WO2016016967A1 - 溶融金属の湯面上に浮遊するスラグの厚さ測定方法 - Google Patents

溶融金属の湯面上に浮遊するスラグの厚さ測定方法 Download PDF

Info

Publication number
WO2016016967A1
WO2016016967A1 PCT/JP2014/070079 JP2014070079W WO2016016967A1 WO 2016016967 A1 WO2016016967 A1 WO 2016016967A1 JP 2014070079 W JP2014070079 W JP 2014070079W WO 2016016967 A1 WO2016016967 A1 WO 2016016967A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
microwave
thickness
flux
antenna
Prior art date
Application number
PCT/JP2014/070079
Other languages
English (en)
French (fr)
Inventor
村上 敏彦
水野 泰宏
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201480080886.3A priority Critical patent/CN106537088A/zh
Priority to KR1020177000579A priority patent/KR20170014002A/ko
Priority to BR112017001205A priority patent/BR112017001205A2/pt
Priority to PCT/JP2014/070079 priority patent/WO2016016967A1/ja
Publication of WO2016016967A1 publication Critical patent/WO2016016967A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness

Definitions

  • the present invention relates to a method for measuring the thickness of a slag floating on a molten metal surface, and in particular, even when the slag thickness is thin, the thickness can be continuously measured with high accuracy. And a slag thickness measuring method.
  • molten steel is poured into a water-cooled mold and cooled by bringing it into contact with the mold, thereby producing a slab by continuously drawing it below the mold while forming a solidified shell.
  • the molten steel is temporarily stored, and the tundish is used as an intermediate container between the ladle and the mold for the purpose of distributing the molten steel to a plurality of molds. Is used.
  • the slag in the ladle floating on the molten steel surface in the ladle may slightly flow out of the ladle from the ladle into the tundish. is there.
  • the slag in the ladle that has flowed into the tundish diffuses into the molten steel in the tundish, and then most of the slag floats on the molten steel and separates from the molten steel, forming a layer on the molten steel surface in the tundish Floating as slag in the tundish.
  • the tundish is supplied with flux for the purpose of covering the molten steel in the tundish.
  • the flux is melted by the heat of the molten steel to become slag.
  • Some slag that cannot float to the upper part of the molten steel is brought into the water-cooled mold together with the molten steel by hot water supply through a tundish immersion nozzle, and remains in the slab as non-metallic inclusions after solidification of the molten steel. It becomes a factor causing surface defects and the like. If the amount of slag increases in the tundish, slag will be caught when the ladle is replaced, and more slag will not rise above the molten steel. Quality problems such as quality defects may occur.
  • the slag is likely to be caught. For this reason, when the thickness of the slag in the tundish exceeds a predetermined value, the slag is discharged to the outside from the drain hole provided in the upper part of the tundish. This discharge of slag not only causes secondary troubles such as fire due to scattering, but also causes a drop in product yield by partially discharging molten steel.
  • the thickness of the slag in the tundish is an important management factor from the viewpoint of preventing breakout due to slag outflow in the mold and improving operational safety and product productivity.
  • Patent Document 1 As a method for suppressing the outflow of slag accompanying the supply of molten steel as much as possible, in Patent Document 1, based on the opening signal of the sliding nozzle that injects molten steel in the tundish into the mold and the level signal of the molten steel in the mold, A method for controlling the opening and closing operations of the sliding nozzle has been proposed.
  • Patent Document 1 does not measure the amount of slag in the tundish. Therefore, when this method is applied to the supply of molten steel from the ladle to the tundish, the sliding nozzle is closed early during the continuous casting operation from the viewpoint of reliably preventing the slag from flowing out of the ladle. If it will end up, the remaining molten steel in a ladle will increase, and the problem that the yield of molten steel will fall significantly arises.
  • the amount of slag in the tundish is managed by the thickness of the slag.
  • the operator usually opens a part of the lid on the top of the tundish, inserts a metal measuring rod into the molten steel in the tundish, and determines the thickness of the slag attached to the measuring rod. Measuring.
  • the slag in the tundish does not increase suddenly during casting, but the amount of slag in the tundish gradually increases as the number of consecutive casts increases, that is, the number of ladle replacements increases. Therefore, it is essential to measure the slag thickness every time the ladle is replaced.
  • the measurement of the slag thickness using a measuring rod is a temporary measurement by the operator's manual operation, which creates a work burden and a large difference in measured values for each operator. The problem is that it cannot be measured.
  • grasping the thickness of the slag that floats on the molten steel surface in the ladle is also important for suppressing the outflow of slag to the tundish. Similar to the thickness of the slag in the tundish, the thickness of the slag that has flowed into the ladle from the converter is also measured using a measuring rod inserted manually, which is a burden on the operator. .
  • the measurement of the thickness of the slag in the ladle or tundish during the continuous casting operation is performed manually by the operator, resulting in work load generation and measurement accuracy problems. Further, since the inside of the ladle and the inside of the tundish are in a high temperature atmosphere, manual measurement is not preferable for safety. Furthermore, since the lid must be opened when measuring the thickness of the slag in the tundish, there is a problem that the internal quality of the slab deteriorates due to the intrusion of air into the tundish.
  • the present invention has been made in view of these problems, and an object thereof is to provide a method capable of measuring the thickness of a slag with high accuracy without depending on an operator.
  • the inventors of the present invention have studied to automatically measure the thickness of the slag using a microwave distance meter.
  • a microwave rangefinder As the microwave rangefinder, a frequency modulation continuous wave (FMCW) system generally used for measuring distance with high accuracy was used.
  • FMCW frequency modulation continuous wave
  • the FMCW method is a method of continuously modulating a microwave frequency with a predetermined amplitude and a predetermined period with respect to a predetermined center frequency.
  • a microwave is transmitted from the antenna of the microwave distance meter to the measurement object, and the microwave (reflected wave) reflected by the measurement object is received by the same antenna. Since the frequency of the microwave is modulated, the frequency of the reflected wave from the measurement object (reflected wave reflected by the measurement object; the same applies hereinafter) received by the microwave rangefinder and the reflected wave are The frequency of the microwave transmitted from the microwave rangefinder at the time of reception is different.
  • the time from when the microwave is transmitted until the reflected wave at the measurement object is received can be calculated.
  • a value obtained by multiplying the calculated time by the speed of the microwave in the atmosphere and dividing by 2 is set as the distance from the antenna to the measurement object. That is, the value L (mm) calculated by the following equation (1) is set as the distance from the antenna to the measurement object.
  • L c ⁇ t / 2 (1)
  • c the velocity of the microwave in the atmosphere (mm / s)
  • t calculated from the difference between the frequency of the reflected wave received and the frequency of the microwave transmitted from the microwave rangefinder at the time of reception. Time (s).
  • microwave rangefinders are used to measure the level of molten steel in the converter. By using a microwave distance meter, it is possible to continuously measure the distance to the measurement object without depending on the operator. By applying this, it is considered that the thickness of the slag can also be continuously measured. Further, by arranging the antenna in the tundish, it is not necessary to open the tundish lid when measuring the thickness of the slag. In the present invention, calculating (obtaining) A using the measurement result of the microwave rangefinder is sometimes expressed as “measuring A”. In the following, “reflected wave at B” refers to a microwave (reflected wave) reflected by B.
  • microwaves are transmitted from the antenna toward the slag floating on the molten steel and molten steel surface, and the reflected wave and slag of the microwave on the molten steel surface are transmitted.
  • the reflected wave on the surface is received by the same antenna.
  • the difference between the frequency of the received reflected wave and the frequency of the microwave transmitted from the microwave rangefinder at the time of reception is the first time from when the microwave is transmitted to when the reflected wave at the molten steel surface is received.
  • the first time and the second time from when the microwave is transmitted to when the reflected wave on the slag surface is received are calculated.
  • the microwave is calculated from the above equation (1) and the first time t1 and the second time t2.
  • the distance L0 from the antenna to the molten steel surface and the distance L1 from the antenna to the slag surface can be measured.
  • a value ⁇ L obtained by subtracting the distance L1 from the distance L0 is considered to be the slag thickness.
  • ⁇ L can be expressed by the following equation (2).
  • c speed of microwave in the atmosphere (mm / s)
  • t1 first time (s)
  • t2 second time (s).
  • the thickness of the slag floating on the molten steel surface in the tundish is usually in the range of 10 to 20 mm.
  • a so-called general-purpose microwave having a center frequency of 20 GHz as a microwave and a frequency modulation amplitude (hereinafter also referred to as “modulation amplitude”) of 4 GHz is used, Since the thickness of the slag in the tundish is too thin, the reflected wave on the molten steel surface and the reflected wave on the slag surface are not separated, and the reflected wave on the slag surface cannot be clearly confirmed, so the slag thickness is measured. I found it impossible. On the other hand, it has been found that by using a microwave having a center frequency of 24 to 32 GHz and a modulation amplitude of 8 to 10 GHz, the thickness can be measured even if the slag is thin.
  • the thickness of the slag can be obtained with high accuracy. I found out. Details of the examination will be described later.
  • the present invention has been made on the basis of these findings, and the gist thereof lies in the following method for measuring the thickness of slag floating on the molten metal surface.
  • a microwave rangefinder that transmits and receives a frequency modulated microwave with a center frequency of 24 to 32 GHz and an amplitude of frequency modulation of 8 to 10 GHz from an antenna, it floats on the molten metal surface.
  • a method for measuring a thickness of a slag wherein the microwave rangefinder transmits the microwave from the antenna toward the molten metal and the slag, and the microwave is transmitted from the molten metal surface of the molten metal.
  • the reflected wave on the surface of the slag is received by the antenna, and when the frequency of the reflected wave on the molten metal surface and the reflected wave on the molten metal surface received by the antenna are received, From the difference with the frequency of the microwave transmitted from the microwave rangefinder, the first time from when the microwave is transmitted until the reflected wave at the molten metal surface is received And the difference between the frequency of the reflected wave on the surface of the slag received by the antenna and the frequency of the microwave transmitted from the microwave rangefinder when the reflected wave on the surface of the slag is received.
  • the calculated value ⁇ L is calculated in advance by measuring the thickness of the slag whose thickness is known by the microwave distance meter, and calculating the calculated value.
  • a correction formula for correcting to a known slag thickness is obtained, and a value obtained by correcting the calculated value continuously measured by the microwave distance meter during operation with the correction formula is defined as the slag thickness.
  • molten steel accommodated in a tundish for continuous casting can be applied as the molten metal.
  • a value obtained by multiplying the calculated value by a constant is applied as the correction formula, and a numerical value obtained by multiplying the relative dielectric constant of the slag by the power of ⁇ 0.5 is applied as the constant. be able to.
  • flux refers to the powder charged on the molten metal surface
  • slag refers to the melted flux
  • the thickness of the slag floating on the molten metal surface of the present invention even if the slag is as thin as 150 mm or less, the thickness is measured with high accuracy without depending on the operator. be able to. Since the slag in the tundish can be measured without opening the tundish lid, the occurrence of inclusions in the molten steel due to secondary oxidation due to the intrusion of the atmosphere is suppressed, and a slab with high internal quality is obtained. Obtainable. In addition, by controlling the continuous casting operation using the measured value of the slag thickness, it is possible to suppress the slag entrainment that occurs when the ladle is replaced during continuous casting. Can be obtained by distillation.
  • the thickness X of the flux in the container, the distance La from the antenna to the bottom surface of the container, and the distance Lb from the antenna to the surface of the flux measured using a microwave with a center frequency of 32 GHz and a modulation amplitude of 8 GHz. It is a figure which shows a relationship.
  • the first preliminary experiment is an experiment in which the flux is assumed to be slag and the bottom of the container accommodating the flux is assumed to be the molten steel surface.
  • FIG. 1 is a diagram showing the configuration of an experimental apparatus used for measuring the thickness of the flux.
  • the experimental apparatus is composed of a microwave rangefinder 1 and a container 10 that contains a flux 13.
  • the microwave rangefinder 1 is an FMCW-type microwave rangefinder that emits microwaves to irradiate microwaves to an object for measuring distance (hereinafter also referred to as “measurement object”).
  • the antenna 2 that receives the reflected wave reflected by the measurement object, the amplifier 3 that amplifies the signal intensity of the received reflected wave, the transmission of the microwave, and the received reflected wave And a personal computer 4 for collecting and analyzing data.
  • the microwave rangefinder 1 is of the FMCW system that continuously modulates the microwave frequency with a predetermined amplitude and a predetermined period with respect to a predetermined center frequency.
  • the microwave distance meter 1 uses the difference between the frequency of the reflected wave received from the measurement target unit and the frequency of the microwave transmitted from the microwave distance meter 1 at the time of reception, to The time from when the wave is transmitted to when the reflected wave at the measurement object is received is calculated. Then, a value obtained by substituting the calculated time into the above equation (1) is set as a distance from the antenna to the measurement object.
  • Table 1 below shows the characteristics of the flux used in the first preliminary experiment.
  • the table shows the composition, basicity and viscosity of the main components, and the balance other than the main components of the flux shown in the table is impurities.
  • a so-called general-purpose microwave having a center frequency of 20 GHz and a modulation amplitude of 4 GHz was used.
  • the microwave is irradiated into the container 10
  • a part is reflected on the surface of the flux 13, and the rest is transmitted through the flux 13 and reflected on the bottom surface 10 a of the container 10.
  • it is possible to measure the distance from the antenna 2 to the surface of the flux 13 by changing the amount of the flux 13 in the container 10 while keeping the distance from the antenna 2 to the bottom surface 10a of the container 10 constant.
  • the amount of the flux 13 (the thickness X of the flux 13 in the container 10) was investigated.
  • the relationship between the distance La from the antenna 2 measured by the microwave rangefinder 1 to the bottom surface 10a of the container 10 and the thickness X of the flux 13 was investigated.
  • FIG. 2 is a diagram showing the relationship between the thickness X of the flux in the container, the distance La from the antenna to the bottom surface of the container, and the distance Lb from the antenna to the surface of the flux measured using general-purpose microwaves.
  • the distance shown in the figure is a value obtained by substituting the calculated value of the time from when the microwave is transmitted to when the reflected wave at the measurement object is received into the above equation (1).
  • the dotted line shown in the figure is a line simply connecting the point that can be measured by the microwave and the point where the thickness of the flux is zero.
  • the thickness X of the flux 13 in the container 10 is less than 150 mm, the reflected wave from the bottom surface 10a of the container 10 and the reflected wave from the surface of the flux 13 are not separated. The wave could not be clearly confirmed, and as a result, the distance from the antenna 2 to the surface of the flux 13 could not be measured.
  • the thickness X of the flux 13 in the container 10 is 150 mm or more, both the reflected wave from the bottom surface 10a of the container 10 and the reflected wave from the surface of the flux 13 can be clearly confirmed. Therefore, the distance from the antenna 2 to the surface of the flux 13 could be measured.
  • the distance La from the antenna 2 measured by the microwave rangefinder 1 to the bottom surface 10a of the container 10 increased in proportion to the increase in the thickness X of the flux 13. This is because the dielectric constant of the flux is different from the dielectric constant of air, and the speed of the microwave that passes through the flux is affected by the flux. From this result, a value obtained by subtracting the distance Lb from the antenna 2 measured by the microwave distance meter 1 to the surface of the flux 13 from the distance La from the antenna 2 measured by the microwave distance meter 1 to the bottom surface 10a of the container 10 ( La ⁇ Lb (hereinafter also referred to as “difference value”) was found to be a value larger than the actual thickness 13 of the flux 13.
  • a microwave is transmitted from the difference between the frequency of the reflected wave at the bottom surface 10a of the container 10 received by the antenna 2 and the frequency of the microwave transmitted from the microwave rangefinder 1 when the reflected wave is received.
  • the time until the reflected wave at the bottom surface 10a of the container 10 is received is calculated, and this is set as the first time.
  • the microwave is transmitted from the difference between the frequency of the reflected wave on the surface of the flux 13 received by the antenna 2 and the frequency of the microwave transmitted from the microwave rangefinder 1 when the reflected wave is received. Then, the time until receiving the reflected wave on the surface of the flux 13 is calculated, and this is set as the second time.
  • the above equation (2) is an equation for the difference (L0 ⁇ L1) between the distance L0 from the antenna to the molten steel surface and the distance L1 from the antenna to the slag surface measured with a microwave rangefinder for the slag on the molten steel surface.
  • the difference value (La ⁇ Lb) can be expressed by the following (3).
  • La ⁇ Lb c ⁇ (t1 ⁇ t2) / 2 (3)
  • c speed of microwave in the atmosphere (mm / s)
  • t1 first time (s)
  • t2 second time (s).
  • the present inventors considered that this problem was caused by low measurement accuracy because the wavelength of the general-purpose microwave was as long as several tens of millimeters. And, by using a microwave having a shorter wavelength than the general-purpose microwave and increasing the modulation amplitude, not only the reflected wave on the bottom surface of the container but also the reflected wave on the surface of the flux can be detected stably, We thought that the accuracy of the thickness of the flux measured with the microwave rangefinder could be improved. In the FMCW method, the amplitude and center frequency of frequency modulation are important for improving measurement accuracy.
  • the present inventors conducted a second preliminary experiment using a microwave having a center frequency of 32 GHz and a modulation amplitude of 8 GHz using the experimental apparatus shown in FIG.
  • FIG. 3 shows the thickness La of the flux in the container, the distance La from the antenna to the bottom of the container, and the flux from the antenna, measured using a microwave with a center frequency of 32 GHz and a modulation amplitude of 8 GHz. It is a figure which shows the relationship with the distance Lb to the surface. As shown in the figure, when this microwave is used, even if the thickness X of the flux in the container is less than 150 mm, if the thickness X is 15 mm or more, the distance from the antenna to the surface of the flux is set. It was measurable. Further, the present inventors have confirmed that the same measurement is possible by using a microwave having a microwave center frequency of 24 to 32 GHz and a modulation amplitude of 8 to 10 GHz.
  • FIG. 4 is an example of measurement data when a microwave having a center frequency of 32 GHz and a modulation amplitude of 8 GHz is used.
  • the measurement data when the thickness X of the flux 13 in the container 10 is 40 mm are shown. From the figure, it can be seen that the reflected wave on the surface of the flux and the reflected wave on the bottom surface of the container are clearly separated and both can be detected stably.
  • the distance La from the antenna to the bottom surface of the container measured with a microwave rangefinder was 545 mm
  • Equation (4) is obtained by multiplying the difference value (La ⁇ Lb) calculated from each distance measured by the microwave rangefinder by a constant. According to the study by the present inventors, this constant corresponds to a value obtained by raising the relative dielectric constant ⁇ L of the flux to the power of ⁇ 0.5. In the case of the measurement data shown in FIG. 4, the relative dielectric constant ⁇ L of the flux is 2.33.
  • the thickness of the flux can be calculated with high accuracy by correcting the difference value calculated from the distances La and Lb continuously measured by the microwave rangefinder with the equation (4).
  • X (La ⁇ Lb) ⁇ ⁇ L ⁇ 0.5 (4)
  • X thickness of the flux (mm)
  • La distance from the antenna measured with the microwave rangefinder to the bottom of the container (mm)
  • Lb distance from the antenna measured with the microwave rangefinder to the surface of the flux Distance (mm)
  • ⁇ L relative permittivity of flux.
  • FIG. 5 is a schematic diagram showing a state of measuring slag thickness using a microwave rangefinder.
  • the flux 13 in the state of floating on the molten steel surface of the molten steel 11 and the slag 12 in which the flux 13 is melted are FMCW type microwave rangefinders, and the center frequency is 24 to 32 GHz, and , Using a microwave having a modulation amplitude of 8 to 10 GHz, a distance L0 from the antenna 2 of the microwave rangefinder to the molten metal surface of the molten steel 11, a distance L1 from the antenna 2 to the interface between the slag 12 and the flux 13, and A test for measuring the distance L2 from the antenna 2 to the surface of the flux 13 was performed.
  • FIG. 6 is an example of measurement data for a state in which flux and slag are floating on the molten steel surface.
  • the reflected waves on the molten steel surface, the interface between the slag and the flux, and the surface of the flux are clearly separated, and it can be seen that all can be detected stably. .
  • the thickness of the slag and the thickness of the flux in a state where the flux and the slag are floating on the molten steel surface are measured with a microwave rangefinder.
  • the relative permittivity ⁇ S of the slag is the difference between the actual thickness of the slag and the difference value corresponding to the slag thickness calculated from each distance measured by the microwave rangefinder. Calculate in advance from the correlation.
  • T1 (L0 ⁇ L1) ⁇ ⁇ S ⁇ 0.5 (5)
  • T2 (L1-L2) ⁇ ⁇ L ⁇ 0.5 (6)
  • T1 Thickness of slag (mm)
  • T2 Thickness of flux (mm)
  • L0 Distance from antenna to molten steel surface measured with microwave rangefinder (mm)
  • L1 Microwave rangefinder Distance from the antenna to the interface between the slag and the flux measured in (mm)
  • L2 Distance from the antenna to the surface of the flux measured with a microwave rangefinder (mm)
  • ⁇ S Dielectric constant of slag
  • ⁇ L It is the relative dielectric constant of the flux.
  • L1 is “from the antenna measured by the microwave rangefinder to the slag. It was confirmed that the thickness of the slag can be calculated by setting the “distance to the surface”.
  • the slag thickness measuring method of the present invention the slag thickness can be measured easily and with high accuracy without depending on the operator. Since the thickness of the slag can be measured as long as it is 2 mm or more, the slag in the tundish, which is relatively thin, should be thick enough to reduce the quality of the slab due to slag entrainment. Thickness can be measured. Further, by disposing the antenna in the tundish, the thickness of the slag can be continuously measured without contact without opening the lid of the tundish.
  • FIG. 7 is a diagram showing a configuration of a test apparatus used for measuring the slag thickness.
  • the test apparatus includes a microwave distance meter 1 and a high-frequency melting furnace (atmospheric furnace) 15.
  • the molten steel 11 is accommodated in a heated state.
  • the flux is introduced into the high-frequency furnace 15, the flux is melted by the heat of the molten steel 11, and is separated into a slag 12 layer (molten layer) and a flux 13 layer (powder layer) on the molten steel 11.
  • the microwave rangefinder 1 includes an antenna 2, a waveguide pipe 5, a reflection plate 6, and an amplifier 3. Microwaves transmitted from the antenna 2 are reflected by the reflector 6 and irradiated into the high-frequency furnace 15, and reflected by the molten steel 11, the interface between the slag 12 and the flux 13, and the surface of the flux 13. . Thereafter, the light is reflected again by the reflecting plate 6, guided by the waveguide pipe 5, and received by the antenna 2. In this test, the distance from the microwave receiving / transmitting part of the antenna 2 to the microwave reflecting part of the reflector 6 was set to 1000 mm.
  • ⁇ Test conditions> In the high frequency furnace 15, 200 kg of steel material was melted to obtain molten steel 11. The flux was charged into the high-frequency furnace 15 in six steps. The amount of flux input per time was 1.3 kg. This is an amount such that the thickness in the high-frequency furnace 15 (the value obtained by dividing the volume of the flux by the cross-sectional area in the cylindrical furnace) is 20 mm. The flux used was of the characteristics shown in Table 1.
  • the thickness of the flux and slag is measured with the microwave distance meter 1, and the flux and slag are manually operated by an operator (hereinafter referred to as "hand measurement") using a metal measuring rod.
  • the thickness of was measured.
  • a microwave having a center frequency of 32 GHz and a modulation amplitude of 8 GHz was used.
  • the relative dielectric constant ⁇ S of the slag was 35. This is because the distance from the antenna to the molten steel surface measured with a microwave rangefinder and the microwave distance meter for a slag of a predetermined thickness (6.5 mm by hand measurement) that floated on the molten steel surface in advance. This is a value calculated from the above equation (5) using the distance (difference value 38.5 mm) from the antenna to the interface between the slag and the flux measured in step (1).
  • FIG. 8 is a diagram showing the relationship between the number of fluxes fed and the slag and flux thicknesses measured by hand measurement. From the figure, it can be seen that the thickness of the slag and flux in the high-frequency furnace both increase with an increase in the number of times of flux injection.
  • FIG. 9 is a diagram showing the relationship between the number of fluxes, the slag thickness measured by hand measurement, and the slag thickness measured by the slag thickness measurement method of the present invention.
  • FIG. 9 shows that the slag thickness by the hand measurement is equivalent to the slag thickness by the slag thickness measurement method of the present invention. This shows that according to the slag thickness measuring method of the present invention, the thickness of the slag can be continuously measured with high accuracy.
  • the slag thickness measurement method of the present invention even when the slag is as thin as 150 mm or less, the thickness can be measured easily and with high accuracy without depending on the operator. Since the slag in the tundish can be measured without opening the tundish lid, the occurrence of inclusions in the molten steel due to secondary oxidation due to the intrusion of the atmosphere is suppressed, and a slab with high internal quality is obtained. Obtainable. Further, by controlling the continuous casting operation using the measured value of the slag thickness, it is possible to suppress slag entrainment or the like generated at the time of replacing the ladle at the time of continuous casting and obtain a high quality slab.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Continuous Casting (AREA)

Abstract

本発明は、スラグの厚さの測定を、オペレータに依らず、かつ高い精度で行うことが可能な方法を提供することを主目的とする。 本発明は、中心周波数が24~32GHzであり、且つ、周波数変調の振幅が8~10GHzである周波数変調マイクロ波をアンテナから発信して受信するマイクロ波距離計を使用し、マイクロ波距離計がマイクロ波を発信してから溶融金属湯面での反射波を受信するまでの第1の時間およびスラグ表面での反射波を受信するまでの第2の時間を算出するとともに、第1の時間t1、第2の時間t2および大気中におけるマイクロ波の速度cから計算値c(t1-t2)/2を算出するものであり、あらかじめ厚さが既知のスラグについての計算値の測定の結果から補正式を求めておき、操業時にマイクロ波距離計で連続的に測定した計算値を、この補正式で補正した値をスラグの厚さとする。

Description

溶融金属の湯面上に浮遊するスラグの厚さ測定方法
 本発明は、溶融金属の湯面上に浮遊するスラグの厚さを測定する方法に関し、特にスラグ厚さが薄い場合であっても、その厚さを高い精度で連続的に測定することを可能とする、スラグの厚さ測定方法に関する。
 鋼の連続鋳造は、溶鋼を水冷鋳型に注入して鋳型と接触させることで冷却し、これにより凝固シェルを形成させながら鋳型の下方に連続的に引き抜くことによって、鋳片を製造するものである。
 このような連続鋳造では、溶鋼を供給する取鍋を交換する際に溶鋼を一旦貯蓄し、また、溶鋼を複数の鋳型に分配する目的で、取鍋と鋳型との間の中間容器としてタンディッシュが用いられる。
 取鍋内の溶鋼をタンディッシュに供給する作業の末期には、取鍋内の溶鋼湯面上に浮遊している取鍋内スラグが、溶鋼とともに取鍋からタンディッシュ内に若干流出することがある。タンディッシュ内に流入した取鍋内スラグは、タンディッシュ内で溶鋼中に拡散した後、その大部分は溶鋼の上部に浮上して溶鋼から分離し、タンディッシュ内の溶鋼の湯面上に層状をなしてタンディッシュ内スラグとして浮遊する。また、タンディッシュには、取鍋から溶鋼とともに流入したスラグに加えて、さらにタンディッシュ内の溶鋼の被覆等を目的としてフラックスが投入されている。フラックスは、溶鋼の熱により溶解してスラグとなる。
 溶鋼の上部に浮上しきれない一部のスラグは、タンディッシュの浸漬ノズルを介した給湯により溶鋼とともに水冷鋳型に持ち込まれ、溶鋼の凝固後に非金属介在物として鋳片中に残存し、製品の表面欠陥等を引き起こす要因となる。タンディッシュ内において、スラグの量が増加すると、取鍋を交換する際にスラグの巻き込み等が発生し、また、溶鋼の上部に浮上しきれないスラグが増加するため、得られた鋳片の内質欠陥等、品質上の問題が発生することがある。
 また、取鍋の交換時にタンディッシュ内の溶鋼が減少し、スラグの割合が大きくなると、スラグが巻き込まれやすくなる。このため、タンディッシュ内のスラグの厚さが所定の値を超えるとタンディッシュ上部に設けられた排滓孔から外部にスラグを排出している。このスラグの排出は、その飛散による火災等、二次トラブルの原因となるばかりでなく、溶鋼も一部排出されることにより製品の歩留の低下の原因ともなる。
 さらに、スラグの鋳型内流出によるブレークアウトを防止し、操業の安全性および製品の生産性を向上させる観点からも、タンディッシュ内のスラグの厚さは、重要な管理因子である。
 このように、鋳片の品質管理、歩留の向上および安全性の向上の観点から、連続鋳造の操業中において、取鍋から流入したスラグおよび意図的に投入したフラックスに由来するスラグのいずれも含めたタンディッシュ内のスラグ量を把握しておくことは重要である。当然、取鍋からタンディッシュに流出するスラグを最小限にすることは大前提である。
 溶鋼の供給に伴うスラグの流出を極力抑制する方法として、特許文献1では、タンディッシュ内の溶鋼を鋳型に注入するスライディングノズルの開度信号と鋳型内の溶鋼の湯面レベル信号に基づいて、スライディングノズルの開操作および閉操作の制御を行う方法が提案されている。
 しかし、特許文献1で提案された方法では、タンディッシュ内のスラグ量の測定は行われない。そのため、この方法を取鍋からタンディッシュへの溶鋼の供給に適用した場合、取鍋からのスラグの流出を確実に防止する観点から、連続鋳造操業中にスライディングノズルの閉操作を早期に行ってしまうと、取鍋内の残溶鋼が多くなり、溶鋼の歩留が大幅に低下するという問題が生じる。
 ところで、現状の連続鋳造操業において、タンディッシュ内のスラグ量は、そのスラグの厚さによって管理されている。その手法として、通常は、オペレータがタンディッシュの上面の蓋の一部を開放して金属製の検尺棒をタンディッシュ内の溶鋼に装入し、検尺棒に付着したスラグの厚さを測定している。
 鋳造中にタンディッシュ内のスラグが急激に増加することはないが、連続鋳造における連々数の増加、すなわち取鍋の交換回数の増加に伴い、タンディッシュ内のスラグ量は徐々に増加する。そのため、取鍋の交換毎にスラグの厚さの測定が不可欠である。しかし、検尺棒を用いたスラグの厚さの測定はオペレータの手作業による一時的な測定であるため、作業負担が発生するとともに、オペレータごとの測定値の差が大きく、しかも連続的に安定して測定できないという問題がある。
 さらに、検尺棒を溶鋼に装入する際には、タンディッシュ上面の蓋の一部を開放しなければならず、タンディッシュ内の不活性ガス(例えばArガス)雰囲気による大気遮断が不十分になり、大気の侵入による二次酸化に起因する溶鋼中の介在物の発生等、鋳片の内部品質を低下させる問題もある。
 また、取鍋内の溶鋼の湯面上に浮遊するスラグの厚さを把握することも、タンディッシュへのスラグの流出を抑制するために重要である。転炉から取鍋内に流入したスラグの厚さも、タンディッシュ内のスラグの厚さと同様に、手作業で装入した検尺棒を用いて測定しており、オペレータの作業負担となっている。
特開平5-359号公報
 上述のように、連続鋳造操業時の取鍋内やタンディッシュ内のスラグの厚さの測定はオペレータの手作業で行われており、作業負担の発生や測定精度の問題がある。また、取鍋内およびタンディッシュ内は高温雰囲気であるため、手作業での測定は安全上好ましくない。さらに、タンディッシュ内のスラグの厚さを測定する際には蓋を開放しなければならないため、タンディッシュ内への大気の侵入により鋳片の内部品質を低下させてしまうという問題がある。
 本発明は、これらの問題に鑑みてなされたものであり、スラグの厚さの測定を、オペレータに依らず、かつ高い精度で行うことが可能な方法を提供することを目的とする。
 本発明者らは、スラグの厚さの測定を、マイクロ波距離計を用いて自動で行うことを検討した。マイクロ波距離計としては、高い精度で距離を測定するのに一般的に有効とされている周波数変調連続波(Frequency Modulation Contiuous Wave;FMCW)方式のものを使用することとした。
 FMCW方式とは、マイクロ波の周波数を所定の中心周波数に対して所定の振幅、所定の周期で連続的に変調させる方式である。マイクロ波距離計のアンテナから測定対象物に対してマイクロ波を発信し、この測定対象物によって反射されたマイクロ波(反射波)を同じアンテナで受信する。マイクロ波の周波数は変調しているため、マイクロ波距離計で受信した、測定対象物での反射波(測定対象物によって反射された反射波。以下において同じ。)の周波数と、当該反射波を受信した時点でマイクロ波距離計から発信されているマイクロ波の周波数とは異なる。そのため、受信した反射波の周波数と受信した時点で発信しているマイクロ波の周波数との差から、マイクロ波を発信してから測定対象物での反射波を受信するまでの時間を算出できる。FMCW方式では、この算出した時間に、大気中におけるマイクロ波の速度を掛けて2で割った値を、アンテナから測定対象物までの距離とする。すなわち、下記(1)式で算出した値L(mm)をアンテナから測定対象物までの距離とする。
    L=c・t/2                  …(1)
  ここで、c:大気中におけるマイクロ波の速度(mm/s)、t:受信した反射波の周波数と受信した時点でマイクロ波距離計から発信されているマイクロ波の周波数との差から算出した時間(s)である。
 現在、マイクロ波距離計は、転炉内の溶鋼の湯面レベルの測定に用いられている。マイクロ波距離計を用いることにより、オペレータに依らず連続的に測定対象までの距離を測定することができるため、これを応用することにより、スラグの厚さも連続的に測定できると考えられる。また、タンディッシュ内にアンテナを配置することにより、スラグの厚さを測定する際にタンディッシュの蓋を開放する必要がなくなる。なお、マイクロ波距離計の測定結果を用いてAを算出(把握)することを、本発明では、「Aを測定する」と表現することがある。また、以下において、「Bでの反射波」とは、Bによって反射されたマイクロ波(反射波)をいう。
 マイクロ波距離計を用いてスラグの厚さを測定する場合、アンテナから溶鋼および溶鋼湯面上に浮遊するスラグに向けてマイクロ波を発信し、そのマイクロ波の溶鋼湯面での反射波およびスラグ表面での反射波を同じアンテナで受信する。受信した反射波の周波数と、受信した時点でマイクロ波距離計から発信されているマイクロ波の周波数との差から、マイクロ波を発信してから溶鋼湯面での反射波を受信するまでの第1の時間、および、マイクロ波を発信してからスラグ表面での反射波を受信するまでの第2の時間、を算出する。そして、まず、大気中でのマイクロ波の速度とスラグ中でのマイクロ波の速度との違いを無視した場合、上記(1)式と第1の時間t1および第2の時間t2から、マイクロ波距離計を用いて、アンテナから溶鋼湯面までの距離L0およびアンテナからスラグ表面までの距離L1を測定できる。そして、距離L0から距離L1を引いた値ΔLがスラグの厚さとなると考えられる。ΔLは、下記(2)式で表すことができる。
    ΔL=L0-L1=(c・t1-c・t2)/2
                   =c・(t1-t2)/2     …(2)
 ここで、c:大気中におけるマイクロ波の速度(mm/s)、t1:第1の時間(s)、t2:第2の時間(s)である。
 タンディッシュ内の溶鋼の湯面上に浮遊するスラグの厚さは、通常は10~20mmの範囲内にある。本発明者らが検討した結果、マイクロ波として中心周波数が20GHzであり、且つ、周波数変調の振幅(以下「変調振幅」ともいう。)が4GHzであるいわゆる汎用マイクロ波を用いた場合には、タンディッシュ内のスラグの厚さが薄すぎて溶鋼湯面での反射波とスラグ表面での反射波が分離されず、スラグ表面での反射波を明確に確認できないため、スラグの厚さを測定できないことがわかった。これに対し、中心周波数が24~32GHzであり、且つ、変調振幅が8~10GHzであるマイクロ波を用いることにより、このスラグの厚さが薄くてもその厚さを測定できることを知見した。
 また、このマイクロ波を用いて測定した上記の第1の時間および第2の時間から算出した計算値ΔLを、定数を乗じて補正することによって、高い精度でスラグの厚さが得られることを知見した。以上の検討内容については後述する。
 本発明は、これらの知見に基づいてなされたものであり、その要旨は、下記の溶融金属の湯面上に浮遊するスラグの厚さ測定方法にある。
 中心周波数が24~32GHzであり、且つ、周波数変調の振幅が8~10GHzである周波数変調マイクロ波をアンテナから発信して受信するマイクロ波距離計を使用し、溶融金属の湯面上に浮遊するスラグの厚さを測定する方法であって、前記マイクロ波距離計が、前記アンテナから前記溶融金属および前記スラグに向けて前記マイクロ波を発信し、前記発信したマイクロ波の前記溶融金属湯面での反射波および前記スラグ表面での反射波を前記アンテナで受信し、前記アンテナで受信した前記溶融金属湯面での反射波の周波数と該溶融金属湯面での反射波を受信した時点で前記マイクロ波距離計から発信されているマイクロ波の周波数との差から、前記マイクロ波を発信してから前記溶融金属湯面での反射波を受信するまでの第1の時間を算出するとともに、前記アンテナで受信した前記スラグ表面での反射波の周波数と該スラグ表面での反射波を受信した時点で前記マイクロ波距離計から発信されているマイクロ波の周波数との差から、前記マイクロ波を発信してから前記スラグ表面での反射波を受信するまでの第2の時間を算出し、前記第1の時間および前記第2の時間を用いて、上記(2)式で表される計算値ΔLを算出するものであり、あらかじめ、前記マイクロ波距離計によって厚さが既知のスラグの厚さを測定して前記計算値を算出し、この計算値を前記厚さが既知のスラグの厚さに補正する補正式を求めておき、操業時に前記マイクロ波距離計で連続的に測定した前記計算値を前記補正式で補正した値を、スラグの厚さとすることを特徴とする、溶融金属湯面上に浮遊するスラグの厚さ測定方法。
 本発明のスラグの厚さ測定方法は、前記溶融金属として、連続鋳造用タンディッシュ内に収容された溶鋼を適用することができる。
 また、本発明のスラグの厚さ測定方法は、前記補正式として、前記計算値に定数を乗ずるものを適用し、前記定数として前記スラグの比誘電率を-0.5乗した数値を適用することができる。
 本明細書の説明では、「フラックス」は溶融金属湯面上に投入する粉体をいい、「スラグ」とはフラックスが溶融したものを意味する。
 本発明の溶融金属湯面上に浮遊するスラグの厚さ測定方法によれば、スラグが厚さ150mm以下と薄い場合であってもその厚さを、オペレータに依らず、かつ高い精度で測定することができる。タンディッシュ内のスラグについてはタンディッシュの蓋を開放しないでも測定することができるため、大気の侵入による二次酸化に起因する溶鋼中の介在物の発生を抑制し、内部品質の高い鋳片を得ることができる。また、このスラグ厚さの測定値を用いて連続鋳造操業を制御することにより、連続鋳造時の取鍋交換時に発生するスラグの巻き込み等を抑制することができ、品質の高い鋳片を高い歩留で得ることができる。
フラックスの厚さの測定に用いた実験装置の構成を示す図である。 容器中のフラックスの厚さXと、汎用マイクロ波を用いて測定したアンテナから容器の底面までの距離Laおよびアンテナからフラックスの表面までの距離Lbとの関係を示す図である。 容器中のフラックスの厚さXと、中心周波数が32GHzで、変調振幅が8GHzであるマイクロ波を用いて測定したアンテナから容器の底面までの距離Laおよびアンテナからフラックスの表面までの距離Lbとの関係を示す図である。 中心周波数が32GHzで、変調振幅が8GHzであるマイクロ波を使用した場合の測定データの一例である。 マイクロ波距離計によるスラグの厚さの測定状態を示す模式図である。 溶鋼湯面上にフラックスおよびスラグが浮遊している状態についての測定データの一例である。 スラグの厚さの測定に用いた試験装置の構成を示す図である。 フラックスの投入回数と、ハンド測定によるスラグおよびフラックスの厚さとの関係を示す図である。 フラックスの投入回数と、ハンド測定で測定したスラグの厚さおよび本発明のスラグ厚さ測定方法で測定したスラグの厚さとの関係を示す図である。
 以下、本発明を完成させるための検討の内容および本発明を実施するための形態について説明する。
 1.検討の内容
  1-1.測定可能なフラックス厚さの確認(第1予備実験)
  タンディッシュ内の溶鋼湯面上に浮遊するスラグの厚さは、通常は10~20mmの範囲内にある。そこで、いわゆる汎用マイクロ波を用いた場合に、マイクロ波距離計のアンテナからスラグ表面までの距離、および同アンテナから溶鋼湯面までの距離を、スラグの厚さを算出できる程度に測定することが可能かどうかを実験室での実験(第1予備実験)で確認した。
 第1予備実験では、スラグに代えてフラックスを使用した。すなわち、第1予備実験は、フラックスをスラグに見立て、フラックスを収容する容器の底を溶鋼湯面に見立てた実験である。
 図1は、フラックスの厚さの測定に用いた実験装置の構成を示す図である。実験装置は、マイクロ波距離計1と、フラックス13を収容する容器10とからなる。マイクロ波距離計1は、FMCW方式のマイクロ波距離計であり、距離を測定する対象物(以下において、「測定対象物」とも称する。)にマイクロ波を発信して、マイクロ波を照射するとともに、発信したマイクロ波が測定対象物によって反射された反射波を受信するアンテナ2と、受信した反射波の信号強度を増幅するアンプ3と、マイクロ波の発信を制御するとともに受信した反射波についてのデータを収集し、解析するパーソナルコンピュータ4とを有している。
 マイクロ波距離計1は、マイクロ波の周波数を所定の中心周波数に対して所定の振幅、所定の周期で連続的に変調させるFMCW方式のものである。マイクロ波距離計1では、上述のように、受信した測定対象部での反射波の周波数と受信した時点でマイクロ波距離計1から発信されているマイクロ波の周波数との差を用いて、マイクロ波を発信してから測定対象物での反射波を受信するまでの時間を算出する。そして、この算出した時間を上記(1)式に代入して得られた値を、アンテナから測定対象物までの距離とする。
 下記の表1には、第1予備実験に使用したフラックスの特性を示す。同表には、主要成分の組成、塩基度および粘度を示しており、表中に示すフラックスの主要成分以外の残部は不純物である。
Figure JPOXMLDOC01-appb-T000001
 第1予備実験では、いわゆる汎用マイクロ波である、中心周波数が20GHzであり、且つ、変調振幅が4GHzであるマイクロ波を使用した。マイクロ波を容器10内に照射すると、一部はフラックス13の表面で反射され、残りはフラックス13を透過して容器10の底面10aで反射される。この予備実験では、アンテナ2から容器10の底面10aまでの距離を一定とした状態で、容器10内のフラックス13の量を変化させ、アンテナ2からフラックス13の表面までの距離が測定可能であるフラックス13の量(容器10中のフラックス13の厚さX)について調査した。併せて、マイクロ波距離計1で測定したアンテナ2から容器10の底面10aまでの距離Laとフラックス13の厚さXとの関係について調査した。
 図2は、容器中のフラックスの厚さXと、汎用マイクロ波を用いて測定したアンテナから容器の底面までの距離Laおよびアンテナからフラックスの表面までの距離Lbとの関係を示す図である。同図に示す距離は、マイクロ波を発信してから測定対象物での反射波を受信するまでの時間の算出値を上記(1)式へと代入することによって得られた値である。また、同図に示す点線は、当該マイクロ波で測定できた点とフラックスの厚さゼロの点を単に結んだ線である。
 実験の結果、容器10中のフラックス13の厚さXが150mm未満では、容器10の底面10aからの反射波とフラックス13の表面からの反射波が分離されなかったため、フラックス13の表面からの反射波を明確に確認することができず、その結果、アンテナ2からフラックス13の表面までの距離を測定できなかった。しかし、同図に示すように、容器10中のフラックス13の厚さXが150mm以上であれば、容器10の底面10aからの反射波とフラックス13の表面からの反射波をともに明確に確認できるため、アンテナ2からフラックス13の表面までの距離を測定可能であった。
 また、図2に示すように、フラックス13の厚さXの増加に比例して、マイクロ波距離計1で測定したアンテナ2から容器10の底面10aまでの距離Laが増加した。これは、フラックスの誘電率と空気の誘電率とが異なり、フラックス中を透過するマイクロ波の速度がフラックスの影響を受けるためである。この結果から、マイクロ波距離計1で測定したアンテナ2から容器10の底面10aまでの距離Laから、マイクロ波距離計1で測定したアンテナ2からフラックス13の表面までの距離Lbを引いた値(La-Lb、以下「差分値」ともいう。)は、実際のフラックス13の厚さXよりも大きい値であることがわかった。
 ここで、差分値(La-Lb)について説明する。アンテナ2で受信した容器10の底面10aでの反射波の周波数と、該反射波を受信した時点でマイクロ波距離計1から発信されているマイクロ波の周波数との差から、マイクロ波を発信してから容器10の底面10aでの反射波を受信するまでの時間を算出し、これを第1の時間とする。また、アンテナ2で受信したフラックス13の表面での反射波の周波数と、該反射波を受信した時点でマイクロ波距離計1から発信されているマイクロ波の周波数との差から、マイクロ波を発信してからフラックス13の表面での反射波を受信するまでの時間を算出し、これを第2の時間とする。
 上述の(2)式は、溶鋼湯面上のスラグについてマイクロ波距離計で測定したアンテナから溶鋼湯面までの距離L0およびアンテナからスラグ表面までの距離L1の差(L0-L1)についての数式であるが、これをマイクロ波距離計1で測定したアンテナ2から容器10の底面10aまでの距離Laとマイクロ波距離計1で測定したアンテナ2からフラックス13の表面までの距離Lbにあてはめると、差分値(La-Lb)は下記(3)で表すことができる。
    La-Lb=c・(t1-t2)/2        …(3)
  ここで、c:大気中におけるマイクロ波の速度(mm/s)、t1:第1の時間(s)、t2:第2の時間(s)である。
 1-2.最適なマイクロ波の選定およびマイクロ波距離計で測定したフラックスの厚さの補正(第2予備実験)
  本発明者らは、第1予備実験の結果について検討し、実際のフラックスの厚さXと、マイクロ波距離計で測定した距離LaおよびLbから算出した差分値(La-Lb)との相関から、この差分値を実際のフラックスの厚さXに補正する補正式をあらかじめ求めておき、この補正式によって、マイクロ波距離計で連続的に測定した値に基づく差分値を補正することにより、マイクロ波距離計を用いてフラックスの厚さを連続的に高い精度で測定できると考えた。この補正式は、後述する通り、差分値に定数を乗ずるものであり、定数はフラックスの比誘電率を-0.5乗した値である。
 また、第1予備実験を行ったところ、汎用マイクロ波を用いた場合、フラックスの表面での反射波を安定して検出することが困難であることがわかった。本発明者らは、この問題は、汎用マイクロ波は波長が十数mmと長いため、測定精度が低いことに起因すると考えた。そして、汎用マイクロ波よりも波長が短いマイクロ波を使用し、且つ、変調振幅を大きくすることで、容器の底面での反射波のみならずフラックスの表面での反射波も安定して検出でき、マイクロ波距離計で測定したフラックスの厚さの精度を向上できると考えた。FMCW方式では、周波数変調の振幅および中心周波数が測定精度の向上に重要である。
 そこで、本発明者らは、図1に示す実験装置を用いて、中心周波数が32GHzで、且つ、変調振幅が8GHzであるマイクロ波を使用した第2予備実験を行った。
 図3は、容器中のフラックスの厚さXと、中心周波数が32GHzで、且つ、変調振幅が8GHzであるマイクロ波を用いて測定した、アンテナから容器の底面までの距離Laおよびアンテナからフラックスの表面までの距離Lbと、の関係を示す図である。同図に示すように、このマイクロ波を使用した場合、容器中のフラックスの厚さXが150mm未満であっても、厚さXが15mm以上であれば、アンテナからフラックスの表面までの距離を測定可能であった。また、本発明者らは、マイクロ波の中心周波数が24~32GHzで、且つ、変調振幅が8~10GHzであるマイクロ波を用いることにより、同様の測定が可能であることを確認した。
 図4は、中心周波数が32GHzで、且つ、変調振幅が8GHzであるマイクロ波を使用した場合の測定データの一例である。同図には、容器10内のフラックス13の厚さXを40mmとした場合の測定データを示す。同図から、フラックスの表面での反射波と容器の底面での反射波が明確に分離され、いずれも安定して検出できていることがわかる。また、マイクロ波距離計で測定されたアンテナから容器の底面までの距離Laは545mm、アンテナからフラックスの表面までの距離Lbは484mmであった。これらの距離の差分値(La-Lb)は61mmであるため、実際のフラックスの厚さ(X=40mm)よりも大きい値であった。
 図3および図4に示す実験結果から明らかなように、フラックスの実際の厚さと、マイクロ波距離計で測定した各距離から算出した差分値との間には相関がある。そこで、本発明者らは、算出した差分値を実際のフラックスの厚さに補正する補正式として、下記(4)式を求めた。(4)式は、マイクロ波距離計で測定した各距離から算出した差分値(La-Lb)に定数を掛けるものである。本発明者らの検討によれば、この定数は、フラックスの比誘電率εを-0.5乗した値に相当する。図4に示す測定データの場合、フラックスの比誘電率εは2.33である。本発明者らは、マイクロ波距離計で連続的に測定した距離LaおよびLbから算出した差分値を(4)式で補正することにより、高い精度でフラックスの厚さを算出できることを確認した。
    X=(La-Lb)・ε -0.5          …(4)
  ここで、X:フラックスの厚さ(mm)、La:マイクロ波距離計で測定したアンテナから容器の底面までの距離(mm)、Lb:マイクロ波距離計で測定したアンテナからフラックスの表面までの距離(mm)、ε:フラックスの比誘電率である。
 2.マイクロ波距離計を使用したスラグの厚さの測定試験
  図5は、マイクロ波距離計によるスラグの厚さの測定状態を示す模式図である。同図に示すように溶鋼11の湯面上に浮遊している状態のフラックス13とフラックス13が溶融したスラグ12について、FMCW方式のマイクロ波距離計で、中心周波数が24~32GHzであり、且つ、変調振幅が8~10GHzであるマイクロ波を用いて、マイクロ波距離計のアンテナ2から溶鋼11の湯面までの距離L0、アンテナ2からスラグ12とフラックス13の界面までの距離L1、および、アンテナ2からフラックス13の表面までの距離L2を測定する試験を行った。
 図6は、溶鋼湯面上にフラックスおよびスラグが浮遊している状態についての測定データの一例である。測定試験の結果、同図に示すように、溶鋼湯面、スラグとフラックスの界面、および、フラックスの表面での反射波がそれぞれ明確に分離され、いずれも安定して検出できていることがわかる。
 そして、第1予備実験および第2予備実験で得られた知見から、溶鋼湯面上にフラックスおよびスラグが浮遊している状態におけるスラグの厚さおよびフラックスの厚さは、マイクロ波距離計で測定したアンテナから溶鋼湯面までの距離L0、マイクロ波距離計で測定したアンテナからスラグとフラックスの界面までの距離L1、および、マイクロ波距離計で測定したアンテナからフラックスの表面までの距離L2、ならびに、スラグの比誘電率εおよびフラックスの比誘電率εから、下記(5)式および(6)式で算出できるといえる。スラグの比誘電率εも、フラックスの比誘電率εと同様に、スラグの実際の厚さと、マイクロ波距離計で測定した各距離から算出したスラグの厚さに対応する差分値との相関から、事前に算出しておく。
    T1=(L0-L1)・ε -0.5         …(5)
    T2=(L1-L2)・ε -0.5         …(6)
  ここで、T1:スラグの厚さ(mm)、T2:フラックスの厚さ(mm)、L0:マイクロ波距離計で測定したアンテナから溶鋼湯面までの距離(mm)、L1:マイクロ波距離計で測定したアンテナからスラグとフラックスの界面までの距離(mm)、L2:マイクロ波距離計で測定したアンテナからフラックスの表面までの距離(mm)、ε:スラグの比誘電率、ε:フラックスの比誘電率である。
 本発明者らが検討した結果、スラグについては、厚さがフラックスでの最小測定可能厚さ(15mm)未満であっても、厚さが2mm以上であれば、アンテナからスラグとフラックスの界面までの距離を測定可能であることを確認した。これは、フラックスの溶融物であるスラグは、粉体であるフラックスと比べて気孔率が小さいため、スラグの比誘電率はフラックスよりも大きく、マイクロ波距離計で測定した各距離から算出したスラグの厚さに対応する差分値(L0-L1)は、フラックスの厚さに対応する差分値(L1-L2)よりも大きく、増幅されて出力されるからである。
 また、本発明者らは、フラックスが完全に溶融し、溶鋼湯面上にスラグしか浮遊していない場合には、(5)式において、L1を「マイクロ波距離計で測定したアンテナからスラグの表面までの距離」とすることにより、スラグの厚さを算出可能であることを確認した。
 本発明のスラグ厚さ測定方法によれば、オペレータに依らず、簡便に、且つ、高い精度でスラグの厚さを測定することができる。スラグの厚さは2mm以上であれば測定できるため、厚さが比較的薄いタンディッシュ内のスラグについても、スラグの巻き込み等により鋳片の品質を低下させる可能性がある程の厚さであれば厚さを測定可能である。また、アンテナをタンディッシュ内に配置することにより、タンディッシュの蓋を開放することなくスラグの厚さを連続的に非接触で測定することができる。
 本発明のスラグ厚さ測定方法の効果を確認するため、以下の試験を行い、その結果を評価した。
 <試験方法>
  図7は、スラグの厚さの測定に用いた試験装置の構成を示す図である。試験装置は、マイクロ波距離計1と高周波溶解炉(大気炉)15からなる。
 高周波炉15には、溶鋼11が加熱された状態で収容される。高周波炉15内にフラックスを投入すると、フラックスは溶鋼11の熱によって溶融し、溶鋼11の湯面上で、スラグ12の層(溶融層)とフラックス13の層(粉体層)に分離する。
 マイクロ波距離計1は、アンテナ2と導波パイプ5と反射板6とアンプ3とを有している。アンテナ2から発信されたマイクロ波は、反射板6で反射されて高周波炉15内に照射され、溶鋼11の湯面、スラグ12とフラックス13との界面、および、フラックス13の表面で反射される。その後、再び反射板6で反射されて導波パイプ5で誘導され、アンテナ2で受信される。本試験では、アンテナ2のマイクロ波受発信部から反射板6のマイクロ波反射部までの距離を1000mmとした。
 <試験条件>
  高周波炉15では、200kgの鋼材を溶解し溶鋼11とした。フラックスは、6回に分けて高周波炉15内に投入した。1回あたりのフラックスの投入量は1.3kgとした。これは、高周波炉15内での厚さ(フラックスの体積を円筒形の炉内の横断面積で割った値)が20mmとなる量である。使用したフラックスは、表1に示した特性のものとした。
 フラックスを投入するごとに、フラックスおよびスラグの厚さをマイクロ波距離計1で測定するとともに、金属製の検尺棒を用いてオペレータの手作業(以下「ハンド測定」という。)によりフラックスおよびスラグの厚さを測定した。マイクロ波距離計1では、中心周波数が32GHzであり、且つ、変調振幅が8GHzであるマイクロ波を使用した。
 また、スラグの比誘電率εは35とした。これは、あらかじめ、溶鋼湯面上に浮遊した所定の厚さ(ハンド測定で6.5mm)のスラグについて、マイクロ波距離計で測定したアンテナから溶鋼湯面までの距離、および、マイクロ波距離計で測定したアンテナからスラグとフラックスとの界面までの距離(差分値38.5mm)を用いて、上記(5)式から算出した値である。
 <試験結果>
  図8は、フラックスの投入回数と、ハンド測定で測定したスラグおよびフラックスの厚さとの関係を示す図である。同図から、フラックスの投入回数の増加に伴って、高周波炉内のスラグおよびフラックスの厚さが、いずれも増加していることがわかる。
 図9は、フラックスの投入回数と、ハンド測定で測定したスラグの厚さおよび本発明のスラグ厚さ測定方法で測定したスラグの厚さと、の関係を示す図である。「本発明のスラグ厚さ測定方法で測定したスラグの厚さ」とは、マイクロ波距離計で測定したアンテナから溶鋼湯面までの距離、マイクロ波距離計で測定したアンテナからスラグとフラックスとの界面までの距離、および、スラグの比誘電率の値(ε=35)を上記(5)式に代入することにより算出した値である。
 図9から、ハンド測定によるスラグの厚さと、本発明のスラグ厚さ測定方法によるスラグの厚さとは、同等であることがわかる。このことから、本発明のスラグ厚さ測定方法によれば、スラグの厚さを連続的に高い精度で測定できることがわかる。
 本発明のスラグ厚さ測定方法によれば、スラグが厚さ150mm以下と薄い場合であっても、その厚さを、オペレータに依らず、簡便に、且つ、高い精度で測定することができる。タンディッシュ内のスラグについてはタンディッシュの蓋を開放しないでも測定することができるため、大気の侵入による二次酸化に起因する溶鋼中の介在物の発生を抑制し、内部品質の高い鋳片を得ることができる。また、このスラグ厚さの測定値を用いて連続鋳造操業を制御することにより、連続鋳造時の取鍋交換時に発生するスラグの巻き込み等を抑制し、品質の高い鋳片を得ることができる。
 1…マイクロ波距離計、 2:アンテナ、 3:アンプ、 4:パーソナルコンピュータ、 5:導波パイプ、 6:反射板、 10:容器、 10a:底面、 11:溶鋼、 12:スラグ、 13:フラックス、 15:高周波溶解炉

Claims (3)

  1. 中心周波数が24~32GHzであり、且つ、周波数変調の振幅が8~10GHzである周波数変調マイクロ波を、アンテナから発信して受信するマイクロ波距離計を使用し、溶融金属の湯面上に浮遊するスラグの厚さを測定する方法であって、
     前記マイクロ波距離計が、
     前記アンテナから前記溶融金属および前記スラグに向けて前記マイクロ波を発信し、前記発信したマイクロ波の前記溶融金属湯面での反射波および前記スラグ表面での反射波を前記アンテナで受信し、
     前記アンテナで受信された前記溶融金属湯面での反射波の周波数と、該反射波を受信した時点で発信されているマイクロ波の周波数との差を用いて、前記マイクロ波を発信してから前記溶融金属湯面での反射波を受信するまでの第1の時間を算出するとともに、
     前記アンテナで受信された前記スラグ表面での反射波の周波数と、該反射波を受信した時点で発信されているマイクロ波の周波数との差を用いて、前記マイクロ波を発信してから前記スラグ表面での反射波を受信するまでの第2の時間を算出し、
     前記第1の時間および前記第2の時間を用いて、下記(1)式で表される計算値を算出するものであり、
     あらかじめ、前記マイクロ波距離計によって厚さが既知のスラグの厚さを測定して前記計算値を算出し、該計算値を前記厚さが既知のスラグの厚さに補正する補正式を求めておき、
     操業時に前記マイクロ波距離計で連続的に測定した前記計算値を前記補正式で補正した値を、スラグの厚さとすることを特徴とする、溶融金属湯面上に浮遊するスラグ厚さ測定方法。
        ΔL=c・(t1-t2)/2 …(1)
      ここで、ΔL:計算値(mm)、c:大気中におけるマイクロ波の速度(mm/s)、t1:前記第1の時間(s)、t2:前記第2の時間(s)である。
  2. 前記溶融金属が、連続鋳造用タンディッシュ内に収容された溶鋼であることを特徴とする、請求項1に記載の溶融金属湯面上に浮遊するスラグの厚さ測定方法。
  3. 前記補正式が前記計算値に定数を乗ずるものであり、前記定数が前記スラグの比誘電率を-0.5乗した数値であることを特徴とする、請求項1または2に記載の溶融金属湯面上に浮遊するスラグの厚さ測定方法。
PCT/JP2014/070079 2014-07-30 2014-07-30 溶融金属の湯面上に浮遊するスラグの厚さ測定方法 WO2016016967A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480080886.3A CN106537088A (zh) 2014-07-30 2014-07-30 熔融金属的液面上悬浮的熔渣的厚度测定方法
KR1020177000579A KR20170014002A (ko) 2014-07-30 2014-07-30 용융 금속의 탕면 상에 부유하는 슬래그의 두께 측정 방법
BR112017001205A BR112017001205A2 (pt) 2014-07-30 2014-07-30 método para medição da espessura da escória flutuante na superfície do metal fundido
PCT/JP2014/070079 WO2016016967A1 (ja) 2014-07-30 2014-07-30 溶融金属の湯面上に浮遊するスラグの厚さ測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070079 WO2016016967A1 (ja) 2014-07-30 2014-07-30 溶融金属の湯面上に浮遊するスラグの厚さ測定方法

Publications (1)

Publication Number Publication Date
WO2016016967A1 true WO2016016967A1 (ja) 2016-02-04

Family

ID=55216910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070079 WO2016016967A1 (ja) 2014-07-30 2014-07-30 溶融金属の湯面上に浮遊するスラグの厚さ測定方法

Country Status (4)

Country Link
KR (1) KR20170014002A (ja)
CN (1) CN106537088A (ja)
BR (1) BR112017001205A2 (ja)
WO (1) WO2016016967A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643588A (zh) * 2016-10-31 2017-05-10 攀钢集团攀枝花钢铁研究院有限公司 一种用微波测量铁水罐铁水带渣厚度的方法
WO2020104217A1 (de) * 2018-11-21 2020-05-28 Primetals Technologies Austria GmbH Dickenmessung einer schicht eines giesspulvers in einer kokille
CN114449723A (zh) * 2022-04-08 2022-05-06 北京奥邦新材料有限公司 一种提升中间包等离子加热系统功率因数的装置和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063142B (zh) * 2017-05-04 2019-09-10 盐城工学院 一种板坯连铸凝固坯壳厚度检测系统
JP6822388B2 (ja) * 2017-12-12 2021-01-27 日本製鉄株式会社 レベル計測装置
CN108169011B (zh) * 2017-12-15 2021-06-01 安徽神剑新材料股份有限公司 一种涂层冲击实验结果检测系统及方法
CN110230975B (zh) * 2019-06-20 2021-01-12 武汉钢铁有限公司 一种钢铁熔渣层厚度测量装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172394A1 (de) * 1984-08-20 1986-02-26 MANNESMANN Aktiengesellschaft Verfahren und Einrichtung zum Kontrollieren von Schlacke in einem Vorratsbehälter beim Stranggiessen von Metall, insbes. von Stahl
JPH1080762A (ja) * 1996-09-06 1998-03-31 Nkk Corp 溶鋼鍋のスラグ流出予測方法及び装置
JP2003344142A (ja) * 2002-05-24 2003-12-03 Jfe Steel Kk マイクロ波レベル計による溶融金属レベル及びスラグ層厚の測定方法及び装置
WO2005062846A2 (en) * 2003-12-23 2005-07-14 Uec Technologies Llc Tundish control
JP2011043343A (ja) * 2009-08-19 2011-03-03 Wire Device:Kk マイクロ波によるスラグ厚の測定方法及び測定装置
JP2011510279A (ja) * 2008-01-18 2011-03-31 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ 鋳型中のスラグ及び溶融金属の表面をモニタリングする方法及び装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1137371C (zh) * 2002-02-05 2004-02-04 北京大学 短脉冲激光超声精确测厚方法及装置
CN100416222C (zh) * 2003-06-23 2008-09-03 仁宝电脑工业股份有限公司 膜厚量测方法及微波量测设备
AR086927A1 (es) * 2011-06-16 2014-01-29 Avemis S A S Dispositivo para medir el espesor de la escoria
JP5800241B2 (ja) * 2012-08-08 2015-10-28 新日鐵住金株式会社 連続鋳造用鋳型内の溶融金属の湯面レベル及びモールドパウダー厚の測定方法
CN203286997U (zh) * 2013-05-07 2013-11-13 莱芜钢铁集团有限公司 一种铁水渣厚测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0172394A1 (de) * 1984-08-20 1986-02-26 MANNESMANN Aktiengesellschaft Verfahren und Einrichtung zum Kontrollieren von Schlacke in einem Vorratsbehälter beim Stranggiessen von Metall, insbes. von Stahl
JPH1080762A (ja) * 1996-09-06 1998-03-31 Nkk Corp 溶鋼鍋のスラグ流出予測方法及び装置
JP2003344142A (ja) * 2002-05-24 2003-12-03 Jfe Steel Kk マイクロ波レベル計による溶融金属レベル及びスラグ層厚の測定方法及び装置
WO2005062846A2 (en) * 2003-12-23 2005-07-14 Uec Technologies Llc Tundish control
JP2011510279A (ja) * 2008-01-18 2011-03-31 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ 鋳型中のスラグ及び溶融金属の表面をモニタリングする方法及び装置
JP2011043343A (ja) * 2009-08-19 2011-03-03 Wire Device:Kk マイクロ波によるスラグ厚の測定方法及び測定装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643588A (zh) * 2016-10-31 2017-05-10 攀钢集团攀枝花钢铁研究院有限公司 一种用微波测量铁水罐铁水带渣厚度的方法
WO2020104217A1 (de) * 2018-11-21 2020-05-28 Primetals Technologies Austria GmbH Dickenmessung einer schicht eines giesspulvers in einer kokille
AT521924A1 (de) * 2018-11-21 2020-06-15 Primetals Technologies Austria GmbH Dickenmessung einer Schicht eines Gieß- oder Abdeckpulvers in einem metallurgischen Gefäß
AT521924B1 (de) * 2018-11-21 2021-03-15 Primetals Technologies Austria GmbH Dickenmessung einer Schicht eines Gieß- oder Abdeckpulvers in einer Kokille
CN114449723A (zh) * 2022-04-08 2022-05-06 北京奥邦新材料有限公司 一种提升中间包等离子加热系统功率因数的装置和方法

Also Published As

Publication number Publication date
CN106537088A (zh) 2017-03-22
KR20170014002A (ko) 2017-02-07
BR112017001205A2 (pt) 2017-11-21

Similar Documents

Publication Publication Date Title
WO2016016967A1 (ja) 溶融金属の湯面上に浮遊するスラグの厚さ測定方法
JP2014153077A (ja) 溶融金属の湯面上に浮遊するスラグの厚さ測定方法
US8717222B2 (en) Method and apparatus for monitoring the surfaces of slag and molten metal in a mould
RU2497059C2 (ru) Способ и устройство для измерения, по меньшей мере, одного свойства расплавленного или полурасплавленого материала и обработки расплавленного или полурасплавленного материала
JPS6032927Y2 (ja) 鋳型内に溶融金属を反復注入する容器の制御装置
US20120082183A1 (en) Drop-in probe
JP6294566B2 (ja) 電気アーク炉内の金属溶融物の温度を決定するためのシステム及び方法
US11141779B2 (en) Method and device for detecting variables in the outlet of a metallurgical vessel
JP2006192473A (ja) 連続鋳造設備の鋳型内溶鋼レベル測定方法
JP2009162610A (ja) 溶融金属用容器の耐火物層残寸法計測方法
US20050133192A1 (en) Tundish control
EP0132296B1 (en) Apparatus for detecting slag outflow
JP5800241B2 (ja) 連続鋳造用鋳型内の溶融金属の湯面レベル及びモールドパウダー厚の測定方法
US11293887B2 (en) Apparatus for analysis of metals
JPS5935710B2 (ja) 滓出検出方法
KR101649670B1 (ko) 두께 측정 장치 및 방법
CN104289702A (zh) 一种模铸钢水液面测控方法及系统
CN106735158B (zh) 一种结晶器浸入式水口及其使用方法
KR101224978B1 (ko) 몰드 슬래그 필름층 측정 방법 및 이를 적용한 몰드 슬래그 필름층 측정 장치
JP2008302388A (ja) 溶湯流れの検出方法及び検出装置
JP2011183445A (ja) 鋳片表面温度計測方法および鋳片表面温度計測装置
RU2782714C1 (ru) Вентилируемый стопорный стержень с функцией измерения температуры
KR101654206B1 (ko) 노즐 막힘 측정 장치, 측정 방법 및 이를 이용한 용강 유동 제어 방법
EP2568265A1 (en) Apparatus and method for measuring the liquid metal level in a metallurgical vessel
JPS6257427B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898498

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020177000579

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017001205

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14898498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112017001205

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170119