength of the welded portion decreases and the microsegregation of the base material increases, which promotes the occurrence of delayed fracture starting from the base material segregated portion.
  • the amount of Mn is limited to the range of 1.5 to 4.0%. Preferably it is in the range of 1.7 to 3.8%.
  • P 0.05% or less P is an element having a large solid solution strengthening ability, but promotes microsegregation together with Mn. For this reason, if the amount of P exceeds 0.05%, not only the base material becomes brittle, but also the grain boundary segregation part tends to be the starting point of delayed fracture. Therefore, it is desirable to reduce P as much as possible with 0.05% as the upper limit. However, excessive P reduction raises the refining cost and is economically disadvantageous, so the lower limit of P is preferably about 0.005%.
  • S 0.005% or less S is segregated at the grain boundary to lower the ductility during hot rolling, so it is desirable to reduce 0.005% as much as possible.
  • Al acts as a deoxidizer and is the most widely used element in the molten steel deoxidation process for steel sheets. Moreover, it has the effect which suppresses the embrittlement by solid solution N by fixing solid solution N in steel and forming AlN. In order to obtain such an effect, it is necessary to contain 0.01% or more of Al. On the other hand, if the Al content exceeds 0.10%, surface cracks during slab production are promoted. For this reason, the Al content is limited to a range of 0.01 to 0.10%. Preferably it is 0.02 to 0.07% of range.
  • Cr 0.05 to 1.0% Cr has the effect of increasing the hardenability of steel relatively inexpensively, delays the bainite transformation of the intermediate hardness phase in the annealing process, generates martensite of the high hardness phase, and contributes to the improvement of the strength of the steel. It is an element. In order to obtain such an effect, it is necessary to contain 0.05% or more of Cr. On the other hand, if the amount of Cr exceeds 1.0%, not only does it promote embrittlement due to an excessive increase in strength, but it also becomes economically disadvantageous. For this reason, the Cr content is limited to a range of 0.05 to 1.0%. Preferably, it is in the range of 0.07 to 0.8%.
  • Nb 0.010 to 0.070% Nb is present as a solid solution Nb in the annealing heating after cold rolling, thereby producing a solution drag effect, and delaying the recrystallization of the processed structure generated by cold rolling, thereby allowing the steel plate after annealing to It is an important element for increasing strength.
  • generated by a hot rolling and annealing process refines
  • the Nb content exceeds 0.070%, coarse carbonitride precipitates, which may promote surface cracking during slab production and may be a starting point for fracture.
  • the Nb content is limited to the range of 0.010 to 0.070%. Preferably it is 0.015 to 0.060% of range.
  • Ti 0.005 to 0.040%
  • Ti is an important alloying element in the present invention, and has the effect of suppressing the coarsening of crystal grains in the base metal, the weld metal and the weld heat affected zone by fixing solid solution N to form TiN. , It has the effect of suppressing embrittlement by reducing the solid solution N.
  • the formation of TiN effectively contributes to securing a predetermined amount of solid solution Nb through suppressing the formation of Nb nitride in the hot rolling and annealing processes, and increasing the strength of the steel sheet after annealing. In order to obtain such an effect, it is necessary to contain 0.005% or more of Ti.
  • the amount of Ti exceeds 0.040%, very hard and brittle TiC precipitates and promotes embrittlement. For this reason, the amount of Ti is limited to the range of 0.005 to 0.040%. Preferably, the content is 0.010 to 0.035%.
  • N 0.0005 to 0.0065% N is contained in steel as an unavoidable impurity, but by adding an appropriate amount of Ti, TiN is formed, and the effect of suppressing the coarsening of crystal grains in the weld metal and weld heat affected zone during welding is expressed. To do. In order to obtain such an effect, the N content needs to be 0.0005% or more. On the other hand, when the N content exceeds 0.0065%, the aging resistance is remarkably lowered due to an increase in the solid solution N. Therefore, the N content is limited to a range of 0.0005 to 0.0065%. Preferably, the content is 0.0010 to 0.0060%.
  • Ti / N 2.5 or more and 7.5 or less
  • mass ratio of Ti and N Ti / N appropriately with the above-described component composition.
  • Ti / N 2.5 or more and 7.5 or less
  • Ti / N is less than 2.5, the solid solution N in the steel sheet increases and promotes embrittlement.
  • Ti / N exceeds 7.5, very hard and brittle TiC is generated in the steel sheet, and the ductility is lowered and the embrittlement becomes remarkable.
  • Ti / N is limited to the range of 2.5 to 7.5. Preferably, it is in the range of 3.0 to 7.0.
  • the 1 type (s) or 2 or more types selected from Mo, Cu, Ni, and V can be contained as needed.
  • Mo: 0.01 to 1.0% Mo is an element that contributes to improving the strength of steel. In order to obtain such an effect, it is necessary to add 0.01% or more of Mo. On the other hand, if the amount of Mo exceeds 1.0%, not only does it promote embrittlement due to an excessive increase in strength, but it becomes economically disadvantageous. For this reason, when Mo is contained, the amount of Mo is in the range of 0.01 to 1.0%. Preferably it is 0.03 to 0.8% of range.
  • Cu 1.0% or less
  • Cu is an element that contributes to improving the strength of steel.
  • the amount of Cu exceeds 1.0%, hot brittleness is caused and the surface properties of the steel sheet are deteriorated. For this reason, when Cu is contained, the Cu content is 1.0% or less.
  • Ni 1.0% or less
  • Ni is an element that contributes to improving the strength of steel.
  • the amount of Ni exceeds 1.0%, the effect is saturated and economically disadvantageous. For this reason, when Ni is contained, the Ni content is 1.0% or less.
  • V 0.1% or less V is an element that contributes to improving the strength of steel. However, if the amount of V exceeds 0.1%, the base metal ductility is deteriorated. For this reason, when V is contained, the V amount is 0.1% or less.
  • the components other than the above are Fe and inevitable impurities.
  • Ratio of Ti present as precipitates in steel 70% by mass or more
  • the structure is refined by Ti precipitates, and the hole expandability of the finally obtained cold-rolled steel sheet is improved.
  • Ti exists as a precipitate in the cold-rolled steel sheet after annealing, coarsening of the crystal grains in the weld heat affected zone due to the welding heat history during welding is suppressed, and the fracture strength of the weld zone is improved.
  • 70 mass% or more needs to exist as a precipitate among Ti in steel.
  • the upper limit of the ratio of Ti existing as precipitates in the steel is not particularly specified, but when it becomes 100% by mass, the toughness is greatly deteriorated due to the remaining solid solution N. For this reason, it is preferable to make the ratio of Ti which exists as a precipitate in steel into less than 100 mass%, and it is more preferable to set it as less than 98 mass%.
  • the form of the precipitate is mainly TiN alone or a composite precipitate of TiN and other precipitates, but Ti oxide or Ti carbide is less than 10% of the total number of Ti-based precipitates. If there is, the effect is negligible even if mixed. Moreover, the presence form of Ti in steel other than a precipitate is solute Ti.
  • Ratio of Nb present as solid solution Nb in steel 15% by mass or more
  • Nb When Nb is present in a solid solution state, in the annealing process, it effectively contributes to increasing the strength of steel due to the effect of suppressing recrystallization during heating. At the same time, it has the effect of suppressing the softening of the weld heat affected zone of less than Ac 3 point.
  • 15% by mass or more of Nb in the steel needs to be present as solute Nb.
  • the upper limit of the ratio of Nb which exists as solid solution Nb in steel is not prescribed
  • the ratio of Nb which exists as solid solution Nb in steel shall be 70 mass% or less.
  • the presence form of Nb in steel other than solute Nb is an Nb precipitate, and examples of such an Nb precipitate include Nb carbide such as NbC, Nb carbonitride, and the like.
  • the temperature of the steel plate in manufacturing conditions shall mean the surface temperature of a steel plate.
  • Molten steel having the above component composition is melted by a known method such as a converter or an electric furnace, and a steel material such as a slab having a predetermined size is obtained by a known method such as a continuous casting method or an ingot-bundling rolling method. .
  • treatments such as ladle refining and vacuum degassing may be added to the molten steel.
  • the obtained steel material was immediately or once cooled, heated to a temperature range of (Ts-50) ° C. or higher and (Ts + 200) ° C. or lower, and hot rolled at a finish rolling finish temperature of 850 ° C. or higher.
  • Ts is defined by the following equation (1).
  • Ts (° C.) 6770 / [2.26 ⁇ log 10 ⁇ [% Nb] ⁇ ([% C] +0.86 [% N]) ⁇ ]-273 (1)
  • [% Nb], [% C] and [% N] indicate the contents (mass%) of Nb, C and N in the steel, respectively.
  • Heating temperature (Ts ⁇ 50) ° C. or more and (Ts + 200) ° C. or less
  • the carbonitride containing coarse Nb crystallized during the melting of the steel material does not contribute to increasing the strength of the steel sheet.
  • the coarse Nb-based crystallized product is once dissolved in steel in the heating stage before hot rolling, and then again in the process of rolling, cooling, annealing, etc., again with fine Nb carbides and It is important to deposit as carbonitride.
  • the heating temperature is less than (Ts-50) ° C., the heating is not sufficient, so that the Nb-based crystallized substance does not sufficiently dissolve in the steel, and the strength after annealing is insufficient.
  • the heating temperature is set to (Ts ⁇ 50) ° C. or more and (Ts + 200) ° C. or less. It is preferably (Ts ⁇ 20) ° C. or higher and (Ts + 170) ° C. or lower.
  • Finish rolling end temperature 850 ° C. or more
  • finish rolling end temperature 850 ° C. or more
  • Winding temperature 650 ° C. or less
  • NbC precipitated during winding is excessively coarsened, so that it easily becomes brittle and tends to be a starting point of fracture.
  • the coiling temperature of a hot-rolled steel sheet needs to be 650 degrees C or less.
  • it is 620 degrees C or less. Note that the lower limit of the coiling temperature of the hot-rolled steel sheet does not need to be specified in particular.
  • the obtained hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet.
  • the conditions for cold rolling need not be specified, but in order to ensure a desired strength after annealing, the total rolling reduction is preferably 30% or more. On the other hand, in order to avoid an excessive load on the rolling mill, the total rolling reduction is preferably 80% or less.
  • the cold-rolled steel sheet obtained as described above is subjected to continuous annealing under the following conditions.
  • Heating temperature in continuous annealing 700 ° C. or more and 900 ° C. or less
  • the heating temperature in continuous annealing is less than 700 ° C.
  • the reverse transformation of austenite becomes insufficient, and the amount of hard martensite or bainite generated during subsequent cooling is insignificant. It becomes sufficient and the desired strength cannot be obtained.
  • the heating temperature in continuous annealing shall be 700 degreeC or more and 900 degrees C or less.
  • they are 720 degreeC or more and 880 degrees C or less.
  • the holding time after heating need not be specified, but it is preferable to hold for 15 seconds or more in order to ensure a uniform temperature distribution and a stable microstructure.
  • holding for a long time not only lowers the production efficiency but also causes coarsening of austenite grains, so the holding time is preferably 600 s or less.
  • Average cooling rate 12 ° C./s or more and 100 ° C./s or less If the average cooling rate in the cooling process after heating is less than 12 ° C./s, a soft ferrite phase is excessively generated during cooling and the desired strength is obtained. It becomes difficult to secure. Moreover, since Nb reprecipitates excessively in the middle of cooling, it becomes difficult to secure a desired amount of solid solution Nb. In addition, a coarse ferrite phase or pearlite phase is generated during cooling, and the strength decreases. On the other hand, when the average cooling rate after annealing exceeds 100 ° C./s, it becomes difficult to ensure the shape of the steel sheet. For this reason, the average cooling rate after annealing treatment shall be 12 degrees C / s or more and 100 degrees C / s or less. Preferably they are 14 degreeC / s or more and 70 degrees C / s or less.
  • Cooling stop temperature 200 ° C. or higher and 450 ° C. or lower If the cooling stop temperature is lower than 200 ° C., the conveyance speed of the steel sheet is extremely reduced, which is not preferable in terms of production efficiency. On the other hand, when the cooling is stopped at a temperature exceeding 450 ° C., a relatively soft bainite phase is excessively generated after the cooling is stopped, and it becomes difficult to secure a desired strength. Moreover, since Nb reprecipitates excessively after cooling is stopped, it is difficult to secure a desired amount of solid solution Nb. Furthermore, a soft structure such as ferrite is excessively generated and the strength is insufficient. For this reason, cooling stop temperature shall be 200 degreeC or more and 450 degrees C or less. Preferably they are 230 degreeC or more and 420 degrees C or less.
  • Holding time in the cooling stop temperature region 30 s or more and 600 s or less
  • the holding time in the cooling stop temperature region is less than 30 s, the temperature and the uniformity of the material in the steel sheet are lowered.
  • the holding time in the cooling stop temperature region exceeds 600 s, the manufacturing efficiency is lowered. For this reason, the holding time in the cooling stop temperature region is set to 30 s or more and 600 s or less.
  • the steel having the composition shown in Table 1 was melted in a converter and then smelted in a ladle and made into a steel slab by continuous casting. Subsequently, the steel slab was hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet. Thereafter, these hot-rolled steel sheets were subjected to cold rolling and continuous annealing under the conditions shown in Table 2 to obtain cold-rolled steel sheets to be product plates.
  • the cold-rolled steel sheet thus obtained was subjected to (1) extraction residue analysis of precipitates, (2) tensile test, and (3) spot welding test in the following manner.
  • the cross-sectional test was implemented based on JISZ3139 (2009). That is, two cold-rolled steel plates of the same steel type were spot-welded under the same conditions as the above-mentioned cross-shaped tensile test piece production conditions. Next, the welded section cut out perpendicular to the steel sheet surface was polished and then subjected to nital corrosion to obtain a test piece for hardness measurement.
  • the tensile strength is 980 MPa or more
  • the cross tensile force is 10 kN / spot or more
  • the breaking mode is plug breaking
  • the maximum and minimum values of Vickers hardness are shown.
  • Excellent spot weldability with a value difference ⁇ HV of less than 120 was obtained.
  • the total elongation was 13% or more.
  • at least one of the tensile strength and total elongation of the base material, the cross tensile force and the fracture mode in the spot welding test, and the difference between the maximum value and the minimum value ( ⁇ HV) of Vickers hardness is sufficient. I could't say that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

 質量%で、C:0.05~0.13%、Si:0.05~2.0%、Mn:1.5~4.0%、P:0.05%以下、S:0.005%以下、Al:0.01~0.10%、Cr:0.05~1.0%、Nb:0.010~0.070%、Ti:0.005~0.040%およびN:0.0005~0.0065%を含有し、さらにTiとNの質量比:Ti/Nが2.5以上7.5以下であって、残部がFeおよび不可避的不純物からなる鋼組成とし、鋼中のTiのうち70質量%以上を析出物として存在させる一方、鋼中のNbのうち15質量%以上を固溶Nbとして存在させ、引張強さを980MPa以上とすることにより、自動車や電機等に用いて好適なスポット溶接性に優れた冷延鋼板を提供する。

Description

スポット溶接性に優れた冷延鋼板およびその製造方法
 本発明は、自動車、電機等に供して好適な板厚0.4mm以上3.0mm以下の冷延鋼板に関し、特には、引張強さが980MPa以上のスポット溶接性に優れた冷延鋼板およびその製造方法に関する。
 近年、地球環境保全の観点から自動車の燃費向上が重要になっており、車体の軽量化が進められている。これに対しては、使用する鋼板を高強度化し、板厚を薄くすることが、最も有効な手段である。また、乗員の安全性向上技術も重要な課題であり、これに対しても、使用する鋼板の高強度化が有効な対策となる。このような鋼板の高強度化を目的として、従来、熱間圧延とその後の連続焼鈍条件を厳格に管理するとともに、鋼板中にCやMnなど種々の合金元素を添加することが行われてきた。
 一方、冷延鋼板が自動車用部材として用いられる際には、成形加工の後、鋼板同士を溶接により接合し、所望の形状に仕上げる方法が一般的である。このため、車体構造として優れた安全性を確保するには、冷延鋼板母材のみならず溶接金属と溶接熱影響部を含む領域についても、優れた機械的特性が必要となる。従来、自動車用の冷延鋼板としての優れた溶接部特性を確保するための対策として、CやMnなど焼入れ性を高める合金元素と、PやSなど溶接部のミクロ偏析を助長する不純物元素の添加量を制限することが一般的に行われてきた。
 しかしながら、引張強さ:980MPa以上の高強度化とスポット溶接性の両立は、CやMnなどの合金成分が相反することとなるため、その達成が極めて困難である。
 例えば、一般的な自動車用鋼板の接合方法として用いられる抵抗スポット溶接においては、鋼板を融点まで加熱した後、急冷することで、溶接金属は粗大な柱状の凝固マルテンサイト単相組織となる。また。Ac3点以上の温度域まで加熱される溶接熱影響部(以下、Ac3点以上の溶接熱影響部ともいう)も比較的粗大なマルテンサイト組織となる。このため、溶接金属およびAc3点以上の溶接熱影響部は、母材と比較して硬度が高くなり、脆化し易い。また、Ac3点未満の温度域までにしか加熱されない溶接熱影響部(以下、Ac3点未満の溶接熱影響部ともいう)では、焼戻しの効果による強度低下が生じ易く、母材が高強度になるほど、母材に対する軟化度が大きくなる傾向にある。通常、溶接部は、母材と異なり形状が不連続となるため、応力が集中し易く、また溶接熱履歴による残留応力の発生が避けられない。その上、特に高強度鋼板では、溶接金属-溶接熱影響部-母材にわたる領域の強度の不連続が顕著となり、母材と比較して、スポット溶接部の破断強度の低下を招き易い。
特開2012-167338号公報 特許第4530606号公報 特許第4883216号公報 特許第5142068号公報 特許第5323552号公報
 このように、特許文献1~5などで提案されている高強度鋼板では、十分な経済性や生産性の下、引張強さ:980MPa以上の高強度化とスポット溶接性の十分な改善とを両立するには至っていないのが現状である。
 本発明は、上記の現状に鑑み開発されたものであって、製造コストの増大や生産性の低下を招くことなく、引張強さが980MPa以上であるスポット溶接性に優れた冷延鋼板を、その有利な製造方法とともに提供することを目的とする。
 なお、本発明において「スポット溶接性に優れた」とは、JIS Z 3137(1999)に準拠する十字引張試験において、十字引張力が10kN/spot以上でかつ破断形態がプラグ破断となり、またJIS Z 3139(2009)に準拠するスポット溶接部の断面試験において、溶接金属部から母材部までの領域でのビッカース硬度の最大値と最小値の差ΔHVが120未満であることを意味する。
 さて、発明者らは、上記の課題を達成するため、鋼板の化学成分、製造方法およびミクロ組織を決定する各種要因に関して鋭意研究を行い、以下の知見を得た。
(1) 引張強さ:980MPa以上を達成するには、鋼板の化学組成を厳密に調整し、さらにTiとNの質量%比(Ti/N)を適正に制御することが重要である。
 というのは、Ti/Nを適正に制御することで、TiNの生成による結晶粒微細化強化と析出強化が発現するからである。加えて、Nb窒化物の生成抑制を介して、焼鈍過程で固溶状態のNbを確保することが可能となり、これにより発現する加熱時の再結晶進行を遅延させる効果が、鋼板の高強度化に寄与するからである。
(2) 優れたスポット溶接性を達成するには、溶接金属およびAc3点以上の溶接熱影響部の脆化を抑制する一方、Ac3点未満の溶接熱影響部の軟化を抑制することが重要である。
 ここで、溶接金属およびAc3点以上の溶接熱影響部の脆化を抑制するには、溶接金属および溶接熱影響部において、固溶Nを極力低減すること、結晶粒を微細化すること、および過度な硬化を抑制することが必要である。
 また、鋼中に適正量の固溶Nbを存在させることにより、溶接時の冷却過程の低温域でNbCが形成されるため、Ac3点未満の溶接熱影響部における軟化を抑制することができる。
(3) 上記のような効果を有効に発現させるには、焼鈍後の冷延鋼板中のTiおよびNbの存在状態を適正に制御することが必要である。
 また、所望とするTiおよびNbの存在状態を得るには、鋼板の成分組成およびTi/Nを厳密に調整した上で、製造条件、特に熱間圧延条件および焼鈍条件を適正に制御することが重要である。
 本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
 C:0.05~0.13%、
 Si:0.05~2.0%、
 Mn:1.5~4.0%、
 P:0.05%以下、
 S:0.005%以下、
 Al:0.01~0.10%、
 Cr:0.05~1.0%、
 Nb:0.010~0.070%、
 Ti:0.005~0.040%および
 N:0.0005~0.0065%
を含有し、さらにTiとNの質量比:Ti/Nが2.5以上7.5以下であって、残部がFeおよび不可避的不純物からなる鋼組成を有し、
 鋼中のTiのうち70質量%以上が析出物として存在する一方、鋼中のNbのうち15質量%以上が固溶Nbとして存在し、
 引張強さが980MPa以上である、スポット溶接性に優れた冷延鋼板。
2.前記鋼組成が、さらに質量%で、
 Mo:0.01~1.0%、
 Cu:1.0%以下、
 Ni:1.0%以下および
 V:0.1%以下
から選んだ1種または2種以上を含有する、前記1に記載のスポット溶接性に優れた冷延鋼板。
3.前記1または2に記載の鋼組成を有する鋼素材を、Tsを下記式(1)で示される温度とするとき、(Ts-50)℃以上(Ts+200)℃以下の温度域に加熱し、仕上圧延終了温度:850℃以上の熱間圧延を施した後、650℃以下の温度で巻取ることにより、熱延鋼板とする工程と、
 前記熱延鋼板を冷間圧延し、冷延鋼板とする工程と、
 前記冷延鋼板を、700℃以上900℃以下の温度域に加熱し、その後の冷却過程において、平均冷却速度:12℃/s以上100℃/s以下で200℃以上450℃以下の温度域まで冷却し、該温度域で30s以上600s以下の時間保持する、連続焼鈍を行う工程とをそなえる、スポット溶接性に優れた冷延鋼板の製造方法。
                記
 Ts(℃)=6770/[2.26-log10{[%Nb]×
       ([%C]+0.86[%N])}]-273  ・・・(1)
 ここで、[%Nb]、[%C]および[%N]は、それぞれ鋼中のNb、CおよびNの含有量(質量%)を示す。
 本発明によれば、製造コストの増大や生産性の低下を招くことなく、引張強さ:980MPa以上のスポット溶接性に優れた冷延鋼板を得ることができる。
 また、本発明の冷延鋼板を用いることにより、自動車などの鋼構造物作製時の製造効率や自動車搭乗者に対する安全性を向上でき、さらには燃費向上に伴う環境負荷の軽減に大きく寄与することができる。
 以下、本発明を具体的に説明する。
 まず、本発明において、鋼材の成分組成を前記の範囲に限定した理由について説明する。なお、鋼材の成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り単に「%」で示す。
C:0.05~0.13%
 Cは、鋼を強化する上で最も重要な元素であり、高い固溶強化能を有する。このような効果を得るには、Cの0.05%以上の含有を必要とする。一方、C量が0.13%を超えると、母材中のマルテンサイト相が増加して著しく硬化し、穴拡げ性が劣化する。このため、C量は0.05~0.13%の範囲に限定する。好ましくは0.06~0.12%の範囲である。
Si:0.05~2.0%
 Siは、脱酸材として作用する、製鋼上、必要な元素である。また、Siは、鋼に固溶して固溶強化により鋼板を高強度化する効果を有する。このような効果を得るためには、Siの0.05%以上の含有を必要とする。一方、Si量が2.0%を超えると、溶接金属および溶接熱影響部の靱性が顕著に劣化し、溶接部の破断強度が低下する。このため、Si量は、0.05~2.0%の範囲に限定する。好ましくは0.10~1.60%の範囲である。
Mn:1.5~4.0%
 Mnは、比較的安価に鋼の焼入れ性を増加させる効果を有し、引張強さ:980MPa以上の母材強度を確保するためには、Mn量を1.5%以上とすることが必要である。一方、Mn量が4.0%を超えると、溶接部の破断強度が低下するとともに、母材のミクロ偏析が大きくなり、母材偏析部を起点とした遅れ破壊の発生を助長する。このため、Mn量は、1.5~4.0%の範囲に限定する。好ましくは1.7~3.8%の範囲である。
P:0.05%以下
 Pは、固溶強化能が大きい元素であるが、Mnとともにミクロ偏析を助長する。このため、P量が0.05%を超えると、母材が脆化するだけでなく、粒界偏析部が遅れ破壊の発生起点となり易くなる。従って、Pは0.05%を上限として、可能な限り低減することが望ましい。ただし、過度のP低減は精錬コストを高騰させ経済的に不利となるため、Pの下限は0.005%程度とすることが望ましい。
S:0.005%以下
 Sは、粒界に偏析して熱間圧延時の延性を低下させるため、0.005%を上限として可能な限り低減することが望ましい。
Al:0.01~0.10%
 Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスにおいて、最も汎用的に用いられる元素である。また、鋼中の固溶Nを固定してAlNを形成することで、固溶Nによる脆化を抑制する効果を有する。このような効果を得るには、Alの0.01%以上の含有を必要とする。一方、Al量が0.10%を超えると、スラブ製造時の表面割れを助長する。このため、Al量は、0.01~0.10%の範囲に限定する。好ましくは0.02~0.07%の範囲である。
Cr:0.05~1.0%
 Crは、比較的安価に鋼の焼入れ性を増加させる効果を有し、焼鈍過程での中間硬度相のベイナイト変態を遅延化し、高硬度相のマルテンサイトを生成し、鋼の強度向上に寄与する元素である。このような効果を得るには、Crの0.05%以上の含有が必要である。一方、Cr量が1.0%を超えると、過度な強度上昇により脆化を助長するだけでなく、経済的にも不利になる。このため、Cr量は、0.05~1.0%の範囲に限定する。好ましくは、0.07~0.8%の範囲である。
Nb:0.010~0.070%
 Nbは、冷間圧延後の焼鈍加熱において、固溶Nbとして存在することにより、ソリュートドラッグ効果を発現し、冷間圧延で生成した加工組織の再結晶を遅延することにより、焼鈍後の鋼板を高強度化する重要な元素である。また、熱間圧延および焼鈍工程で生成するNbCは、母材および溶接熱影響部のミクロ組織を微細化して、靱性を改善する。このような効果を得るためには、Nbの0.010%以上の含有が必要である。一方、Nb量が0.070%を超えると、粗大な炭窒化物が析出し、スラブ製造時の表面割れを助長するとともに、破壊の起点となることがある。このため、Nb量は、0.010~0.070%の範囲に限定する。好ましくは0.015~0.060%の範囲である。
Ti:0.005~0.040%
 Tiは、本発明において重要な合金元素であり、固溶Nを固定してTiNを形成することにより、母材、溶接金属および溶接熱影響部における結晶粒の粗大化を抑制する効果を有するとともに、固溶Nの低減により脆化を抑制する効果を有する。また、TiNの形成により、熱間圧延および焼鈍工程において、Nb窒化物の生成抑制を介して所定量の固溶Nbを確保し、焼鈍後の鋼板を高強度化するのに有効に寄与する。このような効果を得るためには、Tiの0.005%以上の含有が必要である。一方、Ti量が0.040%を超えると、非常に硬くて脆いTiCが析出し、脆化を助長する。このため、Ti量は0.005~0.040%の範囲に限定する。好ましくは0.010~0.035%である。
N:0.0005~0.0065%
 Nは、不可避的不純物として鋼中に含まれるが、Tiを適量添加することにより、TiNを形成し、溶接の際に溶接金属および溶接熱影響部における結晶粒の粗大化を抑制する効果を発現する。このような効果を得るためには、N量を0.0005%以上とする必要がある。一方、N量が0.0065%を超えると、固溶Nの増大により、耐時効性が著しく低下する。このため、N量は0.0005~0.0065%の範囲に限定する。好ましくは0.0010~0.0060%である。
 また、本発明では、上記した成分組成とするとともに、TiとNの質量%比:Ti/Nを適正に制御することが重要である。
Ti/N:2.5以上7.5以下
 Ti/Nを上記の範囲内に制御することにより、TiNの生成による結晶粒微細化強化と析出強化が発現する。また、Nb窒化物の生成抑制を介して、焼鈍過程で適正量の固溶Nbを確保することが可能となり、これにより発現する加熱時の再結晶進行を遅延させる効果が、鋼板の高強度化に寄与する。また、溶接金属および溶接熱影響部においては、固溶Nの低減および結晶粒の微細化に寄与し、溶接金属および溶接熱影響部の脆化を防止する。
 ここで、Ti/Nが2.5未満になると、鋼板中の固溶Nが増加し、脆化を助長する。一方、Ti/Nが7.5を超えると、非常に硬くて脆いTiCが鋼板中に生成し、延性の低下、ひいては脆化が顕著になる。このため、Ti/Nは2.5~7.5の範囲に限定する。好ましくは3.0~7.0の範囲である。
 以上、基本成分について説明したが、本発明では、必要に応じて、Mo、Cu、NiおよびVのうちから選んだ1種または2種以上を含有させることができる。
Mo:0.01~1.0%
 Moは、鋼の強度向上に寄与する元素である。このような効果を得るためには、Moの0.01%以上の添加が必要である。一方、Mo量が1.0%を超えると、過度な強度上昇により脆化を助長するだけでなく、経済的に不利になる。このため、Moを含有させる場合、Mo量は0.01~1.0%の範囲とする。好ましくは0.03~0.8%の範囲である。
Cu:1.0%以下
 Cuは鋼の強度向上に寄与する元素であるが、Cu量が1.0%を超えると熱間脆性を生じて鋼板の表面性状を劣化させる。このため、Cuを含有させる場合、Cu量は1.0%以下とする。
Ni:1.0%以下
 Niは、鋼の強度向上に寄与する元素であるが、Ni量が1.0%を超えるとその効果は飽和し、経済的に不利になる。このため、Niを含有させる場合、Ni量は1.0%以下とする。
V:0.1%以下
 Vは、鋼の強度向上に寄与する元素であるが、V量が0.1%を超えると母材延性を劣化させる。このため、Vを含有させる場合、V量は0.1%以下とする。
 本発明の鋼板における成分組成のうち、上記以外の成分はFeおよび不可避的不純物である。
 以上、本発明の鋼板における成分組成について説明したが、本発明では、TiおよびNbの鋼中における存在形態を適正に制御することが極めて重要である。
鋼中に析出物として存在するTiの割合:70質量%以上
 焼鈍過程においては、Ti析出物により組織が微細化され、最終的に得られる冷延鋼板の穴拡げ性が向上する。また、焼鈍後の冷延鋼板中にTiが析出物として存在すると、溶接の際の溶接熱履歴による溶接熱影響部の結晶粒の粗大化が抑制され、溶接部の破断強度が向上する。このような効果を得るためには、鋼中のTiのうち70質量%以上が析出物として存在する必要がある。好ましくは75質量%以上である。また、鋼中に析出物として存在するTiの割合の上限は特に規定されるものではないが、100質量%となると固溶Nの残存により靭性が大きく劣化する。このため、鋼中に析出物として存在するTiの割合は100質量%未満とすることが好ましく、98質量%未満とすることがより好ましい。
 なお、析出物の形態は、TiNの単独、もしくはTiNと他の析出物との複合析出物が主であるが、Ti酸化物あるいはTi炭化物が、全体のTi系析出物個数の10%未満であれば、混入してもその影響は無視できる。また、析出物以外の鋼中におけるTiの存在形態は、固溶Tiである。
鋼中に固溶Nbとして存在するNbの割合:15質量%以上
 Nbが固溶状態で存在すると、焼鈍過程においては、加熱時の再結晶抑制効果により、鋼の高強度化に有効に寄与するとともに、Ac3点未満の溶接熱影響部の軟化を抑制する効果を有する。
 このような効果を得るためには、鋼中のNbのうち15質量%以上が固溶Nbとして存在する必要がある。好ましくは20質量%以上である。
 なお、鋼中に固溶Nbとして存在するNbの割合の上限は特に規定されるものではないが、鋼中の固溶Nb量が過度に多くなっても上記のような効果は飽和し、製造コストが上昇する。このため、鋼中に固溶Nbとして存在するNbの割合は70質量%以下とすることが好ましい。
 また、固溶Nb以外の鋼中におけるNbの存在形態はNb析出物であり、かようなNb析出物としては、NbCといったNb炭化物やNb炭窒化物などが挙げられる。
 次に、本発明の製造方法について説明する。なお、製造条件における鋼板の温度は、鋼板の表面温度を意味するものとする。
 上記した成分組成の溶鋼を転炉、電気炉等の公知の方法で溶製し、連続鋳造法または造塊-分塊圧延法等の公知の方法で、所定寸法のスラブ等の鋼素材とする。なお、溶鋼に、取鍋精錬や真空脱ガス等の処理を付加しても良いことは言うまでもない。
 ついで、得られた鋼素材を、直ちにまたは一旦冷却し、(Ts-50)℃以上(Ts+200)℃以下の温度域に加熱し、仕上圧延終了温度:850℃以上にて熱間圧延を施した後、650℃以下で巻取って熱延鋼板とする。
 なお、Tsは次式(1)により定義される。
 Ts(℃)=6770/[2.26-log10{[%Nb]×
       ([%C]+0.86[%N])}]-273  ・・・(1)
 ここで、[%Nb]、[%C]および[%N]は、それぞれ鋼中のNb、CおよびNの含有量(質量%)を示す。
加熱温度:(Ts-50)℃以上(Ts+200)℃以下
 鋼素材の溶製時に晶出した粗大なNbを含む炭窒化物は、鋼板の高強度化に寄与しない。このため、粗大なNb系晶出物は、熱間圧延前の加熱段階で、一旦、鋼中に固溶させて、その後の圧延、冷却、焼鈍等の過程で、再度、微細なNb炭化物や炭窒化物として析出させることが重要である。
 ここに、加熱温度が(Ts-50)℃未満では、加熱が十分ではないためにNb系晶出物が十分に鋼中に固溶せず、焼鈍後の強度が不足する。一方、(Ts+200)℃を超えると、上記の効果が飽和する。また、Ti晶出物が完全に固溶して、焼鈍後に適正量のTiを析出物として存在させることが困難となる。さらに、加熱のための燃料費の増加とともにスケールオフ増大による歩留まり低下のため、経済的に不利である。従って、加熱温度は(Ts-50)℃以上(Ts+200)℃以下とする。好ましくは(Ts-20)℃以上(Ts+170)℃以下である。
仕上圧延終了温度:850℃以上
 仕上圧延終了温度が850℃未満になると、圧延効率が低下するだけでなく、圧延荷重が増大し、圧延機への負荷が大きくなる。このため、仕上圧延終了温度は850℃以上とする。
巻取り温度:650℃以下
 熱延鋼板の巻取り温度が650℃を超えると、巻取り中に析出するNbCが過度に粗大化するため、脆化し易く、破壊の起点となり易い。このため、熱延鋼板の巻取り温度は650℃以下とする必要がある。好ましくは620℃以下である。なお、熱延鋼板の巻取り温度の下限は特に規定する必要はないが、過度の温度低下は製造効率を低下させるため、400℃程度とすることが好ましい。
 ついで、得られた熱延鋼板に冷間圧延を施し、冷延鋼板とする。ここに、冷間圧延の条件は特に規定する必要はないが、焼鈍後に所望の強度を確保するには、総圧下率を30%以上とすることが好ましい。一方、圧延機への過度の負荷を避けるためには、総圧下率を80%以下とすることが好ましい。
 そして、上記のようにして得られた冷延鋼板に、以下の条件で連続焼鈍を施す。
連続焼鈍における加熱温度:700℃以上900℃以下
 連続焼鈍における加熱温度が700℃未満であると、オーステナイトの逆変態が不十分となり、その後の冷却時に生成する硬質のマルテンサイトもしくはベイナイトの量が不十分となり、所望の強度が得られない。一方、900℃を超えると、オーステナイト粒の粗大化が顕著になり、母材の穴拡げ性および溶接熱影響部の靭性が劣化する。このため、連続焼鈍における加熱温度は、700℃以上900℃以下とする。好ましくは720℃以上880℃以下である。
 なお、加熱後の保持時間は特に規定する必要はないが、均一な温度分布と安定したミクロ組織を確保するには15s以上保持することが好ましい。一方、長時間の保持は、製造効率の低下だけでなく、オーステナイト粒の粗大化を招くため、保持時間は600s以下とすることが好ましい。
平均冷却速度:12℃/s以上100℃/s以下
 加熱後の冷却過程における平均冷却速度が12℃/s未満であると、冷却中に軟質のフェライト相が過剰に生成して所望の強度を確保し難くなる。また、冷却の途中でNbが過度に再析出するため、所望量の固溶Nbを確保することが困難になる。さらに、冷却の途中に粗大なフェライト相やパーライト相が生成し、強度が低下する。一方、焼鈍後の平均冷却速度が100℃/sを超えると、鋼板形状の確保が困難になる。このため、焼鈍処理後の平均冷却速度は、12℃/s以上100℃/s以下とする。好ましくは14℃/s以上70℃/s以下である。
冷却停止温度:200℃以上450℃以下
 冷却停止温度を200℃未満とすると、鋼板の搬送速度を極端に低下させることになるため、製造効率の面で好ましくない。一方、450℃を超える温度で冷却を停止すると、冷却停止後に比較的軟質のベイナイト相が過剰に生成して所望の強度を確保し難くなる。また、冷却停止後にNbが過度に再析出するため、所望量の固溶Nbを確保することが困難になる。さらに、フェライトなどの軟質の組織が過度に生成し、強度が不足する。このため、冷却停止温度は200℃以上450℃以下とする。好ましくは230℃以上420℃以下である。
冷却停止温度域における保持時間:30s以上600s以下
 冷却停止温度域における保持時間が30s未満であると、鋼板内の温度、材質の均一性が低下する。一方、冷却停止温度域における保持時間が600sを超えると、製造効率が低下する。このため、冷却停止温度域における保持時間は、30s以上600s以下とする。
 表1に示す成分組成となる鋼を、転炉で溶製後、取鍋精錬を行い、連続鋳造により鋼スラブとした。ついで、鋼スラブに、表2に示す条件で熱間圧延を施し、熱延鋼板とした。その後、これらの熱延鋼板に、表2に示す条件で冷間圧延、連続焼鈍を施し、製品板となる冷延鋼板を得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 かくして得られた冷延鋼板について、以下の要領で、(1)析出物の抽出残渣分析、(2)引張試験、および(3)スポット溶接試験を実施した。
(1)析出物の抽出残渣分析
 上記のようにして得られた各冷延鋼板から電解抽出用試験片を採取し、該試験片について、AA系電解液(アセチルアセトンテトラメチルアンモニウムクロライドのエタノール溶液)を用いた電解処理を実施し、ろ過により残渣を抽出した。
 抽出した残渣について、純水で100mlに定容して、高周波誘導結合プラズマ(Inductively Coupled Plasma)発光分光法によりTi量を測定し、測定したTi量を析出物として存在するTi量とした。また、同様に、抽出した残渣中のNb量を測定し、この測定したNb量を、試験片中に含有される全Nb量から差し引くことで、固溶Nb量を算出した。
 かくして算出した析出物として存在するTi量および固溶Nb量をそれぞれ、試験片中に含有される全Ti量およびNb量で除することで、鋼中に析出物として存在するTiの割合および鋼中に固溶Nbとして存在するNbの割合を求めた。これらの評価結果を表3に示す。
(2)引張試験
 圧延方向に対して直角方向からJIS5号引張試験片を採取し、JIS Z 2241(2011)に準拠して、引張強さ(TS)および全伸び(El)を測定した。これらの評価結果を表3に示す。なお、ここでは、TS≧980MPa、El≧13%以上となるものを良好と判定した。
(3)スポット溶接試験
・十字引張試験
 上記のようにして得られた冷延鋼板を用い、JIS Z 3137(1999)に準拠した十字形引張試験片を作製した。ここで、十字形引張試験片の作製におけるスポット溶接は、日本溶接協会規格:WES7301に準拠し、ナゲット径が6.0mmとなる溶接条件で実施した。
 ついで、作製した十字形引張試験片を用い、JIS Z 3137(1999)に準拠して、十字引張試験を実施した。ここでは、十字引張力が10kN/spot以上で、かつ破断形態がプラグ破断であるものを、スポット溶接性に優れると判断した。
・断面試験
 また、JIS Z 3139(2009)に準拠して、断面試験を実施した。
 すなわち、上記の十字形引張試験片の作製条件と同じ条件で、同じ鋼種の2枚の冷延鋼板をスポット溶接した。ついで、鋼板表面に垂直に切り出した溶接部断面を研磨した後、ナイタール腐食し、硬度測定用試験片とした。JIS Z 2244(2009)に準拠し、試験力0.9807Nで、板厚方向中心位置から0.5mm上方および0.5mm下方位置において、鋼板表面と平行な方向の2方向に、ナゲットの中心位置から0.5mmピッチで、溶接金属部から母材部までビッカース硬度試験を実施し、測定したビッカース硬度の最大値と最小値の差(ΔHV)を求めた。ここでは、ΔHVが120未満であるものをスポット溶接性に優れると判断した。
 これらの評価結果を表3に併記する。
Figure JPOXMLDOC01-appb-T000003
 表3に示したとおり、発明例ではいずれも、引張強さ:980MPa以上であるとともに、十字引張力が10kN/spot以上で、かつ破断形態がプラグ破断であり、またビッカース硬度の最大値と最小値の差ΔHVが120未満という優れたスポット溶接性が得られた。また、発明例ではいずれも、全伸びが13%以上であった。
 一方、比較例では、母材の引張強さおよび全伸び、ならびにスポット溶接試験における十字引張力および破断形態、ビッカース硬度の最大値と最小値の差(ΔHV)のうちの少なくとも1つが十分なものとは言えなかった。

Claims (3)

  1.  質量%で、
     C:0.05~0.13%、
     Si:0.05~2.0%、
     Mn:1.5~4.0%、
     P:0.05%以下、
     S:0.005%以下、
     Al:0.01~0.10%、
     Cr:0.05~1.0%、
     Nb:0.010~0.070%、
     Ti:0.005~0.040%および
     N:0.0005~0.0065%
    を含有し、さらにTiとNの質量比:Ti/Nが2.5以上7.5以下であって、残部がFeおよび不可避的不純物からなる鋼組成を有し、
     鋼中のTiのうち70質量%以上が析出物として存在する一方、鋼中のNbのうち15質量%以上が固溶Nbとして存在し、
     引張強さが980MPa以上である、スポット溶接性に優れた冷延鋼板。
  2.  前記鋼組成が、さらに質量%で、
     Mo:0.01~1.0%、
     Cu:1.0%以下、
     Ni:1.0%以下および
     V:0.1%以下
    から選んだ1種または2種以上を含有する、請求項1に記載のスポット溶接性に優れた冷延鋼板。
  3.  請求項1または2に記載の鋼組成を有する鋼素材を、Tsを下記式(1)で示される温度とするとき、(Ts-50)℃以上(Ts+200)℃以下の温度域に加熱し、仕上圧延終了温度:850℃以上の熱間圧延を施した後、650℃以下の温度で巻取ることにより、熱延鋼板とする工程と、
     前記熱延鋼板を冷間圧延し、冷延鋼板とする工程と、
     前記冷延鋼板を、700℃以上900℃以下の温度域に加熱し、その後の冷却過程において、平均冷却速度:12℃/s以上100℃/s以下で200℃以上450℃以下の温度域まで冷却し、該温度域で30s以上600s以下の時間保持する、連続焼鈍を行う工程とをそなえる、スポット溶接性に優れた冷延鋼板の製造方法。
                    記
     Ts(℃)=6770/[2.26-log10{[%Nb]×
           ([%C]+0.86[%N])}]-273  ・・・(1)
     ここで、[%Nb]、[%C]および[%N]は、それぞれ鋼中のNb、CおよびNの含有量(質量%)を示す。
PCT/JP2015/003881 2014-08-08 2015-07-31 スポット溶接性に優れた冷延鋼板およびその製造方法 WO2016021169A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580042291.3A CN106661693B (zh) 2014-08-08 2015-07-31 点焊性优异的冷轧钢板及其制造方法
US15/329,026 US20170204492A1 (en) 2014-08-08 2015-07-31 Cold-rolled steel sheet having excellent spot weldability, and manufacturing method therefor
MX2017001687A MX2017001687A (es) 2014-08-08 2015-07-31 Lamina de acero laminada en frio que tiene excelente soldabilidad por puntos, y metodo de fabricacion para la misma.
EP15829208.6A EP3178954B1 (en) 2014-08-08 2015-07-31 Cold-rolled steel sheet having excellent spot weldability, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014162834A JP5935843B2 (ja) 2014-08-08 2014-08-08 スポット溶接性に優れた冷延鋼板およびその製造方法
JP2014-162834 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016021169A1 true WO2016021169A1 (ja) 2016-02-11

Family

ID=55263465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003881 WO2016021169A1 (ja) 2014-08-08 2015-07-31 スポット溶接性に優れた冷延鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US20170204492A1 (ja)
EP (1) EP3178954B1 (ja)
JP (1) JP5935843B2 (ja)
CN (1) CN106661693B (ja)
MX (1) MX2017001687A (ja)
WO (1) WO2016021169A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038045A1 (ja) * 2016-08-22 2018-03-01 Jfeスチール株式会社 抵抗溶接部を有する自動車用部材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102198585B1 (ko) 2016-08-10 2021-01-05 제이에프이 스틸 가부시키가이샤 박강판 및 그의 제조 방법
EP3467135B1 (en) 2016-08-10 2020-09-23 JFE Steel Corporation Thin steel sheet, and production method therefor
JP6624136B2 (ja) * 2017-03-24 2019-12-25 Jfeスチール株式会社 高強度鋼板およびその製造方法、抵抗スポット溶接継手、ならびに自動車用部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176781A (ja) * 1995-12-22 1997-07-08 Nkk Corp 溶接性と耐亜鉛メッキ割れ性に優れた調質型60キロ級鋼およびその製造方法
JP2004018912A (ja) * 2002-06-14 2004-01-22 Jfe Steel Kk 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP2008274360A (ja) * 2007-04-27 2008-11-13 Nippon Steel Corp 降伏点伸びを制御した高強度鋼板とその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7807507A (nl) * 1977-07-25 1979-01-29 Hoffmann La Roche Tricyclische verbindingen.
WO1999005335A1 (en) * 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP3424619B2 (ja) * 1999-09-16 2003-07-07 住友金属工業株式会社 高張力冷延鋼板及びその製造方法
WO2003106723A1 (ja) * 2002-06-14 2003-12-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP4306202B2 (ja) * 2002-08-02 2009-07-29 住友金属工業株式会社 高張力冷延鋼板及びその製造方法
EP1749895A1 (fr) * 2005-08-04 2007-02-07 ARCELOR France Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites
JP4924730B2 (ja) * 2009-04-28 2012-04-25 Jfeスチール株式会社 加工性、溶接性および疲労特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5434960B2 (ja) * 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
CN103930585B (zh) * 2011-11-15 2015-07-22 杰富意钢铁株式会社 薄钢板及其制造方法
US9115416B2 (en) * 2011-12-19 2015-08-25 Kobe Steel, Ltd. High-yield-ratio and high-strength steel sheet excellent in workability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176781A (ja) * 1995-12-22 1997-07-08 Nkk Corp 溶接性と耐亜鉛メッキ割れ性に優れた調質型60キロ級鋼およびその製造方法
JP2004018912A (ja) * 2002-06-14 2004-01-22 Jfe Steel Kk 伸びおよび伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP2008274360A (ja) * 2007-04-27 2008-11-13 Nippon Steel Corp 降伏点伸びを制御した高強度鋼板とその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038045A1 (ja) * 2016-08-22 2018-03-01 Jfeスチール株式会社 抵抗溶接部を有する自動車用部材
JPWO2018038045A1 (ja) * 2016-08-22 2018-08-23 Jfeスチール株式会社 抵抗溶接部を有する自動車用部材
CN109563588A (zh) * 2016-08-22 2019-04-02 杰富意钢铁株式会社 具有电阻焊接部的汽车用构件
EP3473740A4 (en) * 2016-08-22 2019-05-22 JFE Steel Corporation AUTOMOTIVE ELEMENT WITH RESISTANCE WELDING
US10940556B2 (en) 2016-08-22 2021-03-09 Jfe Steel Corporation Automotive member having resistance weld

Also Published As

Publication number Publication date
EP3178954A4 (en) 2018-01-10
US20170204492A1 (en) 2017-07-20
JP5935843B2 (ja) 2016-06-15
CN106661693B (zh) 2018-09-11
EP3178954A1 (en) 2017-06-14
CN106661693A (zh) 2017-05-10
MX2017001687A (es) 2017-04-27
EP3178954B1 (en) 2019-03-06
JP2016037650A (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5177310B2 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
EP2832889B1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
KR101846759B1 (ko) 강판 및 그 제조 방법
JP5846311B2 (ja) 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
EP2832890A1 (en) Low yield ratio high-strength steel plate having superior strain aging resistance, production method therefor, and high-strength welded steel pipe using same
JP6303782B2 (ja) 熱延鋼板およびその製造方法
EP3617337A1 (en) HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
WO2015162939A1 (ja) 厚鋼板及びその製造方法
CN111433381B (zh) 高Mn钢及其制造方法
JP6245352B2 (ja) 高張力鋼板およびその製造方法
JP5692305B2 (ja) 大入熱溶接特性と材質均質性に優れた厚鋼板およびその製造方法
JP5958428B2 (ja) 大入熱溶接用鋼板の製造方法
CN113166884A (zh) 焊接热影响区韧性优异的钢材及其制造方法
JP5935843B2 (ja) スポット溶接性に優れた冷延鋼板およびその製造方法
WO2014199488A1 (ja) 溶接用超高張力鋼板
JP5194572B2 (ja) 耐溶接割れ性が優れた高張力鋼材の製造方法
JP5483562B2 (ja) 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP5391606B2 (ja) 溶接性に優れた高強度冷延鋼板およびその製造方法
WO2016060141A1 (ja) 大入熱溶接用鋼材
CN111051555B (zh) 钢板及其制造方法
JP5935844B2 (ja) レーザ溶接部の耐遅れ破壊特性に優れた冷延鋼板およびその製造方法
JP2018024907A (ja) 鋼板およびその鋼板の製造方法
JP2018003115A (ja) 高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829208

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015829208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015829208

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15329026

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/001687

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE