WO2016016982A1 - 圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法 - Google Patents

圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法 Download PDF

Info

Publication number
WO2016016982A1
WO2016016982A1 PCT/JP2014/070161 JP2014070161W WO2016016982A1 WO 2016016982 A1 WO2016016982 A1 WO 2016016982A1 JP 2014070161 W JP2014070161 W JP 2014070161W WO 2016016982 A1 WO2016016982 A1 WO 2016016982A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
fuel gas
load
value
control signal
Prior art date
Application number
PCT/JP2014/070161
Other languages
English (en)
French (fr)
Inventor
陽介 中川
直人 米村
和寛 蛇蝮
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to JP2016537664A priority Critical patent/JP6166482B2/ja
Priority to US15/116,294 priority patent/US10584645B2/en
Priority to CN201480073279.4A priority patent/CN105917099A/zh
Priority to EP14898366.1A priority patent/EP3081785A4/en
Priority to PCT/JP2014/070161 priority patent/WO2016016982A1/ja
Publication of WO2016016982A1 publication Critical patent/WO2016016982A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/02Plural gas-turbine plants having a common power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/236Fuel delivery systems comprising two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/30Control of fuel supply characterised by variable fuel pump output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/42Control of fuel supply specially adapted for the control of two or more plants simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/13Purpose of the control system to control two or more engines simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure

Definitions

  • the present invention relates to a compressor control device, a compressor control system, and a compressor control method.
  • the fuel gas compressor for supplying fuel gas to the gas turbine is controlled so that the pressure of the fuel gas header is constant. For example, by combining the feedforward control using the preceding signal based on the gas turbine load and the feedback control based on the pressure measurement value of the fuel gas header and the target value, the supply amount of the fuel gas discharged from the compressor is adjusted, and the fuel The pressure control of the gas header is performed.
  • the fuel gas supply amount adjusting means includes an IGV (Inlet Guide Vane) provided upstream of the compressor and an ASV (Anti Surge Valve) provided in a bypass for returning the fuel gas discharged from the compressor upstream. Used.
  • the control system of the fuel gas compressor adjusts the opening degree by the above-mentioned feedforward and feedback control, and controls the pressure of the fuel gas header.
  • Patent Document 1 discloses the problem of the method of associating the above-mentioned one-to-one with each load by operating the compressor evenly.
  • Patent Document 1 is based on the assumption that the number of compressors is larger than the number of gas turbines. Under such circumstances, in a system provided with a plurality of gas turbines and fuel gas compressors, there is a load control method for each compressor that can be used without being limited by the number of gas turbines and compressors. It was sought after.
  • an object of the present invention is to provide a compressor control device, a compressor control system, and a compressor control method that can solve the above-described problems.
  • the compressor control device compresses the fuel gas and includes a plurality of compressors that supply the compressed fuel gas to the load device.
  • a feedforward control signal generating unit that generates a first control signal for controlling the amount of fuel gas supplied by the compressor based on a value obtained by dividing the total load by the number of operating compressors; And a controller that controls the amount of fuel gas supplied by the compressor based on one control signal.
  • the compressor control device described above performs feedback control based on a deviation between the target value of the header pressure of the fuel gas and the measured value, and generates a second control signal.
  • a control signal generator wherein the controller controls the supply amount of the fuel gas based on a value obtained by adding the second control signal to the first control signal.
  • the feedback control signal generation unit calculates the value of the generated second control signal by the number of operating compressors. A new second control signal having a value as a value is generated.
  • the compressor control device described above acquires a measured value of the discharge pressure of the at least one compressor and a measured value of the header pressure of the fuel gas, and A process value selection unit that selects a smaller value between the maximum value of the measured value of the discharge pressure and the measured value of the header pressure of the fuel gas, and the feedback control signal generation unit includes the target value of the header pressure, Feedback control is performed based on the deviation from the value selected by the process value selector, and the second control signal is generated.
  • the control unit is discharged from the flow rate adjusting valve that controls the inflow amount of the fuel gas that flows into the compressor, and the compressor.
  • the supply amount of the fuel gas is controlled by adjusting the opening of at least one of the recycle valve for returning the fuel gas to the upstream side of the compressor.
  • the above-described compressor control device further includes an operating number determining unit that determines the operating number of the compressor according to the total load of the load device.
  • the seventh aspect of the present invention in the above-described compressor control device, when the total load of the load device fluctuates more than a predetermined range within a predetermined time, until a predetermined time elapses from the fluctuation, The number of operating compressors is not changed.
  • the load operating system includes a plurality of compressors and one unit according to any one of the first to seventh aspects that controls the plurality of compressors.
  • the load operating system is described in any one of the plurality of compressors and one of the first to seventh aspects for each of the plurality of compressors.
  • a load device for supplying fuel gas from the plurality of compressors for supplying fuel gas from the plurality of compressors.
  • the load operating system includes the compressor control device according to any one of the second aspect to the seventh aspect, in the eighth aspect or the ninth aspect.
  • the compressor control device is configured to control all compressors controlled by the compressor control device based on a value obtained by adding the second control signal to the first control signal. The supply amount of the fuel gas is controlled.
  • the load operating system includes the compressor control device according to any one of the second to seventh aspects, according to the eighth aspect or the ninth aspect.
  • the compressor control device adds the second control signal to the first control signal in the control of a part of the compressors controlled by the compressor control device.
  • the supply amount of the fuel gas is controlled based on the measured value, and in the control of the remaining compressors, the supply amount of the fuel gas is controlled based only on the first control signal.
  • a control method controls a compressor control device in a load operating system including a plurality of compressors that compress fuel gas and supply the compressed fuel gas to a load device. And generating a first control signal for controlling the amount of fuel gas supplied by the compressor based on a value obtained by dividing the total load of the load device by the number of operating compressors. The supply amount of the fuel gas by the compressor is controlled based on the first control signal.
  • a load can be assigned to the compressor regardless of the number of gas turbines and compressors.
  • FIG. 1 It is a figure which shows an example of the relationship between the discharge pressure of a compressor and fuel gas header pressure in 3rd embodiment of this invention. It is a block diagram which shows an example of the compressor control apparatus in 3rd embodiment of this invention. It is a flowchart of the load control process to the compressor in 3rd embodiment which concerns on this invention. It is a block diagram which shows an example of the compressor control apparatus in 4th embodiment which concerns on this invention. It is a figure for demonstrating control of the operating number of the compressor in 4th embodiment which concerns on this invention.
  • FIG. 1 is a first diagram illustrating an example of a configuration of a load operating system according to the first embodiment of the present invention.
  • the load operating system 1 includes a plurality of compressors 2 (2A, 2B, 2C), a gas turbine 3 (3-1, 3-2, 3-3, 3-4), and a compressor control device 30.
  • the number of operating gas turbines 3 may be one or more.
  • 1 includes three compressors 2 (2A, 2B, 2C), four gas turbines 3 (3-1, 3-2, 3-3, 3-4), compressor control. A configuration in the case of one device 30 is shown.
  • the compressor 2C is a spare machine and is not currently operating.
  • the fuel gas used as the fuel for the gas turbine 3 is supplied from the upstream side of the fuel gas supply line 8 (8A, 8B).
  • the IGV 5 (5A, 5B) and the compressor 2 (2A, 2B) are sequentially supplied from the upstream side in the fuel gas flow direction.
  • the check valve 7 (7A, 7B) and the fuel gas header 4 are supplied to the gas turbine 3 (3-1 to 3-4).
  • the compressors 2A and 2B may be collectively referred to as the compressor 2 and the gas turbines 3-1 to 3-4 may be collectively referred to as the gas turbine 3.
  • the IGV 5 is provided upstream of the compressor 2 and adjusts the amount of fuel gas flowing into the compressor 2.
  • the compressor 2 compresses the fuel gas supplied via the fuel gas supply line 8 and discharges the compressed fuel gas downstream.
  • the fuel gas supply line 8 is provided with a bypass for returning the fuel gas from the downstream of the compressor 2 to the upstream of the compressor 2, and the bypass is provided with ASV 6 (6A, 6B). .
  • the ASV 6 is a recycle valve for adjusting the flow rate of the fuel gas returned from the compressor 2 to the upstream side of the compressor 2.
  • the fuel gas header 4 is a space for controlling the header pressure of the fuel gas supplied to the gas turbine 3.
  • the fuel gas header 4 may be a container for buffering fluctuations in fuel gas pressure, or may be a pipe.
  • the compressor control device 30 controls the flow rate of the fuel gas discharged from the compressor 2 so that the pressure of the fuel gas header 4 becomes constant so that the supply amount of the fuel gas to the gas turbine 3 does not fluctuate.
  • the compressor control device 30 includes a function generator 10 (10-1, 10-2, 10-3, 10-4), an adder 11, a divider 12, a PC (Pressure Controller) 13, and an adder. 14 (14A, 14B), function generator 15 (15A, 15B), function generator 16 (16A, 16B), FC (Flow Controller) 17 (17A, 17B), high level selector 18 (18A) 18B).
  • the function generators 10-1 to 10-4 may be collectively referred to as the function generator 10 and the adders 14A and 14B. The same applies to the other function generators 15 and the like.
  • the function generator 10 acquires an output command value corresponding to the load of the gas turbine 3 from a gas turbine output control device (not shown) or the like, and acquires the acquired gas turbine load based on a correspondence table of the gas turbine load and the operation value. An operation value corresponding to the output command value corresponding to is calculated. The function generator 10 outputs the calculated operation value to the adder 11.
  • the output command value corresponding to the gas turbine load is referred to as a preceding signal of the gas turbine load.
  • the adder 11 acquires operation values from each of the function generators 10-1 to 10-4, and sums the acquired operation values. The adder 11 outputs a value obtained by adding the operation values to the divider 12.
  • the divider 12 divides the total value of the operation values corresponding to the load of the gas turbine 3 acquired from the adder 11 by the number of compressors 2 in operation.
  • the divider 12 outputs the divided value to the adder 14. Note that the number of compressors 2 in operation can be grasped by the compressor control device 30.
  • the load of the gas turbine 3-1 is 80%
  • the load of the gas turbine 3-2 is 40%
  • the load of the gas turbine 3-3 is 60%
  • the load of the gas turbine 3-4 is 0%.
  • the operation values corresponding to these gas turbine loads calculated by the function generators 10-1, 10-2, 10-3, and 10-4 are 80%, 40%, 60%, and 0%, respectively.
  • the divider 12 If the operation value obtained by the divider 12 exceeds the upper limit value (for example, 100%), the divider 12 outputs the upper limit value (100%) to the adder 14. At that time, the compressor control device 30 instructs an unillustrated gas turbine output control device or the like to reduce the gas turbine load for the overload so that the operation value calculated by the divider 12 does not exceed the upper limit value. Is output.
  • the upper limit value for example, 100%
  • the divider 12 outputs the upper limit value (100%) to the adder 14.
  • the compressor control device 30 instructs an unillustrated gas turbine output control device or the like to reduce the gas turbine load for the overload so that the operation value calculated by the divider 12 does not exceed the upper limit value. Is output.
  • the PC 13 calculates a deviation between the measured value of the fuel gas pressure in the fuel gas header 4 and the target value of the fuel gas pressure in the fuel gas header 4, and performs feedback control so that the measured value of the fuel gas pressure in the fuel gas header 4 approaches the target value. To generate a feedback control signal.
  • the value of the feedback control signal corresponds to a correction amount for correcting the current operation value.
  • the PC 13 outputs an operation value correction amount based on the fuel gas header pressure to the adders 14A and 14B. Alternatively, the PC 13 may output the correction amount of the calculated operation value only to a part of the plurality of adders 14 (for example, only the adder 14A). It is assumed that the target value of the fuel gas header pressure is stored in advance by the PC 13.
  • the measured value of the fuel gas pressure is measured by a pressure gauge (not shown) provided in the fuel gas header 4.
  • the adder 14 adds the operation value acquired from the divider 12 and the correction value of the operation value acquired from the PC 13 and outputs the result to the function generator 15 and the function generator 16.
  • the adder 14 (for example, the adder 14 ⁇ / b> B) that does not acquire the correction amount uses the operation value acquired from the divider 12 as the function generator 15. And output to the function generator 16.
  • the operation value output from the adder 14 is a value that is a source of a control signal instructing each operation end of the compressor 2.
  • the operation end is a device that controls the rotation speed of the compressor 2 or a device that controls the opening degree of the IGV 5 or ASV 6. Further, the operation value output from the adder 14 is a value indicating the load assigned to each compressor 2. Each operation end adjusts the IGV opening degree and the like based on the operation value output from the adder 14, thereby controlling the load borne by each compressor 2.
  • the function generator 15 acquires an operation value from the adder 14 and calculates an IGV opening corresponding to the acquired operation value based on a correspondence table between the operation value and the IGV opening.
  • the function generator 15 outputs a command signal that gives the calculated IGV opening to the IGV 5.
  • the function generator 16 acquires the operation value from the adder 14 and calculates an ASV opening corresponding to the acquired operation value based on a correspondence table between the operation value and the ASV opening.
  • the function generator 16 outputs a signal corresponding to the calculated ASV opening degree to the high level selector 18.
  • the FC 17 calculates a deviation between the measured value of the flow rate of the fuel gas discharged from the compressor 2 and the target value of the fuel gas flow rate, calculates an operation amount based on the deviation, and outputs a signal corresponding to the operation amount.
  • the target value of the fuel gas flow rate is a value based on the IGV opening calculated by the function generator 15, for example.
  • the high level selector 18 compares the signal acquired from the function generator 16 with the signal acquired from the FC 17, selects the signal having the larger value, and outputs the selected signal to the ASV 6 as the ASV opening command signal.
  • the compressor control device 30 assigns a load borne by each compressor 2 by outputting a command signal based on the operation value to each operation end.
  • the PC 13 is configured to output a correction amount by feedback control only to the adder 14A, and the operation value corresponding to the preceding signal of the gas turbine load is 90%.
  • the load on the compressor 2A is 89% to 91%, and the load on the compressor 2B is 90%.
  • the load on the compressor 2A fluctuates due to the influence of feedback control.
  • the correction amount by the feedback control of the PC 13 may be output to the adders 14 of all the compressors 2 or may be output only partially.
  • the method of the present embodiment is based on the total gas turbine load and the number of operating compressors 2, the method can be applied regardless of the number of gas turbines 3 and compressors 2 and their changes.
  • the number of operating gas turbines 3 may be smaller than the number of operating compressors 2, or the number of operating gas turbines 3 may be larger than the number of operating compressors 2 as illustrated in FIG. Even if the number of operating gas turbines 3 changes, for example, if the total load value does not change, the compressor 2 side is not affected.
  • the load preceding signal to the plurality of compressors 2 is generated by the feedforward control based on the preceding signal of the gas turbine load, it is possible to quickly cope with the situation where the total value of the load of the gas turbine 3 fluctuates. it can. Further, since the operation value is obtained based on the value obtained by dividing the total value of the gas turbine load by the number of operating compressors 2 and output to each compressor 2, even if there is a slight difference due to the feedback control, it is almost equal. A load can be assigned to each compressor 2. Thereby, a plurality of compressors 2 can be operated without reducing efficiency.
  • FIG. 1 shows a configuration in which a plurality of compressors 2 are controlled by a single compressor control device 30.
  • a single compressor control device 30 When the processing load is concentrated on one compressor control device 30 or maintenance of the compressor control device 30 becomes necessary, all the compressors 2 must be stopped. Such a situation can occur.
  • the control is performed by one compressor control device 30, a mechanism for causing this device to function as a master controller is required, and the configuration of the control system generally tends to be complicated. Therefore, as shown in FIG. 2, the control system can be simplified by providing the compressor control device 30 of this embodiment for each compressor.
  • FIG. 2 is a second diagram showing an example of the configuration of the load operating system in the first embodiment of the present invention.
  • An example of the configuration of the load operating system when the compressor control device 30 of the present embodiment is provided for each compressor will be described with reference to FIG.
  • the load operating system 1 is provided with two compressor control devices 30 (not shown) (30A and 30B). It is assumed that the compressor control device 30A controls the compressor 2A. It is assumed that the compressor control device 30B controls the compressor 2B.
  • the compressor control device 30A includes a function generator 10A (10-1A, 10-2A, 10-3A, 10-4A), an adder 11A, a divider 12A, a PC 13A, an adder 14A, a function generator 15A, a function
  • the generator 16A, the FC 17A, and the high level selector 18A are included.
  • the compressor control device 30B includes a function generator 10B (10-1B, 10-2B, 10-3B, 10-4B), an adder 11B, a divider 12B, a PC 13B, an adder 14B, and a function generator 15B.
  • Function generator 16B, FC 17B, and high level selector 18B Function generator 16B, FC 17B, and high level selector 18B.
  • each of the compressor control devices 30A and 30B includes a function generator 10, an adder 11, and a divider 12, and inputs a preceding signal of a gas turbine load. Then, in each of the compressor control devices 30A and 30B, the function generator 10 calculates an operation value based on the gas turbine load, and totals the operation values calculated by the adder 11.
  • the number of compressors 2 used by the divider 12 for division is, for example, that the compressor control devices 30A and 30B notify each other by communication means whether or not the compressor 2 controlled by the device itself is operating. In other words, it is obtained by counting the number of operating compressors, and the divider 12 divides the operation value by the obtained operating number.
  • Each of the compressor control devices 30A and 30B includes the PC 13, and performs feedback control based on the fuel gas header pressure to calculate the correction amount.
  • each of the compressor control devices 30A and 30B includes an adder 14, and adds the operation value acquired from the divider 12 included in the own device and the correction amount of the operation value acquired from the PC 13 included in the own device. To the function generators 15 and 16.
  • the calculation of the correction amount using the PC 13 and the output to the adder 14 may be performed by both the compressor control devices 30A and 30B, or only one of the compressor control devices 30A and 30B. You may go. By setting it as such a structure, the control system of the load operation system 1 can be simplified.
  • FIG. 3 is a block diagram showing an example of the compressor control device in the first embodiment of the present invention.
  • the configuration of the compressor control device 30 will be described with reference to FIG.
  • the feedforward control signal generator (hereinafter referred to as FF control signal generator) 31 includes a plurality of compressors based on a value obtained by dividing the total load of the load device (gas turbine 3) by the number of compressors 2 in operation. For at least one of the two, a first control signal for controlling the amount of fuel gas supplied by the compressor 2 is generated.
  • the FF control signal generation unit 31 includes a function generator 10, an adder 11, and a divider 12.
  • a feedback control signal generation unit (hereinafter referred to as an FB control signal generation unit) 32 performs feedback control based on a deviation between a target value of the fuel gas header pressure and a measured value of the fuel gas header pressure, and a second control signal (feedback control signal). Is generated.
  • the FB control signal generation unit 32 includes a PC 13.
  • the operating end control unit 33 controls the amount of fuel gas supplied by the compressor 2 based on the first control signal or a value obtained by adding the second control signal to the first control signal.
  • the operation end control unit 33 maintains the fuel gas header pressure at a predetermined value by adjusting the supply amount of the fuel gas.
  • the operation end control unit 33 includes an adder 14, a function generator 15, a function generator 16, an FC 17, and a high level selector 18.
  • the operation end control unit 33 controls the opening degrees of the IGV 5 and the ASV 6, but controls the fuel gas supply amount by changing the rotation speed of the compressor 2. Also good.
  • the storage unit 34 stores a function necessary for load control of the compressor such as a correspondence table between gas turbine loads and operation values, a correspondence table between operation values and IGV opening, a target value necessary for feedback control, and the like.
  • the communication unit 35 transmits / receives control signals to / from other control devices. For example, the preceding signal of the gas turbine load is received from the gas turbine output control device and is output to the FF control signal generation unit 31. When the load of the compressor 2 exceeds the upper limit value, a command signal for reducing the gas turbine output is transmitted to the gas turbine output control device.
  • one compressor control device 30 does not control all the compressors 2 but each compressor control device 30 controls one compressor 2 as shown in FIG. Information on whether or not the compressors 2 are operating is communicated via 35.
  • FIG. 4 is a flowchart of a load control process for the compressor according to the first embodiment of the present invention.
  • a processing flow of the compressor control device 30 will be described while comparing with the configuration illustrated in FIG. Note that the PC 13 is configured to output a correction amount (second control signal) of the operation value calculated by feedback control based on the fuel gas header pressure to the adder 14A and not to the adder 14B.
  • the FF control signal generation unit 31 acquires a gas turbine load preceding signal for each gas turbine 3 of the load operation system 1 via the communication unit 35 (step S11).
  • the FF control signal generation unit 31 refers to the correspondence table of gas turbine loads and operation values stored in advance in the storage unit 34, and calculates an operation value corresponding to the acquired gas turbine load.
  • the FF control signal generation unit 31 calculates the operation value corresponding to the gas turbine load for each gas turbine, the FF control signal generation unit 31 adds them. This is a process of the adder 11 included in the FF control signal generation unit 31.
  • the FF control signal generation unit 31 counts the number of the compressors 2 that are currently operating, divides the total operation value by the number of the compressors 2 that are operated, and the first control signal corresponding to the value Is generated (step S12).
  • the FF control signal generation unit 31 outputs the generated first control signal to the operation end control unit 33.
  • the first control signal is a signal corresponding to the preceding signal of the gas turbine load, and the operation to the operation end of the compressor 2 based on the first control signal is feedforward control corresponding to the gas turbine load. .
  • the first control signal indicates the load allocated per compressor.
  • the FB control signal generation unit 32 reads the target value of the fuel gas header pressure from the storage unit 34. Further, the FB control signal generation unit 32 acquires a measured value of the fuel gas header pressure measured by the pressure gauge provided in the fuel gas header 4 and obtains a deviation between the target value of the fuel gas header pressure and the measured value. Next, the FB control signal generation unit 32 performs feedback control such as PI (Proportional Integral) based on the obtained deviation, and generates a second control signal for bringing the measured value of the fuel gas header pressure closer to the target value (step). S13). By performing the feedback control, the header pressure of the fuel gas can be controlled more accurately, and the supply of the fuel gas can be further stabilized. This process is a process of the PC 13 included in the FB control signal generation unit 32. The FB control signal generation unit 32 outputs the generated second control signal to the operation end control unit 33.
  • PI Proportional Integral
  • the operating end control unit 33 adds the first control signal acquired from the FF control signal generation unit 31 and the second control signal acquired from the FB control signal generation unit 32, so that among the plurality of compressors 2.
  • the operation amount for some of the compressors 2 is calculated. This is a process of the adder 14A included in the operation end control unit 33.
  • the operation end control unit 33 sets the first control signal acquired from the FF control signal generation unit 31 as the operation amount for the remaining compressor 2. This is a process of the adder 14B included in the operation end control unit 33.
  • the operation end control unit 33 After calculating the operation amount to each compressor 2, the operation end control unit 33 further outputs the operation amount to each operation end and controls the fuel gas supply amount from each compressor 2 (step S14).
  • the operation end control unit 33 refers to the correspondence table between the operation amount and the IGV opening stored in the storage unit 34, obtains the IGV opening corresponding to the operation amount, and controls the opening of the IGV 5 based on the value. This is processing of the function generator 15 provided in the operation end control unit 33. Further, for example, the operation end control unit 33 refers to the correspondence table between the operation amount and the ASV opening stored in the storage unit 34 and obtains the ASV opening (ASV opening 1) corresponding to the operation amount. This is a process of the function generator 16 included in the operation end control unit 33.
  • the operation end control unit 33 obtains another ASV opening (ASV opening 2) from the target value of the fuel gas flow rate and the measured value of the fuel gas flow rate downstream of the compressor 2. This is a process of FC17 provided in the operation end control unit 33. And the operating end control part 33 selects a big value among the ASV opening degree 1 and the ASV opening degree 2, and controls ASV6 with the selected ASV opening degree.
  • ASV opening 2 another ASV opening
  • the feedback control signal (using the preceding signal (first control signal) corresponding to the gas turbine load or based on the preceding signal and the fuel gas header pressure ( By using a value obtained by adding the second control signal), efficient load distribution to each compressor 2 for supplying fuel gas in accordance with the load of the gas turbine 3 is performed by the gas turbine 3 or the compressor 2. It can be determined without depending on the number of components.
  • FIG. 5 is a diagram showing an example of the configuration of the load operating system in the second embodiment of the present invention.
  • a divider 19 is provided in the subsequent stage of the PC 13.
  • the divider 19 divides the correction value of the operation value calculated by the PC 13 by the number of compressors 2 currently in operation.
  • the divider 19 outputs the divided correction amount to the adder 14.
  • the adder 14 is the same as that of 1st embodiment.
  • the FB control signal generation unit 32 in this embodiment includes a PC 13 and a divider 19. That is, the FB control signal generation unit 32 performs feedback control based on the deviation between the target value of the fuel gas header pressure and the measured value of the header pressure, generates a feedback control signal, and the value (correction amount) of the feedback control signal Is divided by the number of operating compressors 2 to generate a second control signal. For example, when 0% of the feedback control signal value is a neutral point, a second control signal having a calculated value of “feedback control signal value ⁇ compressor operating number” as a value is generated. If 50% of the feedback control signal value is the neutral point, a second control signal having a calculated value of “(feedback control signal value ⁇ 50%) ⁇ compressor operating number + 50%” is generated.
  • a second control signal is generated in consideration of the number of compressors 2 that are in operation. That is, the FB control signal generation unit 32 divides the feedback control signal value obtained as a result of the feedback control based on the deviation between the target value of the fuel gas header pressure and the measured value by the number of the compressors 2 that are currently operating. .
  • the number of operating compressors 2 is acquired from the FF control signal generation unit 31, for example.
  • the FB control signal generation unit 32 generates a second control signal corresponding to the feedback control signal value obtained by division.
  • Other processing steps are the same as the processing flow of the first embodiment described in FIG.
  • the fuel gas header pressure can be controlled more precisely.
  • the feedback control signal value (correction amount) is 10%. If it is the method of 1st embodiment at this time, the opening degree control of IGV5 and ASV6 for 10% will be performed about each of compressor 2A, 2B. Then, the flow rate of each of the fuel gas discharged from the compressors 2A and 2B is corrected by 10%, and an influence of 20% is produced as a whole, and the response may be excessive.
  • the operation ends (IGV5, etc.) of the compressors 2A and 2B are controlled by a value (5%) obtained by dividing the correction amount (10%) by the number of operating units (2 units).
  • the operation value for the operating end can be adjusted according to the operating number before and after the change, so that fluctuations in the fuel gas header pressure can be suppressed.
  • FIG. 6 is a diagram showing an example of the configuration of the load operating system in the third embodiment of the present invention. As shown in FIG. 6, in the load operating system 1 in the present embodiment, a pressure gauge 21A is provided downstream of the compressor 2A, and a pressure gauge 21B is provided downstream of the compressor 2B.
  • the pressure gauge 21A and the pressure gauge 21B are connected to the high level selector 23. Moreover, the pressure gauge 20 is provided in the fuel gas header 4 similarly to 1st and 2 embodiment. The high level selector 23 and the pressure gauge 20 are connected to a low level selector 22 provided in the front stage of the PC 13.
  • the pressure gauge 21 ⁇ / b> A measures the discharge pressure of the compressor 2 ⁇ / b> A and outputs the measured value to the high level selector 23.
  • the pressure gauge 21 ⁇ / b> B measures the discharge pressure of the compressor 2 ⁇ / b> B and outputs the measured value to the high level selector 23.
  • the high level selector 23 selects a measurement value having a large value from the acquired measurement values of the discharge pressure and outputs the selected measurement value to the low level selector 22.
  • the pressure gauge 20 measures the fuel gas header pressure and outputs the measured header pressure to the low level selector 22.
  • the low-order selector 22 compares the acquired discharge pressure of the compressor 2 with the header pressure, and outputs the pressure measurement value with the smaller value to the PC 13. This value is called a process value.
  • the PC 13 performs feedback control so as to reduce the deviation between the process value acquired from the low-order selector 22 and the target value of the fuel gas header pressure. That is, in this embodiment, even when the discharge pressure of the compressor 2 is selected as the process value, control is performed so that the discharge pressure of the compressor 2 approaches the target value of the fuel gas header pressure.
  • FIG. 7 is a diagram illustrating an example of the relationship between the discharge pressure of the compressor and the fuel gas header pressure in the third embodiment of the present invention.
  • the left figure of FIG. 7 is a figure which shows an example of the relationship between the discharge pressure of a compressor and fuel gas header pressure in the conventional method.
  • reference numeral 41A indicates the transition of the fuel gas header pressure.
  • Reference numeral 42 ⁇ / b> A indicates a change in the discharge pressure of the compressor 2.
  • reference numeral 43A indicates a transition of the opening degree of the ASV 6 when the transition of the fuel gas header pressure and the discharge pressure of the compressor 2 has a relationship as indicated by the reference numerals 41A and 42A.
  • a control for opening the ASV 6 and closing the IGV 5 is performed by pressure control for keeping the fuel gas header pressure constant.
  • Reference numeral 44A indicates a period during which the gas turbine 3 is stopped. In a situation where the gas turbine 3 is stopped, the discharge pressure of the compressor 2 is lowered because there is no need to supply the fuel gas, but the fuel gas header pressure remains high because there is no outflow of the fuel gas from the fuel gas header 4. (For example, 42 atmospheres), eventually ASV 6 is fully opened and IGV 5 is fully closed.
  • Reference numeral 45A indicates a period in which the gas turbine 3 is activated after the period 44A and the gas turbine 3 is operating.
  • the gas turbine 3 is started, the fuel gas flows out from the fuel gas header 4 and the fuel gas header pressure temporarily decreases. However, the gas turbine 3 is controlled to converge to a predetermined target value (for example, 40 atm). Further, as the gas turbine 3 is started, the discharge pressure of the compressor 2 increases and eventually converges to a predetermined value.
  • the ASV 6 is controlled to gradually close (for example, about 10 to 20%) from the fully open state, and the IGV 5 is controlled to gradually open.
  • the right figure of FIG. 7 is a figure which shows an example of the relationship between the discharge pressure of a compressor and fuel gas header pressure in 3rd embodiment of this invention.
  • Reference numeral 41B indicates the fuel gas header pressure
  • reference numeral 42B indicates the discharge pressure of the compressor 2
  • reference numeral 43B indicates the transition of the ASV opening.
  • Reference numeral 44B denotes a gas turbine stop period
  • reference numeral 45B denotes a gas turbine operating period.
  • feedback control is always performed based on the fuel gas header pressure.
  • the fuel gas header pressure is compared with the discharge pressure of the compressor, and the feedback control is performed using the smaller value. .
  • the opening control of the IGV5 and ASV6 based on the fuel gas header pressure is performed when the gas turbine is operating, and the opening control of the IGV5 and ASV6 based on the compressor discharge pressure is automatically performed when the gas turbine is stopped.
  • the control is switched to the feedback control based on the discharge pressure of the compressor 2 when the gas turbine is stopped.
  • the target value of the discharge pressure is the target value of the fuel gas header pressure.
  • the opening of the ASV 6 is not fully opened, and also when the gas turbine 3 is stopped.
  • the discharge pressure of the compressor 2 can be brought close to the fuel gas header pressure.
  • control can be started from a state where the opening degree of the ASV 6 is reduced.
  • control can be started from a state in which the discharge pressure of the compressor 2 is close to the value of the discharge pressure in the static state when the gas turbine is operating.
  • each compressor control device 30 includes at least the low level selector 22 among the low level selector 22 and the high level selector 23.
  • the low-order selector 22 acquires a measured value from the pressure gauge 21 provided downstream of the compressor 2 controlled by the own apparatus and the pressure gauge 20 provided in the fuel gas header 4, and selects a small value as a process value.
  • the PC 13 included in the FB control signal generation unit 32 performs feedback control using this process value.
  • FIG. 8 is a block diagram showing an example of a compressor control device according to the third embodiment of the present invention.
  • the configuration of the compressor control device 30 will be described with reference to FIG.
  • the compressor control device 30 of this embodiment includes a process value selection unit 36.
  • the FB control signal generation unit 32 acquires the process value selected by the process value selection unit 36, performs feedback control based on the process value, and generates a second control signal. About another structure, it is the same as that of 1st embodiment.
  • the process value selection unit 36 acquires the measured value of the discharge pressure of the compressor 2 and the fuel gas header pressure, compares the maximum value of the discharge pressure with the fuel gas header pressure, and selects a small value.
  • the process value selection unit 36 outputs the selected value as a process value to the FB control signal generation unit 32.
  • the process value selection unit 36 includes a low level selector 22 and a high level selector 23.
  • FIG. 9 is a flowchart of the load control process for the compressor according to the third embodiment of the present invention.
  • the processes in steps S11 to S12 are the same as in the first embodiment. That is, the FF control signal generation unit 31 acquires a preceding signal of the gas turbine load and generates a first control signal.
  • the process value selection unit 36 acquires the measured value of the discharge pressure and the measured value of the fuel gas header pressure of each compressor 2 to be controlled by the compressor control device 30.
  • the process value selection unit 36 selects the maximum value among the acquired discharge pressures, compares the selected maximum value of the discharge pressure with the fuel gas header pressure, and selects a smaller value.
  • the process value selection unit 36 compares the measured value of the discharge pressure of the one compressor 2 with the fuel gas header pressure. And select a smaller value.
  • the process value selection unit 36 outputs the selected value as a process value to the FB control signal generation unit 32 (step S15).
  • the discharge pressure of the compressor exceeds the fuel gas header pressure
  • the fuel gas header pressure exceeds the discharge pressure of the compressor. Therefore, when the gas turbine is operating, the fuel gas header pressure becomes the process value, and when the gas turbine is stopped, the discharge pressure of the compressor becomes the process value.
  • the subsequent steps S13 to S14 are the same as in the first embodiment.
  • the FB control signal generation unit 32 performs feedback control based on the process value and generates a second control signal. Further, the operating end control unit 33 controls the supply amount of fuel gas discharged from the compressor 2 based on the first control signal and the second control signal.
  • the fuel gas header pressure control can be automatically switched to the discharge pressure control of the compressor 2, The pressure control of the fuel gas header can be improved.
  • FIG. 10 is a block diagram showing an example of a compressor control device according to the fourth embodiment of the present invention. This embodiment can be combined with any one of the first to third embodiments.
  • FIG. 10 shows a configuration when combined with the first embodiment. As shown in FIG. 10, the compressor control device 30 in the present embodiment is different from the first embodiment in that it includes an operating number determination unit 37 and a start / stop unit 38. Other configurations are the same as those of the second embodiment.
  • the operating number determination unit 37 acquires a preceding signal of the gas turbine load from the output control device of the gas turbine via the communication unit 35, and determines the operating number of the compressor 2 according to the total gas turbine load. Moreover, when the total load fluctuates more than a predetermined range within a predetermined time, such as when the gas turbine load fluctuates rapidly or when the load is interrupted, the operating number determination unit 37 elapses a predetermined time from the fluctuation. Until then, the number of operating compressors 2 is not changed. The start / stop unit 38 starts and stops the compressor 2 based on the determination by the operating number determination unit 37 so that the operating number of the compressors 2 becomes the number corresponding to the total gas turbine load.
  • FIG. 11 is a diagram for explaining the control of the number of operating compressors in the fourth embodiment according to the present invention.
  • FIG. 11 for example, assuming that one compressor is currently operating, when the total value of the preceding signal of the gas turbine load reaches 60, the number of operating units is increased to 2, and when it reaches 140, it increases to 3 units.
  • the number of operating units is reduced to two, and if it is further reduced to 30, it is reduced to one.
  • the start / stop unit 38 starts the second unit, and then the total value of the preceding signal decreases to 45 even if the total value of the preceding signal decreases to 45. Does not change. After that, when the total value of the preceding signals further decreases to 25, the start / stop unit 38 stops one compressor 2.
  • a correspondence table of the total values of the preceding signals of the gas turbine load exemplified in FIG. 11 and the number of operating units is recorded, and the operating unit determining unit 37 refers to the correspondence table and acquires the table.
  • the number of operating units (set operating number) corresponding to the total value of the preceding signals of the gas turbine load is acquired.
  • the operating unit determination unit 37 compares the currently operating unit with the acquired set operating unit, and if the acquired set operating unit is larger than the current operating unit, the compressor 2 is newly started up by that number.
  • the start / stop unit 38 is instructed to do so. Further, if the acquired set operating number is less than the current operating number, the start / stop unit 38 is instructed to stop the compressor 2 by that number.
  • the start / stop unit 38 reads, for example, the start order / stop order of the compressor 2 recorded in the storage unit 34 and starts or stops the compressor 2 in this order.
  • the operating unit determination unit 37 is in the compressor 2 until a predetermined time elapses after the total value of the acquired preceding signals fluctuates. Do not change the number of operating units.
  • the present embodiment is applied not only to a configuration in which the number of compressors 2 is controlled by one compressor control device 30 but also to a configuration in which the compressor control device 30 is provided for each compressor 2. be able to.
  • each compressor control device 30 receives the preceding signal of the gas turbine load, and obtains the number of operating units corresponding to the gas turbine load. Further, the starting order of the compressors 2 is determined in advance, and information on the starting order of the compressors 2 controlled by the own apparatus is recorded in the storage unit 34 of each compressor control device 30.
  • the compressor control in which the activation order recorded in the storage unit 34 of the own device is 2
  • the operating number determination unit 37 provided in the apparatus 30 issues a start instruction to the start / stop unit 38 to start the compressor 2.
  • the compressor 2 can be automatically started and stopped to optimize the circulating flow rate of the compressor and improve energy efficiency.
  • the compressor unit number control of this embodiment is unit number control based on the preceding signal of the gas turbine load, and there is less fluctuation compared with the case of judging based on the measured values of various state quantities such as pressure, and stable startup / It can be decided to stop. Further, since the start / stop control is performed based on the number of operating units corresponding to the load of the gas turbine, the gas turbine load can be greatly changed without considering the influence of the additional start / stop of the compressor 2.
  • the fuel gas supply amount may be controlled by adjusting the opening degree of either IGV5 or ASV6, and the fuel gas header pressure may be controlled.
  • IGV5 is an example of a flow rate adjustment valve
  • ASV6 is an example of a recycle valve.
  • the operation end control unit 33 is an example of a control unit.
  • the compressor control device in a system in which a plurality of gas turbines and fuel gas compressors are provided, the compression is performed regardless of the number of gas turbines and compressors.
  • the load can be assigned to the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

 圧縮機制御装置は、燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する複数の圧縮機を備えた負荷稼働システムにおいて、前記負荷機器の負荷の合計を稼働中の前記圧縮機の台数で除算した値に基づいて、前記圧縮機による前記燃料ガスの供給量を制御する第一制御信号を生成するフィードフォワード制御信号生成部と、前記第一制御信号に基づいて前記圧縮機による燃料ガスの供給量を制御する制御部と、を備える。

Description

圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法
 本発明は、圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法に関する。
 ガスタービンへ燃料ガスを供給するための燃料ガス用圧縮機は、燃料ガスヘッダの圧力が一定となるように制御される。例えば、ガスタービン負荷に基づく先行信号を用いたフィードフォワード制御と、燃料ガスヘッダの圧力計測値と目標値に基づくフィードバック制御を組み合わせて、圧縮機から吐出される燃料ガスの供給量を調節し、燃料ガスヘッダの圧力制御を行っている。燃料ガス供給量の調節手段には、圧縮機の上流へ設けられたIGV(Inlet Guide Vane)や、圧縮機が吐出した燃料ガスを上流へ還流させるバイパスに設けられたASV(Anti Surge Valve)が用いられる。燃料ガス用圧縮機の制御システムは、上述のフィードフォワード及びフィードバック制御によってこれらの開度を調節し、燃料ガスヘッダの圧力制御を行っている。
 ところで、ガスタービンと燃料ガス用圧縮機とがそれぞれ複数設けられているシステムの場合、燃料ガスヘッダの圧力制御を行うにあたり、各圧縮機の負荷をどのように定めるかが問題となる。例えば、ガスタービン1台と圧縮機1台とを1対1に対応付けて、各圧縮機に対して、それぞれの圧縮機に対応付けたガスタービンの負荷に応じた負荷を割り当てる方法が考えられる。また、ガスタービンの総負荷に対して、各圧縮機に均等に負荷を割り当てる方法が考えられる(例えば、特許文献1)。
特開平09-317498号公報
 しかし、ガスタービンと圧縮機とを1対1に対応付ける方法は、特許文献1にも記載されているように、ガスタービンが部分負荷で運転されている状況では圧縮機の効率が悪化する場合があり、また、複数のうちいくつかの圧縮機が異常停止したような状況ではガスタービンへの燃料ガスの供給が不十分になるという問題がある。また、各圧縮機に均等に負荷を割り当てて制御する方法についても、特許文献1には、各圧縮機へ負荷を均等に割り当てて運転することで、上記の1対1に対応付ける方法の問題を解決できることが記載されているものの、具体的な制御方法については開示が無く、また、特許文献1の方法は、ガスタービンの台数より圧縮機の台数が多いことが前提となっていた。このような中、ガスタービンと燃料ガス用圧縮機とが複数設けられたシステムにおいて、ガスタービンや圧縮機の構成台数の制限を受けずに用いることができる、各圧縮機への負荷制御方法が求められていた。
 そこでこの発明は、上述の課題を解決することのできる圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法を提供することを目的としている。
 本発明の第1の態様によれば、圧縮機制御装置は、燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する複数の圧縮機を備えた負荷稼働システムにおいて、前記負荷機器の負荷の合計を稼働中の前記圧縮機の台数で除算した値に基づいて、前記圧縮機による前記燃料ガスの供給量を制御する第一制御信号を生成するフィードフォワード制御信号生成部と、前記第一制御信号に基づいて前記圧縮機による燃料ガスの供給量を制御する制御部と、を備える。
 本発明の第2の態様によれば、上述の圧縮機制御装置は、前記燃料ガスのヘッダ圧力の目標値と計測値との偏差に基づいてフィードバック制御を行い、第二制御信号を生成するフィードバック制御信号生成部、をさらに備え、前記制御部は、前記第一制御信号に前記第二制御信号を加えた値に基づいて前記燃料ガスの供給量を制御する。
 本発明の第3の態様によれば、上述の圧縮機制御装置は、前記フィードバック制御信号生成部は、前記生成した第二制御信号の値を、稼働中の前記圧縮機の台数で除算した演算値を値に持つ新たな第二制御信号を生成する。
 本発明の第4の態様によれば、上述の圧縮機制御装置は、前記少なくとも一つの圧縮機の吐出圧力の計測値と前記燃料ガスのヘッダ圧力の計測値とを取得し、前記圧縮機の吐出圧力の計測値の最大値と前記燃料ガスのヘッダ圧力の計測値とのうち小さい値を選択するプロセス値選択部、をさらに備え、前記フィードバック制御信号生成部は、前記ヘッダ圧力の目標値と前記プロセス値選択部が選択した値との偏差に基づいてフィードバック制御を行い、前記第二制御信号を生成する。
 本発明の第5の態様によれば、上述の圧縮機制御装置において、前記制御部は、前記圧縮機に流入する燃料ガスの流入量を制御する流量調整弁と、前記圧縮機から吐出される燃料ガスを前記圧縮機の上流側に戻すためのリサイクル弁と、のうち少なくとも一方の開度を調節することで前記燃料ガスの供給量を制御する。
 本発明の第6の態様によれば、上述の圧縮機制御装置において、前記負荷機器の負荷の合計に応じて前記圧縮機の稼働台数を決定する稼働台数決定部をさらに備える。
 本発明の第7の態様によれば、上述の圧縮機制御装置において、前記負荷機器の負荷の合計が所定時間内に所定の範囲以上変動した場合、当該変動から所定時間が経過するまでは、前記圧縮機の稼働台数を変更しない。
 本発明の第8の態様によれば、負荷稼働システムは、複数の圧縮機と、当該複数の圧縮機を制御する第1の態様から第7の態様の何れか1つに記載の1台の圧縮機制御装置と、前記複数の圧縮機が燃料ガスを供給する負荷機器と、を備える。
 本発明の第9の態様によれば、負荷稼働システムは、複数の圧縮機と、当該複数の圧縮機それぞれに対して1台の第1の態様から第7の態様の何れか1つに記載の圧縮機制御装置と、前記複数の圧縮機が燃料ガスを供給する負荷機器と、を備える。
 本発明の第10の態様によれば、負荷稼働システムは、第2の態様から第7の態様の何れか1つに記載の圧縮機制御装置を備える、第8の態様または第9の態様に記載の負荷稼働システムであって、前記圧縮機制御装置は、当該圧縮機制御装置が制御するすべての圧縮機の制御において、前記第一制御信号に前記第二制御信号を加えた値に基づいて前記燃料ガスの供給量を制御する。
 本発明の第11の態様によれば、負荷稼働システムは、第2の態様から第7の態様の何れか1つに記載の圧縮機制御装置を備える、第8の態様または第9の態様に記載の負荷稼働システムであって、前記圧縮機制御装置は、当該圧縮機制御装置が制御する圧縮機のうち一部の圧縮機の制御において、前記第一制御信号に前記第二制御信号を加えた値に基づいて前記燃料ガスの供給量を制御し、残りの圧縮機の制御においては、前記第一制御信号だけに基づいて前記燃料ガスの供給量を制御する。
 本発明の第12の態様によれば、制御方法は、燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する複数の圧縮機を備えた負荷稼働システムにおいて、圧縮機制御装置を制御する方法であって、前記負荷機器の負荷の合計を稼働中の前記圧縮機の台数で除算した値に基づいて、前記圧縮機による前記燃料ガスの供給量を制御する第一制御信号を生成し、前記第一制御信号に基づいて前記圧縮機による燃料ガスの供給量を制御する。
 上記した本発明の態様によれば、ガスタービンと燃料ガス用圧縮機とが複数設けられたシステムにおいて、ガスタービン及び圧縮機の構成台数によらず、圧縮機へ負荷を割り当てることができる。
本発明の第一実施形態における負荷稼働システムの構成の一例を示す第一の図である。 本発明の第一実施形態における負荷稼働システムの構成の一例を示す第二の図である。 本発明の第一実施形態における圧縮機制御装置の一例を示すブロック図である。 本発明に係る第一実施形態における圧縮機への負荷制御処理のフローチャートである。 本発明の第二実施形態における負荷稼働システムの構成の一例を示す図である。 本発明の第三実施形態における負荷稼働システムの構成の一例を示す図である。 本発明の第三実施形態における圧縮機の吐出圧力と燃料ガスヘッダ圧力との関係の一例を示す図である。 本発明の第三実施形態における圧縮機制御装置の一例を示すブロック図である。 本発明に係る第三実施形態における圧縮機への負荷制御処理のフローチャートである。 本発明に係る第四実施形態における圧縮機制御装置の一例を示すブロック図である。 本発明に係る第四実施形態における圧縮機の稼働台数の制御を説明するための図である。
<第一実施形態>
 以下、本発明の第一実施形態による圧縮機制御装置を図1~図4を参照して説明する。
 図1は、本発明の第一実施形態における負荷稼働システムの構成の一例を示す第一の図である。負荷稼働システム1は、複数の圧縮機2(2A、2B、2C)とガスタービン3(3-1、3-2、3-3、3-4)と圧縮機制御装置30とからなる。ガスタービン3の稼働台数は、1台でも複数台でもよい。図1の負荷稼働システム1は、圧縮機2が3台(2A、2B、2C)、ガスタービン3が4台(3-1、3-2、3-3、3-4)、圧縮機制御装置30が1台の場合の構成を示している。なお、圧縮機2Cは、予備機であって現在は稼働していないものとする。ガスタービン3の燃料となる燃料ガスは、燃料ガス供給ライン8(8A、8B)の上流から供給され、燃料ガスの流れ方向の上流から順にIGV5(5A、5B)、圧縮機2(2A、2B)、逆止弁7(7A、7B)、燃料ガスヘッダ4を介してガスタービン3(3-1~3-4)へ供給される。なお、圧縮機2A、2Bを総称して圧縮機2、ガスタービン3-1~3-4を総称してガスタービン3と称する場合がある。他のIGV5などについても同様である。
 IGV5は、圧縮機2の上流に設けられており、圧縮機2に流入する燃料ガスの流入量を調節する。圧縮機2は、燃料ガス供給ライン8を介して供給される燃料ガスを圧縮して、圧縮した燃料ガスを下流に吐出する。また、燃料ガス供給ライン8には、圧縮機2の下流から圧縮機2の上流へ燃料ガスを還流させるバイパスが設けられており、このバイパスには、ASV6(6A、6B)が設けられている。ASV6は、圧縮機2から吐出された燃料ガスのうち、圧縮機2の上流側に戻す燃料ガスの流量を調節するためのリサイクル弁である。
 燃料ガスヘッダ4は、ガスタービン3へ供給する燃料ガスのヘッダ圧力を制御するための空間である。燃料ガスヘッダ4は、燃料ガス圧力の変動をバッファするための容器であってもよいし、配管であってもよい。圧縮機制御装置30は、ガスタービン3へ燃料ガスの供給量が変動しないように、燃料ガスヘッダ4の圧力が一定になるように圧縮機2が吐出する燃料ガスの流量を制御する。
 圧縮機制御装置30は、関数発生器10(10-1、10-2、10-3、10-4)と、加算器11、除算器12、PC(圧力調整器:Pressure Controller)13、加算器14(14A、14B)、関数発生器15(15A、15B)、関数発生器16(16A、16B)、FC(流量調整器:Flow Controller)17(17A、17B)、高位選択器18(18A、18B)を含んで構成される。なお、関数発生器10-1~10-4を総称して関数発生器10、加算器14A、14Bを総称して加算器14と称する場合がある。他の関数発生器15などについても同様である。
 関数発生器10は、ガスタービン3の負荷に応じた出力指令値を、図示しないガスタービン出力制御装置などから取得し、ガスタービン負荷と操作値の対応テーブル等に基づいて、取得したガスタービン負荷に応じた出力指令値に対応する操作値を算出する。関数発生器10は、算出した操作値を加算器11に出力する。以下、ガスタービン負荷に応じた出力指令値を、ガスタービン負荷の先行信号と称する。
 加算器11は、関数発生器10-1~10-4のそれぞれから操作値を取得し、取得した操作値を合計する。加算器11は、操作値を合計した値を除算器12へ出力する。
 除算器12は、加算器11から取得したガスタービン3の負荷に対応する操作値の合計値を稼働中の圧縮機2の台数で除算する。除算器12は、除算した値を加算器14へ出力する。なお、稼働中の圧縮機2の台数については、圧縮機制御装置30で把握可能であるものとする。
 図1の場合、ガスタービン3-1の負荷が80%、ガスタービン3-2の負荷が40%、ガスタービン3-3の負荷が60%、ガスタービン3-4の負荷が0%である。関数発生器10-1、10-2、10-3、10-4が算出した、これらのガスタービン負荷に対応する操作値の値もそれぞれ80%、40%、60%、0%であるとする。その場合、加算器11は、これらの操作値を加算し、180(80+40+60+0=180)%を演算する。そして、除算器12は、180を稼働台数=2で除算し、90%を演算する。
 なお、除算器12の求めた操作値が上限値(例えば、100%)を超える場合は、除算器12は、その上限値(100%)を加算器14へ出力する。またそのとき、圧縮機制御装置30は、除算器12の算出した操作値が上限値を超えないように、過負荷分のガスタービン負荷を下げるよう、図示しないガスタービン出力制御装置などに指示信号を出力する。
 PC13は、燃料ガスヘッダ4における燃料ガス圧力の計測値と、燃料ガスヘッダ4における燃料ガス圧力の目標値との偏差を計算し、燃料ガスヘッダ4における燃料ガス圧力の計測値を目標値に近づけるようフィードバック制御を行い、フィードバック制御信号を生成する。このフィードバック制御信号の値は、現在の操作値の値を補正する補正量に相当する。PC13は、燃料ガスヘッダ圧力に基づく操作値の補正量を加算器14A、14Bに出力する。または、PC13は、算出した操作値の補正量を複数の加算器14のうちの一部にだけ(例えば、加算器14Aのみ)出力してもよい。なお、燃料ガスヘッダ圧力の目標値は予めPC13が記憶しているものとする。また、燃料ガス圧力の計測値は、燃料ガスヘッダ4に設けられた図示しない圧力計によって計測するものとする。
 加算器14は、除算器12から取得した操作値と、PC13から取得した操作値の補正量とを加算し、関数発生器15及び関数発生器16へ出力する。PC13が一部の加算器14にのみ操作値の補正量を出力した場合、補正量を取得しない加算器14(例えば、加算器14B)は、除算器12から取得した操作値を関数発生器15及び関数発生器16へ出力する。この加算器14が出力する操作値は、圧縮機2の各操作端へ指示する制御信号の元となる値である。操作端とは、圧縮機2の回転数を制御する装置やIGV5やASV6の開度を制御する装置である。また、この加算器14が出力する操作値は、各圧縮機2に割り当てる負荷を示す値である。各操作端は、加算器14が出力する操作値に基づいてIGV開度などを調節し、それによって各圧縮機2が負担する負荷が制御される。
 関数発生器15は、加算器14から操作値を取得し、操作値とIGV開度との対応テーブルなどに基づいて、取得した操作値に対応するIGV開度を算出する。関数発生器15は、算出したIGV開度となるような指令信号をIGV5に出力する。
 関数発生器16は、加算器14から操作値を取得し、操作値とASV開度との対応テーブルなどに基づいて、取得した操作値に対応するASV開度を算出する。関数発生器16は、算出したASV開度に対応する信号を高位選択器18に出力する。
 FC17は、圧縮機2の吐出した燃料ガスの流量の計測値と、燃料ガス流量の目標値との偏差を計算し、その偏差に基づいた操作量を算出し、その操作量に対応する信号を高位選択器18に出力する。なお、燃料ガス流量の目標値とは、例えば、関数発生器15が算出したIGV開度に基づく値である。
 高位選択器18は、関数発生器16から取得した信号とFC17から取得した信号とを比較し、値が大きい方の信号を選択し、選択した信号をASV開度指令信号としてASV6に出力する。
 圧縮機制御装置30は、各操作端へ操作値に基づく指令信号を出力することで、各圧縮機2が負担する負荷を割り当てる。このような圧縮機2に対する負荷制御によって、例えば、PC13がフィードバック制御による補正量を加算器14Aにだけ出力する構成の場合であって、ガスタービン負荷の先行信号に応じた操作値が90%であるとした場合、図1が示すように圧縮機2Aの負荷は89%~91%となり、圧縮機2Bの負荷は90%となる。圧縮機2Aの負荷が変動するのは、フィードバック制御の影響である。なお、上述のとおりPC13のフィードバック制御による補正量は、全ての圧縮機2の加算器14に出力してもよいし、一部にだけ出力してもよい。例えば、複数の加算器14にフィードバック制御信号を出力することによって複数の制御が互いに干渉し合い、燃料ガスヘッダ圧力が静定状態となるための時間が長引く場合などには、1つの加算器14にだけフィードバック制御信号を出力するような構成としてもよい。
 このように本実施形態によれば、ガスタービンに燃料ガスを供給する圧縮機2が複数台ある場合に、ガスタービン負荷に応じて各圧縮機2に割り当てる負荷を求めることができる。本実施形態の方法は、ガスタービン負荷の合計と圧縮機2の稼働台数に基づくため、ガスタービン3及び圧縮機2の構成台数やその変化に関わらず適用することが可能である。例えば、ガスタービン3の稼働台数が圧縮機2の稼働台数より少なくてもよいし、図1で例示したようにガスタービン3の稼働台数が圧縮機2の稼働台数より多くてもよい。ガスタービン3の稼働台数が変化しても、例えば負荷の合計値に変化が無ければ圧縮機2側は影響を受けることが無い。
 また、ガスタービン負荷の先行信号に基づくフィードフォワード制御によって、複数の圧縮機2への負荷先行信号を生成するので、ガスタービン3の負荷の合計値変動する状況においても、迅速に対応することができる。
 また、ガスタービン負荷の合計値を、圧縮機2の稼働台数で除算した値に基づいて操作値を求め、各圧縮機2に出力するので、フィードバック制御分による多少の差はあってもほぼ均等に各圧縮機2に負荷を割り当てることができる。それにより、効率を落とすことなく複数の圧縮機2を運用することができる。
 図1は、1台の圧縮機制御装置30によって、複数の圧縮機2を制御する構成である。このような構成の場合、1台の圧縮機制御装置30に処理の負荷が集中したり、圧縮機制御装置30のメンテナンスが必要になった場合に、全ての圧縮機2を停止させなければならないような状況が生じ得る。また、1台の圧縮機制御装置30で制御する場合、この装置をマスタコントローラとして機能させるための仕組みが必要になり、一般に制御システムの構成が複雑になりがちである。そこで、図2に示すように圧縮機ごとに本実施形態の圧縮機制御装置30を設けることで、制御システムを簡素化することができる。
 図2は、本発明の第一実施形態における負荷稼働システムの構成の一例を示す第二の図である。図2を用いて、圧縮機ごとに本実施形態の圧縮機制御装置30を設けたときの負荷稼働システムの構成の一例について説明する。
 図2の場合、負荷稼働システム1には、図示しない2台の圧縮機制御装置30(30A、30Bとする)が設けられる。圧縮機制御装置30Aは、圧縮機2Aを制御するとする。圧縮機制御装置30Bは、圧縮機2Bを制御するものとする。
 圧縮機制御装置30Aは、関数発生器10A(10-1A、10-2A、10-3A、10-4A)と、加算器11A、除算器12A、PC13A、加算器14A、関数発生器15A、関数発生器16A、FC17A、高位選択器18Aを含んで構成される。一方、圧縮機制御装置30Bは、関数発生器10B(10-1B、10-2B、10-3B、10-4B)と、加算器11B、除算器12B、PC13B、加算器14B、関数発生器15B、関数発生器16B、FC17B、高位選択器18Bを含んで構成される。
 図1との違いについて説明する。図2の構成の場合、圧縮機制御装置30A、30Bのそれぞれが、関数発生器10、加算器11、除算器12を備え、ガスタービン負荷の先行信号を入力する。そして、圧縮機制御装置30A、30Bそれぞれにおいて関数発生器10が、ガスタービン負荷に基づく操作値を算出し、加算器11が算出した各操作値を合計する。また、除算器12が除算に用いる圧縮機2の稼働台数は、例えば圧縮機制御装置30A、30Bが、自装置の制御する圧縮機2が稼働しているか否かの情報を互いに通信手段によって通知し合い、稼働中の圧縮機の台数をカウントすることによって求め、除算器12は、求めた稼働台数で操作値を除算する。また、圧縮機制御装置30A、30Bのそれぞれが、PC13を備え、燃料ガスヘッダ圧力に基づくフィードバック制御を行って補正量を算出する。また、圧縮機制御装置30A、30Bのそれぞれが、加算器14を備え、自装置の備える除算器12から取得した操作値と、自装置の備えるPC13から取得した操作値の補正量とを加算して関数発生器15、16へ出力する。
 なお、PC13を用いた補正量の算出及び加算器14への出力は、圧縮機制御装置30A、30Bの両方で行ってもよいし、圧縮機制御装置30A、30Bのうち、どちらか一方だけで行ってもよい。
 このような構成とすることで、負荷稼働システム1の制御システムを簡素化することができる。
 図3は、本発明の第一実施形態における圧縮機制御装置の一例を示すブロック図である。
 図3を用いて、圧縮機制御装置30の構成について説明する。
 フィードフォワード制御信号生成部(以下、FF制御信号生成部)31は、負荷機器(ガスタービン3)の負荷の合計を稼働中の圧縮機2の台数で除算した値に基づいて、複数の圧縮機2のうち少なくとも一つについて、当該圧縮機2による前記燃料ガスの供給量を制御するための第一制御信号を生成する。図1、2の例では、FF制御信号生成部31は、関数発生器10、加算器11、除算器12を備えている。
 フィードバック制御信号生成部(以下、FB制御信号生成部)32は、燃料ガスヘッダ圧力の目標値と燃料ガスヘッダ圧力の計測値との偏差に基づいてフィードバック制御を行い、第二制御信号(フィードバック制御信号)を生成する。図1、2の例では、FB制御信号生成部32は、PC13を備えている。
 操作端制御部33は、第一制御信号、または、第一制御信号に第二制御信号を加えた値に基づいて、圧縮機2による燃料ガスの供給量を制御する。操作端制御部33は、燃料ガスの供給量を調整することで燃料ガスヘッダ圧力を所定の値に保つ。図1、2の例では、操作端制御部33は、加算器14、関数発生器15、関数発生器16、FC17,高位選択器18を備えている。なお、図1、2の例では、操作端制御部33は、IGV5とASV6の開度を制御したが、圧縮機2の回転数を変更することで燃料ガスの供給量を制御するようにしてもよい。
 記憶部34は、ガスタービン負荷と操作値の対応テーブル、操作値とIGV開度の対応テーブルなど圧縮機の負荷制御に必要な関数、フィードバック制御に必要な目標値などを記憶している。
 通信部35は、他の制御装置と制御信号の送受信を行う。例えば、ガスタービン出力制御装置からガスタービン負荷の先行信号を受信し、FF制御信号生成部31へ出力する。また、圧縮機2の負荷が上限値を超えた場合、ガスタービン出力を低下させる指令信号をガスタービン出力制御装置へ送信する。また、1台の圧縮機制御装置30が全ての圧縮機2を制御する構成ではなく、図2のように各圧縮機制御装置30が1台ずつ圧縮機2を制御するような場合、通信部35を介して互いの圧縮機2が稼働しているか否かの情報などを通信する。
 図4は、本発明に係る第一実施形態における圧縮機への負荷制御処理のフローチャートである。図1で例示した構成と対比させながら圧縮機制御装置30の処理の流れについて説明する。なお、PC13は、燃料ガスヘッダ圧力に基づくフィードバック制御によって算出した操作値の補正量(第二制御信号)を加算器14Aに出力し、加算器14Bには出力しない構成であるとする。
 まず、FF制御信号生成部31が、通信部35を介して負荷稼働システム1の各ガスタービン3についてガスタービン負荷の先行信号を取得する(ステップS11)。次に、FF制御信号生成部31は、記憶部34に予め記憶されたガスタービン負荷と操作値の対応テーブルを参照し、取得したガスタービン負荷に対応する操作値を算出する。これは、FF制御信号生成部31が備える関数発生器10の処理である。FF制御信号生成部31は、ガスタービンごとにガスタービン負荷に応じた操作値を算出すると、それらを合計する。これは、FF制御信号生成部31が備える加算器11の処理である。次にFF制御信号生成部31は、現在稼働している圧縮機2の台数をカウントし、操作値を合計した値を圧縮機2の稼働台数で除算し、その値に対応する第一制御信号を生成する(ステップS12)。これは、FF制御信号生成部31が備える除算器12の処理である。FF制御信号生成部31は、生成した第一制御信号を操作端制御部33へ出力する。この第一制御信号は、ガスタービン負荷の先行信号に応じた信号であって、この第一制御信号に基づく圧縮機2の操作端への操作は、ガスタービン負荷に応じたフィードフォワード制御である。また、第一制御信号は、圧縮機1台あたりに割り当てる負荷を示している。
 また、ステップS11~S12と並行して、FB制御信号生成部32は、燃料ガスヘッダ圧力の目標値を記憶部34から読み出す。また、FB制御信号生成部32は、燃料ガスヘッダ4に設けられた圧力計が計測した燃料ガスヘッダ圧力の計測値を取得し、燃料ガスヘッダ圧力の目標値と計測値の偏差を求める。次にFB制御信号生成部32は、求めた偏差に基づき、PI(Proportional Integral)等のフィードバック制御を行い、燃料ガスヘッダ圧力の計測値を目標値に近づけるための第二制御信号を生成する(ステップS13)。フィードバック制御を行うことでより正確に燃料ガスのヘッダ圧力を制御し、それにより燃料ガスの供給をより安定化させることができる。この処理は、FB制御信号生成部32が備えるPC13の処理である。FB制御信号生成部32は、生成した第二制御信号を操作端制御部33へ出力する。
 次に操作端制御部33は、FF制御信号生成部31から取得した第一制御信号と、FB制御信号生成部32から取得した第二制御信号とを加算して、複数の圧縮機2のうち、一部の圧縮機2についての操作量を算出する。これは、操作端制御部33が備える加算器14Aの処理である。また、操作端制御部33は、FF制御信号生成部31から取得した第一制御信号を残りの圧縮機2についての操作量とする。これは、操作端制御部33が備える加算器14Bの処理である。操作端制御部33は、各圧縮機2への操作量を算出すると、さらに各操作端へ操作量を出力し、各圧縮機2からの燃料ガス供給量を制御する(ステップS14)。例えば、操作端制御部33は、記憶部34が記憶する操作量とIGV開度の対応テーブルを参照し、操作量に対応するIGV開度を求め、その値によってIGV5の開度を制御する。これは、操作端制御部33が備える関数発生器15の処理である。また、例えば、操作端制御部33は、記憶部34が記憶する操作量とASV開度の対応テーブルを参照し、操作量に対応するASV開度(ASV開度1)を求める。これは、操作端制御部33が備える関数発生器16の処理である。また、例えば、操作端制御部33は、燃料ガス流量の目標値と圧縮機2の下流における燃料ガス流量の計測値から別のASV開度(ASV開度2)を求める。これは、操作端制御部33が備えるFC17の処理である。そして、操作端制御部33は、ASV開度1とASV開度2のうち、大きな値を選択し、選択したASV開度によってASV6を制御する。
 本実施形態によれば、複数の圧縮を備える負荷稼働システム1において、ガスタービン負荷に応じた先行信号(第一制御信号)を用いて、またはその先行信号と燃料ガスヘッダ圧力に基づくフィードバック制御信号(第二制御信号)を加算した値を用いることで、ガスタービン3の負荷に応じた燃料ガスを供給するための各圧縮機2への効率的な負荷配分を、ガスタービン3や圧縮機2の構成台数によることなく決定することができる。
<第二実施形態>
 以下、本発明の第二実施形態による圧縮機制御装置30を図5を参照して説明する。
 この第二実施形態は、第一実施形態の図1で説明した1台の圧縮機制御装置30で複数の圧縮機2を制御する構成であって、PC13がフィードバック制御によって生成する第二制御信号を各圧縮機2の操作端へ出力する場合における別の実施形態である。
 図5は、本発明の第二実施形態における負荷稼働システムの構成の一例を示す図である。
 図5で示すように、本実施形態においる負荷稼働システム1では、PC13の後段に除算器19が設けられている。除算器19は、PC13が算出した操作値の補正量を現在稼働中の圧縮機2の台数で除算する。除算器19は、除算した補正量を加算器14へ出力する。他の構成については、第一実施形態と同様である。
 本実施形態におけるFB制御信号生成部32は、PC13及び除算器19を備えている。つまり、FB制御信号生成部32は、燃料ガスヘッダ圧力の目標値とヘッダ圧力の計測値との偏差に基づいてフィードバック制御を行い、フィードバック制御信号を生成し、そのフィードバック制御信号の値(補正量)を稼働中の圧縮機2の台数で除算した、第二制御信号を生成する。例えば、フィードバック制御信号値の0%がニュートラル点の場合、「フィードバック制御信号値÷圧縮機稼働台数」の演算値を値に持つ第二制御信号を生成する。また、フィードバック制御信号値の50%がニュートラル点の場合、「(フィードバック制御信号値-50%)÷圧縮機稼働台数+50%」の演算値を値に持つ第二制御信号を生成する。
 本実施形態の処理フローについて説明する。本実施形態においては、図4のステップS13において、稼働中の圧縮機2の台数を考慮した第二制御信号を生成する。つまり、FB制御信号生成部32は、燃料ガスヘッダ圧力の目標値と計測値との偏差に基づくフィードバック制御の結果得られたフィードバック制御信号値を、現在稼働している圧縮機2の台数で除算する。圧縮機2の稼働台数は、例えばFF制御信号生成部31から取得する。FB制御信号生成部32は、除算して得たフィードバック制御信号値に対応する第二制御信号を生成する。他の処理ステップについては、図4で説明した第一実施形態の処理フローと同様である。
 本実施形態によれば、より精密に燃料ガスヘッダ圧力を制御することができる。例えば、フィードバック制御信号値(補正量)が10%であるとする。このとき第一実施形態の方法であれば、圧縮機2A、2Bのそれぞれについて、10%分のIGV5やASV6の開度制御を行う。すると、圧縮機2A、2Bから吐出される燃料ガスそれぞれの流量が、10%分補正されて、全体で20%分の影響が出ることになり、応答が過剰になるおそれがある。本実施形態の方法であれば、補正量(10%)を稼働台数(2台)で除算した値(5%)によって、圧縮機2A、2Bそれぞれの操作端(IGV5など)の制御を行うため、全体で10%分の応答が得られることになり、燃料ガスヘッダ圧力の目標値に速やかに収束させることができる。また、例えば圧縮機2の稼働台数が変化した場合でも、その変化前後における稼働台数に応じて操作端に対する操作値を調整することができるので、燃料ガスヘッダ圧力の変動を抑制することができる。
<第三実施形態>
 以下、本発明の第三実施形態による圧縮機制御装置30を図6~図9を参照して説明する。
 この第三実施形態は、ガスタービン3の起動前や停止時において燃料ガスヘッダからのガス流出がない状況における圧縮機2の負荷制御に関する実施形態である。また、本実施形態は全ての圧縮機2に対してフィードバック制御を加える構成を対象としている。
 図6は、本発明の第三実施形態における負荷稼働システムの構成の一例を示す図である。図6で示すように、本実施形態における負荷稼働システム1では、圧縮機2Aの下流に圧力計21A、圧縮機2Bの下流に圧力計21Bが設けられている。圧力計21A、圧力計21Bは、高位選択器23と接続されている。また、第一、二実施形態と同様に燃料ガスヘッダ4には圧力計20が設けられている。高位選択器23と圧力計20とは、PC13の前段に設けられた低位選択器22と接続されている。
 圧力計21Aは、圧縮機2Aの吐出圧力を計測し、計測した値を高位選択器23へ出力する。圧力計21Bは、圧縮機2Bの吐出圧力を計測し、計測した値を高位選択器23へ出力する。
 高位選択器23は、取得した吐出圧力の計測値のうち、値の大きい計測値を選択し、低位選択器22へ出力する。
 圧力計20は、燃料ガスヘッダ圧力を計測し、計測したヘッダ圧力を低位選択器22へ出力する。
 低位選択器22は、取得した圧縮機2の吐出圧力とヘッダ圧力とを比較し、値の小さい方の圧力計測値をPC13へ出力する。この値をプロセス値という。プロセス値は次の式で表すことができる。
 プロセス値 = min{燃料ガスヘッダ圧力 ,
       max{圧縮機2Aの吐出圧力,圧縮機2Bの吐出圧力,・・} }
 PC13は、低位選択器22から取得したプロセス値と燃料ガスヘッダ圧力の目標値との偏差を小さくするようにフィードバック制御を行う。つまり、本実施形態では、圧縮機2の吐出圧力がプロセス値として選択された場合においても、圧縮機2の吐出圧力を燃料ガスヘッダ圧力の目標値に近づけるように制御を行う。
 図7は、本発明の第三実施形態における圧縮機の吐出圧力と燃料ガスヘッダ圧力との関係の一例を示す図である。まず、本実施形態を用いない場合の問題を、図7の左図を用いて説明する。
 図7の左図は、従来の方法における圧縮機の吐出圧力と燃料ガスヘッダ圧力との関係の一例を示す図である。
 図7の左図において、符号41Aは、燃料ガスヘッダ圧力の推移を示している。符号42Aは、圧縮機2の吐出圧力の推移を示している。また、符号43Aは、燃料ガスヘッダ圧力と圧縮機2の吐出圧力の推移が、符号41A、42Aで示すような関係にあるときのASV6の開度の推移を示している。燃料ガスヘッダ圧力が上昇すると、燃料ガスヘッダ圧力を一定に保とうとする圧力制御によって、ASV6を開き、IGV5を閉じる制御が働く。符号44Aは、ガスタービン3が停止している期間を示している。ガスタービン3が停止している状況では、燃料ガスを供給する必要が無いため圧縮機2の吐出圧力は低下するが、燃料ガスヘッダ4からの燃料ガスの流出が無いため、燃料ガスヘッダ圧力は高止まり(例えば42気圧)となり、やがてASV6が全開、IGV5が全閉となる。
 符号45Aは、期間44Aの後にガスタービン3を起動させ、ガスタービン3が稼働している期間を示している。ガスタービン3を起動させると、燃料ガスヘッダ4から燃料ガスが流出し、一時的に燃料ガスヘッダ圧力は低下するが、やがて所定の目標値(例えば40気圧)に収束するように制御される。また、ガスタービン3の起動に伴い、圧縮機2の吐出圧力は上昇し、やがて所定の値に収束する。また、ASV6は、全開の状態から徐々に閉(例えば10~20%程度)となるように制御され、IGV5は徐々に開となるように制御される。
 この従来の制御方法によると、ガスタービン3が停止した状態から起動した場合に、IGV5全閉、ASV6全開の状態からIGV5及びASV6の開度を調節する制御を開始しなければならない。その為、目標とする燃料ガスヘッダ圧力となるまでに時間を要し、静定状態となるまでの燃料ガスヘッダ圧力の変動も大きくなるなどの問題があった。
 次に上記の問題に対する本実施形態の解決方法について図7の右図を用いて説明する。
 図7の右図は、本発明の第三実施形態における圧縮機の吐出圧力と燃料ガスヘッダ圧力との関係の一例を示す図である。
 符号41Bは燃料ガスヘッダ圧力、符号42Bは圧縮機2の吐出圧力、符号43BはASV開度の推移を示している。符号44Bはガスタービン停止期間、符号45Bはガスタービン稼働期間を示している。
 従来の方法では、常に燃料ガスヘッダ圧力に基づいてフィードバック制御を行っていたところ、本実施形態では、燃料ガスヘッダ圧力と圧縮機の吐出圧力とを比較し、小さい方の値を用いてフィードバック制御を行う。通常、ガスタービン3の起動時には、圧縮機2の吐出圧力が燃料ガスヘッダ圧力を上回り、逆にガスタービン3の停止時には、燃料ガスヘッダ圧力が圧縮機2の吐出圧力を上回る。従って本実施形態によれば、ガスタービンの稼働時には燃料ガスヘッダ圧力に基づくIGV5及びASV6の開度制御となり、ガスタービンの停止時には、圧縮機吐出圧力に基づくIGV5及びASV6の開度制御に自動的に切り換わる。
 上述のとおり、本実施形態においては、ガスタービンの停止状態において、圧縮機2の吐出圧力に基づいたフィードバック制御に切り替わる。また、このとき吐出圧力の目標値は、燃料ガスヘッダ圧力の目標値である。すると、元々低くなりがちであった圧縮機2の吐出圧力を、燃料ガスヘッダ圧力の目標値に近づけようとするため、ASV6の開度は全開とならず、また、ガスタービン3の停止時においても圧縮機2の吐出圧力を燃料ガスヘッダ圧力に近づけることができる。すると、ガスタービン3を起動した際に、ASV6の開度を絞った状態から制御を開始することができる。また、圧縮機2の吐出圧力を、ガスタービン稼働時の静定状態における吐出圧力の値に近づけた状態から制御を開始することができる。この制御方法であれば、静定状態となるまでの時間を短縮し、燃料ガスヘッダ圧力の変動を抑えることができる。
 なお、図6では、1台の圧縮機制御装置30で複数の圧縮機2の台数制御を行う構成を例示したが、1台の圧縮機2ごとに圧縮機制御装置30を設けた構成とすることもできる。その場合、各圧縮機制御装置30は、低位選択器22、高位選択器23のうち少なくとも低位選択器22を備える。低位選択器22は、自装置が制御する圧縮機2の下流に設けられた圧力計21と燃料ガスヘッダ4に設けられた圧力計20とから計測値を取得し、小さい値を選択しプロセス値としてPC13に出力する。この構成におけるプロセス値は次の式で表すことができる。
 プロセス値 =
    min{燃料ガスヘッダ圧力,自装置が制御する圧縮機2の吐出圧力}
 FB制御信号生成部32が備えるPC13は、このプロセス値を用いてフィードバック制御を行う。
 図8は、本発明の第三実施形態における圧縮機制御装置の一例を示すブロック図である。図8を用いて、圧縮機制御装置30の構成について説明する。
 本実施形態の圧縮機制御装置30は、プロセス値選択部36を備えている。また、FB制御信号生成部32は、プロセス値選択部36が選択したプロセス値を取得し、そのプロセス値に基づいたフィードバック制御を行って第二制御信号を生成する。他の構成については、第一実施形態と同様である。
 プロセス値選択部36は、圧縮機2の吐出圧力の計測値と燃料ガスヘッダ圧力とを取得し、吐出圧力の最大値と燃料ガスヘッダ圧力を比較して、小さな値を選択する。プロセス値選択部36は、選択した値をプロセス値としてFB制御信号生成部32に出力する。図6の例では、プロセス値選択部36は、低位選択器22、高位選択器23を備えている。
 図9を用いて本実施形態の処理の流れについて説明する。
 図9は、本発明に係る第三実施形態における圧縮機への負荷制御処理のフローチャートである。
 ステップS11~S12の処理は、第一実施形態と同様である。つまり、FF制御信号生成部31は、ガスタービン負荷の先行信号を取得し、第一制御信号を生成する。
 ステップS11~S12と並行してプロセス値選択部36が、圧縮機制御装置30が制御対象とする各圧縮機2の吐出圧力の計測値と、燃料ガスヘッダ圧力の計測値とを取得する。プロセス値選択部36は、取得した吐出圧力のうち最大値を選択し、選択した吐出圧力の最大値と燃料ガスヘッダ圧力とを比較し、小さい値を選択する。なお、圧縮機制御装置30が制御対象とする圧縮機2の数が1台の場合、プロセス値選択部36はその1台の圧縮機2の吐出圧力の計測値と、燃料ガスヘッダ圧力とを比較し、小さい値を選択する。プロセス値選択部36は、選択した値をプロセス値としてFB制御信号生成部32へ出力する(ステップS15)。上述のとおり、ガスタービンの稼働時には、圧縮機の吐出圧力が燃料ガスヘッダ圧力を上回り、ガスタービンの停止時には、燃料ガスヘッダ圧力が圧縮機の吐出圧力を上回る。その為、ガスタービンの稼働時には、燃料ガスヘッダ圧力がプロセス値となり、ガスタービンの停止時には、圧縮機の吐出圧力がプロセス値となる。
 以降のステップS13~S14の処理については第一実施形態と同様である。つまり、FB制御信号生成部32が、プロセス値に基づいてフィードバック制御を行い、第二制御信号を生成する。また、操作端制御部33が第一制御信号と第二制御信号に基づいて、圧縮機2から吐出される燃料ガス供給量を制御する。
 本実施形態によれば、ガスタービン3の起動前や停止時において燃料ガスヘッダからの燃料ガス流出がないときは、燃料ガスヘッダ圧力制御から圧縮機2の吐出圧力制御に自動的に切り換えることができ、燃料ガスヘッダの圧力制御を改善できる。
<第四実施形態>
 以下、本発明の第四実施形態による圧縮機制御装置30を図10~図11を参照して説明する。
 図10は、本発明に係る第四実施形態における圧縮機制御装置の一例を示すブロック図である。本実施形態は、第一~第三実施形態のうち何れか一つと組み合わせることが可能である。図10は、第一実施形態と組み合わせた場合の構成を示している。
 図10で示すように、本実施形態において圧縮機制御装置30は、稼働台数決定部37、起動停止部38を備えている点が第一実施形態と異なる。他の構成は第二実施形態と同様である。
 稼働台数決定部37は、ガスタービン負荷の先行信号をガスタービンの出力制御装置などから通信部35を介して取得し、ガスタービン負荷の合計に応じて圧縮機2の稼働台数を決定する。また、稼働台数決定部37は、ガスタービン負荷が急激に変動している場合や負荷遮断時など、負荷の合計が所定時間内に所定の範囲以上変動した場合、当該変動から所定時間が経過するまでは、圧縮機2の稼働台数を変更しない。
 起動停止部38は、稼働台数決定部37の決定に基づいて、圧縮機2の稼働台数がガスタービン負荷の合計に応じた台数となるように圧縮機2の起動・停止を行う。
 図11は、本発明に係る第四実施形態における圧縮機の稼働台数の制御を説明するための図である。
 図11は、例えば現在1台の圧縮機が稼働しているとして、ガスタービン負荷の先行信号の合計値が60に達すると、稼働台数を2台に増加させ、140に達すると3台に増加させることを表している。また、例えば、現在3台の圧縮機が稼働しているとして、ガスタービン負荷に対する先行信号の合計値が110に低下すると、稼働台数を2台に減少させ、さらに30に低下すると1台に減少させることを表している。従って、例えば、ガスタービン負荷の先行信号の合計値が50から65となると、起動停止部38は2台目を起動し、その後、先行信号の合計値が低下して45となっても、台数は変化させない。また、さらにその後、先行信号の合計値がさらに低下して25となると、起動停止部38は、圧縮機2を1台停止させる。
 記憶部34には、図11で例示したガスタービン負荷の先行信号の合計値と稼働台数の対応テーブル等が記録されており、稼働台数決定部37は、この対応テーブルを参照して、取得したガスタービン負荷の先行信号の合計値に応じた稼働台数(設定稼働台数)を取得する。そして、稼働台数決定部37は、現在稼働中の台数と取得した設定稼働台数とを比較し、取得した設定稼働台数が現在の稼働台数より多ければ、その台数分、新たに圧縮機2を起動するよう起動停止部38に指示を行う。また、取得した設定稼働台数が現在の稼働台数より少なければ、その台数分、圧縮機2を停止するよう起動停止部38に指示を行う。起動停止部38は、例えば、記憶部34に記録された圧縮機2の起動順・停止順を読み出して、この順番に圧縮機2を起動または停止させる。
 なお、システムを安定して運用するため、稼働台数決定部37は、負荷が過渡状態にあるときは、取得した先行信号の合計値が変動してから所定時間が経過するまでは、圧縮機2の稼働台数を変更しない。
 本実施形態は、1台の圧縮機制御装置30で複数の圧縮機2の台数制御を行う構成だけではなく、1台の圧縮機2ごとに圧縮機制御装置30を設けた構成にも適用することができる。例えば、各圧縮機制御装置30がガスタービン負荷の先行信号を受信し、ガスタービン負荷に応じた稼働台数を求める。また、圧縮機2の起動順を予め定めておき、各圧縮機制御装置30の記憶部34に自装置が制御する圧縮機2の起動順の情報を記録しておく。そして、例えば、各圧縮機制御装置30の稼働台数決定部37が決定した稼働台数が1台から2台に変化した場合、自装置の記憶部34に記録した起動順が2である圧縮機制御装置30に備わる稼働台数決定部37が、起動停止部38に起動指示を行い、圧縮機2を起動する。
 本実施形態によれば、圧縮機2を自動的に起動・停止することで圧縮機の循環流量を適正化でき、エネルギー効率を向上させることができる。本実施形態の圧縮機台数制御は、ガスタービン負荷の先行信号に基づいた台数制御であり、圧力などの各種状態量の計測値に基づいて判断する場合に比べて変動が少なく、安定した起動・停止の判断ができる。また、ガスタービンの負荷に応じた稼働台数に基づいて起動・停止の制御を行うので、圧縮機2の追加起動・停止による影響を考えずに、ガスタービン負荷を大きく変化させることができる。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。また、この発明の技術範囲は上記の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、IGV5またはASV6のどちらか一方の開度を調節することで燃料ガスの供給量を制御し、燃料ガスヘッダ圧力を制御する構成としてもよい。なお、IGV5は流量調整弁の一例であり、ASV6はリサイクル弁の一例である。操作端制御部33は、制御部の一例である。
 上述した圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法によれば、ガスタービンと燃料ガス用圧縮機とが複数設けられたシステムにおいて、ガスタービン及び圧縮機の構成台数によらず、圧縮機へ負荷を割り当てることができる。
 1   負荷稼働システム
 2   圧縮機
 3   ガスタービン
 4   燃料ガスヘッダ
 5   IGV
 6   ASV
 7   逆止弁
 8   燃料ガス供給ライン
 10-1、10-2、10-3、10-4、15、16   関数発生器
 11、14   加算器
 12、19  除算器
 13   PC
 17   FC
 18、23   高位選択器
 20、21   圧力計
 22   低位選択器
 30   圧縮機制御装置
 31   フィードフォワード制御信号生成部
 32   フィードバック制御信号生成部
 33   操作端制御部
 34   記憶部
 35   通信部
 36   プロセス値選択部
 37   稼働台数決定部
 38   起動停止部

Claims (12)

  1.  燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する複数の圧縮機を備えた負荷稼働システムにおいて、
     前記負荷機器の負荷の合計を稼働中の前記圧縮機の台数で除算した値に基づいて、前記圧縮機による前記燃料ガスの供給量を制御する第一制御信号を生成するフィードフォワード制御信号生成部と、
     前記第一制御信号に基づいて前記圧縮機による燃料ガスの供給量を制御する制御部と、
     を備える圧縮機制御装置。
  2.  前記燃料ガスのヘッダ圧力の目標値と計測値との偏差に基づいてフィードバック制御を行い、第二制御信号を生成するフィードバック制御信号生成部、
     をさらに備え、
     前記制御部は、前記第一制御信号に前記第二制御信号を加えた値に基づいて前記燃料ガスの供給量を制御する
     請求項1に記載の圧縮機制御装置。
  3.  前記フィードバック制御信号生成部は、前記生成した第二制御信号の値を、稼働中の前記圧縮機の台数で除算した演算値を値に持つ新たな第二制御信号を生成する
     請求項2に記載の圧縮機制御装置。
  4.  前記少なくとも一つの圧縮機の吐出圧力の計測値と前記燃料ガスのヘッダ圧力の計測値とを取得し、前記圧縮機の吐出圧力の計測値の最大値と前記燃料ガスのヘッダ圧力の計測値とのうち小さい値を選択するプロセス値選択部、
     をさらに備え、
     前記フィードバック制御信号生成部は、前記ヘッダ圧力の目標値と前記プロセス値選択部が選択した値との偏差に基づいてフィードバック制御を行い、前記第二制御信号を生成する
     請求項2または請求項3に記載の圧縮機制御装置。
  5.  前記制御部は、前記圧縮機に流入する燃料ガスの流入量を制御する流量調整弁と、前記圧縮機から吐出される燃料ガスを前記圧縮機の上流側に戻すためのリサイクル弁と、のうち少なくとも一方の開度を調節することで前記燃料ガスの供給量を制御する
     請求項1から請求項4の何れか1項に記載の圧縮機制御装置。
  6.  前記負荷機器の負荷の合計に応じて前記圧縮機の稼働台数を決定する稼働台数決定部
     をさらに備える請求項1から請求項5の何れか1項に記載の圧縮機制御装置。
  7.  前記稼働台数決定部は、前記負荷機器の負荷の合計が所定時間内に所定の範囲以上変動した場合、当該変動から所定時間が経過するまでは、前記圧縮機の稼働台数を変更しない
     請求項6に記載の圧縮機制御装置。
  8.  複数の圧縮機と、
     当該複数の圧縮機を制御する請求項1から請求項7の何れか1項に記載の1台の圧縮機制御装置と、
     前記複数の圧縮機が燃料ガスを供給する負荷機器と、
     を備える負荷稼働システム。
  9.  複数の圧縮機と、
     当該複数の圧縮機それぞれに対して1台の請求項1から請求項7の何れか1項に記載の圧縮機制御装置と、
     前記複数の圧縮機が燃料ガスを供給する負荷機器と、
     を備える負荷稼働システム。
  10.  請求項2から請求項7の何れか1項に記載の圧縮機制御装置を備える、請求項8または請求項9に記載の負荷稼働システムであって、
     前記圧縮機制御装置は、当該圧縮機制御装置が制御するすべての圧縮機の制御において、前記第一制御信号に前記第二制御信号を加えた値に基づいて前記燃料ガスの供給量を制御する
     負荷稼働システム。
  11.  請求項2から請求項7の何れか1項に記載の圧縮機制御装置を備える、請求項8または請求項9に記載の負荷稼働システムであって、
     前記圧縮機制御装置は、当該圧縮機制御装置が制御する圧縮機のうち一部の圧縮機の制御において、前記第一制御信号に前記第二制御信号を加えた値に基づいて前記燃料ガスの供給量を制御し、残りの圧縮機の制御においては、前記第一制御信号だけに基づいて前記燃料ガスの供給量を制御する
     負荷稼働システム。
  12.  燃料ガスを圧縮し、その圧縮した燃料ガスを負荷機器に供給する複数の圧縮機を備えた負荷稼働システムにおいて、圧縮機制御装置を制御する方法であって、
     前記負荷機器の負荷の合計を稼働中の前記圧縮機の台数で除算した値に基づいて、前記圧縮機による前記燃料ガスの供給量を制御する第一制御信号を生成し、
     前記第一制御信号に基づいて前記圧縮機による燃料ガスの供給量を制御する
     制御方法。
PCT/JP2014/070161 2014-07-31 2014-07-31 圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法 WO2016016982A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016537664A JP6166482B2 (ja) 2014-07-31 2014-07-31 圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法
US15/116,294 US10584645B2 (en) 2014-07-31 2014-07-31 Compressor control device, compressor control system, and compressor control method
CN201480073279.4A CN105917099A (zh) 2014-07-31 2014-07-31 压缩机控制装置、压缩机控制系统及压缩机控制方法
EP14898366.1A EP3081785A4 (en) 2014-07-31 2014-07-31 Compressor control device, compressor control system, and compressor control method
PCT/JP2014/070161 WO2016016982A1 (ja) 2014-07-31 2014-07-31 圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070161 WO2016016982A1 (ja) 2014-07-31 2014-07-31 圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法

Publications (1)

Publication Number Publication Date
WO2016016982A1 true WO2016016982A1 (ja) 2016-02-04

Family

ID=55216923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070161 WO2016016982A1 (ja) 2014-07-31 2014-07-31 圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法

Country Status (5)

Country Link
US (1) US10584645B2 (ja)
EP (1) EP3081785A4 (ja)
JP (1) JP6166482B2 (ja)
CN (1) CN105917099A (ja)
WO (1) WO2016016982A1 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6763801B2 (ja) * 2017-02-16 2020-09-30 三菱重工コンプレッサ株式会社 制御装置、気体圧縮システム、制御方法およびプログラム
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
NL2021484B1 (nl) * 2018-08-20 2020-04-23 Micro Turbine Tech B V Fuel/air supply device
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
CA3092868A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3197583A1 (en) * 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
EP3862549A1 (en) 2020-02-05 2021-08-11 General Electric Company Method for operating a power plant, and power plant
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317498A (ja) * 1996-03-29 1997-12-09 Nkk Corp 複数のガスタービン発電機に対する複数のガス圧縮機の 運転制御方法
JP2006170194A (ja) * 2004-11-17 2006-06-29 Mitsubishi Heavy Ind Ltd 圧縮機の制御装置及びこれを有するガスタービン発電プラント
JP2011256788A (ja) * 2010-06-09 2011-12-22 Mitsubishi Heavy Ind Ltd ガスタービン

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5746081A (en) * 1980-09-02 1982-03-16 Mitsubishi Electric Corp Parallel running controller for compressor
JPS58127216A (ja) * 1982-01-26 1983-07-29 Toshiba Corp 圧縮機台数制御装置
JPH0560077A (ja) * 1991-08-30 1993-03-09 Ishikawajima Harima Heavy Ind Co Ltd 圧縮機の運転台数制御方法
EP1069314A1 (de) * 1999-07-16 2001-01-17 Abb Research Ltd. Regelung einer Kompressoreinheit
AU2002216768A1 (en) * 2000-06-29 2002-01-14 Capstone Turbine Corporation System and method for gaseous fuel control for a turbogenerator/motor
JP4800515B2 (ja) * 2001-07-25 2011-10-26 共和電器株式会社 コンプレッサの台数制御システム
JP3854556B2 (ja) * 2002-09-11 2006-12-06 三菱重工業株式会社 ガスタービンプラント制御機構
JP4191563B2 (ja) * 2003-08-28 2008-12-03 三菱重工業株式会社 圧縮機の制御方法
EP1659294B1 (en) * 2004-11-17 2017-01-11 Mitsubishi Heavy Industries Compressor Corporation Compressor control unit and gas turbine power plant including this unit
US7184875B2 (en) * 2004-12-14 2007-02-27 General Electric Company High temperature protection of hybrid fuel cell system combustor and other components VIA water or water vapor injection
JP2006233920A (ja) * 2005-02-28 2006-09-07 Mitsubishi Heavy Ind Ltd 燃料ガスカロリー制御装置及びガスタービンシステム
US7752833B2 (en) * 2006-01-10 2010-07-13 General Electric Company Methods and apparatus for gas turbine fuel control
US20070245707A1 (en) * 2006-04-22 2007-10-25 Rolls-Royce Plc Fuel control system
JP4974843B2 (ja) * 2007-10-23 2012-07-11 中国電力株式会社 圧縮空気制御装置
JP5868671B2 (ja) * 2011-11-28 2016-02-24 三菱日立パワーシステムズ株式会社 弁制御装置、ガスタービン、及び弁制御方法
KR101574040B1 (ko) * 2012-01-13 2015-12-02 미츠비시 히타치 파워 시스템즈 가부시키가이샤 연료 공급 장치, 연료 유량 제어 장치, 및 가스 터빈 발전 플랜트
US10358985B2 (en) * 2014-07-31 2019-07-23 Mitsubishi Heavy Industries Compressor Corporation Control device and control method
WO2016016988A1 (ja) * 2014-07-31 2016-02-04 三菱重工業株式会社 制御装置及び制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09317498A (ja) * 1996-03-29 1997-12-09 Nkk Corp 複数のガスタービン発電機に対する複数のガス圧縮機の 運転制御方法
JP2006170194A (ja) * 2004-11-17 2006-06-29 Mitsubishi Heavy Ind Ltd 圧縮機の制御装置及びこれを有するガスタービン発電プラント
JP2011256788A (ja) * 2010-06-09 2011-12-22 Mitsubishi Heavy Ind Ltd ガスタービン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3081785A4 *

Also Published As

Publication number Publication date
EP3081785A1 (en) 2016-10-19
US20170009664A1 (en) 2017-01-12
US10584645B2 (en) 2020-03-10
CN105917099A (zh) 2016-08-31
EP3081785A4 (en) 2017-03-29
JP6166482B2 (ja) 2017-07-19
JPWO2016016982A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6166482B2 (ja) 圧縮機制御装置、圧縮機制御システム及び圧縮機制御方法
JP4831820B2 (ja) ガスタービン出力学習回路及びこれを備えたガスタービンの燃焼制御装置
US9598977B2 (en) Systems and methods for boundary control during steam turbine acceleration
US11125242B2 (en) Compressor system and method of controlling the same
JP2007077866A (ja) ガスタービンの燃焼制御装置
JP5495938B2 (ja) ガスタービン燃料の制御機構及びガスタービン
WO2016035416A1 (ja) 制御装置、システム及び制御方法、並びに動力制御装置、ガスタービン及び動力制御方法
WO2016016988A1 (ja) 制御装置及び制御方法
US11466627B2 (en) Systems and methods for controlling a power plant
WO2017110120A1 (ja) 空圧システム運転制御装置および制御方法
JP5588662B2 (ja) ターボ圧縮機複合体の制御法及び制御システム
JP4746505B2 (ja) ガス供給用圧縮機の運転方法
JP6267087B2 (ja) 動力制御装置、ガスタービン及び動力制御方法
US11378019B2 (en) Gas turbine control apparatus and gas turbine control method
CN114278441B (zh) 燃气涡轮及其燃料流量调整方法
WO2014002435A1 (ja) 馬力制限装置及び馬力制限方法
US10047759B2 (en) Method for controlling the speed of cryogenic compressors arranged in series for cooling cryogenic helium
JP5984558B2 (ja) ガスタービンプラント、その制御装置、及びその制御方法
JP5523412B2 (ja) ガスタービンの燃料制御装置
JP2006316687A (ja) 流体の圧送方法、圧送装置、燃料ガス供給装置及びガス輸送ラインの中継基地
JP6450990B2 (ja) 圧縮機設備、これを備えるガスタービンプラント、及び圧縮機設備の制御方法
JP5534357B2 (ja) タービン制御装置
JP2019522752A (ja) タービン加減弁の動的相互作用
JP2019143541A (ja) 気体供給システムおよび気体供給方法
WO2016059996A1 (ja) Bog圧縮設備とレシプロ圧縮機の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537664

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014898366

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898366

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15116294

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE