WO2016020980A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016020980A1
WO2016020980A1 PCT/JP2014/070576 JP2014070576W WO2016020980A1 WO 2016020980 A1 WO2016020980 A1 WO 2016020980A1 JP 2014070576 W JP2014070576 W JP 2014070576W WO 2016020980 A1 WO2016020980 A1 WO 2016020980A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
short
power
circuit
Prior art date
Application number
PCT/JP2014/070576
Other languages
English (en)
French (fr)
Inventor
卓也 下麥
有澤 浩一
崇 山川
裕次 ▲高▼山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016539714A priority Critical patent/JP6400103B2/ja
Priority to CN201480080833.1A priority patent/CN106537750B/zh
Priority to PCT/JP2014/070576 priority patent/WO2016020980A1/ja
Priority to US15/326,776 priority patent/US9991817B2/en
Publication of WO2016020980A1 publication Critical patent/WO2016020980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power conversion device that converts AC power into DC power.
  • a power factor correction circuit that improves the power source power factor and reduces the harmonic component included in the input current is disclosed, and the full-wave rectification mode or the voltage doubler rectification mode is selected.
  • the power factor improvement function and the boosting function are realized by controlling the short circuit start time and the short circuit time of the short circuit element in an open loop. That is, in the prior art of Patent Document 1 below, the rectifier circuit is controlled to the full-wave rectification mode or the double voltage rectification mode by turning on and off the rectifier circuit switching switch, and the DC output voltage of the power factor correction circuit is roughly divided into two stages.
  • Patent Document 2 discloses a DC voltage that outputs a DC voltage control signal corresponding to a deviation value between a DC output voltage reference value set corresponding to a load and a voltage between terminals of a smoothing capacitor.
  • a control unit is provided, and a current reference calculation unit that outputs a current reference signal from the product of the control signal from the DC voltage control unit and a sine wave-like synchronization signal synchronized with the AC power supply is provided.
  • the switch element is controlled to be turned on and off at a high frequency, and the DC output voltage is controlled to a desired value while controlling the AC input current in a sine wave shape.
  • the power source power factor can be set to 1 to suppress the generation of harmonics.
  • the control pattern of the short circuit element is limited. That is, in these conventional techniques, the control pattern of the short-circuit element is limited to either the high-frequency switching mode in which current is fed back in the entire load region or the partial switching mode of current open loop control. Therefore, these prior arts do not operate the short-circuit element in order to avoid excessive boosting of the DC output voltage in the low load region, and power factor improvement is not performed. For this reason, the waveform distortion of the input current is large in the low load region, and the current containing a large amount of harmonic components flows through the reactor, increasing the reactor iron loss, thereby reducing the AC / DC conversion efficiency of the power factor correction circuit. .
  • the short-circuit control of the short-circuit element when performing the power factor improvement in the prior art of Patent Document 1 described above is a part in which the short-circuit start timing and the short-circuit time are controlled by an open loop, and the short-circuit operation is performed only for a certain period with respect to the power cycle Although it is a switching system, the power factor can be improved and the DC output voltage can be boosted, but the effect is small on the high load side where the amount of harmonic generation increases. Therefore, in order to obtain a sufficient power factor improvement effect in the conventional technology, that is, a harmonic suppression capability, with a future harmonic regulation strengthening, a reactor having a large inductance value is required. There arises a problem that the circuit is increased in size and cost.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a power conversion device that can satisfy high boosting performance and harmonic standards while achieving high efficiency over the entire operation region of the load. To do.
  • the present invention provides a rectifier circuit that converts AC power from an AC power source into DC power, a short-circuit unit that short-circuits the AC power source through a reactor, and the AC A control unit that generates a plurality of switching pulses for controlling the short-circuit unit during a half cycle of the power supply, and the control unit is a sinusoidal current control range that is a target control range of the power supply current of the AC power supply And the value of the power supply current is stored in the current control range.
  • the current control range sinusoidal, the peak of the power source current during the half cycle of the AC power source is suppressed, and high boosting performance and higher harmonics are achieved while achieving high efficiency over the entire operating region of the load. There is an effect that the wave standard can be satisfied.
  • FIG. 1 is a diagram illustrating a configuration example of a power conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a first configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 3 is a second configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 4 is a diagram illustrating a simple circuit including a reactor, a short-circuit unit, a rectifier circuit, and a smoothing capacitor.
  • FIG. 5 is a diagram showing a waveform of the power supply current when the short-circuit element is switched once in the half cycle of the AC power supply in the partial switching pulse mode.
  • FIG. 6 is an explanatory diagram of an operation when pulse conversion is not performed in the pulse conversion unit.
  • FIG. 1 is a diagram illustrating a configuration example of a power conversion device according to Embodiment 1 of the present invention.
  • FIG. 2 is a first configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 3 is a second configuration diagram of the reference voltage
  • FIG. 7 is an explanatory diagram of the operation when pulse conversion is performed in the pulse conversion unit.
  • FIG. 8 is a diagram illustrating a state in which the current control range is expanded.
  • FIG. 9 is a diagram showing a state where the current control range is narrowed.
  • FIG. 10 is an explanatory diagram of an operation when pulse conversion is performed in a period shorter than the ON period of the drive signal.
  • FIG. 11 is an explanatory diagram of an operation when pulse conversion is executed corresponding to the elapsed time from the zero cross of the power supply voltage.
  • FIG. 12 is a diagram illustrating a configuration example of the pulse conversion unit.
  • FIG. 13 is an explanatory diagram of the operation when the pulse converter shown in FIG. 12 is used.
  • FIG. 14 is an explanatory diagram of the operation of the power conversion device according to the second embodiment of the present invention.
  • FIG. 15 is a diagram illustrating the relationship between the power supply cycle and the change rate of the power supply current.
  • FIG. 16 is a diagram illustrating the relationship between the power supply cycle and the switching cycle when the current control range is a constant value with respect to the power supply cycle.
  • FIG. 1 is a diagram showing a configuration example of a power conversion device 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a first configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 3 is a second configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 4 is a diagram illustrating a simple circuit including the reactor 2, the short-circuit unit 30, the rectifier circuit 3, and the smoothing capacitor 4.
  • FIG. 5 is a diagram showing a waveform of the power supply current Is when the short-circuit element 32 is switched once in the positive-side half cycle of the AC power supply 1 in the partial switching pulse mode.
  • FIG. 6 is an explanatory diagram of the operation when the pulse conversion unit 22 does not perform pulse conversion.
  • FIG. 1 is a diagram showing a configuration example of a power conversion device 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a first configuration diagram of the reference voltage generation circuit for pulse control.
  • FIG. 3 is a second configuration diagram of
  • FIG. 7 is an explanatory diagram of the operation when pulse conversion is performed in the pulse conversion unit 22.
  • FIG. 8 is a diagram illustrating a state in which the current control range is expanded.
  • FIG. 9 is a diagram showing a state where the current control range is narrowed.
  • FIG. 10 is an explanatory diagram of an operation when pulse conversion is performed in a period shorter than the ON period t of the drive signal Sa.
  • FIG. 11 is an explanatory diagram of an operation when pulse conversion is executed in accordance with the elapsed time from the zero cross of the power supply voltage Vs.
  • FIG. 12 is a diagram illustrating a configuration example of the pulse conversion unit 22.
  • FIG. 13 is an explanatory diagram of the operation when the pulse converter 22 shown in FIG. 12 is used.
  • a power conversion device 100 shown in FIG. 1 generates a DC voltage based on an AC voltage supplied from an AC power source 1 and supplies the DC voltage to a DC load 10 shown in FIG. , A smoothing capacitor 4, a DC voltage detection unit 5, a power supply voltage detection unit 6, a current detection unit 9, a control unit 20, a pulse transmission unit 24, and a short-circuit unit 30.
  • the reactor 2 is connected to the AC power supply 1 side with respect to the short-circuit portion 30, and is inserted between, for example, one input end of the rectifier circuit 3 and the AC power supply 1.
  • the rectifier circuit 3 is connected to the AC power source 1 through the reactor 2 and converts the AC voltage of the AC power source 1 into a DC voltage.
  • the rectifier circuit 3 in the illustrated example is configured by a diode bridge in which four diodes are combined.
  • the rectifier circuit 3 is not limited to this, and a metal oxide semiconductor field effect transistor which is a diode-connected unidirectional conducting element is combined. May be configured.
  • a smoothing capacitor 4 is connected between the output terminals of the rectifier circuit 3, and the smoothing capacitor 4 smoothes the voltage of the full-wave rectified waveform output from the rectifier circuit 3.
  • a DC load 10 is connected in parallel to both ends of the smoothing capacitor 4.
  • the current detection means 9 includes a current detection element 8 and a current detection unit 7.
  • the current detection element 8 is connected between the reactor 2 and the rectifier circuit 3 and detects the current value at the connection position.
  • a current transformer or a shunt resistor is used for the current detection element 8.
  • the current detection unit 7 is realized by an amplifier or a level shift circuit, converts a voltage directly proportional to the current detected by the current detection element 8 into a current detection voltage Vis within a low voltage range that can be handled by the control unit 20, and outputs the voltage. To do.
  • the DC voltage detection unit 5 is realized by an amplifier or a level shift circuit, detects the voltage across the smoothing capacitor 4, converts the detected voltage into a voltage detection value within a low voltage range that can be handled by the control unit 20, and outputs the detected voltage. To do.
  • the short-circuit unit 30 which is a bidirectional switch is composed of a diode bridge 31 connected in parallel to the AC power supply 1 via the reactor 2 and a short-circuit element 32 connected to both output terminals of the diode bridge 31.
  • the short-circuit element 32 is a metal oxide semiconductor field effect transistor
  • the gate of the short-circuit element 32 is connected to the pulse transmission unit 24, and the short-circuit element 32 is turned on / off by the drive signal Sa2 that is a gate drive signal from the pulse transmission unit 24.
  • the short-circuit element 32 is turned on, the AC power supply 1 is short-circuited via the reactor 2 and the diode bridge 31.
  • the control unit 20 includes a drive signal generation unit 21 and a pulse conversion unit 22, and is configured by a microcomputer or a central processing unit.
  • the drive signal generation unit 21 Based on the value of the DC output voltage Vdc detected by the DC voltage detection unit 5 and the value of the power supply voltage Vs detected by the power supply voltage detection unit 6, the drive signal generation unit 21 detects the short circuit element 32 of the short circuit unit 30. A drive signal Sa that is a plurality of switching pulses to be controlled is generated.
  • the drive signal generation unit 21 obtains a difference value between the value of the DC output voltage Vdc and the value of the power supply voltage Vs, and performs the proportional control, the proportional integration control, or the proportional integration differential control on the difference value, thereby supplying the difference value to the power source.
  • a hysteresis reference voltage that matches the phase of the voltage Vs is generated.
  • the hysteresis reference voltage is referred to as a reference voltage V ref
  • the reference voltage V ref is a threshold value that limits the value of the power source current Is of the AC power source 1.
  • These reference voltages V ref are generated by the circuit shown in FIG. 2 or FIG.
  • the circuit in FIG. 2 generates the reference voltage V ref by converting the pulse width modulation signal, which is the port output Sb of the drive signal generation unit 21, into a DC value using a low-pass filter.
  • the value of the reference voltage V ref can be varied seamlessly by controlling the duty ratio of the pulse width modulation signal.
  • the circuit of FIG. 3 can vary the value of the reference voltage V ref by the voltage dividing ratio of the resistors Rb and Rc by driving the switch TR with the port output Sb of the drive signal generator 21.
  • the circuit for generating the reference voltage V ref is not limited to this, and may be generated by a known circuit other than the circuit shown in FIG. 2 or 3, or generated outside the control unit 20. These reference voltages V ref may be used.
  • the pulse converter 22 generates a switching pulse that fits the peak value of the power supply current Is detected during the ON period t of the drive signal Sa within a current control range w that is a target control range of the power supply current Is of the AC power supply 1. .
  • the pulse converter 22 is set with an upper limit threshold and a lower limit threshold of the current control range w having the reference voltage V ref from the drive signal generator 21 as a center value.
  • the pulse converter 22 divides the drive signal Sa into a plurality of pulses in order to keep the value of the power supply current Is detected during the ON period t of the drive signal Sa between the upper limit threshold and the lower limit threshold.
  • the divided drive signal Sa becomes the drive signal Sa1.
  • the on period t is a period from when the drive signal Sa is turned on to when it is turned off.
  • the upper threshold is a threshold that regulates the upper limit of the short-circuit current that flows when the short-circuit unit 30 is turned on
  • the lower threshold is a threshold that is set to a value smaller than the upper threshold.
  • the pulse conversion unit 22 changes the upper limit threshold and the lower limit threshold of the current control range w in order to make the power supply current Is in phase with the power supply voltage Vs, that is, a sine wave.
  • the relationship among the reference voltage V ref , the current control range w, the upper limit threshold, and the lower limit threshold is expressed by the following expression.
  • the pulse transmission unit 24 is configured by a level shift circuit, performs voltage level shift so that gate driving can be performed, converts the drive signal Sa1 into the drive signal Sa2, and outputs the converted signal.
  • the open / close operation of the short-circuit portion 30 is performed by the drive signal Sa2 obtained in this way.
  • the pulse conversion is an operation for dividing the drive signal Sa into a plurality of pulses.
  • the pulse conversion is an operation for dividing the drive signal Sa into a plurality of pulses.
  • a partial switching pulse mode turning on and off the short-circuit portion 30 one to several times in a half cycle of the power supply.
  • FIG. 4 shows a current path when the short-circuit unit 30 is turned on / off.
  • the short-circuit unit 30 When the short-circuit unit 30 is turned on, a closed circuit is formed by the AC power source 1, the reactor 2, and the short-circuit unit 30, and the AC power source 1 is short-circuited via the reactor 2. Therefore, the power source current Is flows in the closed circuit, and the magnetic energy obtained by (1/2) ⁇ LI 2 is accumulated in the reactor 2.
  • the stored energy is discharged to the DC load 10 side at the same time as the short-circuit unit 30 is turned off, rectified by the rectifier circuit 3, and transferred to the smoothing capacitor 4.
  • the power source current Is as shown in FIG. 5 flows, and the conduction angle of the power source current Is can be expanded as compared with the passive mode without power factor improvement, and the power factor can be improved.
  • the energy accumulated in the reactor 2 can be controlled by controlling the short circuit start time and the short circuit duration time of the short circuit unit 30, and the DC output voltage Vdc can be boosted steplessly.
  • FIG. 5 shows an example of the operation in the partial switching pulse mode, and shows the drive signal Sa1 that is a single pulse when the short-circuit unit 30 is switched once during the power supply half cycle.
  • the number of times of switching the short-circuit portion 30 may be two or more.
  • FIG. 6 shows the waveform of the power supply current Is when the drive signal Sa, which is a single pulse from the drive signal generator 21, is not converted into a plurality of pulses.
  • the drive signal Sa1 is turned on at the timing when the drive signal Sa is turned on, and the drive signal Sa1 is also turned on during the on period t of the drive signal Sa. Only on for a period equal to Accordingly, the short-circuit time of the short-circuit element 32 becomes longer in direct proportion to the on-period t of the drive signal Sa when the power supply voltage Vs is boosted, and the power supply current Is increases as shown in the illustrated example.
  • the power supply current Is reaches the set value, the drive signal Sa is turned off, and the drive signal Sa1 is turned off at the timing when the drive signal Sa is turned off.
  • FIG. 7 shows the waveform of the power supply current Is when the drive signal Sa, which is a single pulse from the drive signal generator 21, is converted into a plurality of pulses.
  • the drive signal Sa1 is turned on at the timing when the drive signal Sa is turned on, and the power supply current Is increases.
  • the current detection voltage Vis output from the current detection unit 7, that is, the current detection value detected by the current detection unit 7 increases.
  • the pulse converter 22 turns off the drive signal Sa1.
  • the power supply current Is decreases and the current detection value decreases. Thereafter, when the current detection value falls below the lower limit threshold during the period in which the drive signal Sa is on, the pulse converter 22 turns on the drive signal Sa1 again. The power supply current Is increases again, and the current detection value detected by the current detector 7 increases.
  • the value of the power supply current Is within the on period t of the drive signal Sa is controlled within the current control range w. Therefore, even when the DC output voltage Vdc is boosted to a relatively high value, the value of the power supply current Is when the drive signal Sa shown in FIG. 7 is turned on is the same as when the drive signal Sa shown in FIG. 6 is turned on. It is suppressed from the value of the power supply current Is when
  • the number of switching times of the drive signal Sa1 within the above-described on period t of the drive signal Sa is controlled, and the waveform of the power supply current Is is changed. be able to.
  • the current control range w1 shown in FIG. 8 is wider than the current control range w2 shown in FIG. 9, and is set to a constant value during the half cycle of the power supply.
  • the pulse conversion permission period equal to the on period t of the drive signal Sa is set has been described, but the pulse conversion permission period need not be the same as the on period t of the drive signal Sa.
  • a time shorter than the ON period t of the drive signal Sa may be set as the pulse conversion permission period t1.
  • the drive signal Sa1 is turned on at the timing when the drive signal Sa is turned on, thereby increasing the power supply current Is.
  • the pulse conversion unit 22 does not perform pulse conversion, and the pulse indicating the start of the pulse conversion permission period t1 is turned on.
  • the drive signal Sa1 is turned off, and the power supply current Is decreases.
  • the drive signal Sa1 is turned on in the pulse converter 22 and the power supply current Is increases.
  • the drive signal Sa1 is turned off in the pulse converter 22, and the power supply current Is decreases again.
  • the pulse conversion permission period t1 shorter than the ON period t of the drive signal Sa is set, the value of the power supply current Is in the pulse conversion permission period t1 is controlled within the current control range w.
  • the pulse conversion permission period equal to the on period t of the drive signal Sa is set, the number of switching times of the drive signal Sa1 is reduced, and the temperature rise is suppressed and the noise is reduced by suppressing the loss of the element. Is possible.
  • the pulse converter 22 may be configured to start pulse conversion corresponding to the elapsed time from the zero cross point t0 of the power supply voltage Vs.
  • the drive signal Sa1 is turned on at the timing when the drive signal Sa is turned on, and the power supply current Is increases until a predetermined time T1 elapses from the zero cross point t0.
  • the pulse converter 22 controls the power supply current Is in the current control range w from the time when the fixed time T1 has passed until the fixed time T2 has passed.
  • the drive signal is compared with the case where the pulse conversion is performed in the entire on period t of the drive signal Sa.
  • the switching frequency of Sa1 is reduced, and it is possible to suppress temperature rise and noise by suppressing element loss.
  • the pulse converter 22 shown in FIG. 12 includes a positive-side hysteresis comparator HCH, a negative-side hysteresis comparator HCL, and a plurality of logic ICs.
  • the positive reference voltage V refH is a positive reference voltage V ref generated by the drive signal generator 21, and the negative reference voltage V refL is a negative reference voltage V generated by the drive signal generator 21. ref .
  • the positive side hysteresis comparator HCH receives the current detection voltage Vis that is the output of the current detection unit 7 and the positive side reference voltage V refH .
  • the current detection voltage Vis and the negative reference voltage V refL are input to the negative hysteresis comparator HCL.
  • the pulse converter 22 can generate the drive signal Sa1 regardless of the current polarity.
  • the positive-side hysteresis comparator HCH the positive-side upper limit threshold V THH (H) calculated by the expression (1), the positive-side lower limit threshold V THH (L) calculated by the expression (2), and the positive-side reference voltage V
  • the hysteresis ⁇ corresponding to the current control range w on the positive electrode side is determined by the relationship with refH .
  • the output of the positive side hysteresis comparator HCH is inverted by the NOT logic IC3.
  • the AND logic IC2 ′ takes an AND of the output of the NOT logic IC3 and the drive signal Sa, and outputs a positive drive signal SaH.
  • V d of equation (1) represents a low-voltage power supply
  • (2) the V OL represents the output saturation voltage of the operational amplifier.
  • the negative-side upper limit threshold V THL (H) is calculated by the equation (1)
  • the negative-side lower limit threshold V THL (L) is calculated by the equation (2).
  • the hysteresis ⁇ corresponding to the current control range w on the negative electrode side is determined by the relationship between the negative electrode side upper limit threshold value V THL (H), the negative electrode side lower limit threshold value V THL (L), and the negative electrode side reference voltage V refL .
  • the AND logic IC2 the AND logic of the output of the negative side hysteresis comparator HCL and the drive signal Sa is taken and the negative side drive signal SaL is output.
  • the AND logic IC4 takes the AND logic of the positive drive signal SaH and the negative drive signal SaL, and outputs the drive signal Sa1 as a result of the AND logic.
  • the pulse converter 22 having a plurality of hysteresis comparators as shown in FIG. 12 it becomes possible to generate the drive signal Sa1 regardless of the current polarity, and the power supply current Is of FIG. 13, that is, the waveform of the current detection voltage Vis. Can be controlled. Therefore, the DC output voltage Vdc can be boosted while suppressing the peak value of the short-circuit current that flows when the short-circuit unit 30 is turned on.
  • the hysteresis comparator of FIG. 12 can change the width of the hysteresis ⁇ by changing the resistance values of the resistors R1, R2, and R3.
  • the combined resistance value can be switched by connecting a series circuit of a switch and a resistor in parallel to the resistor R2 or the resistor R2 'and opening and closing the switch.
  • the short-circuit unit 30 is controlled using the power supply current Is detected by the current detection unit 7 .
  • the present invention is not limited to this.
  • the drive signal Sa1 which is a plurality of switching pulses by a prior test and holding the corresponding relationship in the external input or the control unit 20
  • the short-circuit unit is detected without detecting the power supply current Is. 30 controls are possible.
  • the necessity of detection of the power supply current Is may be selected according to the system specifications to be constructed.
  • the drive signal Sa1 is generated by a hysteresis comparator configured by hardware.
  • the hysteresis comparator may be configured by software. Even when configured by software, the same effect can be obtained.
  • the hysteresis comparator is preferably configured by hardware from the viewpoint of reducing the load.
  • the power conversion device 100 is configured to generate the drive signal Sa1 using the current detection value detected by the current detection unit 7, but the control unit 20 does not use the current detection unit 7.
  • the drive signal Sa1 may be generated by detecting the value of the power supply current Is.
  • the reactor 2 is inserted between the AC power source 1 and the rectifier circuit 3, and the rectifier circuit 3 is connected to the AC power source 1 via the reactor 2. Therefore, the positional relationship between the rectifier circuit 3, the reactor 2, and the short-circuit unit 30 is not limited to the configuration shown in the drawing.
  • the power conversion device 100 may have a configuration in which the power source current Is flows in the order of the AC power source 1, the reactor 2, the short-circuit unit 30, and the AC power source 1 at the time of a short circuit, for example, rectification between the AC power source 1 and the reactor 2.
  • a configuration in which the circuit 3 is inserted and the reactor 2 is connected to the AC power source 1 via the rectifier circuit 3 may be employed.
  • the power conversion device 100 controls the short-circuit unit 30 during the half cycle of the rectifier circuit 3, the short-circuit unit 30 that short-circuits the AC power source 1, and the AC power source 1.
  • a control unit 20 that generates a drive signal Sa1 that is a plurality of switching pulses, and the control unit 20 generates a sine-wave current control range w that is a target control range of the power source current Is of the AC power source 1, The value of the power supply current Is is stored in the control range w.
  • the DC output voltage Vdc can be boosted while suppressing the peak of the power supply current Is as compared with the conventional simple switching converter. Moreover, since the peak of the power supply current Is can be suppressed, distortion of the power supply current Is when the short-circuit portion 30 is turned on can be suppressed, and harmonic components can be suppressed. In addition, since the peak of the power supply current Is can be suppressed, the passing period of the power supply current Is can be extended, and the power factor can be improved. In addition, since the peak of the power supply current Is can be suppressed, an increase in capacity of the filter circuit and other components that constitute the AC power supply 1 can be suppressed, and an increase in cost can be suppressed.
  • the design load can be reduced because the switching can be performed with a suitable number of switching times and pulse timing regardless of the load condition.
  • the power conversion apparatus 100 since the reference voltage V ref can be varied sinusoidally during power half cycle, compared with the case of not changing the reference voltage V ref, the power supply current Is The degree of freedom of control can be increased. Further, by performing part of the processing in the control unit 20 with a hysteresis comparator, the calculation load in the control unit 20 is reduced, and the power conversion device 100 can be manufactured with an inexpensive central processing unit. Further, by changing the reference voltage V ref in a sine wave shape, an excessive increase in switching pulses can be prevented and generated noise can be suppressed. Further, by changing the reference voltage V ref , the pulse division operation can be restricted only to a specific region. Therefore, noise caused by the switching operation can be reduced.
  • FIG. FIG. 14 is an explanatory diagram of the operation of the power conversion apparatus 100 according to Embodiment 2 of the present invention.
  • FIG. 15 is a diagram illustrating the relationship between the power supply cycle and the change rate of the power supply current.
  • FIG. 16 is a diagram illustrating the relationship between the power supply cycle and the switching cycle when the current control range w is a constant value with respect to the power supply cycle.
  • the power conversion apparatus 100 according to the second embodiment includes the same components as those of the first embodiment, except that the current control range w is changed in accordance with the phase of the power supply voltage Vs.
  • the horizontal axis represents the phase
  • the vertical axis represents the slope of the power supply current Is, which is the rate of change of the power supply current Is.
  • the solid line waveform represents the slope of the power supply current Is when the short-circuit portion 30 is on during the half cycle of the power supply
  • the dotted line waveform represents the slope of the power supply current Is when the short-circuit portion 30 is off.
  • the slope of the power supply current Is when the short-circuit portion 30 is on is obtained as Vs / L.
  • the slope of the power supply current Is when the short-circuit portion 30 is off is (Vs ⁇ Vdc) / L when the current polarity is positive.
  • Vs is a power supply voltage
  • Vdc is an output voltage
  • L is an inductance of the reactor 2.
  • the switching cycle indicated by the symbol A represents the switching cycle in the phase between the vicinity of the zero cross of the power supply voltage Vs and the peak value of the power supply current Is.
  • the switching period indicated by the symbol B represents a switching period in a phase near the zero cross of the power supply voltage Vs and a switching period in a phase near the peak of the power supply current Is.
  • the switching period in the phase indicated by the symbol A is shorter than the switching period in the phase indicated by the symbol B. That is, the switching frequency of the plurality of drive signals Sa1 generated during the half cycle of the power supply does not become a constant value.
  • the switching cycle of the plurality of drive signals Sa generated during the half cycle of the power supply varies depending on the phase of the power supply voltage Vs. This is because, as described with reference to FIG. 15, when the current control range w is set to a constant value, the slope of the power supply current Is when the short-circuit portion 30 is on is different from the slope of the power supply current Is when the short circuit portion 30 is off. .
  • the pulse conversion unit 22 of the second embodiment reduces the switching frequency by widening the current control range w1 in the phase of the short switching period as shown in FIG. Suppresses loss increase, radiation noise, and noise terminal voltage.
  • the pulse converter 22 of the second embodiment increases the switching frequency by narrowing the current control range w2 in the phase of the long switching period, as shown in FIG. Reduce noise.
  • the pulse converter 22 of the second embodiment may be configured to determine the phase of the power supply voltage based on the elapsed time from the zero cross point of the power supply voltage Vs.
  • the current control ranges w1 and w2 can be controlled without adding a means for detecting the phase of the power supply voltage Vs.
  • the pulse converter 22 of the first and second embodiments may be configured to change the current control range w in accordance with the frequency of the drive signal Sa1 that is a plurality of switching pulses. For example, when the frequency of the drive signal Sa1 becomes equal to or higher than a specified value as a result of increasing the frequency of the reference drive signal Sa1, the pulse converter 22 sets the current control range w to make the frequency of the drive signal Sa1 less than the specified value. spread. With this configuration, the load at the time of generating the drive signal Sa1 is reduced, and the power conversion device 100 can be manufactured with inexpensive parts.
  • the short-circuit unit 30 is controlled using the power supply current Is detected by the current detection unit 7 , but the present invention is not limited to this.
  • the power supply current Is and the drive signal Sa1 that is a plurality of switching pulses are associated with each other, and the corresponding relationship is held in the external input or the control unit 20 so that the short circuit unit is detected without detecting the power supply current Is. 30 controls are possible.
  • the necessity of detection of the power supply current Is may be selected according to the system specifications to be constructed.
  • the power converter device 100 of Embodiment 1, 2 is a structure which produces
  • the control unit 20 may directly detect the value of the power supply current Is and generate the drive signal Sa1.
  • this invention is useful for the power converter device provided with the short circuit part which short-circuits AC power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

 電力変換装置100は、交流電源1に接続され交流電源1からの交流電力を直流電力に変換する整流回路3と、ダイオードブリッジ31とダイオードブリッジ31の両出力端に接続された短絡素子32とから構成されリアクタ2を介して交流電源1を短絡する短絡部30と、交流電源1の半周期中に、短絡部30を制御する複数の駆動信号Saを生成する制御部20と、を備え、制御部20は、交流電源1の電源電流Isの目標制御範囲である正弦波状の電流制御範囲を生成し、電流制御範囲に交流電源1の電源電流Isの値を収める。

Description

電力変換装置
 本発明は、交流電力を直流電力に変換する電力変換装置に関する。
 下記特許文献1に示される従来技術では、電源力率を改善し入力電流に含まれる高調波成分を低減する力率改善回路が開示され、全波整流モードまたは倍電圧整流モードを選択すると共に、短絡素子の短絡開始時期と短絡時間をオープンループにて制御することで力率改善機能と昇圧機能を実現するものである。すなわち、下記特許文献1の従来技術は、整流回路切換用スイッチのオンオフにより整流回路を全波整流モードまたは倍電圧整流モードに制御し、力率改善回路の直流出力電圧を大きく2段階に分け、この2段階に分けた領域を更に短絡素子のオープンループでの短絡可変制御により、力率改善なしと力率改善ありの2段階に分けることにより、全体で4段階の直流出力電圧領域を構成し、これにより直流出力電圧の出力範囲を拡大しつつ、高負荷側での力率を改善することができる。
 また、下記特許文献2に示される従来技術は、負荷に対応して設定された直流出力電圧基準値と平滑コンデンサの端子間電圧との偏差値に対応して直流電圧制御信号を出力する直流電圧制御部を設け、また、直流電圧制御部からの制御信号と交流電源に同期した正弦波状の同期信号との積から電流基準信号を出力する電流基準演算部を設ける。この電流基準信号と整流素子の交流側電流とを比較することでスイッチ素子を高周波でオンオフ制御し、交流入力電流を正弦波状に制御しながら直流出力電圧を所望の値に制御するものであり、電源力率を1とし、高調波の発生を抑制することができる。
特開平11-206130号公報 特許第2140103号明細書
 しかしながら、上記特許文献1,2の従来技術によれば短絡素子の制御パターンが限定される。すなわちこれらの従来技術では、全負荷領域において電流をフィードバックする高周波スイッチングモードと、電流オープンループ制御の部分スイッチングモードとの何れかに短絡素子の制御パターンが限定される。従って、これらの従来技術は低負荷領域において直流出力電圧が昇圧し過ぎるのを避けるために短絡素子を動作させず、力率改善が行われない。そのため、低負荷領域では入力電流の波形歪みが大きく、高調波成分を多く含む電流がリアクトルを流れてしまい、リアクトル鉄損が増大し、これにより力率改善回路の交直変換効率が低下してしまう。
 また、上記特許文献1の従来技術において力率改善を行う際の短絡素子の短絡制御は、短絡開始時期および短絡時間をオープンループにて制御し、電源周期に対し一定区間だけ短絡動作を行う部分スイッチング方式であるため、力率改善および直流出力電圧の昇圧ができるものの、高調波発生量が多くなる高負荷側では効果が小さい。そのため、今後の高調波規制強化に伴い、従来技術にて充分な力率改善効果すなわち高調波抑制能力を得るためには、大きなインダクタンス値を有するリアクトルを必要とし、そのため、交直変換効率の低下、回路の大型化、コストアップを招くという問題が生じる。また、高調波発生量を一定レベルに抑制しつつ直流出力電圧を昇圧する場合、昇圧能力に限界があるため、高負荷側での運転が不安定になったり、高負荷側での安定運転を考えると負荷の選択幅が狭くなったりしてしまう。
 本発明は、上記に鑑みてなされたものであって、負荷の運転領域全体に渡り高効率化を図りながら、高昇圧性能と高調波規格を満たすことができる電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、交流電源からの交流電力を直流電力に変換する整流回路と、リアクタを介して前記交流電源を短絡する短絡部と、前記交流電源の半周期中に、前記短絡部を制御する複数のスイッチングパルスを生成する制御部と、を備え、前記制御部は、前記交流電源の電源電流の目標制御範囲である正弦波状の電流制御範囲を生成し、前記電流制御範囲に前記電源電流の値を収める。
 この発明によれば、電流制御範囲を正弦波状にすることで交流電源の半周期中における電源電流のピークを抑制され、負荷の運転領域全体に渡り高効率化を図りながら、高昇圧性能と高調波規格を満たすことができる、という効果を奏する。
図1は、本発明の実施の形態1に係る電力変換装置の構成例を示す図である。 図2は、パルス制御用基準電圧生成回路の第1の構成図である。 図3は、パルス制御用基準電圧生成回路の第2の構成図である。 図4は、リアクタ、短絡部、整流回路、および平滑コンデンサから成る簡易回路を示す図である。 図5は、部分スイッチングパルスモードで交流電源の正極側半周期に短絡素子を1回スイッチングさせたときの電源電流の波形を示す図である。 図6は、パルス変換部でパルス変換が行われていない場合の動作の説明図である。 図7は、パルス変換部でパルス変換が行われている場合の動作の説明図である。 図8は、電流制御範囲を広げた状態を示す図である。 図9は、電流制御範囲を狭めた状態を示す図である。 図10は、駆動信号のオン期間よりも短い期間でパルス変換を行う場合の動作の説明図である。 図11は、電源電圧のゼロクロスからの経過時間に対応してパルス変換を実行する場合の動作の説明図である。 図12は、パルス変換部の構成例を示す図である。 図13は、図12に示されるパルス変換部を用いた場合の動作の説明図である。 図14は、本発明の実施の形態2に係る電力変換装置の動作の説明図である。 図15は、電源周期と電源電流の変化率との関係を表す図である。 図16は、電源周期に対して電流制御範囲を一定値にした場合における電源周期とスイッチング周期との関係を表す図である。
 以下に、本発明に係る電力変換装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る電力変換装置100の構成例を示す図である。図2は、パルス制御用基準電圧生成回路の第1の構成図である。図3は、パルス制御用基準電圧生成回路の第2の構成図である。図4は、リアクタ2、短絡部30、整流回路3、および平滑コンデンサ4から成る簡易回路を示す図である。図5は、部分スイッチングパルスモードで交流電源1の正極側半周期に短絡素子32を1回スイッチングさせたときの電源電流Isの波形を示す図である。図6は、パルス変換部22でパルス変換が行われていない場合の動作の説明図である。図7は、パルス変換部22でパルス変換が行われている場合の動作の説明図である。図8は、電流制御範囲を広げた状態を示す図である。図9は、電流制御範囲を狭めた状態を示す図である。図10は、駆動信号Saのオン期間tよりも短い期間でパルス変換を行っているときの動作の説明図である。図11は、電源電圧Vsのゼロクロスからの経過時間に対応してパルス変換を実行する場合の動作の説明図である。図12は、パルス変換部22の構成例を示す図である。図13は、図12に示されるパルス変換部22を用いた場合の動作の説明図である。
 図1に示す電力変換装置100は、交流電源1から供給される交流電圧に基づいて直流電圧を生成し、図3に示す直流負荷10に対して供給するものであり、リアクタ2、整流回路3、平滑コンデンサ4、直流電圧検出部5、電源電圧検出部6、電流検出手段9、制御部20、パルス伝達部24、および短絡部30を備える。
 リアクタ2は、短絡部30よりも交流電源1側に接続され、例えば整流回路3の一方の入力端と交流電源1との間に挿入されている。整流回路3はリアクタ2を介して交流電源1に接続されており、交流電源1の交流電圧を直流電圧に変換する。図示例の整流回路3は4つのダイオードを組み合わせたダイオードブリッジで構成されているが、これに限定されるものではなく、ダイオード接続された単方向導通素子である金属酸化膜半導体電界効果トランジスタを組み合わせて構成してもよい。
 整流回路3の出力端間には平滑コンデンサ4が接続されており、平滑コンデンサ4は整流回路3から出力された全波整流波形の電圧を平滑化する。平滑コンデンサ4の両端には直流負荷10が並列に接続されている。
 電流検出手段9は電流検出素子8および電流検出部7から成る。電流検出素子8はリアクタ2と整流回路3の間に接続され、接続位置における電流値を検出する。電流検出素子8には一例でカレントトランスまたはシャント抵抗が用いられる。電流検出部7は、増幅器あるいはレベルシフト回路で実現され、電流検出素子8で検出された電流に正比例した電圧を、制御部20が取り扱い可能な低圧範囲内の電流検出電圧Visに変換して出力する。直流電圧検出部5は、増幅器あるいはレベルシフト回路で実現され、平滑コンデンサ4の両端電圧を検出し、検出された電圧を制御部20が取り扱い可能な低圧範囲内の電圧検出値に変換して出力する。
 双方向スイッチである短絡部30は、リアクタ2を介して交流電源1に並列に接続されたダイオードブリッジ31と、ダイオードブリッジ31の両出力端に接続された短絡素子32とから構成される。短絡素子32が金属酸化膜半導体電界効果トランジスタである場合、短絡素子32のゲートはパルス伝達部24に接続され、パルス伝達部24からのゲート駆動信号である駆動信号Sa2によって短絡素子32がオンオフし、短絡素子32がオンされたとき、リアクタ2およびダイオードブリッジ31を介して交流電源1が短絡する。
 制御部20は、駆動信号生成部21およびパルス変換部22を有し、マイコンまたはセントラルプロセッシングユニットで構成される。
 駆動信号生成部21は、直流電圧検出部5で検出された直流出力電圧Vdcの値、および電源電圧検出部6で検出された電源電圧Vsの値に基づいて、短絡部30の短絡素子32を制御する複数のスイッチングパルスである駆動信号Saを生成する。
 また駆動信号生成部21は、直流出力電圧Vdcの値と電源電圧Vsの値との差分値を求め、差分値を比例制御、比例積分制御、または比例積分微分制御することによって、差分値を電源電圧Vsの位相に一致させるヒステリシス基準電圧を生成する。以下の説明ではヒステリシス基準電圧を基準電圧Vrefと称し、基準電圧Vrefは、交流電源1の電源電流Isの値を制限する閾値である。
 これらの基準電圧Vrefは、図2または図3に示される回路で生成される。図2の回路は、駆動信号生成部21のポート出力Sbであるパルス幅変調信号を、ローパスフィルタにより直流値に変換することによって、基準電圧Vrefを生成している。この場合、パルス幅変調信号のデューティ比を制御することにより、基準電圧Vrefの値をシームレスに可変することができる。
 図3の回路は、駆動信号生成部21のポート出力Sbで開閉器TRを駆動することにより、抵抗Rb,Rcの分圧比で基準電圧Vrefの値を可変することができる。なお、基準電圧Vrefを生成する回路は、これに限定されるものではなく、図2または図3に示す回路以外の既知の回路で生成してもよいし、制御部20の外部で生成されたこれらの基準電圧Vrefを用いてもよい。
 パルス変換部22は、駆動信号Saのオン期間tに検出される電源電流Isのピーク値を、交流電源1の電源電流Isの目標制御範囲である電流制御範囲w内に収めるスイッチングパルスを生成する。具体的には、パルス変換部22には、駆動信号生成部21からの基準電圧Vrefを中心値とする電流制御範囲wの上限閾値と下限閾値が設定されている。そして、パルス変換部22は、駆動信号Saのオン期間tに検出される電源電流Isの値を上限閾値と下限閾値との間に収めるため駆動信号Saを複数のパルスに分割する。分割された駆動信号Saが駆動信号Sa1となる。なお、オン期間tは駆動信号Saがオンされてからオフされるまでの期間である。上限閾値は、短絡部30がオンとなったときに流れる短絡電流の上限を規制する閾値であり、下限閾値は、上限閾値より小さい値に設定された閾値である。パルス変換部22によるパルス分割動作は交流電源1の正極および負極で行われる。
 また、パルス変換部22は、電源電流Isを電源電圧Vsの位相と同位相、すなわち正弦波状にするため、電流制御範囲wの上限閾値および下限閾値を変更する。ここで、基準電圧Vrefと電流制御範囲wと上限閾値と下限閾値との関係は、以下の式で表される。
 上限閾値:Vref+w/2
 下限閾値:Vref-w/2
 パルス伝達部24は、レベルシフト回路で構成され、ゲート駆動が行えるよう電圧レベルシフトを行い、駆動信号Sa1を駆動信号Sa2に変換して出力する。このようにして得られた駆動信号Sa2により、短絡部30の開閉動作が行われる。
 次に、実施の形態1の電力変換装置100の動作を説明する。まず、パルス変換部22がパルス変換を行っていないときの動作を説明する。パルス変換とは駆動信号Saを複数のパルスに分割する動作である。なお、電流オープンループ制御において電源半周期に短絡部30を1回から複数回オンオフさせることを、部分スイッチングパルスモードと称する。
 図4には短絡部30のオンオフ時における電流経路が示されている。短絡部30がオンされたとき、交流電源1、リアクタ2、および短絡部30により閉回路が形成され、交流電源1がリアクタ2を介して短絡される。そのため、閉回路に電源電流Isが流れ、リアクタ2には(1/2)×LIで求められる磁気エネルギーが蓄積される。
 蓄積エネルギーは、短絡部30がオフされると同時に、直流負荷10側に放出されて整流回路3で整流されて平滑コンデンサ4に転送される。この一連の動作により、図5に示すような電源電流Isが流れ、力率改善無しのパッシブモードよりも電源電流Isの通電角を広げることができ、力率を改善できる。
 なお、部分スイッチングパルスモードでは、短絡部30の短絡開始時間と短絡継続時間を制御することで、リアクタ2に蓄積されるエネルギーを制御でき、直流出力電圧Vdcを無段階で昇圧させることができる。また、図5では、部分スイッチングパルスモードにおける動作の一例で、電源半周期中に短絡部30を1回スイッチングさせる場合のシングルパルスである駆動信号Sa1が示されているが、電源半周期中に短絡部30をスイッチングさせる回数は2回以上であってもよい。
 次に、パルス変換部22がパルス変換を行っていないときの電源電流Isの波形と、パルス変換部22がパルス変換を行っているときの電源電流Isの波形とを対比して説明する。
 図6には、駆動信号生成部21からのシングルパルスである駆動信号Saを複数のパルスに変換していないときの電源電流Isの波形が示されている。パルス変換部22でパルス変換が行われていない場合、駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり、駆動信号Saのオン期間tでは、駆動信号Sa1も駆動信号Saのオン期間tと等しい期間だけオンになる。従って、短絡素子32の短絡時間は、電源電圧Vsが昇圧する際に駆動信号Saのオン期間tに正比例して長くなり、図示例のように電源電流Isが増加する。そして電源電流Isが設定値に達したときに駆動信号Saがオフにされ、駆動信号Saがオフされたタイミングで駆動信号Sa1がオフとなる。
 このように短絡素子32の短絡時間を長くした場合、リアクタ2にはより多くのエネルギーを蓄積することができるものの、電源電流Isのピークが大きくなるため、力率の悪化、高調波成分の増加、回路損失の増加といった問題が生じる。
 図7には、駆動信号生成部21からのシングルパルスである駆動信号Saを複数のパルスに変換したときの電源電流Isの波形が示されている。パルス変換部22でパルス変換が行われている場合、駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり電源電流Isが増加する。電源電流Isの増加に伴い、電流検出部7から出力される電流検出電圧Vis、すなわち電流検出部7で検出される電流検出値は上昇する。そして駆動信号Saがオンの期間中に電流検出値が上限閾値を超えたとき、パルス変換部22は駆動信号Sa1をオフにする。
 このことにより電源電流Isが低下して電流検出値が下降する。その後、駆動信号Saがオンの期間中に電流検出値が下限閾値を下回ったとき、パルス変換部22は再び駆動信号Sa1をオンにする。電源電流Isは再び増加して電流検出部7で検出される電流検出値が上昇する。
 このように、駆動信号Saのオン期間t内に駆動信号Sa1のオンオフが繰り返される結果、駆動信号Saのオン期間t内の電源電流Isの値は、電流制御範囲w内に制御される。従って、直流出力電圧Vdcを比較的高い値にまで昇圧させる場合でも、図7に示す駆動信号Saがオンされているときの電源電流Isの値は、図6に示す駆動信号Saがオンされているときの電源電流Isの値よりも抑制される。
 なお、図8,9に示すように上限閾値と下限閾値を調整することにより、上述した駆動信号Saのオン期間t内における駆動信号Sa1のスイッチング回数が制御され、電源電流Isの波形を変化させることができる。図8に示す電流制御範囲w1は、図9に示す電流制御範囲w2よりも広く、かつ、電源半周期中において一定値に設定されている。このように上限閾値と下限閾値を調整することにより、リアクタ2、直流負荷10、および高調波規格に対応して性能を満たすことができる。
 ここまでの説明では、駆動信号Saのオン期間tと等しいパルス変換許可期間が設定されている例を説明したが、パルス変換許可期間は駆動信号Saのオン期間tと同じである必要性はなく、図10のように駆動信号Saのオン期間tよりも短い時間を、パルス変換許可期間t1に設定してもよい。
 図10の例によれば、駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり、このことにより電源電流Isが増加する。ただし、パルス変換許可期間t1に至る前の時点で電流検出値が上限閾値を超えた場合でもパルス変換部22ではパルス変換が行われず、パルス変換許可期間t1の開始を示すパルスがオンとなったとき、駆動信号Sa1がオフとなり電源電流Isが低下する。その後、パルス変換許可期間t1内において電流検出値が下限閾値を下回ったとき、パルス変換部22では駆動信号Sa1がオンされて電源電流Isが増加する。その後、パルス変換許可期間t1内において電流検出値が上限閾値を超えたとき、パルス変換部22では駆動信号Sa1がオフにされて再び電源電流Isが減少する。
 このように駆動信号Saのオン期間tよりも短いパルス変換許可期間t1が設定されている場合でも、パルス変換許可期間t1内における電源電流Isの値は、電流制御範囲w内に制御される。その結果、駆動信号Saのオン期間tと等しいパルス変換許可期間が設定されている場合に比べて、駆動信号Sa1のスイッチング回数が低減され、素子の損失抑制による温度上昇の抑制とノイズの低減が可能である。
 また図11のように、パルス変換部22は、電源電圧Vsのゼロクロス点t0からの経過時間に対応してパルス変換を開始する構成でもよい。図11の構成例によれば、駆動信号Saがオンされたタイミングで駆動信号Sa1がオンとなり、ゼロクロス点t0から一定時間T1が経過するまでは電源電流Isが増加する。そして、パルス変換部22は、一定時間T1が経過した時点から一定時間T2が経過するまでの間では、電流制御範囲wで電源電流Isを制御する。
 このように電源電圧Vsのゼロクロス点t0からの経過時間に対応してパルス変換を開始する構成とすることで、駆動信号Saのオン期間tの全体でパルス変換をする場合に比べて、駆動信号Sa1のスイッチング回数が低減され、素子の損失抑制による温度上昇の抑制とノイズの低減が可能である。
 次にパルス変換部22の構成例を説明する。図12に示すパルス変換部22は、正極側ヒステリシスコンパレータHCH、負極側ヒステリシスコンパレータHCL、および複数の論理ICで構成されている。
 正極側基準電圧VrefHは、駆動信号生成部21で生成される正極側の基準電圧Vrefであり、負極側基準電圧VrefLは、駆動信号生成部21で生成される負極側の基準電圧Vrefである。
 正極側ヒステリシスコンパレータHCHには、電流検出部7の出力である電流検出電圧Visと、正極側基準電圧VrefHとが入力される。負極側ヒステリシスコンパレータHCLには、電流検出電圧Visと、負極側基準電圧VrefLとが入力される。
 なお、図1に示す電流検出部7は、電流検出素子8の出力段に設けられたレベルシフト回路および増幅器を有し、1/2Vd、すなわち低圧系電源Vdの半分の値を0アンペア相当とし、電流検出素子8で検出された交流の電流波形を正側のみの電流波形に変換して出力する。パルス変換部22では、電流極性によらず駆動信号Sa1を生成することが可能となる。
 次に図13を用いて、図12に示すパルス変換部22の動作を説明する。
 正極側ヒステリシスコンパレータHCHでは、(1)式で算出される正極側上限閾値VTHH(H)と、(2)式で算出される正極側下限閾値VTHH(L)と、正極側基準電圧VrefHとの関係により、正極側の電流制御範囲wに対応するヒステリシスΔが決まる。また、正極側ヒステリシスコンパレータHCHの出力は、NOT論理IC3で反転される。AND論理IC2’は、NOT論理IC3の出力と駆動信号SaとのANDをとり、正極側駆動信号SaHを出力する。なお、(1)式のVは低圧系電源を表し、(2)式のVOLはオペアンプの出力飽和電圧を表す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 同様に、負極側ヒステリシスコンパレータHCLでは、(1)式で負極側上限閾値VTHL(H)が算出され、(2)式で負極側下限閾値VTHL(L)が算出される。
 負極側上限閾値VTHL(H)と負極側下限閾値VTHL(L)と負極側基準電圧VrefLとの関係により、負極側の電流制御範囲wに対応するヒステリシスΔが決まる。AND論理IC2では負極側ヒステリシスコンパレータHCLの出力と駆動信号SaとのAND論理がとられて負極側駆動信号SaLが出力される。そして、AND論理IC4では正極側駆動信号SaHと負極側駆動信号SaLのAND論理がとられ、AND論理の結果である駆動信号Sa1が出力される。
 図12のように複数のヒステリシスコンパレータを有するパルス変換部22を用いることにより、電流極性によらず駆動信号Sa1を生成することが可能となり、図13の電源電流Is、すなわち電流検出電圧Visの波形を制御することができる。従って短絡部30がオンとなったときに流れる短絡電流のピーク値を抑制しつつ、直流出力電圧Vdcを昇圧することが可能となる。
 また、図12のヒステリシスコンパレータは、抵抗R1,R2,R3の抵抗値を変化させることにより、ヒステリシスΔの幅を変更することができる。例えば抵抗R2または抵抗R2’に、スイッチと抵抗との直列回路を並列接続し、スイッチを開閉させることにより合成抵抗値を切替えることができる。
 また、実施の形態1では、電流検出部7で検出された電源電流Isを用いて短絡部30を制御する例を説明したが、これに限定されるものではない。事前の試験により、電源電流Isと複数のスイッチングパルスである駆動信号Sa1との関連付けを行い、その対応関係を外部入力あるいは制御部20に保持させることによって、電源電流Isを検出することなく短絡部30の制御が可能である。このように電源電流Isの検出の要否は、構築するシステム仕様によって選択すればよい。
 また、実施の形態1では、ハードウェアで構成したヒステリシスコンパレータで駆動信号Sa1が生成されているが、ヒステリシスコンパレータはソフトウェアで構成してもよい。ソフトウェアで構成した場合でも同様の効果が得られるが、ハードウェアで構成した場合に比べて制御部20の負荷が高くなるため、負荷軽減の観点よりヒステリシスコンパレータはハードウェアで構成することが望ましい。
 また、実施の形態1の電力変換装置100は、電流検出部7で検出された電流検出値を用いて駆動信号Sa1を生成する構成であるが、電流検出部7を用いずに制御部20で電源電流Isの値を検出して駆動信号Sa1を生成する構成でもよい。また、実施の形態1では、リアクタ2が交流電源1と整流回路3との間に挿入され、整流回路3がリアクタ2を介して交流電源1に接続されているが、電力変換装置100はリアクタ2を介して電源の短絡と開放を行うことができればよいため、整流回路3、リアクタ2、および短絡部30の位置関係は図示例の構成に限定されるものではない。すなわち、電力変換装置100は、短絡時に交流電源1、リアクタ2、短絡部30、交流電源1の順で電源電流Isが流れる構成であればよく、例えば交流電源1とリアクタ2との間に整流回路3が挿入され、リアクタ2が整流回路3を介して交流電源1に接続される構成でもよい。
 以上に説明したように、実施の形態1に係る電力変換装置100は、整流回路3と、交流電源1を短絡する短絡部30と、交流電源1の半周期中に、短絡部30を制御する複数のスイッチングパルスである駆動信号Sa1を生成する制御部20と、を備え、制御部20は、交流電源1の電源電流Isの目標制御範囲である正弦波状の電流制御範囲wを生成し、電流制御範囲wに電源電流Isの値を収める。
 この構成により、従来の簡易スイッチングコンバータに比べて、電源電流Isのピークを抑えながら直流出力電圧Vdcを昇圧させることができる。また、電源電流Isのピークを抑制することができるため、短絡部30がオンとなったときの電源電流Isのひずみを抑制することができ、高調波成分を抑制することが可能である。また、電源電流Isのピークを抑制することができるため、電源電流Isの通流期間を拡張することができ、力率を向上させることが可能である。また、電源電流Isのピークを抑制することができるため、交流電源1を構成するフィルタ回路および他の部品の容量増加を抑制することができ、コストアップを抑制することが可能である。また、実施の形態1の電力変換装置100によれば、電源半周期で複数回スイッチングを実施させる場合にも、各スイッチングパルスの設定時間の設計が不要となり、正負極に対応する電流上限、下限での閾値設計が可能となるため、制御設計が比較的容易となる。また、実施の形態1の電力変換装置100によれば、負荷条件によらず好適なスイッチング回数およびパルスタイミングにて制御することができるため、設計負荷の低減が可能である。
 また、実施の形態1の電力変換装置100によれば、電源半周期中に基準電圧Vrefを正弦波状に変化させることができるため、基準電圧Vrefを変化させない場合に比べて、電源電流Isの制御の自由度を高めることができる。また、制御部20における処理の一部をヒステリシスコンパレータで行うことにより、制御部20における演算負荷が軽減され、安価なセントラルプロセッシングユニットで電力変換装置100を製作することが可能である。また基準電圧Vrefを正弦波状に変化させることにより、スイッチングパルスの過度な増加を防ぐことができ、発生ノイズを抑制することができる。また基準電圧Vrefを変化させることで、特定の領域のみにパルス分割動作を規制することができる。そのため、スイッチング動作に起因する騒音を低減することができる。
実施の形態2.
 図14は、本発明の実施の形態2に係る電力変換装置100の動作の説明図である。図15は、電源周期と電源電流の変化率との関係を表す図である。図16は、電源周期に対して電流制御範囲wを一定値にした場合における電源周期とスイッチング周期との関係を表す図である。実施の形態2に係る電力変換装置100は、実施の形態1と同様の構成要素を備えているが、電源電圧Vsの位相に対応して電流制御範囲wを変化させる点が異なる。
 図15の横軸は位相を表し、縦軸は電源電流Isの変化率である電源電流Isの傾きを表す。実線の波形は、電源半周期中に短絡部30がオン時の電源電流Isの傾きを表し、点線の波形は、短絡部30がオフ時の電源電流Isの傾きを表す。短絡部30がオン時の電源電流Isの傾きは、Vs/Lで求められ、短絡部30がオフ時の電源電流Isの傾きは、電流極性が正の場合には(Vs-Vdc)/Lで求められ、電流極性が負の場合には(Vs+Vdc)/Lで求められる。Vsは電源電圧、Vdcは出力電圧、Lはリアクタ2のインダクタンスを表す。図15の記載より、短絡部30がオンしているときの電源電流Isの変化率、すなわち電源電流Isの傾きは、短絡部30がオフしているときの電源電流Isの傾きと異なることがわかる。
 図16の横軸は位相を表し、縦軸は駆動信号Saのスイッチング周期を表す。符号Aで示されるスイッチング周期は、電源電圧Vsのゼロクロス付近と電源電流Isのピーク値との間の位相におけるスイッチング周期を表す。符号Bで示されるスイッチング周期は、電源電圧Vsのゼロクロス付近の位相におけるスイッチング周期と、電源電流Isのピーク付近の位相におけるスイッチング周期とを表す。
 電流制御範囲wを一定値にした場合、符号Aで示される位相におけるスイッチング周期は、符号Bで示される位相におけるスイッチング周期よりも短いことがわかる。すなわち、電源半周中に生成される複数の駆動信号Sa1のスイッチング周波数は、一定値にならない。換言すると、電源半周中に生成される複数の駆動信号Saのスイッチング周期は、電源電圧Vsの位相により変化する。これは、図15で説明したように、電流制御範囲wを一定値にした場合には、短絡部30がオン時の電源電流Isの傾きとオフ時の電源電流Isの傾きが異なるためである。
 スイッチング周波数が比較的高い場合、スイッチングによる損失の増加、放射ノイズ、および雑音端子電圧が問題となる場合がある。このような問題の対策のため、実施の形態2のパルス変換部22は、図14に示すように、スイッチング周期が短い領域の位相における電流制御範囲w1を広げることで、スイッチング周波数を低周波化し、損失の増加、放射ノイズ、および雑音端子電圧を抑制する。
 スイッチング周波数が比較的低い場合、可聴周波数帯域の騒音が問題となる場合がある。このような問題の対策のため、実施の形態2のパルス変換部22は、図14に示すように、スイッチング周期が長い領域の位相における電流制御範囲w2を狭めることで、スイッチング周波数を高周波化し、騒音を抑制する。
 なお、実施の形態2のパルス変換部22は、電源電圧の位相を、電源電圧Vsのゼロクロス点からの経過時間で判断する構成でもよい。この構成により、電源電圧Vsの位相を検出する手段を追加することなく、電流制御範囲w1、w2を制御することが可能となる。
 また実施の形態1,2のパルス変換部22は、複数のスイッチングパルスである駆動信号Sa1の周波数に対応して電流制御範囲wを変化させる構成でもよい。例えば規駆動信号Sa1の周波数を増加させた結果、駆動信号Sa1の周波数が規定値以上になったとき、パルス変換部22は、駆動信号Sa1の周波数が規定値未満にするため電流制御範囲wを広げる。この構成により、駆動信号Sa1の生成時の負荷が軽くなり安価な部品で電力変換装置100を製作することが可能である。
 また、実施の形態1,2では、電流検出部7で検出された電源電流Isを用いて短絡部30を制御する例を説明したが、これに限定されるものではない。事前の試験により、電源電流Isと複数のスイッチングパルスである駆動信号Sa1とが対応付けられ、その対応関係を外部入力あるいは制御部20に保持させることによって、電源電流Isを検出することなく短絡部30の制御が可能である。このように電源電流Isの検出の要否は、構築するシステム仕様によって選択すればよい。
 また、実施の形態1,2の電力変換装置100は、制御部20の外部に設けられた電流検出手段9で検出された電流検出値を用いて駆動信号Sa1を生成する構成であるが、電流検出部7を用いずに直接、制御部20で電源電流Isの値を検出して駆動信号Sa1を生成する構成でもよい。
 以上のように、本発明は、交流電源を短絡する短絡部を備えた電力変換装置に有用である。
 1 交流電源、2 リアクタ、3 整流回路、4 平滑コンデンサ、5 直流電圧検出部、6 電源電圧検出部、7 電流検出部、8 電流検出素子、9 電流検出手段、10 直流負荷、20 制御部、21 駆動信号生成部、22 パルス変換部、24 パルス伝達部、30 短絡部、31 ダイオードブリッジ、32 短絡素子、100 電力変換装置。

Claims (8)

  1.  交流電源からの交流電力を直流電力に変換する整流回路と、
     リアクタを介して前記交流電源を短絡する短絡部と、
     前記交流電源の半周期中に、前記短絡部を制御する複数のスイッチングパルスを生成する制御部と、
     を備え、
     前記制御部は、前記交流電源の電源電流の目標制御範囲である正弦波状の電流制御範囲を生成し、前記電流制御範囲に前記電源電流の値を収める電力変換装置。
  2.  前記制御部は、前記交流電源の電源電圧の位相と同位相の前記電流制御範囲を生成する請求項1に記載の電力変換装置。
  3.  前記制御部は、前記交流電源の電源電圧の位相を前記電源電圧のゼロクロス点からの経過時間で判断する請求項2に記載の電力変換装置。
  4.  前記制御部は、前記交流電源の電源電圧の位相に対応して前記電流制御範囲を広げる請求項1から3の何れか1項に記載の電力変換装置。
  5.  前記制御部は、前記交流電源の電源電圧の位相に対応して前記電流制御範囲を狭める請求項1から3の何れか1項に記載の電力変換装置。
  6.  前記制御部は、前記複数のスイッチングパルスの周波数に対応して前記電流制御範囲を変化させる請求項1から3の何れか1項に記載の電力変換装置。
  7.  前記制御部には、前記各スイッチングパルスと前記電源電流との対応関係が設定され、
     前記制御部は、前記対応関係を用いて前記短絡部を制御する請求項1から6の何れか1項に記載の電力変換装置。
  8.  前記制御部は、前記制御部の外部に設けられた電流検出手段で検出された電源電流を用いて前記短絡部を制御し、または、前記電流検出手段を用いずに直接前記電源電流を検出して前記短絡部を制御する請求項1から6の何れか1項に記載の電力変換装置。
PCT/JP2014/070576 2014-08-05 2014-08-05 電力変換装置 WO2016020980A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016539714A JP6400103B2 (ja) 2014-08-05 2014-08-05 電力変換装置
CN201480080833.1A CN106537750B (zh) 2014-08-05 2014-08-05 电力转换装置
PCT/JP2014/070576 WO2016020980A1 (ja) 2014-08-05 2014-08-05 電力変換装置
US15/326,776 US9991817B2 (en) 2014-08-05 2014-08-05 Power converting device that uses a sine-wave-shaped current control range to output drive signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070576 WO2016020980A1 (ja) 2014-08-05 2014-08-05 電力変換装置

Publications (1)

Publication Number Publication Date
WO2016020980A1 true WO2016020980A1 (ja) 2016-02-11

Family

ID=55263286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070576 WO2016020980A1 (ja) 2014-08-05 2014-08-05 電力変換装置

Country Status (4)

Country Link
US (1) US9991817B2 (ja)
JP (1) JP6400103B2 (ja)
CN (1) CN106537750B (ja)
WO (1) WO2016020980A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410832B2 (ja) * 2014-09-26 2018-10-24 三菱電機株式会社 電力変換装置
CN107078655B (zh) * 2014-09-30 2019-08-16 三菱电机株式会社 电力转换装置
WO2017130357A1 (ja) * 2016-01-28 2017-08-03 三菱電機株式会社 電力変換装置
JP6913056B2 (ja) * 2018-05-29 2021-08-04 株式会社Soken 電力変換装置の制御装置
CN112103953B (zh) * 2020-09-11 2022-04-22 西安交通大学 一种基于双向可控开关的无级调压配电变压器及调压方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340752A (ja) * 1989-03-07 1991-02-21 Thorn Emi Plc スイッチド・モード型レギュレータ回路
JP2000308353A (ja) * 1999-04-20 2000-11-02 Sanyo Electric Co Ltd 電源装置
JP2004007880A (ja) * 2002-05-31 2004-01-08 Fujitsu General Ltd 電源装置
JP2005253284A (ja) * 2004-01-08 2005-09-15 Fujitsu General Ltd 電源装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012288C1 (ja) 1990-04-17 1991-07-18 Schott Glaswerke, 6500 Mainz, De
TW364049B (en) * 1997-09-24 1999-07-11 Toshiba Corp Power conversion apparatus and air conditioner using the same
JPH11206130A (ja) 1998-01-16 1999-07-30 Toshiba Corp 電源装置
JP4095865B2 (ja) * 2002-08-26 2008-06-04 日立アプライアンス株式会社 電動機駆動装置および電動機応用装置
JP4432652B2 (ja) * 2004-07-16 2010-03-17 ウシオ電機株式会社 ランプ点灯装置
US7723964B2 (en) 2004-12-15 2010-05-25 Fujitsu General Limited Power supply device
CN101080864B (zh) * 2004-12-15 2010-06-23 富士通将军股份有限公司 电源装置
JP4792849B2 (ja) 2005-07-15 2011-10-12 パナソニック株式会社 空気調和機の直流電源装置
JP4992225B2 (ja) 2005-11-04 2012-08-08 株式会社富士通ゼネラル 電源装置
JP2008141901A (ja) * 2006-12-05 2008-06-19 Matsushita Electric Ind Co Ltd 直流電源装置
JP5274579B2 (ja) * 2008-12-01 2013-08-28 三菱電機株式会社 交流直流変換装置、電動機駆動装置
WO2011030640A1 (ja) 2009-09-11 2011-03-17 株式会社村田製作所 Pfcコンバータ
JP5471384B2 (ja) 2009-12-09 2014-04-16 パナソニック株式会社 電動機駆動用インバータ装置
JP5481165B2 (ja) 2009-11-06 2014-04-23 日立アプライアンス株式会社 直流電源装置およびこれを用いた空気調和機
JP5235851B2 (ja) * 2009-11-30 2013-07-10 三菱電機株式会社 交流直流変換装置、それを備えたモーター駆動装置、並びにそのモーター駆動装置を搭載した空気調和機、冷蔵庫、ヒートポンプ式給湯機、洗濯機及び掃除機
CN202121362U (zh) * 2011-07-13 2012-01-18 山东电力研究院 基于有源功率因数校正技术的充电机
WO2013061469A1 (ja) * 2011-10-28 2013-05-02 三菱電機株式会社 直流電源装置および電動機駆動装置
JP2013106455A (ja) 2011-11-15 2013-05-30 Hitachi Appliances Inc 直流電源装置およびこれを用いた空気調和機
JP5824339B2 (ja) 2011-11-17 2015-11-25 東芝キヤリア株式会社 三相整流装置
JP2014045836A (ja) * 2012-08-30 2014-03-17 Panasonic Corp ドラム式洗濯機
JP5868920B2 (ja) 2013-09-30 2016-02-24 三菱電機株式会社 電力変換装置
JP6147209B2 (ja) 2014-03-05 2017-06-14 三菱電機株式会社 電力変換装置
JP5932863B2 (ja) 2014-03-10 2016-06-08 日立オートモティブシステムズ株式会社 燃料噴射弁及びノズルの加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340752A (ja) * 1989-03-07 1991-02-21 Thorn Emi Plc スイッチド・モード型レギュレータ回路
JP2000308353A (ja) * 1999-04-20 2000-11-02 Sanyo Electric Co Ltd 電源装置
JP2004007880A (ja) * 2002-05-31 2004-01-08 Fujitsu General Ltd 電源装置
JP2005253284A (ja) * 2004-01-08 2005-09-15 Fujitsu General Ltd 電源装置

Also Published As

Publication number Publication date
CN106537750A (zh) 2017-03-22
US9991817B2 (en) 2018-06-05
CN106537750B (zh) 2019-08-20
JPWO2016020980A1 (ja) 2017-04-27
US20170207718A1 (en) 2017-07-20
JP6400103B2 (ja) 2018-10-03

Similar Documents

Publication Publication Date Title
JP6279080B2 (ja) 電力変換装置
US10199819B2 (en) Resonant converter and driving method thereof
JP6147209B2 (ja) 電力変換装置
JP5868920B2 (ja) 電力変換装置
US20160099649A1 (en) Switching power supply apparatus for generating control signal for lowering switching frequency of switching devices
JP6400103B2 (ja) 電力変換装置
US9866140B2 (en) AC/DC power converting apparatus with AC source shortcircuiting for power factor correction and harmonic suppression
US9780691B1 (en) AC-DC power conversion apparatus to output boosted DC voltage
JPWO2018043228A1 (ja) スイッチング電源装置および半導体装置
US9444352B2 (en) Current resonance type power supply device
CN108604867B (zh) 电力变换装置
WO2017134794A1 (ja) 電力変換装置
US9825552B1 (en) Power conversion apparatus
JP6598874B2 (ja) 電力変換装置
JP6410832B2 (ja) 電力変換装置
JP6313236B2 (ja) 電源装置およびacアダプタ
JP6277143B2 (ja) 電源装置およびacアダプタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016539714

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15326776

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899166

Country of ref document: EP

Kind code of ref document: A1