WO2016019646A1 - 显示基板及其制造方法、显示装置 - Google Patents

显示基板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2016019646A1
WO2016019646A1 PCT/CN2014/090615 CN2014090615W WO2016019646A1 WO 2016019646 A1 WO2016019646 A1 WO 2016019646A1 CN 2014090615 W CN2014090615 W CN 2014090615W WO 2016019646 A1 WO2016019646 A1 WO 2016019646A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving circuit
emitting diode
light emitting
display substrate
thin film
Prior art date
Application number
PCT/CN2014/090615
Other languages
English (en)
French (fr)
Inventor
沈武林
李延钊
方金钢
郭如旺
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/769,144 priority Critical patent/US9875999B2/en
Publication of WO2016019646A1 publication Critical patent/WO2016019646A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors

Definitions

  • Embodiments of the present invention relate to a display substrate, a method of manufacturing the same, and a display device.
  • LED (Light Emitting Diode) displays have been widely used in display panels of instruments, meters, and household appliances, and LED displays commonly used in the market are only LCD TVs that use LEDs as backlights. Since the liquid crystal panel itself does not emit light, the liquid crystal molecules are rotated by the voltage to generate gray scale, and the color of the screen is determined by controlling the brightness of the filter. Therefore, the LED-backlit LCD TV only uses a strip or dot-shaped LED lamp to provide backlighting, and does not fully utilize the feature that the LED has a high color reproduction degree.
  • the existing AMOLED Active Matrix/Organic Light Emitting Diode
  • the existing AMOLED Active Matrix/Organic Light Emitting Diode
  • the existing AMOLED Active Matrix/Organic Light Emitting Diode
  • RGB Red/Green/Blue, red/green/blue
  • the organism used in its illumination has defects in its service life. Therefore, it is difficult to achieve long-lasting display with high color reproduction and high color uniformity.
  • a display substrate includes at least one pixel unit including a pixel driving circuit in an active driving circuit backplane, and a back surface of the active driving circuit An LED chip; the LED chip is electrically connected to the pixel driving circuit.
  • the pixel driving circuit is configured to output a corresponding driving current to an electrode of the LED chip according to an external control signal
  • the light emitting diode chip is configured to emit light at a corresponding brightness according to a current input from an electrode of the light emitting diode chip.
  • the light emitting diode chip is adhered to the active driving power through an adhesive layer On the back panel.
  • a reflective layer is further disposed between the light emitting diode chip and the active drive circuit backplane.
  • the size of the light emitting diode chip is on the order of micrometers, including a red light emitting diode, a green light emitting diode, or a blue light emitting diode.
  • the base material of the red light emitting diode is GaAs; the base material of the green light emitting diode is SiC; and the base material of the blue light emitting diode is GaN.
  • the light emitting diode chip is an inorganic light emitting diode chip.
  • the light emitting diode chip and the pixel driving circuit are provided with a flat layer.
  • a via is disposed in the flat layer, and a conductive layer is disposed on the flat layer, and the conductive layer is configured to implement an electrode of the LED chip and the pixel driving circuit through the via Electrical connection.
  • the pixel drive circuit includes a thin film transistor.
  • the thin film transistor is an oxide thin film transistor, an amorphous silicon thin film transistor, a low temperature polysilicon thin film transistor, or an organic thin film transistor.
  • the pixel driving circuit includes a first thin film transistor, a second thin film transistor, and a capacitor,
  • the first thin film transistor has a gate connected to the external scan signal, the first electrode is connected to the external data signal, the second electrode is connected to the gate of the second thin film transistor, and the first end of the capacitor;
  • the first electrode of the second thin film transistor is connected to the second end of the capacitor and the anode and the second electrode of the light emitting diode in the LED chip are connected to a power supply voltage;
  • the first electrode and the second electrode are respectively a source and a drain of the thin film transistor, or the first electrode and the second electrode are respectively a drain and a source of the thin film transistor.
  • the adhesion layer has a moisture content of less than 0.1%.
  • a display device comprising any one of the above display substrates.
  • a method of manufacturing a display substrate comprising at least one pixel unit, the pixel unit comprising a pixel driving circuit and a light emitting diode chip, the method comprising:
  • the method before the forming the adhesion layer on the active driving circuit backplane, the method further includes:
  • a reflective layer is formed on the active drive circuit backplane.
  • the method further includes:
  • the low temperature annealing is performed without affecting the characteristics of the thin film transistor and the light emitting diode in the display substrate.
  • the electrical connection between the electrode forming the light emitting diode chip and the pixel driving circuit includes:
  • a conductive layer is formed on the flat layer, and the conductive layer is used to realize electrical connection between an electrode of the light emitting diode chip and the pixel driving circuit through the via.
  • the adhesion layer has a moisture content of less than 0.1%.
  • FIG. 1 is a schematic diagram of a pixel structure of a display substrate according to an embodiment of the invention.
  • FIG. 2 is a circuit diagram of a pixel driving circuit in accordance with an embodiment of the present invention.
  • 3(a) is a longitudinal cross-sectional view (near the second thin film transistor) of each pixel unit on the display substrate at the pixel driving circuit in an embodiment of the present invention
  • 3(b) is a longitudinal cross-sectional view (near the first thin film transistor) of each pixel unit on the display substrate at the pixel driving circuit in one embodiment of the present invention
  • each pixel unit on the display substrate is at the LED chip in one embodiment of the present invention. Longitudinal section view.
  • Embodiments of the present invention provide a display substrate.
  • the display substrate includes at least one pixel unit Pixel, and the pixel unit Pixel includes a pixel driving circuit A2 located in an active driving circuit backplane, and is disposed at the An LED chip (LED chip) A1 on the back panel of the active driving circuit.
  • the LED chip A1 is electrically connected to the pixel driving circuit A2.
  • the pixel driving circuit A2 is configured to output an electrode to the electrode of the LED chip A1 according to an external control signal (for example, Gate, Data, and VDD shown in the figure) (the electrode corresponds to a solid point and a hollow point in the area A1 in FIG. 1). Drive current.
  • the LED chip A1 is used to emit light at a corresponding luminance according to a current input from an electrode of the LED chip A1.
  • an LED chip in a display panel may use an inorganic light emitting diode chip.
  • the 4 ⁇ 4 pixel unit array shown in FIG. 1 is only an example, and the features, such as the number, shape, arrangement, pixel driving circuit structure, and the like, which are not described above, can be equivalently replaced with reference to the embodiment. These alternatives do not depart from the spirit and scope of the embodiments.
  • the LED chip A1 located in the pixel unit Pixel can be illuminated with a corresponding brightness under the driving current input from the electrode, that is, the current driving the LED to drive the LED is controlled by the pixel driving circuit A2, and the display substrate is realized by using the display substrate.
  • the illumination control of the LEDs can thus be fabricated into an active matrix LED display panel or display device. Because it makes full use of the superior display characteristics of the LED, it is not limited by the lifetime of the organic light-emitting material compared to the AMOLED, and has better color reproduction degree.
  • the pixel driving circuit A2 includes a first thin film transistor T1, a second thin film transistor T2, and a capacitor C (in addition, LEDs in the figure indicate LED light emitting elements in the LED chip A1).
  • the gate of the first thin film transistor T1 is connected to the external scan signal Gate, the first electrode is connected to the external data signal Data, the second electrode is connected to the gate of the second thin film transistor T2, and the first end of the capacitor C is
  • the second electrode of the second thin film transistor T2 is connected to the power supply voltage VDD, the first electrode is connected to the second end of the capacitor C, and the anode of the LED LED in the LED chip A1.
  • the first electrode and the second electrode are respectively a source and a drain of a thin film transistor, and correspond to a case where T1 and T2 belong to an N-channel type thin film transistor.
  • T1 and T2 belong to a P-channel type thin film transistor
  • the first electrode and the second electrode are respectively a drain and a source of the thin film transistor.
  • the pixel driving circuit A2 of the 2T1C can supply driving current to the LED under the control of the external scanning signal Gate, the external data signal Data and the power supply voltage VDD, that is, complete the illumination control of the display substrate for each LED, and the circuit structure is simple and easy. achieve.
  • a module having a function of a threshold voltage of a TFT (Thin Film Transistor) or a pixel driving circuit having another structure or other structure may be added to the pixel driving circuit A2.
  • FIG. 3(a) second thin film transistor T2
  • FIG. 3(b) first The thin film transistor T1
  • the active driving circuit backplane 301 is formed with a gate 302, a gate insulating layer 303, a semiconductor active layer 304, an etch stop layer 305, a source 306 of T2, a drain 307 of T2, and a drain of T1 ( Or a drain lead) 308, a source 312 of T1, a passivation layer 309, a planarization layer 310, and a conductive layer (for example, a transparent conductive material indium tin oxide ITO may be formed) 311.
  • the gate 308, the source or the drain (306, 307, 308, 312) of the thin film transistor is formed of Cu, Al, Mo, Nd, Ag or any combination of these elements. Alloy.
  • a conductive material forming a gate, a source and a drain of a TFT it can first satisfy the conductive property, secondly, it is easy to form a film, and has good durability, which is advantageous for simplification of the manufacturing process and cost reduction.
  • the gate insulating layer 203 and the etch barrier layer 305 are formed of an oxide, a nitride, or an oxynitride of Si. It can block the passage of current from it, that is, it has better insulation properties, and is easy to form and low in cost.
  • the semiconductor active layer 304 is formed of amorphous silicon, polysilicon, Oxide or organic semiconductor.
  • TFTs also belong to different types - oxide thin film transistors (corresponding to oxide semiconductors), amorphous silicon thin film transistors (corresponding to amorphous silicon a-Si), low temperature polysilicon thin film transistors (corresponding In polysilicon p-Si) or organic thin film transistors.
  • oxide semiconductors corresponding to oxide semiconductors
  • amorphous silicon thin film transistors corresponding to amorphous silicon a-Si
  • low temperature polysilicon thin film transistors corresponding In polysilicon p-Si
  • organic thin film transistors corresponding to the prior art and will not be described here.
  • the oxide semiconductor is an oxide or an oxynitride of any one of In, Ga, Zn, Sn, and Tl, or an oxide or an oxynitride formed by any combination of these elements.
  • the driving current output function of the LED can be realized, and at the same time, it is compatible with the existing display panel manufacturing process, and is easy to implement.
  • the longitudinal structure design of the TFT circuit can be carried out with reference to the longitudinal structure when other pixel driving circuits are used, which obviously does not depart from the spirit and scope of the technical solutions of the embodiments of the present invention.
  • FIG. 4 the cross-sectional structure at the LED chip A1 in the pixel unit Pixel is shown in FIG. 4.
  • a reflective layer 401 On the active driving circuit back plate 301, a reflective layer 401, an adhesion layer 402, an LED substrate 403, and an n-type semiconductor in the LED are formed. 404.
  • the n-type semiconductor is connected to the electrode 405, the p-type semiconductor 406 in the LED, the p-type semiconductor connected electrode 407, the flat layer (310, 408, 409), and the conductive layer (311, 410).
  • the source 306, the planarization layer 310, and the conductive layer 311 of the above T2 are included in FIG. 4, which is consistent with the reference in FIG. 3(a).
  • the LED substrate 403, the n-type semiconductor 404 in the LED, the n-type semiconductor-connected electrode 405, the p-type semiconductor 406 in the LED, and the p-type semiconductor-connected electrode 407 constitute the LED chip A1. Therefore, a portion of the pixel driving circuit A2 is included in FIG. 4, which also includes the LED chip A1, and is intended to show an example of the electrical connection manner of the pixel driving circuit A2 and the LED chip A1.
  • the specific material of the adhesion layer 402 is not particularly limited.
  • the material of the adhesion layer may be selected such that it has good adhesion to a metal layer (Mo, Al, Ag, etc.) or a metal oxide layer (ITO, ZnO, etc.), and/or to a substrate SiC of an inorganic LED.
  • GaN and GaAs have good adhesion.
  • the water vapor content in the adhesion layer 402 is less than 0.1%, so that the reliability of the display substrate can be improved.
  • the LED chip A1 is adhered to the active drive circuit backplane 301 by the adhesion layer 402 (adhesive).
  • adhesion layer 402 adheresive
  • a reflective layer 401 is also provided between the LED chip A1 and the active drive circuit backplane 301 .
  • the reflective layer 401 can reflect light in the visible light band, and the design can reflect the light leaked from the LED to the backlight side back to the light exiting side, thereby improving the brightness of the display.
  • the LED chip A1 is of a micron size, including a red LED, a green LED, or a blue LED.
  • the red, green, and blue LED chips are respectively used as three color sub-pixels of one color-developing pixel, and are respectively driven by three pixel driving circuits, so that color display under RGB input can be completed.
  • the base 403 material of the red LED is GaAs
  • the base 403 material of the green LED is SiC
  • the base 403 material of the blue LED is GaN.
  • the base 403 material and the semiconductor (404, 406) materials of the three color LEDs are different, and thus are separately deposited.
  • the LED structure (the LED substrate 403, the n-type semiconductor 404 in the LED, the n-type semiconductor-connected electrode 405, the p-type semiconductor 406 in the LED, and the p-type semiconductor-connected electrode 407), it is necessary to implement the LED chip A1.
  • the electrodes (405, 407) are electrically connected to the pixel driving circuit A2. Therefore, for example, between the two electrodes of the light emitting diode chip (such as 409), and between the LED chip A1 and the pixel driving circuit A2 (such as 408), a flat layer formed of an insulating material is disposed. .
  • a via hole is disposed in the flat layer (position corresponding to two electrodes of the LED and an extraction position of the pixel driving circuit A2, such as 405 and 306), and the LED chip A1 and the pixel in the pixel unit Pixel A conductive layer 311 is disposed on the flat layer 408 between the pixel driving circuits A2 for electrically connecting the electrodes of the LED chip A1 and the pixel driving circuit A2 through the via holes.
  • the electrical connection is mainly formed by forming a via hole above the electrode or above the source/drain of the TFT, and providing a conductive layer on the via hole so that the electrode and the TFT are provided.
  • the source/drain is electrically connected through the conductive layer.
  • ITO transparent conductive material
  • connection electrode of the LED chip A1 and the connection electrode can be first formed, and then the connection electrode is electrically connected to the source/drain of the TFT, so that the source/drain of the LED chip A1 and the TFT can be made.
  • the poles form an electrical connection by connecting the electrodes.
  • the illumination control of the active driving circuit backplane through the pixel driving circuit for each LED can be realized. It can be seen that an active matrix LED display device can be formed by applying the display substrate. Due to the display principle based on LED electroluminescence, the display substrate and the active matrix LED display device have better display effects brought by the excellent characteristics of the LED.
  • the display of the RGB three colors is more accurate than the OLED, so that the display device can achieve higher color reproduction when the inorganic LED is used as the display device; moreover, the inorganic LED is not organic.
  • the life of the luminescent material is limited and durable.
  • an embodiment of the present invention provides a display device, which includes any one of the display substrates described in Embodiment 1, and the display device may be: an AMLED (Active Matrix/Light Emitting Diode, Source matrix/light-emitting diodes) Panels, mobile phones, tablets, televisions, monitors, notebook computers, digital photo frames, navigators, etc. Any product or component with display capabilities.
  • AMLED Active Matrix/Light Emitting Diode, Source matrix/light-emitting diodes
  • the display device provided by the embodiment of the present invention has the same technical features as any of the display substrates provided in Embodiment 1, the same technical problem can be solved and the same technical effect can be produced.
  • the embodiment of the present invention provides a method for manufacturing a display substrate.
  • the display substrate includes at least one pixel unit, and the pixel unit includes a pixel driving circuit and an LED chip.
  • the method includes:
  • Step 501 Form an active driving circuit backplane, where the active driving circuit backplane includes the pixel driving circuit;
  • Step 502 forming an adhesion layer on the active driving circuit backplane, and bonding the LED chip to the active driving circuit backplane corresponding to the area of the pixel unit;
  • Step 503 Form an electrical connection between an electrode of the LED chip and the pixel driving circuit.
  • the active driving circuit backplane 301 is formed in the manufacturing method, including forming a pixel driving circuit A2 corresponding to the pixel unit Pixel (including formation of the thin film transistors T1, T2, formation of the capacitor C, and Forming each connection line), then forming an adhesion layer 402 on the active drive circuit backplane 301, and the LED chip (including the LED substrate 403, the n-type in the LED) corresponding to the area of the pixel unit Pixel A semiconductor 404, an n-type semiconductor-connected electrode 405, a p-type semiconductor 406 in the LED, and a p-type semiconductor-connected electrode 407) are bonded to the active driving circuit backplane 301, and finally packaged together (including a flat layer and The formation of the conductive layer) corresponds to the display substrate proposed in Embodiment 1, and is compatible with the existing manufacturing process, and is simple and easy.
  • LED chips of various colors are unique Built on the back of the active drive circuit.
  • the fabricated LED chip is then placed on the active drive circuit backplane and the connection between the chip and the circuitry in the circuit backplane.
  • the LED chip includes a red LED, a green LED, or a blue LED (ie, each pixel includes a three-color LED chip) that forms a pixel driving circuit in a pixel unit of an active driving circuit backplane
  • the method includes: corresponding to the red LED, the green LED, and the blue LED, respectively forming a pixel driving circuit, configured to output corresponding driving currents of the electrodes of the red LED, the green LED, and the blue LED according to the external control signal, that is, respectively set the pixel driving
  • the circuit is independently controlled to accurately display a specific color.
  • the step 502 before the forming the adhesion layer on the active driving circuit backplane, the step 502 further includes: forming a reflective layer on the active driving circuit backplane.
  • the reflective layer can reflect light in the visible light band, which is consistent with the above description.
  • the design can reflect the light leaking from the LED to the backlight side, thereby improving the brightness of the display.
  • the method further includes: performing low temperature annealing and curing without affecting characteristics of the thin film transistor and the LED in the display substrate.
  • the step 503: forming an electrical connection between the electrode of the LED chip and the pixel driving circuit includes: forming a flat layer with an insulating material on the LED chip and/or the pixel driving circuit Forming a via hole in the planar layer above the electrode of the LED chip and above the corresponding position of the pixel driving circuit by exposure development; forming a conductive layer on the flat layer for implementing the LED chip through the via hole
  • the electrodes are electrically connected to the pixel drive circuit.
  • the planarization layer 310 and the conductive layer 311 in FIGS. 3(a) and 4 and the planarization layer 408 and the conductive layer 311 in FIG. 4, the planarization layer 409 and the conductive layer 410 in FIG.
  • the design is compatible with the existing display panel manufacturing process, and the conductive layer can be generally formed by using a transparent conductive material such as indium tin oxide ITO, which can reduce the cost.
  • the manufacturing method of the display substrate provided by the embodiment of the present invention corresponds to the structure of any display substrate proposed in Embodiment 1, and is compatible with the existing display panel manufacturing process, and is simple to implement and low in cost.
  • the embodiments of the present invention provide a display substrate, a manufacturing method thereof, and a display device.
  • the present invention mainly realizes separate control of each LED by directly setting LEDs on the back plate of the active driving circuit, and thus can be formed.
  • Active matrix LED display device and because it makes full use of the LED
  • the superior display characteristics are not limited by the lifetime of the organic light-emitting material compared to the AMOLED, and have better color reproduction degree.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种显示基板,该显示基板包括至少一个像素单元,该像素单元包括位于有源驱动电路背板中的像素驱动电路(A2),和设置在该有源驱动电路背板上的发光二极管芯片(A1),该发光二极管芯片(A1)与该像素驱动电路(A2)电连接。还提供了该显示基板的制造方法以及包括该显示基板的显示装置。

Description

显示基板及其制造方法、显示装置 技术领域
本发明的实施例涉及一种显示基板及其制造方法、显示装置。
背景技术
LED(Light Emitting Diode,发光二极管)显示器已经广泛地应用于仪器、仪表以及家用电器的显示面板上,而市面上常见的LED显示器都只是采用了LED作为背光源的液晶电视。由于液晶面板本身不发光,而是利用电压使液晶分子转动以产生灰度,通过操控滤光片的明暗来决定画面的色彩。所以LED背光的液晶电视只是采用了条状或者点状的LED灯来提供背光,并没有充分利用到LED具有很高的色彩还原度这一特点。
另一方面,现有的AMOLED(Active Matrix/Organic Light Emitting Diode,有源矩阵/有机发光二极管)面板主要利用OLED的有机层自发光来实现高反应速度、高亮度、高对比度、较广可视角度的有机体发光显示,但其在RGB(Red/Green/Blue,红/绿/蓝)三种颜色的显示准确度上仍不及LED;加上其所采用的有机体发光在使用寿命方面存在缺陷,所以很难实现高色彩还原度、高色彩均匀度的持久显示。
发明内容
根据本发明的一个实施例提供一种显示基板,包括至少一个像素单元,所述像素单元包括位于有源驱动电路背板中的像素驱动电路,和设置在所述有源驱动电路背板上的发光二极管芯片;所述发光二极管芯片与所述像素驱动电路电连接。
在一个示例中,所述像素驱动电路用于根据外部控制信号向所述发光二极管芯片的电极输出相应的驱动电流;
所述发光二极管芯片用于根据从所述发光二极管芯片的电极输入的电流以相应的亮度发光。
在一个示例中,所述发光二极管芯片通过粘附层粘附在所述有源驱动电 路背板上。
在一个示例中,所述发光二极管芯片与所述有源驱动电路背板之间还设置有反射层。
在一个示例中,所述发光二极管芯片的尺寸为微米级,包括红色发光二极管、绿色发光二极管或蓝色发光二极管。
在一个示例中,所述红色发光二极管的基底材料为GaAs;所述绿色发光二极管的基底材料为SiC;所述蓝色发光二极管的基底材料为GaN。
在一个示例中,所述发光二极管芯片为无机发光二极管芯片。
在一个示例中,所述发光二级管芯片和所述像素驱动电路上设置有平坦层。
在一个示例中,所述平坦层中设置有过孔,所述平坦层上设置有导电层,所述导电层用于通过所述过孔实现所述发光二极管芯片的电极与所述像素驱动电路的电连接。
在一个示例中,所述像素驱动电路包括薄膜晶体管。
在一个示例中,所述薄膜晶体管为氧化物薄膜晶体管、非晶硅薄膜晶体管、低温多晶硅薄膜晶体管或者有机薄膜晶体管。
在一个示例中,所述像素驱动电路包括第一薄膜晶体管、第二薄膜晶体管和电容,
所述第一薄膜晶体管的栅极连接外部扫描信号、第一电极连接外部数据信号、第二电极连接所述第二薄膜晶体管的栅极及所述电容的第一端;
所述第二薄膜晶体管的第一电极连接所述电容的第二端及所述发光二极管芯片中发光二极管的阳极、第二电极连接电源电压;
所述第一电极与所述第二电极分别为薄膜晶体管的源极与漏极,或者,所述第一电极与所述第二电极分别为薄膜晶体管的漏极与源极。
在一个示例中,所述粘附层中水汽含量低于0.1%。
根据本发明的另一个实施例提供一种显示装置,所述显示装置包括上述任意一种显示基板。
根据本发明的再一个实施例提供一种显示基板的制造方法,所述显示基板包括至少一个像素单元,所述像素单元包括像素驱动电路和发光二极管芯片,该方法包括:
形成有源驱动电路背板,所述有源驱动电路背板中包括所述像素驱动电路;
在所述有源驱动电路背板上形成粘附层,并对应所述像素单元的区域将所述发光二极管芯片粘结在所述有源驱动电路背板上;
形成所述发光二极管芯片的电极与所述像素驱动电路之间的电连接。
在一个示例中,所述在所述有源驱动电路背板上形成所述粘附层之前,还包括:
在所述有源驱动电路背板上形成反射层。
在一个示例中,在粘附好所述发光二极管芯片之后,还包括:
在不影响显示基板中的薄膜晶体管和发光二极管的特性的情况下,进行低温退火固化。
在一个示例中,所述形成所述发光二极管芯片的电极与所述像素驱动电路之间的电连接包括:
在所述发光二极管芯片和所述像素驱动电路上形成平坦层;
在平坦层中形成过孔;
在所述平坦层上形成导电层,所述导电层用于通过所述过孔实现所述发光二极管芯片的电极与所述像素驱动电路的电连接。
在一个示例中,所述粘附层中水汽含量低于0.1%。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1是本发明一实施例中一种显示基板的像素结构示意图;
图2是本发明一实施例中一种像素驱动电路的电路图;
图3(a)是本发明一实施例中一种显示基板上每个像素单元在像素驱动电路处的纵向截面图(第二薄膜晶体管附近);
图3(b)是本发明一个实施例中一种显示基板上每个像素单元在像素驱动电路处的纵向截面图(第一薄膜晶体管附近);
图4是本发明一个实施例中一种显示基板上每个像素单元在LED芯片处 的纵向截面图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提出了一种显示基板,参见图1,所述显示基板包括至少一个像素单元Pixel,所述像素单元Pixel包括位于有源驱动电路背板中的像素驱动电路A2,和设置在所述有源驱动电路背板上的发光二极管芯片(LED芯片)A1。所述LED芯片A1与所述像素驱动电路A2电连接。
像素驱动电路A2用于根据外部控制信号(例如图中所示的Gate、Data和VDD)向所述LED芯片A1的电极(电极对应图1中A1区域内的实心点与空心点)输出相应的驱动电流。而所述LED芯片A1则用于根据从所述LED芯片A1的电极输入的电流以相应的亮度发光。
例如,根据本发明实施例的显示面板中的发光二极管芯片可以使用无机发光二极管芯片。
当然,图1中所示的4×4像素单元阵列仅是一种示例,其数量、形状、排列方式、像素驱动电路结构等等上面没有描述到的特征均可以参照本实施例进行等同替换,且这些替换并不使技术方案脱离本实施例的精神和范围。
可见,位于像素单元Pixel的LED芯片A1可以在从电极输入的驱动电流的驱动下以相应的亮度发光,即本实施例通过像素驱动电路A2来控制驱动LED发光的电流大小,利用显示基板实现了LED的发光控制,因而可以将其制作成有源矩阵LED显示面板或显示装置。由于其充分利用了LED较优的显示特性,相较于AMOLED不受有机发光材料寿命的限制,并具有更佳的色彩还原度。
如图1所示像素驱动电路A2在每个像素单元Pixel中的电路图如图2所示。所述像素驱动电路A2包括第一薄膜晶体管T1、第二薄膜晶体管T2和电容C(另外图中以LED表示LED芯片A1中的LED发光元件)。
所述第一薄膜晶体管T1的栅极连接外部扫描信号Gate、第一电极连接外部数据信号Data、第二电极连接所述第二薄膜晶体管T2的栅极及所述电容C的第一端;所述第二薄膜晶体管T2的第二电极连接电源电压VDD、第一电极连接所述电容C的第二端及所述LED芯片A1中发光二极管LED的阳极。
所述第一电极与所述第二电极分别为薄膜晶体管的源极与漏极,对应于T1与T2属于N沟道型的薄膜晶体管的情形。在T1与T2属于P沟道型的薄膜晶体管时,所述第一电极与所述第二电极分别为薄膜晶体管的漏极与源极。
该2T1C的像素驱动电路A2可以在外部扫描信号Gate、外部数据信号Data和电源电压VDD的控制下向LED提供驱动电流,即完成显示基板对每个LED的发光控制,且该电路结构简单、易于实现。当然,为取得较佳的显示效果,还可以在像素驱动电路A2中添加如具有补偿TFT(Thin Film Transistor,薄膜晶体管)阈值电压功能的模块或同等结构或采用其他结构的像素驱动电路,其在现有技术中有多种实现方式,在此不再赘述;当然这些添加或同等替换显然是不脱离本实施例的精神和范围的。
以该2T1C的像素驱动电路A2为例,显示基板上每个像素单元Pixel在像素驱动电路A2处的截面结构如图3(a)(第二薄膜晶体管T2)和图3(b)(第一薄膜晶体管T1)所示。可见,有源驱动电路背板301上形成有栅极302、栅绝缘层303、半导体有源层304、刻蚀阻挡层305、T2的源极306、T2的漏极307、T1的漏极(或漏极引线)308、T1的源极312、钝化层309、平坦层310和导电层(例如可以采用透明导电材料氧化铟锡ITO形成)311。
在一些示例中,所述薄膜晶体管的栅极308、源极或漏极(306、307、308、312)的形成材料为Cu、Al、Mo、Nd、Ag或者这几种元素以任意组合形成的合金。作为形成TFT栅极、源极和漏极的导电材料,其首先可以满足导电性能,其次易于成膜,耐久性良好,有利于制作工艺的简化和成本的降低。
在一些示例中,所述栅绝缘层203和刻蚀阻挡层305的形成材料为Si的氧化物、氮化物或者氮氧化物。其可以阻挡电流从其中通过,即具有较好的绝缘特性,同时易于形成、成本较低。
在一些示例中,所述半导体有源层304的形成材料为非晶硅、多晶硅、 氧化物或者有机半导体。对应于不同的半导体形成材料,TFT也归属于不同的类型——氧化物薄膜晶体管(对应氧化物半导体)、非晶硅薄膜晶体管(对应于非晶硅a-Si)、低温多晶硅薄膜晶体管(对应于多晶硅p-Si)或者有机薄膜晶体管。对于不同种类的TFT,制作工艺和信号极性会会有所不同,其属于现有技术,在此不再赘述。进一步地,所述氧化物半导体为In、Ga、Zn、Sn、Tl中任意一种元素的氧化物或者氮氧化物,或者这几种元素以任意组合形成的氧化物或者氮氧化物。例如ZnO、CdO、SnO2、非晶IGZO(In-Ga-Zn-O)、AlCaN、GaN、InAlN等等。
采用如上所述的像素驱动电路结构,可以实现对LED的驱动电流输出功能,同时其与现有的显示面板制作工艺相适应,易于实现。当然,在采用其他像素驱动电路时也可以参照该纵向结构进行TFT电路的纵向结构设计,其显然不脱离本发明实施例技术方案的精神和范围。
另一方面,像素单元Pixel中的LED芯片A1处的截面结构参见图4,在有源驱动电路背板301上形成有反射层401、粘附层402、LED基底403、LED中的n型半导体404、n型半导体所接电极405、LED中的p型半导体406、p型半导体所接电极407、平坦层(310、408、409)和导电层(311、410)。图4中包括上述T2的源极306、平坦层310和导电层311,与图3(a)中的标注一致。LED基底403、LED中的n型半导体404、n型半导体所接电极405、LED中的p型半导体406、p型半导体所接电极407组成了LED芯片A1。因此,图4中包括了像素驱动电路A2的一部分,也包括了LED芯片A1,意在展示一种像素驱动电路A2与LED芯片A1的电连接方式实例。
在本发明的一些实施例中,对粘附层402的具体材料没有特别的限制。例如,可以选择粘附层的材料以使得其与金属层(Mo、Al、Ag等)或者金属氧化物层(ITO、ZnO等)具有很好的附着力,和/或与无机LED的基底SiC、GaN、GaAs具有很好的附着力。此外,在一些示例中,粘附层402中的水汽含量低于0.1%,从而能够提高显示基板的可靠性。
在一些示例中,所述LED芯片A1通过所述粘附层402(粘附剂)粘附在所述有源驱动电路背板301上。这样的设计可以使得在制作显示基板时直接将可以作为单独产品的LED芯片以阵列状粘附的方式形成,简单方便。
在一些示例中,在所述LED芯片A1与所述有源驱动电路背板301之间 还设置有反射层401。所述反射层401可以反射可见光波段的光线,该设计可以将LED向背光侧漏出的光线反射回出光侧,因而可以提高显示的亮度。
在一些示例中,所述LED芯片A1的尺寸为微米级,包括红色LED、绿色LED或蓝色LED。这里将红色、绿色、蓝色LED芯片分别作为一个显色像素的三个单色子像素,并分别由三个像素驱动电路来进行驱动,因而可以完成RGB输入下的彩色显示。例如,所述红色LED的基底403材料为GaAs;所述绿色LED的基底403材料为SiC;所述蓝色LED的基底403材料为GaN。具体在形成LED结构时,三种颜色的LED的基底403材料和半导体(404、406)材料都不相同,因此要分别沉积形成。
在形成LED结构(LED基底403、LED中的n型半导体404、n型半导体所接电极405、LED中的p型半导体406和p型半导体所接电极407)之后,需要实现所述LED芯片A1的电极(405、407)与所述像素驱动电路A2的电连接。因此,例如在所述发光二级管芯片的两个电极之间(如409)、以及所述LED芯片A1与所述像素驱动电路A2之间(如408)设置有采用绝缘材料形成的平坦层。而且,在所述平坦层中设置有过孔(位置对应于LED的两个电极和像素驱动电路A2的引出位置,如405与306),在所述像素单元Pixel的所述LED芯片A1与所述像素驱动电路A2之间的平坦层408上设有导电层311,用于通过上述过孔实现所述LED芯片A1的电极与所述像素驱动电路A2的电连接。
参见图3(a)中的平坦层310及导电层311可知,上述电连接主要是在电极上方或TFT的源/漏极上方形成过孔,并在过孔上设置导电层,使得电极与TFT的源/漏极通过该导电层实现电连接。该设计与现有显示面板制造工艺相适应,一般可以采用氧化铟锡ITO(透明导电材料)来形成该导电层,可以降低成本。需要指出的是,也可以先在LED芯片A1的电极和连接电极之间形成电连接,再使连接电极与TFT的源/漏极形成电连接,从而可以使LED芯片A1与TFT的源/漏极通过连接电极而形成电连接。
基于上述结构和连接关系,即可实现有源驱动电路背板通过像素驱动电路对每个LED的发光控制。可见,应用该显示基板就可以形成有源矩阵LED显示装置。由于采用了基于LED电致发光的显示原理,上述显示基板和有源矩阵LED显示装置就会具备LED优异特性所带来较佳的显示效果。
作为其中的一个方面,相比较OLED而言,无机LED对RGB三色的显示更为准确,因而将无机LED作为显示器件时显示装置可以达到更高的色彩还原度;而且,无机LED不受有机发光材料寿命的限制,较为持久耐用。
基于相同的发明构思,本发明实施例提出了一种显示装置,该显示装置包括实施例1中所述的任意一种显示基板,该显示装置可以为:AMLED(Active Matrix/Light Emitting Diode,有源矩阵/发光二极管)面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
由于本发明实施例提供的显示装置与实施例1所提供的任意一种显示基板具有相同的技术特征,所以也能解决同样的技术问题,产生相同的技术效果。
针对实施例1所提出的显示基板,本发明实施例提出一种显示基板的制造方法,所述显示基板包括至少一个像素单元,所述像素单元包括像素驱动电路和LED芯片,该方法包括:
步骤501:形成有源驱动电路背板,所述有源驱动电路背板中包括所述像素驱动电路;
步骤502:在所述有源驱动电路背板上形成粘附层,并对应所述像素单元的区域将所述发光二极管芯片粘结在所述有源驱动电路背板上;
步骤503:形成所述发光二极管芯片的电极与所述像素驱动电路之间的电连接。
参见图4所示的截面结构,该制造方法中形成有源驱动电路背板301,其中包括形成与像素单元Pixel对应的像素驱动电路A2(包括薄膜晶体管T1、T2的形成、电容C的形成以及各连接线的形成),然后在所述有源驱动电路背板301上形成粘附层402,并对应所述像素单元Pixel的区域将所述LED芯片(包括LED基底403、LED中的n型半导体404、n型半导体所接电极405、LED中的p型半导体406和p型半导体所接电极407)粘结在所述有源驱动电路背板301上,最后一同进行封装(包括平坦层和导电层的形成),该方法对应于实施例1所提出的显示基板,同时与现有制造工艺相适应,简便易行。
例如,在根据本发明的一些实施例中,各种颜色的发光二极管芯片是独 立于有源驱动电路背板而制作。然后再将制作好的发光二极管芯片设置在有源驱动电路背板上并进行芯片与电路背板中的电路之间的连接。
在一些示例中,所述LED芯片包括红色LED、绿色LED或蓝色LED(即每个像素包括三色LED芯片的情形),所述在有源驱动电路背板的像素单元中形成像素驱动电路包括:对应于红色LED、绿色LED和蓝色LED,分别形成像素驱动电路,用于根据外部控制信号分别红色LED、绿色LED和蓝色LED的电极输出对应的驱动电流,即分别设定像素驱动电路进行独立控制,以精确地实现特定颜色的显示。
在一些示例中,所述步骤502中,在所述有源驱动电路背板上形成所述粘附层之前,还包括:在所述有源驱动电路背板上形成反射层。所述反射层可以反射可见光波段的光线,与上面描述的一致,该设计可以将LED向背光侧漏出的光线反射回出光侧,因而可以提高显示的亮度。
在一些示例中,所述步骤502中,在粘附好所述LED芯片之后,还包括:在不影响显示基板中的薄膜晶体管和LED的特性的情况下,进行低温退火固化。
在一些示例中,所述步骤503:形成所述LED芯片的电极与所述像素驱动电路之间的电连接包括:在所述LED芯片和/或所述像素驱动电路上以绝缘材料形成平坦层;通过曝光显影在所述LED芯片的电极上方及像素驱动电路的对应位置上方的平坦层中形成过孔;在所述平坦层上形成导电层,用于通过所述过孔实现所述LED芯片的电极与所述像素驱动电路的电连接。具体结构可以参见图3(a)和图4中的平坦层310和导电层311,以及图4中的平坦层408和导电层311、图4中的平坦层409和导电层410。该设计与现有显示面板制造工艺相适应,一般可以采用例如为氧化铟锡ITO的透明导电材料来形成该导电层,可以降低成本。
可见,本发明实施例提出的显示基板的制造方法与实施例1所提出的任意一种显示基板的结构相对应,同时与现有显示面板制造工艺相适应,实现简单,造价低廉。
综上所述,本发明实施例提供一种显示基板及其制造方法、显示装置,本发明主要通过在有源驱动电路背板上直接设置LED,实现对每个LED的单独控制,因而可以形成有源矩阵LED显示装置;且由于其充分利用了LED 较优的显示特性,相较于AMOLED不受有机发光材料寿命的限制,并具有更佳的色彩还原度。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年8月7日递交的中国专利申请第201410387601.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (19)

  1. 一种显示基板,包括至少一个像素单元,其中,所述像素单元包括位于有源驱动电路背板中的像素驱动电路,和设置在所述有源驱动电路背板上的发光二极管芯片;所述发光二极管芯片与所述像素驱动电路电连接。
  2. 根据权利要求1所述的显示基板,其中,所述像素驱动电路用于根据外部控制信号向所述发光二极管芯片的电极输出相应的驱动电流;
    所述发光二极管芯片用于根据从所述发光二极管芯片的电极输入的电流以相应的亮度发光。
  3. 根据权利要求1或2所述的显示基板,其中,所述发光二极管芯片通过粘附层粘附在所述有源驱动电路背板上。
  4. 根据权利要求1至3中任一项所述的显示基板,其中,所述发光二极管芯片与所述有源驱动电路背板之间还设置有反射层。
  5. 根据权利要求1至4中任一项所述的显示基板,其中,所述发光二极管芯片的尺寸为微米级,包括红色发光二极管、绿色发光二极管或蓝色发光二极管。
  6. 根据权利要求5所述的显示基板,其中,所述红色发光二极管的基底材料为GaAs;所述绿色发光二极管的基底材料为SiC;所述蓝色发光二极管的基底材料为GaN。
  7. 根据权利要求1至6中任一项所述的显示基板,其中,所述发光二极管芯片为无机发光二极管芯片。
  8. 根据权利要求1至7中任一项所述的显示基板,其中,所述发光二级管芯片和所述像素驱动电路上设置有平坦层。
  9. 根据权利要求8所述的显示基板,其中,所述平坦层中设置有过孔,所述平坦层上设置有导电层,所述导电层用于通过所述过孔实现所述发光二极管芯片的电极与所述像素驱动电路的电连接。
  10. 根据权利要求1至9中任一项所述的显示基板,其中,所述像素驱动电路包括薄膜晶体管。
  11. 根据权利要求10所述的显示基板,其中,所述薄膜晶体管为氧化物薄膜晶体管、非晶硅薄膜晶体管、低温多晶硅薄膜晶体管或者有机薄膜晶体 管。
  12. 根据权利要求10或11所述的所述的显示基板,其中,所述像素驱动电路包括第一薄膜晶体管、第二薄膜晶体管和电容,
    所述第一薄膜晶体管的栅极连接外部扫描信号、第一电极连接外部数据信号、第二电极连接所述第二薄膜晶体管的栅极及所述电容的第一端;
    所述第二薄膜晶体管的第一电极连接所述电容的第二端及所述发光二极管芯片中发光二极管的阳极、第二电极连接电源电压;
    所述第一电极与所述第二电极分别为薄膜晶体管的源极与漏极,或者,所述第一电极与所述第二电极分别为薄膜晶体管的漏极与源极。
  13. 根据权利要求3所述的显示基板,其中,所述粘附层中水汽含量低于0.1%。
  14. 一种显示装置,包括如权利要求1至13中任一项所述的显示基板。
  15. 一种显示基板的制造方法,其中,所述显示基板包括至少一个像素单元,所述像素单元包括像素驱动电路和发光二极管芯片,该方法包括:
    形成有源驱动电路背板,所述有源驱动电路背板中包括所述像素驱动电路;
    在所述有源驱动电路背板上形成粘附层,并对应所述像素单元的区域将所述发光二极管芯片粘结在所述有源驱动电路背板上;
    形成所述发光二极管芯片的电极与所述像素驱动电路之间的电连接。
  16. 根据权利要求15所述的制造方法,其中,所述在所述有源驱动电路背板上形成所述粘附层之前,还包括:
    在所述有源驱动电路背板上形成反射层。
  17. 根据权利要求15或16所述的制造方法,其中,在粘附好所述发光二极管芯片之后,还包括:
    在不影响显示基板中的薄膜晶体管和发光二极管的特性的情况下,进行低温退火固化。
  18. 根据权利要求15至17中任一项所述的制造方法,其中,所述形成所述发光二极管芯片的电极与所述像素驱动电路之间的电连接包括:
    在所述发光二极管芯片和所述像素驱动电路上形成平坦层;
    在平坦层中形成过孔;
    在所述平坦层上形成导电层,所述导电层用于通过所述过孔实现所述发光二极管芯片的电极与所述像素驱动电路的电连接。
  19. 根据权利要求15至18中任一项所述的制造方法,其中,所述粘附层中水汽含量低于0.1%。
PCT/CN2014/090615 2014-08-07 2014-11-07 显示基板及其制造方法、显示装置 WO2016019646A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/769,144 US9875999B2 (en) 2014-08-07 2014-11-07 Display substrate and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410387601.2A CN104183606A (zh) 2014-08-07 2014-08-07 显示基板及其制造方法、显示装置
CN201410387601.2 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016019646A1 true WO2016019646A1 (zh) 2016-02-11

Family

ID=51964530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090615 WO2016019646A1 (zh) 2014-08-07 2014-11-07 显示基板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US9875999B2 (zh)
CN (1) CN104183606A (zh)
WO (1) WO2016019646A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112770431A (zh) * 2019-10-21 2021-05-07 台湾爱司帝科技股份有限公司 发光模块
US11291986B2 (en) 2017-02-24 2022-04-05 Becton, Dickinson And Company Unique sample transfer device for an automated pipettor for processing a variety of clinical microbiological specimens

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531106B (zh) * 2013-10-28 2015-06-03 京东方科技集团股份有限公司 一种有源有机发光二极管显示背板、显示设备
GB201418810D0 (en) * 2014-10-22 2014-12-03 Infiniled Ltd Display
TWI665800B (zh) * 2015-06-16 2019-07-11 友達光電股份有限公司 發光二極體顯示器及其製造方法
US10079264B2 (en) * 2015-12-21 2018-09-18 Hong Kong Beida Jade Bird Display Limited Semiconductor devices with integrated thin-film transistor circuitry
WO2018074611A1 (ja) * 2016-10-19 2018-04-26 株式会社オルガノサーキット アクティブマトリクスledディスプレイ
CN106652813A (zh) * 2016-12-05 2017-05-10 信利(惠州)智能显示有限公司 Led显示装置、显示面板和遥控器
CN106898706A (zh) * 2017-02-24 2017-06-27 深圳市华星光电技术有限公司 发光二极管显示器及其制作方法
CN107871752B (zh) * 2017-10-17 2019-11-15 深圳市华星光电技术有限公司 微型led显示面板及微型led显示器
CN110391264A (zh) * 2018-04-19 2019-10-29 群创光电股份有限公司 电子装置
US20190326268A1 (en) * 2018-04-19 2019-10-24 Innolux Corporation Electronic device
EP3933944A4 (en) * 2019-02-26 2022-11-16 Kyocera Corporation MICRO-LED ELEMENT MOUNTED SUBSTRATE AND DISPLAY DEVICE USING THE SAME
KR102652718B1 (ko) * 2019-03-29 2024-04-01 삼성전자주식회사 디스플레이 모듈 및 디스플레이 모듈의 구동 방법
CN110233166A (zh) 2019-05-21 2019-09-13 武汉华星光电技术有限公司 显示面板及显示装置
US11469359B2 (en) * 2019-09-30 2022-10-11 Beijing Boe Display Technology Co., Ltd. Backplane and glass-based circuit board
CN112684631A (zh) * 2019-10-18 2021-04-20 群创光电股份有限公司 显示装置
CN113471235B (zh) * 2020-03-30 2024-05-10 京东方科技集团股份有限公司 一种显示基板及其制作方法、发光元件的转移方法
CN112991966B (zh) * 2020-04-26 2022-11-29 重庆康佳光电技术研究院有限公司 一种显示背板、显示装置和显示背板制作方法
CN111970816B (zh) * 2020-08-27 2022-01-25 合肥鑫晟光电科技有限公司 驱动电路背板、及其制备方法、背光模组
CN112038380B (zh) * 2020-09-08 2023-04-07 京东方科技集团股份有限公司 显示基板及显示装置
CN112309243B (zh) * 2020-11-06 2022-08-23 武汉华星光电技术有限公司 背光模组及显示装置
CN113782561B (zh) * 2021-09-18 2023-08-11 厦门大学 一种高亮度高可靠性的Micro-LED显示装置
CN114566572B (zh) * 2022-02-24 2024-06-07 厦门天马微电子有限公司 一种显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1348579A (zh) * 1999-03-24 2002-05-08 埃维克斯公司 全色发光二极管(led)显示系统
US20020140643A1 (en) * 2001-03-28 2002-10-03 Toshihiro Sato Display module
CN1472722A (zh) * 2002-07-29 2004-02-04 友达光电股份有限公司 有机电激发光显示器的单位像素驱动电路
US20060270097A1 (en) * 2005-05-24 2006-11-30 Do-Young Kim Organic light emitting display and method of fabricating the same
CN101315744A (zh) * 2007-05-30 2008-12-03 霍尼韦尔国际公司 用于对有源矩阵发光二极管(led)显示器进行调光的装置、系统和方法
CN101937646A (zh) * 2010-09-01 2011-01-05 东南大学 一种发光二极管显示面板及其驱动方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051159C2 (de) * 2000-10-16 2002-09-19 Osram Opto Semiconductors Gmbh LED-Modul, z.B. Weißlichtquelle
JP4837295B2 (ja) * 2005-03-02 2011-12-14 株式会社沖データ 半導体装置、led装置、ledヘッド、及び画像形成装置
JP2010171289A (ja) * 2009-01-26 2010-08-05 Oki Data Corp 画像表示装置
JP2010251360A (ja) * 2009-04-10 2010-11-04 Sony Corp 表示装置の製造方法および表示装置
CN101847646B (zh) * 2010-02-02 2012-05-30 孙润光 一种无机发光二极管显示装置
US9461023B2 (en) * 2011-10-28 2016-10-04 Bridgelux, Inc. Jetting a highly reflective layer onto an LED assembly
US8847942B2 (en) * 2011-03-29 2014-09-30 Intrigue Technologies, Inc. Method and circuit for compensating pixel drift in active matrix displays
US8933433B2 (en) * 2012-07-30 2015-01-13 LuxVue Technology Corporation Method and structure for receiving a micro device
US9252324B2 (en) * 2013-05-30 2016-02-02 Globalfoundries Inc Heterojunction light emitting diode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1348579A (zh) * 1999-03-24 2002-05-08 埃维克斯公司 全色发光二极管(led)显示系统
US20020140643A1 (en) * 2001-03-28 2002-10-03 Toshihiro Sato Display module
CN1472722A (zh) * 2002-07-29 2004-02-04 友达光电股份有限公司 有机电激发光显示器的单位像素驱动电路
US20060270097A1 (en) * 2005-05-24 2006-11-30 Do-Young Kim Organic light emitting display and method of fabricating the same
CN101315744A (zh) * 2007-05-30 2008-12-03 霍尼韦尔国际公司 用于对有源矩阵发光二极管(led)显示器进行调光的装置、系统和方法
CN101937646A (zh) * 2010-09-01 2011-01-05 东南大学 一种发光二极管显示面板及其驱动方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11291986B2 (en) 2017-02-24 2022-04-05 Becton, Dickinson And Company Unique sample transfer device for an automated pipettor for processing a variety of clinical microbiological specimens
CN112770431A (zh) * 2019-10-21 2021-05-07 台湾爱司帝科技股份有限公司 发光模块

Also Published As

Publication number Publication date
CN104183606A (zh) 2014-12-03
US9875999B2 (en) 2018-01-23
US20160268239A1 (en) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2016019646A1 (zh) 显示基板及其制造方法、显示装置
JP7490110B2 (ja) 表示装置
EP3503238B1 (en) Display device
CN113257839B (zh) 显示设备
US9825106B2 (en) OLED display substrate and method for manufacturing the same, and display apparatus
KR100941836B1 (ko) 유기 전계 발광표시장치
KR102642869B1 (ko) 표시 장치
US11569329B2 (en) Array substrate and detection method therefor, display panel and display device
CN104751796B (zh) 有机发光显示装置
US20180226508A1 (en) Tft backplane and manufacturing method thereof
KR20200018746A (ko) 표시장치 및 그 제조방법
WO2020216000A1 (zh) 无机发光二极管显示基板、显示装置、驱动方法以及无机发光二极管显示基板的制作方法
US11362304B2 (en) Display device and method of manufacturing the same
US10971438B2 (en) Chip-on film and display device including the same
CN110858607B (zh) 显示装置
US10950822B2 (en) Display device capable of improving light extraction efficiency
KR102578844B1 (ko) 유기전계발광표시장치와 이의 제조방법
WO2015043269A1 (zh) Oled像素结构和oled显示装置
CN105322100A (zh) 有机发光显示面板及其制造方法
CN109637455A (zh) 一种阵列基板、其驱动方法、显示面板及显示装置
KR20060112963A (ko) 평판표시장치
KR101958525B1 (ko) 유기발광 다이오드의 애노드 연결구조 및 그 제작방법
KR20240007101A (ko) 발광 표시 장치
TW202004720A (zh) 顯示裝置及陣列基板
CN100379016C (zh) 有机电致发光显示单元

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14769144

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14899263

Country of ref document: EP

Kind code of ref document: A1