WO2016019667A1 - 用于充电电池的充电电路和系统 - Google Patents

用于充电电池的充电电路和系统 Download PDF

Info

Publication number
WO2016019667A1
WO2016019667A1 PCT/CN2014/093198 CN2014093198W WO2016019667A1 WO 2016019667 A1 WO2016019667 A1 WO 2016019667A1 CN 2014093198 W CN2014093198 W CN 2014093198W WO 2016019667 A1 WO2016019667 A1 WO 2016019667A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
charging circuit
rechargeable battery
charging
branch
Prior art date
Application number
PCT/CN2014/093198
Other languages
English (en)
French (fr)
Inventor
迟忠君
李香龙
刘秀兰
曾爽
焦东升
陈建树
关宇
栾逢时
Original Assignee
国家电网公司
国网北京市电力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网北京市电力公司 filed Critical 国家电网公司
Publication of WO2016019667A1 publication Critical patent/WO2016019667A1/zh

Links

Images

Definitions

  • the present invention relates to the field of charging devices, and in particular to a charging circuit and system for charging a battery.
  • the energy used in electric vehicles comes from large-capacity, high-power-density power batteries, which can be used repeatedly.
  • DC power In view of the characteristics of the power battery itself, it is necessary to use DC power to charge its pair.
  • the power generated by the power plant and transmitted and distributed is AC. It cannot be used directly to charge the battery. Therefore, it is necessary to design a suitable power conversion.
  • the device is used to convert electrical energy.
  • the charging device of the electric vehicle can be divided into an AC/DC charging device and a DC/DC charging device, and the DC/DC charging device needs to be mounted under the DC bus.
  • DC/DC charging devices can save an AC to DC conversion process in principle, so the efficiency is high.
  • the above AC/DC charging device and DC/DC charging device have energy flowing in one direction, that is, the battery can only be charged, and the battery cannot be discharged.
  • it is usually necessary to use two unidirectional DC/DC devices in reverse parallel which causes the following problems in the charging device:
  • a primary object of the present invention is to provide a charging circuit and system for a rechargeable battery to solve the problem of reduced reliability of a charging station system due to an increase in circuit nodes in the prior art.
  • a charging circuit for a rechargeable battery includes: a first IGBT, a drain of the first IGBT is connected to a positive pole of the DC bus, a source of the first IGBT is connected to a positive pole of the rechargeable battery; and the first diode, the first diode a cathode of the tube is connected to a drain of the first IGBT, an anode of the first diode is connected to a source of the first IGBT, and a second IGBT, a drain of the second IGBT is connected to a source of the first IGBT, The source of the second IGBT is connected to the cathode of the DC bus, the source of the second IGBT is connected to the cathode of the rechargeable battery, and the cathode of the second diode is connected to the drain of the second IGBT.
  • the anode of the second diode is connected to the source of the second IGBT;
  • the first current sensor is connected between the source of the first IGBT and the anode of the rechargeable battery for detecting the charging current of the rechargeable battery;
  • a current sensor connected between the source of the first IGBT and the anode of the rechargeable battery for detecting a discharge current of the rechargeable battery; and a control circuit, the gate of the first IGBT, the gate of the second IGBT, and the first current
  • the sensor and the second current sensor are respectively connected to each other
  • the first IGBT is turned on or off according to the charging current and the discharging current
  • the second IGBT is controlled to be turned on or off.
  • the charging circuit further includes: an absorption capacitor, the first end of the absorption capacitor is connected to the drain of the first IGBT, and the second end of the absorption capacitor is connected to the source of the second IGBT for absorbing the first IGBT connection
  • the charging circuit further includes: a first filter capacitor connected between the positive pole and the negative pole of the DC bus for filtering the DC power outputted by the DC bus; and a second filter capacitor connected between the positive pole and the negative pole of the rechargeable battery It is used to filter the DC power input from the rechargeable battery.
  • the charging circuit further includes: a first absorption resistor connected in parallel with the first filter capacitor for absorbing the electrical energy released by the first filter capacitor; and a second absorption resistor connected in parallel with the second filter capacitor for absorbing the second filter capacitor The energy released.
  • the charging circuit further includes: a first load connected between the positive electrode and the negative electrode of the DC bus; and a second load connected between the positive electrode and the negative electrode of the rechargeable battery.
  • the charging circuit further includes: a first voltage sensor connected between the positive pole and the negative pole of the DC bus for detecting a voltage across the DC bus; and a second voltage sensor connected between the positive pole and the negative pole of the rechargeable battery To detect the voltage across the rechargeable battery.
  • the charging circuit further includes: a first sub-charging circuit connected in series on the power transmission circuit of the positive pole of the DC bus for limiting the inrush current of the DC bus output; and the second sub-charging circuit connected in series to the positive electrode of the rechargeable battery On the power transmission circuit, used to limit the inrush current of the rechargeable battery output.
  • the first sub-charging circuit includes: a first branch and a second branch, wherein the first branch and the second branch are connected in parallel, and the first branch is disposed on a power transmission circuit of the positive pole of the DC bus, wherein the first The branch circuit includes a first DC contactor, the second branch includes a first relay and a first resistor, the first relay is connected in series with the first resistor, and the second sub-charging circuit includes: a third branch and a fourth branch, The third branch and the fourth branch are connected in parallel, and the third branch is disposed on the power transmission circuit of the positive pole of the rechargeable battery, wherein the third branch includes a second DC contactor, and the fourth branch includes a second relay and a second resistor The second relay is connected in series with the second resistor.
  • the charging circuit further includes: a storage inductor, the first end of the energy storage inductor is respectively connected to the source of the first IGBT and the drain of the second IGBT, and the second end of the storage inductor is opposite to the positive electrode of the rechargeable battery connection.
  • a charging system for a rechargeable battery includes the above-described charging circuit for a rechargeable battery.
  • a charging circuit formed by the first IGBT 11, the second IGBT 12, the first diode D1, the second diode D2, the first current sensor 13, the second current sensor 14, and the control circuit 15 is used,
  • the charging and discharging control of the rechargeable battery can be realized, which solves the problem that the reliability of the charging station system is reduced due to the increase of circuit nodes in the prior art, and the reliability of the charging station system is improved. effect.
  • FIG. 1 is a circuit diagram of a charging circuit for a rechargeable battery in accordance with an embodiment of the present invention
  • FIG. 2 is a circuit diagram of a preferred charging circuit for a rechargeable battery in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a charging system for a rechargeable battery in accordance with an embodiment of the present invention.
  • Embodiments of the present invention provide a charging circuit for a rechargeable battery.
  • the charging circuit includes a first IGBT 11, a second IGBT 12, a first diode D1, a second diode D2, a first current sensor 13, a second current sensor 14, and a control circuit 15.
  • the drain of the first IGBT 11 is connected to the positive electrode V+ of the DC bus, the source of the first IGBT 11 is connected to the positive electrode VBAT+ of the rechargeable battery, and the cathode of the first diode D1 is connected to the drain of the first IGBT 11, first The anode of the diode D1 is connected to the source of the first IGBT 11; the drain of the second IGBT 12 is connected to the source of the first IGBT 11, and the source of the second IGBT 12 is connected to the cathode V- of the DC bus, and the second The source of the IGBT is connected to the negative electrode VBAT- of the rechargeable battery; the cathode of the second diode D2 is connected to the drain of the second IGBT 12, and the anode of the second diode D2 is connected to the source of the second IGBT 11;
  • the first current sensor 13 is connected between the source of the first IGBT 11 and the positive electrode VBAT+ of the rechargeable battery for
  • the positive electrode VBAT+ is used to detect the discharge current i i of the rechargeable battery; the control circuit 15 is connected to the gate of the first IGBT 11 , the gate of the second IGBT 12 , the first current sensor 13 and the second current sensor 14 respectively. according to the charging current and the discharging current i o i i control IGBT11 first turned on or off, and controlling the second IGBT12 on or off.
  • V+ is the positive pole of the DC bus
  • V- is the negative pole of the DC bus
  • VBAT+ is the positive pole of the rechargeable battery
  • VBAT- is the negative pole of the rechargeable battery.
  • the first current sensor 13 and the second current sensor 14 are reversely connected in series in the circuit for detecting current when the battery is charged and discharged, and the control circuit 15 receives the current transmitted by the first current sensor 13 and the second current sensor 14.
  • the parameters through the internal logic judgment and control algorithm, generate a certain duty cycle of the PWM wave, used to control the turn-on and turn-off of the two IGBTs, maintaining the smooth transmission of energy.
  • the charging circuit of the embodiment of the present invention adopts a topology of a bidirectional half-bridge converter.
  • the bidirectional half-bridge converter When charging the battery, the bidirectional half-bridge converter is equivalent to a Buck circuit.
  • the bidirectional half-bridge converter When discharging a battery, the bidirectional half-bridge converter is equivalent to a Boost circuit.
  • the bidirectional half-bridge converter has a small voltage-current stress of the switching elements (the first IGBT 11 and the second IGBT 12) and the diodes (the first diode D1 and the second diode D2) with respect to other bidirectional DC/DC converters, Active devices have the advantages of low conduction loss and high efficiency.
  • a charging circuit formed by the first IGBT 11, the second IGBT 12, the first diode D1, the second diode D2, the first current sensor 13, the second current sensor 14, and the control circuit 15 is used,
  • the charging and discharging control of the rechargeable battery can be realized, which solves the problem that the reliability of the charging station system is reduced due to the increase of circuit nodes in the prior art, and the reliability of the charging station system is improved. effect.
  • the charging circuit further includes: a snubber capacitor C1, a first end of the snubber capacitor C1 is connected to the drain of the first IGBT 11, and a second end of the snubber capacitor C1 is connected to the source of the second IGBT 12,
  • the peak energy released during the turning on or off of the first IGBT 11 is absorbed, or is used to absorb the peak energy released during the turning on or off of the second IGBT 12.
  • the snubber capacitor can be an axial non-inductive snubber capacitor.
  • An axial non-inductive snubber capacitor is connected in parallel across the two IGBTs to absorb the peak energy released during the switching of the two IGBTs, avoiding the peak energy supplied to the charging station system. Damage.
  • the charging circuit further includes: a first filter capacitor C2 connected between the positive pole V+ and the negative pole V- of the DC bus for filtering the DC power outputted by the DC bus; and the second filter capacitor C3 connected to the rechargeable battery Between the positive electrode VBAT+ and the negative electrode VBAT-, it is used to filter the direct current input from the rechargeable battery.
  • a first filter capacitor C2 connected between the positive pole V+ and the negative pole V- of the DC bus for filtering the DC power outputted by the DC bus
  • the second filter capacitor C3 connected to the rechargeable battery Between the positive electrode VBAT+ and the negative electrode VBAT-, it is used to filter the direct current input from the rechargeable battery.
  • the first filter capacitor C2 is used to smooth the voltage and current ripple of the DC bus output
  • the second filter capacitor C3 is used to smooth the voltage and current ripple of the rechargeable battery input.
  • the charging circuit further includes: a first absorption resistor R1 connected in parallel with the first filter capacitor C2 for absorbing the electrical energy released by the first filter capacitor C2; and a second absorption resistor R2 connected in parallel with the second filter capacitor C3 for Absorbing the electrical energy released by the second filter capacitor C2.
  • first filter capacitor C2 and the second filter capacitor C3 store a certain amount of electric energy during operation, when the rechargeable battery stops charging or discharging, the electric energy is released into the circuit by using the first absorption resistor R1 and the second.
  • the snubber resistor R2 is used to absorb the energy released by the above capacitors during shutdown.
  • the charging circuit further comprises: a first load 16 connected between the positive V+ and the negative V- of the DC bus; and a second load 17 connected between the positive VBAT+ and the negative VBAT- of the rechargeable battery.
  • the first load 16 is used to protect the circuit when the DC bus side circuit is unloaded
  • the second load 17 is used to protect the circuit when the rechargeable battery side circuit is unloaded.
  • the charging circuit further comprises: a first voltage sensor 18 connected between the positive pole V+ and the negative pole V- of the DC bus for detecting the voltage across the DC bus; the second voltage sensor 19 connected to the positive VBAT+ of the rechargeable battery Between the negative electrode VBAT and the voltage across the rechargeable battery.
  • the control circuit is further connected to the first voltage sensor 18 and the second voltage sensor 19 for receiving the voltage signal output by the voltage sensor to implement control of the circuit.
  • the charging circuit further comprises: a first sub-charging circuit connected to the power transmission circuit of the positive pole of the DC bus for limiting the inrush current of the DC bus output; and a second sub-charging circuit connected to the positive pole of the rechargeable battery On the circuit, used to limit the inrush current of the rechargeable battery output.
  • the first sub-charging circuit includes: a first branch and a second branch, the first branch and the second branch are connected in parallel, and the first branch is disposed on the positive V+ transmission circuit of the DC bus, wherein One road includes a first DC contactor 20, the second branch includes a first relay K1 and a first resistor R3, the first relay K1 is connected in series with the first resistor R3, and the second sub-charging circuit includes: a third branch and The fourth branch, the third branch and the fourth branch are connected in parallel, and the third branch is disposed on the power transmission circuit of the positive VBAT+ of the rechargeable battery, wherein the third branch includes the second DC contactor 21, and the fourth branch The second relay K2 and the second resistor R4 are included, and the second relay K2 is connected in series with the second resistor R4.
  • the two ends of the charging circuit are respectively connected with a pre-charging circuit composed of a resistor, a relay and a DC contactor (ie, a first sub-charging circuit and a second sub-charging circuit), which can be used to limit the DC bus and the battery pair during the booting process.
  • a pre-charging circuit composed of a resistor, a relay and a DC contactor (ie, a first sub-charging circuit and a second sub-charging circuit), which can be used to limit the DC bus and the battery pair during the booting process.
  • the surge current caused by the instantaneous charging of the filter capacitor C2 and the second filter capacitor C3.
  • the charging circuit further includes: a storage inductor L, the first end of the storage inductor L is connected to the source of the first IGBT 11 and the drain of the second IGBT 12, respectively, and the second end of the energy storage inductor L and the rechargeable battery The positive VBAT+ is connected.
  • the energy storage inductor L can be used to store electrical energy and complete energy conversion.
  • Embodiments of the present invention provide a charging system for a rechargeable battery.
  • the charging system for a rechargeable battery includes: a charging circuit for charging a battery provided by an embodiment of the present invention.
  • PID control is a mature and widely used control method. Its simple structure does not require an exact mathematical model and is easy to implement.
  • the digital control method adopted by the present invention is incremental PI control and belongs to one of the PID control methods.
  • the digital controller used in the embodiment of the present invention is TMS320F28335, which is a floating-point digital signal DSP processor introduced by TI.
  • the processor combines the integrated functions of the control peripherals with the ease of use of the microprocessor. Powerful control and signal processing capabilities and C programming efficiency enable complex control algorithms to be widely used in industrial control.
  • the processor can perform complex floating-point operations, saving code execution time and storage space, with high precision, low cost, low power consumption, high peripheral integration, large data and program storage, and A/D conversion. Accurate and fast advantages.
  • TMS320F28335 collects circuit parameters such as voltage and current through voltage and current sensors and circuit processing circuit, and internally adjusts PI by software algorithm. PWM wave with required duty cycle is used to drive on and off of IGBT tube to ensure smooth energy transmission.
  • the embodiments of the invention have protection functions such as input and output over-voltage protection, over-current protection, drive power protection and drive over-current protection.
  • the voltage/current sensor collects input and output voltage and current, and transmits it to a Complex Programmable Logic Device (CPLD) through a voltage-current conversion circuit, and outputs a logic relationship through the CPLD.
  • CPLD Complex Programmable Logic Device
  • the fault code consisting of 4 digits and 2nd digits is generated.
  • the generated fault code is connected to the 4 general-purpose input and output ports of the DSP chip through the 4 pins of the CPLD.
  • the DSP can judge by reading the state of these general-purpose input and output ports. The specific fault that occurred.
  • the charging system of the embodiment of the invention further has a display screen, which is optionally a touch type liquid crystal display, and the operation interface based on the display screen is simple and easy to understand.
  • the liquid crystal display can easily set the charging parameters, protection parameters and working mode of the charging device, and the liquid crystal display can also display information such as charging mode, charging state and fault state.
  • the charging system of the embodiment of the invention also has two CAN interfaces for real-time external communication, one channel can be connected to the upper computer, and the charging device can be remotely monitored by the upper computer; one way can be connected to the battery management system (BMS system), The BMS system communicates, and the charging device can obtain the status information of the battery at any time to automatically adjust the charging parameters.
  • BMS system battery management system
  • the DSP controller TMS320F28335 is a control core.
  • the input and output voltage and current signals are sampled and processed by the CPLD logic and then sent to the AD sampling input end of the DSP chip, and the sampling data is sampled.
  • the PI adjustment algorithm is implemented inside the DSP chip to generate the PWM wave of the required duty cycle.
  • the PWM wave input CPLD is sent to the IGBT driving circuit after the logic processing of the CPLD, after being amplified by the IGBT driving circuit. Then, the control terminal of the IGBT is used to control the turn-on and turn-off of the IGBT, thereby achieving the purpose of closed-loop control.
  • the DSP chip is connected to the display through the CAN interface, and the working mode of the charger can be set by manually setting the working mode parameter in the display, and the display can also be used to display the charging and discharging voltage under the normal working state of the charger. Parameters such as current and charge and discharge time.
  • the display in addition to the CAN interface with the DSP chip, the display also has two CAN interfaces, which are respectively connected to the BMS system and the host computer system to realize the charger and the BMS system and the host computer respectively. Communication.
  • the embodiment of the invention can charge the battery as well as the battery discharge.
  • the parameters of charge and discharge fully meet the design requirements.
  • the charging system of the embodiment of the present invention charges the battery, there is a constant voltage charging mode and a constant current charging mode; when discharging the battery, it is a constant current discharging mode.
  • the charging system of the embodiment of the present invention can communicate with the battery management system during charging and discharging, and output a certain voltage and current according to the requirements of the battery management system. And the switching between the constant current charging mode and the constant voltage charging mode can be automatically completed according to the demand value of the battery management system.
  • the charging system of the embodiment of the invention can communicate with the background, control the operation of the module through the background, and can also set the working mode through the monitoring display provided by the device.
  • the monitoring display screen can display parameters such as a given charging and discharging voltage, a current value, and an actual charging and discharging voltage, a current value, and a charging and discharging time.
  • the system When the charging system of the embodiment of the invention fails, the system will automatically stop, and the display screen will display the fault code information.
  • the fault code can be used to find the type of the fault and provide an indication for the fault investigation.
  • the display screen when the display function is completed, can be a display screen having only a display function; when the display screen touch information needs to be received, the display screen is a touch display screen.
  • the upper computer can be a smart phone (such as an Android mobile phone, an iOS mobile phone, etc.), a tablet computer, a palmtop computer, a desktop computer, a server, a background controller, and a mobile Internet device (MID).
  • Terminal equipment such as PAD.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于充电电池的充电电路和系统,该充电电路包括第一IGBT(11),第一二极管(D1),第二IGBT(12),第二二极管(D2)构成的双向DC/DC变换电路,第一电流传感器,连接在第一IGBT的源极与充电电池的正极之间;第二电流传感器,连接在第一IGBT的源极与充电电池的正极之间;以及控制电路,与第一和第二IGBT的栅极、第一和第二电流传感器分别连接。该电路提高了充电站系统的可靠性。

Description

用于充电电池的充电电路和系统 技术领域
本发明涉及充电设备领域,具体而言,涉及一种用于充电电池的充电电路和系统。
背景技术
电动汽车使用的能源来自于大容量高功率密度的动力电池,动力电池是可以反复充电使用的。鉴于动力电池自身的特性,必须使用直流电对其对进行充电,而发电厂发出来并进行传输分配的电都属于交流电,是不可以直接用来给电池进行充电的,所以必须设计合适的电源变换器来进行电能的转换。根据电动汽车充电站的设计方式,电动汽车的充电设备可以分为AC/DC充电设备和DC/DC充电设备,DC/DC充电设备需要挂载在直流母线下。与AC/DC设备相比,DC/DC充电设备在原理上可以节省一个交流到直流的变换过程,因此效率较高。
上述的AC/DC充电设备和DC/DC充电设备,其能量都是单向流动的,也就是说只能对电池进行充电,而无法对电池进行放电。在需要对电池进行放电时,通常需要将两个单向的DC/DC设备反向并联使用,这使得充电设备存在以下问题:
成本增加:多增加一套设备,成本也相应地增加。
降低可靠性:由于增加了一套设备,使得电路节点增多,降低了充电站系统的可靠性。
增加难度:在需要改变电池充放电模式的时候,则需要重新连接线路,增加了现场工作的难度。
针对现有技术中由于电路节点增多导致充电站系统的可靠性降低的问题,目前尚未提出有效的解决方案。
发明内容
本发明的主要目的在于提供一种用于充电电池的充电电路和系统,以解决现有技术中由于电路节点增多导致充电站系统的可靠性降低的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种用于充电电池的充电电路。根据本发明的充电电路包括:第一IGBT,第一IGBT的漏极与直流母线的正极相连接,第一IGBT的源极与充电电池的正极相连接;第一二极管,第一二极管的阴极与第一IGBT的漏极相连接,第一二极管的阳极与第一IGBT的源极相连接;第二IGBT,第二IGBT的漏极与第一IGBT的源极相连接,第二IGBT的源极与直流母线的负极相连接,第二IGBT的源极与充电电池的负极相连接;第二二极管,第二二极管的阴极与第二IGBT的漏极相连接,第二二极管的阳极与第二IGBT的源极相连接;第一电流传感器,连接在第一IGBT的源极与充电电池的正极之间,用于检测充电电池的充电电流;第二电流传感器,连接在第一IGBT的源极与充电电池的正极之间,用于检测充电电池的放电电流;以及控制电路,与第一IGBT的栅极、第二IGBT的栅极、第一电流传感器和第二电流传感器分别相连接,用于根据充电电流和放电电流控制第一IGBT的接通或断开,以及控制第二IGBT的接通或断开。
进一步地,充电电路还包括:吸收电容,吸收电容的第一端与第一IGBT的漏极相连接,吸收电容的第二端与第二IGBT的源极相连接,用于吸收第一IGBT接通或断开过程中释放的尖峰能量,或者,用于吸收第二IGBT接通或断开过程中释放的尖峰能量。
进一步地,充电电路还包括:第一滤波电容,连接在直流母线的正极和负极之间,用于对直流母线输出的直流电进行过滤;第二滤波电容,连接在充电电池的正极和负极之间,用于对充电电池输入的直流电进行过滤。
进一步地,充电电路还包括:第一吸收电阻,与第一滤波电容并联,用于吸收第一滤波电容释放的电能;第二吸收电阻,与第二滤波电容并联,用于吸收第二滤波电容释放的电能。
进一步地,充电电路还包括:第一负载,连接在直流母线的正极和负极之间;第二负载,连接在充电电池的正极和负极之间。
进一步地,充电电路还包括:第一电压传感器,连接在直流母线的正极和负极之间,用于检测直流母线两端的电压;第二电压传感器,连接在充电电池的正极和负极之间,用于检测充电电池两端的电压。
进一步地,充电电路还包括:第一子充电电路,串联连接在直流母线的正极的输电电路上,用于限制直流母线输出的浪涌电流;第二子充电电路,串联连接在充电电池的正极的输电电路上,用于限制充电电池输出的浪涌电流。
进一步地,第一子充电电路包括:第一支路和第二支路,第一支路和第二支路并联,第一支路设置在直流母线的正极的输电电路上,其中,第一支路包括第一直流接触器,第二支路包括第一继电器和第一电阻,第一继电器与第一电阻串联,第二子充电电路包括:第三支路和第四支路,第三支路和第四支路并联,第三支路设置在充电电池的正极的输电电路上,其中,第三支路包括第二直流接触器,第四支路包括第二继电器和第二电阻,第二继电器与第二电阻串联。
进一步地,充电电路还包括:储能电感,储能电感的第一端与第一IGBT的源极和第二IGBT的漏极分别相连接,储能电感的第二端与充电电池的正极相连接。
为了实现上述目的,根据本发明的另一方面,提供了一种用于充电电池的充电系统。根据本发明的充电系统包括:上述的用于充电电池的充电电路。
根据本发明实施例,采用第一IGBT11、第二IGBT12、第一二极管D1、第二二极管D2、第一电流传感器13、第二电流传感器14和控制电路15形成的充电电路,无需增加新的DC/DC设备,即可实现充电电池的充电和放电控制,解决了现有技术中由于电路节点增多导致充电站系统的可靠性降低的问题,达到了提高充电站系统的可靠性的效果。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的用于充电电池的充电电路的电路图;
图2是根据本发明实施例优选的用于充电电池的充电电路的电路图;以及
图3是根据本发明实施例的一种用于充电电池的充电系统的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领 域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例提供了一种用于充电电池的充电电路。
图1是根据本发明实施例的用于充电电池的充电电路的电路图。该充电电路包括:第一IGBT11、第二IGBT12、第一二极管D1、第二二极管D2、第一电流传感器13、第二电流传感器14和控制电路15。
第一IGBT11的漏极与直流母线的正极V+相连接,第一IGBT11的源极与充电电池的正极VBAT+相连接;第一二极管D1的阴极与第一IGBT11的漏极相连接,第一二极管D1的阳极与第一IGBT11的源极相连接;第二IGBT12的漏极与第一IGBT11的源极相连接,第二IGBT12的源极与直流母线的负极V-相连接,第二IGBT的源极与充电电池的负极VBAT-相连接;第二二极管D2的阴极与第二IGBT12的漏极相连接,第二二极管D2的阳极与第二IGBT11的源极相连接;第一电流传感器13连接在第一IGBT11的源极与充电电池的正极VBAT+之间,用于检测充电电池的充电电流io;第二电流传感器14连接在第一IGBT11的源极与充电电池的正极VBAT+之间,用于检测充电电池的放电电流ii;控制电路15与第一IGBT11的栅极、第二IGBT12的栅极、第一电流传感器13和第二电流传感器14分别相连接,用于根据充电电流io和放电电流ii控制第一IGBT11的接通或断开,以及控制第二IGBT12的接通或断开。图1中,V+为直流母线的正极,V-为直流母线的负极,VBAT+为充电电池的正极,VBAT-为充电电池的负极。
第一电流传感器13和第二电流传感器14反向串联在电路中,分别用于检测电池充电和电池放电时的电流;控制电路15接收第一电流传感器13和第二电流传感器14传送过来的电流等参数,通过内部的逻辑判断和控制算法,产生一定占空比的PWM波,用于控制两个IGBT的开通和关断,维持能量平稳传输。
本发明实施例的充电电路采用的拓扑结构为双向半桥变换器,对电池进行充电时,双向半桥变换器相当于一个Buck电路。对电池进行放电时,双向半桥变换器相当于一个Boost电路。相对于其他双向DC/DC变换器,双向半桥变换器具有开关元件(第一IGBT11和第二IGBT12)和二极管(第一二极管D1和第二二极管D2)的电压电流应力小,有源器件的导通损耗小、效率高等优点。
根据本发明实施例,采用第一IGBT11、第二IGBT12、第一二极管D1、第二二极管D2、第一电流传感器13、第二电流传感器14和控制电路15形成的充电电路,无需增加新的DC/DC设备,即可实现充电电池的充电和放电控制,解决了现有技术中由于电路节点增多导致充电站系统的可靠性降低的问题,达到了提高充电站系统的可靠性的效果。
如图2所示,充电电路还包括:吸收电容C1,吸收电容C1的第一端与第一IGBT11的漏极相连接,吸收电容C1的第二端与第二IGBT12的源极相连接,用于吸收第一IGBT11接通或断开过程中释放的尖峰能量,或者,用于吸收第二IGBT12接通或断开过程中释放的尖峰能量。
吸收电容可以是轴向无感吸收电容,在两个IGBT两端并联一个轴向无感吸收电容,用于吸收两个IGBT开关过程中释放的尖峰能量,避免由于释放的尖峰能量对充电站系统的损害。
优选地,充电电路还包括:第一滤波电容C2,连接在直流母线的正极V+和负极V-之间,用于对直流母线输出的直流电进行过滤;第二滤波电容C3,连接在充电电池的正极VBAT+和负极VBAT-之间,用于对充电电池输入的直流电进行过滤。
第一滤波电容C2用于平滑直流母线输出的电压电流纹波,第二滤波电容C3用于平滑充电电池输入的电压电流纹波。
优选地,充电电路还包括:第一吸收电阻R1,与第一滤波电容C2并联,用于吸收第一滤波电容C2释放的电能;第二吸收电阻R2,与第二滤波电容C3并联,用于吸收第二滤波电容C2释放的电能。
由于第一滤波电容C2和第二滤波电容C3在工作过程中,会存储一定的电能,在充电电池停止充电或者放电时,这些电能会释放到电路中,通过采用第一吸收电阻R1和第二吸收电阻R2用于停机时吸收上述电容释放的能量。
优选地,充电电路还包括:第一负载16,连接在直流母线的正极V+和负极V-之间;第二负载17,连接在充电电池的正极VBAT+和负极VBAT-之间。第一负载16用于在直流母线侧电路空载时对电路进行保护,第二负载17用于在充电电池侧电路空载时对电路进行保护。
优选地,充电电路还包括:第一电压传感器18,连接在直流母线的正极V+和负极V-之间,用于检测直流母线两端的电压;第二电压传感器19,连接在充电电池的正极VBAT+和负极VBAT-之间,用于检测充电电池两端的电压。
其中,控制电路还与第一电压传感器18和第二电压传感器19分别相连接,用于接收电压传感器输出的电压信号,以实现对电路的控制。
优选地,充电电路还包括:第一子充电电路,连接在直流母线的正极的输电电路上,用于限制直流母线输出的浪涌电流;第二子充电电路,连接在充电电池的正极的输电电路上,用于限制充电电池输出的浪涌电流。
具体地,第一子充电电路包括:第一支路和第二支路,第一支路和第二支路并联,第一支路设置在直流母线的正极V+的输电电路上,其中,第一支路包括第一直流接触器20,第二支路包括第一继电器K1和第一电阻R3,第一继电器K1与第一电阻R3串联,第二子充电电路包括:第三支路和第四支路,第三支路和第四支路并联,第三支路设置在充电电池的正极VBAT+的输电电路上,其中,第三支路包括第二直流接触器21,第四支路包括第二继电器K2和第二电阻R4,第二继电器K2与第二电阻R4串联。
充电电路的两端分别接入由电阻,继电器和直流接触器构成的预充电电路(即第一子充电电路和第二子充电电路),可以用于限制开机过程中直流母线和电池对第一滤波电容C2和第二滤波电容C3瞬时充电造成的浪涌电流。
优选地,充电电路还包括:储能电感L,储能电感L的第一端与第一IGBT11的源极和第二IGBT12的漏极分别相连接,储能电感L的第二端与充电电池的正极VBAT+相连接。
储能电感L可以用于存储电能,完成能量转换。
本发明实施例提供了一种用于充电电池的充电系统。
该用于充电电池的充电系统包括:本发明实施例提供的用于充电电池的充电电路。
具体地,PID控制是一种技术成熟,应用广泛的控制方法。它的结构简单,不需要确切的数学模型,易于实现。本发明采用的数字控制方法是增量式PI控制,属于PID控制方法中的一种。
本发明实施例采用的数字控制器为TMS320F28335,它是TI公司推出的一款浮点型数字信号DSP处理器,该处理器融合了控制外设的集成功能与微处理器的易用性,具有强大的控制和信号处理能力以及C语言编程效率,能够实现复杂的控制算法,在工业控制中得到了广泛的应用。同时,该处理器能够执行复杂的浮点运算,可以节省代码执行时间和存储空间,具有精度高、成本低、功耗小、外设集成度高、数据及程序存储量大和A/D转换更精确快速等优点。TMS320F28335通过电压电流传感器和电路处理电路采集电压电流等电路参数,在内部通过软件算法完成PI调节,输出所需占空比的PWM波用于驱动IGBT管的通断,保证能量的平稳传输。
本发明实施例具有输入输出过欠压保护,过流保护,驱动电源保护以及驱动过流保护等保护功能。如图3所示,电压/电流传感器采集输入输出电压电流,经过电压电流变换电路传输给到复杂可编程逻辑器件(Complex Programmable Logic Device,简称为CPLD),通过CPLD内部的逻辑关系组合,输出一组由4位二级制数组成的故障代码,生成的故障代码通过CPLD的4个管脚连接到DSP芯片的4路通用输入输出口,DSP通过读取这些通用输入输出口的状态,可以判断发生的具体故障。
本发明实施例的充电系统还具有显示屏,该显示屏可选的为触摸式液晶显示屏,基于该显示屏的操作界面简明易懂。通过该液晶显示屏可以很容易的设定充电设备的充电参数、保护参数和工作模式等信息,同时该液晶显示屏也可以显示充电模式、充电状态和故障状态等信息。
本发明实施例的充电系统还具有两路实时对外通信的CAN接口,一路可连接至上位机,通过上位机对充电设备进行远距离监控;一路可连接至电池管理系统(BMS系统),通过和BMS系统通信,充电设备可随时获取电池的状态信息,用以自动调节充电参数。
本发明实施例的充电系统的工作参数为:
输入电压:700±40V;
输出电压:150-300V;
充电电流:0-75A;
放电电流:0-75A;
稳压精度:≤±1%;
稳流精度:≤±1%;
纹波系数:≤±1%;
满载效率:≥92%;
图3为本发明的系统框图,如图3所示,DSP控制器TMS320F28335为控制核心,输入输出的电压电流信号经采样处理后通过CPLD逻辑处理后送入DSP芯片的AD采样输入端,采样数据经过内部算法处理,在DSP芯片内部实现PI调节算法,产生所需占空比的PWM波,该PWM波输入CPLD,经过CPLD的逻辑处理之后送到IGBT驱动电路,在经过IGBT驱动电路的放大后,再给到IGBT的控制端,用于控制IGBT的开通和关断,从而达到闭环控制的目的。另外,DSP芯片通过CAN接口和显示屏相连,可以通过手动设置显示屏中的工作模式参数来设定充电机的工作模式,显示屏也可以用来显示充电机正常工作状态下的充放电电压、电流和充放电时间等参数,同时,除了与DSP芯片的CAN接口外,显示屏还留有两路CAN接口,分别连接至BMS系统和上位机系统,实现充电机分别与BMS系统和上位机的通信。
通过上述描述,可以看出本发明实施例可以达到如下效果:
本发明实施例既可对电池充电,也可用于电池放电。充放电各参数完全满足设计要求。
本发明实施例的充电系统对电池充电时,有恒压充电模式和恒流充电模式;对电池放电时,为恒流放电模式。
本发明实施例的充电系统在进行充放电时可以和电池管理系统进行通信,根据电池管理系统的需求输出一定的电压和电流。并且可以根据电池管理系统的需求值自动完成恒流充电模式和恒压充电模式之间的切换。
本发明实施例的充电系统可以和后台进行通信,通过后台来控制模块的运行情况,也可以通过设备自带的监控显示屏进行工作模式的设定。
本发明实施例的充电系统正常工作时,其监控显示屏可以显示给定的充放电电压、电流值和实际的充放电电压、电流值以及充放电的时间等参数。
本发明实施例的充电系统发生故障时,会自动停机,同时显示屏会显示故障代码信息,通过故障代码可以查知故障的类型,为故障排查提供指示作用。
本领域普通技术人员可以理解,当完成显示功能时,显示屏可以是只具备显示功能的显示屏;当需要接收显示屏触摸信息时,该显示屏为触摸显示屏。
本领域普通技术人员可以理解,上位机可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑、台式电脑、服务器、后台控制器以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种用于充电电池的充电电路,其特征在于,包括:
    第一IGBT,所述第一IGBT的漏极与直流母线的正极相连接,所述第一IGBT的源极与充电电池的正极相连接;
    第一二极管,所述第一二极管的阴极与所述第一IGBT的漏极相连接,所述第一二极管的阳极与所述第一IGBT的源极相连接;
    第二IGBT,所述第二IGBT的漏极与所述第一IGBT的源极相连接,所述第二IGBT的源极与所述直流母线的负极相连接,所述第二IGBT的源极与所述充电电池的负极相连接;
    第二二极管,所述第二二极管的阴极与所述第二IGBT的漏极相连接,所述第二二极管的阳极与所述第二IGBT的源极相连接;
    第一电流传感器,连接在所述第一IGBT的源极与所述充电电池的正极之间,用于检测所述充电电池的充电电流;
    第二电流传感器,连接在所述第一IGBT的源极与所述充电电池的正极之间,用于检测所述充电电池的放电电流;以及
    控制电路,与所述第一IGBT的栅极、所述第二IGBT的栅极、所述第一电流传感器和所述第二电流传感器分别相连接,用于根据所述充电电流和所述放电电流控制所述第一IGBT的接通或断开,以及控制所述第二IGBT的接通或断开。
  2. 根据权利要求1所述的充电电路,其特征在于,所述充电电路还包括:
    吸收电容,所述吸收电容的第一端与所述第一IGBT的漏极相连接,所述吸收电容的第二端与所述第二IGBT的源极相连接,用于吸收所述第一IGBT接通或断开过程中释放的尖峰能量,或者,用于吸收所述第二IGBT接通或断开过程中释放的尖峰能量。
  3. 根据权利要求1所述的充电电路,其特征在于,所述充电电路还包括:
    第一滤波电容,连接在所述直流母线的正极和负极之间,用于对所述直流母线输出的直流电进行过滤;
    第二滤波电容,连接在所述充电电池的正极和负极之间,用于对所述充电电池输入的直流电进行过滤。
  4. 根据权利要求3所述的充电电路,其特征在于,所述充电电路还包括:
    第一吸收电阻,与所述第一滤波电容并联,用于吸收所述第一滤波电容释放的电能;
    第二吸收电阻,与所述第二滤波电容并联,用于吸收所述第二滤波电容释放的电能。
  5. 根据权利要求1所述的充电电路,其特征在于,所述充电电路还包括:
    第一负载,连接在所述直流母线的正极和负极之间;
    第二负载,连接在所述充电电池的正极和负极之间。
  6. 根据权利要求1所述的充电电路,其特征在于,所述充电电路还包括:
    第一电压传感器,连接在所述直流母线的正极和负极之间,用于检测所述直流母线两端的电压;
    第二电压传感器,连接在所述充电电池的正极和负极之间,用于检测所述充电电池两端的电压。
  7. 根据权利要求6所述的充电电路,其特征在于,所述控制电路根据接收的所述第一电流传感器、所述第二电流传感器、所述第一电压传感器和所述第二电压传感器的参数,通过PI控制算法,产生PWM波,来控制所述第一IGBT的接通或断开,以及控制所述第二IGBT的接通或断开。
  8. 根据权利要求1所述的充电电路,其特征在于,所述充电电路还包括:
    第一子充电电路,连接在所述直流母线的正极的输电电路上,用于限制所述直流母线输出的浪涌电流;
    第二子充电电路,连接在所述充电电池的正极的输电电路上,用于限制所述充电电池输出的浪涌电流。
  9. 根据权利要求8所述的充电电路,其特征在于,
    所述第一子充电电路包括:第一支路和第二支路,所述第一支路和所述第二支路并联,所述第一支路设置在所述直流母线的正极的输电电路上,其中, 所述第一支路包括第一直流接触器,所述第二支路包括第一继电器和第一电阻,所述第一继电器与所述第一电阻串联,
    所述第二子充电电路包括:第三支路和第四支路,所述第三支路和所述第四支路并联,所述第三支路设置在所述充电电池的正极的输电电路上,其中,所述第三支路包括第二直流接触器,所述第四支路包括第二继电器和第二电阻,所述第二继电器与所述第二电阻串联。
  10. 根据权利要求1所述的充电电路,其特征在于,所述充电电路还包括:
    储能电感,所述储能电感的第一端与所述第一IGBT的源极和所述第二IGBT的漏极分别相连接,所述储能电感的第二端与所述充电电池的正极相连接。
  11. 根据权利要求1所述的充电电路,其特征在于,所述控制电路接收所述第一电流传感器和所述第二电流传感器传送过来的电流参数,通过逻辑判断和控制算法,产生PWM波,用于控制所述第一IGBT的接通或断开,以及控制所述第二IGBT的接通或断开。
  12. 根据权利要求1所述的充电电路,其特征在于,所述第一电流传感器和所述第二电流传感器反向串联。
  13. 一种用于充电电池的充电系统,其特征在于,包括:权利要求1至12中任一项所述的用于充电电池的充电电路。
  14. 根据权利要求13所述的系统,其特征在于,所述系统还包括:
    电池管理系统,所述充电电路和所述BMS系统双向通信,用于所述充电电路获取所述充电电池的状态信息,通过所述控制电路实现对所述充电电路的控制。
  15. 根据权利要求13所述的系统,其特征在于,所述系统还包括:
    显示屏,用于显示所述充电电路正常工作状态下的充电电压、放电电压、电流和充放电时间;并根据接收的显示屏触摸信号,控制所述充电电路。
PCT/CN2014/093198 2014-08-08 2014-12-05 用于充电电池的充电电路和系统 WO2016019667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410390624.9 2014-08-08
CN201410390624.9A CN105337328B (zh) 2014-08-08 2014-08-08 用于充电电池的充电电路和系统

Publications (1)

Publication Number Publication Date
WO2016019667A1 true WO2016019667A1 (zh) 2016-02-11

Family

ID=55263080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093198 WO2016019667A1 (zh) 2014-08-08 2014-12-05 用于充电电池的充电电路和系统

Country Status (2)

Country Link
CN (1) CN105337328B (zh)
WO (1) WO2016019667A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154665A (zh) * 2017-07-20 2017-09-12 山东圣阳电源股份有限公司 一种充放电合路器及供电系统
CN107154666A (zh) * 2017-07-20 2017-09-12 山东圣阳电源股份有限公司 一种电池组管理系统及供电系统
CN108279728A (zh) * 2018-04-08 2018-07-13 深圳市必易微电子有限公司 交流转直流线性稳压电路
CN111479350A (zh) * 2020-04-15 2020-07-31 上海赫爽太阳能科技有限公司 一种放电网络结合igbt控制太阳模拟器闪光波形方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019037033A1 (zh) * 2017-08-24 2019-02-28 海门市品格工业设计有限公司 一种基于dsp_cpld控制的电动汽车直流充电机
CN108736873A (zh) * 2018-08-23 2018-11-02 深圳市德利和能源技术有限公司 直流电子开关
CN112744101B (zh) * 2020-12-25 2023-02-17 中国第一汽车股份有限公司 充放电控制系统、方法及交通工具
CN113036723A (zh) * 2021-03-30 2021-06-25 国网河北省电力有限公司雄安新区供电公司 一种dc-dc变换器及其过流保护电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891522A (zh) * 2012-09-28 2013-01-23 郑州宇通客车股份有限公司 具有车载充电功能的双储能装置
CN103384075A (zh) * 2013-07-03 2013-11-06 武汉鑫双易科技开发有限公司 低纹波锂电池充放电实现方法
CN103812127A (zh) * 2014-02-25 2014-05-21 同济大学 基于混杂系统的风电直流母线电压稳定控制器及控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7889524B2 (en) * 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
CN102882204B (zh) * 2012-10-19 2014-07-02 深圳晶福源科技股份有限公司 一种直流母线的电压控制装置、工作方法及电压控制系统
CN103187879B (zh) * 2013-04-23 2015-03-18 盐城工学院 基于导抗网络的双向直流变换器及其数字控制系统和方法
CN103414337A (zh) * 2013-08-23 2013-11-27 中国矿业大学 一种电动车开关磁阻电机功率变换器拓扑结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102891522A (zh) * 2012-09-28 2013-01-23 郑州宇通客车股份有限公司 具有车载充电功能的双储能装置
CN103384075A (zh) * 2013-07-03 2013-11-06 武汉鑫双易科技开发有限公司 低纹波锂电池充放电实现方法
CN103812127A (zh) * 2014-02-25 2014-05-21 同济大学 基于混杂系统的风电直流母线电压稳定控制器及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, NA ET AL.: "Research on Bi-Directional DC/DC Converter in Energy Storage System", ELECTRONIC INSTRUMENTATION CUSTOMER, vol. 19, no. 3, 14 March 2012 (2012-03-14), ISSN: 1671-1041 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154665A (zh) * 2017-07-20 2017-09-12 山东圣阳电源股份有限公司 一种充放电合路器及供电系统
CN107154666A (zh) * 2017-07-20 2017-09-12 山东圣阳电源股份有限公司 一种电池组管理系统及供电系统
CN107154665B (zh) * 2017-07-20 2024-01-02 山东圣阳电源股份有限公司 一种充放电合路器及供电系统
CN108279728A (zh) * 2018-04-08 2018-07-13 深圳市必易微电子有限公司 交流转直流线性稳压电路
CN111479350A (zh) * 2020-04-15 2020-07-31 上海赫爽太阳能科技有限公司 一种放电网络结合igbt控制太阳模拟器闪光波形方法

Also Published As

Publication number Publication date
CN105337328A (zh) 2016-02-17
CN105337328B (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2016019667A1 (zh) 用于充电电池的充电电路和系统
CN101604853B (zh) 蓄电池充放电装置
CN201466775U (zh) 蓄电池充放电装置
CN109787318A (zh) 一种放电电路和电子设备
JP2019508003A (ja) 充電管理機能を有する移動電源
CN203339816U (zh) 一种感应取电的电源管理系统
CN204131210U (zh) 电源切换电路和便携式电子设备
CN204316150U (zh) 一种延长串联蓄电池组使用寿命的电路
CN104201752A (zh) 多功能蓄电池智能充电器及充电方法
CN104868708A (zh) 一种变频器上电缓冲及母线放电电路
CN107895992A (zh) 一种太阳能蓄电池充放电监控系统
CN104506069A (zh) 非隔离型光伏并网逆变器
CN201656537U (zh) 蓄电池充电器
CN203166605U (zh) 电池充电电路
CN102957177A (zh) 充电管理系统
CN107579560A (zh) 一种蓄电池充放电状态检测及监控系统
CN202009259U (zh) 智能开关电源快速充电器
CN208904890U (zh) 一种超导磁体电源电路
CN203944975U (zh) 用于逆变焊机的缺相保护电路
CN209250280U (zh) 一种用于直流微电网的中压柔性直流双向变换装置
CN204669215U (zh) 一种变频器上电缓冲及母线放电电路
CN204597803U (zh) 具有新型保护电路的逆变器
CN204597846U (zh) 一种风光互补直流控制器
CN205070793U (zh) 带gprs通信的降压恒流控制器
CN104883058B (zh) 一种基于igbt串并联的电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899095

Country of ref document: EP

Kind code of ref document: A1