WO2022075820A1 - 증강현실장치용 도파로의 회절광학소자 아키텍처 - Google Patents

증강현실장치용 도파로의 회절광학소자 아키텍처 Download PDF

Info

Publication number
WO2022075820A1
WO2022075820A1 PCT/KR2021/013947 KR2021013947W WO2022075820A1 WO 2022075820 A1 WO2022075820 A1 WO 2022075820A1 KR 2021013947 W KR2021013947 W KR 2021013947W WO 2022075820 A1 WO2022075820 A1 WO 2022075820A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive
diffraction
linear
optical element
enters
Prior art date
Application number
PCT/KR2021/013947
Other languages
English (en)
French (fr)
Inventor
니콜라예비치 보리소프블라디미르
예브게니예비치 앙게르박스알렉산더
빅토로비치 무라비에프니콜라이
알렉산드로비취 오쿤로만
비아체슬라보비치 포포프미하일
니콜라예비치 보스트리코프가브릴
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2020133191A external-priority patent/RU2752296C1/ru
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP21878070.8A priority Critical patent/EP4191321A4/en
Publication of WO2022075820A1 publication Critical patent/WO2022075820A1/ko
Priority to US18/175,035 priority patent/US20230221570A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/1013Beam splitting or combining systems for splitting or combining different wavelengths for colour or multispectral image sensors, e.g. splitting an image into monochromatic image components on respective sensors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4233Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
    • G02B27/4244Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application in wavelength selecting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0112Head-up displays characterised by optical features comprising device for genereting colour display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • G02B2027/0174Head mounted characterised by optical features holographic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present invention relates to an augmented reality device, that is, to a short-distance display, and to a planar waveguide having a diffractive optical element and a display based on such a planar waveguide.
  • augmented reality is to create an image by superimposing a virtual image on top of the real image of the world.
  • a user may view an augmented reality image using an augmented reality viewing device, in particular, augmented reality glasses.
  • Wearable augmented reality (AR) glasses are personal devices that can be used, for example, as additional screens for smartphones or other electronic devices.
  • FOV field of view
  • the maximum angle of view is 600 diagonally.
  • Some approaches can provide a wide field of view, but do not provide a large area within the area within which the eye can fully view the entire image without loss.
  • Other approaches may provide a large area through which the eye can see the entire image without loss, but do not provide a wide angle of view.
  • the classic way to widen the angle of view is to increase the number of waveguides in the augmented reality device. However, if the number of waveguides increases, the overall size of the augmented reality device and the weight of the augmented reality device increase, and the device resolution decreases.
  • FIG. 1 schematically shows the limit of the angle of view when using the diffractive optical element in the augmented reality device known from the prior art.
  • the horizontal axis is a horizontal angle of view (FOV)
  • the vertical axis is a vertical angle of view.
  • a rectangle is displayed at the intersection of the horizontal axis and the vertical axis, which is an image that needs to be delivered to the user for viewing.
  • the transmitted image interacts with the diffractive optical element, it guides the transmitted image to the right (arrow in vector K in ) and the image enters the ring shown in FIG. 1 .
  • the ring represents the angular component region of the propagating radiation (wave vector component region of the propagating radiation) that propagates within the waveguide but does not propagate out of the waveguide.
  • the edge component represents a specific point on the angular grid with angular coordinates such as Bx, By, and Bz.
  • the inner boundary of the ring is the area of the angle of total internal reflection (TIR), ie the critical angle at which radiation propagates without leaving the waveguide.
  • the outer boundary of the ring is the boundary of the radiation present inside the waveguide. That is, the propagation angle of the radiation is 90° inside the waveguide. Therefore, inside the waveguide, there is radiation propagating at an angle from the TIR angle to the 90° angle. That is, when the image interacts with the input diffraction grating, a portion of the image is cropped, leaving only a portion of the image, so that the remaining portion of the image may exist only in the aforementioned angular range.
  • the image is cropped in this case horizontally, ie left and right. Also, when the vector interacts with the multiplication grating indicated by K exp in FIG. 1 , some of the corners are also cut off in the image with the same boundary, which is cut vertically. When the image is displayed, it leaves a small image cropped vertically and horizontally.
  • each diffractive optical element has a respective limit in the angle of view, the fewer the diffractive optical elements included in the augmented reality device, the better.
  • a two-dimensional image In order to generate a two-dimensional image, at least three diffractive optical elements, namely an incoming diffraction element, a multiplier diffraction element, and an outflow diffraction element are required.
  • the three diffractive optical elements are referred to herein as a set of diffractive optical elements.
  • Fig. 1 shows a set of diffractive optical elements that output a specific part of an angle of view.
  • the final angle of view formed by this set of diffractive optical elements is 300 x 300.
  • a standard way to increase the angle of view is to increase the number of waveguides carrying the image.
  • the thickness and weight of the augmented reality display increase, and the transparency of the augmented reality display decreases. If the thickness of the waveguide is reduced at the same time, the image perceived by the eye will deteriorate, and if the thickness of the waveguide is reduced, since more than one image output enters the pupil due to the unevenness and non-flatness of the waveguide itself, more than one input image will be visible to the eye. go in In other words, double vision occurs and the resolution starts to drop sharply and the image quality deteriorates.
  • the refractive index of the material of the diffractive optical element and the waveguide is increased.
  • the range of angles present in the waveguide but not in air increases. Therefore, the user sees the image with a wide angle of view.
  • the fundamental problem with this approach is that the high refractive index material absorbs the blue region of the spectrum, meaning that the blue portion of the spectrum of the actual image is lost when the user views the image. Also, since the blue part of the spectrum of the virtual superimposed image cannot be conveyed, the color of the image is lost.
  • the angle of view is also increased by changing the architecture of the planar waveguide.
  • the most well-known modification is to use two sets of diffractive optics instead of one set of diffractive optics, each set providing a different portion of the field of view. It should be noted that using both sets can double the width of the field of view, but only the vertical field of view is increased, and it is desirable to increase both the vertical and horizontal field of view. In other words, there is a loss of horizontal form factor with this approach.
  • form factor refers to the aspect ratio of the displayed image.
  • a horizontal form factor is an image with a larger horizontal margin than a vertical margin.
  • a vertical form factor is an image with a larger vertical margin than horizontal margins.
  • the horizontal or vertical form factor represents the aspect ratio of the displayed image.
  • the vertical form factor and the input diffraction grating are positioned, for example, to the left with respect to the output grating, if you rotate the waveguide 90°, the input diffraction grating is on top, and the form factor changes from the vertical form factor to the horizontal form factor. do.
  • the incoupling diffraction element is on top, light must also be introduced from above. That is, the image projector must also be attached from above. Thus, the glasses become bulky and become more like a helmet.
  • Another problem with augmented reality devices is color dispersion. That is, if there is one waveguide with a certain number of sets of gratings carrying an image, that waveguide will not carry a full color image across the image field, one part of the image will appear red to the user, and the image The other part of the image will appear green to the user, and the third part of the image will appear blue to the user. Users will only have access to a small area where they can see the full color image. To solve this problem, the prior art uses several waveguides, each waveguide responsible for a respective color or two adjacent colors. Therefore, the thickness of the augmented reality device increases.
  • This document provides a system and method for generating a heads-up display (HUD) using a waveguide with a Bragg grating.
  • HUD heads-up display
  • a disadvantage of this known approach is that the width of the field of view is small and the overall size of the device is large.
  • Document US2019004321 A1 is known from the prior art, the filing date of the application is January 3, 2019, and discloses an optical device for expanding the incoming light in two dimensions for an augmented reality display.
  • This device consists of a waveguide 12 and three linear diffraction gratings H0, H1 and H2.
  • a beam incident from the projector illuminates the input grating H0 as polychromatic light, and the light enters the waveguide 12 .
  • the other two gratings H1 and H2 overlap each other.
  • Light may be diffracted from one grating H1 in the direction of the other grating H2 in a first diffraction order, so that light emitted from the waveguide 12 may be directed toward an observer.
  • a disadvantage of this known approach is that the width of the field of view is small and the overall size of the device is large.
  • US 9927614 B2 document is known from the prior art, the publication date of the application is March 27, 2018, it discloses a short-range optical display system that can be used in augmented reality applications and devices.
  • the system includes a diffraction waveguide having a diffractive optical element (DOE) configured for input, exit pupil expansion, and output.
  • DOE diffractive optical element
  • An electrically modulated tunable liquid crystal (LCD) lens is placed between the diffraction grating and the user's eyes.
  • a polarizing filter is placed opposite the grating to allow real-world light to enter the system in a specific polarization state.
  • a disadvantage of this known approach is that the width of the field of view is small and the overall size of the device is large.
  • a known waveguide display is used to provide a medium to a user.
  • a waveguide display includes a light source assembly, an output waveguide, and a controller.
  • the light source assembly includes one or more projectors that project an image along at least one dimension.
  • the output waveguide consists of a waveguide body with two opposing surfaces.
  • the output waveguide is opposite the first grating, the second grating, and the second grating for receiving image light propagating along the input wavevector, and a third outputting extended image light having a wavevector corresponding to the input wavevector.
  • a controller controls the scan of one or more light source assemblies to form a 2D image.
  • the disadvantage of this known method is also that the width of the field of view is insufficient, since only two sets of optical elements are used to increase the width of the field of view in this known method, and the overall size of the device is large. .
  • the known methods have a narrow angle of view, an increase in the display thickness when the number of waveguides used increases, a decrease in resolution when the waveguide thickness decreases, the use of a high refractive index provides color loss, and two sets of diffractive optical elements Using , assumes that image input is provided from above, resulting in loss of overall character. That is, in the current development stage of the technical field currently under review, there is no way to implement a full-color image having a wide angle of view using only one waveguide.
  • the disclosed invention solves all the above problems, and provides a diffractive optical element architecture of a waveguide for an augmented reality device that is thin, full color, has good resolution, and can achieve a wide angle of view while radiation is introduced from the side. .
  • a diffractive optical element architecture of a waveguide for an augmented reality device an incoupling diffraction element configured to input radiation emitted from a projector, a first linear diffraction optical element of the incoupling diffraction element and a second linear diffraction element of the incoupling diffraction element an incoupling diffraction element including an optical element; a first multiplication diffraction element and a second multiplication diffraction element configured to multiply the radiation;
  • An outcoupling diffraction element configured to multiply radiation and output radiation emitted from a waveguide, a first linear diffraction optical element of the outcoupling diffraction element, a second linear diffraction optical element of the outcoupling diffraction element, and an outcoupling diffraction element
  • Outcoupling diffraction element including a third linear diffractive optical element of and separating the beam path direction of each color component through a corresponding set of diffractive elements, wherein along the path of the radiation, the
  • the sum of the vectors of all diffractive elements in each set is equal to zero. Accordingly, the first set of diffractive elements and the third set of diffractive elements are configured to cover an upper portion of the angle of view, and the second set of diffractive elements and the fourth set of diffractive elements are configured to cover a lower portion of the angle of view.
  • the beam path direction for each color component is determined by a system of equations
  • l is the wavelength of the electromagnetic wave
  • x is the angular coordinate in the x-direction of the electromagnetic wave
  • y is the angular coordinate in the y-direction of the electromagnetic wave
  • n ⁇ b is the refractive index of the optical system with respect to the wavelength ⁇ b ;
  • n ⁇ g is the refractive index of the optical system with respect to the wavelength ⁇ g ;
  • n ⁇ r is the refractive index of the optical system with respect to the wavelength ⁇ r ;
  • ⁇ b is the wavelength of the electromagnetic wave corresponding to blue
  • ⁇ g is the wavelength of the electromagnetic wave corresponding to green
  • ⁇ r is the wavelength of the electromagnetic wave corresponding to red:
  • is the maximum angle in the x-direction of the transmitted angle of view (the magnitude of the angle of view in the x-direction is 2 ⁇ );
  • is the maximum angle in the y direction of the transmitted angle of view (the magnitude of the angle of view in the y direction is 2 ⁇ );
  • the initial data for solving this simultaneous equation are the electromagnetic wave wavelength used ( ⁇ b , ⁇ g , ⁇ r ), the refractive index of the optical system with respect to the used wavelength (n ⁇ b, n ⁇ g , n ⁇ r ), the horizontal and vertical sides of the angle of view is the ratio ( ⁇ / ⁇ ), and the geometric relationship of the linear element vectors below,
  • vector is corresponding to the "+1" and "-1" diffraction orders of the second linear diffractive optical element of the incoupling diffractive element;
  • the beam path direction for each color component is determined by a system of equations
  • l is the wavelength of the electromagnetic wave
  • x is the angular coordinate in the x-direction of the electromagnetic wave
  • y is the angular coordinate in the y-direction of the electromagnetic wave
  • n ⁇ b is the refractive index of the optical system with respect to the wavelength ⁇ b ;
  • n ⁇ r is the refractive index of the optical system with respect to the wavelength ⁇ r ;
  • ⁇ b is the wavelength of the electromagnetic wave corresponding to blue
  • ⁇ r is the wavelength of the electromagnetic wave corresponding to red:
  • ⁇ and ⁇ are the angles in the y-direction within the angle of view, which are the contact angles of two parts of the angle of view, the first and second sets and the third and fourth sets transmitted,
  • the initial data for solving this simultaneous equation are the used electromagnetic wave wavelength ( ⁇ b ⁇ r ), the refractive index of the optical system with respect to the used wavelength (n ⁇ b n ⁇ r ), and the aspect ratio of the sides of the field of view (ratio ( ⁇ / ⁇ ) , and the geometrical relationship of the following linear element vectors resulting from the geometrical features of the waveguide architecture,
  • vector is corresponding to the "+1" and "-1" diffraction orders of the second linear diffractive optical element of the incoupling diffractive element;
  • All diffraction elements are applied to one side of the waveguide.
  • the first and second sets of diffractive elements are positioned on one side of the waveguide, and the third and fourth sets of diffractive elements are positioned on opposite sides of the waveguide.
  • a method of operating a diffractive optical element wherein radiation from a projector enters an input diffractive element, splits into a red component of an image, a blue component of an image and a green component of the image, and is sent to a set of diffractive elements operating simultaneously, wherein the diffractive element 1 set, the green component of the image enters the first linear diffractive optical element of the incoupling diffractive element, and then the radiation enters the output diffractive element where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element, output The second linear diffractive optical element of the diffractive element is output to the user's eye, and the blue component enters the first linear diffractive optical element of the incoupling diffraction element, and a portion propagating at an angle different from the incident angle of the green component is diffracted, , enters the outcoupling diffraction element in which multiplication occurs in the first linear diffraction optical element of the output diffraction element, and
  • a method of operating a diffractive optical element wherein radiation from a projector enters an input diffractive element, is divided into a red component of an image, a blue component of an image and a green component of the image, and is sent to a set of diffractive elements operating at the same time, wherein the diffractive element
  • the first set is that the green upper component enters the first linear diffractive optical element of the incoupling diffractive element, and then the radiation enters the outcoupling diffractive element where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element; , output to the user's eye using the second linear diffractive optical element of the outcoupling diffractive element, the blue upper component enters the first linear diffractive optical element of the incoupling diffractive element, and is at a horizontal angle different from the incident angle of the green component
  • the propagating part is diffracted, enters the output diffraction element where multiplication occurs in the first linear diffraction optical element of
  • the second linear diffraction optical element of the outcoupling diffraction element After entering the first linear diffraction optical element of the outcoupling diffraction element, the second linear diffraction optical element of the outcoupling diffraction element enters the output diffraction element in which multiplication occurs, and the user's eye using the first linear diffraction optical element of the output diffraction element
  • the red upper component enters the first linear diffraction optical element of the incoupling diffraction element, and a portion propagating at a horizontal angle different from the incident angles of the green component and the blue component is diffracted, and the first linear diffraction element of the outcoupling diffraction element is output.
  • the diffractive optical element enters the output diffraction element where multiplication occurs, and is output to the user's eye by the second linear diffractive optical element of the outcoupling diffraction element, and the red lower component is the first linear diffracted light of the input diffraction element
  • the first multiplication is operable to be output to the user's eye by the linear diffractive element, the third set of diffractive elements, the green central upper component enters the second linear diffractive optical element of the incoupling diffractive element, and then the multiplication occurs It enters the diffraction element, and then enters the third linear diffraction optical element of the outcoupling diffraction element and is output to the user'
  • the fourth set of diffractive elements the green central lower component being the second linear diffractive optical element of the incoupling diffractive element
  • the green central lower component is the second linear diffractive optical element of the incoupling diffractive element
  • the red center lower component is the incoupling diffraction element
  • a portion that enters the second linear diffraction optical element of the and propagates at a horizontal angle different from the incident angle of the green component is diffracted, then enters the second multiplier diffraction element where multiplication occurs, and then the third linearity of the outcoupling diffraction element It enters the diffractive optical element and is output to the user's eye, and the blue central lower component enters the second linear diffractive optical element of the incoupling diffractive element and is converted to
  • a method comprising the steps of: diffracting the waved portion, then entering a second multiplying diffraction element where multiplication occurs, then entering a third linear diffractive optical element of the outcoupling diffraction element and operating to be output to the user's eye This is also suggested.
  • An augmented reality display device including a waveguide including the proposed diffractive optical element is also proposed.
  • a first waveguide including the proposed diffractive optical element, operative to expand a horizontal field of view and eliminate image dispersion;
  • an augmented reality display device including a second waveguide that operates to extend a vertical angle of view is proposed.
  • the first and second sets of the diffractive elements are positioned on one side of the waveguide, and the third and fourth sets of the diffractive elements are positioned on opposite sides of the waveguide.
  • Augmented reality display device including the waveguide is proposed
  • An augmented reality display device including at least one waveguide including at least one of the proposed diffractive optical elements is also proposed.
  • Augmented reality glasses including a left eye element and a right eye element are proposed, and each of the left eye and right eye elements is an augmented reality display device,
  • a waveguide including a diffractive optical element is positioned in each of the right eye element and the left eye element so that the outcoupling diffractive element is positioned opposite the user's eye.
  • Augmented reality glasses including a left eye element and a right eye element are proposed, and each of the left eye and right eye elements is an augmented reality display device,
  • the first and second waveguides are disposed on the right eye element and the left eye element, respectively, so that the outcoupled diffractive element is positioned opposite the user's eye.
  • the thickness is thin, the full color is good, the resolution is good, the radiation is introduced from the side, and a wide angle of view can be achieved.
  • Fig. 1 schematically shows the limit of the angle of view when a set of diffractive optical elements is used.
  • FIG. 2 shows the architecture of the proposed waveguide divided into X, Y, and Z zones.
  • 3 schematically shows the implementation of the proposed diffractive element architecture and the output diffraction element Z of three linear diffractive optical elements.
  • Fig. 4 shows the optical separation of the entire angle of view across sets of diffractive optical elements in the case of horizontal extension of the angle of view.
  • Fig. 5a shows a vector diagram of the proposed diffraction element architecture.
  • Figure 5b shows a vector diagram superimposed on the architecture of the diffractive optical element.
  • FIG. 6 shows the arrangement of transferred image portions in a waveguide during image propagation.
  • FIG. 8 schematically shows an augmented reality display system.
  • FIG. 11 shows the use of a three-waveguide system.
  • FIG. 12 shows the use of a waveguide with a grating architecture applied to both sides.
  • the present invention includes a waveguide including a diffractive architecture, which is a structure of a diffractive optical element.
  • the diffractive architecture (structure) includes four different sets of diffractive optical elements.
  • the diffraction optical element is a diffraction grating, and is hereinafter referred to as a "diffraction element" for convenience.
  • the diffractive optical element set includes three diffractive elements, i.e., an incoupling diffraction element, a multiplier diffraction element, and an outcoupling diffraction element.
  • Each set of diffractive elements is designed in such a way that each part of the augmented reality image is displayed.
  • the output optics produce an output of images from the various diffractive elements.
  • the proposed invention aims to reduce the overall size of the augmented reality device, and since each pair of diffractive element sets can cover different color parts that do not overlap each other in the image, the proposed invention solves the color dispersion problem. That is, thanks to the proposed invention, a wide full-color field of view is provided even when using only one waveguide.
  • the image transmitted from the projector must be composed of at least three linear diffraction gratings: an incoupling grating, and a multiplying diffraction grating. It should interact alternately with the grating and the outcoupling diffraction grating.
  • the grating vector is the grating wave vector oriented perpendicular to the grating line and located in the same plane as the working surface.
  • the vectors of these three diffraction gratings must form a two-dimensional closed figure. That is, the sum of all vectors must be zero. If the sum of the vectors is not 0, the image is transmitted distorted. If the three vectors do not form a two-dimensional shape, the input wide angle of view changes to a narrow image that is not very comfortable to view at the output. This is because it represents a dark area, and if the pupil is displaced in the vertical direction, on the contrary, the central part will appear as a dark area. That is, in a known typical system, the user only sees a narrow band of images. Since it is initially assumed that the size of the transmitted image matches the field of view of the waveguide, the field of view matches the field of the image.
  • the waveguide architecture proposed in the present invention allows the width of the angle of view to be increased.
  • FIG. 2 shows the architecture of the proposed waveguide divided into diffractive elements X, Y, and Z.
  • X is an incoupling diffraction element.
  • the incoupling diffractive element X includes two linear optical elements.
  • the two Y diffraction elements are multiplier diffraction elements.
  • the outcoupling diffraction element Z is a diffraction element provided with both radiation multiplication and radiation output.
  • the outcoupling diffractive element Z includes three linear diffractive optical elements.
  • Beam I and beam II are introduced by an incoupling diffraction element X.
  • the beam I interacts with the outcoupling diffraction element Z, where it is multiplied by the beam IV.
  • the beam II enters the multiplication diffraction element Y, where it is multiplied by the beam III, and the beam III exits the multiplication grating Y and enters the output diffraction element Z.
  • the beam III and the beam IV are output from the outcoupling diffraction element Z.
  • the incoupling diffractive element X includes two linear optical elements. Moreover, the incoupling diffractive element X is such that one of the linear diffractive optical elements introduces radiation toward the output diffractive element Z using one diffraction order, and the other one of the linear diffractive elements uses one diffraction order and "+1" diffraction order and "-1". " It is designed in such a way that radiation is introduced towards the multiplier diffraction element Y using the diffraction order. The radiation introduced toward the outcoupling diffraction element Z is different from the radiation introduced toward the multiplication diffraction element Y. That is, these are different parts of the angle of view. This means that one part of the angle of view is introduced toward the multiplication diffraction element Y and the other part of the angle of view is introduced toward the outcoupling diffraction element Z. These parts propagate at different angles inside the waveguide.
  • the outcoupling diffractive element Z outputs radiation from four different diffractive elements, namely, two linear optical elements of the output diffractive element Z and two multiplying diffractive elements Y. As shown in FIG. 3 , the outcoupling diffractive element Z includes three linear diffractive optical elements 1, 2, and 3 .
  • the radiation transmitted from the first and second multiplication diffraction elements Y enters the outcoupling diffraction element Z and is output by the third linear diffraction optical element 3 of the outcoupling diffraction element Z.
  • the vector of the third diffractive optical element points toward the incoupling diffractive element X in FIG. 3 .
  • a portion of the radiation corresponding to the upper portion of the image field directed from the X zone to the Z zone is multiplied in the first linear diffractive optical element 1 of the outcoupling diffractive element Z and the second linear diffractive optical element of the outcoupling diffractive element Z 2, the second part of the radiation corresponding to the lower part of the image field directed from the X zone to the Z zone is multiplied by the second linear diffractive optical element 2 and the first linear diffractive optical element 1 of the outcoupling diffractive element Z is output from Accordingly, the outcoupling diffractive element Z (Z zone) multiplies and outputs the radiation emitted from the multiplied and output linear diffractive optical element.
  • the first linear diffraction optical element 1 of the outcoupling diffraction element Z outputs the radiation emitted from the second linear diffraction optical element 2 of the outcoupling diffraction element Z
  • the second diffractive optical element of the outcoupling diffraction element Z 2 outputs the radiation emitted from the first linear diffraction element 1 of the outcoupling diffraction element Z
  • the third linear diffraction element 3 of the outcoupling diffraction element Z outputs the radiation emitted from the multiplication diffraction element Y.
  • a beam propagating inside the waveguide enters a multiplier diffraction element, and a part of radiation of the beam is diffracted by the multiplier diffraction element to form a diffraction order, in which case "+1" diffraction order is considered.
  • a beam that has passed without diffraction continues to propagate along the original path, is reflected back in the plane of the waveguide, and then enters the multiplier diffraction element again, and some of the radiation of this beam is diffracted again by the multiplier grating, so that the "+1" diffraction order to form Then the situation repeats several times.
  • the first diffracted beam and the second diffracted beam propagate parallel to each other but at a fixed distance from each other. So we get many parallel beams from one beam. That is, replication occurs.
  • the first set of diffractive elements is composed of a first linear diffractive optical element of the incoupling diffractive element X, and also first and second linear diffractive elements of the outcoupling diffractive element Z.
  • the second set of diffractive elements is composed of a first linear diffractive optical element of the incoupling diffractive element X, and also second and first linear diffractive optical elements of the outcoupling diffractive element Z.
  • the third set of diffractive elements is composed of a second linear diffractive optical element of the incoupling diffractive element X of the first multiplication diffractive optical element Y and a third linear diffractive optical element of the outcoupling diffractive element Z.
  • the fourth set of diffractive elements is composed of a second linear diffractive optical element of the incoupling diffractive element X of the second multiplying diffractive optical element Y and a third linear diffractive optical element of the outcoupling diffractive element Z.
  • the optical separation of the entire angle of view by the diffraction element sets is implemented as follows.
  • the odd first and third sets of diffractive elements cover the upper part of the angle of view.
  • the even second and fourth sets of diffractive elements serve the lower part of the angle of view.
  • the first and second sets of diffractive elements consume the entire blue portion of the field of view and half the green portion of the field of view.
  • the third and fourth sets of diffractive elements consume the entire red portion of the field of view and half the green portion of the field of view.
  • the width of the angle of view is increased by partially separating different sets of diffraction elements in a straight space.
  • straight space and "angular space” define a grid of coordinates in which the analysis/calculation is performed.
  • the coordinate grid is defined by spatial coordinates (x, y, z directions).
  • angular space a grid is defined by angular coordinates (eg, Ax, Ay, Az).
  • the proposed invention considers not only the direction of propagation of radiation (angular space), but also the place inside the waveguide where this radiation propagates (straight-line space).
  • one point on the angular coordinate grid should occupy only one part of the transmitted image. This can be achieved by strictly prohibiting the use of more than one part of the image transmitted at the same point on the angular coordinate grid, an approach widely used in the prior art.
  • the same point on the angular coordinate grid may occupy two or more parts of the transmitted image, because different parts of the transmitted image occupy the same point on the angular coordinate grid at various places inside the waveguide. . That is, they are separated in straight space.
  • Fig. 5a shows a vector diagram of the proposed diffraction element architecture.
  • the vector corresponds to the linear diffractive optical element of the input diffraction element X.
  • the vector corresponds to the outcoupling diffraction element Z.
  • vector corresponds to the "+1" and "-1" diffraction orders of the second linear diffractive optical element of the incoupling diffractive element X.
  • vector corresponds to the first linear diffractive optical element of the incoupling diffractive element X.
  • the vector corresponds to the second multiplying diffraction element Y.
  • the vector corresponds to the first multiplying diffraction element Y.
  • the vector corresponds to the first linear diffractive optical element of the outcoupling diffractive element Z.
  • vector corresponds to the second linear diffractive optical element of the outcoupling diffractive element Z.
  • vector corresponds to the third linear diffractive optical element of the outcoupling diffractive element Z.
  • the aforementioned sets of diffractive elements operate simultaneously. Radiation from the projector enters the incoupling diffractive optical element X, and is divided into a red component, a green component and a blue component at different angles.
  • the first set of diffractive elements operates as follows.
  • the green component of the image enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z, where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element Z; It is output to the user's eye using the second linear diffractive optical element of the outcoupling diffraction element Z.
  • the blue component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the blue component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and sees the user's eyes using the second linear diffraction optical element of the outcoupling diffraction element Z. is output
  • the second set of diffractive elements operates as follows.
  • the green component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z where the radiation is multiplied by the second linear diffractive optical element of the outcoupling diffractive element Z, It is output to the user's eyes using the first linear diffraction optical element of the ring diffraction element Z.
  • the blue component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the blue component enters the outcoupling diffraction element Z, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and sees the user's eyes using the first linear diffraction optical element of the outcoupling diffraction element Z. is output
  • the third set of diffractive elements operates as follows.
  • the green component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z output through the user's eyes.
  • the red component enters the second linear diffraction optical element of the input diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the red component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is outputted to the user's eyes.
  • the fourth set of diffractive elements operates as follows.
  • the green component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second multiplier diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z output through the user's eyes.
  • the red component enters the second linear diffraction optical element of the input diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the red component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is outputted to the user's eyes.
  • the input diffraction element X is composed of at least two linear diffraction gratings (first and second linear diffraction optical elements of the incoupling diffraction element X).
  • the first linear diffractive optical element of the incoupling diffractive element X introduces radiation towards the outcoupling diffractive element Z, while the two parts of the green image are introduced at once and then the corresponding linear diffraction of the outcoupling diffractive element Z Separation during multiplication in the element.
  • a second linear diffractive optical element of the incoupling diffractive element X introduces the other two portions of the green image toward each of the first and second multiplicative diffractive elements Y. This separation is achieved by the choice of the parameters of the grating, ie the spatial frequency (period) and orientation.
  • the first linear diffractive optical element of the incoupling diffractive element X has a higher spatial frequency (ie, shorter period) than the second linear diffractive optical element of the incoupling diffractive element X . Accordingly, the blue component is diffracted into the waveguide mode in the first linear diffractive optical element of the incoupling diffractive element X, and the red component is diffracted into the waveguide mode in the second linear diffractive optical element of the incoupling diffractive element X. Since the green component is between red and blue in the spectrum, it is divided between the first and second linear diffraction elements of the incoupling diffraction element X, as shown in FIG. 4 .
  • one point on the angular coordinate grid should occupy only one part of the transmitted image. This can be achieved by strictly prohibiting the use of the same point on the angular coordinate grid for more than one part of the transferred image, an approach known from the prior art.
  • the same point on the angular coordinate grid may occupy two or more parts of the transmitted image, which means that, as shown in FIG. Note that this is because they occupy the same point (they are separated in straight space).
  • Fig. 6 shows a grid of angular coordinates for each zone of the corner space (Z zone on the right, Y zone on the top, Y zone on the bottom).
  • the upper diagonal of the angular space is occupied by a part of field 2, ie the image field covered by the second set of diffractive elements.
  • the upper diagonal of the angular space is occupied by a part of field 1, ie the image field covered by the first set of diffractive elements.
  • the lower and upper diagonal quarters remain free of the part of the image field covered by the first and second sets of diffractive elements, respectively, so in the upper Y region, the upper diagonal quarters are field 4 A portion of , that is, the image field covered by the fourth set of diffractive elements is occupied.
  • the lower diagonal 1/4 is occupied by a part of field 3, ie, the image field covered by the third set of diffractive elements.
  • the image portions covered by the first and third sets of the diffractive elements do not mix with each other, and the portions 2 and 4 also do not mix with each other. This occurs because equal parts of angular space are occupied within the waveguide at different points in straight (local, coordinate) space.
  • the radiation transmitted through the first and second sets i.e., the region where, for example, the outcoupling diffractive element Z can be used by the third and fourth sets in the region where the multiplying diffraction element Y is located.
  • the angular component occupied by the first and second sets does not propagate inside the waveguide where the multiplication diffraction element Y is located.
  • the Y and Z regions use the same angular component to actuate different sets of gratings.
  • the grating sets are separated in straight space, which makes it possible to use four sets of gratings instead of two in one waveguide, where each set of gratings carries a separate part of the angle of view, i.e.
  • each set of diffractive elements carries a fixed angular magnitude of the angle of view, doubling the number of sets of diffraction elements in the waveguide doubles the angle of view.
  • the radiation introduced toward each of the first and second multiplication diffraction elements Y by the second linear diffraction element of the input diffraction element X may be propagated at an arbitrary angle, which is the first linear diffraction element of the input diffraction element X. This is because the radiation introduced toward the output diffraction element Z is not applied where the multiplying diffraction element Y is.
  • Each set is responsible for different parts of the field of view that differ not only in angle but also in color.
  • Each pair of diffractive element sets provides a different colored field of view horizontal section to increase the final horizontal field of view. So the user can see the full color image while only one waveguide is used.
  • Each point of the angle of view is determined by three variables: horizontal angular coordinates (Ax) and vertical angular coordinates (Ay), and colors (R, G, B). Accordingly, the three points (Ax, Ay, R; Ax, Ay, G; Ax, Ay, B) of the angle of view correspond to a specific point on the angular coordinate grid whose coordinates are Ax and Ay.
  • the division of the field of view into sets occurs not only by angle coordinates, but also by color.
  • the waveguide is designed in such a way that radiation interacting with the first and second sets does not interact with the third and fourth sets, and for the green part of the angle of view, half of the angle of view interacts with the first and second sets. and the second half of the angle of view interacts with the third and fourth sets.
  • different spectral angular portions of the field of view can be displayed to show the user, and the chromatic dispersion is corrected.
  • the waveguide is designed through the spatial orientation of the diffractive element and the spatial period of the diffractive element explained by the parameters of the diffractive element, that is, the vector of the diffractive optical element.
  • vector is a vector of the aforementioned linear diffraction element.
  • l is the wavelength of the electromagnetic wave
  • x is the angular coordinate in the x-direction of the electromagnetic wave
  • y is the angular coordinate in the y-direction of the electromagnetic wave.
  • n ⁇ b is the refractive index of the optical system with respect to the wavelength ⁇ b .
  • n ⁇ g is the refractive index of the optical system with respect to the wavelength ⁇ g .
  • n ⁇ r is the refractive index of the optical system with respect to the wavelength ⁇ r .
  • ⁇ b is the wavelength of the electromagnetic wave corresponding to blue.
  • ⁇ g is the wavelength of the electromagnetic wave corresponding to green.
  • ⁇ r is the wavelength of the electromagnetic wave corresponding to red.
  • is the maximum angle in the x-direction of the transmitted angle of view (the magnitude of the angle in the x-direction is 2 ⁇ ).
  • is the maximum angle in the y direction of the transmitted angle of view (the magnitude of the angle of view in the y direction is 2 ⁇ ).
  • the initial data for solving this simultaneous equation are the electromagnetic wave wavelength used ( ⁇ b , ⁇ g , ⁇ r ), the refractive index of the optical system with respect to the used wavelength (n ⁇ b, n ⁇ g , n ⁇ r ), and the aspect ratio of the sides of the field of view ( ⁇ / ⁇ ), and the geometric ratio of the linear element vectors arising from the geometrical features of the waveguide architecture shown in Fig. 4a.
  • essential parameters of the diffraction element can be analytically calculated.
  • the proposed system consists of at least one waveguide (1) including a diffractive optical element, and a projector (2) generating an image.
  • the diffractive optical element in the waveguide includes an input diffractive optical element X, first and second multiplying diffractive elements Y (not shown in the drawing shown in FIG. 8), and an outcoupling diffraction that both multiplies and outputs an image component to the user's eye. It is element Z.
  • the image generated by the projector 2 enters the architecture of the diffractive element through the input diffraction element X, propagates through the diffraction element architecture of the waveguide, exits the outcoupling diffraction element Z, and enters the user's eye.
  • the diffractive element set is not used to correct the color dispersion of the image while increasing the horizontal angle of view as described above, but is used to increase the vertical angle of view. Correcting the color dispersion of an image without increasing the vertical angle of view can only increase the horizontal angle of view.
  • the first and second sets convey the outermost portion of the vertical image and the third and fourth sets convey a more central portion.
  • the design is performed according to the system of equations presented below.
  • the portion of the image conveyed by the first and second sets of diffractive elements differs in vertical angular coordinates from the portion of the image conveyed by the third and fourth sets of diffractive elements.
  • the grating parameters are determined by the following simultaneous equations.
  • vector is a vector of the aforementioned linear diffraction element.
  • l is the wavelength of the electromagnetic wave
  • x is the angular coordinate in the x-direction of the electromagnetic wave
  • y is the angular coordinate in the y-direction of the electromagnetic wave.
  • n ⁇ b is the refractive index of the optical system with respect to the wavelength ⁇ b .
  • n ⁇ r is the refractive index of the optical system with respect to the wavelength ⁇ r .
  • ⁇ b is the wavelength of the electromagnetic wave corresponding to blue.
  • ⁇ r is the wavelength of the electromagnetic wave corresponding to red.
  • ⁇ and ⁇ are angles in the y-direction within the angle of view, and are the first and second sets and the third and fourth sets of sewing angles.
  • the stitching angle is understood as the angle of contact between two parts of the angle of view transmitted through several sets of gratings. That is, two adjacent parts of the field of view, which are transmitted through multiple sets of gratings, must either partially overlap each other or touch each other so that the image does not have black spots, angular coordinates that convey neither set within the field of view. In most cases, two adjacent parts of the field of view partially overlap each other and only touch at one point (this approach will give you the maximum angle of view). This point on the angle grid is called the stitching angle.
  • condition for extending the vertical angle of view is the same as the condition for extending the horizontal angle of view and performing dispersion correction. These conditions depend on the geometrical arrangement and symmetry of the diffractive element.
  • simultaneous equation (1) provides lattice parameters to remove variance and increase the horizontal angle of view
  • simultaneous equation (2) provides lattice parameters to increase vertical angle of view
  • the present invention has two embodiments. First, there is a distinction by color and the horizontal part of the angle of view. Second, there is a distinction by color and the vertical part of the angle of view. Both of these implementations are equivalent and are used depending on the configuration issue.
  • the image is generated by the projector and in this case it should be clarified that the image is a function of brightness for the three colors in the angular coordinate grid.
  • An image can be thought of as a set of wavevectors with corresponding angular coordinates and wavelengths.
  • the period and orientation of the diffractive elements are calculated such that some sets work with the central part while others work with the extreme parts, and so on. All of this can be calculated using the presented system of equations (2).
  • the width of the eye motion box (EMB) that is, the area in which the moving eye can see the entire virtual image without loss.
  • the angle of view (the field of view (angle field) of an optical system is the cone of the beam coming out of the optical system and forms an image) increases by increasing the number of diffractive element sets. Exactly how the angle of view increases (horizontally or vertically) depends on the choice of the diffraction element according to the simultaneous equations (1) or (2).
  • the waveguide with the diffraction grating architecture operates as follows.
  • the first and second sets of diffractive elements extend the edge of the vertical angle of view, and the third and fourth sets extend the center of the angle of view.
  • Radiation from the projector enters an incoupling diffractive optical element X, and is split into red, green and blue components at different angles.
  • the first set of diffractive elements operates as follows.
  • the green upper component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eyes using the second linear diffraction optical element of the coupling diffraction element Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and is output to the user's eye using the second linear diffraction element Z.
  • the red upper component enters the first linear diffraction optical element of the input diffraction element X, and the portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted, and the first linear diffraction optical element of the outcoupling diffraction element It enters the outcoupling diffraction element Z where the multiplication occurs, and is output to the user's eyes by the second linear diffraction optical element of the outcoupling diffraction element Z.
  • the second set of diffractive elements operates as follows.
  • the green lower component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z, where the radiation is multiplied by the second linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eye using the first linear diffraction optical element of the coupling diffraction element Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted, and the second linear diffraction optical element of the outcoupling diffraction element Z It enters the outcoupling diffraction element Z where the multiplication occurs, and is output to the user's eye using the first linear diffraction optical element of the outcoupling diffraction element Z.
  • the horizontal angle below is the vector of the input diffraction grating. It means the angular component of the incident light toward .
  • the red lower component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red lower component enters the incoupling diffraction element X, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and uses the first linear diffraction optical element of the outcoupling diffraction element Z to the user's eyes. is output as
  • the third set of diffractive elements consisting of the second linear diffractive optical element of the incoupling diffractive element X of the first multiplication diffractive optical element Y and the third linear diffractive optical element of the outcoupling diffractive element Z operates as follows.
  • the green central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the first multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the red central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red central upper component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the blue central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue central upper component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the fourth set of diffractive elements operates as follows.
  • the green central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the red central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red central lower component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the blue central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue central lower component enters the second multiplier diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the architecture of the diffraction element corrects for dispersion and either expands the horizontal field of view (calculated using the system of equations (1)) or expands the vertical field of view. (Calculation using system of equations (2)).
  • the width of the angle of view can be increased by using a system including two waveguides.
  • the architecture of the diffraction element of each waveguide of such a system is such that one architecture of the diffraction element of one waveguide is configured to correct dispersion and increase the horizontal field of view, and the second architecture of the diffraction element in the other waveguide increases the vertical field of view. It is structured so as to repeat each other.
  • Each of the two waveguides is designed to display its own spectral angular portion of the field of view.
  • the diffraction architecture in the first waveguide, is positioned so that an increase in the vertical angle of view occurs, and in the second waveguide, the diffraction architecture is positioned so that image dispersion is corrected and the horizontal angle of view is increased.
  • the first and second sets of diffractive elements operate to extend the angle of view vertically along the edge of the image, while the third and fourth sets operate to extend the angle of view vertically at the center of the angle of view. do.
  • the first and second sets operate with the left side of the image
  • the third and fourth sets operate with the right side of the image to horizontally expand the angle of view and correct for dispersion.
  • the first waveguide includes the architecture of the diffractive element calculated by the simultaneous equation (2).
  • Radiation from the projector enters the input diffractive optical element X of the waveguide I and is split into red, green and blue components at different angles.
  • the central left part of the red angle of view, the central right part of the green angle of view, and the right part of the blue angle of view pass through the waveguide I.
  • various parts of the angle of view classified by color are passed.
  • the order (blue always right, red always left, green somewhere in between) is valid for all diffractive elements.
  • "to the right” and "to the left” are not absolute directions, but relative directions considering the fixed input diffraction element on the left side of the eye (as shown in all figures).
  • the input diffraction element is on the right side of the eye instead of on the left, the order is changed (blue to left, red to right, green somewhere in between). Exactly why these parts are performing in this performance - based on the calculation, they are sorted into parts of the field enough to give the maximum angle of view.
  • the first set of diffractive elements of waveguide I operates as follows.
  • the green upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and then enters the outcoupling diffraction element Z where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and the diffraction element It is output to the user's eyes using the second linear diffraction optical element of Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and uses the second linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the red upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and uses the second linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the second set of diffractive elements of waveguide I operates as follows.
  • the green lower component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z, where the radiation is multiplied by the second linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eyes using the first linear diffraction optical element of the coupling diffraction element Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue upper component enters the output diffraction element Z where multiplication occurs in the second linear diffraction optical element of the diffraction element Z, and is output to the user's eye using the first linear diffraction optical element of the outcoupling diffraction element Z.
  • the red lower component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red lower component enters the incoupling diffraction element X, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and uses the first linear diffraction optical element of the outcoupling diffraction element Z to the user's eyes. is output as
  • the third set of diffractive elements of waveguide I operates as follows.
  • the green central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the first multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the red central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red central upper component enters the first diffractive optical element Y where multiplication occurs, and then enters the third linear diffractive optical element of the output diffractive element Z and is output to the user's eyes.
  • the blue central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue central upper component enters the first diffractive optical element Y where multiplication occurs, and then enters the third linear diffractive optical element of the output diffractive element Z and is outputted to the user's eyes.
  • the fourth set of diffractive elements of waveguide I operates as follows.
  • the green central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second diffraction optical element Y where multiplication occurs, and then enters the third linear diffraction optical element of the output diffraction element Z output through the user's eyes.
  • the red central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red central lower component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the blue central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue central lower component enters the second multiplier diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • Radiation from the projector enters the input diffractive optical element X of waveguide II and is split into red, green and blue components at different angles.
  • the far right portion of the red angle of view, the far left portion of the green angle of view, and the left portion of the blue angle of view pass through the waveguide II.
  • the waveguide II is designed to correct the dispersion of the waveguide I rather than its own dispersion.
  • the first set of diffractive elements of the waveguide II operates as follows.
  • the red component enters the first linear diffraction optical element of the input diffraction element X, then enters the output diffraction element Z where multiplication occurs in the first linear diffraction optical element of the output diffraction element Z, and the second linear diffraction element of the output diffraction element Z It is output to the user's eyes using an optical element.
  • the second set of diffractive elements of waveguide II operates as follows.
  • the red component enters the first linear diffraction optical element of the incoupling diffraction element X, and then enters the output diffraction element Z where multiplication occurs in the second linear diffraction optical element of the output diffraction element Z, and the outcoupling diffraction element Z It is output to the user's eyes using the first linear diffraction optical element.
  • the third set of diffractive elements of waveguide II operates as follows.
  • the green component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z output through the user's eyes.
  • the blue component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the blue component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is outputted to the user's eyes.
  • the fourth set of diffractive elements of the waveguide II operates as follows.
  • the green component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second multiplier diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z output through the user's eyes.
  • the blue component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the blue component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the diagonal field of view reaches 62°.
  • FIG. 11 shows the use of a three-waveguide system.
  • Radiation from the projector enters the incoupling diffractive optical element X of the waveguide I and splits into green and blue components at different angles.
  • the far left part of the green angle of view and the left central part of the blue angle of view pass through the waveguide I.
  • various parts of the color-sorted angle of view are passed.
  • the first set of diffractive elements of waveguide I operates as follows.
  • the green upper component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eyes using the second linear diffraction optical element of the coupling diffraction element Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and uses the second linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the second set of diffractive elements of waveguide I operates as follows.
  • the green lower component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z, where the radiation is multiplied by the second linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eyes using the first linear diffraction optical element of the coupling diffraction element Z.
  • the blue lower component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue lower component enters the incoupling diffraction element X, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and uses the first linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the third set of diffractive elements of waveguide I operates as follows.
  • the green central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the first multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the blue lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue lower component enters the first diffractive optical element Y where multiplication occurs, and then enters the third linear diffractive optical element of the outcoupled diffractive element Z and is outputted to the user's eyes.
  • the fourth set of diffractive elements of waveguide I operates as follows.
  • the green central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the blue central lower component enters the second linear diffraction optical element of the input diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue central lower component enters the second multiplier diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the radiation from the projector that is, the radiation from waveguide I
  • the far left part of the red angle of view, the central part of the green angle of view, and the right central part of the blue angle of view pass through the waveguide II.
  • the first set of diffractive elements of the waveguide II operates as follows.
  • the green upper component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eyes using the second linear diffraction optical element of the coupling diffraction element Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue upper component enters the outcoupling diffraction element Z where multiplication occurs in the first linear diffraction optical element of the output diffraction element Z, and is output to the user's eyes using the second linear diffraction optical element of the output diffraction element Z.
  • the red upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and uses the second linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the second set of diffractive elements of waveguide II operates as follows.
  • the green lower component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z, where the radiation is multiplied by the second linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eyes using the first linear diffraction optical element of the coupling diffraction element Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue upper component enters the outcoupling diffraction element Z where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and the user's eye using the first linear diffraction optical element of the outcoupling diffraction element Z is output as
  • the red lower component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red lower component enters the outcoupling diffraction element Z, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and uses the first linear diffraction optical element of the outcoupling diffraction element Z to the user's eyes. is output as
  • the third set of diffractive elements of waveguide II operates as follows.
  • the green central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the first multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the red central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red center upper component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is output to the user's eyes.
  • the blue central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue center upper component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is output to the user's eyes.
  • the fourth set of diffractive elements of the waveguide II operates as follows.
  • the green central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second multiplier diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupled diffraction element Z It enters the device and is output to the user's eyes.
  • the red central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red central lower component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the blue central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue central lower component enters the second multiplier diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the radiation from the projector enters the input diffractive optical element X of waveguide III and is divided into red, green and blue components at different angles.
  • the central right part of the red angle of view, the right part of the green angle of view, and the far right central part of the blue angle of view pass through the waveguide III.
  • the first set of diffractive elements of the waveguide III operates as follows.
  • the green upper component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eyes using the second linear diffraction optical element of the coupling diffraction element Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and uses the second linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the red upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and uses the second linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the second set of diffractive elements of the waveguide III operates as follows.
  • the green lower component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z, where the radiation is multiplied by the second linear diffractive optical element of the outcoupling diffractive element Z, and diffracts It is output to the user's eye using the first linear diffraction optical element of element Z.
  • the blue lower component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue lower component enters the incoupling diffraction element X, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and uses the first linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the red lower component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red lower component enters the incoupling diffraction element X, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and uses the first linear diffraction optical element of the outcoupling diffraction element Z to the user's eyes. is output as
  • the third set of diffractive elements of waveguide III operates as follows.
  • the green central upper component enters the second linear diffraction optical element of the input diffraction element X, then enters the first multiplication diffraction element of the diffraction optical element Y where multiplication occurs, and then the third linear diffraction optical element of the output diffraction element Z is entered and output to the user's eyes.
  • the red central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red center upper component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is output to the user's eyes.
  • the blue central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue center upper component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is output to the user's eyes.
  • the fourth set of diffractive elements of the waveguide III operates as follows.
  • the green central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the red central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red central lower component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the blue central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue central lower component enters the second multiplier diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the diagonal field of view reaches 76°.
  • the waveguide architecture can be applied to both sides of a single waveguide.
  • the first and second sets of diffractive elements may be positioned on one side of the waveguide, and the third and fourth sets of diffractive optical elements may be positioned on opposite sides of the waveguide.
  • This structure is easy to manufacture and can be used to increase both a vertical angle of view and a horizontal angle of view.
  • the waveguide When the horizontal angle of view increases, the waveguide operates as follows.
  • Radiation from the projector enters an incoupling diffractive optical element X and splits into red, green and blue components at different angles.
  • the first set of diffractive elements located on the first side of the waveguide operates as follows.
  • the green component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element Z, It is output to the user's eyes using the second linear diffraction optical element of the ring diffraction element Z.
  • the blue component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the blue component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and sees the user's eyes using the second linear diffraction optical element of the outcoupling diffraction element Z. is output
  • the second set of diffractive elements located on the first side of the waveguide operates as follows.
  • the green component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z where the radiation is multiplied by the second linear diffractive optical element of the outcoupling diffractive element Z, It is output to the user's eyes using the first linear diffraction optical element of the ring diffraction element Z.
  • the blue component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the blue component enters the outcoupling diffraction element Z, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and sees the user's eyes using the first linear diffraction optical element of the outcoupling diffraction element Z. is output
  • the third set of diffractive elements located on the second side of the waveguide operates as follows.
  • the green component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z output through the user's eyes.
  • the red component enters the second linear diffraction optical element of the input diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the red component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is outputted to the user's eyes.
  • the fourth set of diffractive elements located on the second side of the waveguide operates as follows.
  • the green component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second multiplier diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z output through the user's eyes.
  • the red component enters the second linear diffraction optical element of the input diffraction element X, and a portion propagating in the air at an angle different from the incident angle of the green component is diffracted.
  • the red component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is outputted to the user's eyes.
  • the waveguide operates as follows.
  • Radiation from the projector enters an incoupling diffractive optical element X and splits into red, green and blue components at different angles.
  • the first set of diffractive elements located on the first side of the waveguide operates as follows.
  • the green upper component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z where the radiation is multiplied by the first linear diffractive optical element of the outcoupling diffractive element Z, and out It is output to the user's eyes using the second linear diffraction optical element of the coupling diffraction element Z.
  • the blue upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and uses the second linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the red upper component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red upper component enters the outcoupling diffraction element Z, where multiplication occurs in the first linear diffraction optical element of the outcoupling diffraction element Z, and uses the second linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the second set of diffractive elements located on the first side of the waveguide operates as follows.
  • the green lower component enters the first linear diffractive optical element of the incoupling diffractive element X, and then enters the outcoupling diffractive element Z, where the radiation is multiplied by the second linear diffractive optical element of the outcoupling diffractive element Z, and diffracts It is output to the user's eye using the first linear diffraction optical element of element Z.
  • the blue lower component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the blue lower component enters the incoupling diffraction element X, where multiplication occurs in the second linear diffraction optical element of the incoupling diffraction element X, and uses the first linear diffraction optical element of the outcoupling diffraction element Z to open the eyes of the user. is output as
  • the red lower component enters the first linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the blue component is diffracted.
  • the red lower component enters the incoupling diffraction element X, where multiplication occurs in the second linear diffraction optical element of the outcoupling diffraction element Z, and uses the first linear diffraction optical element of the outcoupling diffraction element Z to the user's eyes. is output as
  • the third set of diffractive elements located on the second side of the waveguide operates as follows.
  • the green central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the first multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the red central upper component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red center upper component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is output to the user's eyes.
  • the blue central upper component enters the second linear diffractive optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue central upper component enters the first multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupled diffraction element Z and is output to the user's eyes.
  • the fourth set of diffractive elements located on the second side of the waveguide operates as follows.
  • the green central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, then enters the second multiplication diffraction element Y where multiplication occurs, and then the third linear diffraction optical element of the outcoupling diffraction element Z is entered and output to the user's eyes.
  • the red central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angle of the green component is diffracted.
  • the red central lower component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the blue central lower component enters the second linear diffraction optical element of the incoupling diffraction element X, and a portion propagating in the air at a horizontal angle different from the incident angles of the green component and the red component is diffracted.
  • the blue central lower component enters the second multiplication diffraction element Y where multiplication occurs, and then enters the third linear diffraction optical element of the outcoupling diffraction element Z and is output to the user's eyes.
  • the diffractive optical element can be configured as follows.
  • All diffractive optical elements can be made in the form of a uniform structure, which means that the modulation amplitude of the optical parameters of the diffractive optical element does not change according to the X-Y coordinates in the waveguide plane.
  • All diffractive optical elements have different shapes, different sizes, and can be made in the form of divided structures spaced apart from each other by different distances.
  • the modulation amplitude of the optical parameter of the diffractive optical element is a function of the interval according to the X-Y coordinates (in the waveguide plane). That is, the modulation amplitude is present at some points in the waveguide and not at other points.
  • the elements are made, for example, in the form of circles of a certain radius, spaced apart from each other by a certain distance.
  • This design is valid for diffractive optical elements Y and Z (but not X). Since the specific design may vary greatly depending on the specific operation, the thickness of the waveguide, the material, etc., the most general form is provided herein.
  • All diffractive optical elements can be made in the form of a volumetric structure, for example, in the form of a diffractive holographic element.
  • the volume structure is a characteristic of the diffraction element implementation, which means that the change in optical parameters occurs at the volume of the material rather than at the surface of the material. This implementation is typical for each of the X, Y, and Z diffractive optics.
  • All diffractive optical elements can be made in the form of embossed or planar structures.
  • the embossed/planar structure is a performance characteristic of all diffractive elements, which means that changes in optical parameters occur at the surface of the material, not at the volume of the material. This implementation is typical for each of the X, Y, and Z diffractive optics.
  • All diffractive optical elements can be made in the form of both volumetric and embossed structures. This property means that changes in optical parameters occur both in volume and at the surface. This implementation is typical for each of the X, Y, and Z diffractive optics.
  • Each diffractive optical element may be made either inside the waveguide itself, for example, as a holographic optical element recorded inside the waveguide, or on the surface of the waveguide if an embossed or mixed structure is created on the surface of the waveguide, as part of the waveguide. there is.
  • This implementation is typical for each of the X, Y, and Z diffractive optics.
  • the diffractive optical element can be made inside or on the surface of a separate layer of the waveguide. This implementation is typical for each of the X, Y, and Z diffractive optics.
  • Each set renders its own field of view part on a grid of angular coordinates, while this part of the field of view is color dependent.
  • Each set can render all three colors in different parts of the angular coordinate grid, but not all three colors are available for any set of diffraction elements, which depends on the set and design.
  • the situation described above (first and second sets are blue and some green, third and fourth sets red and some green) is valid for the implementation of one waveguide but not for the implementation of two or three waveguides. If there are multiple waveguides, separation is effective, and in this case, predefined sets of diffractive elements operate in each waveguide. Part of the field of view is necessarily delivered not in one set, but in two or even four sets.
  • the present invention since only one waveguide can be used in the augmented reality device, the thickness, size and weight of the device can be reduced, and the transparency of the augmented reality device can be increased.
  • the augmented reality device has high-resolution and full-color images.
  • the proposed invention provides a wide angle of view, which provides a sense of presence to the user. Radiation is input from the side while observing the transverse form factor. When radiation is introduced from the side, the size of the horizontally transmitted field of view does not become narrower than the size of the vertically transmitted field of view.
  • the present invention is conveniently applied to augmented reality glasses where light weight and compact size are important.
  • the proposed invention can be conveniently applied to an augmented reality device used for any purpose.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

본 발명은 증강현실장치, 즉 근거리 디스플레이에 관한 것으로, 회절광학소자를 갖는 평면 도파로 및 이러한 평면 도파로 기반의 디스플레이에 관한 것이다. 도파로에서 수행되는 회절광학소자의 아키텍처가 제안된다. 회절광학소자의 아키텍처를 작동하여 이미지 분산을 제거하고 수평 화각을 확장하는 방법이다. 회절광학소자의 아키텍처를 작동하여 수직 화각을 확장하는 방법이다. 증강현실 디스플레이용 장치는 제안된 회절광학소자 아키텍처를 포함한다. 증강현실 안경은 제안된 증강현실 디스플레이 장치를 포함한다.

Description

증강현실장치용 도파로의 회절광학소자 아키텍처
본 발명은 증강현실장치, 즉 근거리 디스플레이에 관한 것으로, 회절광학소자를 갖는 평면 도파로 및 이러한 평면 도파로 기반의 디스플레이에 관한 것이다.
증강현실의 개념은 세상의 실제 영상 위에 가상 이미지를 겹쳐서 이미지를 만드는 것이다. 사용자는 증강현실 시청 장치, 특히 증강현실 안경을 사용하여 증강현실 영상을 볼 수 있다.
웨어러블 증강현실(AR) 안경은 예를 들어 스마트폰 또는 기타 전자장치용 추가 화면으로 사용할 수 있는 개인용 장치이다. 대중 소비자를 위해 넓은 화각(FOV), 더 낮은 무게와 비용, 컴팩트함 및 고해상도를 가진 증강현실 안경 장치의 개발이 필요하며, 이러한 웨어러블 장치는 사용자에게 있어서 TV와 스마트폰을 대체할 수 있다. 기술개발의 현 단계에서 최대 화각은 대각선으로 600 이다.
증강현실 안경 시스템에는 아래 요구사항이 요구된다.
- 인간의 눈이 보는 영역 전체를 커버할 수 있도록 하는 넓은 화각, 넓은 영역 위에 가상 이미지를 중첩할 수 있는 기능;
- 좋은 이미지 품질;
- 경량;
- 컴팩트함;
- 저렴한 비용;
- 고해상도, 고대비 등
이러한 요구사항을 달성함에 있어서, 예를 들어 영역 내에서 눈이 이미지 전체를 손실 없이 완전히 볼 수 있는 넓은 영역을 제공해야 한다는 사실과 관련된 문제가 발생한다. 이러한 요구사항을 달성하기 위한 다양한 접근법이 있다. 일부 접근법은 넓은 화각은 제공할 수 있지만, 영역 내에서 눈이 이미지 전체를 손실 없이 완전히 볼 수 있는 넓은 영역을 제공하지 못한다. 다른 접근법은 눈이 이미지 전체를 손실 없이 볼 수 있는 넓은 영역은 제공할 수 있지만, 넓은 화각을 제공하지 못한다. 화각의 폭을 넓히는 고전적인 방법은 증강현실장치에서 도파로의 수를 늘리는 것이다. 그러나 도파로 수가 늘어나면 증강현실장치의 전체 크기와 증강현실장치의 무게가 증가하고 장치 해상도는 감소하게 된다.
도 1은 종래기술로부터 알려진 증강현실장치에서 회절광학소자를 사용할 때 화각의 한계를 개략적으로 도시한다. 도 1에서 가로축은 수평 화각(FOV)이고, 세로축은 수직 화각이다. 가로축과 세로축이 교차하는 부분에는 사각형이 표시되는데, 이는 시청을 위해 사용자에게 전달해야 하는 이미지이다. 전달된 이미지가 회절광학소자와 상호작용하면, 이는 전달된 이미지를 우측(벡터 Kin의 화살표)으로 인도하고 이미지는 도 1에 도시된 링 내부로 들어간다. 링은 도파로 내에서 전파되지만 도파로 외부로는 전파되지 않는 전파하는 복사선의 각도 성분 영역(전파하는 복사선의 파동벡터 성분 영역)을 나타낸다. 모서리 성분은 Bx, By, Bz와 같은 각도 좌표가 있는 각도 격자망 상의 특정 지점을 나타낸다. 링의 내부 경계는 내부 전반사(TIR)의 각도, 즉 도파로를 떠나지 않고 복사선이 전파되는 임계 각도의 영역이다. 링의 외부 경계는 도파로 내부에 존재하는 복사선의 경계이다. 즉, 복사선의 전파 각도는 도파로 내부에서 90°이다. 따라서 도파로 내부에는 TIR 각도에서 90° 각도까지의 각도로 전파되는 복사선이 있다. 즉, 이미지가 입력 회절격자와 상호작용할 때 이미지의 일부가 잘리며, 이미지의 일부만이 남게 되므로, 남은 이미지 일부는 전술한 각도 범위에만 존재할 수 있다. 즉, 이미지는 이 경우 가로로, 즉 좌우로 잘린다. 또한, 그 벡터가 도 1에 Kexp로 표시된 증배 회절격자와 상호작용할 때, 모서리의 일부 역시 경계가 동일한 이미지에서 잘리는데, 세로로 잘린다. 이미지가 표시될 때는 세로 및 가로로 크롭된 작은 이미지가 남는다.
즉, 각각의 회절광학소자는 화각에 각각의 한계가 있으므로, 증강현실장치에 포함되는 회절광학소자는 적을수록 좋다.
2차원 이미지를 생성하려면 적어도 3개의 회절광학소자, 즉 도입 회절소자, 증배 회절소자 및 유출 회절소자가 필요하다. 3개의 회절광학소자는 본원에서 한 세트의 회절광학소자로 지칭한다. 도 1은 화각의 특정 부분을 출력하는 한 세트의 회절광학소자를 도시한다.
굴절률이 1.5 인 가장 일반적으로 사용되는 광학 재료의 경우 이러한 회절광학소자 세트에 의해 형성되는 최종 화각은 300 x 300 이라는 점에 유의해야 한다.
화각을 늘리는 표준적인 방법은 이미지를 전달하는 도파로의 수를 늘리는 것이다. 그러나, 도파로 수가 늘어나면 증강현실 디스플레이의 두께와 무게가 증가하고 또한 이러한 증강현실 디스플레이의 투명도는 감소한다. 만약 동시에 도파로의 두께가 감소하면, 눈이 감지하는 이미지가 열화될 것이고, 도파로 두께가 감소하면 도파로 자체의 불균일성과 비평탄성으로 인해 둘 이상의 이미지 출력이 동공에 들어가기 때문에, 둘 이상의 입력 이미지가 눈에 들어간다. 즉, 복시가 발생하여 해상도가 급격히 떨어지기 시작하고 이미지 품질이 저하된다.
또한, 화각을 늘리기 위해, 회절광학소자 재료와 도파로의 굴절률을 증가시킨다. 굴절률이 증가함에 따라, 도파로 내에는 존재하지만 공기 중에는 존재하지 않는 각도의 범위가 늘어난다. 따라서 사용자는 넓은 화각으로 이미지를 보게 된다. 그러나, 이 방안의 근본적인 문제는 굴절률이 높은 재료가 스펙트럼의 청색 영역을 흡수한다는 점이며, 이는 사용자가 이미지를 볼 때 실제 이미지의 스펙트럼 중 청색 부분이 손실됨을 뜻한다. 또한, 가상 중첩 이미지의 스펙트럼 중 청색 부분을 전달할 수 없으므로, 이미지의 색상이 손실된다.
종래기술에서는 또한, 평면 도파로의 아키텍처를 변경함으로써 화각을 늘린다. 가장 잘 알려진 변경은 한 세트의 회절광학소자를 사용하는 대신 두 세트의 회절광학소자를 사용하는 것이며, 각 세트는 화각의 상이한 부분을 제공한다. 두 세트를 사용하면 화각의 폭을 두 배로 늘릴 수 있지만 수직 화각만 늘어나게 되는데, 수직 화각과 수평 화각을 모두 늘리는 것이 바람직하다는 점에 유의해야 한다. 즉, 이 접근법을 사용하면 가로 폼 팩터(form factor)의 손실이 있다. "폼 팩터"라는 용어는 표시된 이미지의 가로세로비를 나타낸다. 가로 폼 팩터는 세로 여백보다 가로 여백이 더 큰 이미지이다. 세로 폼 팩터는 가로 여백보다 세로 여백이 더 큰 이미지이다.
가로 또는 세로 폼 팩터는 표시된 이미지의 가로세로비를 나타낸다. 그러나, 세로 폼 팩터와 입력 회절격자가 출력 회절격자에 대해 예를 들어 좌측에 위치하는 경우, 도파로를 90° 회전하면, 입력 회절격자가 위에 있고, 폼 팩터는 세로 폼 팩터에서 가로 폼 팩터로 변경된다. 인커플링 회절소자가 위에 있는 경우에는 빛도 위에서 유입되어야 한다. 즉, 이미지 프로젝터도 위로부터 부착해야 한다. 따라서 안경은 부피가 커지고 헬멧과 비슷해진다.
즉, 크기를 줄이려면 가로 폼 팩터를 유지하면서 이미지 프로젝터를 측면에 배치하는 것이 바람직하다.
증강현실장치의 또 다른 문제는 색상 분산이다. 즉, 이미지를 전달하는 특정 개수의 회절격자 세트를 갖는 하나의 도파로가 있는 경우, 이러한 도파로는 이미지 필드 전체에 걸쳐 풀 컬러 이미지를 전달하지 않을 것이며, 이미지의 한 부분은 사용자에게 적색으로 보이고, 이미지의 다른 부분은 사용자에게 녹색으로 보이며, 이미지의 제3 부분은 사용자에게 청색으로 보일 것이다. 사용자는 풀 컬러 이미지를 볼 수 있는 작은 영역에만 접근 가능할 것이다. 이러한 문제를 해결하기 위해, 종래기술은 여러 개의 도파로를 사용하며, 각 도파로는 각자의 색상 또는 2개의 인접 색상을 담당한다. 따라서 증강현실장치의 두께가 증가한다.
종래기술로부터 US20190212557 A1 문헌이 알려져 있는데, 출원공개일이 2019년 7월 11일이고, 도파로 아키텍처를 개시한다.
이 문헌은 브래그(Bragg) 격자가 포함된 도파로를 사용하여 헤드업 디스플레이(HUD)를 생성하는 시스템 및 방법을 제공한다. 이 공지된 방안의 단점은 화각의 폭이 작고 장치의 전체 크기가 크다는 점이다.
종래기술로부터 US2019004321 A1 문헌이 알려져 있는데, 출원공개일이 2019년 1월 3일이고, 증강현실 디스플레이를 위해 유입 광을 2차원으로 확장하기 위한 광학장치를 개시한다. 이 장치는 도파로(12)와 3개의 선형 회절격자(H0, H1, H2)로 이루어진다. 프로젝터에서 입사되는 빔은 다색광으로 입력 격자(H0)를 비추고 이 빛은 도파로(12)로 들어간다. 나머지 두 격자(H1, H2)는 서로 중첩된다. 빛은 하나의 격자(H1)에서 첫 번째 회절 순서에 다른 격자(H2)의 방향으로 회절될 수 있으며, 이로써 도파로(12)에서 나온 빛이 관찰자를 향하게 할 수 있다. 이 공지된 방안의 단점은 화각의 폭이 작고 장치의 전체 크기가 크다는 점이다.
종래기술로부터 US 9927614 B2 문헌이 알려져 있는데, 출원공개일이 2018년 3월 27일이고, 증강현실 애플리케이션 및 장치에서 사용될 수 있는 근거리 광학 디스플레이 시스템을 개시한다. 이 시스템은 입력, 출사동 확장 및 출력을 위해 구성된 회절광학소자(DOE)를 갖는 회절 도파로를 포함한다. 전기변조 튜너블 액정(LCD) 렌즈가 회절격자와 사용자의 눈 사이에 위치한다. 편광 필터가 회절격자의 반대쪽에 위치하여 실제 세상의 빛이 특정 편광 상태로 시스템에 들어오도록 한다. 이 공지된 방안의 단점은 화각의 폭이 작고 장치의 전체 크기가 크다는 점이다.
본 발명의 원형은 출원공개일이 2019년 1월 22일인 US 10185151 B2 문헌에 개시된 방안이다. 이 공지된 방안은 작은 폼 팩터, 영역 내에서 눈이 이미지 전체를 손실 없이 완전히 볼 수 있는 넓은 영역, 및 넓은 화각을 갖춘 도파로 디스플레이를 제공한다. 사용자에게 매체를 제공하기 위해 공지의 도파로 디스플레이가 사용된다. 도파로 디스플레이는 광원 조립체, 출력 도파로 및 제어기를 포함한다. 광원 조립체는 적어도 하나의 치수를 따라 이미지를 투사하는 하나 이상의 프로젝터를 포함한다. 출력 도파로는 2개의 대향 표면이 있는 도파로 본체로 이루어진다. 출력 도파로는 입력 파동벡터를 따라 전파되는 이미지 광을 수신하는 제1 격자, 제2 격자, 그리고 제2 격자 반대편에 있으며, 입력 파동벡터에 대응하는 파동벡터를 갖는 확장된 이미지 광을 출력하는 제3 격자를 포함한다. 제어기는 하나 이상의 광원 조립체의 스캔을 제어하여 2D 이미지를 형성한다. 그러나, 이 공지된 방안의 단점 역시 화각의 폭이 불충분하다는 것인데, 이는 이 공지된 방안에서 화각의 폭을 늘리기 위해 단지 두 세트의 광학소자가 사용되기 때문이며, 장치의 전체 크기가 크다는 점 또한 단점이다.
공지의 방안들은 화각의 폭이 좁고, 사용되는 도파로 개수가 증가하면 디스플레이 두께가 증가하며, 도파로 두께가 감소하면 해상도가 저하되고, 고굴절률의 사용은 색상 손실을 제공하며, 두 세트의 회절광학소자를 사용하면 위로부터 이미지 입력이 제공되고, 이로 인해 전반적인 특성이 상실된다고 전제한다. 즉, 현재 검토 중인 기술 분야의 현 발전 단계에서는 넓은 화각을 갖는 풀 컬러 이미지를 하나의 도파로만을 사용하여 구현할 수 있는 방안이 없다.
개시된 발명은 위의 모든 문제를 해결하는 것으로서, 두께가 얇고 풀 컬러이며, 해상도가 좋고, 복사선이 측면으로부터 유입되면서, 넓은 화각을 달성할 수 있는 증강현실장치용 도파로의 회절광학소자 아키텍처를 제공한다.
증강현실장치용 도파로의 회절광학소자 아키텍처로서, 프로젝터에서 나오는 복사선을 입력하도록 구성된 인커플링 회절소자로서, 인커플링 회절소자의 제1 선형 회절광학소자 및 인커플링 회절소자의 제2 선형 회절광학소자를 포함하는 인커플링 회절소자; 복사선을 증배하도록 구성된 제1 증배 회절소자 및 제2 증배 회절소자; 복사선을 증배하고 도파로에서 나오는 복사선을 출력하도록 구성된 아웃커플링 회절소자로서, 아웃커플링 회절소자의 제1 선형 회절광학소자, 아웃커플링 회절소자의 제2 선형 회절광학소자, 아웃커플링 회절소자의 제3 선형 회절광학소자를 포함하는 아웃커플링 회절소자;를 포함하며, 또한, 인커플링 회절소자는 증강현실장치의 작동 중에 프로젝터에서 나오는 이미지를 적색, 녹색, 청색의 이미지 색상 성분으로 분리하고, 각 색상 성분의 빔 경로 방향을 대응하는 회절소자 세트를 통해 분리하며, 이때 복사선의 행로를 따라, 회절소자 제1 세트는 인커플링 회절소자의 제1 선형 회절광학소자, 아웃커플링 회절소자의 제1 및 제2 선형 회절소자로 구성되고, 회절소자 제2 세트는 인커플링 회절소자의 제1 선형 회절광학소자, 아웃커플링 회절광학소자의 제2 및 제1 선형 회절소자로 구성되며, 회절소자 제3 세트는 제1 증배 회절광학소자의 인커플링 회절소자의 제2 선형 회절광학소자와 아웃커플링 회절소자의 제3 선형 회절광학소자로 구성되고, 회절소자 제4 세트는 인커플링 회절소자의 제2 선형 회절광학소자, 제2 증배 회절소자, 및 아웃커플링 회절소자의 제3 선형 회절광학소자로 구성되는, 아키텍처가 제안된다. 이에, 각 세트의 모든 회절소자의 벡터의 합은 0과 동일하다. 이에, 회절소자 제1 세트 및 회절소자 제3 세트는 화각의 상부 부분을 담당하도록 구성되고, 회절소자 제2 세트 및 회절소자 제4 세트는 화각의 하부 부분을 담당하도록 구성된다.
각 색상 성분의 빔 경로 방향은 연립방정식
Figure PCTKR2021013947-appb-img-000001
에서 계산된 회절소자의 매개변수에 따라 달라지며,
여기서
Figure PCTKR2021013947-appb-img-000002
는 전자기파의 파동벡터로서, l, x, y의 세 좌표로 정의되고, 여기서 l은 전자기파의 파장, x는 전자기파의 x방향 각도 좌표, y는 전자기파의 y방향 각도 좌표이며;
nλb는 파장 λb에 대한 광학계의 굴절률이고;
nλg는 파장 λg에 대한 광학계의 굴절률이며;
nλr은 파장 λr에 대한 광학계의 굴절률이고;
λb는 청색에 해당하는 전자기파의 파장이며;
λg는 녹색에 해당하는 전자기파의 파장이고;
λr은 적색에 해당하는 전자기파의 파장이며:
θ는 전달된 화각의 x방향 최대 각도이고(화각의 x방향 크기는 2θ);
δ는 전달된 화각의 y방향 최대 각도이며(화각의 y방향 크기는 2δ);
여기서, 이 연립방정식을 풀기 위한 초기 데이터는 사용된 전자기파 파장(λbgr), 사용된 파장에 대한 광학계의 굴절률(nλb, nλg, nλr), 화각 변들의 가로세로비(θ/δ), 및 아래의 선형 소자 벡터들의 기하학적 관계이고,
Figure PCTKR2021013947-appb-img-000003
,
Figure PCTKR2021013947-appb-img-000004
또한, 벡터
Figure PCTKR2021013947-appb-img-000005
는 인커플링 회절소자의 제2 선형 회절광학소자의 "+1" 및 "-1" 회절 차수에 대응하며;
벡터
Figure PCTKR2021013947-appb-img-000006
은 제2 증배 회절광학소자에 대응하고;
벡터
Figure PCTKR2021013947-appb-img-000007
는 제1 증배 회절광학소자에 대응하며;
벡터
Figure PCTKR2021013947-appb-img-000008
는 아웃커플링 회절소자의 제3 선형 회절광학소자에 대응하고;
벡터
Figure PCTKR2021013947-appb-img-000009
은 인커플링 회절소자의 제1 선형 회절광학소자에 대응하며;
벡터
Figure PCTKR2021013947-appb-img-000010
은 아웃커플링 회절소자의 제2 선형 회절광학소자에 대응하고;
벡터
Figure PCTKR2021013947-appb-img-000011
은 아웃커플링 회절소자의 제1 선형 회절광학소자에 대응한다.
각 색상 성분의 빔 경로 방향은 연립방정식
Figure PCTKR2021013947-appb-img-000012
에서 계산된 회절소자의 매개변수에 따라 달라지며,
여기서
Figure PCTKR2021013947-appb-img-000013
는 전자기파의 파동벡터로서, l, x, y의 세 좌표로 정의되고, 여기서 l은 전자기파의 파장, x는 전자기파의 x방향 각도 좌표, y는 전자기파의 y방향 각도 좌표이며;
nλb는 파장 λb에 대한 광학계의 굴절률이고;
nλr은 파장 λr에 대한 광학계의 굴절률이고;
λb는 청색에 해당하는 전자기파의 파장이며;
λr은 적색에 해당하는 전자기파의 파장이며:
φ 및 ψ는 화각 내의 y방향 각도로서, 화각의 두 부분, 즉 전달된 제1, 2 세트 및 제3, 4 세트의 접촉 각도이고,
여기서, 이 연립방정식을 풀기 위한 초기 데이터는 사용된 전자기파 파장(λb λr), 사용된 파장에 대한 광학계의 굴절률(nλb nλr), 화각 변들의 가로세로비(비(θ/δ), 및 도파로 아키텍처의 기하학적 특징에서 기인한 아래의 선형 소자 벡터들의 기하학적 관계이고,
Figure PCTKR2021013947-appb-img-000014
,
Figure PCTKR2021013947-appb-img-000015
또한, 벡터
Figure PCTKR2021013947-appb-img-000016
는 인커플링 회절소자의 제2 선형 회절광학소자의 "+1" 및 "-1" 회절 차수에 대응하며;
벡터
Figure PCTKR2021013947-appb-img-000017
은 제2 증배 회절광학소자에 대응하고;
벡터
Figure PCTKR2021013947-appb-img-000018
는 제1 증배 회절광학소자에 대응하며;
벡터
Figure PCTKR2021013947-appb-img-000019
는 아웃커플링 회절소자의 제3 선형 회절광학소자에 대응하고;
벡터
Figure PCTKR2021013947-appb-img-000020
은 인커플링 회절소자의 제1 선형 회절광학소자에 대응하며;
벡터
Figure PCTKR2021013947-appb-img-000021
은 아웃커플링 회절소자의 제2 선형 회절광학소자에 대응하고;
벡터
Figure PCTKR2021013947-appb-img-000022
은 아웃커플링 회절소자의 제1 선형 회절광학소자에 대응한다.
모든 회절소자는 도파로의 한쪽에 적용된다. 회절소자 제1 및 제2 세트는 도파로의 한쪽에 위치하고, 회절소자 제3 및 제4 세트는 도파로의 반대쪽에 위치한다.
회절광학소의 작동 방법으로서, 프로젝터에서 나오는 복사선이 입력 회절소자로 들어가서, 이미지의 적색 성분, 이미지의 청색 성분 및 이미지의 녹색 성분으로 나뉘고, 동시에 작동하는 회절소자 세트들로 보내지며, 이때 회절소자 제1 세트는, 이미지의 녹색 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자의 제1 선형 회절광학소자에 의해 증배되는 출력 회절소자로 들어가고, 출력 회절소자의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되며, 청색 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 전파되는 부분이 회절되고, 출력 회절소자의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자로 들어가며, 아웃커플링 회절소자의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되도록 작동하고, 회절소자 제2 세트는, 이미지의 녹색 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자로 들어가고, 아웃커플링 회절소자의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되며, 청색 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 전파되는 부분이 회절되고, 아웃커플링 회절소자의 제2 선형 회절광학소자에 의해 증배가 발생하는 아웃커플링 회절소자로 들어가며, 아웃커플링 회절소자의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되도록 작동하고, 회절소자 제3 세트는, 녹색 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자로 들어가고, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되며, 적색 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 제1 증배 회절소자로 들어가며, 그 후 출력 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되도록 작동하고, 회절소자 제4 세트는, 녹색 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자로 들어가고, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되며, 적색 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 제2 증배 회절소자로 들어가며, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되도록 작동하는 단계들을 포함하는 방법이 제안된다.
회절광학소자의 작동 방법으로서, 프로젝터에서 나오는 복사선이 입력 회절소자로 들어가서, 이미지의 적색 성분, 이미지의 청색 성분 및 이미지의 녹색 성분으로 나뉘고, 동시에 작동하는 회절소자 세트들로 보내지며, 이때 회절소자 제1 세트는, 녹색 상부 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자의 제1 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자로 들어가고, 아웃커플링 회절소자의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되며, 청색 상부 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 출력 회절소자의 제1 선형 회절광학소자에서 증배가 발생하는 출력 회절소자로 들어가며, 아웃커플링 회절소자의 제2 선형 회절광학소자를 사용하여 사용자의 눈에 입력되고, 적색 상부 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 아웃커플링 회절소자의 제1 선형 회절광학소자에 의해 증배가 발생하는 출력 회절소자로 들어가며, 아웃커플링 회절소자의 제2 선형 회절광학소자를 통해 사용자의 눈으로 출력되도록 작동하고, 회절소자 제2 세트는, 녹색 하부 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어간 다음, 아웃커플링 회절소자의 제2 선형 회절광학소자에서 증배가 발생하는 출력 회절소자로 들어가고, 출력 회절소자의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되며, 적색 상부 성분은 인커플링 회절소자의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 아웃커플링 회절소자의 제1 선형 회절광학소자에 의해 증배가 발생하는 출력 회절소자로 들어가며, 아웃커플링 회절소자의 제2 선형 회절광학소자에 의해 사용자의 눈으로 출력되고, 적색 하부 성분은 입력 회절소자의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 출력 회절소자의 제2 선형 회절광학소자에서 증배가 발생하는 출력 회절소자로 들어가며, 출력 회절소자의 제1 선형 회절광학소자에 의해 사용자의 눈으로 출력되도록 작동하고, 회절소자 제3 세트는, 녹색 중앙 상부 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자로 들어가고, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되며, 적색 중앙 상부 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 제1 증배 회절소자로 들어가며, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되고, 청색 중앙 상부 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 제1 증배 회절소자로 들어가며, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈에 표시되도록 작동하고, 회절소자 제4 세트는, 녹색 중앙 하부 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자로 들어가고, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되며, 적색 중앙 하부 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 제2 증배 회절소자로 들어가며, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되고, 청색 중앙 하부 성분은 인커플링 회절소자의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 제2 증배 회절소자로 들어가며, 그 후 아웃커플링 회절소자의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되도록 작동하는 단계들을 포함하는 방법이 또한 제안된다.
이미지 프로젝터; 제안된 회절광학소자를 포함하는 도파로를 포함하는 증강현실 디스플레이 장치가 또한 제안된다.
이미지 프로젝터; 제안된 회절광학소자를 포함하여, 수평 화각을 확장하고 이미지의 분산을 제거하도록 작동하는 제1 도파로; 제안된 회절광학소자를 포함하여, 수직 화각을 확장하도록 작동하는 제2 도파로를 포함하는 증강현실 디스플레이 장치가 제안된다.
이미지 프로젝터; 제안된 회절광학소자를 포함하는 도파로로서, 회절소자 제1 및 제2 세트는 도파로의 한쪽에 위치하고, 회절소자 제3 및 제4 세트는 도파로의 반대쪽에 위치하는, 도파로를 포함하는 증강현실 디스플레이 장치가 제안된다.
이미지 프로젝터; 제안된 회절광학소자를 적어도 하나 포함하는 적어도 하나의 도파로를 포함하는 증강현실 디스플레이 장치가 또한 제안된다.
좌안용 소자와 우안용 소자를 포함하는 증강현실 안경이 제안되며, 좌안용 및 우안용 소자 각각은 증강현실 디스플레이 장치이고,
회절광학소자를 포함하는 도파로가 우안 소자 및 좌안 소자 각각에 위치되어 아웃커플링 회절소자가 사용자 눈의 맞은편에 위치하도록 한다.
좌안용 소자와 우안용 소자를 포함하는 증강현실 안경이 제안되며, 좌안용 및 우안용 소자 각각은 증강현실 디스플레이 장치이고,
제1 및 제2 도파로는 우안 소자 및 좌안 소자 각각에 배치되어 아웃커플링된 회절소자가 사용자 눈의 맞은편에 위치하도록 한다.
일 실시예에 따른 증강현실장치용 도파로의 회절광학소자 아키텍처에 의하면, 두께가 얇고 풀 컬러이며, 해상도가 좋고, 복사선이 측면으로부터 유입되면서, 넓은 화각을 달성할 수 있다.
도 1은 한 세트의 회절광학소자를 사용할 때 화각의 한계를 개략적으로 도시한다.
도 2는 X, Y, Z 구역으로 분할된 제안된 도파로의 아키텍처를 도시한다.
도 3은 제안된 회절소자 아키텍처와 3개의 선형 회절광학소자의 출력회절소자 Z의 구현을 개략적으로 도시한다.
도 4는 화각의 수평 확장의 경우에 회절광학소자 세트들에 걸친 전체 화각의 광 분리를 도시한다.
도 5a는 제안된 회절소자 아키텍처의 벡터 다이어그램을 도시한다.
도 5b는 회절광학소자의 아키텍처에 벡터 다이어그램을 중첩한 것을 도시한다.
도 6은 이미지 전파 중에 도파로 내의 전달된 이미지 부분들의 배열을 도시한다.
도 7은 화각의 수직 확장의 경우에 회절광학소자 세트들에 걸친 전체 화각의 광 분리를 도시한다.
도 8은 증강현실 디스플레이 시스템을 개략적으로 도시한다.
도 9는 제안된 회절소자 아키텍처의 두 가지 방식을 도시한다.
도 10은 2-도파로 시스템의 사용을 도시한다.
도 11은 3-도파로 시스템의 사용을 도시한다.
도 12는 격자 아키텍처가 양쪽에 적용된 도파로의 사용을 도시한다.
본 발명은 회절광학소자의 구조인 회절 아키텍처를 포함하는 도파로를 포함한다. 회절 아키텍처(구조)는 4개의 상이한 회절광학소자 세트를 포함한다. 회절광학소자는 회절격자이며, 이하에서는 편의상 "회절소자"로 지칭한다. 회절광학소자 세트는 3개의 회절소자, 즉 인커플링 회절소자, 증배 회절소자, 및 아웃커플링 회절소자를 포함한다. 각 회절소자 세트는 증강현실 이미지 중 각자의 부분을 표시하도록 하는 식으로 설계된다. 출력 광학소자는 여러 회절소자에서 나오는 이미지의 출력을 생성한다.
제안된 발명은 증강현실장치의 전체 크기를 줄이는 데 목적이 있으며, 각 쌍의 회절소자 세트가 이미지 중에서 서로 겹치지 않는 상이한 색상 부분을 담당할 수 있기 때문에, 제안된 발명은 색 분산 문제를 해결한다. 즉, 제안된 발명 덕분에, 하나의 도파로만 사용할 때에도 넓은 풀 컬러 화각이 제공된다.
회절소자(홀로그래픽(HOE) 또는 회절(DOE)) 기반 장치가 작동하여 사람의 눈에 이미지를 표시하려면, 프로젝터에서 전달된 영상이 최소 3개의 선형 회절격자, 즉 인커플링 회절격자, 증배 회절격자 및 아웃커플링 회절격자와 교대로 상호작용해야 한다.
회절격자의 벡터는 격자 선에 수직으로 지향되고 작동 표면과 동일한 평면에 위치하는 회절격자의 파동벡터이다. 격자 데이터를 이러한 격자의 벡터로 간주하면, 왜곡되지 않은 이미지를 얻기 위해, 이 3개의 회절격자의 벡터는 2차원의 닫힌 도형을 형성해야 한다. 즉, 모든 벡터의 합이 0이어야 한다. 벡터의 합이 0이 아니면 이미지가 왜곡되어 전달된다. 3개의 벡터가 2차원 도형을 형성하지 않으면 입력된 넓은 화각이 출력에서는 보기에 별로 편하지 않은 좁은 영상으로 바뀌는데, 이는 눈동자가 정면을 보면 이미지의 중앙 필드만이 명확히 보이는 반면 이미지 중 주변에 위치한 부분은 어두운 영역을 나타내고, 눈동자가 수직 방향으로 변위되면 반대로 중앙 부분이 어두운 영역으로 나타날 것이기 때문이다. 즉, 알려진 전형적인 시스템에서 사용자는 이미지의 좁은 띠만을 볼 수 있다. 초기에는 전달된 이미지의 크기가 도파로의 화각과 일치한다고 가정하기 때문에, 화각은 이미지의 필드와 일치한다.
본 발명에서 제안하는 도파로 아키텍처는 화각의 폭을 늘릴 수 있도록 한다.
도 2는 제안된 도파로의 아키텍처를 회절소자 X, Y, Z로 나눈 것을 도시한다. 또한 X는 인커플링 회절소자이다. 인커플링 회절소자 X는 2개의 선형 광학소자를 포함한다. 2개의 Y 회절소자는 증배 회절소자이다. 아웃커플링 회절소자 Z는 복사선 증배와 복사선 출력이 모두 제공되는 회절소자이다. 아웃커플링 회절소자 Z는 3개의 선형 회절광학소자를 포함한다.
화살표는 도파로 내부의 복사선 경로를 나타낸다. 빔 I 및 빔 II는 인커플링 회절소자 X에 의해 도입된다. 빔 I은 아웃커플링 회절소자 Z와 상호작용하여 거기서 빔 IV로 증배된다. 빔 II는 증배 회절소자 Y에 들어가고, 여기서 빔 III로 증배되며, 빔 III는 증배 회절격자 Y에서 빠져나와 출력 회절소자 Z로 들어간다. 빔 III 및 빔 IV는 아웃커플링 회절소자 Z에서 출력된다.
인커플링 회절소자 X는 2개의 선형 광학소자를 포함한다. 더욱이, 인커플링 회절소자 X는 선형 회절광학소자 중 하나는 하나의 회절 차수를 사용하여 출력 회절소자 Z를 향해 복사선을 도입하고 선형 회절소자 중 다른 하나는 "+1" 회절 차수 및 "-1" 회절 차수를 사용하여 증배 회절소자 Y를 향해 복사선을 도입하는 식으로 설계된다. 아웃커플링 회절소자 Z를 향해 도입되는 복사선은 증배 회절소자 Y를 향해 도입되는 복사선과 다르다. 즉, 이들은 화각의 상이한 부분들이다. 이는 화각의 한 부분은 증배 회절소자 Y쪽으로 도입되고 화각의 다른 부분은 아웃커플링 회절소자 Z쪽으로 도입된다는 것을 의미한다. 이들 부분은 도파로 내부에서 상이한 각도로 전파된다.
아웃커플링 회절소자 Z는 4개의 상이한 회절소자, 즉 출력 회절소자 Z의 2개의 선형 광학소자와 2개의 증배 회절소자 Y로부터 복사선을 출력한다. 도 3에 도시된 바와 같이, 아웃커플링 회절소자 Z는 3개의 선형 회절광학소자 1, 2, 3을 포함한다.
제1 및 제2 증배 회절소자 Y로부터 전달된 복사선은 아웃커플링 회절소자 Z로 들어가 아웃커플링 회절소자 Z의 제3 선형 회절광학소자 3에 의해 출력된다. 또한, 제3 회절광학소자의 벡터는 도 3은 인커플링 회절소자 X를 향한다.
X 구역에서 Z 구역 쪽으로 향하는 이미지 필드의 상부 부분에 해당하는 복사선의 한 부분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자 1에서 증배되고 아웃커플링 회절소자 Z의 제2 선형 회절광학소자 2에서 출력되며, X 구역에서 Z 구역 쪽으로 향하는 이미지 필드의 하부 부분에 해당하는 복사선의 두 번째 부분은 제2 선형 회절광학소자 2에서 증배되고 아웃커플링 회절소자 Z의 제1 선형 회절광학소자 1에서 출력된다. 따라서, 아웃커플링 회절소자 Z(Z 구역)는 증배 및 출력하는 선형 회절광학소자에서 나오는 복사선을 증배 및 출력하고 있다. 즉, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자 1은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자 2에서 나오는 복사선을 출력하고, 아웃커플링 회절소자 Z의 제2 회절광학소자 2는 아웃커플링 회절소자 Z의 제1 선형 회절광학소자 1에서 나오는 복사선을 출력하며, 아웃커플링 회절소자 Z의 제3 선형 회절광학소자 3은 증배 회절소자 Y에서 나오는 복사선을 출력한다.
증배를 위해 작동하는 회절광학소자의 작동 원리는 다음과 같다고 알려져 있다. 도파로 내부에서 전파되는 빔은 증배 회절소자로 들어가고 이 빔의 복사선의 일부는 증배 회절소자에 의해 회절되어 회절 차수를 형성하며, 이 경우 "+1" 회절 차수가 고려된다. 회절 없이 통과한 빔은 원래 경로를 따라 계속 전파되고, 도파로의 평면에서 재반사된 후 다시 증배 회절소자에 들어가며, 이 빔의 복사선의 일부는 증배 격자에 의해 다시 회절되어, "+1" 회절 차수를 형성한다. 그런 다음 상황이 여러 번 반복된다. 첫 번째 회절된 빔과 두 번째 회절된 빔은 서로 평행하지만 서로 고정된 거리를 두고 전파된다. 따라서 하나의 빔에서 많은 평행 빔을 얻는다. 즉, 복제가 발생한다.
제안된 발명에 따른 도파로 아키텍처의 작동 중에 이미지의 별개 부분들(화각)을 표시하도록 작동하는 회절소자 세트를 고려해 본다.
회절소자 제1 세트는 인커플링 회절소자 X의 제1 선형 회절광학소자와, 또한 아웃커플링 회절소자 Z의 제1 및 제2 선형 회절소자로 구성된다.
회절소자 제2 세트는 인커플링 회절소자 X의 제1 선형 회절광학소자와, 또한 아웃커플링 회절소자 Z의 제2 및 제1 선형 회절광학소자로 구성된다.
회절소자 제3 세트는 제1 증배 회절광학소자 Y의 인커플링 회절소자 X의 제2 선형 회절광학소자와 아웃커플링 회절소자 Z의 제3 선형 회절광학소자로 구성된다.
회절소자 제4 세트는 제2 증배 회절광학소자 Y의 인커플링 회절소자 X의 제2 선형 회절광학소자와 아웃커플링 회절소자 Z의 제3 선형 회절광학소자로 구성된다.
도 4에 도시된 바와 같이, 회절소자 세트들에 의한 전체 화각의 광 분리는 다음과 같이 구현된다. 회절소자의 홀수 제1 및 제3 세트는 화각의 상부 부분을 담당한다. 회절소자의 짝수 제2 및 제4 세트는 화각의 하부 부분을 담당한다. 회절소자의 제1 및 제2 세트는 화각의 청색 부분 전체와 화각의 녹색 부분 절반을 소비한다. 회절소자의 제3 및 제4 세트는 화각의 적색 부분 전체와 화각의 녹색 부분 절반을 소비한다.
단일 도파로에 네 세트의 회절소자를 사용하여, 직선 공간에서 상이한 회절소자 세트들을 부분적으로 분리함으로써 화각의 폭을 늘린다. 이러한 응용의 맥락에서 "직선 공간" 및 "각도 공간"이라는 용어는 분석/계산이 수행되는 좌표 격자망을 정의한다는 점에 유의해야 한다. 직선 공간에서 좌표 격자망은 공간 좌표(x, y, z 방향)에 의해 정의된다. 각도 공간에서 격자망은 각도 좌표(예를 들어, Ax, Ay, Az)에 의해 정의된다. 제안된 발명은 복사선의 전파 방향(각도 공간)뿐만 아니라 이 복사선이 전파되는 도파로 내부의 장소(직선 공간)도 고려한다. 이미지 필드의 모든 부분이 혼합되는 것을 방지하려면, 도파로 내부 공간의 각 특정 지점마다 각도 좌표 격자망 상의 한 지점이 전달된 이미지의 한 부분만큼만 차지해야 한다. 이는 각도 좌표 격자망 상의 동일 지점에서 전달된 이미지의 두 부분 이상을 사용하는 것을 엄격히 금지함으로써 달성될 수 있으며, 이 접근법은 종래기술에서 널리 사용된다. 본 발명에서는, 각도 좌표 격자망 상의 동일 지점이 전달된 이미지의 두 부분 이상을 차지할 수 있는데, 이는 전달된 이미지의 여러 부분들이 도파로 내부의 여러 곳에서 각도 좌표 격자망 상의 동일 지점을 차지하기 때문이다. 즉, 그들은 직선 공간에서 분리되어 있다.
도 5a는 제안된 회절소자 아키텍처의 벡터 다이어그램을 도시한다.
Figure PCTKR2021013947-appb-img-000023
벡터는 입력 회절소자 X의 선형 회절광학소자에 대응한다.
벡터
Figure PCTKR2021013947-appb-img-000024
는 증배 회절광학소자 Y에 대응한다.
Figure PCTKR2021013947-appb-img-000025
벡터는 아웃커플링 회절소자 Z에 대응한다.
벡터
Figure PCTKR2021013947-appb-img-000026
는 인커플링 회절소자 X의 제2 선형 회절광학소자의 "+1" 및 "-1" 회절 차수에 대응한다. 벡터
Figure PCTKR2021013947-appb-img-000027
은 인커플링 회절소자 X의 제1 선형 회절광학소자에 대응한다.
Figure PCTKR2021013947-appb-img-000028
벡터는 제2 증배 회절소자 Y에 대응한다.
Figure PCTKR2021013947-appb-img-000029
벡터는 제1 증배 회절소자 Y에 대응한다.
Figure PCTKR2021013947-appb-img-000030
벡터는 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에 대응한다. 벡터
Figure PCTKR2021013947-appb-img-000031
은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 대응한다. 벡터
Figure PCTKR2021013947-appb-img-000032
는 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 대응한다.
전술한 회절소자 세트들은 동시에 작동한다. 프로젝터에서 나오는 복사선은 인커플링 회절광학소자 X로 들어가서, 상이한 각도에서 적색 성분, 녹색 성분 및 청색 성분으로 나뉜다.
회절소자 제1 세트는 다음과 같이 작동한다.
이미지의 녹색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
회절소자 제2 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
회절소자 제3 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 성분은 입력 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
회절소자 제4 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 성분은 입력 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
입력 회절소자 X는 적어도 2개의 선형 회절격자(인커플링 회절소자 X의 제1 및 제2 선형 회절광학소자)로 구성된다는 점에 유의해야 한다. 인커플링 회절소자 X의 제1 선형 회절광학소자는 아웃커플링 회절소자 Z를 향해 복사선을 도입하는 한편, 녹색 이미지의 두 부분은 한 번에 도입된 다음 아웃커플링 회절소자 Z의 대응 선형 회절소자에서 증배 중에 분리된다. 인커플링 회절소자 X의 제2 선형 회절광학소자는 제1 및 제2 증배 회절소자 Y 각각을 향해 녹색 이미지의 다른 두 부분을 도입한다. 이러한 분리는 회절격자의 매개변수의 선택, 즉 공간 주파수(주기) 및 배향의 선택에 의해 달성된다.
즉, 어느 색상 성분이 대응 회절소자와 상호작용하느냐는 회절격자의 공간 주파수(주기)에 의해 결정된다. 인커플링 회절소자 X의 경우, 인커플링 회절소자 X의 제1 선형 회절광학소자는 인커플링 회절소자 X의 제2 선형 회절광학소자보다 더 높은 공간 주파수(즉, 더 짧은 주기)를 갖는다. 따라서, 청색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에서 도파로 모드 내로 회절되고, 적색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에서 도파로 모드 내로 회절된다. 녹색 성분은 스펙트럼에서 적색과 청색 사이에 있으므로, 도 4에 도시된 바와 같이, 인커플링 회절소자 X의 제1 및 제2 선형 회절소자 사이에서 분할된다.
이미지 필드의 모든 부분이 혼합되는 것을 방지하려면, 도파로 내부 공간의 각 특정 지점마다 각도 좌표 격자망 상의 한 지점이 전달된 이미지의 한 부분만큼만 차지해야 한다. 이는 전달된 이미지의 두 부분 이상에 대해 각도 좌표 격자망 상의 동일 지점을 사용하는 것을 엄격히 금지함으로써 달성될 수 있으며, 이 접근법은 종래기술로부터 알려져 있다.
본 발명에서는, 각도 좌표 격자망 상의 동일 지점이 전달된 이미지의 두 부분 이상을 차지할 수 있는데, 이는 도 6에 도시된 바와 같이 전달된 이미지의 여러 부분들이 도파로 내부의 여러 곳에서 각도 좌표 격자망 상의 동일 지점을 차지(그들은 직선 공간에서 분리되어 있음)하기 때문이라는 점에 유의해야 한다. 도 6은 모서리 공간의 각 구역(우측의 Z 구역, 상부의 Y 구역, 하부의 Y 구역)에 대한 각도 좌표 격자망을 도시한다. Z 구역에서, 각도 공간의 상부 대각선 1/4 은 필드 2의 일부, 즉 회절소자 제2 세트가 담당하는 이미지 필드가 차지한다. Z 구역에서, 각도 공간의 상부 대각선 1/4 은 필드 1의 일부, 즉 회절소자 제1 세트가 담당하는 이미지 필드가 차지한다. 동시에, Y 구역에서, 하부 및 상부 대각선 1/4 은 회절소자 제1 및 제2 세트가 각각 담당하는 이미지 필드의 일부가 없는 상태가 유지되므로, 상부 Y 구역에서, 상부 대각선 1/4 은 필드 4의 일부, 즉 회절소자 제4 세트가 담당하는 이미지 필드가 차지한다.
하부 Y 구역에서, 하부 대각선 1/4 은 필드 3의 일부, 즉 회절소자 제3 세트가 담당하는 이미지 필드가 차지한다. 이 경우, 회절소자 제1 및 제3 세트가 담당하는 이미지 부분들은 서로 섞이지 않으며, 부분 2와 부분 4 역시 서로 섞이지 않는다. 이는 각도 공간의 동일한 부분이 직선(로컬, 좌표) 공간의 여러 지점에서 도파로 내에 점유되기 때문에 발생한다.
즉, 달리 말해, 제1 및 제2 세트를 통해 전달된 복사선, 즉, 예를 들어 아웃커플링 회절소자 Z가 증배 회절소자 Y가 위치하는 구역에서 제3 및 제4 세트에 의해 사용될 수 있는 구역에서, 제1 및 제2 세트가 차지하는 각도 성분은 증배 회절소자 Y가 위치한 곳에서는 도파로 내부에서 전파되지 않는다. 따라서 Y 구역과 Z 구역은 동일한 각도 성분을 사용하여 상이한 격자 세트들을 작동시킨다. 따라서, 회절격자 세트는 직선 공간에서 분리되어 있고, 이는 하나의 도파로에서 2개가 아닌 4개의 회절격자 세트를 사용할 수 있게 하며, 여기서 각 회절격자 세트는 화각의 별개 부분을 전달하는데, 즉 종래기술에서보다 2배 더 큰 화각을 담당할 수 있는데, 이는 하나의 도파로에 두 세트 이하의 회절소자를 갖는 방안만이 종래기술로부터 알려져 있기 때문이다. 각 회절소자 세트는 화각의 고정된 각도 크기를 전달하므로, 도파로에 있는 회절소자 세트의 수를 두 배로 늘리면 화각이 두 배가 된다.
회절소자의 제안된 배열로 인해 화각의 상이한 부분들이 도파로 내에서 서로 상호작용하지 않는다는 점이 강조되어야 한다.
입력 회절소자 X의 제2 선형 회절광학소자에 의해 제1 및 제2 증배 회절소자 Y 각각을 향하여 도입되는 복사선은 임의의 각도로 전파될 수 있는데, 이는 입력 회절소자 X의 제1 선형 회절광학소자에 의해 출력 회절소자 Z를 향하여 도입되는 복사선은 증배 회절소자 Y가 있는 곳에는 적용되지 않기 때문이다.
각 세트는 각도뿐만 아니라 색상도 상이한 화각의 여러 부분을 담당한다. 각 쌍의 회절소자 세트는 상이한 색상의 화각 수평 부분을 제공하여 최종 수평 화각을 늘린다. 따라서 사용자는 풀 컬러 이미지를 볼 수 있는 반면 하나의 도파로만이 사용된다. 화각의 각 지점은 수평 각도 좌표(Ax) 및 수직 각도 좌표(Ay)와 색상(R, G, B)의 세 가지 변수에 의해 결정된다. 따라서 화각의 세 지점(Ax, Ay, R; Ax, Ay, G; Ax, Ay, B)은 좌표가 Ax 및 Ay인 각도 좌표 격자망 상의 특정 지점에 대응한다. 화각을 세트들로 나누는 것은 각도 좌표에 의해서뿐만 아니라 색상에 의해서도 발생한다.
도파로는 제1 및 제2 세트와 상호작용하는 복사선이 제3 및 제4 세트와 상호작용하지 않는 식으로 설계되며, 화각의 녹색 부분의 경우, 화각의 절반은 제1 및 제2 세트와 상호작용하고, 화각의 제2 절반은 제3 및 제4 세트와 상호작용한다. 따라서, 화각의 상이한 스펙트럼 각도 부분들을 사용자에게 보여주기 위해 표시할 수 있고, 색 분산이 보정된다.
도파로는 회절소자의 매개변수에 의해, 즉 회절광학소자의 벡터에 의해 설명되는 회절소자의 공간 배향과 회절소자의 공간 주기를 통해 설계된다.
도파로에 있는 모든 회절소자의 매개변수는 아래 연립방정식으로부터 결정된다.
(1)
Figure PCTKR2021013947-appb-img-000033
벡터
Figure PCTKR2021013947-appb-img-000034
은 전술한 선형 회절소자의 벡터이다.
Figure PCTKR2021013947-appb-img-000035
는 전자기파의 파동벡터로서, l, x, y의 세 좌표로 정의되고, 여기서 l은 전자기파의 파장, x는 전자기파의 x방향 각도 좌표, y는 전자기파의 y방향 각도 좌표이다.
nλb는 파장 λb에 대한 광학계의 굴절률이다.
nλg는 파장 λg에 대한 광학계의 굴절률이다.
nλr은 파장 λr에 대한 광학계의 굴절률이다.
λb는 청색에 해당하는 전자기파의 파장이다.
λg는 녹색에 해당하는 전자기파의 파장이다.
λr은 적색에 해당하는 전자기파의 파장이다.
θ는 전달된 화각의 x방향 최대 각도이다(화각의 x방향 크기는 2θ).
δ는 전달된 화각의 y방향 최대 각도이다(화각의 y방향 크기는 2δ).
이 연립방정식을 풀기 위한 초기 데이터는 사용된 전자기파 파장(λbgr), 사용된 파장에 대한 광학계의 굴절률(nλb, nλg, nλr), 화각 변들의 가로세로비(θ/δ), 및 도 4a에서 볼 수 있는 도파로 아키텍처의 기하학적 특징에서 발생하는 선형 소자 벡터의 기하학적 비율이다.
Figure PCTKR2021013947-appb-img-000036
,
Figure PCTKR2021013947-appb-img-000037
이 연립방정식의 해는 벡터
Figure PCTKR2021013947-appb-img-000038
, 즉 선형 회절소자의 벡터, 및 전달된 화각의 x 및 y방향 최대 각도를 결정할 수 있게 한다.
즉, 회절소자의 필수 매개변수를 해석적으로 계산할 수 있다.
도 8은 증강현실 디스플레이 시스템을 개략적으로 도시한다. 제안된 시스템은 회절광학소자를 포함하는 적어도 하나의 도파로(1), 이미지를 생성하는 프로젝터(2)로 구성된다. 도파로 내의 회절광학소자는 입력 회절광학소자 X, 제1 및 제2 증배 회절소자 Y(도 8에 도시된 도면에서는 보이지 않음), 및 이미지 성분을 증배도 하고 사용자 눈으로 출력하기도 하는 아웃커플링 회절소자 Z이다.
프로젝터(2)에 의해 생성된 이미지는 입력 회절소자 X를 통해 회절소자의 아키텍처로 들어가고, 도파로의 회절소자 아키텍처를 통해 전파되며, 아웃커플링 회절소자 Z를 빠져나와, 사용자의 눈으로 들어간다.
본 발명의 일 실시예에서, 회절소자 세트는 위에서 설명한 바와 같이 수평 화각을 늘리는 동시에 이미지의 색상 분산을 보정하는 데 사용되는 것이 아니라, 수직 화각을 늘리는 데 사용된다. 수직 화각을 늘리지 않고 이미지의 색상 분산을 보정하면 수평 화각만 늘어날 수 있다.
격자 세트들이 상이하게 설계된 경우, 제1 및 제2 세트는 수직 이미지의 최외측 부분을 전달하고 제3 및 제4 세트는 더 많은 중앙 부분을 전달한다. 설계는 아래 제시된 연립방정식에 따라 수행된다.
작동 방식: 회절소자의 제1 및 제2 세트에 의해 전달되는 이미지 부분은 회절소자의 제3 및 제4 세트에 의해 전달되는 이미지 부분과 수직 각도 좌표가 다르다. 선형 회절소자의 매개변수를 결정하기 위해 연립방정식을 적용하면, 전체적으로 이러한 부분들이 가장 큰 수직 화각을 제공할 것이다.
이 경우 회절격자 매개변수는 아래 연립방정식에 의해 결정된다.
(2)
Figure PCTKR2021013947-appb-img-000039
벡터
Figure PCTKR2021013947-appb-img-000040
은 전술한 선형 회절소자의 벡터이다.
Figure PCTKR2021013947-appb-img-000041
는 전자기파의 파동벡터로서, l, x, y의 세 좌표로 정의되고, 여기서 l은 전자기파의 파장, x는 전자기파의 x방향 각도 좌표, y는 전자기파의 y방향 각도 좌표이다.
nλb는 파장 λb에 대한 광학계의 굴절률이다.
nλr은 파장 λr에 대한 광학계의 굴절률이다.
λb는 청색에 해당하는 전자기파의 파장이다.
λr은 적색에 해당하는 전자기파의 파장이다.
φ 및 ψ는 화각 내의 y방향 각도로서, 제1, 2 세트 및 제3, 4 세트의 재봉 각도이다. 스티칭 각도는 여러 회절격자 세트를 통해 전달되는 화각의 두 부분 사이의 접촉 각도로 이해된다는 점을 명확히 할 필요가 있다. 즉, 여러 회절격자 세트를 통해 전달되는 화각의 인접한 두 부분은 부분적으로 서로 겹치거나, 화각 내의 어느 세트도 전달하지 않는 각도 좌표인 검은 반점이 이미지에 없도록 서로 접촉해야 한다. 대부분의 경우 화각의 인접한 두 부분은 부분적으로 서로 겹치고 한 지점에서만 접촉한다(이 접근법을 사용하면 최대 화각을 얻을 수 있음). 각도 격자 상의 이 지점을 스티칭 각도라고 한다.
이 연립방정식을 풀기 위한 초기 데이터는 사용된 전자기파 파장(λb λr), 사용된 파장에 대한 광학계의 굴절률(nλb nλr), 화각 변들의 가로세로비(비(θ/δ), 및 도파로 아키텍처의 기하학적 특징에서 기인한 아래의 선형 소자 벡터들의 기하학적 관계이다.
Figure PCTKR2021013947-appb-img-000042
,
Figure PCTKR2021013947-appb-img-000043
또한, 수직 화각을 확장하는 조건은 수평 화각을 확장하고 분산 보정을 하는 조건과 동일하다. 이러한 조건은 회절소자의 기하학적 배열과 대칭 고려사항을 따른다.
이 연립방정식의 해는 벡터
Figure PCTKR2021013947-appb-img-000044
즉 선형 회절소자의 벡터, 및 전달된 화각의 x 및 y방향 최대 각도를 결정할 수 있게 한다.
즉, 연립방정식(1)은 분산을 제거하고 수평 화각을 늘리기 위해 격자 매개변수를 제공하고, 연립방정식(2)은 수직 화각을 늘리기 위해 격자 매개변수를 제공한다.
따라서, 본 발명은 두 가지 구현예을 갖는다. 먼저 색상과 화각의 수평 부분에 의한 구분이 있다. 둘째, 색상과 화각의 수직 부분에 의한 구분이 있다. 이 두 실행은 모두 동등하며 설정 문제에 따라 사용된다.
이미지는 프로젝터에 의해 생성되며 이 경우 이미지는 각도 좌표 격자망에서 세 가지 색상에 대한 밝기의 함수임을 명확히 해야 한다. 이미지는 대응하는 각도 좌표와 파장을 가진 파동벡터 세트로 생각할 수 있다. 여러 회절격자(회절소자)가 임의의 파동벡터에 적용될 때, 이러한 격자의 벡터 합계가 0이면 파동벡터는 변경되지 않은 상태로 유지된다. 즉, 출력 이미지가 보존된다. 따라서 세트에 있는 회절광학소자의 벡터 합계는 0이어야 한다.
회절소자의 주기와 배향은 일부 세트는 중앙 부분과 작동하는 반면 다른 세트는 극단 부분과 작동하는 식으로 계산된다. 이 모든 것은 제시된 연립방정식(2)을 사용하여 계산할 수 있다.
증배 회절소자 Y와 아웃커플링 회절소자 Z에서의 복사선의 증배로 인해 아이모션박스(Eye Motion Box: EMB), 즉 움직이는 눈이 가상 이미지 전체를 손실 없이 완전히 볼 수 있는 영역의 폭이 증가한다. 화각(광학계의 화각(각도 필드)은 광학계에서 나오는 빔의 원뿔이며 이미지를 형성함)은 회절소자 세트의 수를 늘림으로써 증가한다. 화각이 정확히 어떻게 증가하는지(수평으로 또는 수직으로)는 연립방정식(1) 또는 연립방정식(2)에 따른 회절소자의 선택에 따라 달라진다.
도 7은 화각의 수직 확장의 경우에 회절광학소자 세트들에 걸친 전체 화각의 광 분리를 도시한다.
수직 화각이 증가하면(회절소자의 매개변수는 연립방정식(2)에 따라 계산) 회절격자 아키텍처를 갖는 도파로는 다음과 같이 작동한다.
회절소자의 제1 및 제2 세트는 수직 화각의 가장자리를 확장하고, 제3 및 제4 세트는 화각의 중심을 확장한다.
프로젝터에서 나오는 복사선은 인커플링 회절광학소자 X로 들어가서, 상이한 각도에서 적색, 녹색 및 청색 성분으로 나뉜다.
회절소자 제1 세트는 다음과 같이 작동한다.
녹색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 제2 선형 회절광학소자 Z를 사용하여 사용자의 눈으로 출력된다.
적색 상부 성분은 입력 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절되고, 아웃커플링 회절소자의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 사용자의 눈으로 출력된다.
회절소자 제2 세트는 다음과 같이 작동한다.
녹색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절되고, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다. 이하 수평 각도는 입력 회절격자의 벡터
Figure PCTKR2021013947-appb-img-000045
을 향하는 입사광의 각도 성분을 의미한다.
적색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 하부 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 인커플링 회절소자 X로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
제1 증배 회절광학소자 Y의 인커플링 회절소자 X의 제2 선형 회절광학소자와 아웃커플링 회절소자 Z의 제3 선형 회절광학소자로 구성된 회절소자 제3 세트는 다음과 같이 작동한다.
녹색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 상부 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 상부 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
회절소자 제4 세트는 다음과 같이 작동한다.
녹색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
도 9는 제안된 회절소자 아키텍처의 두 가지 방식을 도시한다. 회절소자의 매개변수를 계산하는 데 사용된 연립방정식(1 또는 2)에 따라, 회절소자의 아키텍처는 분산을 보정하고 수평 화각을 확장하거나(연립방정식(1)을 사용한 계산) 또는 수직 화각을 확장한다(연립방정식(2)를 사용한 계산).
계산이 연립방정식(1)에 따라 통과되면, 회절소자의 제3 및 제4 세트가 작동하는 (a)방식은 복사선의 적색 및 녹색 성분과 작동하고 전술한 바와 같이 수평 화각의 우측을 확장하며, 회절소자의 제1 및 제2 세트가 작동하는 (b)방식은 청색 및 녹색 복사선 성분과 작동하고 전술한 바와 같이 수평 화각의 좌측 부분을 확장한다(도 4, 도 5a, 도 5b).
계산이 연립방정식(2)에 따라 수행되면, 회절소자의 제3 및 제4 세트가 작동하는 (a)방식은 전술한 바와 같이 수직 화각의 중앙 부분을 확장하고, (b)방식에서는 회절소자의 제1 및 제2 세트가 전술한 바와 같이 수직 화각의 가장자리 구역을 확장한다.
도 10에 도시한 바와 같이, 2개의 도파로로 구성된 시스템을 사용하여 화각의 폭을 늘릴 수 있다. 그러한 시스템의 각 도파로의 회절소자의 아키텍처는, 한 도파로의 회절소자의 한 아키텍처는 분산을 보정하고 수평 화각을 늘리도록 구성되고, 다른 하나의 도파로에 있는 회절소자의 두 번째 아키텍처는 수직 화각을 늘리도록 구성되어, 서로 반복된다.
두 도파로 각각은 화각의 자체 스펙트럼 각도 부분을 표시하도록 설계된다.
2개의 도파로를 사용하면 화각이 크게 증가할 수 있다. 또한, 첫 번째 도파로에서 회절 아키텍처는 수직 화각의 증가가 발생하도록 위치하며, 두 번째 도파로에서 회절 아키텍처는 이미지 분산이 보정되고 수평 화각이 늘어나도록 위치한다. 예를 들어, 도파로 I의 경우, 회절소자 제1 및 제2 세트는 이미지의 가장자리를 따라 수직으로 화각을 확장하도록 작동하는 반면, 제3 및 제4 세트는 화각 중앙에서 수직으로 화각을 확장하도록 작동한다. 도파로 II의 경우, 제1 및 제2 세트는 이미지의 좌측과 작동하고, 제3 및 제4 세트는 이미지의 우측과 작동하여 화각을 수평으로 확장하고 분산을 보정한다.
두 도파로로 구성된 시스템의 작동은 아래에 설명되어 있으며, 그중 한 도파로는 연립방정식(2)에 의해 계산된 회절소자의 아키텍처를 포함하고, 다른 도파로는 연립방정식(1)에 의해 계산된 회절소자의 아키텍처를 포함한다.
첫 번째 도파로는 연립방정식(2)에 의해 계산된 회절소자의 아키텍처를 포함한다.
프로젝터에서 나오는 복사선은 도파로 I의 입력 회절광학소자 X로 들어가서 상이한 각도에서 적색, 녹색 및 청색 성분으로 나뉜다. 적색 화각의 중앙 좌측 부분, 녹색 화각의 중앙 우측 부분 및 청색 화각의 우측 부분이 도파로 I을 통과한다. 입력 회절소자 X의 색 분산으로 인해 색상별로 분류된 화각의 여러 부분들이 통과된다는 점을 명확히 해야 한다. 순서(청색은 항상 우측, 적색은 항상 좌측, 녹색은 그 사이 어딘가)는 모든 회절소자에 대해 유효하다. 또한 "우측으로" 및 "좌측으로"는 절대적인 방향이 아니라 눈의 좌측의 고정 입력 회절소자를 고려한 상대적인 방향이다(모든 도면에 도시된 바와 같음). 입력 회절소자가 좌측이 아니라 눈의 우측에 있으면 순서가 변경된다(청색은 좌측으로, 적색은 우측으로, 녹색은 그 사이 어딘가). 정확히 이 부분들이 이 성능에서 수행되는 이유 - 계산을 기반으로, 최대 화각을 제공할 수 있을 만큼 필드의 부분들로 분류된다.
도파로 I의 회절소자 제1 세트는 다음과 같이 작동한다.
녹색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가고, 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
적색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 I의 회절소자 제2 세트는 다음과 같이 작동한다.
녹색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 상부 성분은 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 출력 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
적색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 하부 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 인커플링 회절소자 X로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 I의 회절소자 제3 세트는 다음과 같이 작동한다.
녹색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 상부 성분은 증배가 발생하는 제1 회절광학소자 Y로 들어가며, 그 후 출력 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 상부 성분은 증배가 발생하는 제1 회절광학소자 Y로 들어가며, 그 후 출력 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
도파로 I의 회절소자 제4 세트는 다음과 같이 작동한다.
녹색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 회절광학소자 Y로 들어가고, 그 후 출력 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
프로젝터에서 나오는 복사선은 도파로 II의 입력 회절광학소자 X로 들어가서 상이한 각도에서 적색, 녹색 및 청색 성분으로 나뉜다. 적색 화각의 극우측 부분, 녹색 화각의 극좌측 부분 및 청색 화각의 좌측 부분이 도파로 II를 통과한다. 이 실시예에서, 도파로 II는 자체 분산이 아니라 도파로 I의 분산을 보정하도록 설계된다.
도파로 II의 회절소자 제1 세트는 다음과 같이 작동한다.
적색 성분은 입력 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 출력 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 출력 회절소자 Z로 들어가고, 출력 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 II의 회절소자 제2 세트는 다음과 같이 작동한다.
적색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 출력 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 출력 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 II의 회절소자 제3 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
도파로 II의 회절소자 제4 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
제안된 회절격자 아키텍처를 갖는 2개의 도파로를 사용할 때 대각선 화각은 62°에 이른다.
도 11은 3-도파로 시스템의 사용을 도시한다.
프로젝터에서 나오는 복사선은 도파로 I의 인커플링 회절광학소자 X로 들어가서 상이한 각도에서 녹색 및 청색 성분으로 나뉜다. 도파로 I을 통해 녹색 화각의 극좌측 부분과 청색 화각의 좌측 중앙 부분이 통과된다. 전술한 바와 같이, 입력 회절소자의 색 분산으로 인해 색분류된 화각의 여러 부분들이 통과된다.
도파로 I의 회절소자 제1 세트는 다음과 같이 작동한다.
녹색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 I의 회절소자 제2 세트는 다음과 같이 작동한다.
녹색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 하부 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 인커플링 회절소자 X로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 I의 회절소자 제3 세트는 다음과 같이 작동한다.
녹색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 하부 성분은 증배가 발생하는 제1 회절광학소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
도파로 I의 회절소자 제4 세트는 다음과 같이 작동한다.
녹색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 하부 성분은 입력 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
그런 다음 프로젝터에서 나오는 복사선, 즉 도파로 I에서 나온 복사선은 도파로 II의 입력 회절광학소자 X로 들어가서 상이한 각도에서 적색, 녹색 및 청색 성분으로 나뉜다. 적색 화각의 극좌측 부분, 녹색 화각의 중앙 부분 및 청색 화각의 우측 중앙 부분이 도파로 II를 통과한다.
도파로 II의 회절소자 제1 세트는 다음과 같이 작동한다.
녹색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 상부 성분은 출력 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 출력 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
적색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 II의 회절소자 제2 세트는 다음과 같이 작동한다.
녹색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 상부 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
적색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 하부 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 II의 회절소자 제3 세트는 다음과 같이 작동한다.
녹색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 상부 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 상부 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
도파로 II의 회절소자 제4 세트는 다음과 같이 작동한다.
녹색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자 Y로 들어가고, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
그런 다음 프로젝터에서 나오는 복사선은 도파로 III의 입력 회절광학소자 X에 들어가서 상이한 각도에서 적색, 녹색 및 청색 성분으로 나뉜다. 적색 화각의 중앙 우측 부분, 녹색 화각의 우측 부분 및 청색 화각의 극우측 중앙 부분이 도파로 III를 통과한다.
도파로 III의 회절소자 제1 세트는 다음과 같이 작동한다.
녹색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
적색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 III의 회절소자 제2 세트는 다음과 같이 작동한다.
녹색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 하부 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 인커플링 회절소자 X로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
적색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 하부 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 인커플링 회절소자 X로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로 III의 회절소자 제3 세트는 다음과 같이 작동한다.
녹색 중앙 상부 성분은 입력 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 회절광학소자 Y의 제1 증배 회절소자로 들어가고, 그 후 출력 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 상부 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 상부 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
도파로 III의 회절소자 제4 세트는 다음과 같이 작동한다.
녹색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
제안된 회절격자 아키텍처를 갖는 3개의 도파로를 사용할 때 대각선 화각은 76°에 이른다.
도 12는 도파로 아키텍처가 단일 도파로의 양쪽에 적용될 수 있음을 도시한다. 예를 들어, 회절소자 제1 및 제2 세트는 도파로의 한쪽에 위치할 수 있고, 회절광학소자 제3 및 제4 세트는 도파로의 반대쪽에 위치할 수 있다. 이러한 구조는 제조가 용이하고 수직 화각을 늘리고 수평 화각을 늘리는 데 모두 사용될 수 있다.
수평 화각이 증가하면 도파로는 다음과 같이 작동한다.
프로젝터에서 나오는 복사선은 인커플링 회절광학소자 X에 들어가서 상이한 각도에서 적색, 녹색 및 청색 성분으로 나뉜다.
도파로의 제1 측에 위치한 회절소자 제1 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로의 제1 측에 위치한 회절소자 제2 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로의 제2 측에 위치한 회절소자 제3 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 성분은 입력 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
도파로의 제2 측에 위치한 회절소자 제4 세트는 다음과 같이 작동한다.
녹색 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 성분은 입력 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
수직 화각이 증가하면 도파로는 다음과 같이 작동한다.
프로젝터에서 나오는 복사선은 인커플링 회절광학소자 X에 들어가서 상이한 각도에서 적색, 녹색 및 청색 성분으로 나뉜다.
도파로의 제1 측에 위치한 회절소자 제1 세트는 다음과 같이 작동한다.
녹색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
적색 상부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 상부 성분은 아웃커플링 회절소자 Z의 제1 선형 회절광학소자에서 증배가 발생하는 아웃커플링 회절소자 Z로 들어가며, 아웃커플링 회절소자 Z의 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로의 제1 측에 위치한 회절소자 제2 세트는 다음과 같이 작동한다.
녹색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어간 다음, 복사선이 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에 의해 증배되는 아웃커플링 회절소자 Z로 들어가고, 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
청색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 청색 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에서 증배가 발생하는 인커플링 회절소자 X로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
적색 하부 성분은 인커플링 회절소자 X의 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 적색 하부 성분은 아웃커플링 회절소자 Z의 제2 선형 회절광학소자에서 증배가 발생하는 인커플링 회절소자 X로 들어가며, 아웃커플링 회절소자 Z의 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력된다.
도파로의 제2 측에 위치한 회절소자 제3 세트는 다음과 같이 작동한다.
녹색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제1 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 상부 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 상부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 상부 성분은 증배가 발생하는 제1 증배 회절소자 Y로 들어가며, 그 후 아웃커플링된 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
도파로의 제2 측에 위치한 회절소자 제4 세트는 다음과 같이 작동한다.
녹색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 제2 증배 회절소자 Y로 들어가고, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
적색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 적색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
청색 중앙 하부 성분은 인커플링 회절소자 X의 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 공기 중에서 전파되는 부분이 회절된다. 다음으로 청색 중앙 하부 성분은 증배가 발생하는 제2 증배 회절소자 Y로 들어가며, 그 후 아웃커플링 회절소자 Z의 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력된다.
제안된 아키텍처에서, 회절광학소자는 다음과 같이 구성할 수 있다.
A) 모든 회절광학소자는 균일한 구조의 형태로 만들어질 수 있으며, 이는 회절광학소자의 광학 매개변수의 변조 진폭이 도파로 평면에서 X-Y 좌표에 따라 변하지 않는다는 뜻이다.
B) 모든 회절광학소자는 형상이 상이하고, 크기가 상이하며, 상이한 거리만큼 서로 이격된 분할 구조물의 형태로 만들 수 있다. 이 경우 회절광학소자의 광학 매개변수의 변조 진폭은 (도파로 평면에서) X-Y 좌표에 따라 구간 함수이다. 즉, 도파로의 일부 지점에서는 변조 진폭이 존재하고 다른 지점에서는 그렇지 않다. 달리 말해, 소자는 예를 들어 서로 특정 거리만큼 이격된 특정 반경의 원의 형태로 만들어진다. 이 디자인은 회절광학소자 Y 및 Z(X는 아님)에 유효하다. 구체적인 작업, 도파로의 두께, 재료 등에 따라 구체적인 디자인은 매우 다양할 수 있으므로, 가장 일반적인 형태가 본원에 제공된다.
C) 모든 회절광학소자는 체적 구조의 형태, 예를 들어 회절 홀로그래픽 소자의 형태로 만들어질 수 있다. 체적 구조는 회절소자 구현의 특성으로, 이는 광학 매개변수의 변화가 재료의 표면이 아닌 재료의 체적에서 발생함을 뜻한다. 이러한 구현은 X, Y, Z 회절광학소자 각각에 대해 일반적이다.
D) 모든 회절광학소자는 양각 또는 평면 구조의 형태로 만들 수 있다. 양각/평면 구조는 모든 회절소자의 성능 특성이며, 이는 광학 매개변수의 변화가 재료의 체적이 아닌 재료의 표면에서 발생함을 의미한다. 이러한 구현은 X, Y, Z 회절광학소자 각각에 대해 일반적이다.
E) 모든 회절광학소자는 체적 구조와 양각 구조 양쪽 모두의 형태로 만들 수 있다. 이 특성은 광학 매개변수의 변화가 체적과 표면 모두에서 발생함을 의미한다. 이러한 구현은 X, Y, Z 회절광학소자 각각에 대해 일반적이다.
E) 각 회절광학소자는 도파로 자체 내부에, 예를 들어 도파로 내부에 기록된 홀로그래픽 광학소자로 만들거나, 또는 도파로 표면에 양각 또는 혼합 구조가 생성된 경우 그 표면에, 도파로의 일부로서 만들 수 있다. 이러한 구현은 X, Y, Z 회절광학소자 각각에 대해 일반적이다.
G) 회절광학소자는 도파로의 별개 층의 내부에 또는 그 층의 표면상에 만들 수 있다. 이러한 구현은 X, Y, Z 회절광학소자 각각에 대해 일반적이다.
각 세트는 각자의 화각 부분을 각도 좌표 격자망 상에서 렌더링하는 반면, 화각의 이 부분은 색상에 따라 다르다. 각 세트는 각도 좌표 격자망의 여러 부분에서 세 가지 색상을 모두 렌더링할 수 있지만 임의의 회절소자 세트에 대해 세 가지 색상 모두를 사용할 수 있는 것은 아니며, 이는 세트와 디자인에 따라 다르다. 위에서 설명한 상황(제1 및 제2 세트는 청색과 일부 녹색, 제3 및 제4 세트는 적색과 일부 녹색)은 하나의 도파로의 실행에는 유효하지만 2개 또는 3개의 도파로의 실행에는 유효하지 않다. 다수의 도파로가 있는 경우, 분리가 유효하며, 이 경우 사전에 정의된 회절소자 세트들이 각 도파로에서 작동한다. 시야의 일부는 필연적으로 한 세트가 아닌 두 세트 또는 심지어 네 세트로 전달된다. 이는 출력에서 화각의 모든 부분이 빈틈없는 단일 이미지를 형성해야 한다는 사실 때문이다. 화각의 부분들의 형상은 정사각형이 아니며 곡선 테두리가 있다. 따라서 빈틈이 없으려면 각도 좌표 격자망의 일부 지점에서 회절소자들이 서로 겹치는 식으로 회절소자들을 계산해야 한다. 이들 위치에서 각도 좌표 격자망 상의 동일 지점은 둘 이상의 회절소자 세트에 의해 전달될 수 있다.
본 발명 덕분에 증강현실장치에서 하나의 도파로만 사용할 수 있으므로 장치의 두께, 크기 및 무게를 줄일 수 있으며 또한 증강현실장치의 투명도를 높일 수 있다. 또한, 증강현실장치는 고해상도 및 풀 컬러 이미지를 가진다. 또한 제안된 발명은 넓은 화각을 제공하며, 이는 사용자에게 임장감 효과를 제공한다. 복사선은 가로 폼 팩터를 관찰하면서 측면에서 입력된다. 측면에서 복사선이 도입되면 수평으로 전달된 화각의 크기가 수직으로 전달된 화각의 크기보다 좁아지지 않는다.
본 발명은 경량과 컴팩트한 크기가 중요한 증강현실 안경에 편리하게 적용된다. 제안된 발명은 어떤 목적으로 사용되는 증강현실장치에도 편리하게 적용될 수 있다.
본 발명을 일부 예시적인 실시예와 관련하여 설명하였지만, 본 발명의 본질은 이러한 특정 실시예에 국한되지 않는다는 것을 이해해야 한다. 반대로, 본 발명의 본질은 청구범위의 사상 및 범위 내에 포함될 수 있는 모든 대안, 조정 및 등가물을 포함하도록 의도된다.
또한, 본 발명은 고려 과정에서 청구범위가 변경되더라도 청구된 발명의 모든 등가물을 유지한다.

Claims (15)

  1. 증강현실장치용 도파로의 회절광학소자 아키텍처로서,
    프로젝터에서 나오는 복사선을 입력하도록 구성된 인커플링 회절소자로서, 제1 선형 회절광학소자 및 제2 선형 회절광학소자를 포함하는 인커플링 회절소자;
    복사선을 증배하도록 구성된 제1 증배 회절소자 및 제2 증배 회절소자;
    복사선을 증배하고 상기 도파로에서 나오는 복사선을 출력하도록 구성된 아웃커플링 회절소자로서, 출력 회절소자의 제1 선형 회절광학소자, 출력 회절소자의 제2 선형 회절광학소자, 출력 회절소자의 제3 선형 회절광학소자를 포함하는 아웃커플링 회절소자;
    를 포함하며,
    또한, 상기 인커플링 회절소자는 상기 증강현실장치의 작동 중에 상기 프로젝터에서 나오는 이미지를 적색, 녹색, 청색의 이미지 색상 성분으로 분리하고, 각 색상 성분의 빔 경로 방향을 대응하는 회절소자 세트를 통해 분리하며, 이때 복사선의 행로를 따라,
    회절소자 제1 세트는 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자, 상기 아웃커플링 회절소자의 상기 제1 및 제2 선형 회절소자로 구성되고,
    회절소자 제2 세트는 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자, 상기 아웃커플링 회절광학소자의 상기 제2 및 제1 선형 회절소자로 구성되며,
    회절소자 제3 세트는 상기 제1 증배 회절광학소자의 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자와 상기 출력 회절소자의 상기 제3 선형 회절광학소자로 구성되고,
    회절소자 제4 세트는 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자, 상기 제2 증배 회절소자, 및 상기 출력 회절소자의 상기 제3 선형 회절광학소자로 구성되는, 아키텍처.
  2. 제1항에 있어서, 각 세트의 모든 회절소자의 벡터의 합은 0과 동일한, 아키텍처.
  3. 제1항 또는 제2항에 있어서, 상기 회절소자 제1 세트 및 상기 회절소자 제3 세트는 화각의 상부 부분을 담당하도록 구성되고, 상기 회절소자 제2 세트 및 상기 회절소자 제4 세트는 화각의 하부 부분을 담당하도록 구성된, 아키텍처.
  4. 제1항에 있어서, 각 색상 성분의 빔 경로 방향은 연립방정식
    Figure PCTKR2021013947-appb-img-000046
    에서 계산된 상기 회절소자의 매개변수에 따라 달라지며,
    여기서
    Figure PCTKR2021013947-appb-img-000047
    는 전자기파의 파동벡터로서, l, x, y의 세 좌표로 정의되고, 여기서 l은 전자기파의 파장, x는 전자기파의 x방향 각도 좌표, y는 전자기파의 y방향 각도 좌표이며;
    nλb는 파장 λb에 대한 광학계의 굴절률이고;
    nλg는 파장 λg에 대한 광학계의 굴절률이며;
    nλr은 파장 λr에 대한 광학계의 굴절률이고;
    λb는 청색에 해당하는 전자기파의 파장이며;
    λg는 녹색에 해당하는 전자기파의 파장이고;
    λr은 적색에 해당하는 전자기파의 파장이며:
    θ는 전달된 화각의 x방향 최대 각도이고(화각의 x방향 크기는 2θ);
    δ는 전달된 화각의 y방향 최대 각도이며(화각의 y방향 크기는 2δ);
    여기서, 이 연립방정식을 풀기 위한 초기 데이터는 사용된 전자기파 파장(λbgr), 사용된 파장에 대한 광학계의 굴절률(nλb, nλg, nλr), 화각 변들의 가로세로비(θ/δ), 및 아래의 선형 소자 벡터들의 기하학적 관계이고,
    Figure PCTKR2021013947-appb-img-000048
    ,
    Figure PCTKR2021013947-appb-img-000049
    또한, 벡터
    Figure PCTKR2021013947-appb-img-000050
    는 인커플링 회절소자의 제2 선형 회절광학소자의 "+1" 및 "-1" 회절 차수에 대응하며;
    벡터
    Figure PCTKR2021013947-appb-img-000051
    은 제2 증배 회절광학소자에 대응하고;
    벡터
    Figure PCTKR2021013947-appb-img-000052
    는 제1 증배 회절광학소자에 대응하며;
    벡터
    Figure PCTKR2021013947-appb-img-000053
    는 아웃커플링 회절소자의 제3 선형 회절광학소자에 대응하고;
    벡터
    Figure PCTKR2021013947-appb-img-000054
    은 인커플링 회절소자의 제1 선형 회절광학소자에 대응하며;
    벡터
    Figure PCTKR2021013947-appb-img-000055
    은 아웃커플링 회절소자의 제2 선형 회절광학소자에 대응하고;
    벡터
    Figure PCTKR2021013947-appb-img-000056
    은 아웃커플링 회절소자의 제1 선형 회절광학소자에 대응하는 아키텍처.
  5. 제1항에 있어서, 각 색상 성분의 빔 경로 방향은 연립방정식
    Figure PCTKR2021013947-appb-img-000057
    에서 계산된 상기 회절소자의 매개변수에 따라 달라지며,
    여기서
    Figure PCTKR2021013947-appb-img-000058
    는 전자기파의 파동벡터로서, l, x, y의 세 좌표로 정의되고, 여기서 l은 전자기파의 파장, x는 전자기파의 x방향 각도 좌표, y는 전자기파의 y방향 각도 좌표이며;
    nλb는 파장 λb에 대한 광학계의 굴절률이고;
    nλr은 파장 λr에 대한 광학계의 굴절률이고;
    λb는 청색에 해당하는 전자기파의 파장이며;
    λr은 적색에 해당하는 전자기파의 파장이며:
    φ 및 ψ는 화각 내의 y방향 각도로서, 화각의 두 부분, 즉 전달된 제1, 2 세트 및 제3, 4 세트의 접촉 각도이고,
    여기서, 이 연립방정식을 풀기 위한 초기 데이터는 사용된 전자기파 파장(λb λr), 사용된 파장에 대한 광학계의 굴절률(nλb nλr), 화각 변들의 가로세로비(비(θ/δ), 및 도파로 아키텍처의 기하학적 특징에서 기인한 아래의 선형 소자 벡터들의 기하학적 관계이고,
    Figure PCTKR2021013947-appb-img-000059
    ,
    Figure PCTKR2021013947-appb-img-000060
    또한, 벡터
    Figure PCTKR2021013947-appb-img-000061
    는 인커플링 회절소자의 제2 선형 회절광학소자의 "+1" 및 "-1" 회절 차수에 대응하며;
    벡터
    Figure PCTKR2021013947-appb-img-000062
    은 제2 증배 회절광학소자에 대응하고;
    벡터
    Figure PCTKR2021013947-appb-img-000063
    는 제1 증배 회절광학소자에 대응하며;
    벡터
    Figure PCTKR2021013947-appb-img-000064
    는 아웃커플링 회절소자의 제3 선형 회절광학소자에 대응하고;
    벡터
    Figure PCTKR2021013947-appb-img-000065
    은 인커플링 회절소자의 제1 선형 회절광학소자에 대응하며;
    벡터
    Figure PCTKR2021013947-appb-img-000066
    은 아웃커플링 회절소자의 제2 선형 회절광학소자에 대응하고;
    벡터
    Figure PCTKR2021013947-appb-img-000067
    은 아웃커플링 회절소자의 제1 선형 회절광학소자에 대응하는 아키텍처.
  6. 제4항 또는 제5항에 있어서, 모든 회절소자가 상기 도파로의 한쪽에 적용되는, 아키텍처.
  7. 제4항 또는 제5항에 있어서, 상기 회절소자 제1 및 제2 세트는 상기 도파로의 한쪽에 위치하고, 상기 회절소자 제3 및 제4 세트는 상기 도파로의 반대쪽에 위치하는, 아키텍처.
  8. 제4항에 따른 회절광학소자 아키텍처의 작동 방법으로서,
    상기 프로젝터에서 나오는 복사선이 상기 입력 회절소자로 들어가서, 이미지의 적색 성분, 이미지의 청색 성분 및 이미지의 녹색 성분으로 나뉘고, 동시에 작동하는 회절소자 세트들로 보내지며, 이때
    상기 회절소자 제1 세트는,
    이미지의 녹색 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어간 다음, 복사선이 상기 아웃커플링 회절소자의 상기 제1 선형 회절광학소자에 의해 증배되는 상기 출력 회절소자로 들어가고, 상기 출력 회절소자의 상기 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되며,
    청색 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 전파되는 부분이 회절되고, 상기 출력 회절소자의 상기 제1 선형 회절광학소자에서 증배가 발생하는 상기 아웃커플링 회절소자로 들어가며, 상기 아웃커플링 회절소자의 상기 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되도록 작동하고,
    상기 회절소자 제2 세트는,
    이미지의 녹색 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어간 다음, 복사선이 상기 아웃커플링 회절소자의 상기 제2 선형 회절광학소자에 의해 증배되는 상기 아웃커플링 회절소자로 들어가고, 상기 아웃커플링 회절소자의 상기 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되며,
    청색 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 전파되는 부분이 회절되고, 상기 아웃커플링 회절소자의 상기 제2 선형 회절광학소자에 의해 증배가 발생하는 상기 아웃커플링 회절소자로 들어가며, 상기 아웃커플링 회절소자의 상기 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되도록 작동하고,
    상기 회절소자 제3 세트는,
    녹색 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 상기 제1 증배 회절소자로 들어가고, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되며,
    적색 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 상기 제1 증배 회절소자로 들어가며, 그 후 상기 출력 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되도록 작동하고,
    상기 회절소자 제4 세트는,
    녹색 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 상기 제2 증배 회절소자로 들어가고, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되며,
    적색 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 상기 제2 증배 회절소자로 들어가며, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되도록 작동하는 단계들을 포함하는 방법.
  9. 제5항에 따른 회절광학소자 아키텍처의 작동 방법으로서,
    상기 프로젝터에서 나오는 복사선이 상기 입력 회절소자로 들어가서, 이미지의 적색 성분, 이미지의 청색 성분 및 이미지의 녹색 성분으로 나뉘고, 동시에 작동하는 회절소자 세트들로 보내지며, 이때
    상기 회절소자 제1 세트는,
    녹색 상부 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어간 다음, 복사선이 상기 아웃커플링 회절소자의 상기 제1 선형 회절광학소자에 의해 증배되는 상기 아웃커플링 회절소자로 들어가고, 상기 아웃커플링 회절소자의 상기 제2 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되며,
    청색 상부 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 상기 출력 회절소자의 상기 제1 선형 회절광학소자에서 증배가 발생하는 상기 출력 회절소자로 들어가며, 상기 아웃커플링 회절소자의 상기 제2 선형 회절광학소자를 사용하여 사용자의 눈에 입력되고,
    적색 상부 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 상기 아웃커플링 회절소자의 상기 제1 선형 회절광학소자에 의해 증배가 발생하는 상기 출력 회절소자로 들어가며, 상기 아웃커플링 회절소자의 상기 제2 선형 회절광학소자를 통해 사용자의 눈으로 출력되도록 작동하고,
    상기 회절소자 제2 세트는,
    녹색 하부 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어간 다음, 상기 아웃커플링 회절소자의 상기 제2 선형 회절광학소자에서 증배가 발생하는 상기 출력 회절소자로 들어가고, 상기 출력 회절소자의 상기 제1 선형 회절광학소자를 사용하여 사용자의 눈으로 출력되며,
    적색 상부 성분은 상기 인커플링 회절소자의 상기 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 상기 아웃커플링 회절소자의 상기 제1 선형 회절광학소자에 의해 증배가 발생하는 상기 출력 회절소자로 들어가며, 상기 아웃커플링 회절소자의 상기 제2 선형 회절광학소자에 의해 사용자의 눈으로 출력되고,
    적색 하부 성분은 상기 입력 회절소자의 상기 제1 선형 회절광학소자에 들어가서 녹색 성분 및 청색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 상기 출력 회절소자의 상기 제2 선형 회절광학소자에서 증배가 발생하는 상기 출력 회절소자로 들어가며, 상기 출력 회절소자의 상기 제1 선형 회절광학소자에 의해 사용자의 눈으로 출력되도록 작동하고,
    상기 회절소자 제3 세트는,
    녹색 중앙 상부 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 상기 제1 증배 회절소자로 들어가고, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되며,
    적색 중앙 상부 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 상기 제1 증배 회절소자로 들어가며, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되고,
    청색 중앙 상부 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 상기 제1 증배 회절소자로 들어가며, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈에 표시되도록 작동하고,
    상기 회절소자 제4 세트는,
    녹색 중앙 하부 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어간 다음, 증배가 발생하는 상기 제2 증배 회절소자로 들어가고, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되며,
    적색 중앙 하부 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어가서 녹색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 상기 제2 증배 회절소자로 들어가며, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되고,
    청색 중앙 하부 성분은 상기 인커플링 회절소자의 상기 제2 선형 회절광학소자에 들어가서 녹색 성분 및 적색 성분의 입사각과 상이한 수평 각도로 전파되는 부분이 회절되고, 다음으로 증배가 발생하는 상기 제2 증배 회절소자로 들어가며, 그 후 상기 아웃커플링 회절소자의 상기 제3 선형 회절광학소자에 들어가서 사용자의 눈으로 출력되도록 작동하는 단계들을 포함하는 방법.
  10. 이미지 프로젝터;
    제1항 내지 제7항 중 어느 한 항에 따른 회절광학소자 아키텍처를 포함하는 도파로를 포함하는 증강현실 디스플레이 장치.
  11. 이미지 프로젝터;
    제4항에 따른 회절광학소자 아키텍처를 포함하는 제1 도파로;
    제5항에 따른 회절광학소자 아키텍처를 포함하는 제2 도파로를 포함하는 증강현실 디스플레이 장치.
  12. 이미지 프로젝터;
    제1항 내지 제7항 중 어느 한 항에 따른 회절광학소자 아키텍처를 포함하는 도파로로서, 상기 회절소자 제1 및 제2 세트는 상기 도파로의 한쪽에 위치하고, 상기 회절소자 제3 및 제4 세트는 상기 도파로의 반대쪽에 위치하는, 도파로를 포함하는 증강현실 디스플레이 장치.
  13. 이미지 프로젝터;
    제1항 내지 제7항 중 어느 한 항에 따른 회절광학소자 아키텍처를 적어도 하나 포함하는 적어도 하나의 도파로를 포함하는 증강현실 디스플레이 장치.
  14. 좌안용 소자와 우안용 소자를 포함하는 증강현실 안경으로서, 좌안용 및 우안용 소자 각각은 제10항에 따른 증강현실 디스플레이 장치이며,
    상기 회절광학소자 아키텍처를 포함하는 도파로가 상기 우안 소자 및 상기 좌안 소자 각각에 위치되어 상기 아웃커플링 회절소자가 사용자 눈의 맞은편에 위치하도록 하는, 증강현실 안경.
  15. 좌안용 소자와 우안용 소자를 포함하는 증강현실 안경으로서, 좌안용 및 우안용 소자 각각은 제11항에 따른 증강현실 디스플레이 장치이며,
    상기 제1 및 제2 도파로는 상기 우안 소자 및 상기 좌안 소자 각각에 위치되어 상기 출력 회절소자가 사용자 눈의 맞은편에 위치하도록 하는, 증강현실 안경.
PCT/KR2021/013947 2020-10-08 2021-10-08 증강현실장치용 도파로의 회절광학소자 아키텍처 WO2022075820A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21878070.8A EP4191321A4 (en) 2020-10-08 2021-10-08 DIFFRACTIVE OPTICAL WAVEGUIDE ELEMENT ARCHITECTURE FOR AUGMENTED REALITY DEVICE
US18/175,035 US20230221570A1 (en) 2020-10-08 2023-02-27 Waveguide architecture based on diffractive optical elements for augmented reality displays with a wide field of view

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
RU2020133191A RU2752296C1 (ru) 2020-10-08 2020-10-08 Волноводная архитектура, основанная на дифракционных оптических элементах, для дисплеев дополненной реальности с широким полем зрения
RU2020133191 2020-10-08
KR10-2021-0111261 2021-08-23
KR1020210111261A KR20220047159A (ko) 2020-10-08 2021-08-23 증강현실장치용 도파로의 회절광학소자 아키텍처

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/175,035 Continuation US20230221570A1 (en) 2020-10-08 2023-02-27 Waveguide architecture based on diffractive optical elements for augmented reality displays with a wide field of view

Publications (1)

Publication Number Publication Date
WO2022075820A1 true WO2022075820A1 (ko) 2022-04-14

Family

ID=81127021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013947 WO2022075820A1 (ko) 2020-10-08 2021-10-08 증강현실장치용 도파로의 회절광학소자 아키텍처

Country Status (3)

Country Link
US (1) US20230221570A1 (ko)
EP (1) EP4191321A4 (ko)
WO (1) WO2022075820A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225368A1 (en) * 2022-05-20 2023-11-23 Vuzix Corporation Image light guide system with crossed in-coupling optics

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015942A (ko) * 2014-05-30 2017-02-10 매직 립, 인코포레이티드 가상 또는 증강 현실 장치로 가상 콘텐츠 디스플레이를 생성하기 위한 방법들 및 시스템들
US9927614B2 (en) 2015-12-29 2018-03-27 Microsoft Technology Licensing, Llc Augmented reality display system with variable focus
US20190004321A1 (en) 2014-08-03 2019-01-03 Wave Optics Ltd Exit pupil expanding diffractive optical waveguiding device
US10185151B2 (en) 2016-12-20 2019-01-22 Facebook Technologies, Llc Waveguide display with a small form factor, a large field of view, and a large eyebox
US20190212557A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Waveguide Architectures and Related Methods of Manufacturing
KR20190126124A (ko) * 2017-03-21 2019-11-08 매직 립, 인코포레이티드 분할된 동공들을 위한 공간 광 변조기 조명을 갖는 디스플레이 시스템
KR20200079274A (ko) * 2017-10-26 2020-07-02 매직 립, 인코포레이티드 증강 현실 디스플레이를 위한 광대역 적응형 렌즈 어셈블리
KR20200095509A (ko) * 2017-12-11 2020-08-10 매직 립, 인코포레이티드 도파관 조명기

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170015942A (ko) * 2014-05-30 2017-02-10 매직 립, 인코포레이티드 가상 또는 증강 현실 장치로 가상 콘텐츠 디스플레이를 생성하기 위한 방법들 및 시스템들
US20190004321A1 (en) 2014-08-03 2019-01-03 Wave Optics Ltd Exit pupil expanding diffractive optical waveguiding device
US9927614B2 (en) 2015-12-29 2018-03-27 Microsoft Technology Licensing, Llc Augmented reality display system with variable focus
US10185151B2 (en) 2016-12-20 2019-01-22 Facebook Technologies, Llc Waveguide display with a small form factor, a large field of view, and a large eyebox
US20190107723A1 (en) * 2016-12-20 2019-04-11 Facebook Technologies, Llc Waveguide display with a small form factor, a large field of view, and a large eyebox
KR20190126124A (ko) * 2017-03-21 2019-11-08 매직 립, 인코포레이티드 분할된 동공들을 위한 공간 광 변조기 조명을 갖는 디스플레이 시스템
KR20200079274A (ko) * 2017-10-26 2020-07-02 매직 립, 인코포레이티드 증강 현실 디스플레이를 위한 광대역 적응형 렌즈 어셈블리
KR20200095509A (ko) * 2017-12-11 2020-08-10 매직 립, 인코포레이티드 도파관 조명기
US20190212557A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Waveguide Architectures and Related Methods of Manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225368A1 (en) * 2022-05-20 2023-11-23 Vuzix Corporation Image light guide system with crossed in-coupling optics

Also Published As

Publication number Publication date
EP4191321A1 (en) 2023-06-07
EP4191321A4 (en) 2024-05-29
US20230221570A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2019088372A1 (en) Flexible frame and flexible display unit having the same
WO2019088373A1 (ko) 플렉서블 디스플레이 유닛 및 이를 구비하는 이동 단말기
WO2014148698A1 (en) Display device and method for controlling the same
WO2013172538A1 (en) Curved display apparatus
WO2017010631A1 (en) A display panel and a displaying apparatus using the same
WO2018155958A1 (ko) 차량용 헤드 업 디스플레이
WO2018074747A1 (en) Display panel and display apparatus having the same
WO2017010659A1 (en) Display device and backlight unit included therein
WO2013180365A1 (en) Member for cotrolling luminous flux, method for fabricating the member, display device, and light emitting device
WO2022075820A1 (ko) 증강현실장치용 도파로의 회절광학소자 아키텍처
WO2022010070A1 (ko) 근안 디스플레이 장치
EP3251341A1 (en) Electronic system with gaze alignment mechanism and method of operation thereof
WO2013100325A1 (ko) 이동 단말기
WO2018194255A1 (ko) 광 확산 렌즈
WO2020050532A1 (ko) 광 스캐닝 홀로그래피 시스템
WO2022080627A1 (ko) 직선 배치 광학 구조를 갖는 컴팩트형 증강 현실용 광학 장치 및 광학 수단의 제조 방법
WO2016017885A1 (en) Screen and laser display apparatus using the same
WO2020075982A1 (ko) 테두리 발광형 디스플레이장치 및 이를 구비한 게임기
WO2023038280A1 (en) Diffractive optical elements-based waveguide architecture for augmented reality glasses with wide field of view
EP4359852A1 (en) Diffractive optical elements-based waveguide architecture for augmented reality glasses with wide field of view
WO2024010285A1 (ko) 확장된 아이박스를 제공하는 증강 현실용 광학 장치
WO2022245040A1 (ko) 휘도를 제어하기 위한 방법 및 장치
WO2024035110A1 (ko) 프로젝트 장치 및 이를 포함하는 전자 디바이스
WO2022186464A1 (ko) 자극 반응형 동적 메타-홀로그래픽 소자
WO2024039128A1 (ko) 광학 부재 및 이를 포함하는 웨어러블 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878070

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021878070

Country of ref document: EP

Effective date: 20230227

NENP Non-entry into the national phase

Ref country code: DE