WO2016020643A1 - Exit pupil expanding diffractive optical waveguiding device - Google Patents
Exit pupil expanding diffractive optical waveguiding device Download PDFInfo
- Publication number
- WO2016020643A1 WO2016020643A1 PCT/GB2015/052181 GB2015052181W WO2016020643A1 WO 2016020643 A1 WO2016020643 A1 WO 2016020643A1 GB 2015052181 W GB2015052181 W GB 2015052181W WO 2016020643 A1 WO2016020643 A1 WO 2016020643A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diffractive optical
- waveguide
- grating
- light
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0081—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4272—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1814—Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0013—Means for improving the coupling-in of light from the light source into the light guide
- G02B6/0015—Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0016—Grooves, prisms, gratings, scattering particles or rough surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0035—Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
- G02B6/0038—Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0123—Head-up displays characterised by optical features comprising devices increasing the field of view
- G02B2027/0125—Field-of-view increase by wavefront division
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
- G02B2027/0174—Head mounted characterised by optical features holographic
Definitions
- the invention relates to an augmented reality display or a head-up display.
- it relates to a display in which input light is expanded in two orthogonal directions and is coupled out of a waveguide towards a viewer. This can allow physical expansion of an image in an augmented reality display.
- An augmented reality display allows a user to view their surroundings as well as projected images.
- the projected images can be overlaid on the real world perceived by the user.
- Other applications for these displays include video games and wearable devices, such as glasses.
- a transparent display screen is provided in front of a user so that they can continue to see the physical world.
- the display screen is typically a glass waveguide, and a projector is provided to one side.
- Light from the projector is coupled into the waveguide by a diffraction grating.
- the projected light is totally internally reflected within the waveguide.
- the light is then coupled out of the waveguide by another diffraction grating so that it can be viewed by a user.
- the projector can provide information and/or images that augment a user's view of the physical world.
- One solution is to provide a single input projector and optics that can expand the field of view across the width of the display.
- Figure 1 is a perspective view of a waveguide 2 which includes an input grating 4 on one of its surfaces.
- An input projector can provide input light in a direction that is orthogonal to the plane of the waveguide 2.
- the input grating 4 can diffract the input light so that the first diffraction order is coupled into the waveguide 2.
- the captured light can travel within the waveguide 2 by total internal reflection towards a second grating 6, the grooves of which are oriented at 45° to the incident light. At each point of interaction with the second grating 6, light can either be transmitted or diffracted.
- Light that is diffracted by the second grating 6 is turned through 90° and the first diffraction order extends within the waveguide 2 towards a third grating 8.
- Light that is initially transmitted in the second grating 6 can extend further within the grating 6 before it is diffracted towards the third grating 8. This can provide a one dimensional expansion of the incident light, along the length of the second grating 6.
- the grooves of the third grating 8 are oriented orthogonally to its incident light. At each point of interaction with the third grating 8, light can either be transmitted or diffracted.
- the transmitted light continues to travel within the waveguide 8 by total internal reflection. Light that is diffracted by the third grating 8 is coupled out of the waveguide 2 and towards a viewer.
- the third grating can therefore provide a one dimensional expansion of the light in a direction that is orthogonal to the third grating's grooves.
- the optical device in Figure 1 can achieve a two-dimensional expansion of the input light, where a first dimension of expansion is provided by the second grating 6 and a second dimension of expansion is provided by the third grating 8.
- FIG. 2 is a perspective view of a waveguide 2 having a first grating 4 and a third grating 8, which are similar to those in Figure 1.
- a crossed grating 10 is also provided between the first and third gratings 4, 8.
- the crossed grating 10 includes two overlapping gratings with grooves at 90° to one another. When light from the input grating 4 encounters the crossed grating 10 it is simultaneously diffracted in opposite directions which are mutually orthogonal to the input light beam, but are within the plane of the waveguide 2. The light is then diffracted again in the crossed grating so that it can extend towards the third grating 8.
- the crossed grating 10 can provide expansion of the input light in two opposite directions.
- Light output by the crossed grating 10 travels towards the third grating 8.
- the third grating 8 When the input light encounters the third grating 8 it is either transmitted or diffracted.
- the transmitted portion of the beam extends within the third waveguide 8, and the diffracted portion of the beam is coupled out of the waveguide 2 towards the viewer. Any transmitted portions of the beam can then be diffracted out of the waveguide 2 by later grooves of the grating 8.
- a first dimension of expansion is provided by the crossed grating 10 and a second dimension of expansion is provided by the third grating 8.
- the grating periods are selected specifically to prevent any out-coupling of light by the crossed grating 10.
- the only out- coupling of light is by the third grating 8.
- a problem in the arrangements of Figures 1 and 2 relates to the space required in the waveguide to provide three separate regions with diffraction gratings. These large optical systems may not be appropriate for all devices. A further problem is that a large number of diffractive interactions are required. Each diffractive interaction causes scattering and therefore reduces contrast in the resulting image. Yet another problem is that these devices are not necessarily appropriate for colour displays. It is an object of the present invention to overcome some of these shortcomings.
- an optical device for expanding input light in two dimensions in an augmented reality display comprising: a waveguide; an input diffractive optical element configured to couple input light into the waveguide; and two diffractive optical elements at least partially overlaid on one another in or on the waveguide, wherein at least one of the two diffractive optical elements can act as an output diffractive optical element which couples light out of the waveguide towards a viewer.
- the optical device can achieve two-dimensional expansion of an input light source while simultaneously coupling light out of the waveguide so that it can be viewed by a user.
- This can allow more efficient use of space in an optical device because two-dimensional expansion can be provided within the same area of the waveguide as output coupling. This can advantageously reduce the cost of manufacture.
- the device can also offer improved optical characteristics. For example, the device may offer improved background contrast because two- dimensional expansion can be achieved with a reduced number of diffractive interactions.
- the two diffractive optical elements may be partially or entirely overlaid on one another in or on the waveguide.
- One advantage of the optical device is that simultaneous two-dimensional beam expansion and outcoupling can be provided with only two areas of the waveguide devoted to diffractive optical elements (one for the input diffractive optical element and one for the overlaid diffractive optical elements). This can reduce the overall size of the device. Additionally, similar optical performance can be achieved with reduced tolerances with regards substrate flatness and wedge, which means that the device can be produced for lower cost. Alternatively, better optical performance can be achieved without increasing tolerances in manufacture.
- one of the elements preferably directs light received from the input diffractive optical element towards the other element in the overlaid pair. The other diffractive optical element can then couple light out of the waveguide and towards a viewer. Preferably this is a symmetrical arrangement so that each of the overlaid diffractive optical element can direct received light towards the other for outward coupling.
- Each diffractive optical element preferably comprises grooves and a grating vector in the plane of the grooves.
- the grating vector may be defined with a direction that is normal to the grooves and a magnitude which is inversely related to the pitch of the grooves.
- the input and output diffractive optical elements respectively may have grating vectors with a substantially equal magnitude.
- the exit beam can be provided at the same angle as the input beam. This can be achieved over all operating wavelengths, meaning that the device can operate effectively in colour (i.e. over a range of wavelengths).
- a combination of the respective grating vectors of the input diffractive optical element and the two diffractive optical elements may be a resultant vector with substantially zero magnitude.
- This combined property of the gratings means that output light can be provided with substantially no angular or chromatic shift, which can facilitate use of the device in a colour augmented reality display.
- the resultant vector may have a small magnitude. In general these embodiments are more appropriate for monochromatic light since this arrangement would normally produce chromatic dispersion, which is undesirable in a colour display.
- the grooves of the diffractive optical element may be linear, and may be formed by etching in a surface of the waveguide.
- the grooves may be formed by variations in refractive index, such as may be found in a volume type photopolymer. These may be smoothly varying changes in refractive index or step-changes.
- the grating vectors of the two diffractive optical elements may subtend equal and opposite angles to the grating vector of the input diffractive optical element.
- the overlaid diffractive optical elements can be crossed relative to one another, and can be symmetrically disposed relative to the input diffractive optical element.
- Light from the input diffractive optical element can therefore be simultaneously diffracted in divergent directions by the two diffractive optical elements.
- the grating vectors of the input diffractive optical element and the two diffractive optical elements may have substantially the same magnitude. Since a combination of these three vectors has substantially zero magnitude, the vectors may be combined to create an equilateral triangle, such that the grating vectors are at approximately 60° relative to one another. This arrangement can allow even diffraction by the crossed diffractive optical elements, in divergent directions.
- each of the two diffractive optical elements can act as an output grating, following diffraction of light by the other overlaid diffractive optical element. This can allow light to be coupled out of the waveguide in the same orientation as it was input.
- all wavelengths can experience the same result to facilitate a colour display.
- the input grating is spaced apart from the two diffractive optical elements.
- the input grating can couple light into the waveguide and it can travel through the waveguide under total internal reflection to the other two diffractive optical elements.
- a projector is provided to project light towards the input diffractive optical element.
- the projector may be polychromatic and provided in an orientation that is transverse to the plane of the waveguide.
- the projected light may be provided at a first angle relative to the input diffractive optical element and light coupled out of the waveguide by the output diffractive optical element may be also provided at the first angle.
- output light can be provided without any angular shift.
- the two overlaid diffractive optical elements may be provided in or on the waveguide in different planes. In this way, the overlaid diffractive optical elements can be physically separated from one another. Such an arrangement can be easily manufactured and can produce desirable results.
- the diffractive optical elements may be provided on opposing surfaces of the waveguide. They may be provided on internal or external surfaces of the waveguide, as required. Alternatively the two diffractive optical elements may be provided in substantially the same plane in the waveguide. This may be achieved by using a photonic crystal.
- the diffractive optical elements may be provided by variations in the surface height and/or refractive index in the material of the crystal.
- a diffractive optical device comprising: a light transmissive substrate; a first diffractive optical element carried by the substrate; a second diffractive optical element carried by the substrate; wherein the light transmissive substrate has two substantially parallel surfaces in two dimensions; the first diffractive optical element couples optical rays from a light source and confines them within the substrate by total internal reflection; the second diffractive optical substrate diffracts the optical rays into a number of orders in three dimensions, so of these said orders are diffracted in different directions (in the two- dimensions containing the major surfaces of the substrate) while still under total internal reflections, while at least one of the said orders couples out of the
- a diffractive optical device comprising: a light transmissive substrate; a diffractive optical element carried by said substrate; wherein the light transmissive substrate has two substantially parallel surfaces in two dimensions; the said single diffractive substrate couples optical rays from a light source and confines them inside said substrate by total internal reflection and the said single diffractive optical element also diffracts the said rays into a number of orders in three dimensions; some of the said orders are diffracted in different directions (in the two dimensions containing the major surfaces of the substrate) while still under total internal reflection, resulting in two dimensional replication of said rays, while at least one of the said orders couples out of the waveguide.
- Figure 1 is a perspective view of an optical device for expanding an input beam in two orthogonal directions
- Figure 2 is a perspective view of another optical device for expanding an input beam in two orthogonal directions
- Figure 3 is a perspective view of an optical device in an embodiment of the present invention
- Figure 4 is a top view of the grooves of one of the diffraction gratings in the optical device of Figure 3;
- Figure 5 is a top view of the grooves of another diffraction grating in the optical device of Figure 3;
- Figure 6 is a top view of the grooves of yet another diffraction grating in the optical device of Figure 3;
- Figure 7 is a schematic view of the optical device in Figure 3 showing the grating vectors
- Figure 8 is an example of some optical paths that may be taken through the optical device shown in Figure 3;
- Figure 9 shows a combination of the grating vectors for the optical device shown in Figure 3;
- Figure 10 is a top view of a waveguide showing another example of optical paths that may be taken through the optical device shown in Figure 3;
- Figure 11 is another example of some optical paths that may be taken through the optical device shown in Figure 3;
- Figure 12 is a top view of a waveguide showing yet another example of optical paths that may be taken through the optical device shown in Figure 3;
- Figure 13 is a diagram showing the light received at and diffracted by an input grating
- Figure 14 is a diagram showing the light received at and diffracted by an output grating
- Figures 15A and B are side views of a waveguide in alternative arrangements showing internal and external gratings respectively;
- Figure 16 is a schematic view of a photonic crystal with a triangular lattice structure for use in an embodiment of the invention
- Figure 17 is a schematic view showing the structure of the triangular lattice of the photonic crystal shown in Figure 16;
- Figure 18 is a diagram showing optical paths that may be taken through the photonic crystal shown in Figure 16;
- Figure 19 is a perspective view of a pair of glasses in an embodiment of the invention.
- Figure 20 is a perspective view of a head-up display in an embodiment of the invention.
- Figure 3 is a perspective view of a waveguide 12 including three linear gratings HO, H1 , H2.
- the grooves of input grating HO lie in the x-y plane on a first surface of the waveguide 12, are oriented parallel to the y-axis and have a grating pitch p, as shown in Figure 4.
- the linear grating H 1 is laterally separated from the input grating HO in the x-y plane and it lies on a second surface of the waveguide 12.
- the grooves of grating H 1 lie in the x-y plane, are oriented at 30° to the x-axis, and have a grating pitch p, as shown in Figure 5.
- the linear grating H2 is superimposed on H1 in the x-y plane and lies on the first surface of the waveguide 12, opposite to the grating H2.
- the crossed gratings H1 , H2 are therefore separated by the thickness of the waveguide 12 in the z-axis.
- the grooves of grating H2 lie in the x-y plane, are oriented at -30° to the x-axis, and have a grating pitch p, as shown in Figure 6.
- a grating vector can be defined for each of the gratings HO, H1 , H2.
- the grating vector lies in the plane of the grating's grooves and extends in a direction which is at right angles to the direction of grooves.
- FIG. 7 is a plan view of the waveguide 12 showing the grating vectors GO, G2, G3, corresponding to gratings HO, H1 and H2 respectively. Although they are depicted separately, it is clear that the vectors G2 and G3 are actually overlaid on one another. All of the vectors G0/G2/G3 have an equal magnitude and are oriented at 60° with respect to one another. As shown in Figure 9, the vectors GO, G2, G3 form an equilateral triangle when they are combined such that they produce no resultant vector, or a resultant vector having a small magnitude.
- Figure 8 is an example of a ray diagram showing an optical path that may be taken through the waveguide 12.
- an incident beam from a projector illuminates the input grating HO with polychromatic light.
- the incident beam is provided from below the waveguide 12 and extends in a direction that is orthogonal to the plane of the waveguide 12.
- the input grating HO diffracts the incident beam and the first diffractive order is coupled into the waveguide 12.
- the diffracted light then travels within the waveguide 12 by total internal reflection.
- the light then encounters the crossed grating 10 and it interacts with the crossed gratings H1 , H2 simultaneously.
- the grating H1 diffracts light into a zero order OR and a first diffracted order 1 R.
- the first diffracted order 1 R is at -120° to the x-axis and is still under total internal reflection in the waveguide 12.
- the first diffracted order 1 R then encounters H2 (with vector G3), which is the other part of the crossed grating 10.
- H2 also diffracts light into a zero order and a first diffracted order.
- the zero order continues to travel within the waveguide 12, and the first diffracted order is coupled out of the waveguide 12 along the z-axis towards a viewer.
- the angle at which the light is output from the waveguide 12 in this example is the same as the angle at which light is incident on the waveguide 12 from the projector.
- Figure 10 is another view of the ray diagram shown in Figure 8. It is clear from Figure 10 that the incident light on the crossed grating can be diffracted at a plurality of different positions within the waveguide by the grating H1. This is because at each point of interaction the light can either be diffracted into the zero order or the first diffracted order. In this way, the input beam can be expanded in a first direction. Light that is diffracted into the first order by the grating H1 then encounters grating H2 where it is either diffracted into the zero order or the first order. This can allow the input light to be expanded in a second direction, which is orthogonal to the grooves of H2. In this way, outcoupled orders can be provided across a two- dimensional area by the grating H2.
- Figure 1 1 is another example of a ray diagram showing an optical path that may be taken through the waveguide 12.
- light from the input grating HO encounters the crossed grating 10 and it interacts with the grating H2 (with vector G3).
- the grating H2 diffracts light into the zero order OR and a first diffracted order 1 R.
- the first diffracted order 1 R is at +120° to the x-axis and is still under total internal reflection in the waveguide 12.
- the first diffracted order 1 R then encounters H1 , which is the other part of the crossed grating 10.
- H1 couples the light upwards out of the waveguide 12 and towards a viewer.
- the angle at which the light is output from the waveguide 12 in this example is the same as the angle at which light is incident on the waveguide 12.
- Figure 12 is another view of the ray diagram shown in Figure 1 1. It can be appreciated that this arrangement of gratings can expand the input beam in order to fill a two-dimensional display. Of course, light follows the path shown in Figure 10 simultaneously with the path shown in Figure 12, which provides even expansion of the input beam over a two-dimensional area.
- the light has encountered three diffraction gratings with vectors GO, G2 and G3.
- the sequence of diffraction can either be G0/G2/G3 or G0/G3/G2.
- Each of these vectors has the same magnitude.
- Figure 9 if the vectors are added to one another then a vector diagram is obtained in the shape of an equilateral triangle, having the same start and end position.
- the physics of diffraction gratings dictates that this arrangement provides an exit beam with the same angular and chromatic properties as the input beam.
- Figure 13 is a diagram showing light being diffracted at the input grating HO.
- an input beam is provided with angle of incidence â â relative to the z-axis and angle of incidence â â relative to the x-axis.
- This input beam is then diffracted by the input grating HO and is captured by the waveguide 12.
- Figure 14 is a diagram showing light being diffracted at the output grating.
- the output grating could either be H1 or H2, depending on the path taken by the light through the waveguide 12.
- light is received at the output grating from total internal reflection within the waveguide 12, and it is output an angle of incidence 0 out relative to the z-axis and (p out relative to the x-axis, where and
- Figure 15A is a side view of the waveguide 12, sandwiched between two glass plates 14, 16.
- gratings 17 are provided on surfaces of the glass plates 14, 16 and the waveguide 12 is assembled to these plates 14, 16 with a thin layer of optical cement.
- the gratings 17 are provided on internal surfaces of the glass plates 14, 16.
- Figure 15B is a side view of the waveguide 12 in an alternative configuration in which gratings 17 are provided directly on its surfaces. In this way the gratings 17 can be provided on external surfaces of the waveguide 12.
- the crossed grating 10 may be replaced by a photonic crystal.
- a photonic crystal is a material in which a variable refractive index produces a regular pattern.
- the photonic crystal is in the form of a triangular lattice.
- a two dimensional photonic crystal has periodic nano-structures in orthogonal directions.
- the photonic crystal is in the form of an equilateral triangular lattice.
- Figure 16 is a top view of a photonic crystal 19 having circular pillars 20 that have an increased refractive index relative to the waveguide 12.
- the pillars 20 are arranged in a regular pattern and they are all provided in the same x-y plane.
- Figure 17 shows three of the circular pillars 20.
- the pillars are separated by a distance e, which corresponds to a distance p along the x-axis or the y-axis.
- the regular arrangement of pillars creates a number of effective diffraction gratings or diffractive optical elements.
- Grating H2 is arranged with rows of pillars 20 at an angle of +30° to the x-axis, with adjacent rows separated by a distance p.
- grating H3 is arranged with rows of pillars 20 at an angle of -30° to the x-axis, with adjacent rows separated by a distance p. It is noted that gratings H1 and H2 have the same properties as the corresponding gratings in the crossed grating embodiment shown in Figure 3.
- Figure 18 is a diagram showing the optical paths that may be taken through the photonic crystal. Light is received in the photonic crystal at point A where it can simultaneously undergo diffraction into four orders. First, light is diffracted into a zero order aO, which is a continuation of the propagation of the incident light.
- the zero order can continue to make further interactions with the photonic crystal at points B and C.
- This light beam ae is coupled out of the waveguide 12 in a positive direction along the z-axis, towards a viewer.
- the groove orientation and pitch of grating H1 is the same as grating HO.
- the angular and chromatic dispersion effects of diffraction are cancelled due to the conjugate effects of the gratings HO and H1.
- the light beam ae is provided with the same angular and chromatic properties as the light that is incident on HO from the projector.
- light is diffracted into a first diffracted order a1 by the H2 grating component.
- the a1 beam is diffracted at +60° to the x-axis, and this light beam goes on to make further interactions with the photonic crystal at point D.
- the a1 diffracted beam is effectively the same as the light diffracted by the crossed grating H2 as explained with reference to Figure 12.
- light is diffracted into a first diffracted order a2 by the H1 grating component. This light beam can interact with the grating H2 at point F. At each point in the photonic crystal light can make these four separate diffractive interactions.
- the symmetry of the photonic crystal means that every exit beam has the same angular and chromatic properties as the input beam, which means that a polychromatic (as well as a monochromatic) light source may be used as the input beam with this photonic crystal arrangement.
- the photonic crystal can allow simultaneous and rapid expansion of light in two dimensions so that the input light can fill a two-dimensional display screen. This can allow an ultra-compact display because the waveguide size can be kept to a minimum due to the two-dimensional beam expansion.
- Figure 19 shows a pair of glasses 40.
- the eye pieces 44 are waveguides including crossed gratings or photonic crystals in front of a user's eyes.
- the input grating 42 is provided in the bridge of the glasses 40.
- the crossed gratings or photonic crystals within the eye pieces and expand the light in two dimensions and can couple it out of the waveguide towards the user's eyes.
- Figure 20 shows another example where a head-up display 50 is provided in front of a user.
- the crossed gratings or photonic crystal are provided in a waveguide 52 in the head-up display.
- An input grating 54 is provided at the top of the display and the crossed gratings or photonic crystal in the waveguide 52 allow rapid two-dimensional expansion of the image and outward coupling of the light towards a viewer.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Computer Graphics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Integrated Circuits (AREA)
- Holo Graphy (AREA)
Priority Applications (18)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP15744327.6A EP3175280B1 (en) | 2014-08-03 | 2015-07-28 | Exit pupil expanding diffractive optical waveguiding device |
| CA2956872A CA2956872C (en) | 2014-08-03 | 2015-07-28 | Exit pupil expanding diffractive optical waveguiding device |
| HRP20180778TT HRP20180778T1 (hr) | 2014-08-03 | 2015-07-28 | Difraktivni ureÄaj za voÄenje optiÄkih valova, namijenjen ĹĄirenju izlazne pupile |
| PL15744327T PL3175280T3 (pl) | 2014-08-03 | 2015-07-28 | Dyfrakcyjne optyczne urzÄ dzenie falowodowe powiÄkszajÄ ce ĹşrenicÄ wyjĹciowÄ |
| KR1020177002023A KR102350385B1 (ko) | 2014-08-03 | 2015-07-28 | ěśěŹë íěĽ íě ę´í ě¨ě´ë¸ę°ě´ëŠ ěĽěš |
| DK15744327.6T DK3175280T3 (en) | 2014-08-03 | 2015-07-28 | EXPANDING PUPIL EXPANDING DIFFRACTIVE OPTICAL WAVE CONTROL DEVICE |
| AU2015298504A AU2015298504B2 (en) | 2014-08-03 | 2015-07-28 | Exit pupil expanding diffractive optical waveguiding device |
| RS20180522A RS57263B1 (sr) | 2014-08-03 | 2015-07-28 | Difraktivni optiÄki talasovodni ureÄaj za ĹĄirenje izlazne zenice |
| JP2016575366A JP6714797B2 (ja) | 2014-08-03 | 2015-07-28 | ĺ°ĺşçłăćĄĺ¤§ăăĺćĺ ĺ°ćł˘čˇŻčŁ ç˝Ž |
| LTEP15744327.6T LT3175280T (lt) | 2014-08-03 | 2015-07-28 | IĹĄÄjimo apertĹŤros iĹĄplÄtimo difrakcinis optinis bangolaidinis ÄŻtaisas |
| SM20180238T SMT201800238T1 (it) | 2014-08-03 | 2015-07-28 | Dispositivo ottico diffrattivo comprendente una guida dâonda per lâespansione della pupilla di uscita |
| BR112017002290-7A BR112017002290B1 (pt) | 2014-08-03 | 2015-07-28 | Dispositivo de guia de ondas Ăłptico de difração para expansĂŁo da pupila de saĂda. |
| SI201530246T SI3175280T1 (sl) | 2014-08-03 | 2015-07-28 | Izhodna difrakcijska optiÄna valovodna naprava za ĹĄirjenje zenice |
| US15/329,557 US10114220B2 (en) | 2014-08-03 | 2015-07-28 | Exit pupil expanding diffractive optical waveguiding device |
| CN201580041359.6A CN106575034B (zh) | 2014-08-03 | 2015-07-28 | ĺşĺ°ĺ çłćŠĺąçčĄĺ°ĺ ĺŚćł˘ĺŻźčŁ ç˝Ž |
| ES15744327.6T ES2670022T3 (es) | 2014-08-03 | 2015-07-28 | Dispositivo guĂa de ondas Ăłptico difractivo que expande la pupila de salida |
| CY20181100497T CY1120524T1 (el) | 2014-08-03 | 2018-05-15 | ÎĎĎΚκΡ ĎÎľĎΚθΝιĎĎΚκΡ δΚιĎιΞΡ ĎĎΡĎΚΟοĎÎżÎšÎżĎ ĎÎą ξνιν ÎşĎ ÎźÎąĎοδΡγο γΚι ĎΡ ÎźÎľÎłÎľÎ¸Ď Î˝ĎΡ ĎÎˇĎ ÎşÎżĎÎˇĎ ÎľÎžÎżÎ´ÎżĎ |
| US16/103,113 US10359635B2 (en) | 2014-08-03 | 2018-08-14 | Exit pupil expanding diffractive optical waveguiding device |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462032577P | 2014-08-03 | 2014-08-03 | |
| US62/032,577 | 2014-08-03 | ||
| GB1502098.5 | 2015-02-09 | ||
| GB1502098.5A GB2529003B (en) | 2014-08-03 | 2015-02-09 | Optical device |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US15/329,557 A-371-Of-International US10114220B2 (en) | 2014-08-03 | 2015-07-28 | Exit pupil expanding diffractive optical waveguiding device |
| US16/103,113 Continuation US10359635B2 (en) | 2014-08-03 | 2018-08-14 | Exit pupil expanding diffractive optical waveguiding device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016020643A1 true WO2016020643A1 (en) | 2016-02-11 |
Family
ID=52746333
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2015/052181 Ceased WO2016020643A1 (en) | 2014-08-03 | 2015-07-28 | Exit pupil expanding diffractive optical waveguiding device |
Country Status (22)
| Country | Link |
|---|---|
| US (2) | US10114220B2 (enExample) |
| EP (1) | EP3175280B1 (enExample) |
| JP (1) | JP6714797B2 (enExample) |
| KR (1) | KR102350385B1 (enExample) |
| CN (1) | CN106575034B (enExample) |
| AU (1) | AU2015298504B2 (enExample) |
| BR (1) | BR112017002290B1 (enExample) |
| CA (1) | CA2956872C (enExample) |
| CY (1) | CY1120524T1 (enExample) |
| DK (1) | DK3175280T3 (enExample) |
| ES (1) | ES2670022T3 (enExample) |
| GB (1) | GB2529003B (enExample) |
| HR (1) | HRP20180778T1 (enExample) |
| HU (1) | HUE037328T2 (enExample) |
| LT (1) | LT3175280T (enExample) |
| PL (1) | PL3175280T3 (enExample) |
| PT (1) | PT3175280T (enExample) |
| RS (1) | RS57263B1 (enExample) |
| SI (1) | SI3175280T1 (enExample) |
| SM (1) | SMT201800238T1 (enExample) |
| TR (1) | TR201806707T4 (enExample) |
| WO (1) | WO2016020643A1 (enExample) |
Cited By (109)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017180404A1 (en) * | 2016-04-13 | 2017-10-19 | Microsoft Technology Licensing, Llc | Waveguide exit pupil expander with improved intensity distribution |
| WO2017196555A1 (en) * | 2016-05-07 | 2017-11-16 | Microsoft Technology Licensing, Llc | Degrees of freedom for diffraction elements in wave expander |
| EP3339936A1 (en) * | 2016-12-20 | 2018-06-27 | Oculus VR, LLC | Waveguide display with a small form factor, a large field of view and a large eyebox |
| US10089516B2 (en) | 2013-07-31 | 2018-10-02 | Digilens, Inc. | Method and apparatus for contact image sensing |
| US10095045B2 (en) | 2016-09-12 | 2018-10-09 | Microsoft Technology Licensing, Llc | Waveguide comprising a bragg polarization grating |
| US10145533B2 (en) | 2005-11-11 | 2018-12-04 | Digilens, Inc. | Compact holographic illumination device |
| US10156681B2 (en) | 2015-02-12 | 2018-12-18 | Digilens Inc. | Waveguide grating device |
| US10157559B2 (en) | 2016-02-11 | 2018-12-18 | Facebook Technologies, Llc | Scanned MicroLED array for waveguide display |
| WO2019005376A1 (en) * | 2017-06-30 | 2019-01-03 | Microsoft Technology Licensing, Llc | WAVEBOOK WITH GREAT FIELD OF VISION ACCEPTING RED, GREEN AND BLUE IN A PLATE |
| US10175423B2 (en) | 2017-05-31 | 2019-01-08 | Microsoft Technology Licensing, Llc | Optical waveguide using overlapping optical elements |
| US10185154B2 (en) | 2011-04-07 | 2019-01-22 | Digilens, Inc. | Laser despeckler based on angular diversity |
| US10185151B2 (en) | 2016-12-20 | 2019-01-22 | Facebook Technologies, Llc | Waveguide display with a small form factor, a large field of view, and a large eyebox |
| KR20190015507A (ko) * | 2016-06-03 | 2019-02-13 | ë°° ěě¤í ěŚ íźěě | ëíę´ ęľŹěĄ°ě˛´ |
| US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
| US10216061B2 (en) | 2012-01-06 | 2019-02-26 | Digilens, Inc. | Contact image sensor using switchable bragg gratings |
| US10222615B2 (en) | 2017-05-26 | 2019-03-05 | Microsoft Technology Licensing, Llc | Optical waveguide with coherent light source |
| GB2566274A (en) * | 2017-09-06 | 2019-03-13 | Wave Optics Ltd | Display for use in an augmented reality or virtual reality device |
| US10234696B2 (en) | 2007-07-26 | 2019-03-19 | Digilens, Inc. | Optical apparatus for recording a holographic device and method of recording |
| US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
| WO2019118930A1 (en) | 2017-12-15 | 2019-06-20 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US10330777B2 (en) | 2015-01-20 | 2019-06-25 | Digilens Inc. | Holographic waveguide lidar |
| WO2019139814A1 (en) * | 2018-01-09 | 2019-07-18 | Varian Semiconductor Equipment Associates, Inc. | System and method for forming diffracted optical element having varied gratings |
| US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
| US10409144B2 (en) | 2009-10-09 | 2019-09-10 | Digilens Inc. | Diffractive waveguide providing structured illumination for object detection |
| US10412378B2 (en) | 2017-05-08 | 2019-09-10 | Microsoft Technology Licensing, Llc | Resonating optical waveguide using multiple diffractive optical elements |
| US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
| US10429652B2 (en) | 2016-12-12 | 2019-10-01 | Facebook Technologies, Llc | Tiled waveguide display with a wide field-of-view |
| US10437051B2 (en) | 2012-05-11 | 2019-10-08 | Digilens Inc. | Apparatus for eye tracking |
| US10437064B2 (en) | 2015-01-12 | 2019-10-08 | Digilens Inc. | Environmentally isolated waveguide display |
| JP2019528477A (ja) * | 2016-08-26 | 2019-10-10 | ă˘ăŹăăĽăŠăź ă¤ăłăăŞăłăďź ă¤ăłăłăźăăŹă¤ăăăďźď˝ď˝ď˝ ď˝ď˝ď˝ď˝ď˝ ď˝ď˝ď˝ď˝ď˝ď˝ď˝ďźďźŠď˝ď˝ďź | ĺ ĺŚăăă¤ăšăŽăăăŽç¸ăˇăźăŠăłăéăčžźăăăăłăăăźä˝ć¸ |
| US10444510B1 (en) * | 2016-10-11 | 2019-10-15 | Facebook Technologies, Llc | Opposed gratings in a waveguide display |
| US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
| KR20200002791A (ko) * | 2017-03-30 | 2020-01-08 | ě¨ě´ë¸ ěľíąě¤ ěí°ë | ěŚę° íě¤ ëë ę°ě íě¤ ëě¤íë ě´ëĽź ěí ëíę´ |
| US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
| US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
| WO2020065251A1 (en) | 2018-09-24 | 2020-04-02 | Wave Optics Ltd. | Device for augmented reality or virtual reality display |
| WO2020084275A1 (en) | 2018-10-24 | 2020-04-30 | Wave Optics Ltd | Device for augmented reality or virtual reality display |
| US10642058B2 (en) | 2011-08-24 | 2020-05-05 | Digilens Inc. | Wearable data display |
| US10649143B2 (en) | 2016-06-20 | 2020-05-12 | Akonia Holographics Llc | Polarization management |
| US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
| US10678053B2 (en) | 2009-04-27 | 2020-06-09 | Digilens Inc. | Diffractive projection apparatus |
| US10690919B1 (en) | 2017-02-17 | 2020-06-23 | Facebook Technologies, Llc | Superluminous LED array for waveguide display |
| US10690851B2 (en) | 2018-03-16 | 2020-06-23 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
| US10690916B2 (en) | 2015-10-05 | 2020-06-23 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US10732569B2 (en) | 2018-01-08 | 2020-08-04 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
| JP2020523634A (ja) * | 2017-06-13 | 2020-08-06 | ăăĽăźă¸ăăŻăš ăłăźăăŹăźăˇă§ăłďźśď˝ď˝ď˝ď˝ ď˝ď˝ď˝ď˝ď˝ď˝ď˝ď˝ď˝ď˝ | ćĄĺ¤§ăăăĺ ĺé ăčĄăéĺć źĺăĺăăçťĺĺ ăŹă¤ă |
| US10761256B2 (en) | 2018-04-16 | 2020-09-01 | Samsung Electronics Co., Ltd. | Backlight unit providing uniform light and display apparatus including the same |
| JP2020527244A (ja) * | 2017-07-07 | 2020-09-03 | 亏ćąćšç§ćéĺčĄâ˛ăľăâźćéĺ Źĺ¸ďź˘ď˝ď˝ ďź´ď˝ ď˝ď˝ď˝ď˝ď˝ď˝ď˝ď˝ ďź§ď˝ď˝ď˝ď˝ ď˝ďźďźďźŹď˝ď˝ďź | éćčĄ¨ç¤şčŁ ç˝ŽĺăłăăŽčŁ˝é ćšćł |
| WO2020178545A1 (en) | 2019-03-07 | 2020-09-10 | Wave Optics Ltd. | Display for augmented reality or virtual reality |
| WO2020188234A1 (en) | 2019-03-19 | 2020-09-24 | Wave Optics Ltd. | Improved angular uniformity waveguide for augmented or virtual reality |
| WO2020217044A1 (en) | 2019-04-25 | 2020-10-29 | Wave Optics Ltd | Display for augmented reality |
| US10845525B2 (en) | 2016-12-31 | 2020-11-24 | Vuzix Corporation | Imaging light guide with grating-expanded light distribution |
| US10859833B2 (en) | 2017-08-18 | 2020-12-08 | Tipd, Llc | Waveguide image combiner for augmented reality displays |
| US10859768B2 (en) | 2016-03-24 | 2020-12-08 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
| US10877275B2 (en) | 2018-02-15 | 2020-12-29 | Hitachi, Ltd. | Imageguide for head mounted display |
| US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
| US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
| EP3631566A4 (en) * | 2017-06-02 | 2021-03-03 | Dispelix Oy | DIFFACTIVE ELEMENT WITH DOUBLE PERIODIC GRIDS |
| US10942430B2 (en) | 2017-10-16 | 2021-03-09 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
| US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
| US11131807B2 (en) | 2017-05-31 | 2021-09-28 | Microsoft Technology Licensing, Llc | Pupil expander with improved color uniformity |
| WO2021197907A1 (en) | 2020-04-03 | 2021-10-07 | Wave Optics Ltd. | Waveguide for an augmented reality or virtual reality display |
| WO2021204894A1 (en) | 2020-04-07 | 2021-10-14 | Wave Optics Ltd | Optical device |
| US11204540B2 (en) | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
| US11204462B2 (en) | 2017-01-23 | 2021-12-21 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| WO2022049104A1 (en) | 2020-09-01 | 2022-03-10 | Wave Optics Ltd | Methods for designing diffraction grating for augmented reality or virtual reality display and diffraction grating for augmented reality or virtual reality display |
| US11307432B2 (en) | 2014-08-08 | 2022-04-19 | Digilens Inc. | Waveguide laser illuminator incorporating a Despeckler |
| WO2022122766A1 (en) | 2020-12-10 | 2022-06-16 | Wave Optics Ltd. | Optical device |
| US11378864B2 (en) | 2016-11-18 | 2022-07-05 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| US11378732B2 (en) | 2019-03-12 | 2022-07-05 | DigLens Inc. | Holographic waveguide backlight and related methods of manufacturing |
| US11402801B2 (en) | 2018-07-25 | 2022-08-02 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
| WO2022167126A1 (en) | 2021-02-03 | 2022-08-11 | Wave Optics Ltd. | Projector alignment system |
| WO2022167125A1 (en) | 2021-02-05 | 2022-08-11 | Wave Optics Ltd. | Device and method for compensating effects of pantoscopic tilt or wrap/sweep tilt on an image presented on an augmented reality or virtual reality display |
| US11442222B2 (en) | 2019-08-29 | 2022-09-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
| US11448937B2 (en) | 2012-11-16 | 2022-09-20 | Digilens Inc. | Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles |
| US11460621B2 (en) | 2012-04-25 | 2022-10-04 | Rockwell Collins, Inc. | Holographic wide angle display |
| US11480788B2 (en) | 2015-01-12 | 2022-10-25 | Digilens Inc. | Light field displays incorporating holographic waveguides |
| US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
| US11513372B2 (en) | 2018-06-12 | 2022-11-29 | Magic Leap, Inc. | Edge sealant application for optical devices |
| WO2022258553A1 (en) | 2021-06-09 | 2022-12-15 | Snap, Inc. | Waveguide and diffraction grating for augmented reality or virtual reality display |
| US11543594B2 (en) | 2019-02-15 | 2023-01-03 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
| US11650423B2 (en) | 2019-06-20 | 2023-05-16 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11668935B2 (en) | 2017-08-18 | 2023-06-06 | A9.Com, Inc. | Waveguide image combiners for augmented reality displays |
| WO2023104914A1 (en) | 2021-12-10 | 2023-06-15 | Snap Inc. | Waveguide and diffraction grating for augmented reality or virtual reality display for reducing the visible appearance of grating structures |
| WO2023104725A1 (en) | 2021-12-10 | 2023-06-15 | Snap Inc | Optical assembly for augmented reality or virtual reality display |
| WO2023104953A1 (en) | 2021-12-10 | 2023-06-15 | Snap Inc | Diffraction grating, diffractive waveguide combiner and headset for augmented reality or virtual reality display |
| US11681143B2 (en) | 2019-07-29 | 2023-06-20 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
| US11698492B2 (en) | 2017-08-18 | 2023-07-11 | A9.Com, Inc. | Waveguide image combiners for augmented reality displays |
| WO2023138922A1 (en) | 2022-01-21 | 2023-07-27 | Snap Inc | Waveguide combiner assemblies for augmented reality or virtual reality displays |
| US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
| US11747568B2 (en) | 2019-06-07 | 2023-09-05 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
| US11789265B2 (en) | 2017-08-18 | 2023-10-17 | A9.Com, Inc. | Waveguide image combiners for augmented reality displays |
| US20240045205A1 (en) * | 2020-12-23 | 2024-02-08 | Wave Optics Ltd | Waveguide for augmented reality or virtual reality display |
| WO2024056832A1 (en) | 2022-09-14 | 2024-03-21 | Snap, Inc. | Multipath optical device |
| US11947314B2 (en) | 2020-12-15 | 2024-04-02 | A9.Com, Inc. | Volume holographic optical elements with expanded angular acceptance |
| US12019233B2 (en) | 2018-07-23 | 2024-06-25 | Magic Leap, Inc. | Optical device venting gaps for edge sealant and lamination dam |
| US12050332B2 (en) | 2018-07-02 | 2024-07-30 | Vuzix Corporation | Waveguide turning grating designs for optimal efficiency |
| US12092914B2 (en) | 2018-01-08 | 2024-09-17 | Digilens Inc. | Systems and methods for manufacturing waveguide cells |
| US12140764B2 (en) | 2019-02-15 | 2024-11-12 | Digilens Inc. | Wide angle waveguide display |
| US12158612B2 (en) | 2021-03-05 | 2024-12-03 | Digilens Inc. | Evacuated periodic structures and methods of manufacturing |
| EP4474695A1 (en) | 2023-06-08 | 2024-12-11 | Snap, Inc. | Optical device for augmented reality or virtual reality display |
| US12210153B2 (en) | 2019-01-14 | 2025-01-28 | Digilens Inc. | Holographic waveguide display with light control layer |
| US12216283B2 (en) | 2018-05-17 | 2025-02-04 | Snap Inc. | Optical structure for augmented reality display |
| US12222499B2 (en) | 2020-12-21 | 2025-02-11 | Digilens Inc. | Eye glow suppression in waveguide based displays |
| US12259686B2 (en) | 2021-05-21 | 2025-03-25 | Amazon Technologies, Inc. | Waveguide geometry for improved display performance |
| US12306585B2 (en) | 2018-01-08 | 2025-05-20 | Digilens Inc. | Methods for fabricating optical waveguides |
| US12397477B2 (en) | 2019-02-05 | 2025-08-26 | Digilens Inc. | Methods for compensating for optical surface nonuniformity |
| US12399326B2 (en) | 2021-01-07 | 2025-08-26 | Digilens Inc. | Grating structures for color waveguides |
| US12504667B2 (en) | 2024-06-09 | 2025-12-23 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
Families Citing this family (115)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2529003B (en) * | 2014-08-03 | 2020-08-26 | Wave Optics Ltd | Optical device |
| US10061124B2 (en) * | 2016-04-29 | 2018-08-28 | Microsoft Technology Licensing, Llc | Robust architecture for large field of view components |
| JP7166927B2 (ja) * | 2016-06-20 | 2022-11-08 | ă˘ăłă㢠ăăă°ăŠăăŁăăŻăšăă¨ăŤă¨ăŤăˇăź | çłĺćĄĺźľ |
| GB2556094A (en) * | 2016-11-18 | 2018-05-23 | Wave Optics Ltd | Optical device |
| US10969585B2 (en) * | 2017-04-06 | 2021-04-06 | Microsoft Technology Licensing, Llc | Waveguide display with increased uniformity and reduced cross-coupling between colors |
| US11231586B2 (en) | 2017-04-28 | 2022-01-25 | Sony Corporation | Optical apparatus, image display apparatus, and display apparatus |
| FI128831B (en) * | 2017-05-03 | 2021-01-15 | Dispelix Oy | Display element, personal display unit, procedure for producing an image on a personal display and use |
| CN107092093A (zh) * | 2017-06-16 | 2017-08-25 | ĺ亏çľç垎ĺ ç§ććéĺ Źĺ¸ | 波察ćžç¤şčŁ ç˝Ž |
| CN109239920A (zh) * | 2017-07-11 | 2019-01-18 | čĺˇčĺ¤§çť´ć źĺ çľç§ćčĄäť˝ćéĺ Źĺ¸ | ä¸ç§ĺ ¨ćŻćł˘ĺŻźéçĺĺ˘ĺźşç°ĺŽćžç¤şčŁ ç˝Ž |
| US11467407B2 (en) | 2017-09-26 | 2022-10-11 | Apple Inc. | Displays with volume phase gratings |
| CN114721083B (zh) * | 2017-10-16 | 2025-02-14 | éżç§ĺ°źäşĺ ¨ćŻćéč´Łäťťĺ Źĺ¸ | äşçť´ĺ ĺĺ |
| CN107797287A (zh) * | 2017-11-28 | 2018-03-13 | čĺˇčĺ¤§çť´ć źĺ çľç§ćčĄäť˝ćéĺ Źĺ¸ | ĺ 波察éçĺćžç¤şčŁ ç˝Ž |
| FI129586B (en) * | 2017-12-22 | 2022-05-13 | Dispelix Oy | Waveguide display element with many pupils and display device |
| CN111512215B (zh) | 2018-01-12 | 2022-05-10 | ć Şĺźäźç¤žLgĺĺŚ | čĄĺ°ĺŻźĺ ćżĺĺ ćŹĺ śçćžç¤şčŁ ç˝Ž |
| KR102157554B1 (ko) * | 2018-01-12 | 2020-09-18 | 죟ěíěŹ ěě§íí | íě ëę´í ë° ě´ëĽź íŹí¨íë ëě¤íë ě´ ěĽěš |
| US10942355B2 (en) | 2018-01-22 | 2021-03-09 | Facebook Technologies, Llc | Systems, devices, and methods for tiled multi-monochromatic displays |
| EP3540499A1 (en) | 2018-03-13 | 2019-09-18 | Thomson Licensing | Image sensor comprising a color splitter with two different refractive indexes |
| EP3540479A1 (en) | 2018-03-13 | 2019-09-18 | Thomson Licensing | Diffraction grating comprising double-materials structures |
| KR102486664B1 (ko) * | 2018-03-14 | 2023-01-10 | 죟ěíěŹ ěě§íí | íě ëę´í 모ë |
| FI129387B (en) * | 2018-03-28 | 2022-01-31 | Dispelix Oy | Waveguide elements |
| FI129306B (en) | 2018-04-19 | 2021-11-30 | Dispelix Oy | Diffractive outlet pupil dilator for display applications |
| JP2019191313A (ja) | 2018-04-23 | 2019-10-31 | ć Şĺźäźç¤žăăłă˝ăź | ăăăă˘ăăăăŁăšăăŹă¤čŁ ç˝Ž |
| US10295723B1 (en) * | 2018-05-01 | 2019-05-21 | Facebook Technologies, Llc | 2D pupil expander using holographic Bragg grating |
| CN108681067A (zh) * | 2018-05-16 | 2018-10-19 | ä¸ćľˇé˛˛ć¸¸ĺ çľç§ććéĺ Źĺ¸ | ä¸ç§ćŠĺąč§ĺşč§ç波察ćžç¤şčŁ ç˝Ž |
| EP3588150A1 (en) | 2018-06-29 | 2020-01-01 | Thomson Licensing | An optical device comprising multi-layer waveguides |
| EP3591700A1 (en) | 2018-07-02 | 2020-01-08 | Thomson Licensing | Image sensor comprising a color splitter with two different refractive indexes, and different height |
| US10916448B2 (en) | 2018-07-05 | 2021-02-09 | Texas Instruments Incorporated | Method for creating a wettable surface for improved reliability in QFN packages |
| US11109004B2 (en) | 2018-07-31 | 2021-08-31 | Texas Instruments Incorporated | Display with increased pixel count |
| KR102255150B1 (ko) * | 2018-08-22 | 2021-05-24 | 죟ěíěŹ ěě§íí | íě ëę´í ë° ě´ëĽź íŹí¨íë ëě¤íë ě´ ěĽěš |
| CN108983425A (zh) * | 2018-08-29 | 2018-12-11 | 桹ĺłççĺ çľććŻćéĺ Źĺ¸ | ä¸ç§äşçť´ĺşçłćŠĺąćł˘ĺŻźčżçźĺ ĺŚćžç¤şčŁ ç˝Ž |
| US11131796B2 (en) * | 2018-09-10 | 2021-09-28 | Texas Instruments Incorporated | Optical display with spatial light modulator |
| US12147038B2 (en) * | 2018-09-24 | 2024-11-19 | Apple Inc. | Optical systems with interleaved light redirectors |
| JP7100567B2 (ja) | 2018-11-14 | 2022-07-13 | ć Şĺźäźç¤žćĽçŤă¨ăŤă¸ăźăăźăżăšăăŹăźă¸ | ĺ°ĺ ćżăăăłçťĺčĄ¨ç¤şčŁ ç˝Ž |
| US11237393B2 (en) | 2018-11-20 | 2022-02-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| EP3671322A1 (en) | 2018-12-18 | 2020-06-24 | Thomson Licensing | Device for forming an outgoing electromagnetic wave from an incident electromagnetic wave |
| EP3671310A1 (en) | 2018-12-18 | 2020-06-24 | Thomson Licensing | Optical manipulation apparatus for trapping or moving micro or nanoparticles |
| EP3671293A1 (en) | 2018-12-21 | 2020-06-24 | Thomson Licensing | An optical device comprising at least one diffraction grating having a grating pitch above the wavelength |
| CN109459813B (zh) * | 2018-12-26 | 2025-09-19 | ä¸ćľˇé˛˛ć¸¸ĺ çľç§ććéĺ Źĺ¸ | ä¸ç§ĺşäşäşçť´ĺ ć çĺšłé˘ĺ 波察 |
| KR102681845B1 (ko) * | 2018-12-26 | 2024-07-04 | ěźěąě ě죟ěíěŹ | ę´í ëë°ě´ě¤ ë° ě´ëĽź ě´ěŠí ę´ ěśë Ľ ë°Šë˛ |
| US11067811B2 (en) | 2019-01-11 | 2021-07-20 | Facebook Technologies, Llc | Volume bragg gratings for near-eye waveguide display |
| US11630318B2 (en) | 2019-01-11 | 2023-04-18 | Google Llc | Optical elements for displays |
| WO2020150276A1 (en) * | 2019-01-14 | 2020-07-23 | Vuzix Corporation | Digital writing of large diffraction grating patterns |
| US11656458B2 (en) | 2019-01-23 | 2023-05-23 | Fusao Ishii | Optics of a display using an optical light guide |
| DE102019102608A1 (de) * | 2019-02-01 | 2020-08-06 | Carl Zeiss Jena Gmbh | Funktionalisierter Wellenleiter fĂźr ein Detektorsystem |
| KR102330600B1 (ko) * | 2019-02-22 | 2021-11-26 | 죟ěíěŹ ěě§íí | íě ëę´í ë° ě´ëĽź íŹí¨íë ëě¤íë ě´ ěĽěš |
| WO2020171666A1 (ko) * | 2019-02-22 | 2020-08-27 | 죟ěíěŹ ěě§íí | íě ëę´í ë° ě´ëĽź íŹí¨íë ëě¤íë ě´ ěĽěš |
| CN109656026B (zh) * | 2019-02-25 | 2021-08-17 | 亏ä¸ćšç§ćéĺ˘čĄäť˝ćéĺ Źĺ¸ | ä¸ç§ĺ¤§č§ĺşč§çĺ ¨ćŻĺ 波察ćžç¤şčŁ ç˝Žĺćšćł |
| KR102227050B1 (ko) * | 2019-02-28 | 2021-03-12 | ęł ë ¤ëíęľ ě¸ě˘ ě°ííë Ľë¨ | Ftir ę¸°ë° íě ę´í 꾏쥰체 ë° ęˇ¸ëĽź ę°ë ě¨ě´ë¸ ę°ě´ë ěĽěšě ěŚę°íě¤ ëě¤íë ě´ |
| KR102102888B1 (ko) | 2019-02-28 | 2020-04-21 | ęł ë ¤ëíęľ ě¸ě˘ ě°ííë Ľë¨ | íĽěë fov뼟 ę°ë ěŚę°íě¤ ëě¤íë ě´ ë° ęˇ¸ě ě¨ě´ë¸ ę°ě´ë ěĽěšě íě ę´í 꾏쥰체 |
| KR102344866B1 (ko) * | 2019-03-13 | 2021-12-30 | 죟ěíěŹ ěě§íí | íě ëę´í |
| KR102353768B1 (ko) * | 2019-04-01 | 2022-01-20 | 죟ěíěŹ ěě§íí | íě ëę´í ë° ě´ëĽź íŹí¨íë ëě¤íë ě´ ěĽěš |
| EP3926389B1 (en) * | 2019-04-01 | 2024-05-22 | Lg Chem, Ltd. | Diffractive light guide plate and display device comprising same |
| CN113396354B (zh) * | 2019-04-16 | 2024-12-27 | 迪ćŻĺ¸ĺćŻćéĺ Źĺ¸ | čĄĺ°ćł˘ĺŻźĺ äťśă个人ćžç¤şčŽžĺ¤ĺĺ¨ĺ śä¸ćäžĺžĺçćšćł |
| JP7297548B2 (ja) | 2019-06-21 | 2023-06-26 | ć Şĺźäźç¤žćĽçŤă¨ăŤă¸ăźăăźăżăšăăŹăźă¸ | ĺ°ĺ ćżăŽčŁ˝é ćšćłăĺ°ĺ ćżă˘ă¸ăĽăźăŤăŽčŁ˝é ćšćłăăăăłçťĺčĄ¨ç¤şčŁ ç˝ŽăŽčŁ˝é ćšćł |
| GB201909179D0 (en) | 2019-06-26 | 2019-08-07 | Wave Optics Ltd | Pupil relay system |
| CN114051593B (zh) | 2019-07-12 | 2024-05-03 | ä¸ćçľĺć Şĺźäźç¤ž | čżçźćžç¤şčŽžĺ¤ăĺ ćŹĺ śçĺ˘ĺźşç°ĺŽçźéĺĺ śćä˝ćšćł |
| US12366748B2 (en) | 2019-08-21 | 2025-07-22 | Snap Inc. | Optical waveguide |
| EP3828618A1 (en) * | 2019-11-28 | 2021-06-02 | BAE SYSTEMS plc | Optical waveguide |
| US20210055551A1 (en) * | 2019-08-23 | 2021-02-25 | Facebook Technologies, Llc | Dispersion compensation in volume bragg grating-based waveguide display |
| US20220357579A1 (en) * | 2019-09-19 | 2022-11-10 | Interdigital Ce Patent Holdings | Optical device for coupling a high field of view of incident light |
| KR102601442B1 (ko) * | 2019-10-07 | 2023-11-13 | 죟ěíěŹ ěě§íí | íëĄęˇ¸ëí˝ ëę´í |
| CN112817151B (zh) * | 2019-11-18 | 2025-04-22 | čĺˇčĺ¤§çť´ć źç§ćéĺ˘čĄäť˝ćéĺ Źĺ¸ | ä¸ç§ćł˘ĺŻźéçĺarćžç¤şčŁ ç˝Ž |
| WO2021119381A1 (en) * | 2019-12-11 | 2021-06-17 | Google Llc | Optical elements for displays |
| CN112987294B (zh) | 2019-12-16 | 2024-09-20 | ćĺˇĺ ç˛ç§ććéĺ Źĺ¸ | ä¸ç§äşçť´ĺ 波察ăčĺŽĺ 波ĺćĺ¨äťĽĺarčŽžĺ¤ |
| CN111025657A (zh) * | 2019-12-31 | 2020-04-17 | ç声é莯ç§ć(常ĺˇ)ćéĺ Źĺ¸ | čżçźćžç¤şčŁ ç˝Ž |
| CN111240015B (zh) * | 2020-01-17 | 2020-12-18 | ĺ亏çĺˇĽĺ¤§ĺŚ | ĺ䞧寚ĺ°ĺşĺ ĺĺçčĄĺ°ćł˘ĺŻź |
| CN111221126B (zh) * | 2020-01-17 | 2022-01-14 | ćĺ°čĄäť˝ćéĺ Źĺ¸ | ćĺçłťçťăćĺćšćłĺčćç°ĺŽčŽžĺ¤ |
| CN111175976B (zh) * | 2020-01-17 | 2022-02-22 | ćĺ°čĄäť˝ćéĺ Źĺ¸ | ĺ 波察çťäťśăćžç¤şçłťçťăĺ˘ĺźşç°ĺŽčŽžĺ¤ĺćžç¤şćšćł |
| CN113325580A (zh) * | 2020-02-28 | 2021-08-31 | čĺˇčĺ¤§çť´ć źç§ćéĺ˘čĄäť˝ćéĺ Źĺ¸ | ä¸ç§ćŹĺ¤´ćžç¤şçłťçťĺ湽轌 |
| CN113325506A (zh) * | 2020-02-28 | 2021-08-31 | čĺˇčĺ¤§çť´ć źç§ćéĺ˘čĄäť˝ćéĺ Źĺ¸ | ä¸ç§ĺ ¨ćŻĺ 波察éçĺĺ˘ĺźşç°ĺŽćžç¤şčŁ ç˝Ž |
| CN111323920B (zh) * | 2020-03-12 | 2021-07-30 | 桹ĺłĺ¸ĺ čĺ察ä˝ććŻćéĺ Źĺ¸ | ä¸ç§arćžç¤şçčĄĺ°ĺ 波察 |
| CN111443486A (zh) * | 2020-03-25 | 2020-07-24 | ĺ亏ćéžç§ććéĺ Źĺ¸ | ä¸ç§ĺ ć 波察ĺ äťśĺčżçźćžç¤şčŁ ç˝Ž |
| US11372248B2 (en) * | 2020-03-31 | 2022-06-28 | Facebook Technologies, Llc | Thin waveguide wavelength-selective projector |
| CN115349105A (zh) * | 2020-03-31 | 2022-11-15 | 索尟éĺ˘ĺ Źĺ¸ | ĺ ĺŚčŁ ç˝Žăĺ ĺŚčŁ ç˝Žçĺśé ćšćłäťĽĺĺžĺćžç¤şčŁ ç˝Ž |
| CN115509015B (zh) * | 2020-04-29 | 2024-11-12 | ĺŽćł˘čĺŽĺ çľäżĄćŻćéĺ Źĺ¸ | éçĺĺ ĺĺ ćŹéçĺĺ çarčŽžĺ¤ |
| WO2021237168A1 (en) | 2020-05-22 | 2021-11-25 | Magic Leap, Inc. | Method and system for dual projector waveguide displays with wide field of view |
| CN111552030B (zh) * | 2020-06-19 | 2025-09-05 | ĺ亏čłć źç§ććéĺ Źĺ¸ | 波察ĺ ĺŚčŁ ç˝Žĺćžç¤şčŽžĺ¤ |
| WO2022006730A1 (zh) * | 2020-07-07 | 2022-01-13 | ćĺˇĺ ç˛ç§ććéĺ Źĺ¸ | ĺ 波察ĺ¨äťśăćžç¤şçłťçťĺĺ˘ĺźşç°ĺŽćžç¤şčŽžĺ¤ |
| EP4165461A4 (en) * | 2020-07-09 | 2024-06-26 | Vuzix Corporation | Image light guide with compound diffractive optical element and the head-mounted display made therewith |
| CN113970805B (zh) * | 2020-07-24 | 2023-06-09 | ĺŽćł˘čĺŽĺ çľäżĄćŻćéĺ Źĺ¸ | 波察çťäťśĺĺ ćŹćł˘ĺŻźçťäťśçčżçźćžç¤şčŽžĺ¤ |
| WO2022045707A1 (en) | 2020-08-25 | 2022-03-03 | Samsung Electronics Co., Ltd. | Augmented reality device based on waveguide with holographic diffractive grating structure and apparatus for recording the holographic diffractive grating structure |
| RU2745540C1 (ru) * | 2020-08-25 | 2021-03-26 | ХаПŃŃнг ĐНокŃŃĐžĐ˝Đ¸ĐşŃ ĐĐž., ĐŃĐ´. | ĐŁŃŃŃОКŃŃвО дОпОНноннОК ŃоаНŃнОŃŃи на ĐžŃнОво вОНнОвОдОв ŃĐž ŃŃŃŃĐşŃŃŃОК гОНОгŃаŃиŃĐľŃĐşĐ¸Ń Đ´Đ¸ŃŃакŃиОннŃŃ ŃĐľŃĐľŃОк, ŃŃŃŃОКŃŃвО СапиŃи ŃŃŃŃĐşŃŃŃŃ ĐłĐžĐťĐžĐłŃаŃиŃĐľŃĐşĐ¸Ń Đ´Đ¸ŃŃакŃиОннŃŃ ŃĐľŃĐľŃОк |
| CN114137649B (zh) * | 2020-09-04 | 2024-06-04 | ĺŽćł˘čĺŽĺ çľäżĄćŻćéĺ Źĺ¸ | ç¨äşar莞ĺ¤çĺ ćł˘ĺŻźčŁ ç˝Žĺĺ śĺśé ćšćłĺarčŽžĺ¤ |
| EP4229466A1 (en) * | 2020-09-25 | 2023-08-23 | Apple Inc. | Displays with dispersion-compensating interleaved gratings |
| WO2022075820A1 (ko) | 2020-10-08 | 2022-04-14 | ěźěąě ě죟ěíěŹ | ěŚę°íě¤ěĽěšěŠ ëíëĄě íě ę´íěě ěí¤í ě˛ |
| RU2752556C1 (ru) * | 2020-10-20 | 2021-07-29 | ХаПŃŃнг ĐНокŃŃĐžĐ˝Đ¸ĐşŃ ĐĐž., ĐŃĐ´. | ĐОНнОвОд Ń ŃогПонŃиŃОваннŃПи диŃŃакŃиОннŃПи ОпŃиŃĐľŃкиПи ŃНоПонŃаПи и ОкОНОгНаСнŃĐš диŃпНоК |
| WO2022086002A1 (en) | 2020-10-20 | 2022-04-28 | Samsung Electronics Co., Ltd. | Waveguide structure with segmented diffractive optical elements and near-eye display apparatus employing the same |
| WO2022136638A1 (en) | 2020-12-27 | 2022-06-30 | David Hayes | Display device with optical waveguide and projector |
| CN112817153B (zh) | 2021-01-05 | 2022-12-02 | 桹ĺłĺ¸ĺ čĺ察ä˝ććŻćéĺ Źĺ¸ | ä¸ç§ĺ¤§č§ĺşč§çĺ ĺŚćŠçłčŁ ç˝Žăćžç¤şčŁ ç˝Žĺćšćł |
| JP7465826B2 (ja) * | 2021-02-02 | 2024-04-11 | ć Şĺźäźç¤žćĽçŤă¨ăŤă¸ăźăăźăżăšăăŹăźă¸ | ĺ°ĺ ćżăĺ°ĺ ćżă˘ă¸ăĽăźăŤăăăłçťĺčĄ¨ç¤şčŁ ç˝Ž |
| EP4295184A4 (en) * | 2021-03-04 | 2025-01-08 | Vuzix Corporation | IMAGE LIGHT GUIDE WITH DIFFRACTIVE OPTICAL COUPLING WITH MULTIPLE WAVELENGTHS |
| CN113031268B (zh) * | 2021-03-05 | 2023-01-20 | 桹ĺłĺ¸čŻč§ä˝łĺ察ä˝ç§ććéĺ Źĺ¸ | ĺ 波察çťćăar莞ĺ¤ĺĺ 波察çťćçĺśä˝ćšćł |
| CN115079334A (zh) * | 2021-03-12 | 2022-09-20 | ä¸ćľˇé˛˛ć¸¸ç§ććéĺ Źĺ¸ | čĄĺ°ĺ ćł˘ĺŻźčŁ ç˝Žĺĺ śćšćł |
| CN113093384A (zh) * | 2021-03-15 | 2021-07-09 | 桹ĺłççĺ çľććŻćéĺ Źĺ¸ | ä¸ç§arçźé |
| CN112987180B (zh) * | 2021-03-30 | 2022-08-23 | çť´ć˛ç§ťĺ¨é俥ćéĺ Źĺ¸ | čĄĺ°ćł˘ĺŻźĺçľĺčŽžĺ¤ |
| WO2022209106A1 (ja) * | 2021-03-31 | 2022-10-06 | ăăă˝ăăăŻďźŠď˝ăăă¸ăĄăłăć Şĺźäźç¤ž | ĺ°ĺ ćżăĺ°ĺ ćżăŚăăăăăăăłăčĄ¨ç¤şčŁ ç˝Ž |
| CN113031261B (zh) * | 2021-04-29 | 2023-03-24 | 桹ĺłĺ¸ĺ čĺ察ä˝ććŻćéĺ Źĺ¸ | ćžç¤şĺ˝Šč˛ĺžĺçĺ ĺŚćŠçłčŁ ç˝Ž |
| JPWO2022259756A1 (enExample) * | 2021-06-09 | 2022-12-15 | ||
| JPWO2022259757A1 (enExample) * | 2021-06-09 | 2022-12-15 | ||
| CN113433622A (zh) * | 2021-06-24 | 2021-09-24 | ĺ亏ćéžç§ććéĺ Źĺ¸ | ä¸ç§éŤĺ ćĺ ć 波察ĺ äťś |
| CN114020178B (zh) * | 2021-09-08 | 2023-10-17 | ä¸ćľˇäş¤éĺ¤§ĺŚ | ä¸ç§ĺşäşä¸¤ç§ç˘éćšĺçšéľĺ ć çťćçĺ ĺŚč§Ść§ć¨Ąçť |
| CN117813542A (zh) | 2021-09-13 | 2024-04-02 | ä¸ćçľĺć Şĺźäźç¤ž | ç¨äşĺ ˇć厽č§ĺşçĺ˘ĺźşç°ĺŽçźéçĺşäşčĄĺ°ĺ ĺŚĺ äťśç波察ćść |
| US12282164B2 (en) | 2021-10-08 | 2025-04-22 | Samsung Electronics Co., Ltd. | Augmented reality device |
| US11863730B2 (en) | 2021-12-07 | 2024-01-02 | Snap Inc. | Optical waveguide combiner systems and methods |
| US12140754B2 (en) | 2021-12-30 | 2024-11-12 | Goertek Inc. | Optical display system and augmented reality electronic device |
| CN115166895B (zh) * | 2022-01-13 | 2023-04-07 | ĺ亏éŠĺ ç§ćĺĺąćéĺ Źĺ¸ | ćžç¤şčŽžĺ¤ăćžç¤şç¨čĄĺ°ĺ 波察ĺĺ śčŽžčŽĄćšćł |
| CN115166897B (zh) * | 2022-01-13 | 2023-04-07 | ĺ亏éŠĺ ç§ćĺĺąćéĺ Źĺ¸ | čĄĺ°ĺ 波察ĺćžç¤şčŽžĺ¤ |
| JP2023124625A (ja) | 2022-02-25 | 2023-09-06 | ă˝ăăźă°ăŤăźăć Şĺźäźç¤ž | ĺ°ĺ ćżĺăłçťĺčĄ¨ç¤şčŁ ç˝Ž |
| WO2023188656A1 (ja) * | 2022-03-31 | 2023-10-05 | ăăă˝ăăăŻďźŠď˝ăăă¸ăĄăłăć Şĺźäźç¤ž | ĺ ĺŚçłťăĺăłăçťĺčĄ¨ç¤şčŁ ç˝Ž |
| CN114647082A (zh) * | 2022-04-02 | 2022-06-21 | 桹ĺłĺ¸ĺ čĺ察ä˝ććŻćéĺ Źĺ¸ | ćŠçłčŁ ç˝ŽăĺçŽćžç¤şčŁ ç˝ŽăĺçŽćžç¤şćšćłĺĺžĺćžç¤şćšćł |
| CN114966947B (zh) * | 2022-06-24 | 2024-01-16 | 桹ĺłä¸ćł˝ććŻĺäźäźä¸(ćéĺäź) | 大ĺşĺćžç¤şčŁ ç˝Žă轌ç¨ćŹĺ¤´ćžç¤şčŽžĺ¤ĺčćĺžĺćžç¤şćšćł |
| CN115113338B (zh) * | 2022-07-29 | 2024-12-24 | ä¸ĺ˝ç§ĺŚé˘éżćĽĺ ĺŚç˛žĺŻćşć˘°ä¸çŠçç 犜ć | čŚĺĺ¨ĺĺ ¨ćŻćł˘ĺŻźćžç¤şĺ¨çĺ ć ĺ¸ĺąćšćł |
| CN115016126B (zh) * | 2022-08-04 | 2023-05-23 | ĺ亏嚳čĄč§çććŻćéĺ Źĺ¸ | ä¸ç§äşçť´ćŠçłĺ ¨ćŻćł˘ĺŻźĺ˝Šč˛ćžç¤şčŁ ç˝Ž |
| DE102023207295A1 (de) * | 2023-07-31 | 2025-02-06 | Carl Zeiss Jena Gmbh | Wellenleiterbasiertes Abbildungssystem |
| WO2025074868A1 (ja) * | 2023-10-06 | 2025-04-10 | ă˝ăăźă°ăŤăźăć Şĺźäźç¤ž | ĺ ĺŚčŁ ç˝Žăĺ°ĺ ćżăĺăłçťĺçćčŁ ç˝Ž |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1938152A1 (en) * | 2005-06-03 | 2008-07-02 | Nokia Corporation | General diffractive optics method for expanding and exit pupil |
| WO2008081070A1 (en) * | 2006-12-28 | 2008-07-10 | Nokia Corporation | Device for expanding an exit pupil in two dimensions |
| US20130314789A1 (en) * | 2010-03-04 | 2013-11-28 | Nokia Corporation | Optical Apparatus and Method for Expanding an Exit Pupil |
| US20140043689A1 (en) * | 2011-04-18 | 2014-02-13 | Stephen Paul Mason | Projection display |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU3052499A (en) * | 1998-04-02 | 1999-10-25 | Elop Electro-Optics Industries Ltd. | Holographic optical devices |
| US6805490B2 (en) * | 2002-09-30 | 2004-10-19 | Nokia Corporation | Method and system for beam expansion in a display device |
| FI114946B (fi) * | 2002-12-16 | 2005-01-31 | Nokia Corp | Diffraktiivinen hilaelementti diffraktiohyĂśtysuhteen tasapainottamiseksi |
| JP4475501B2 (ja) * | 2003-10-09 | 2010-06-09 | ă¤ăłăżăźăăˇă§ăăŤăťăă¸ăăšăťăăˇăźăłăşăťăłăźăăŹăźăˇă§ăł | ĺĺ ç´ ĺăĺćć źĺăč¤ĺĺćć źĺăăŤăŠăźčĄ¨ç¤şčŁ ç˝Žăăăăłĺćł˘ĺ¨ |
| EP3462227A3 (en) * | 2004-03-29 | 2019-06-19 | Sony Corporation | Optical device, and virtual image display device |
| JP2007219106A (ja) * | 2006-02-16 | 2007-08-30 | Konica Minolta Holdings Inc | ĺ ćĺžćĄĺ¤§ĺ ĺŚç´ ĺăć ĺčĄ¨ç¤şčŁ ç˝ŽăăăłăăăăăŚăłăăăŁăšăăŹă¤ |
| US8593734B2 (en) * | 2006-09-28 | 2013-11-26 | Nokia Corporation | Beam expansion with three-dimensional diffractive elements |
| US8320032B2 (en) * | 2007-06-04 | 2012-11-27 | Nokia Corporation | Diffractive beam expander and a virtual display based on a diffractive beam expander |
| CN101945612B (zh) * | 2008-02-14 | 2013-09-25 | 诺ĺşäşĺ Źĺ¸ | ç¨äşçĄŽĺŽćł¨č§ćšĺç莞ĺ¤ĺćšćł |
| EP2196729A1 (en) * | 2008-12-12 | 2010-06-16 | BAE Systems PLC | Improvements in or relating to waveguides |
| WO2010119426A2 (en) * | 2009-04-16 | 2010-10-21 | Koninklijke Philips Electronics N.V. | A light guide apparatus |
| EP2494388B1 (en) * | 2009-10-27 | 2018-11-21 | DigiLens Inc. | Compact holographic eyeglass display |
| US8548290B2 (en) * | 2011-08-23 | 2013-10-01 | Vuzix Corporation | Dynamic apertured waveguide for near-eye display |
| US9400395B2 (en) * | 2011-08-29 | 2016-07-26 | Vuzix Corporation | Controllable waveguide for near-eye display applications |
| US10502876B2 (en) * | 2012-05-22 | 2019-12-10 | Microsoft Technology Licensing, Llc | Waveguide optics focus elements |
| NZ702897A (en) * | 2012-06-11 | 2017-03-31 | Magic Leap Inc | Multiple depth plane three-dimensional display using a wave guide reflector array projector |
| WO2014091200A1 (en) * | 2012-12-10 | 2014-06-19 | Bae Systems Plc | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
| US9664824B2 (en) * | 2012-12-10 | 2017-05-30 | Bae Systems Plc | Display comprising an optical waveguide and switchable diffraction gratings and method of producing the same |
| GB2529003B (en) | 2014-08-03 | 2020-08-26 | Wave Optics Ltd | Optical device |
-
2015
- 2015-02-09 GB GB1502098.5A patent/GB2529003B/en not_active Expired - Fee Related
- 2015-07-28 BR BR112017002290-7A patent/BR112017002290B1/pt active IP Right Grant
- 2015-07-28 AU AU2015298504A patent/AU2015298504B2/en active Active
- 2015-07-28 KR KR1020177002023A patent/KR102350385B1/ko active Active
- 2015-07-28 EP EP15744327.6A patent/EP3175280B1/en active Active
- 2015-07-28 SI SI201530246T patent/SI3175280T1/sl unknown
- 2015-07-28 PL PL15744327T patent/PL3175280T3/pl unknown
- 2015-07-28 SM SM20180238T patent/SMT201800238T1/it unknown
- 2015-07-28 WO PCT/GB2015/052181 patent/WO2016020643A1/en not_active Ceased
- 2015-07-28 CA CA2956872A patent/CA2956872C/en active Active
- 2015-07-28 ES ES15744327.6T patent/ES2670022T3/es active Active
- 2015-07-28 RS RS20180522A patent/RS57263B1/sr unknown
- 2015-07-28 TR TR2018/06707T patent/TR201806707T4/tr unknown
- 2015-07-28 JP JP2016575366A patent/JP6714797B2/ja active Active
- 2015-07-28 LT LTEP15744327.6T patent/LT3175280T/lt unknown
- 2015-07-28 CN CN201580041359.6A patent/CN106575034B/zh active Active
- 2015-07-28 PT PT157443276T patent/PT3175280T/pt unknown
- 2015-07-28 HU HUE15744327A patent/HUE037328T2/hu unknown
- 2015-07-28 DK DK15744327.6T patent/DK3175280T3/en active
- 2015-07-28 US US15/329,557 patent/US10114220B2/en active Active
- 2015-07-28 HR HRP20180778TT patent/HRP20180778T1/hr unknown
-
2018
- 2018-05-15 CY CY20181100497T patent/CY1120524T1/el unknown
- 2018-08-14 US US16/103,113 patent/US10359635B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1938152A1 (en) * | 2005-06-03 | 2008-07-02 | Nokia Corporation | General diffractive optics method for expanding and exit pupil |
| WO2008081070A1 (en) * | 2006-12-28 | 2008-07-10 | Nokia Corporation | Device for expanding an exit pupil in two dimensions |
| US20130314789A1 (en) * | 2010-03-04 | 2013-11-28 | Nokia Corporation | Optical Apparatus and Method for Expanding an Exit Pupil |
| US20140043689A1 (en) * | 2011-04-18 | 2014-02-13 | Stephen Paul Mason | Projection display |
Cited By (213)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10145533B2 (en) | 2005-11-11 | 2018-12-04 | Digilens, Inc. | Compact holographic illumination device |
| US10725312B2 (en) | 2007-07-26 | 2020-07-28 | Digilens Inc. | Laser illumination device |
| US10234696B2 (en) | 2007-07-26 | 2019-03-19 | Digilens, Inc. | Optical apparatus for recording a holographic device and method of recording |
| US11175512B2 (en) | 2009-04-27 | 2021-11-16 | Digilens Inc. | Diffractive projection apparatus |
| US10678053B2 (en) | 2009-04-27 | 2020-06-09 | Digilens Inc. | Diffractive projection apparatus |
| US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
| US11204540B2 (en) | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
| US10409144B2 (en) | 2009-10-09 | 2019-09-10 | Digilens Inc. | Diffractive waveguide providing structured illumination for object detection |
| US11487131B2 (en) | 2011-04-07 | 2022-11-01 | Digilens Inc. | Laser despeckler based on angular diversity |
| US10185154B2 (en) | 2011-04-07 | 2019-01-22 | Digilens, Inc. | Laser despeckler based on angular diversity |
| US10642058B2 (en) | 2011-08-24 | 2020-05-05 | Digilens Inc. | Wearable data display |
| US12306418B2 (en) | 2011-08-24 | 2025-05-20 | Rockwell Collins, Inc. | Wearable data display |
| US11287666B2 (en) | 2011-08-24 | 2022-03-29 | Digilens, Inc. | Wearable data display |
| US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
| US10459311B2 (en) | 2012-01-06 | 2019-10-29 | Digilens Inc. | Contact image sensor using switchable Bragg gratings |
| US10216061B2 (en) | 2012-01-06 | 2019-02-26 | Digilens, Inc. | Contact image sensor using switchable bragg gratings |
| US11460621B2 (en) | 2012-04-25 | 2022-10-04 | Rockwell Collins, Inc. | Holographic wide angle display |
| US10437051B2 (en) | 2012-05-11 | 2019-10-08 | Digilens Inc. | Apparatus for eye tracking |
| US11994674B2 (en) | 2012-05-11 | 2024-05-28 | Digilens Inc. | Apparatus for eye tracking |
| US11448937B2 (en) | 2012-11-16 | 2022-09-20 | Digilens Inc. | Transparent waveguide display for tiling a display having plural optical powers using overlapping and offset FOV tiles |
| US12405507B2 (en) | 2012-11-16 | 2025-09-02 | Digilens Inc. | Transparent waveguide display with grating lamina that both couple and extract modulated light |
| US11662590B2 (en) | 2013-05-20 | 2023-05-30 | Digilens Inc. | Holographic waveguide eye tracker |
| US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
| US10423813B2 (en) | 2013-07-31 | 2019-09-24 | Digilens Inc. | Method and apparatus for contact image sensing |
| US10089516B2 (en) | 2013-07-31 | 2018-10-02 | Digilens, Inc. | Method and apparatus for contact image sensing |
| US11709373B2 (en) | 2014-08-08 | 2023-07-25 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
| US10359736B2 (en) | 2014-08-08 | 2019-07-23 | Digilens Inc. | Method for holographic mastering and replication |
| US11307432B2 (en) | 2014-08-08 | 2022-04-19 | Digilens Inc. | Waveguide laser illuminator incorporating a Despeckler |
| US11726323B2 (en) | 2014-09-19 | 2023-08-15 | Digilens Inc. | Method and apparatus for generating input images for holographic waveguide displays |
| US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
| US10423222B2 (en) | 2014-09-26 | 2019-09-24 | Digilens Inc. | Holographic waveguide optical tracker |
| US11726329B2 (en) | 2015-01-12 | 2023-08-15 | Digilens Inc. | Environmentally isolated waveguide display |
| US11480788B2 (en) | 2015-01-12 | 2022-10-25 | Digilens Inc. | Light field displays incorporating holographic waveguides |
| US11740472B2 (en) | 2015-01-12 | 2023-08-29 | Digilens Inc. | Environmentally isolated waveguide display |
| US10437064B2 (en) | 2015-01-12 | 2019-10-08 | Digilens Inc. | Environmentally isolated waveguide display |
| US10330777B2 (en) | 2015-01-20 | 2019-06-25 | Digilens Inc. | Holographic waveguide lidar |
| US10527797B2 (en) | 2015-02-12 | 2020-01-07 | Digilens Inc. | Waveguide grating device |
| US11703645B2 (en) | 2015-02-12 | 2023-07-18 | Digilens Inc. | Waveguide grating device |
| US12379547B2 (en) | 2015-02-12 | 2025-08-05 | Digilens Inc. | Waveguide grating device |
| US10156681B2 (en) | 2015-02-12 | 2018-12-18 | Digilens Inc. | Waveguide grating device |
| US10459145B2 (en) | 2015-03-16 | 2019-10-29 | Digilens Inc. | Waveguide device incorporating a light pipe |
| US12013561B2 (en) | 2015-03-16 | 2024-06-18 | Digilens Inc. | Waveguide device incorporating a light pipe |
| US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
| US12405471B2 (en) | 2015-10-05 | 2025-09-02 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US11754842B2 (en) | 2015-10-05 | 2023-09-12 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US11281013B2 (en) | 2015-10-05 | 2022-03-22 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US10690916B2 (en) | 2015-10-05 | 2020-06-23 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
| US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
| US10769975B1 (en) | 2016-02-11 | 2020-09-08 | Facebook Technologies, Llc | Scanned microLED array for waveguide display |
| US11450250B1 (en) | 2016-02-11 | 2022-09-20 | Meta Platforms Technologies, Llc | Scanning waveguide display |
| US10930187B1 (en) | 2016-02-11 | 2021-02-23 | Facebook Technologies, Llc | Waveguide display with two-dimensional scanner |
| US10395575B1 (en) | 2016-02-11 | 2019-08-27 | Facebook Technologies, Llc | Scanned microLED array for waveguide display |
| US10157559B2 (en) | 2016-02-11 | 2018-12-18 | Facebook Technologies, Llc | Scanned MicroLED array for waveguide display |
| US10515574B1 (en) | 2016-02-11 | 2019-12-24 | Facebook Technologies, Llc | Scanned MicroLED array for waveguide display |
| US11114002B1 (en) | 2016-02-11 | 2021-09-07 | Facebook Technologies, Llc | Scanning waveguide display |
| US10859768B2 (en) | 2016-03-24 | 2020-12-08 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
| US11604314B2 (en) | 2016-03-24 | 2023-03-14 | Digilens Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
| US10890707B2 (en) | 2016-04-11 | 2021-01-12 | Digilens Inc. | Holographic waveguide apparatus for structured light projection |
| WO2017180404A1 (en) * | 2016-04-13 | 2017-10-19 | Microsoft Technology Licensing, Llc | Waveguide exit pupil expander with improved intensity distribution |
| US10067347B2 (en) | 2016-04-13 | 2018-09-04 | Microsoft Technology Licensing, Llc | Waveguides with improved intensity distributions |
| CN109073884A (zh) * | 2016-04-13 | 2018-12-21 | 垎软ććŻčޏĺŻćéč´Łäťťĺ Źĺ¸ | ĺ ˇććščżç基庌ĺĺ¸ç波察ĺşĺ°ĺ çłćŠĺąĺ¨ |
| US10241346B2 (en) | 2016-05-07 | 2019-03-26 | Microsoft Technology Licensing, Llc | Degrees of freedom for diffraction elements in wave expander |
| WO2017196555A1 (en) * | 2016-05-07 | 2017-11-16 | Microsoft Technology Licensing, Llc | Degrees of freedom for diffraction elements in wave expander |
| CN109073886B (zh) * | 2016-05-07 | 2021-02-23 | 垎软ććŻčޏĺŻćéč´Łäťťĺ Źĺ¸ | čżçźćžç¤şčŽžĺ¤ĺç¨äşéĺŽĺĺ 波çćšćł |
| CN109073886A (zh) * | 2016-05-07 | 2018-12-21 | 垎软ććŻčޏĺŻćéč´Łäťťĺ Źĺ¸ | ç¨äşćł˘ćŠĺąĺ¨ä¸çčĄĺ°ĺ äťśçčŞçąĺşŚ |
| US10795156B2 (en) | 2016-06-03 | 2020-10-06 | Bae Systems Plc | Waveguide structure |
| JP2019523908A (ja) * | 2016-06-03 | 2019-08-29 | ăâă¨ă¤ă¤â ăˇăšăă ăş ăăăŞă㯠ăŞăăăă ăŤăłăăâ ďźďźł ď˝ď˝ď˝ | ĺ°ćł˘čˇŻć§é |
| KR20190015507A (ko) * | 2016-06-03 | 2019-02-13 | ë°° ěě¤í ěŚ íźěě | ëíę´ ęľŹěĄ°ě˛´ |
| KR102493252B1 (ko) * | 2016-06-03 | 2023-01-27 | ë°° ěě¤í ěŚ íźěě | ëíę´ ęľŹěĄ°ě˛´ |
| US10649143B2 (en) | 2016-06-20 | 2020-05-12 | Akonia Holographics Llc | Polarization management |
| US10698162B2 (en) | 2016-06-20 | 2020-06-30 | Akonia Holographics Llc | Polarization management |
| JP7351958B2 (ja) | 2016-08-26 | 2023-09-27 | ă˘ăŹăăĽăŠăź ă¤ăłăăŞăłăďź ă¤ăłăłăźăăŹă¤ăăă | ĺ ĺŚăăă¤ăšăŽăăăŽç¸ăˇăźăŠăłăéăčžźăăăăłăăăźä˝ć¸ |
| JP7051816B2 (ja) | 2016-08-26 | 2022-04-11 | ă˘ăŹăăĽăŠăź ă¤ăłăăŞăłăďź ă¤ăłăłăźăăŹă¤ăăă | ĺ ĺŚăăă¤ăšăŽăăăŽç¸ăˇăźăŠăłăéăčžźăăăăłăăăźä˝ć¸ |
| JP2022087148A (ja) * | 2016-08-26 | 2022-06-09 | ă˘ăŹăăĽăŠăź ă¤ăłăăŞăłăďź ă¤ăłăłăźăăŹă¤ăăă | ĺ ĺŚăăă¤ăšăŽăăăŽç¸ăˇăźăŠăłăéăčžźăăăăłăăăźä˝ć¸ |
| JP2019528477A (ja) * | 2016-08-26 | 2019-10-10 | ă˘ăŹăăĽăŠăź ă¤ăłăăŞăłăďź ă¤ăłăłăźăăŹă¤ăăăďźď˝ď˝ď˝ ď˝ď˝ď˝ď˝ď˝ ď˝ď˝ď˝ď˝ď˝ď˝ď˝ďźďźŠď˝ď˝ďź | ĺ ĺŚăăă¤ăšăŽăăăŽç¸ăˇăźăŠăłăéăčžźăăăăłăăăźä˝ć¸ |
| US10095045B2 (en) | 2016-09-12 | 2018-10-09 | Microsoft Technology Licensing, Llc | Waveguide comprising a bragg polarization grating |
| US10509231B1 (en) | 2016-10-11 | 2019-12-17 | Facebook Technologies, Llc | Opposed gratings in a waveguide display |
| US10444510B1 (en) * | 2016-10-11 | 2019-10-15 | Facebook Technologies, Llc | Opposed gratings in a waveguide display |
| US11609480B2 (en) | 2016-11-18 | 2023-03-21 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| US12044952B2 (en) | 2016-11-18 | 2024-07-23 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| US11378864B2 (en) | 2016-11-18 | 2022-07-05 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
| US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
| US12298513B2 (en) | 2016-12-02 | 2025-05-13 | Digilens Inc. | Waveguide device with uniform output illumination |
| US10429652B2 (en) | 2016-12-12 | 2019-10-01 | Facebook Technologies, Llc | Tiled waveguide display with a wide field-of-view |
| US11698533B2 (en) | 2016-12-12 | 2023-07-11 | Meta Platforms Technologies, Llc | Tiled waveguide display with a wide field-of-view |
| US11048090B2 (en) | 2016-12-12 | 2021-06-29 | Facebook Technologies, Llc | Tiled waveguide display with a wide field-of-view |
| EP3339936A1 (en) * | 2016-12-20 | 2018-06-27 | Oculus VR, LLC | Waveguide display with a small form factor, a large field of view and a large eyebox |
| US10585287B2 (en) | 2016-12-20 | 2020-03-10 | Facebook Technologies, Llc | Waveguide display with a small form factor, a large field of view, and a large eyebox |
| US10185151B2 (en) | 2016-12-20 | 2019-01-22 | Facebook Technologies, Llc | Waveguide display with a small form factor, a large field of view, and a large eyebox |
| US10845525B2 (en) | 2016-12-31 | 2020-11-24 | Vuzix Corporation | Imaging light guide with grating-expanded light distribution |
| US11586046B2 (en) | 2017-01-05 | 2023-02-21 | Digilens Inc. | Wearable heads up displays |
| US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
| US12248150B2 (en) | 2017-01-05 | 2025-03-11 | Digilens Inc. | Wearable heads up displays |
| US11194162B2 (en) | 2017-01-05 | 2021-12-07 | Digilens Inc. | Wearable heads up displays |
| US12216311B2 (en) | 2017-01-23 | 2025-02-04 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| US11733456B2 (en) | 2017-01-23 | 2023-08-22 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| US11204462B2 (en) | 2017-01-23 | 2021-12-21 | Magic Leap, Inc. | Eyepiece for virtual, augmented, or mixed reality systems |
| US10690919B1 (en) | 2017-02-17 | 2020-06-23 | Facebook Technologies, Llc | Superluminous LED array for waveguide display |
| JP2020515884A (ja) * | 2017-03-30 | 2020-05-28 | ăŚă§ăźă ăŞăăăŁăăŻăš ăŞăăăă | ćĄĺźľçžĺŽăžăăŻäťŽćłçžĺŽăăŁăšăăŹă¤ç¨ăŽĺ°ćł˘čˇŻ |
| CN111194422A (zh) * | 2017-03-30 | 2020-05-22 | ĺ¨çŚĺ ĺŚćéĺ Źĺ¸ | ç¨äşĺ˘ĺźşç°ĺŽćčćç°ĺŽćžç¤şĺ¨ç波察 |
| US11487111B2 (en) | 2017-03-30 | 2022-11-01 | Snap Inc. | Waveguide for an augmented reality or virtual reality display |
| KR20200002791A (ko) * | 2017-03-30 | 2020-01-08 | ě¨ě´ë¸ ěľíąě¤ ěí°ë | ěŚę° íě¤ ëë ę°ě íě¤ ëě¤íë ě´ëĽź ěí ëíę´ |
| EP3602168B1 (en) * | 2017-03-30 | 2021-04-21 | Wave Optics Ltd | Waveguide for an augmented reality or virtual reality display |
| KR102470733B1 (ko) * | 2017-03-30 | 2022-11-25 | ě¨ě´ë¸ ěľíąě¤ ěí°ë | ěŚę° íě¤ ëë ę°ě íě¤ ëě¤íë ě´ëĽź ěí ëíę´ |
| JP7092136B2 (ja) | 2017-03-30 | 2022-06-28 | ăŚă§ăźă ăŞăăăŁăăŻăš ăŞăăăă | ćĄĺźľçžĺŽăžăăŻäťŽćłçžĺŽăăŁăšăăŹă¤ç¨ăŽĺ°ćł˘čˇŻ |
| US10412378B2 (en) | 2017-05-08 | 2019-09-10 | Microsoft Technology Licensing, Llc | Resonating optical waveguide using multiple diffractive optical elements |
| US10222615B2 (en) | 2017-05-26 | 2019-03-05 | Microsoft Technology Licensing, Llc | Optical waveguide with coherent light source |
| US10175423B2 (en) | 2017-05-31 | 2019-01-08 | Microsoft Technology Licensing, Llc | Optical waveguide using overlapping optical elements |
| US10670805B2 (en) | 2017-05-31 | 2020-06-02 | Microsoft Technology Licensing, Llc | Optical waveguide using overlapping optical elements coupling light beam |
| US11131807B2 (en) | 2017-05-31 | 2021-09-28 | Microsoft Technology Licensing, Llc | Pupil expander with improved color uniformity |
| EP3631566A4 (en) * | 2017-06-02 | 2021-03-03 | Dispelix Oy | DIFFACTIVE ELEMENT WITH DOUBLE PERIODIC GRIDS |
| US12242088B2 (en) | 2017-06-02 | 2025-03-04 | Dispelix Oy | Diffractive element with doubly periodic gratings |
| US11086059B2 (en) | 2017-06-13 | 2021-08-10 | Vuzix Corporation | Image light guide with expanded light distribution overlapping gratings |
| US11906762B2 (en) | 2017-06-13 | 2024-02-20 | Vuzix Corporation | Image light guide with expanded light distribution overlapping gratings |
| JP2020523634A (ja) * | 2017-06-13 | 2020-08-06 | ăăĽăźă¸ăăŻăš ăłăźăăŹăźăˇă§ăłďźśď˝ď˝ď˝ď˝ ď˝ď˝ď˝ď˝ď˝ď˝ď˝ď˝ď˝ď˝ | ćĄĺ¤§ăăăĺ ĺé ăčĄăéĺć źĺăĺăăçťĺĺ ăŹă¤ă |
| JP7213831B2 (ja) | 2017-06-13 | 2023-01-27 | ăăĽăźă¸ăăŻăš ăłăźăăŹăźăˇă§ăł | ćĄĺ¤§ăăăĺ ĺé ăčĄăéĺć źĺăĺăăçťĺĺ ăŹă¤ă |
| WO2019005376A1 (en) * | 2017-06-30 | 2019-01-03 | Microsoft Technology Licensing, Llc | WAVEBOOK WITH GREAT FIELD OF VISION ACCEPTING RED, GREEN AND BLUE IN A PLATE |
| US10393930B2 (en) | 2017-06-30 | 2019-08-27 | Microsoft Technology Licensing, Llc | Large-field-of-view waveguide supporting red, green, and blue in one plate |
| JP2020527244A (ja) * | 2017-07-07 | 2020-09-03 | 亏ćąćšç§ćéĺčĄâ˛ăľăâźćéĺ Źĺ¸ďź˘ď˝ď˝ ďź´ď˝ ď˝ď˝ď˝ď˝ď˝ď˝ď˝ď˝ ďź§ď˝ď˝ď˝ď˝ ď˝ďźďźďźŹď˝ď˝ďź | éćčĄ¨ç¤şčŁ ç˝ŽĺăłăăŽčŁ˝é ćšćł |
| JP7073273B2 (ja) | 2017-07-07 | 2022-05-23 | 亏ćąćšç§ćéĺčĄâ˛ăľăâźćéĺ Źĺ¸ | éćčĄ¨ç¤şčŁ ç˝ŽĺăłăăŽčŁ˝é ćšćł |
| US11668935B2 (en) | 2017-08-18 | 2023-06-06 | A9.Com, Inc. | Waveguide image combiners for augmented reality displays |
| US11698492B2 (en) | 2017-08-18 | 2023-07-11 | A9.Com, Inc. | Waveguide image combiners for augmented reality displays |
| US11789265B2 (en) | 2017-08-18 | 2023-10-17 | A9.Com, Inc. | Waveguide image combiners for augmented reality displays |
| US10859833B2 (en) | 2017-08-18 | 2020-12-08 | Tipd, Llc | Waveguide image combiner for augmented reality displays |
| JP7135252B2 (ja) | 2017-09-06 | 2022-09-13 | ăŚă§ăźă ăŞăăăŁăăŻăš ăŞăăăă | ćĄĺźľçžĺŽăăă¤ăšăžăăŻäťŽćłçžĺŽăăă¤ăšăŤăăăŚç¨ăăăăăŽĺ ĺŚăăă¤ăš |
| US11036046B2 (en) | 2017-09-06 | 2021-06-15 | Wave Optics Ltd | Optical device for use in an augmented reality or virtual reality device |
| WO2019048821A1 (en) * | 2017-09-06 | 2019-03-14 | Wave Optics Ltd | OPTICAL DEVICE FOR USE IN A DEVICE OF INCREASED REALITY OR VIRTUAL REALITY |
| GB2566274A (en) * | 2017-09-06 | 2019-03-13 | Wave Optics Ltd | Display for use in an augmented reality or virtual reality device |
| JP2020532766A (ja) * | 2017-09-06 | 2020-11-12 | ăŚă§ăźă ăŞăăăŁăăŻăš ăŞăăăă | ćĄĺźľçžĺŽăăă¤ăšăžăăŻäťŽćłçžĺŽăăă¤ăšăŤăăăŚç¨ăăăăăŽĺ ĺŚăăă¤ăš |
| TWI750411B (zh) * | 2017-09-06 | 2021-12-21 | čąĺĺ波ĺĺ ĺ¸ćéĺ Źĺ¸ | 使ç¨ćźä¸ć´ĺ˘ĺŻŚĺ˘ćčćŹĺŻŚĺ˘čŁç˝Žäšĺ ĺ¸čŁç˝Ž |
| US10942430B2 (en) | 2017-10-16 | 2021-03-09 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
| US11573483B2 (en) | 2017-10-16 | 2023-02-07 | Digilens Inc. | Systems and methods for multiplying the image resolution of a pixelated display |
| WO2019118930A1 (en) | 2017-12-15 | 2019-06-20 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| AU2024200691B2 (en) * | 2017-12-15 | 2024-05-02 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| AU2024200691A1 (en) * | 2017-12-15 | 2024-02-22 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11977233B2 (en) | 2017-12-15 | 2024-05-07 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US12181682B2 (en) | 2017-12-15 | 2024-12-31 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11347063B2 (en) | 2017-12-15 | 2022-05-31 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| EP3723580A4 (en) * | 2017-12-15 | 2021-09-08 | Magic Leap, Inc. | EYEPIECES FOR EXTENDED REALITY DISPLAY SYSTEMS |
| US12366823B2 (en) | 2018-01-08 | 2025-07-22 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
| US12092914B2 (en) | 2018-01-08 | 2024-09-17 | Digilens Inc. | Systems and methods for manufacturing waveguide cells |
| US10914950B2 (en) | 2018-01-08 | 2021-02-09 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
| US12306585B2 (en) | 2018-01-08 | 2025-05-20 | Digilens Inc. | Methods for fabricating optical waveguides |
| US12352960B2 (en) | 2018-01-08 | 2025-07-08 | Digilens Inc. | Waveguide architectures and related methods of manufacturing |
| US10732569B2 (en) | 2018-01-08 | 2020-08-04 | Digilens Inc. | Systems and methods for high-throughput recording of holographic gratings in waveguide cells |
| US11016228B2 (en) | 2018-01-09 | 2021-05-25 | Varian Semiconductor Equipment Associates, Inc. | System and method for forming diffracted optical element having varied gratings |
| US10598832B2 (en) | 2018-01-09 | 2020-03-24 | Varian Semiconductor Equipment Associates, Inc. | System and method for forming diffracted optical element having varied gratings |
| JP2021509731A (ja) * | 2018-01-09 | 2021-04-01 | ăăŞă˘ăłăťăťăăłăłăăŻăżăźăťă¨ăŻă¤ăăăĄăłăăťă˘ă˝ăˇă¨ă¤ăăťă¤ăłăłăźăăŹă¤ăăă | ć§ă ăŞă°ăŹăźăăłă°ăćăăĺćĺ ĺŚç´ ĺă形ćăăăăăŽăˇăšăă ăăăłćšćł |
| US11442207B2 (en) | 2018-01-09 | 2022-09-13 | Varian Semiconductor Equipment Associates, Inc. | System and method for forming diffracted optical element having varied gratings |
| JP7121462B2 (ja) | 2018-01-09 | 2022-08-18 | ăăŞă˘ăłăťăťăăłăłăăŻăżăźăťă¨ăŻă¤ăăăĄăłăăťă˘ă˝ăˇă¨ă¤ăăťă¤ăłăłăźăăŹă¤ăăă | ć§ă ăŞă°ăŹăźăăłă°ăćăăĺćĺ ĺŚç´ ĺă形ćăăăăăŽăˇăšăă ăăăłćšćł |
| WO2019139814A1 (en) * | 2018-01-09 | 2019-07-18 | Varian Semiconductor Equipment Associates, Inc. | System and method for forming diffracted optical element having varied gratings |
| JP2021170112A (ja) * | 2018-01-09 | 2021-10-28 | ăăŞă˘ăłăťăťăăłăłăăŻăżăźăťă¨ăŻă¤ăăăĄăłăăťă˘ă˝ăˇă¨ă¤ăăťă¤ăłăłăźăăŹă¤ăăă | ć§ă ăŞă°ăŹăźăăłă°ăćăăĺćĺ ĺŚç´ ĺă形ćăăăăăŽăˇăšăă ăăăłćšćł |
| US10877275B2 (en) | 2018-02-15 | 2020-12-29 | Hitachi, Ltd. | Imageguide for head mounted display |
| US10690851B2 (en) | 2018-03-16 | 2020-06-23 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
| US11150408B2 (en) | 2018-03-16 | 2021-10-19 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
| US11726261B2 (en) | 2018-03-16 | 2023-08-15 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
| US10761256B2 (en) | 2018-04-16 | 2020-09-01 | Samsung Electronics Co., Ltd. | Backlight unit providing uniform light and display apparatus including the same |
| US12216283B2 (en) | 2018-05-17 | 2025-02-04 | Snap Inc. | Optical structure for augmented reality display |
| US11513372B2 (en) | 2018-06-12 | 2022-11-29 | Magic Leap, Inc. | Edge sealant application for optical devices |
| US12099258B2 (en) | 2018-06-12 | 2024-09-24 | Magic Leap, Inc. | Edge sealant application for optical devices |
| US12050332B2 (en) | 2018-07-02 | 2024-07-30 | Vuzix Corporation | Waveguide turning grating designs for optimal efficiency |
| US12019233B2 (en) | 2018-07-23 | 2024-06-25 | Magic Leap, Inc. | Optical device venting gaps for edge sealant and lamination dam |
| US11402801B2 (en) | 2018-07-25 | 2022-08-02 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
| US12265216B2 (en) | 2018-09-24 | 2025-04-01 | Snap Inc. | Device for augmented reality or virtual reality display |
| WO2020065251A1 (en) | 2018-09-24 | 2020-04-02 | Wave Optics Ltd. | Device for augmented reality or virtual reality display |
| US12493187B2 (en) | 2018-10-24 | 2025-12-09 | Snap Inc. | Device for augmented reality or virtual reality display |
| WO2020084275A1 (en) | 2018-10-24 | 2020-04-30 | Wave Optics Ltd | Device for augmented reality or virtual reality display |
| US12164106B2 (en) | 2018-10-24 | 2024-12-10 | Snap Inc. | Device for augmented reality or virtual reality display |
| US12210153B2 (en) | 2019-01-14 | 2025-01-28 | Digilens Inc. | Holographic waveguide display with light control layer |
| US12397477B2 (en) | 2019-02-05 | 2025-08-26 | Digilens Inc. | Methods for compensating for optical surface nonuniformity |
| US12140764B2 (en) | 2019-02-15 | 2024-11-12 | Digilens Inc. | Wide angle waveguide display |
| US11543594B2 (en) | 2019-02-15 | 2023-01-03 | Digilens Inc. | Methods and apparatuses for providing a holographic waveguide display using integrated gratings |
| WO2020178545A1 (en) | 2019-03-07 | 2020-09-10 | Wave Optics Ltd. | Display for augmented reality or virtual reality |
| US11378732B2 (en) | 2019-03-12 | 2022-07-05 | DigLens Inc. | Holographic waveguide backlight and related methods of manufacturing |
| US11953685B2 (en) | 2019-03-19 | 2024-04-09 | Snap Inc. | Angular uniformity waveguide for augmented or virtual reality |
| WO2020188234A1 (en) | 2019-03-19 | 2020-09-24 | Wave Optics Ltd. | Improved angular uniformity waveguide for augmented or virtual reality |
| US12339460B2 (en) | 2019-03-19 | 2025-06-24 | Snap Inc. | Angular uniformity waveguide for augmented or virtual reality |
| WO2020217044A1 (en) | 2019-04-25 | 2020-10-29 | Wave Optics Ltd | Display for augmented reality |
| US12242059B2 (en) | 2019-04-25 | 2025-03-04 | Snap Inc. | Display for augmented reality |
| US12271035B2 (en) | 2019-06-07 | 2025-04-08 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
| US11747568B2 (en) | 2019-06-07 | 2023-09-05 | Digilens Inc. | Waveguides incorporating transmissive and reflective gratings and related methods of manufacturing |
| US12181678B2 (en) | 2019-06-20 | 2024-12-31 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US12379600B2 (en) | 2019-06-20 | 2025-08-05 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11650423B2 (en) | 2019-06-20 | 2023-05-16 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
| US11681143B2 (en) | 2019-07-29 | 2023-06-20 | Digilens Inc. | Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display |
| US11899238B2 (en) | 2019-08-29 | 2024-02-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
| US11592614B2 (en) | 2019-08-29 | 2023-02-28 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
| US11442222B2 (en) | 2019-08-29 | 2022-09-13 | Digilens Inc. | Evacuated gratings and methods of manufacturing |
| WO2021197907A1 (en) | 2020-04-03 | 2021-10-07 | Wave Optics Ltd. | Waveguide for an augmented reality or virtual reality display |
| US12449659B2 (en) | 2020-04-07 | 2025-10-21 | Snap Inc. | Optical device |
| WO2021204894A1 (en) | 2020-04-07 | 2021-10-14 | Wave Optics Ltd | Optical device |
| WO2022049104A1 (en) | 2020-09-01 | 2022-03-10 | Wave Optics Ltd | Methods for designing diffraction grating for augmented reality or virtual reality display and diffraction grating for augmented reality or virtual reality display |
| WO2022122766A1 (en) | 2020-12-10 | 2022-06-16 | Wave Optics Ltd. | Optical device |
| US11947314B2 (en) | 2020-12-15 | 2024-04-02 | A9.Com, Inc. | Volume holographic optical elements with expanded angular acceptance |
| US12222499B2 (en) | 2020-12-21 | 2025-02-11 | Digilens Inc. | Eye glow suppression in waveguide based displays |
| US20240045205A1 (en) * | 2020-12-23 | 2024-02-08 | Wave Optics Ltd | Waveguide for augmented reality or virtual reality display |
| US12399326B2 (en) | 2021-01-07 | 2025-08-26 | Digilens Inc. | Grating structures for color waveguides |
| WO2022167126A1 (en) | 2021-02-03 | 2022-08-11 | Wave Optics Ltd. | Projector alignment system |
| US12345891B2 (en) | 2021-02-05 | 2025-07-01 | Snap Inc. | Device and method for compensating effects of pantoscopic tilt or wrap/sweep tilt on an image presented on an augmented reality or virtual reality display |
| WO2022167125A1 (en) | 2021-02-05 | 2022-08-11 | Wave Optics Ltd. | Device and method for compensating effects of pantoscopic tilt or wrap/sweep tilt on an image presented on an augmented reality or virtual reality display |
| US12158612B2 (en) | 2021-03-05 | 2024-12-03 | Digilens Inc. | Evacuated periodic structures and methods of manufacturing |
| US12259686B2 (en) | 2021-05-21 | 2025-03-25 | Amazon Technologies, Inc. | Waveguide geometry for improved display performance |
| WO2022258553A1 (en) | 2021-06-09 | 2022-12-15 | Snap, Inc. | Waveguide and diffraction grating for augmented reality or virtual reality display |
| US12204112B2 (en) | 2021-06-09 | 2025-01-21 | Snap Inc. | Waveguide and diffraction grating for augmented reality or virtual reality display |
| WO2023104914A1 (en) | 2021-12-10 | 2023-06-15 | Snap Inc. | Waveguide and diffraction grating for augmented reality or virtual reality display for reducing the visible appearance of grating structures |
| WO2023104953A1 (en) | 2021-12-10 | 2023-06-15 | Snap Inc | Diffraction grating, diffractive waveguide combiner and headset for augmented reality or virtual reality display |
| WO2023104725A1 (en) | 2021-12-10 | 2023-06-15 | Snap Inc | Optical assembly for augmented reality or virtual reality display |
| WO2023138922A1 (en) | 2022-01-21 | 2023-07-27 | Snap Inc | Waveguide combiner assemblies for augmented reality or virtual reality displays |
| US12248155B2 (en) | 2022-01-21 | 2025-03-11 | Snap Inc. | Waveguide combiner assemblies for augmented reality or virtual reality displays |
| WO2024056832A1 (en) | 2022-09-14 | 2024-03-21 | Snap, Inc. | Multipath optical device |
| EP4474695A1 (en) | 2023-06-08 | 2024-12-11 | Snap, Inc. | Optical device for augmented reality or virtual reality display |
| WO2024251404A1 (en) | 2023-06-08 | 2024-12-12 | Snap Inc. | Optical device for augmented reality or virtual reality display |
| US12504667B2 (en) | 2024-06-09 | 2025-12-23 | Magic Leap, Inc. | Waveguide light multiplexer using crossed gratings |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10359635B2 (en) | Exit pupil expanding diffractive optical waveguiding device | |
| JP7407982B2 (ja) | ćĄĺ¤§ăăăĺ ĺé ăčĄăéĺć źĺăĺăăçťĺĺ ăŹă¤ă | |
| US20230032474A1 (en) | Waveguide for an augmented reality or virtual reality display | |
| US12493187B2 (en) | Device for augmented reality or virtual reality display | |
| JP2017528739A5 (enExample) | ||
| WO2018091862A1 (en) | Optical device | |
| HK40048223A (en) | Device for augmented reality or virtual reality display | |
| HK40048223B (en) | Device for augmented reality or virtual reality display |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15744327 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| REEP | Request for entry into the european phase |
Ref document number: 2015744327 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2016575366 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 20177002023 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15329557 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: 2956872 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2015298504 Country of ref document: AU Date of ref document: 20150728 Kind code of ref document: A |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017002290 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112017002290 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170203 |