WO2016017583A1 - リチウムイオン二次電池用負極材およびその製造方法 - Google Patents

リチウムイオン二次電池用負極材およびその製造方法 Download PDF

Info

Publication number
WO2016017583A1
WO2016017583A1 PCT/JP2015/071249 JP2015071249W WO2016017583A1 WO 2016017583 A1 WO2016017583 A1 WO 2016017583A1 JP 2015071249 W JP2015071249 W JP 2015071249W WO 2016017583 A1 WO2016017583 A1 WO 2016017583A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
negative electrode
electrode material
lithium ion
carbon
Prior art date
Application number
PCT/JP2015/071249
Other languages
English (en)
French (fr)
Inventor
貴行 栗田
松尾 明
石井 伸晃
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US15/329,884 priority Critical patent/US20170256791A1/en
Priority to CN201580031798.9A priority patent/CN106663807B/zh
Priority to EP15827330.0A priority patent/EP3176860A4/en
Priority to JP2016538339A priority patent/JP6543255B2/ja
Priority to KR1020167033259A priority patent/KR101917166B1/ko
Publication of WO2016017583A1 publication Critical patent/WO2016017583A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode material for a lithium ion secondary battery and a method for producing the same. More specifically, the present invention relates to a negative electrode material for a lithium ion secondary battery that has a high energy density and can achieve both a high initial capacity and a high capacity retention rate, and a method suitable for the production thereof.
  • the power consumption of portable electronic devices is increasing due to the multi-functionalization of portable electronic devices at a speed exceeding the power saving of electronic components. Therefore, higher capacity and smaller size of the lithium ion secondary battery, which is the main power source of portable electronic devices, are more strongly demanded than ever.
  • the demand for electric vehicles has been increasing, and there is a strong demand for higher capacity in lithium ion secondary batteries used therefor.
  • Conventional lithium ion secondary batteries mainly use graphite as a negative electrode material. Since graphite can only occlude Li up to a stoichiometric ratio of LiC 6 , the theoretical capacity of a lithium ion battery using graphite as a negative electrode is 372 mAh / g at the maximum.
  • Patent Document 1 discloses that a carbon fiber having electronic conductivity is entangled, and a gap between which the fluid can permeate is interposed between the carbon fibers, and enters the gap and is dispersed inside the carrier.
  • a negative electrode material for a lithium ion secondary battery is disclosed.
  • Patent Document 2 is a negative electrode material composed of a mixture of particles containing an element capable of inserting and extracting lithium and carbon particles containing a graphite material, and the carbon particles have an aspect calculated from an optical microscope image.
  • the ratio is from 1 to 5
  • the 50% particle size in the volume-based cumulative particle size distribution measured by a laser diffraction particle size distribution analyzer is 2 to 40 ⁇ m
  • the bulk density when tapping 400 times is 1.0 g.
  • Patent Document 3 is a composite material containing carbon fibers and composite oxide particles, wherein at least a part of the surfaces of the carbon fibers and composite oxide particles are coated with carbon, and the carbon coating is Disclosed is a composite material that is non-powder coated.
  • JP 2013-089403 A JP 2013-222641 A Special table 2011-529257 gazette
  • An object of the present invention is to provide a negative electrode material for a lithium ion secondary battery having a high energy density and capable of achieving both a high initial capacity and a high capacity retention rate, and a method suitable for the production thereof. .
  • the graphite particles (B) are artificial graphite obtained by heat-treating petroleum coke and / or coal coke at 2500 ° C. or higher.
  • Negative electrode material [4] The lithium ion according to any one of [1] to [3], wherein the carbon fiber (C) includes carbon nanotubes having an average fiber diameter of 2 nm to 40 nm and an aspect ratio of 10 to 15000. Secondary battery negative electrode material.
  • the mechanochemical treatment (1) is applied to the carbon fiber (C) and the particle (A) containing an element capable of occluding and releasing lithium ions other than the carbon element, so that the particle (A) and the carbon fiber ( C) and a processed product (1) containing The graphite (B) is mixed with the processed product (1) in a mass larger than the mass of the processed product (1),
  • the negative electrode for a lithium ion secondary battery according to any one of [1] to [7] comprising subjecting the treated product (1) and the graphite particles (B) to a mechanochemical treatment (2).
  • a method of manufacturing the material is applied to the carbon fiber (C) and the particle (A) containing an element capable of occluding and releasing lithium ions other than the carbon element, so that the particle (A) and the carbon fiber ( C) and a processed product (1) containing The graphite (B) is mixed with the processed product (1) in a mass larger than the mass of the processed product (1).
  • the negative electrode material for a lithium ion secondary battery of the present invention can greatly reduce the electrical resistance of the electrode and is excellent in the effect of suppressing the collapse of the electrode structure due to the expansion and contraction of the particles (A).
  • the negative electrode material of the present invention is effective in improving battery characteristics such as energy density, initial capacity, and capacity retention rate of a lithium ion secondary battery.
  • the negative electrode material for a lithium ion secondary battery according to the present invention can be obtained at a lower cost than other methods.
  • the mechanochemical treatment (1) in the production method according to the present invention the aggregation of the particles (A) and the aggregation of the carbon fibers (C) are solved, and the particles (A) are fused to the carbon fibers (C) to contact the area. Is estimated to spread.
  • the mechanochemical treatment (2) in the production method according to the present invention a part of the three-dimensional entangled network structure formed by at least one carbon fiber (C) is fused with the graphite particles (B). It becomes like this.
  • the negative electrode material of the present invention most of the particles (A) and the graphite particles (B) are not directly connected but are connected via a three-dimensional entangled network structure composed of carbon fibers (C). It seems that the volume change of the particles (A) accompanying the intercalation and deintercalation of ions is buffered by the three-dimensional entangled network structure.
  • FIG. 7 is an enlarged SEM image of a portion where a structure in which Si particles are fused to carbon nanotubes in FIG. 6 is fused to the surface of graphite particles. It is a figure which shows the TEM image which shows the fusion
  • the negative electrode material for a lithium ion secondary battery comprises particles (A), graphite particles (B), and carbon fibers (C).
  • the particles (A) used in the present invention contain an element capable of occluding and releasing lithium ions other than carbon elements.
  • the particles (A) may contain a carbon element and an element such as SiC that can occlude / release lithium ions other than the carbon element.
  • the particle (A) means a particle other than a particle composed of only carbon element.
  • elements that can occlude / release lithium ions other than carbon elements include Sb, Pb, Ag, Mg, Zn, Ga, Bi, Si, Sn, Ge, Al, and In. Among these, Si, Sn, Ge, Al, or In is preferable, and Si is preferable from the viewpoint of heat resistance.
  • the particles (A) may be composed of a simple substance of the element or a compound, a mixture, a eutectic or a solid solution containing at least one of the elements. Further, the particles (A) as the raw material may be those obtained by agglomerating a plurality of fine particles, that is, secondary particles. Examples of the shape of the particles (A) include lumps, scales, spheres, and fibers. Of these, spherical or lump shape is preferable.
  • M a m Si As the substance containing Si element, a substance represented by a general formula: M a m Si can be given.
  • the substance is a compound, mixture, eutectic or solid solution containing the element Ma in a ratio of mmol to 1 mol of Si.
  • M a is an element excluding Li.
  • M a Si, B, C , N, O, S, P, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn
  • Examples thereof include Mo, Ru, Rh, Pd, Pt, Be, Nb, Nd, Ce, W, Ta, Ag, Au, Cd, Ga, In, Sb, and Ba.
  • m is preferably 0.01 or more, more preferably 0.1 or more, and further preferably 0.3 or more.
  • Si element examples include: Si simple substance, alloy of Si and alkaline earth metal; alloy of Si and transition metal; alloy of Si and semimetal; Si, Be, Ag, Al, Au, cd, Ga, in, solid-solution alloys or KyoTorusei alloy of Sb or Zn; CaSi, CaSi 2, Mg 2 Si, BaSi 2, Cu 5 Si, FeSi, FeSi 2, CoSi 2, Ni 2 Si, NiSi 2 , MnSi, MnSi 2, MoSi 2 , CrSi 2, Cr 3 Si, TiSi 2, Ti 5 Si 3, NbSi 2, NdSi 2, CeSi 2, WSi 2, W 5 Si 3, TaSi 2, Ta 5 Si 3, PtSi , V 3 Si, VSi 2 , PdSi, RuSi, RhSi and other silicides; SiO 2 , SiC, Si 3 N 4 and the like.
  • Examples of those containing Sn element include tin alone, tin alloy, tin oxide, tin sulfide, tin halide, and stannate.
  • Specific examples of those containing Sn element include an alloy of Sn and Zn, an alloy of Sn and Cd, an alloy of Sn and In, an alloy of Sn and Pb; SnO, SnO 2 , M b 4 SnO 4 (M b represents a metal element other than Sn.)
  • Tin sulfide such as SnS, SnS 2 , M b 2 SnS 3 (M b represents a metal element other than Sn);
  • SnX 2 , SnX 4 Tin halides such as M b SnX 4 (M b represents a metal element other than Sn.
  • X represents a halogen atom); stannates such as MgSn, Mg 2 Sn, FeSn, FeSn 2 , MoSn, and MoS
  • the surface layer of the particles (A) is preferably oxidized. This oxidation may be natural oxidation or artificial oxidation. By this oxidation, the particles (A) are covered with a thin oxide film.
  • the particle (A) has a lower limit of 50% particle size in the number-based cumulative particle size distribution of primary particles, preferably 5 nm, more preferably 10 nm, still more preferably 30 nm, and 50% in the number-based cumulative particle size distribution of primary particles.
  • the upper limit of the particle diameter is preferably 1000 nm, more preferably 500 nm, and still more preferably 100 nm.
  • the particle (A) has a 90% particle size in the volume-based cumulative particle size distribution of the primary particles, preferably 200 nm or less.
  • the particles (A) in the raw material state are usually a mixture of primary particles and aggregates of primary particles (that is, secondary particles). Particles (A) in the raw material state have peaks in the range of 0.1 ⁇ m to 1 ⁇ m and in the range of 10 ⁇ m to 100 ⁇ m, respectively, in the number standard particle size distribution obtained by measuring without distinguishing primary particles and secondary particles. There is also.
  • the particle (A) in the raw material state has a 50% particle diameter (D n50 ) in the number-based cumulative particle size distribution obtained by measuring without distinguishing between primary particles and secondary particles, and graphite particles in the raw material state ( B)
  • D n50 50% particle diameter
  • D v50 50% particle diameter in the volume-based particle size distribution obtained by measuring without distinguishing between primary particles and secondary particles
  • the negative electrode material of the present invention there are particles (A) distributed in the form of primary particles and particles distributed in the state of secondary particles (that is, aggregated particles).
  • the 50% particle size in the number-based cumulative particle size distribution measured by extracting only the particles (A) distributed in the secondary particle state in the negative electrode material is preferably 10 nm or more and 1000 nm or less.
  • the particles (A) in the negative electrode material are particles (A) as a whole in a range of a particle diameter of 10 nm to 400 nm in a number-standard particle size distribution obtained by measuring without distinguishing primary particles and secondary particles. It is preferred that 95% or more of
  • the graphite particles (B) used in the present invention are particles made of a graphitic carbon material capable of occluding and releasing lithium ions.
  • Examples of the graphitic carbon material include artificial graphite, pyrolytic graphite, expanded graphite, natural graphite, scaly graphite, and scaly graphite.
  • the graphite particles (B) have a 50% particle diameter (D v50 ) in a volume-based cumulative particle size distribution of preferably 2 ⁇ m or more and 40 ⁇ m or less, more preferably 2 ⁇ m or more and 30 ⁇ m or less, and further preferably 3 ⁇ m or more and 20 ⁇ m or less. If the 50% particle size is too small, it tends to be difficult to increase the electrode density. On the other hand, if the 50% particle size is too large, the diffusion distance of lithium ions in the solid becomes long, and the output characteristics tend to deteriorate.
  • the graphite particles (B) have a particle size of 5 ⁇ m or more, in the number standard particle size distribution, in which the particle diameter is in the range of 1 ⁇ m or more and 50 ⁇ m or less of the graphite particles (B). It is preferable that 90% or more of the entire graphite particles (B) exist in a range of 50 ⁇ m or less.
  • the graphite particles (B) have a 10% particle diameter (D v10 ) in the volume-based cumulative particle size distribution of preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the particle size distribution of the graphite particles (B) is measured by a laser diffraction type particle size distribution measuring machine. This particle size distribution is obtained by measuring without distinguishing between primary particles and secondary particles.
  • Graphite particle (B) used in the present invention is, d 002 is preferably 0.337nm or less, and more preferably not more than 0.336 nm. Further, the graphite particles (B) preferably have L C of 50 nm or more, more preferably 50 nm or more and 100 nm or less.
  • d 002 is the spacing calculated from the 002 diffraction line in the powder X-ray diffraction
  • L C is a c-axis direction of the crystallite size determined from 002 diffraction line in the powder X-ray diffraction.
  • the graphite particles (B) used in the present invention have a BET specific surface area of preferably 1 m 2 / g to 10 m 2 / g, more preferably 1 m 2 / g to 7 m 2 / g.
  • the graphite particles (B) used in the present invention preferably have a median value (50% aspect ratio) in the number-based distribution of the aspect ratio (major axis / minor axis) of the primary particles of 1.4 to 3.0. .
  • Graphite particles (B) having such an aspect ratio distribution tend to have many flat portions and concave portions on the surface thereof.
  • a three-dimensional entangled network structure composed of carbon fibers (C) tends to be fused to the flat portions or concave portions of the graphite particles (B). And it is preferable that the three-dimensional entangled network structure mentioned later surrounds the graphite particle (B).
  • the graphite particles (B) used in the present invention can use coal-based coke and / or petroleum-based coke as a raw material.
  • the graphite particles (B) used in the present invention are preferably obtained by heat-treating coal-based coke and / or petroleum-based coke at a temperature of preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher.
  • the upper limit of heat processing temperature is not specifically limited, 3200 degreeC is preferable.
  • This heat treatment is preferably performed in an inert atmosphere. In the heat treatment, a conventional Atchison graphitization furnace or the like can be used.
  • the lower limit of the amount of graphite particles (B) contained in the negative electrode material is preferably 400 parts by mass, and the upper limit is preferably 100 parts by mass of the total amount of particles (A) and carbon fibers (C). 810 parts by mass, more preferably 600 parts by mass. Moreover, the amount of the graphite particles (B) is preferably 86 parts by mass or more and 89 parts by mass or less with respect to 10 parts by mass of the particles (A).
  • Carbon fiber (C) The carbon fiber (C) used in the present invention is a carbon material having a fiber shape.
  • Examples of the carbon fiber (C) include pitch-based carbon fiber, PAN-based carbon fiber, carbon fiber, carbon nanofiber, and carbon nanotube. From the viewpoint of reducing the amount added, it is preferable to use carbon nanotubes.
  • the carbon fiber (C) used in the present invention has 95% or more of the total fiber, preferably 2 nm to 40 nm, more preferably 5 nm to 40 nm, still more preferably 7 nm to 20 nm, and still more preferably 9 nm or more. It has a fiber diameter of 15 nm or less. Those having a fiber diameter smaller than 2 nm tend to be difficult to disperse one by one. Moreover, what has a fiber diameter larger than 40 nm tends to be difficult to produce by the supported catalyst method.
  • the carbon fiber (C) used in the present invention is a carbon nanotube having a tubular structure in which a graphene sheet composed of a carbon six-membered ring is wound in parallel to the fiber axis, and a pelletlet structure in which the graphene sheet is arranged perpendicular to the fiber axis.
  • Examples include carbon nanotubes and carbon nanotubes having a herringbone structure wound at an oblique angle with respect to the fiber axis. Of these, tubular carbon nanotubes are preferred in terms of electrical conductivity and mechanical strength.
  • the carbon fiber (C) itself may be a straight one without twisting or one that is twisted and curved. Since the twisted and curved carbon fibers have good contact efficiency with the particles (A) in the negative electrode material at the same addition amount, uniform compounding with the particles (A) can be achieved even with a small amount of addition. Cheap. In addition, the twisted and curved carbon fiber (C) has high followability to the shape change, so that the contact with the particle (A) is maintained even when the particle (A) expands, and the network of fibers is not easily interrupted. it is conceivable that.
  • the aspect ratio of the carbon fiber (C) is preferably 10 or more and 15000 or less, more preferably 200 or more and 15000 or less.
  • the aspect ratio is the ratio of the average fiber length to the average fiber diameter.
  • the BET specific surface area of the carbon fiber (C) is preferably 150 m 2 / g or more and 300 m 2 / g or less, more preferably 240 m 2 / g or more and 280 m 2 / g or less, and further preferably 250 m 2 / g or more and 270 m 2 / g. It is as follows.
  • the tap density of the carbon fiber (C) is not particularly limited, but is preferably 0.001 to 0.1 g / cm 3 , preferably 0.005 to 0.08 g / cm 3 .
  • the lattice constant C 0 value of the carbon fiber (C) is preferably 0.680 nm or more and 0.690 nm or less. If the C 0 value is too small, the carbon fiber (C) is not flexible and the aggregate tends to be difficult to break.
  • the oxidation start temperature of the carbon fiber (C) is preferably 400 ° C. or higher and 550 ° C. or lower.
  • the oxidation start temperature is 0.1% by weight with respect to the initial weight (charge amount) when the temperature is raised from room temperature to 1000 ° C. at 10 ° C./min under air flow in a thermobalance. This is the temperature when decreases. If the oxidation start temperature is too low, there are many crystal defects in the carbon fiber.
  • the carbon fiber (C) has a consolidation specific resistance at a compression density of 0.8 g / cm 3 , preferably 0.014 ⁇ ⁇ cm or more and 0.020 ⁇ ⁇ cm or less. Carbon fiber (C) having a compacting specific resistance too low at a compression density of 0.8 g / cm 3 tends to have low flexibility. Moreover, the carbon fiber (C) whose consolidation specific resistance is too large tends to have a low conductivity imparting effect.
  • the carbon fiber (C) used in the present invention is not particularly limited by its synthesis method, but is preferably synthesized by a gas phase method.
  • gas phase methods those synthesized by the supported catalyst method are preferable.
  • the supported catalyst method is a method for producing carbon fiber by reacting a carbon source in a gas phase using a catalyst in which a catalytic metal is supported on an inorganic support.
  • inorganic carriers examples include alumina, magnesia, silica titania, and calcium carbonate.
  • the inorganic carrier is preferably granular.
  • the catalyst metal include iron, cobalt, nickel, molybdenum, vanadium, and the like.
  • the supporting is carried out by impregnating the support with a solution of the compound containing the catalytic metal element, coprecipitation of a solution containing the compound containing the catalytic metal element and the element constituting the inorganic support, or other known support. It can be done by the method.
  • Carbon sources include methane, ethylene, acetylene and the like.
  • the reaction can be performed in a reactor such as a fluidized bed, a moving bed, and a fixed bed.
  • the temperature during the reaction is preferably set to 500 ° C to 800 ° C.
  • a carrier gas can be used to supply the carbon source to the reactor. Examples of the carrier gas include hydrogen, nitrogen, and argon.
  • the reaction time is preferably 5 to 120 minutes.
  • the amount of the carbon fiber (C) contained in the negative electrode material of the present invention is 1 part by mass or more and 4 parts by mass or less with respect to 10 parts by mass of the particles (A).
  • the amount of carbon fiber (C) contained in the negative electrode material of the present invention is preferably 0.1 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the total amount of particles (A) and graphite particles (B). Or less, more preferably 0.5 parts by mass or more and 5 parts by mass or less.
  • a three-dimensional entangled network structure is formed by one or more carbon fibers (C).
  • Such a three-dimensional entangled network structure is a structure in which carbon fibers (C) are entangled at low density to form a three-dimensional network structure like cotton.
  • particles (A) are included in the three-dimensional entangled network structure.
  • the three-dimensional entangled network structure has a cage-like space surrounded by one or more carbon fibers (C) constituting the structure.
  • the particles (A) are mainly included in the space.
  • the particles (A) are fused to the surface of the carbon fibers (C) constituting the three-dimensional entangled network structure. It is considered that a conductive path is formed between the carbon fiber (C) and the particle (A) by this fusion.
  • 1 to 4 are TEM photographs showing an example of a fused state of particles (A) and carbon fibers (C).
  • the carbon fibers (C) constituting the structure can come into contact with an object outside the structure, for example, graphite particles (B).
  • the three-dimensional entangled network structure surrounds the graphite particles (B).
  • the three-dimensional entangled network structure is fused to at least a part of the surface of the graphite particles (B). It is considered that a conductive path is formed between the three-dimensional entangled network structure (mainly carbon fiber (C)) and the graphite particles (B) by this fusion.
  • the particles (A) are fused to the carbon fibers (C), and the carbon fibers (C) are fused to the graphite particles (B). Most of the particles (A) are not in direct contact with the graphite particles (B), and are connected to the graphite particles (B) through the carbon fibers (C). In the negative electrode material in which the particles (A) are not in direct contact with the graphite particles (B) and the particles (A) are connected to the graphite particles (B) through the carbon fibers (C), an intercalation of lithium ions is used.
  • the carbon fiber (C) which can change flexibly even when the volume of the particle (A) changes greatly due to the transition or deintercalation, maintains the current path between the particle (A) and the graphite particle (B). it can. Therefore, when the negative electrode material of the present invention is contained in the electrode layer, it is possible to obtain a lithium ion secondary battery that has a high energy density and can achieve both a high initial capacity and a high capacity retention rate. it can.
  • the method for producing the negative electrode material according to the present invention is not particularly limited, but a method using mechanochemical treatment is preferable.
  • a method suitable for production of the negative electrode material according to the present invention is to subject the carbon fiber (C) and the particles (A) to mechanochemical treatment (1) to obtain the particles (A) and the carbon fibers (C).
  • a treated product (1) containing is obtained, graphite particles (B) are mixed with the treated product (1), and then the mechanochemical treatment (2) is performed on the treated product (1) and the graphite particles (B). Including applying.
  • the mechanochemical treatment is a method of inducing a chemical change in a solid target material by applying mechanical energy such as collision energy, compression energy, shear energy, etc. to the solid target material.
  • the mechanochemical treatment is preferably performed by a dry process.
  • the mechanochemical treatment when a large mechanical energy is applied to a powder containing particles having different sizes and shapes, the surface activity increases as the particle surface becomes amorphous. Particles with increased surface activity interact with surrounding particles.
  • the mechanical energy imparted to the powder by the mechanochemical treatment is increased, the different types of particles are not only in close contact with each other, but the particles are connected to each other, and the bonded portion is hardened like a sintered body. This is called mechanofusion.
  • the state in which the structure of the particles (particle (A) and graphite particle (B)) and the carbon fiber (C) is fused is an amorphous bonding portion in which the two are connected in this way. Is a state in which is formed.
  • the raw material powder is put on a moving gas and the powders are brought into contact with each other, or the powder is hit against a strong wall, or a narrow space is passed with a large force.
  • a method of applying compressive force and shear force to the powder In mechanochemical treatment, a specially shaped blade is rotated at high speed in a horizontal cylindrical vessel while dispersing the raw material powder in the gas phase, and the impact force, compression force and shear force are applied to individual particles. The method of giving uniformly is preferable.
  • uniform particle composition can be advanced in 1 to 5 minutes.
  • Examples of apparatuses capable of performing mechanochemical treatment include a hybridization system manufactured by Nara Machinery Co., Ltd., and Nobilta manufactured by Hosokawa Micron Corporation. Of these, nobilta is preferably used in the present invention.
  • the output of the apparatus is preferably 4.3 W / cm 3 or more, more preferably 5.7 W / cm 3 or more, more preferably 8.6 W per unit volume of the powder. / Cm 3 or more.
  • the atmospheric temperature during the mechanochemical treatment (1) for the particles (A) and the carbon fibers (C) is preferably 500 ° C. or less, more preferably 400 ° C. or less, and even more preferably 300 ° C. or less.
  • the mechanochemical treatment can be performed in the air, but is preferably performed in an inert gas atmosphere.
  • the inert gas nitrogen gas is preferable, and argon gas is more preferable.
  • a treated product (1) is obtained by mechanochemical treatment (1) on the particles (A) and the carbon fibers (C).
  • the carbon fibers (C) form a three-dimensional entangled network structure, and the particles (A) can be fused on the carbon fiber (C) surface.
  • the fusion produced by the mechanochemical treatment (1) can fix the particles (A) uniformly and firmly to the carbon fibers (C). This fusion ensures electrical contact between the particles (A) and the carbon fibers (C).
  • the tap density of the treated product (1) is not particularly limited, but is preferably 0.002 to 0.1 g / cm 3 , preferably 0.006 to 0.09 g / cm 3 .
  • the graphite particles (B) are mixed with the treated product (1).
  • the amount of the graphite particles (B) is preferably mixed with a mass larger than that of the treated product (1).
  • the treated product (1) and the graphite particles (B) are mixed uniformly by the following mechanochemical treatment (2), so only the graphite particles (B) are added to the treated product (1).
  • the treated product (1) may be simply added to the graphite particles (B).
  • the three-dimensional entangled network structure can be fused to at least a part of the surface of the graphite particles (B).
  • the three-dimensional entangled network structure By fusion of the three-dimensional entangled network structure, at least a part of the surface of the graphite particles (B) is covered with the three-dimensional entangled network structure (see FIG. 7). This coating ensures electrical contact between the graphite particles (B) and the carbon fibers (C). A conductive path from the graphite particles (B) to the particles (A) through the carbon fibers (C) is formed.
  • the three-dimensional entangled network structure with respect to the graphite particles (B) has a ratio (coverage ratio) of the length of the outer periphery in contact with the structure to the entire length of the outer periphery of the cross section of the graphite particles (B) in the cross-sectional SEM photograph. It is preferable that it is 50% or more.
  • FIG. 6 shows an example in which 50% or more of the outer periphery of the cross section of the graphite particle (B) is covered with a three-dimensional entangled network structure made of carbon fibers (C) (the arrow in the figure indicates the covered portion).
  • the aspect ratio of the negative electrode material formed by coating the graphite particles (B) with the three-dimensional entangled network structure is somewhat smaller than the original aspect ratio of the graphite particles (B) and approaches 1.
  • the carbon nanofiber (D) is included in the negative electrode material of the present invention
  • the carbon nanofiber (D) is formed by bridging and fusing a plurality of graphite particles (B), and the graphite particles (B). And a case where a three-dimensional entangled network structure made of carbon fiber (C) is fused.
  • the carbon fiber (C) may be fused to the carbon nanofiber (D).
  • the mechanochemical treatment for producing the above negative electrode material containing the carbon nanofiber (D) is performed as follows. First, the mechanochemical treatment (1) is performed on the particles (A) and the carbon fibers (C) to obtain a treated product (1) containing the particles (A) and the carbon fibers (C).
  • a mechanochemical treatment (3) is performed on the graphite particles (B) and the carbon nanofibers (D), and the treated product (2) containing the graphite particles (B) and the carbon nanofibers (D). Get.
  • the treated product (1) and the treated product (2) are mixed, and the resulting mixture is subjected to mechanochemical treatment (4).
  • the negative electrode material of the present invention may further contain conductive carbon particles.
  • the conductive carbon particles used in the present invention preferably have a 50% particle size in a number-based cumulative particle size distribution of primary particles of 20 nm to 100 nm, more preferably 30 nm to 50 nm.
  • Examples of the conductive carbon particles include carbon black-based conductive particles such as acetylene black, furnace black, and ketjen black. When conductive carbon particles are added, the initial capacity of the lithium ion battery tends to be improved.
  • the amount of the conductive carbon particles is preferably 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the total amount of the particles (A) and the graphite particles (B).
  • the negative electrode material according to an embodiment of the present invention can be contained in an electrode sheet.
  • the electrode sheet usually has a current collector and an electrode layer coated on the current collector.
  • the negative electrode material according to one embodiment of the present invention is usually contained in the electrode layer.
  • the current collector examples include nickel foil, copper foil, nickel mesh, and copper mesh. Further, the current collector may have a conductive metal foil and a conductive layer coated thereon. Examples of the conductive layer include those composed of a conductivity-imparting agent such as conductive carbon particles and a binder. The electrode layer can contain a binder in addition to the negative electrode material according to one embodiment of the present invention.
  • binder examples include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, acrylic rubber, and a polymer compound having high ionic conductivity.
  • the high molecular compound having high ionic conductivity examples include polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like.
  • the amount of the binder is preferably 0.5 to 100 parts by mass with respect to 100 parts by mass of the negative electrode material.
  • the conductivity-imparting agent that can be used for the conductive layer is not particularly limited as long as it serves to impart conductivity between the electrode layer and the current collector.
  • vapor grown carbon fiber for example, “VGCF” manufactured by Showa Denko KK
  • conductive carbon for example, “Denka Black” manufactured by Denki Kagaku Kogyo, “Super C65” manufactured by TIMCAL, “Super C45” manufactured by TIMCAL "KS6L” manufactured by TIMCAL, Inc.).
  • the electrode layer can be obtained, for example, by applying a paste containing a binder and a negative electrode material to a current collector and drying it.
  • the paste is obtained, for example, by kneading a negative electrode material, a binder, and, if necessary, a solvent.
  • the paste can be formed into a shape such as a sheet or pellet.
  • the solvent is not particularly limited and includes N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, water and the like.
  • a binder using water as a solvent it is preferable to use a thickener together. The amount of the solvent is adjusted so that the paste has a viscosity that can be easily applied to the current collector.
  • the method of applying the paste is not particularly limited.
  • the thickness of the electrode layer is usually 50 to 200 ⁇ m. If the thickness of the electrode layer becomes too large, the electrode sheet may not be accommodated in a standardized battery container.
  • the thickness of the electrode layer can be adjusted by the amount of paste applied. It can also be adjusted by drying the paste and then press molding. Examples of the pressure molding method include a roll press molding method and a flat plate press molding method.
  • the electrode layer to which the negative electrode material according to one embodiment of the present invention is applied has an unpressed volume resistivity measured by a four-point probe method, preferably 0.5 ⁇ ⁇ cm or less.
  • the volume resistivity is such that the particles (A), the graphite particles (B), and the carbon fibers (C) are used as necessary. This is probably because the carbon nanofibers (D) and the conductive carbon particles are moderately entangled, have no large aggregates, are uniformly dispersed, and form a dense conductive network. .
  • a lithium ion battery according to an embodiment of the present invention has at least one selected from the group consisting of a non-aqueous electrolyte and a non-aqueous polymer electrolyte, a positive electrode sheet, and a negative electrode sheet.
  • a negative electrode sheet an electrode sheet containing the negative electrode material according to one embodiment of the present invention can be used.
  • a sheet conventionally used for lithium ion batteries specifically, a sheet containing a positive electrode and a negative electrode material can be used.
  • any one or two or more kinds of conventionally known materials (materials capable of occluding and releasing lithium ions) known as positive electrode negative electrode materials in lithium batteries are appropriately selected.
  • lithium-containing metal oxides that can occlude and release lithium ions are preferable.
  • this lithium-containing metal oxide a composite oxide containing lithium element and at least one element selected from Co, Mg, Cr, Mn, Ni, Fe, Al, Mo, V, W, Ti, and the like is used.
  • Specific examples of the positive electrode negative electrode material include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi 0.34 Mn 0.33 Co 0.33 O 2 , and LiFePO 4 .
  • the non-aqueous electrolyte and non-aqueous polymer electrolyte used for the lithium ion battery are not particularly limited.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li, CF 3 SO 3 Li can be converted into ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, propylene.
  • Organic electrolytes that are dissolved in non-aqueous solvents such as carbonate, butylene carbonate, acetonitrile, propyronitrile, dimethoxyethane, tetrahydrofuran, and ⁇ -butyrolactone; polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, and polymethyl methacrylate Examples thereof include a gel polymer electrolyte and a solid polymer electrolyte containing a polymer having an ethylene oxide bond.
  • a small amount of a substance that causes a decomposition reaction when the lithium ion battery is initially charged may be added to the electrolytic solution.
  • the substance include vinylene carbonate (VC), biphenyl, propane sultone (PS), fluoroethylene carbonate (FEC), ethylene sulfite (ES), and the like.
  • the addition amount is preferably 0.01 to 30% by mass.
  • a separator can be provided between the positive electrode sheet and the negative electrode sheet.
  • the separator include non-woven fabrics, cloths, microporous films, or a combination thereof, mainly composed of polyolefins such as polyethylene and polypropylene.
  • Example 1 Si particles (90% particle diameter in volume-based cumulative particle size distribution is 200 nm or less) and carbon nanotubes (VGCF-XA (registered trademark): manufactured by Showa Denko KK; fiber diameter of 95% or more of all fibers is 2 nm or more With a pulverizer (Nobilta (trademark): manufactured by Hosokawa Micron Co., Ltd., NOB-MINI), 1.3 g of starting power is 300 W (4.3 W per unit volume of the sample). / Cm 3 ) for 5 minutes, a mechanochemical treatment product (1) containing Si particles and carbon nanotubes was obtained.
  • VGCF-XA registered trademark
  • NOB-MINI pulverizer
  • a three-dimensional entangled network structure composed of carbon nanotubes from which carbon nanotubes were agglomerated was formed, and Si particles were fused to the carbon nanotubes constituting the structure.
  • 1 to 4 show TEM images showing the fused state of Si particles and carbon nanotubes. It can be confirmed that the carbon nanotubes are gently entangled three-dimensionally and are in a net shape. Further, it can be confirmed that the Si particles are fused to the carbon nanotubes. For example, as shown in FIG. 4, the fusion between the Si particles and the carbon nanotubes is in a region between the crystal lattice image derived from the Si particles and the crystal lattice image derived from the carbon nanotubes. It can be confirmed from an image having no lattice, that is, an amorphous image. This fusion is considered to form a strong conductive path between the Si particles and the carbon nanotubes.
  • a three-dimensional entangled network structure is formed by carbon nanotubes, Si particles are included in the structure, Si particles are fused to the carbon fibers constituting the structure, and the structure was fused to at least a part of the surface of the graphite particles.
  • the graphite particles were surrounded by the structure. 5 to 7 show SEM images of the negative electrode material A, and FIG. 8 shows TEM images. It can be seen that the graphite particles are surrounded by the three-dimensional entangled network structure. Moreover, it can be confirmed that the carbon nanotubes constituting the structure are fused to the graphite particles. For example, as shown in FIG.
  • the fusion between the graphite particles and the carbon nanotubes is performed by the lattice in the region between the crystal lattice images derived from the graphite particles and the crystal lattice images derived from the carbon nanotubes. It can be confirmed from a non-existent image, that is, an amorphous image. This fusion is considered to form a strong conductive path between the graphite particles and the carbon nanotubes.
  • the following operation was performed in a glove box kept in a dry argon gas atmosphere with a dew point of -80 ° C or lower.
  • the negative electrode of the present invention has a higher potential than the Li counter electrode, and strictly serves as the positive electrode. Therefore, a negative electrode is called a working electrode.
  • a separator 40 mm ⁇ 35 mm
  • a counter electrode Li foil 25 mm ⁇ 30 mm
  • a polypropylene plate 40 mm ⁇ 40 mm
  • a reference electrode Li foil (10 mm ⁇ 30 mm) is inserted in the longitudinal direction from the long side (100 mm) side of the packaging material so as to be in contact with a region not in contact with the working electrode on the surface on the working electrode side of the separator. Note that the reference electrode Li foil and the working electrode are in a non-contacting positional relationship. Thereafter, the long side (100 mm) of the packaging material was heat-sealed.
  • An evaluation cell was prepared by injecting and heat-sealing the short side of the packaging material that was not sealed while vacuuming.
  • the evaluation cell was aged under the following charge / discharge conditions. First, constant current discharge was performed at 300 ⁇ A / g from the rest potential to 10 mV. Next, constant current charging was performed at 300 ⁇ A / g and cut off at 1.0 V.
  • Example 2 A pulverizer (Nobilta (trademark)) containing 5.0 g of Si particles (90% particle diameter in volume-based cumulative particle size distribution is 200 nm or less) and 0.6 g of carbon nanotubes (VGCF-XA (registered trademark) manufactured by Showa Denko KK) : Mechanochemical treatment with NOB-MINI) manufactured by Hosokawa Micron Co., Ltd. for 5 minutes to obtain a mechanochemical treatment product (2) containing Si particles and carbon nanotubes.
  • VGCF-XA registered trademark
  • NOB-MINI Hosokawa Micron Co., Ltd. for 5 minutes to obtain a mechanochemical treatment product (2) containing Si particles and carbon nanotubes.
  • a three-dimensional entangled network structure composed of carbon nanotubes from which carbon nanotubes were aggregated was formed, and Si particles were fused to the carbon nanotubes constituting the structure.
  • a negative electrode material B was obtained by mechanochemical treatment for a minute.
  • a three-dimensional entangled network structure is formed of carbon nanotubes, Si particles are included in the structure, Si particles are fused to the carbon fibers constituting the structure, and the structure was fused to at least a part of the surface of the graphite particles.
  • the graphite particles were surrounded by the structure.
  • An evaluation cell was prepared in the same manner as in Example 1 except that the negative electrode material B was used, and an aging and cycle test were performed.
  • Charge capacity and discharge capacity in the first cycle initial charge capacity and initial discharge capacity
  • ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate)
  • average value of Coulomb efficiency in the 90th to 100th cycles Table 1 shows.
  • Example 3 A pulverizer (Nobilta (trademark)) containing 3.1 g of Si particles (90% particle diameter in a volume-based cumulative particle size distribution is 800 nm) and 1.3 g of carbon nanotubes (VGCF-XA (registered trademark) manufactured by Showa Denko KK). : Mechanochemical containing Si particles and carbon nanotubes by a mechanochemical treatment for 5 minutes at a starting output of 300 W (4.3 W / cm 3 per unit volume of the sample) manufactured by Hosokawa Micron Co., Ltd. (NOB-MINI) A treated product (3) was obtained.
  • the treated product (3) a three-dimensional entangled network structure formed of carbon nanotubes from which carbon nanotubes were agglomerated was formed, and Si particles were fused to the carbon nanotubes constituting the structure.
  • MINI was subjected to a mechanochemical treatment for 5 minutes at a starting output of 300 W (8.6 W / cm 3 per unit volume of the sample) to obtain a negative electrode material C.
  • a three-dimensional entangled network structure is formed by carbon nanotubes, Si particles are included in the structure, and Si particles are fused to carbon fibers constituting the structure.
  • the graphite particles were surrounded by the structure.
  • An evaluation cell was prepared in the same manner as in Example 1 except that the negative electrode material C was used, and an aging and cycle test were performed. Charge capacity and discharge capacity in the first cycle (initial charge capacity and initial discharge capacity), ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate), and average value of Coulomb efficiency in the 90th to 100th cycles Table 1 shows.
  • Comparative Example 1 10 parts by mass of Si particles (90% particle size in volume-based cumulative particle size distribution is 200 nm or less) and 84 parts by mass of graphite particles (SCMG (trademark): Showa Denko KK) are pulverized (Nobilta (trademark): Hosokawa Micron).
  • a negative electrode material D was obtained by mechanochemical treatment with NOB-MINI).
  • Charge capacity and discharge capacity in the first cycle (initial charge capacity and initial discharge capacity), ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate), and average value of Coulomb efficiency in the 90th to 100th cycles Table 1 shows.
  • the carbon nanotubes exist as aggregated bundles (a state in which the carbon nanotubes form a hard aggregate) around the Si particles and the graphite particles.
  • Comparative Example 2 The same method as in Example 1 except that graphite particles (SCMG (trademark): manufactured by Showa Denko KK) were replaced with graphite particles (artificial graphite) having a median value of 1.1 in the aspect ratio of the primary particle aspect ratio.
  • a negative electrode material E was prepared. In the negative electrode material E, the coverage of the three-dimensional entangled network structure with respect to the graphite particles (B) was less than 50% as shown in the SEM observation image of FIG.
  • An evaluation cell was prepared in the same manner as in Example 1 except that the negative electrode material E was used, and an aging and cycle test were performed.
  • Charge capacity and discharge capacity in the first cycle (initial charge capacity and initial discharge capacity), ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate), and average value of Coulomb efficiency in the 90th to 100th cycles Table 1 shows. It can be seen that if the three-dimensional entangled network structure composed of Si and carbon nanotubes does not cover 50% or more of the total length of the outer periphery of the graphite particles, the capacity retention rate is greatly reduced.
  • Comparative Example 3 A negative electrode material F was obtained in the same manner as in Example 1 except that the carbon nanotubes were replaced with ketjen black (KB: manufactured by Lion Corporation). In the negative electrode material F, ketjen black was fused to the graphite particles. An evaluation cell was prepared in the same manner as in Example 1 except that the negative electrode material F was used, and an aging and cycle test were performed. Charge capacity and discharge capacity in the first cycle (initial charge capacity and initial discharge capacity), ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate), and average value of Coulomb efficiency in the 90th to 100th cycles Table 1 shows.
  • Example 4 A negative electrode material G was obtained in the same manner as in Example 1 except that the Si particles were replaced with Sn particles (90% particle size in the volume-based cumulative particle size distribution was 200 nm or less).
  • the negative electrode material G a three-dimensional entangled network structure is formed of carbon nanotubes, Sn particles are included in the structure, Sn particles are fused to the carbon fibers constituting the structure, and the structure was fused to at least a part of the surface of the graphite particles. The graphite particles were surrounded by the structure.
  • An evaluation cell was prepared in the same manner as in Example 1 except that the negative electrode material G was used, and an aging and cycle test were performed. Charge capacity and discharge capacity in the first cycle (initial charge capacity and initial discharge capacity), ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate), and average value of Coulomb efficiency in the 90th to 100th cycles It shows in Table 2.
  • Example 5 A negative electrode material G was obtained in the same manner as in Example 1 except that the Si particles were replaced with Sn particles (90% particle diameter in the volume-based cumulative particle size distribution was 800 nm).
  • the negative electrode material H has a three-dimensional entangled network structure formed of carbon nanotubes, Sn particles are included in the structure, and Sn particles are fused to the carbon fibers constituting the structure. Was fused to at least a part of the surface of the graphite particles. The graphite particles were surrounded by the structure.
  • An evaluation cell was prepared in the same manner as in Example 1 except that the negative electrode material H was used, and an aging and cycle test were performed. Charge capacity and discharge capacity in the first cycle (initial charge capacity and initial discharge capacity), ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate), and average value of Coulomb efficiency in the 90th to 100th cycles It shows in Table 2.
  • Comparative Example 4 Anode material I, slurry, and evaluation cell were prepared in the same manner as in Comparative Example 1 except that the Si particles were replaced with Sn particles (90% particle size in the volume-based cumulative particle size distribution is 200 nm or less), and aging and cycle tests Went.
  • Charge capacity and discharge capacity in the first cycle initial charge capacity and initial discharge capacity
  • ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate)
  • Comparative Example 5 The same method as in Example 4 except that graphite particles (SCMG (trademark): manufactured by Showa Denko KK) were replaced with graphite particles (artificial graphite) having a median value of 1.1 in the aspect ratio of the primary particle aspect ratio.
  • a negative electrode material J was prepared. In the negative electrode material J, the coverage of the three-dimensional entangled network structure on the graphite particles (B) was less than 50%.
  • An evaluation cell was prepared in the same manner as in Example 1 except that the negative electrode material J was used, and an aging and cycle test were performed. Charge capacity and discharge capacity in the first cycle (initial charge capacity and initial discharge capacity), ratio of charge capacity in the 100th cycle to the initial charge capacity (capacity maintenance rate), and average value of Coulomb efficiency in the 90th to 100th cycles It shows in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

炭素元素以外のリチウムイオンを吸蔵・放出可能な元素を含む粒子(A)と、リチウムイオンを吸蔵・放出可能であり且つ一次粒子のアスペクト比の数基準分布における中央値が1.4以上3.0以下である黒鉛粒子(B)と、炭素繊維(C)とを含んでなり;1本以上の炭素繊維(C)によって3次元交絡網状構造体が形成されていて、該構造体に粒子(A)が融着していて、且つ該構造体が黒鉛粒子(B)の表面の少なくとも一部に融着しているリチウムイオン二次電池用負極材を得る。該負極材を用いてリチウムイオン二次電池を得る。

Description

リチウムイオン二次電池用負極材およびその製造方法
 本発明はリチウムイオン二次電池用負極材およびその製造方法に関する。より詳細に、本発明は、高いエネルギー密度を有し、且つ高い初期容量と高い容量維持率を両立することができるリチウムイオン二次電池用負極材およびそれの製造に好適な方法に関する。
 電子部品の省電力化を上回る速さで携帯電子機器の多機能化が進んでいるために携帯電子機器の消費電力が増加している。そのため、携帯電子機器の主電源であるリチウムイオン二次電池の高容量化および小型化がいままで以上に強く求められている。また、電気自動車の需要が伸び、それに使われるリチウムイオン二次電池にも高容量化が強く求められている。
 従来のリチウムイオン二次電池には、負極材料として黒鉛が主に使われている。黒鉛は化学量論上LiC6の比率までしかLiを吸蔵することができないので、黒鉛を負極に用いたリチウムイオン電池の理論容量は最大でも372mAh/gである。
 リチウムイオン電池の高容量化を図るために、理論容量の大きいSiやSnなどの金属元素を含む粒子を負極材料に用いることが検討されている。例えば、Siを含む粒子を負極材料に用いた場合のリチウム電池の理論容量は3900mAh/gであるので、Siなどを負極材料に用いることができれば、小型で高容量なリチウムイオン二次電池が得られると期待される。ところが、Siなどの負極材料はリチウムイオンの吸蔵(インターカレーション)および放出(デインターカレーション)に伴う膨張率および収縮率が大きい。そのために粒子間に隙間が生じて期待したほどの容量が得られない。また、大きな膨張と収縮の繰り返しにより粒子がくだけて微粒化するために電気的な接触が分断されて内部抵抗が増加するので、得られるリチウムイオン二次電池は充放電サイクル寿命が短い。
 Si粒子と炭素材料とを複合化した負極材が提案されている。例えば、特許文献1は、電子伝導性を有する炭素繊維が絡み合い、流動体が浸透しうる隙間が前記炭素繊維の間にある担持体と、前記隙間に侵入し前記担持体の内部に分散し且つ前記担持体に担持されるシリコン/無定形炭素複合粒子と、を備え、前記シリコン/無定形炭素複合粒子がシリコン粒子と無定形炭素とからなり且つ前記シリコン粒子の表面に密着する表面密着物を備える、リチウムイオン二次電池用の負極材料を開示している。
 特許文献2は、リチウムを吸蔵・放出可能な元素を含有する粒子と、黒鉛材料を含有してなる炭素粒子との混合物からなる負極材であって、該炭素粒子は光学顕微鏡画像から算出したアスペクト比が1以上5以下で、レーザー回折式粒度分布測定機によって測定される体積基準累積粒度分布における50%粒子径が2~40μmで、且つ400回タッピングを行った際の嵩密度が1.0g/cm3以上1.35g/cm3以下であり;該黒鉛材料はラマン分光スペクトルで測定される1360cm-1の付近にあるピークの強度(ID)と1580cm-1の付近にあるピークの強度(IG)との比ID/IG(R値)が0.01以上0.2以下で、30℃~100℃の熱膨張係数(CTE)が4.0×10-6/℃以上5.0×10-6/℃以下で、粉末X線回折における002回折線から求めた面間隔d002が0.3340nm~0.3380nmで、且つ石油系コークス及び/又は石炭系コークスを2500℃以上で熱処理して得られるものである、リチウムイオン電池用負極材を開示している。
 特許文献3は、炭素繊維と複合酸化物粒子とを含有して成る複合材料であって、該炭素繊維および複合酸化物粒子の表面の少なくとも一部が炭素被覆されていて、且つ当該炭素被覆が非粉末被覆である、複合材料を開示している。
特開2013-089403号公報 特開2013-222641号公報 特表2011-529257号公報
 本発明の目的は、高いエネルギー密度を有し、且つ高い初期容量と高い容量維持率を両立することができるリチウムイオン二次電池用負極材およびそれの製造に好適な方法を提供することである。
 上記目的を達成するために鋭意検討した結果、以下のような態様を包含する本発明を完成するに至った。
〔1〕炭素元素以外のリチウムイオンを吸蔵・放出可能な元素を含む粒子(A)と、
リチウムイオンを吸蔵・放出可能であり且つ一次粒子のアスペクト比の数基準分布における中央値が1.4以上3.0以下である黒鉛粒子(B)と、
炭素繊維(C)とを含んでなり;
 1本以上の炭素繊維(C)によって3次元交絡網状構造体が形成されていて、
 該構造体に粒子(A)が融着していて、且つ
 該構造体が黒鉛粒子(B)の表面の少なくとも一部に融着している
リチウムイオン二次電池用負極材。
〔2〕粒子(A)は、一次粒子の体積基準累積粒度分布における90%粒子径が200nm以下である、〔1〕に記載のリチウムイオン二次電池用負極材。
〔3〕黒鉛粒子(B)は、石油系コークス及び/又は石炭系コークスを2500℃以上で熱処理して得られた人造黒鉛である、〔1〕または〔2〕に記載のリチウムイオン二次電池用負極材。
〔4〕炭素繊維(C)は、平均繊維径が2nm以上40nm以下で且つアスペクト比が10以上15000以下のカーボンナノチューブを含むものである、〔1〕~〔3〕のいずれかひとつに記載のリチウムイオン二次電池用負極材。
〔5〕黒鉛粒子(B)の量が、粒子(A)10質量部に対して、86質量部以上89質量部以下である、〔1〕~〔4〕のいずれかひとつに記載のリチウムイオン二次電池用負極材。
〔6〕炭素繊維(C)の量が、粒子(A)10質量部に対して、1質量部以上4質量部以下である、〔1〕~〔5〕のいずれかひとつに記載のリチウムイオン二次電池用負極材。
〔7〕粒子(A)が、Si、Sn、Ge、AlおよびInからなる群から選ばれる少なくともひとつの元素を含むものである、〔1〕~〔6〕のいずれかひとつに記載のリチウムイオン二次電池用負極材。
〔8〕前記〔1〕~〔7〕のいずれかひとつに記載のリチウムイオン二次電池用負極材を含有するリチウムイオン二次電池。
〔9〕炭素繊維(C)と炭素元素以外のリチウムイオンを吸蔵・放出可能な元素を含む粒子(A)とに対してメカノケミカル処理(1)を施して、粒子(A)と炭素繊維(C)とを含有してなる処理品(1)を得、
 処理品(1)に黒鉛粒子(B)を処理品(1)の質量よりも多い質量で混ぜ合わせ、
 次いで、処理品(1)と黒鉛粒子(B)とに対してメカノケミカル処理(2)を施すことを含む、〔1〕~〔7〕のいずれかひとつに記載のリチウムイオン二次電池用負極材の製造方法。
 本発明のリチウムイオン二次電池用負極材は、電極の電気抵抗を大幅に低減することができ、また粒子(A)の膨張および収縮による電極構造の崩壊を抑制する効果に優れる。本発明の負極材は、リチウムイオン二次電池の、エネルギー密度、初期容量、容量維持率などの電池特性の向上に有効である。
 本発明に係る製造方法によれば、他の方法に比べて、本発明に係るリチウムイオン二次電池用負極材を、安価に得ることができる。
 本発明に係る製造方法中のメカノケミカル処理(1)によって、粒子(A)の凝集および炭素繊維(C)の凝集が解され、粒子(A)が炭素繊維(C)に融着し接触面積が広がると推定される。そして、本発明に係る製造方法中のメカノケミカル処理(2)によって、少なくとも1本の炭素繊維(C)によって形成される3次元交絡網状構造体の一部が黒鉛粒子(B)と融着するようになる。本発明の負極材においては、ほとんどの粒子(A)と黒鉛粒子(B)とが直接に繋がらずに炭素繊維(C)からなる3次元交絡網状構造体を介して繋がることになるので、リチウムイオンのインターカレーションおよびデインターカレーションに伴う粒子(A)の体積変化が3次元交絡網状構造体によって緩衝されるようである。
Si粒子とカーボンナノチューブとの融着状態を示すTEM像を示す図である。 Si粒子とカーボンナノチューブとの融着状態を示すTEM像を示す図である。 Si粒子とカーボンナノチューブとの融着状態を示すTEM像を示す図である。 Si粒子とカーボンナノチューブとの融着状態を示すTEM像を示す図である。 本発明のリチウムイオン二次電池用負極材において、Si粒子がカーボンナノチューブに融着した構造体が黒鉛粒子の表面に融着している様子を示す表面SEM像を示す図である。 本発明のリチウムイオン二次電池用負極材を樹脂で固定したものの断面のSEM像を示す図である(黒鉛粒子(B)の外側の黒い部分は樹脂である)。 図6においてSi粒子がカーボンナノチューブに融着した構造体が黒鉛粒子の表面に融着している部分を拡大したSEM像を示す図である。 黒鉛粒子とカーボンナノチューブの融着状態を示すTEM像を示す図である。 比較例2において得られたリチウムイオン二次電池用負極材を樹脂で固定したものの断面のSEM像を示す図である。
 本発明の一実施形態に係るリチウムイオン二次電池用負極材は、粒子(A)と、黒鉛粒子(B)と、炭素繊維(C)とを含んでなるものである。
「粒子(A)」
 本発明に用いられる粒子(A)は、炭素元素以外のリチウムイオンを吸蔵・放出可能な元素を含むものである。粒子(A)は、SiCなどのような、炭素元素以外のリチウムイオンを吸蔵・放出可能な元素と、炭素元素とを含むものであってもよい。当然ながら、粒子(A)は、炭素元素のみからなる粒子以外のものを意味する。
 炭素元素以外のリチウムイオンを吸蔵・放出可能な元素の好ましい例としては、Sb、Pb、Ag、Mg、Zn、Ga、Bi、Si、Sn、Ge、Al、Inなどが挙げられる。これらのうち、Si、Sn、Ge、AlまたはInが好ましく、耐熱性の観点からSiが好ましい。粒子(A)は該元素の単体または該元素のうちの少なくとも1つを含む化合物、混合体、共融体または固溶体からなるものであってもよい。また原料としての粒子(A)は複数の微粒子が凝集したもの、すなわち二次粒子化したものであってもよい。粒子(A)の形状としては、塊状、鱗片状、球状、繊維状などが挙げられる。これらのうち、球状または塊状が好ましい。
 Si元素を含むものとしては、一般式:Ma mSiで表される物質が挙げられる。該物質はSi1モルに対してmモルとなる比で元素Maを含む化合物、混合体、共融体または固溶体である。
 MaはLiを除く元素である。具体的に、Maとして、Si、B、C、N、O、S、P、Na、Mg、Al、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ru、Rh、Pd、Pt、Be、Nb、Nd、Ce、W、Ta、Ag、Au、Cd、Ga、In、Sb、Baなどが挙げられる。なお、MaがSiの場合は、Si単体を意味する。式中、mは好ましくは0.01以上、より好ましくは0.1以上、さらに好ましくは0.3以上である。
 Si元素を含むものの具体例としては、Si単体、Siとアルカリ土類金属との合金;Siと遷移金属との合金;Siと半金属との合金;Siと、Be、Ag、Al、Au、Cd、Ga、In、SbまたはZnとの固溶性合金または共融性合金;CaSi、CaSi2、Mg2Si、BaSi2、Cu5Si、FeSi、FeSi2、CoSi2、Ni2Si、NiSi2、MnSi、MnSi2、MoSi2、CrSi2、Cr3Si、TiSi2、Ti5Si3、NbSi2、NdSi2、CeSi2、WSi2、W5Si3、TaSi2、Ta5Si3、PtSi、V3Si、VSi2、PdSi、RuSi、RhSiなどのケイ化物;SiO2、SiC、Si34などが挙げられる。
 Sn元素を含むものとしては、錫単体、錫合金、酸化錫、硫化錫、ハロゲン化錫、錫化物などが挙げられる。Sn元素を含むものの具体例としては、SnとZnとの合金、SnとCdとの合金、SnとInとの合金、SnとPbとの合金;SnO、SnO2、Mb 4SnO4(MbはSn以外の金属元素を示す。)などの酸化錫;SnS、SnS2、Mb 2SnS3(MbはSn以外の金属元素を示す。)などの硫化錫;SnX2、SnX4、MbSnX4(MbはSn以外の金属元素を示す。Xはハロゲン原子を示す。)などのハロゲン化錫;MgSn、Mg2Sn、FeSn、FeSn2、MoSn、MoSn2などの錫化物が挙げられる。
 粒子(A)は、その表層が酸化されていることが好ましい。この酸化は、自然酸化でもよいし、人為的な酸化でもよい。この酸化によって粒子(A)は薄い酸化物被膜で覆われることになる。
 粒子(A)は、一次粒子の数基準累積粒度分布における50%粒子径の下限が、好ましくは5nm、より好ましくは10nm、さらに好ましくは30nmであり、一次粒子の数基準累積粒度分布における50%粒子径の上限が、好ましくは1000nm、より好ましくは500nm、さらに好ましくは100nmである。
 また、粒子(A)は、一次粒子の体積基準累積粒度分布における90%粒子径が、好ましくは200nm以下である。
 原料状態における粒子(A)は、通常、一次粒子と一次粒子の凝集塊(すなわち、二次粒子)との混合物である。原料状態における粒子(A)は、一次粒子と二次粒子とを区別せずに測定して得られる数基準粒度分布において0.1μm~1μmの範囲および10μm~100μmの範囲にそれぞれピークを有することもある。また、原料状態における粒子(A)は、一次粒子と二次粒子とを区別せずに測定して得られる数基準累積粒度分布における50%粒子径(Dn50)が、原料状態の黒鉛粒子(B)の一次粒子と二次粒子とを区別せずに測定して得られる体積基準粒度分布における50%粒子径(Dv50)に対して、好ましくは1/200~1/10、より好ましくは1/100~1/20である。
 本発明の負極材中において、粒子(A)は、一次粒子の状態で分布しているものと、二次粒子(すなわち、凝集粒子)の状態で分布しているものとが在る。負極材中の二次粒子状態で分布している粒子(A)だけを抜き出して測定した数基準累積粒度分布における50%粒子径は、好ましくは10nm以上1000nm以下である。
 さらに、負極材中の粒子(A)は、一次粒子と二次粒子とを区別せずに測定して得られる数基準粒度分布において、粒子径10nm以上400nm以下の範囲に、粒子(A)全体の95数%以上が存するものであることが好ましい。
「黒鉛粒子(B)」
 本発明に用いられる黒鉛粒子(B)は、リチウムイオンを吸蔵・放出可能な黒鉛質炭素材料からなる粒子である。該黒鉛質炭素材料として、人造黒鉛、熱分解黒鉛、膨張黒鉛、天然黒鉛、鱗状黒鉛、鱗片状黒鉛などが挙げられる。
 黒鉛粒子(B)は、体積基準累積粒度分布における50%粒子径(Dv50)が、好ましくは2μm以上40μm以下、より好ましくは2μm以上30μm以下、さらに好ましくは3μm以上20μm以下である。50%粒子径が小さすぎると、電極密度を上げ難くい傾向がある。逆に50%粒子径が大きすぎると、リチウムイオンの固体内拡散距離が長くなるため出力特性が低下する傾向がある。このことから、黒鉛粒子(B)は、数基準粒度分布において、粒子径1μm以上50μm以下の範囲に黒鉛粒子(B)全体の90数%以上が存するものであることが好ましく、粒子径5μm以上50μm以下の範囲に黒鉛粒子(B)全体の90数%以上が存するものであることが好ましい。
 また、黒鉛粒子(B)は、体積基準累積粒度分布における10%粒子径(Dv10)が、好ましくは1μm以上、より好ましくは2μm以上である。なお、黒鉛粒子(B)の粒度分布はレーザー回折式粒度分布測定機によって測定されるものである。この粒度分布は一次粒子と二次粒子とを区別せずに測定して得られるものである。
 本発明に用いられる黒鉛粒子(B)は、d002が、好ましくは0.337nm以下、より好ましくは0.336nm以下である。また、黒鉛粒子(B)は、LCが好ましくは50nm以上、より好ましくは50nm以上100nm以下である。なお、d002は粉末X線回折における002回折線から求めた面間隔であり、LCは粉末X線回折における002回折線から求めた結晶子のc軸方向の大きさである。
 本発明に用いられる黒鉛粒子(B)は、BET比表面積が、好ましくは1m2/g以上10m2/g以下、より好ましくは1m2/g以上7m2/g以下である。
 本発明に用いられる黒鉛粒子(B)は、一次粒子のアスペクト比(長径/短径)の数基準分布における中央値(50%アスペクト比)が、好ましくは1.4以上3.0以下である。このようなアスペクト比分布を有する黒鉛粒子(B)はその表面に平坦部及び凹部が多く存在する傾向がある。
 炭素繊維(C)から成る3次元交絡網状構造体は、黒鉛粒子(B)の平坦部若しくは凹部に融着しやすい傾向がある。そして、後述する3次元交絡網状構造体が黒鉛粒子(B)の周りを囲んでいることが好ましい。
 本発明に用いられる黒鉛粒子(B)は、原料として石炭系コークスおよび/または石油系コークスを用いることができる。本発明に用いられる黒鉛粒子(B)は、石炭系コークスおよび/または石油系コークスを、好ましくは2000℃以上、より好ましくは2500℃以上の温度で熱処理して成るものであることが好ましい。熱処理温度の上限は特に限定されないが、3200℃が好ましい。この熱処理は不活性雰囲気下で行うことが好ましい。熱処理においては、従来からあるアチソン式黒鉛化炉などを用いることができる。
 負極材に含有される黒鉛粒子(B)の量は、粒子(A)と炭素繊維(C)との合計量100質量部に対して、下限が好ましくは400質量部であり、上限が好ましくは810質量部、より好ましくは600質量部である。また、黒鉛粒子(B)の量が、粒子(A)10質量部に対して、好ましくは86質量部以上89質量部以下である。
「炭素繊維(C)」
 本発明に用いられる炭素繊維(C)は、繊維形状を成した炭素材料である。炭素繊維(C)としては、例えば、ピッチ系炭素繊維、PAN系炭素繊維、カーボンファイバー、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。添加量を少なくするという観点からは、カーボンナノチューブを使用することが好ましい。
 本発明に用いられる炭素繊維(C)は、全繊維の95数%以上が、好ましくは2nm以上40nm以下、より好ましくは5nm以上40nm以下、さらに好ましくは7nm以上20nm以下、よりさらに好ましくは9nm以上15nm以下の繊維径を有するものである。2nmより小さい繊維径を有するものは一本一本を解して分散させることが難しい傾向がある。また、40nmより大きい繊維径を有するものは担持触媒法により作製することが難しい傾向がある。
 本発明に用いられる炭素繊維(C)として、炭素六員環からなるグラフェンシートが繊維軸に対して平行に巻いたチューブラー構造のカーボンナノチューブ、繊維軸に対して垂直に配列したプーレトレット構造のカーボンナノチューブ、繊維軸に対して斜めの角度を持って巻いているヘリンボーン構造のカーボンナノチューブが挙げられる。この中において、チューブラー構造のカーボンナノチューブが導電性、機械的強度の点で好ましい。
 炭素繊維(C)は、それ自体が、ねじれの無い直線的なものであっても、くねくねと湾曲しているものであっても良い。くねくねと湾曲している炭素繊維は、同じ添加量において、負極材中の粒子(A)との接触効率が良いので、少量の添加にても粒子(A)との均一な複合化が達成されやすい。また、くねくねと湾曲している炭素繊維(C)は、形状変化に対する追従性が高いので、粒子(A)の膨張時にも粒子(A)との接触を維持し且つ繊維同士のネットワークが途切れ難いと考えられる。
 炭素繊維(C)のアスペクト比は、好ましくは10以上15000以下、より好ましくは200以上15000以下である。アスペクト比が小さくなると繊維同士の絡まり度合いが弱くなり効率的な導電ネットワークを形成し難い傾向がある。アスペクト比が大きくなると繊維同士の絡まり度合いが強くなり分散し難い傾向がある。ここで、アスペクト比とは、平均繊維径に対する平均繊維長さの割合である。
 炭素繊維(C)のBET比表面積は、好ましくは150m2/g以上300m2/g以下、より好ましくは240m2/g以上280m2/g以下、さらに好ましくは250m2/g以上270m2/g以下である。炭素繊維(C)のタップ密度は、特に制限されないが、好ましくは0.001~0.1g/cm3、好ましくは0.005~0.08g/cm3である。
 また、炭素繊維(C)の格子定数C0値は、好ましくは0.680nm以上0.690nm以下である。C0値が小さくなりすぎると、炭素繊維(C)の柔軟性がなくなり、凝集塊が解れ難い傾向がある。
 炭素繊維(C)の酸化開始温度は、好ましくは400℃以上550℃以下である。ここで、酸化開始温度は、熱天秤において、空気流通下で10℃/分で室温から1000℃まで昇温させている際に、初期の重量(仕込み量)に対して0.1%の重量が減少したときの温度である。酸化開始温度が低くなりすぎると、炭素繊維中の結晶欠陥が多い傾向がある。
 炭素繊維(C)は、圧縮密度0.8g/cm3における圧密比抵抗が、好ましくは0.014Ω・cm以上0.020Ω・cm以下である。圧縮密度0.8g/cm3における圧密比抵抗が小さすぎる炭素繊維(C)は柔軟性が低い傾向がある。また、圧密比抵抗が大きすぎる炭素繊維(C)は導電付与効果が低い傾向がある。
 本発明に用いる炭素繊維(C)は、その合成法によって特に制限されないが、気相法により合成されるものが好ましい。気相法のうち担持触媒法で合成されるものが好ましい。
 担持触媒法は、無機担体上に触媒金属を担持してなる触媒を用いて、炭素源を気相中で反応させて炭素繊維を製造する方法である。
 無機担体としてはアルミナ、マグネシア、シリカチタニア、炭酸カルシウムなどが挙げられる。無機担体は粉粒状であることが好ましい。触媒金属としては鉄、コバルト、ニッケル、モリブデン、バナジウムなどが挙げられる。担持は、触媒金属元素を含む化合物の溶液を担体に含浸させることによって、触媒金属元素を含む化合物および無機担体を構成する元素を含む化合物の溶液を共沈させることによって、またはその他の公知の担持方法によって行うことができる。
 炭素源としては、メタン、エチレン、アセチレンなどが挙げられる。反応は、流動層、移動層、固定層などの反応器において行うことができる。反応時の温度は好ましくは500℃~800℃に設定する。炭素源を反応器に供給するためにキャリアガスを用いることができる。キャリアガスとしては、水素、窒素、アルゴンなどが挙げられる。反応時間は好ましくは5~120分間である。
 本発明の負極材に含まれる炭素繊維(C)の量は、粒子(A)10質量部に対して、1質量部以上4質量部以下である。また、本発明の負極材に含まれる炭素繊維(C)の量は、粒子(A)と黒鉛粒子(B)との合計量100質量部に対して、好ましくは0.1質量部以上10質量部以下、より好ましくは0.5質量部以上5質量部以下である。
 本発明の負極材は、1本以上の炭素繊維(C)によって3次元交絡網状構造体が形成されている。係る3次元交絡網状構造体は、綿のごとく、炭素繊維(C)が低密度で交絡して3次元の網状構造を成すものである。
 また、本発明の負極材は、前記3次元交絡網状構造体に粒子(A)が包摂されていることが好ましい。3次元交絡網状構造体には、それを構成する1本以上の炭素繊維(C)に取り囲まれたかご状の空間がある。粒子(A)は、その空間に主に包摂されている。また、粒子(A)は3次元交絡網状構造体を構成する炭素繊維(C)の表面に融着している。この融着によって炭素繊維(C)と粒子(A)との間に導電経路が形成されると考えられる。図1~図4は、粒子(A)と炭素繊維(C)との融着状態の一例を示すTEM写真である。3次元交絡網状構造体に包摂された粒子(A)は炭素繊維(C)に囲まれているので、構造体の外部に在る物体と接触し難い。構造体を構成する炭素繊維(C)は構造体の外部に在る物体、例えば黒鉛粒子(B)と接触し得る。
 さらに、本発明の負極材においては、前記3次元交絡網状構造体が黒鉛粒子(B)の周りを取り囲んでいることが好ましい。また、前記3次元交絡網状構造体が黒鉛粒子(B)の表面の少なくとも一部に融着している。この融着によって前記3次元交絡網状構造体(主に炭素繊維(C))と黒鉛粒子(B)との間に導電経路が形成されると考えられる。
 本発明の一実施形態の負極材は、粒子(A)が炭素繊維(C)に融着し、炭素繊維(C)が黒鉛粒子(B)に融着している。そして、ほとんどの粒子(A)が黒鉛粒子(B)に直接に接触しておらず、炭素繊維(C)を介して黒鉛粒子(B)と繋がるようになっている。粒子(A)が黒鉛粒子(B)に直接接触せず、且つ粒子(A)が炭素繊維(C)を介して黒鉛粒子(B)と繋がる形態を有する負極材においては、リチウムイオンのインターカレーションまたはデインターカレーションに伴って粒子(A)が大きく体積変化しても、柔軟に変化し得る炭素繊維(C)が粒子(A)と黒鉛粒子(B)との間の通電経路を維持できる。そのようなことから、本発明の負極材を電極層に含有させると、高いエネルギー密度を有し、且つ高い初期容量と高い容量維持率を両立することができるリチウムイオン二次電池を得ることができる。
 本発明に係る負極材の製造方法は、特に制限されないが、メカノケミカル処理を用いた方法が好ましい。
 本発明に係る負極材の製造に好適な方法は、炭素繊維(C)と粒子(A)とに対してメカノケミカル処理(1)を施して、粒子(A)と炭素繊維(C)とを含有してなる処理品(1)を得、 処理品(1)に黒鉛粒子(B)を混ぜ合わせ、 次いで 処理品(1)と黒鉛粒子(B)とに対してメカノケミカル処理(2)を施すことを含むものである。
 メカノケミカル処理は、固体対象物質に衝突エネルギー、圧縮エネルギー、せん断エネルギーなどのような機械的エネルギーを与えることによって、固体対象物質に化学的変化を誘起させる方法である。本発明においてはメカノケミカル処理を乾式プロセスにて行うことが好ましい。
 メカノケミカル処理において、大きさや形態の異なる粒子を含む粉体に大きな機械的エネルギーが与えられると、粒子表面の無定形化とともに表面活性が高まる。表面活性の高まった粒子は周囲の粒子と相互作用をする。メカノケミカル処理で粉体に与えられる機械的エネルギーが高くなると、異種粒子が単に密着するだけではなく、粒子同士がつながり、その結合部分が焼結体のように固まった状態になる。これをメカノフュージョンという。本発明において粒子(粒子(A)および黒鉛粒子(B))と炭素繊維(C)の構造体が融着している状態とは、両者間にこのように両者がつながった無定形の結合部分が形成されている状態のことである。
 メカノケミカル処理の具体的な方法として、原料粉体を運動する気体にのせて、粉体同士をぶつける、あるいは粉体を強固な壁にぶつける方法や、狭い空間を大きな力で通すなどの方法により、粉体に圧縮力とせん断力を与える方法などが挙げられる。メカノケミカル処理としては、原料粉体を気相中に分散させながら、水平円筒状の容器内で、特殊形状の羽根を高速で回転させて、衝撃力、圧縮力およびせん断力を個々の粒子に均一に与える方法が好ましい。このメカノケミカル処理によって、均一な粒子の複合化を1~5分間で進行させることができる。
 メカノケミカル処理を行うことができる装置としては、(株)奈良機械製作所製ハイブリダイゼーションシステム、ホソカワミクロン(株)製ノビルタなどが挙げられる。これらのうち、ノビルタが本発明においては好ましく用いられる。
 メカノケミカル処理において粉体を処理する場合は、装置の出力を粉体の単位体積あたり、好ましくは4.3W/cm3以上、より好ましくは5.7W/cm3以上、更に好ましくは8.6W/cm3以上に設定する。
 粒子(A)と炭素繊維(C)とに対するメカノケミカル処理(1)に際して、雰囲気の温度を高くし過ぎると、粒子(A)と炭素繊維(C)との反応が促進され過ぎて炭化物などが多く副生することがある。そこで、粒子(A)と炭素繊維(C)とに対するメカノケミカル処理(1)時の雰囲気温度は、好ましくは500℃以下、より好ましくは400℃以下、さらに好ましくは300℃以下に維持する。
 また、メカノケミカル処理は、大気中で行うこともできるが、不活性ガス雰囲気で行うことが好ましい。不活性ガスとしては、窒素ガスが好ましく、アルゴンガスがより好ましい。
 粒子(A)と炭素繊維(C)とに対するメカノケミカル処理(1)によって処理品(1)が得られる。メカノケミカル処理(1)を施すと、炭素繊維(C)が3次元交絡網状構造体を形成し、粒子(A)を炭素繊維(C)表面上に融着させることができる。このメカノケミカル処理(1)によって生じる融着は、粒子(A)を均一一かつ強固に炭素繊維(C)に固定化することができる。この融着によって粒子(A)と炭素繊維(C)との間に電気的接触が確保される。処理品(1)のタップ密度は、特に制限されないが、好ましくは0.002~0.1g/cm3、好ましくは0.006~0.09g/cm3である。
 次に、処理品(1)に黒鉛粒子(B)を混ぜ合わせる。黒鉛粒子(B)の量は、処理品(1)の質量よりも多い質量で混ぜ合わせることが好ましい。処理品(1)と黒鉛粒子(B)との混ぜ合わせは、次のメカノケミカル処理(2)によって均一に混ぜ合わせがなされるので、処理品(1)に黒鉛粒子(B)を添加するだけ、または黒鉛粒子(B)に処理品(1)を添加するだけであってもよい。
 処理品(1)と黒鉛粒子(B)とに対してメカノケミカル処理を施すと、黒鉛粒子(B)の表面の少なくとも一部に3次元交絡網状構造体を融着させることができる。3次元交絡網状構造体の融着によって、黒鉛粒子(B)の表面の少なくとも一部が3次元交絡網状構造体によって被覆される(図7参照)。この被覆によって黒鉛粒子(B)と炭素繊維(C)との間に電気的接触が確保される。そして黒鉛粒子(B)から炭素繊維(C)を経て粒子(A)に至る導電経路が形成される。
 黒鉛粒子(B)に対する3次元交絡網状構造体は、断面SEM写真における黒鉛粒子(B)断面の外周の全長に対して上記構造体の接している外周の長さの割合(被覆率)が、50%以上であることが好ましい。図6は黒鉛粒子(B)の断面の外周の50%以上が炭素繊維(C)による3次元交絡網状構造体で被覆されている例である(図中の矢印は被覆部分を示す)。
 黒鉛粒子(B)に3次元交絡網状構造体が被覆されて成る負極材のアスペクト比は、元々の黒鉛粒子(B)のアスペクト比よりも幾分小さくなり、1に近づく。
 本発明の負極材にカーボンナノファイバー(D)を含む場合の一例として、カーボンナノファイバー(D)が複数の黒鉛粒子(B)を橋掛けして融着していて、黒鉛粒子(B)に、炭素繊維(C)からなる3次元交絡網状構造体が融着している場合を挙げることができる。炭素繊維(C)はカーボンナノファイバー(D)にも融着していてもよい。
 カーボンナノファイバー(D)を含む上記の負極材を製造する場合のメカノケミカル処理は以下のようにして行う。まず、粒子(A)と炭素繊維(C)とに対してメカノケミカル処理(1)を施して、粒子(A)と炭素繊維(C)とを含有してなる処理品(1)を得る。また黒鉛粒子(B)とカーボンナノファイバー(D)とに対してメカノケミカル処理(3)を施して、黒鉛粒子(B)とカーボンナノファイバー(D)とを含有してなる処理品(2)を得る。次に、処理品(1)と処理品(2)を混ぜ合わせ、得られた混合物にメカノケミカル処理(4)を施す。
 本発明の負極材は導電性カーボン粒子をさらに含んでいてもよい。本発明に用いられる導電性カーボン粒子は、一次粒子の数基準累積粒度分布における50%粒子径が好ましくは20nm以上100nm以下、より好ましくは30nm以上50nm以下である。導電性カーボン粒子としては、アセチレンブラック、ファーネスブラック、ケッチェンブラックなどのカーボンブラック系導電性粒子が挙げられる。導電性カーボン粒子を加えるとリチウムイオン電池の初期容量が向上する傾向がある。
 導電性カーボン粒子の量は、粒子(A)と黒鉛粒子(B)との合計量100質量部に対して好ましくは0.1質量部以上10質量部以下である。
 本発明の一実施形態に係る負極材は、電極シートに含有させることができる。電極シートは、通常、集電体と、該集電体の上に被覆された電極層とを有する。本発明の一実施形態に係る負極材は、通常、当該電極層に含有させる。
 集電体としては、例えば、ニッケル箔、銅箔、ニッケルメッシュまたは銅メッシュなどが挙げられる。また、集電体は導電性金属箔とその上に被覆してなる導電性層とを有するものであってもよい。導電性層としては、導電性カーボン粒子などの導電性付与剤とバインダーとからなるものが挙げられる。電極層は、本発明の一実施形態に係る負極材以外にバインダーを含有することができる。
 電極層または導電性層に用い得るバインダーとしては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、アクリルゴム、イオン伝導率の大きな高分子化合物などが挙げられる。イオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリホスファゼン、ポリアクリロニトリルなどが挙げられる。バインダーの量は、負極材100質量部に対して、好ましくは0.5~100質量部である。
 導電性層に用い得る導電性付与剤は、電極層と集電体との間に導電性を付与する役目を果たすものであれば特に限定されない。例えば、気相法炭素繊維(例えば、「VGCF」昭和電工社製)、導電性カーボン(例えば、「デンカブラック」電気化学工業社製、「Super C65」TIMCAL社製、「Super C45」TIMCAL社製、「KS6L」TIMCAL社製)などが挙げられる。
 電極層は、例えば、バインダーおよび負極材を含有するペーストを集電体に塗布し乾燥させることによって得ることができる。ペーストは、例えば、負極材とバインダーと必要に応じて溶媒とを混練することによって得られる。ペーストは、シート状、ペレット状などの形状に成形することができる。
 溶媒は、特に制限はなく、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、水などが挙げられる。溶媒として水を使用するバインダーの場合は、増粘剤を併用することが好ましい。溶媒の量はペーストが集電体に塗布しやすいような粘度となるように調節される。
 ペーストの塗布方法は特に制限されない。電極層の厚さは、通常、50~200μmである。電極層の厚さが大きくなりすぎると、規格化された電池容器に電極シートを収容できなくなることがある。電極層の厚さは、ペーストの塗布量によって調整できる。また、ペーストを乾燥させた後、加圧成形することによっても調整することができる。加圧成形法としては、ロールプレス成形法、平板プレス成形法などが挙げられる。
 本発明の一実施形態に係る負極材を適用した電極層は、四探針法で測定した未プレス時の体積抵抗率が、好ましくは0.5Ω・cm以下である。本発明の好ましい一実施形態に係る負極材で、このような体積抵抗率となるのは、粒子(A)と、黒鉛粒子(B)と、炭素繊維(C)と、必要に応じて用いられるカーボンナノファイバ(D)や、導電性カーボン粒子とが適度に絡まりあって、大きな凝集塊(linkle)がなく、均一に分散し、且つ密な導電ネットワークを形成しているからであると考えられる。
(リチウムイオン電池)
 本発明の一実施形態に係るリチウムイオン電池は、非水系電解液および非水系ポリマー電解質からなる群から選ばれる少なくともひとつ、正極シート、および負極シートを有するものである。負極シートには、本発明の一実施形態に係る負極材を含有させた電極シートを用いることができる。
 本発明に用いられる正極シートには、リチウムイオン電池に従来から使われていたもの、具体的には正極負極材を含んでなるシートを用いることができる。正極負極材は、リチウム系電池において正極負極材として知られている従来公知の材料(リチウムイオンを吸蔵・放出可能な材料)の中から、任意のものを一種又は二種以上を適宜選択して用いることができる。これらの中で、リチウムイオンを吸蔵・放出可能なリチウム含有金属酸化物が好適である。このリチウム含有金属酸化物としては、リチウム元素と、Co、Mg、Cr、Mn、Ni、Fe、Al、Mo、V、W及びTiなどの中から選ばれる少なくとも一種の元素を含む複合酸化物を挙げることができる。正極負極材の具体例としては、LiNiO2、LiCoO2、LiMn24、LiNi0.34Mn0.33Co0.332、LiFePO4などが挙げられる。
 リチウムイオン電池に用いられる非水系電解液および非水系ポリマー電解質は特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Liなどのリチウム塩を、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピロニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトンなどの非水系溶媒に溶かしてなる有機電解液や;ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビリニデン、およびポリメチルメタクリレートなどを含有するゲル状のポリマー電解質や;エチレンオキシド結合を有するポリマーなどを含有する固体状のポリマー電解質が挙げられる。
 また、電解液には、リチウムイオン電池の初回充電時に分解反応が起きる物質を少量添加してもよい。該物質としては、例えば、ビニレンカーボネート(VC)、ビフェニール、プロパンスルトン(PS)、フルオロエチレンカーボネート(FEC)、エチレンサルファイト(ES)などが挙げられる。添加量としては0.01~30質量%が好ましい。
 本発明のリチウムイオン二次電池には正極シートと負極シートとの間にセパレータを設けることができる。セパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものなどが挙げられる。
 以下に本発明の実施例を示し、本発明をより具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらによって何等制限されるものではない。
実施例1
 Si粒子〔体積基準累積粒度分布における90%粒子径が200nm以下〕3.1gとカーボンナノチューブ(VGCF-XA(登録商標):昭和電工株式会社製;全繊維の95%以上の繊維径が2nm以上40nm以下で且つアスペクト比が10以上15000以下)1.3gとを、粉砕機(ノビルタ(商標):ホソカワミクロン株式会社製。NOB-MINI)で、開始時出力300W(試料の単位体積当たり4.3W/cm3)で、5分間メカノケミカル処理して、Si粒子とカーボンナノチューブとを含有するメカノケミカル処理品(1)を得た。該処理品は、カーボンナノチューブの凝集が解されたカーボンナノチューブからなる3次元交絡網状構造体が形成されていて、且つSi粒子が構造体を構成するカーボンナノチューブに融着されていた。図1~図4にSi粒子とカーボンナノチューブとの融着状態を示すTEM像を示す。カーボンナノチューブが緩やかに3次元的に交絡し網状になっている状態が確認できる。また、Si粒子がカーボンナノチューブに融着している状態が確認できる。Si粒子とカーボンナノチューブとの融着は、例えば、図4に示されているように、Si粒子に由来する結晶格子の像とカーボンナノチューブに由来する結晶格子の像との間の領域に在る格子の無い像、すなわち非晶質の像から確認することができる。この融着によってSi粒子とカーボンナノチューブとの間に強固な導電経路が形成されると考えられる。
 次に、前記メカノケミカル処理品(1)1.3gと黒鉛粒子(SCMG(商標):昭和電工株式会社製、一次粒子のアスペクト比の数基準分布における中央値が1.56、体積基準累積粒度分布における50%粒子径(DV50)が2μm以上40μm以下)7.8gとを、粉砕機(ノビルタ(商標):ホソカワミクロン株式会社製。NOB-MINI)で、開始時出力300W(試料の単位体積当たり8.6W/cm3)で、5分間メカノケミカル処理して、負極材Aを得た。負極材Aは、カーボンナノチューブによって3次元交絡網状構造体が形成されていて、構造体にSi粒子が包摂され、構造体を構成する炭素繊維にSi粒子が融着していて、且つ該構造体が黒鉛粒子の表面の少なくとも一部に融着していた。黒鉛粒子は構造体によって囲まれていた。
 図5~図7に負極材AのSEM像、図8にTEM像を示す。黒鉛粒子を3次元交絡網状構造体が囲んでいる様子が確認できる。また、黒鉛粒子に、構造体を構成するカーボンナノチューブが融着している状態が確認できる。黒鉛粒子とカーボンナノチューブとの融着は、例えば、図8に示されるように、黒鉛粒子に由来する結晶格子の像とカーボンナノチューブに由来する結晶格子の像との間の領域に在る格子の無い像、すなわち非晶質の像から確認することができる。この融着によって黒鉛粒子とカーボンナノチューブと間に強固な導電経路が形成されると考えられる。
 負極材A 1.552gに、エチレン・酢酸ビニル・アクリル酸共重合水性エマルジョン(ポリゾール(登録商標):昭和電工株式会社製)0.1g、カルボキシメチルセルロース(CMC、品番:1380:株式会社ダイセル製)1.6g、および精製水1.6gを加え、スラリーを作製した。該スラリーを銅箔に塗布し、50℃の常圧乾燥で溶媒を除去して電極シートを得た。
 該電極シートを打ち抜いて20mm×20mmの大きさの負電極を得た。この電極にニッケル製リードを溶接にて取り付けた。
 露点-80℃以下の乾燥アルゴンガス雰囲気に保ったグローブボックスで下記の操作を実施した。
 ポリプロピレン板(40mm×40mm)、作用極(20mm×20mm、実施例の電池特性評価用セルにおいては、本発明の負電極の方がLi対極よりも電位が高く、厳密には正極の役割を果たしているため、負電極を作用極と呼ぶ。)、セパレータ(40mm×35mm)、対極用Li箔(25mm×30mm)、およびポリプロピレン板(40mm×40mm)を、この順序で積み重ねた。それを、1枚のラミネート包装材(140mm×100mm)を70mm×100mmになるように折りたたんだものの間に挟み込み、包装材の一方の短辺(70mm)をヒートシールした。
 参照極用Li箔(10mm×30mm)を長手方向に包装材の長辺(100mm)側から差し込み、セパレータの作用極側の面で作用極と接していない領域に接するようにする。なお、参照極用Li箔と作用極は接触しない位置関係にある。その後、包装材の長辺(100mm)をヒートシールした。
 包装材のシールしていない短辺(70mm)から電解液(電解質:1MLiPF6 溶媒:EC/FEC/EMC/DEC=2/1/5/2(体積比);キシダ化学株式会社製)500μLを注入し、真空引きしながら包装材のシールしていない短辺をヒートシールして、評価用セルを作製した。
<エージング>
 評価用セルを次の充放電条件にてエージング処理した。
 先ず、レストポテンシャルから10mVまでを300μA/gで定電流放電を行った。次いで、300μA/gで定電流充電を行い、1.0Vでカットオフした。
<サイクル試験>
 エージング済みの評価用セルに、レストポテンシャルから10mVまでを6.0mA/gで定電流放電を行い、次いで10mVで定電圧放電を行い30mA/gでカットオフした。その後、6.0mA/gで定電流充電を行い1.0Vでカットオフした。この充放電サイクルを100回繰り返した。
 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表1に示す。
実施例2
 Si粒子〔体積基準累積粒度分布における90%粒子径が200nm以下〕5.0gとカーボンナノチューブ(VGCF-XA(登録商標):昭和電工株式会社製)0.6gとを粉砕機(ノビルタ(商標):ホソカワミクロン株式会社製。NOB-MINI)で5分間メカノケミカル処理して、Si粒子とカーボンナノチューブとを含有するメカノケミカル処理品(2)を得た。該処理品(2)は、カーボンナノチューブの凝集が解されたカーボンナノチューブからなる3次元交絡網状構造体が形成されていて、且つSi粒子が構造体を構成するカーボンナノチューブに融着されていた。
 該処理品(2)1.8gと黒鉛粒子(SCMG(商標):昭和電工株式会社製)13.5gとを、粉砕機(ノビルタ(商標):ホソカワミクロン株式会社製。NOB-MINI)で、5分間メカノケミカル処理して、負極材Bを得た。負極材Bは、カーボンナノチューブによって3次元交絡網状構造体が形成されていて、構造体にSi粒子が包摂され、構造体を構成する炭素繊維にSi粒子が融着していて、且つ該構造体が黒鉛粒子の表面の少なくとも一部に融着していた。黒鉛粒子は構造体によって囲まれていた。
 負極材Bを用いた以外は実施例1と同じ方法で評価用セルを作成し、エージングおよびサイクル試験を行った。
 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表1に示す。
実施例3
 Si粒子〔体積基準累積粒度分布における90%粒子径が800nm〕3.1gとカーボンナノチューブ(VGCF-XA(登録商標):昭和電工株式会社製)1.3gとを、粉砕機(ノビルタ(商標):ホソカワミクロン株式会社製。NOB-MINI)で、開始時出力300W(試料の単位体積当たり4.3W/cm3)で、5分間メカノケミカル処理して、Si粒子とカーボンナノチューブとを含有するメカノケミカル処理品(3)を得た。該処理品(3)は、カーボンナノチューブの凝集が解されたカーボンナノチューブからなる3次元交絡網状構造体が形成されていて、且つSi粒子が構造体を構成するカーボンナノチューブに融着されていた。
 次に、前記メカノケミカル処理品(3)1.3gと黒鉛粒子(SCMG(商標):昭和電工株式会社製)7.8gとを、粉砕機(ノビルタ(商標):ホソカワミクロン株式会社製。NOB-MINI)で、開始時出力300W(試料の単位体積当たり8.6W/cm3)で、5分間メカノケミカル処理して、負極材Cを得た。負極材Cは、カーボンナノチューブによって3次元交絡網状構造体が形成されていて、構造体にSi粒子が包摂され、構造体を構成する炭素繊維にSi粒子が融着していて、且つ該構造体が黒鉛粒子の表面の少なくとも一部に融着していた。黒鉛粒子は構造体によって囲まれていた。
 負極材Cを用いた以外は実施例1と同じ方法で評価用セルを作成し、エージングおよびサイクル試験を行った。
 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表1に示す。
比較例1
 Si粒子〔体積基準累積粒度分布における90%粒子径が200nm以下〕10質量部と黒鉛粒子(SCMG(商標):昭和電工株式会社製)84質量部とを、粉砕機(ノビルタ(商標):ホソカワミクロン株式会社製。NOB-MINI)で、5分間メカノケミカル処理して、負極材Dを得た。
 負極材D 1.552gに、スチレンブタジエンゴム(SBR)0.041g、カルボキシメチルセルロース(CMC、品番:1380:株式会社ダイセル製)0.041g、カーボンブラック(TIMCAL社製)0.049g、およびカーボンナノチューブ(VGCF-XA(登録商標):昭和電工株式会社製)0.033gを加え、スラリーを作製した。該スラリーを用いた以外は実施例1と同じ方法で評価用セルを作成し、エージングおよびサイクル試験を行った。
 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表1に示す。
 電極断面のSEM観察像によると、カーボンナノチューブがSi粒子と黒鉛粒子との周りに凝集束(カーボンナノチューブが硬い凝集体を形成した状態)になって存在する様子が見て取れた。
比較例2
 黒鉛粒子(SCMG(商標):昭和電工株式会社製)を、一次粒子のアスペクト比の数基準分布における中央値が1.1の黒鉛粒子(人造黒鉛)に置き換えた以外は実施例1と同じ手法で負極材Eを作成した。負極材Eは、図10のSEM観察像のとおり、黒鉛粒子(B)に対する3次元交絡網状構造体の被覆率が50%未満であった。
 負極材Eを用いた以外は実施例1と同じ方法で評価用セルを作成し、エージングおよびサイクル試験を行った。
 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表1に示す。
 Siとカーボンナノチューブから成る3次元交絡網状構造体が黒鉛粒子の外周の全長の50%以上を被覆しないと、容量維持率が大きく低下することが分かる。
比較例3
 カーボンナノチューブをケッチェンブラック(KB:ライオン株式会社製)に置き換えた以外は実施例1と同じ手法で負極材Fを得た。負極材Fは、ケッチェンブラックが黒鉛粒子に融着していた。
 負極材Fを用いた以外は実施例1と同じ方法で評価用セルを作成し、エージングおよびサイクル試験を行った。
 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例4
 Si粒子をSn粒子(体積基準累積粒度分布における90%粒子径が200nm以下)に置き換えた以外は実施例1と同じ手法で負極材Gを得た。負極材Gは、カーボンナノチューブによって3次元交絡網状構造体が形成されていて、構造体にSn粒子が包摂され、構造体を構成する炭素繊維にSn粒子が融着していて、且つ該構造体が黒鉛粒子の表面の少なくとも一部に融着していた。黒鉛粒子は構造体によって囲まれていた。
 負極材Gを用いた以外は実施例1と同じ方法で評価用セルを作成し、エージングおよびサイクル試験を行った。
 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表2に示す。
実施例5
 Si粒子をSn粒子(体積基準累積粒度分布における90%粒子径が800nm)に置き換えた以外は実施例1と同じ手法で負極材Gを得た。負極材Hは、カーボンナノチューブによって3次元交絡網状構造体が形成されていて、構造体にSn粒子が包摂され、構造体を構成する炭素繊維にSn粒子が融着していて、且つ該構造体が黒鉛粒子の表面の少なくとも一部に融着していた。黒鉛粒子は構造体によって囲まれていた。
 負極材Hを用いた以外は実施例1と同じ方法で評価用セルを作成し、エージングおよびサイクル試験を行った。 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表2に示す。
比較例4
 Si粒子をSn粒子(体積基準累積粒度分布における90%粒子径が200nm以下)に置き換えた以外は比較例1と同じ手法で負極材I、スラリー、および評価用セルを作成し、エージングおよびサイクル試験を行った。 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表2に示す。
比較例5
 黒鉛粒子(SCMG(商標):昭和電工株式会社製)を、一次粒子のアスペクト比の数基準分布における中央値が1.1の黒鉛粒子(人造黒鉛)に置き換えた以外は実施例4と同じ手法で負極材Jを作成した。負極材Jは、黒鉛粒子(B)に対する3次元交絡網状構造体の被覆率が50%未満であった。
 負極材Jを用いた以外は実施例1と同じ方法で評価用セルを作成し、エージングおよびサイクル試験を行った。 1サイクル目における充電容量及び放電容量(初期充電容量および初期放電容量)、初期充電容量に対する100サイクル目における充電容量の比率(容量維持率)、および90~100サイクル目におけるクーロン効率の平均値を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 A:Si粒子
 B:黒鉛粒子 
 C:カーボンナノチューブ
 E:カーボンナノチューブの先端

Claims (9)

  1.  炭素元素以外のリチウムイオンを吸蔵・放出可能な元素を含む粒子(A)と、
    リチウムイオンを吸蔵・放出可能であり且つ一次粒子のアスペクト比の数基準分布における中央値が1.4以上3.0以下である黒鉛粒子(B)と、
    炭素繊維(C)とを含んでなり;
     1本以上の炭素繊維(C)によって3次元交絡網状構造体が形成されていて、
     該構造体に粒子(A)が融着していて、且つ
     該構造体が黒鉛粒子(B)の表面の少なくとも一部に融着している
    リチウムイオン二次電池用負極材。
  2.  粒子(A)は、一次粒子の体積基準累積粒度分布における90%粒子径が200nm以下である、請求項1に記載のリチウムイオン二次電池用負極材。
  3.  黒鉛粒子(B)は、石油系コークス及び/又は石炭系コークスを2500℃以上で熱処理して得られた人造黒鉛である、請求項1または2に記載のリチウムイオン二次電池用負極材。
  4.  炭素繊維(C)は、平均繊維径が2nm以上40nm以下で且つアスペクト比が10以上15000以下のカーボンナノチューブを含むものである、請求項1~3のいずれかひとつに記載のリチウムイオン二次電池用負極材。
  5.  黒鉛粒子(B)の量が、粒子(A)10質量部に対して、86質量部以上89質量部以下である、請求項1~4のいずれかひとつに記載のリチウムイオン二次電池用負極材。
  6.  炭素繊維(C)の量が、前記粒子(A)10質量部に対して、1質量部以上4質量部以下である、請求項1~5のいずれかひとつに記載のリチウムイオン二次電池用負極材。
  7.  粒子(A)が、Si、Sn、Ge、AlおよびInからなる群から選ばれる少なくともひとつの元素を含むものである、請求項1~6のいずれかひとつに記載のリチウムイオン二次電池用負極材。
  8.  請求項1~7のいずれかひとつに記載のリチウムイオン二次電池用負極材を含有するリチウムイオン二次電池。
  9.  炭素繊維(C)と炭素元素以外のリチウムイオンを吸蔵・放出可能な元素を含む粒子(A)とに対してメカノケミカル処理を施して、粒子(A)と炭素繊維(C)とを含有してなる処理品(1)を得、
     処理品(1)に黒鉛粒子(B)を処理品(1)の質量よりも多い質量で混ぜ合わせ、
     次いで、処理品(1)と黒鉛粒子(B)とに対してメカノケミカル処理を施すことを含む、請求項1~7のいずれかひとつに記載のリチウムイオン二次電池用負極材の製造方法。
PCT/JP2015/071249 2014-07-28 2015-07-27 リチウムイオン二次電池用負極材およびその製造方法 WO2016017583A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/329,884 US20170256791A1 (en) 2014-07-28 2015-07-27 Negative electrode material for lithium ion secondary cell and method for manufacturing the same
CN201580031798.9A CN106663807B (zh) 2014-07-28 2015-07-27 锂离子二次电池用负极材料及其制造方法
EP15827330.0A EP3176860A4 (en) 2014-07-28 2015-07-27 Lithium ion secondary cell negative electrode material and method for manufacturing same
JP2016538339A JP6543255B2 (ja) 2014-07-28 2015-07-27 リチウムイオン二次電池用負極材およびその製造方法
KR1020167033259A KR101917166B1 (ko) 2014-07-28 2015-07-27 리튬 이온 2차전지용 부극재 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-153363 2014-07-28
JP2014153363 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016017583A1 true WO2016017583A1 (ja) 2016-02-04

Family

ID=55217483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071249 WO2016017583A1 (ja) 2014-07-28 2015-07-27 リチウムイオン二次電池用負極材およびその製造方法

Country Status (6)

Country Link
US (1) US20170256791A1 (ja)
EP (1) EP3176860A4 (ja)
JP (1) JP6543255B2 (ja)
KR (1) KR101917166B1 (ja)
CN (1) CN106663807B (ja)
WO (1) WO2016017583A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190161628A1 (en) * 2015-12-28 2019-05-30 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
JP2022530297A (ja) * 2020-03-26 2022-06-29 寧徳新能源科技有限公司 負極材料、負極片、電気化学装置及び電子装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109860519A (zh) * 2019-02-26 2019-06-07 江西理工大学 一种锂离子电池负极及其制备方法
CN110085863B (zh) * 2019-04-26 2024-03-12 桑顿新能源科技有限公司 石墨负极材料及其制备方法、电池
EP4131484A4 (en) * 2020-03-26 2023-05-03 Ningde Amperex Technology Limited NEGATIVE ELECTRODE MATERIAL, NEGATIVE ELECTRODE PLATE, ELECTROCHEMICAL DEVICE WITH NEGATIVE ELECTRODE PLATE AND ELECTRONIC DEVICE
CN116111096B (zh) * 2023-04-11 2023-08-18 宁德新能源科技有限公司 安全涂层组合物、正极片、二次电池和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182512A (ja) * 2002-12-02 2004-07-02 Showa Denko Kk 炭素材料、その製造方法及び用途
JP2005310760A (ja) * 2004-03-22 2005-11-04 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2010038609A1 (ja) * 2008-09-30 2010-04-08 住友ベークライト株式会社 リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法
JP2012501515A (ja) * 2008-09-02 2012-01-19 アルケマ フランス 複合電極材料と、この材料を含む電池の電極と、この電極を有するリチウム電池
JP2012169259A (ja) * 2010-12-24 2012-09-06 Ind Technol Res Inst エネルギー貯蔵複合粒子、電池負極材料および電池
WO2013114095A1 (en) * 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376800B2 (ja) * 2007-01-16 2013-12-25 三洋電機株式会社 非水電解質二次電池及びその製造方法
US8435676B2 (en) * 2008-01-09 2013-05-07 Nanotek Instruments, Inc. Mixed nano-filament electrode materials for lithium ion batteries
CA2638410A1 (en) 2008-07-28 2010-01-28 Hydro-Quebec Composite electrode material
JP2013089403A (ja) 2011-10-17 2013-05-13 Mie Univ リチウムイオン二次電池用の負極材料、リチウムイオン二次電池用の負極材料を製造する方法及びリチウムイオン二次電池
JP2013222641A (ja) 2012-04-18 2013-10-28 Showa Denko Kk リチウムイオン電池用負極材及びその用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182512A (ja) * 2002-12-02 2004-07-02 Showa Denko Kk 炭素材料、その製造方法及び用途
JP2005310760A (ja) * 2004-03-22 2005-11-04 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2012501515A (ja) * 2008-09-02 2012-01-19 アルケマ フランス 複合電極材料と、この材料を含む電池の電極と、この電極を有するリチウム電池
WO2010038609A1 (ja) * 2008-09-30 2010-04-08 住友ベークライト株式会社 リチウム二次電池負極用炭素材、リチウム二次電池負極、リチウム二次電池およびリチウム二次電池負極用炭素材の製造方法
JP2012169259A (ja) * 2010-12-24 2012-09-06 Ind Technol Res Inst エネルギー貯蔵複合粒子、電池負極材料および電池
WO2013114095A1 (en) * 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3176860A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190161628A1 (en) * 2015-12-28 2019-05-30 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
US10995223B2 (en) * 2015-12-28 2021-05-04 Zeon Corporation Fibrous carbon nanostructure dispersion liquid
JP2022530297A (ja) * 2020-03-26 2022-06-29 寧徳新能源科技有限公司 負極材料、負極片、電気化学装置及び電子装置

Also Published As

Publication number Publication date
JPWO2016017583A1 (ja) 2017-04-27
KR20160147017A (ko) 2016-12-21
CN106663807B (zh) 2019-08-23
CN106663807A (zh) 2017-05-10
EP3176860A4 (en) 2018-01-10
JP6543255B2 (ja) 2019-07-10
EP3176860A1 (en) 2017-06-07
US20170256791A1 (en) 2017-09-07
KR101917166B1 (ko) 2018-11-09

Similar Documents

Publication Publication Date Title
US11631838B2 (en) Graphene-enhanced anode particulates for lithium ion batteries
US9543583B2 (en) Composite electrode material
KR101887952B1 (ko) 리튬 이온 2차 전지용 음극 재료
JP6183361B2 (ja) 負極活物質及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池
JP6543255B2 (ja) リチウムイオン二次電池用負極材およびその製造方法
JP6450309B2 (ja) リチウムイオン二次電池用負極材
CN107431199B (zh) 包含金属纳米粒子的正极活性材料和正极以及包含其的锂-硫电池
KR102040545B1 (ko) 리튬 이온 이차전지의 부전극 제조용 입상 복합재
JP6535581B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池
KR101213300B1 (ko) 부극 활물질, 부극 활물질을 사용하는 리튬 이차 전지, 그리고 부극 활물질의 제조 방법
JP5448555B2 (ja) リチウムイオン二次電池用負極、それを用いたリチウムイオン二次電池、リチウムイオン二次電池用の負極作製用のスラリー、リチウムイオン二次電池用負極の製造方法
JP6507106B2 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
US20190334162A1 (en) Granular composite, negative electrode for lithium ion secondary battery, and method for manufacturing same
JP5440488B2 (ja) 二次電池用炭素材
JP5499636B2 (ja) リチウム2次電池負極用炭素材、リチウム2次電池負極およびリチウム2次電池
JP2016189294A (ja) リチウムイオン2次電池用負極活物質およびその製造方法
JP2022102228A (ja) 二次電池用の負極、負極用スラリー、及び、負極の製造方法
WO2023032499A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538339

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167033259

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15329884

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015827330

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015827330

Country of ref document: EP