WO2016016543A1 - Adsorbeur avec secheur rotatif - Google Patents

Adsorbeur avec secheur rotatif Download PDF

Info

Publication number
WO2016016543A1
WO2016016543A1 PCT/FR2015/051992 FR2015051992W WO2016016543A1 WO 2016016543 A1 WO2016016543 A1 WO 2016016543A1 FR 2015051992 W FR2015051992 W FR 2015051992W WO 2016016543 A1 WO2016016543 A1 WO 2016016543A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
regeneration
adsorption
flow
adsorber
Prior art date
Application number
PCT/FR2015/051992
Other languages
English (en)
Inventor
Patrick Le Bot
Maxime PEREZ
Guillaume Rodrigues
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to EP15751050.4A priority Critical patent/EP3174618A1/fr
Priority to CN201580050049.0A priority patent/CN107073383A/zh
Priority to US15/500,832 priority patent/US10413859B2/en
Publication of WO2016016543A1 publication Critical patent/WO2016016543A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • B01D51/10Conditioning the gas to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0431Beds with radial gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/0266Carbon based materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • C01B13/027Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • B01D2253/1085Zeolites characterized by a silicon-aluminium ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/414Further details for adsorption processes and devices using different types of adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents

Definitions

  • the present invention relates to an adsorption purification unit comprising the combination of a regenerative element comprising structured adsorbents and an adsorber filled with a particulate adsorbent.
  • adsorption processes can be used.
  • several adsorbers filled with selective adsorbent materials are used with respect to at least one of the constituents of the feed stream.
  • the gas circulates vertically through an adsorbent bed
  • the gas circulates radially, either from the inside to the outside (relative to the adsorption phase) in centrifugal configuration, or from the outside in centripetal configuration.
  • V PSA designating one or the other 2 units but also a combination of 2.
  • Axial technology is inexpensive but when dealing with high flow rates, head losses and attrition problems become limiting.
  • one solution consists in moving in radial geometry resulting in a limitation of the pressure drops without increasing the radius of the adsorber.
  • the radial adsorber provides an increased passage area for a given adsorber volume and is theoretically not subject to limitation vis-à-vis the attrition phenomena.
  • the adsorbent bed can be suspended between vertical perforated grids suspended from the top.
  • the most known disadvantages of this radial technology are an increase in dead volumes and a high manufacturing cost.
  • a PSA or TSA type adsorption process comprising two types of adsorbents (A and B) requiring a passage of gas in A before B in the adsorption phase and the amount of adsorbent B required is very large relative to the amount A.
  • the adsorber comprising 2 beds, 3 grids are generally used to maintain the particulate materials.
  • the material A is situated between the so-called “external” grid and the so-called “intermediate” grid, while the material B is maintained between the same intermediate grid and the so-called “internal” grid.
  • This disproportion A / B then accentuates on the one hand the difficulties of construction of said radial adsorber since the diameters of the outer and intermediate grids are close together, and consequently makes it difficult to maintain a regular thickness of the bed due to idealities and possible deformations of the grids may lead to preferential passages in areas where the thickness of sieve would be less.
  • one solution consists in reversing the flow direction of the gases as well as the distribution of the adsorbents, so that the adsorbent A is located between the internal gate and the intermediate gate and that the adsorbent B is between the intermediate grid and the external grid.
  • the adsorber With a flow of gas from the inside to the outside of the bottle in the adsorption phase, the adsorber is thus in a "radial centrifugal" configuration (FIG. 1).
  • centrifugal configuration may be less energy efficient than the centripetal solution.
  • VSA 02 where this centrifugal configuration substantially increases the pressure losses and therefore penalizes the specific energy of the process, as well as the case of TSA where the regeneration of the outside towards the inside will increase the losses. thermal.
  • VSA 02 are conventionally constituted of two beds, the first being a low-volume layer of alumina (silica gel or certain zeolites are also used alone or in combination) whose purpose is to stop the water contained in the supply air and the second is a layer of zeolite selectively retaining nitrogen with respect to oxygen.
  • alumina silicon gel or certain zeolites are also used alone or in combination
  • VSA 02. A geometry allowing to preserve the centripetal configuration called “mushroom” was used for these VSA 02. It consisted in installing in the bottom of the adsorber a layer of granulated alumina retained between two grids with a radial circulation of the fluid or more simply disposed in axial configuration. Yes this solution makes it possible to maintain a centripetal radial configuration for the zeolite, it nonetheless considerably complicates the construction and entails a significant additional cost.
  • a solution of the present invention is a purification unit by adsorption of a gas stream of (V) PSA type comprising successively in the direction of flow of the feed gas stream:
  • a rotatable structured adsorbent wheel configured to cause the gas flow to pass axially and to dry the feed gas to a level corresponding to a dew point of less than -30 ° C (which is will then qualify as "dry" flow);
  • an adsorber of centripetal radial configuration comprising a bed of particulate adsorbent.
  • particulate adsorbent material is meant an adsorbent in the form of grains, balls, rods ... of millimeter size, generally of equivalent diameter (diameter equivalent to the sphere of the same volume) in the range of 0.5 to 5 mm .
  • Structured adsorbent means solid materials ranging in size from a few centimeters to a few meters and having free passageways gas, such as monoliths, foams or fabrics.
  • the structured adsorbents have (in comparison with granulated adsorbents) the peculiarity of allowing very good kinetics and very low pressure losses without having a known limit of attrition.
  • the structured adsorbent used preferentially is a contactor with parallel passages.
  • parallel passage contactor is meant a device in which the fluid passes into channels whose walls contain adsorbent.
  • the fluid circulates in essentially obstacle free channels, these channels allowing the fluid to flow from an input to an output of the contactor.
  • These channels can be rectilinear connecting directly the input to the output of the contactor or present changes of direction.
  • the fluid is in contact with at least one adsorbent present at said walls.
  • the unit according to the invention may have one or more of the following characteristics:
  • the adsorbent wheel comprises at least one zone dedicated to adsorption and at least one zone dedicated to regeneration;
  • the zone dedicated to the regeneration comprises at least a first portion subjected to a hot flow, ie at a temperature greater than the temperature of the feed stream, preferably at least 20 ° C. higher than the temperature of the feed stream ; and a second portion subjected to a flow (cold flow) at a temperature below the temperature of the flow (hot flow) to which the first portion is subjected, preferably at plus or minus 10 degrees Celsius of the temperature of the feed stream;
  • the adsorber consists of a cylindrical shell and two bottoms and the particulate adsorbent bed is held in place by means of two perforated grids arranged in a concentric manner; the ratio of the volume of particulate adsorbent to the volume of structured adsorbent is between 2 and 100.
  • the particulate adsorbent comprises alumina balls, silica gel, active charcoal, MOF or type A, X or Y zeolites.
  • the structured adsorbent comprises channels whose walls contain an adsorbent.
  • the adsorbent contained in the walls of the channels is chosen from alumina, silica gel, activated carbon or zeolites of type A, X or Y.
  • the subject of the present invention is also a process for purification by adsorption of a gaseous flow using a purification unit according to the invention, in which the adsorbent wheel follows a pressure cycle comprising an adsorption step and a regeneration step and a rotation of the adsorbent wheel is performed at the end of each adsorption step.
  • the method according to the invention may have one or more of the following characteristics:
  • the adsorbent wheel comprises at least one zone dedicated to adsorption and at least one zone dedicated to regeneration, the zone dedicated to adsorption receives the gaseous feed flow, the zone dedicated to regeneration receives a flow gaseous regeneration, and continuously the area dedicated to adsorption becomes the area dedicated to regeneration and conversely the area dedicated to regeneration becomes the area dedicated to the adsorption by rotation of the adsorbent wheel;
  • the purified stream or the residual stream is used as the regeneration flow of the adsorber of centripetal radial configuration
  • said process processes an air flow rate of at least 10000 Nm 3 / h.
  • the structured adsorbent preferentially used is in the form of a wheel thus allowing its partition into several dedicated zones.
  • zone is meant at least one zone dedicated to the adsorption phase B1 and at least one zone dedicated to the regeneration phase B2 (FIG. 3).
  • the operation of a centripetal radial adsorber having only a single selective adsorbent is shown in FIG. 2.
  • the fluid to be purified or separated 1 enters at the bottom of the radial adsorber 10, passes through the adsorbent mass 20 and the product exits in the upper part 2.
  • the regeneration fluid 3 enters the countercurrent by the upper part, desorbs the impurities contained in the adsorbent mass 20 and the waste gas 4 leaves at the bottom.
  • the adsorber itself 10 consists of a cylindrical shell of vertical axis AA and two funds.
  • the adsorbent mass is held in place by means of a perforated outer grid 1 1 and an internally perforated grid 12 fixed on the upper bottom and a solid plate 13 in the lower part.
  • the gas 1 circulates vertically at the periphery in the outer free zone 14 between the cylindrical shell and the external grid, passes radially through the adsorbent mass 20 and then flows vertically in the internal free zone 15 before leaving the adsorber from above. Regeneration is carried out in the opposite direction.
  • FIG. 4 The operation of a "rotary" wheel having several dedicated sectors is shown in FIG. 4.
  • the feed gas stream to be dried or separated 1 enters the lower part of wheel A via zone 1, the dry product then exiting in 2.
  • the regeneration is carried out in the opposite direction, the hot flow arrives at 3, passes through the wheel A via the zone 2; the flow then loaded with impurity leaves at 4.
  • a possible zone 3 can be used for the complete regeneration of the wheel A and to best prepare the next adsorption phase, the cold flow used between in 5 and out of the sector 3 in 6. Note that it is preferable to cool the adsorbent mass before going into adsorption to avoid disturbing the downstream process and more simply because if the adsorbent mass is hot, it adsorbs little. This flow must be imperatively dry, ie with a dew point below -30 ° C
  • VSA 02 the supply of the air flow and the adsorbent volume regeneration are provided by rotating machines, usually of the volumetric type.
  • rotating machines usually of the volumetric type.
  • root technology machines are used both for blowing / compressing the incoming air and for purging the adsorber, respectively called “blower” and "vacuum pump”.
  • Blower and "vacuum pump”.
  • vacuum pump we will move to a vacuum pump technology to provide a dry gas or optionally at low humidity at a temperature above 80 ° C or to the final oxygen compressor to provide a dry gas and hot.
  • the coupled operation of said radial adsorber and of said wheel is shown in FIG. 5.
  • the fluid to be purified or separated 1 is compressed via a rotating machine A generally of the fan type and is then sent into the wheel B via the flow 2.
  • the flow 2 crosses the adsorbent mass of the wheel B, via the zone dedicated to the purification B1.
  • the purified stream 3 is sent to the radial adsorber.
  • the end product leaves the adsorber C in centripetal circulation via the flow 4.
  • the regeneration is carried out in the opposite direction, the impurities are desorbed by the rotating machine D generally of the vacuum pump type by the flow 5.
  • the flow of impurities 6 heated via the operation of the rotating machine D enters the regeneration sector B2 of said desiccant wheel B.
  • the flow 7 containing the impurities of said radial adsorber C and said wheel B is sent to a vent.
  • FIG. 6 Another possible operating scheme is shown in FIG. 6.
  • the general operation of the method presented is similar to that of FIG. 5.
  • the regeneration of the desiccant wheel B via the zone B2 is here ensured by the flow 5, dry and hot from the final product compressor E.
  • the stream 6 then contains the recoverable product and the impurities contained in the desiccant wheel B.
  • Figure 7 provides an illustration of this mode of operation.
  • a possible cooling of the regeneration zone of the desiccant wheel B in particular by the use of a zone B3 can be provided via the flow 10 previously cooled by the establishment of a cold circuit E at the output of the rotating machine D.
  • This optional cooling to complete the regeneration of the desiccant wheel B and prepare the best zone B1 dedicated to the adsorption phase.
  • the speed and cycle of rotation of the desiccant wheel are related to the operating cycle of the process (V) PSA.
  • An adsorption process according to the invention has the following advantages: it allows
  • the unit according to the invention presented can be used in various PSA processes such as H2 PSA to produce high purity hydrogen, PSA C0 2 , PSA 0 2 , ... It can also be used to dry, decarbonate or stopping secondary impurities of a gas stream, in particular from atmospheric air.
  • secondary impurities we mean the traces of hydrocarbons, NOx, SOx ...
  • the adsorber according to the invention can be used in VSA 0 2 processes making it possible to treat an air flow rate ranging from a thousand to more than 40,000 Nm 3 / h, or even more than 60,000 Nm 3 / h.
  • VSA 02s (allowing the production of more than 30 tonnes / day of oxygen with a standard purity greater than 90%) are economically advantageous to be radial and of centrifugal configuration in order to preserve a sufficiently large thickness of alumina.
  • a rotating structured adsorbent wheel comprising alumina or silica gel creating little pressure drop and lowering the dew point of the gas feeding at a temperature below -30 ° C, and through which the gas would flow axially;
  • a particulate adsorbent bed composed of granulated LiLSX sieve, for separating oxygen from nitrogen, and conventionally disposed between two concentric grids in said centripetal adsorber, and whose hot waste gas is used to regenerate the rotating unit upstream.

Abstract

Unité de purification par adsorption d'un flux gazeux de type (V)PSA comprenant successivement dans le sens de circulation du flux gazeux d'alimentation: -une roue d'adsorbant structuré rotative configurée de manière à entraîner une traversée du flux gazeux de manière axiale et permettant de sécher le gaz d'alimentation à un niveau correspondant à un point de rosée inférieur à -30°C; et -un adsorbeur de configuration radiale centripète comprenant un lit d'adsorbant particulaire.

Description

ADSORBEUR AVEC SECHEUR ROTATIF La présente invention est relative à une unité de purification par adsorption comprenant la combinaison d'un élément régénératif comportant des adsorbants structurés et d'un adsorbeur rempli d'un adsorbant particulaire.
Lorsque l'on souhaite produire, séparer ou purifier des gaz, on peut utiliser des procédés d'adsorption. On utilise généralement plusieurs adsorbeurs remplis de matériaux adsorbants sélectifs vis à vis d'au moins un des constituants du flux d'alimentation. Il existe deux principales technologies d'adsorbeur, l'une étant les adsorbeurs à lits axiaux et l'autre les adsorbeurs à lits radiaux. Dans le premier cas, le gaz circule verticalement au travers d'un lit adsorbant, dans le second le gaz circule radialement, soit de l'intérieur vers l'extérieur (relativement à la phase d'adsorption) en configuration centrifuge, soit de l'extérieur vers l'intérieur en configuration centripète.
Dans le cadre de l'invention on parlera respectivement de PSA (pressure swing adsorption = adsorption à pression modulée), de VSA (vacuum swing adsorption = adsorption à variation de vide) et de (V) PSA désignant l'une ou l'autre des 2 unités mais aussi une combinaison des 2.
La technologie axiale est peu coûteuse mais lorsque l'on traite des débits importants, les pertes de charge et les problèmes d'attrition deviennent limitant. Ainsi, à partir d'un certain débit à traiter, une solution consiste à passer en géométrie radiale entraînant une limitation des pertes de charge sans augmentation du rayon de l'adsorbeur. En effet, l'adsorbeur radial offre une surface de passage augmentée pour un volume d'adsorbeur donné et n'est théoriquement pas soumis à une limitation vis- à-vis des phénomènes d'attrition. Le lit d'adsorbant peut-être suspendu entre des grilles perforées verticales suspendues par le haut. Les inconvénients les plus connus de cette technologie radiale sont une augmentation des volumes morts et un coût de fabrication élevé.
Néanmoins, un autre inconvénient lié à cette technologie radiale apparaît lorsqu'un des lits est de taille réduite par rapport aux autres.
Par exemple, considérons un procédé d'adsorption de type PSA ou TSA comportant deux types d'adsorbants (A et B) nécessitant un passage du gaz dans A avant B en phase d'adsorption et dont la quantité d'adsorbant B nécessaire est très importante relativement à la quantité A. L'adsorbeur comportant 2 lits, 3 grilles sont généralement utilisées pour maintenir les matériaux particulaires. En configuration radiale centripète, le matériau A est situé entre la grille dite « externe » et la grille dite « intermédiaire » alors que le matériau B est maintenu entre la même grille intermédiaire et la grille dite « interne ». Cette disproportion A/B accentue alors d'une part les difficultés de construction dudit adsorbeur radial puisque les diamètres des grilles externes et intermédiaires sont rapprochés, et par voie de conséquence rend délicat le maintien d'une épaisseur régulière du lit du fait des non-idéalités et des éventuelles déformations des grilles pouvant conduire à des passages préférentiels dans les zones où l'épaisseur de tamis serait moindre.
Pour palier à ces inconvénients une solution consiste à inverser le sens de circulation des gaz ainsi que la répartition des adsorbants, de telle sorte que l'adsorbant A se trouve entre la grille interne et la grille intermédiaire et que l'adsorbant B se trouve entre la grille intermédiaire et la grille externe. Avec une circulation du gaz de l'intérieur vers l'extérieur de la bouteille en phase d'adsorption l'adsorbeur est donc en configuration « radiale centrifuge » (Figure 1 ).
Or cette configuration centrifuge peut s'avérer moins performante énergétiquement que la solution centripète. On citera par exemple le cas du VSA 02 où cette configuration centrifuge augmente sensiblement les pertes de charge et pénalise par conséquent l'énergie spécifique du procédé, ainsi que le cas des TSA où la régénération de l'extérieur vers l'intérieur augmentera les pertes thermiques.
Les VSA 02 sont classiquement constitués de deux lits, le premier étant une couche de faible volume d'alumine (le gel de silice ou certaines zéolites sont également employés seuls ou en combinaison) dont l'objet est d'arrêter l'eau contenue dans l'air d'alimentation et le second est une couche de zéolite retenant sélectivement l'azote par rapport à l'oxygène.
Une géométrie permettant de conserver la configuration centripète appelée « Champignon » a été utilisée pour ces VSA 02. Elle consistait à installer dans le fond de l'adsorbeur une couche d'alumine granulée retenue entre deux grilles avec une circulation radiale du fluide ou plus simplement disposée en configuration axiale. Si cette solution permet de conserver une configuration radiale centripète pour la zéolite, elle complexifie néanmoins la construction de manière notable et entraîne un surcoût important.
A ces problèmes hydrodynamiques se rajoutent également des inconvénients liés à la présence de plusieurs adsorbants sélectifs. Pour citer le cas du VSA 02, l'utilisation d'alumine sous forme granulaire, qui comme décrit précédemment a pour rôle la déshumidification du gaz à traiter, limite aujourd'hui les performances notamment l'énergie spécifique et la productivité de tels procédés. En effet, l'ajout d'une couche d'alumine dans l'adsorbeur augmente de manière conséquente les volumes morts ainsi que les pertes de charge. Enfin l'alumine, par ses propriétés physiques, joue le rôle d'isolant/accumulateur thermique entraînant le stockage de frigories à l'interface avec le tamis, phénomène pénalisant sensiblement l'énergie spécifique du système. Découpler l'alumine d'un ou des autres adsorbants utilisés permettrait ainsi de profiter de gains importants sur l'énergie de pompage.
Partant de là, un problème qui se pose est de fournir une nouvelle configuration permettant de palier à tous ces inconvénients.
Une solution de la présente invention est une unité de purification par adsorption d'un flux gazeux de type (V)PSA comprenant successivement dans le sens de circulation du flux gazeux d'alimentation:
- une roue d'adsorbant structuré rotative configurée de manière à entraîner une traversée du flux gazeux de manière axiale et permettant de sécher le gaz d'alimentation à un niveau correspondant à un point de rosée inférieur à -30°C (que l'on qualifiera alors de flux « sec »); et
- un adsorbeur de configuration radiale centripète comprenant un lit d'adsorbant particulaire.
Par matériau adsorbant particulaire, on entend un adsorbant se présentant sous forme de grains, de billes, de bâtonnets... de dimension millimétrique, généralement de diamètre équivalent (diamètre équivalent à la sphère de même volume) dans la fourchette allant de 0.5 à 5mm.
Par « adsorbant structuré », on entend des matériaux solides de dimension allant de quelques centimètres à quelques mètres et présentant des passages libres au gaz, comme des monolithes, des mousses ou des tissus. Les adsorbants structurés présentent (en comparaison des adsorbants granulés) la particularité de permettre une très bonne cinétique et de très faibles pertes de charge sans présenter de limite d'attrition connue. Si ces structures sont aujourd'hui beaucoup plus chères que des adsorbants granulés, leur intérêt économique pour un remplacement complet des lits granulés peut s'avérer décisif s'il s'accompagne d'un gain notable en pertes de charge et/ou d'une réduction significative du coût de construction de l'adsorbeur via une diminution du volume d'adsorbant ou une simplification de la construction.
L'adsorbant structuré utilisé préférentiellement est un contacteur à passages parallèles. Par « contacteur à passages parallèles », on entend un dispositif dans lequel le fluide passe dans des canaux dont les parois contiennent de l'adsorbant. Le fluide circule dans des canaux essentiellement libres d'obstacles, ces canaux permettant au fluide de circuler d'une entrée à une sortie du contacteur. Ces canaux peuvent être rectilignes reliant directement l'entrée à la sortie du contacteur ou présenter des changements de direction. Au cours de sa circulation, le fluide est en contact avec au moins un adsorbant présent au niveau des dites parois.
Selon le cas, l'unité selon l'invention peut présenter une ou plusieurs des caractéristiques suivantes :
- la roue d'adsorbant comprend au moins une zone dédiée à l'adsorption et au moins une zone dédiée à la régénération ;
- la zone dédiée à la régénération comprend au moins une première partie soumise à un flux chaud, i.e à une température supérieure à la température du flux d'alimentation, préférentiellement supérieure d'au moins 20°C à la température du flux d'alimentation ; et une seconde partie soumise à un flux ( flux froid) à une température inférieure à la température du flux (flux chaud) auquel est soumis la première partie, préférentiellement à plus ou moins 10 degrés Celsius de la température du flux d'alimentation ;
- l'adsorbeur est constitué d'une virole cylindrique et de deux fonds et le lit d'adsorbant particulaire est maintenu en place au moyen de deux grilles perforées disposées de manière concentrique ; - le rapport du volume d'adsorbant particulaire sur le volume d'adsorbant structuré est compris entre 2 et 100.
- l'adsorbant particulaire comprend des billes d'alumine, de gel de silice, de charbon actif, de MOF ou de zéolites de type A, X ou Y.
- l'adsorbant structuré comprend des canaux dont les parois renferment un adsorbant.
- l'adsorbant contenu dans les parois des canaux est choisi parmi l'alumine, le gel de silice, le charbon actif ou les zéolites de type A, X ou Y.
La présente invention a également pour objet un procédé de purification par adsorption d'un flux gazeux mettant en œuvre une unité de purification selon l'invention, dans lequel la roue d'adsorbant suit un cycle de pression comprenant une étape d'adsorption et une étape de régénération et on opère une rotation de la roue d'adsorbant à la fin de chaque étape d'adsorption.
Selon le cas, le procédé selon l'invention peut présenter une ou plusieurs des caractéristiques ci-dessous :
- la roue d'adsorbant comprend au moins une zone dédiée à l'adsorption et au moins une zone dédiée à la régénération, la zone dédiée à l'adsorption reçoit le flux gazeux d'alimentation, la zone dédiée à la régénération reçoit un flux gazeux de régénération, et de manière continue la zone dédiée à l'adsorption devient la zone dédiée à la régénération et inversement la zone dédiée à la régénération devient la zone dédiée à l'adsorption par rotation de la roue d'adsorbant ;
- on récupère en sortie de l'adsorbeur de configuration radiale centripète un flux épuré et un flux résiduel ;
- le flux épuré ou le flux résiduel est utilisé comme flux de régénération de l'adsorbeur de configuration radiale centripète ;
- ledit procédé est un VSA 02 ;
- ledit procédé traite un débit d'air d'au moins 10000 Nm3/h.
L'adsorbant structuré utilisé préférentiellement se présente sous la forme d'une roue permettant ainsi son partage en plusieurs zones dédiées. Par zone, on entend au moins une zone dédiée à la phase d'adsorption B1 et au moins une zone dédiée à la phase de régénération B2 (Figure 3). Le fonctionnement d'un adsorbeur radial centripète ne présentant qu'un seul adsorbant sélectif est représenté en Figure 2. Le fluide à épurer ou à séparer 1 rentre en partie basse de l'adsorbeur radial 10, traverse la masse adsorbante 20 et le produit sort en partie supérieure 2. Lors de la régénération, le fluide de régénération 3 rentre à contre-courant par la partie haute, désorbe les impuretés contenues dans la masse adsorbante 20 et le gaz résiduaire 4 sort en partie basse. L'adsorbeur lui-même 10 est constitué d'une virole cylindrique d'axe vertical AA et de deux fonds. La masse adsorbante est maintenue en place au moyen d'une grille externe perforée 1 1 et d'une grille interne également perforée 12 fixées sur le fond supérieur et d'une tôle pleine 13 en partie inférieure. Le gaz 1 circule verticalement à la périphérie dans la zone libre externe 14 entre la virole cylindrique et la grille externe, traverse radialement la masse adsorbante 20 puis circule verticalement dans la zone libre interne 15 avant de quitter l'adsorbeur par le haut. La régénération s'effectue en sens inverse.
Le fonctionnement d'une roue « rotative » présentant plusieurs secteurs dédiés est représenté en Figure 4. Le flux gazeux d'alimentation à sécher ou à séparer 1 entre dans la partie basse de la roue A via la zone 1 , le produit sec sort alors en 2. La régénération s'effectue en sens inverse, le flux chaud arrive en 3, passe à travers la roue A via la zone 2 ; le flux alors chargé en impureté sort en 4. Une éventuelle zone 3 peut être utilisée pour la régénération complète de la roue A et pour préparer au mieux la prochaine phase d'adsorption, le flux froid utilisé entre en 5 et sort du secteur 3 en 6. Notons qu'il est préférable de refroidir la masse adsorbante avant de passer en adsorption pour éviter de perturber le procédé aval et plus simplement parce que si la masse adsorbante est chaude, elle adsorbe peu. Ce flux doit être impérativement sec, c'est à dire avec un point de rosé inférieur à -30°C
Dans le cas d'un VSA 02, la fourniture du flux d'air et la régénération de volume d'adsorbant sont assurées par des machines tournantes, le plus souvent de type volumétrique. De manière classique on utilise des machines de technologie roots à la fois pour souffler/comprimer l'air entrant et pour purger l'adsorbeur, appelées respectivement « blower » et « pompe à vide ». Dans la présente invention, on s'orientera vers une technologie de pompe à vide permettant de fournir un gaz sec ou éventuellement à faible hygrométrie à une température supérieure à 80°C ou vers le compresseur final d'oxygène permettant de fournir un gaz sec et chaud.
Le fonctionnement couplé dudit adsorbeur radial et de ladite roue est représenté en Figure 5. Le fluide à purifier ou à séparer 1 est comprimé via une machine tournante A généralement de type soufflante puis est envoyé dans la roue B via le flux 2. Le flux 2 traverse la masse adsorbante de la roue B, via la zone dédiée à la purification B1. Ainsi le flux 3 épuré est envoyé vers l'adsorbeur radial. Le produit final sort de l'adsorbeur C en circulation centripète via le flux 4. La régénération s'effectue en sens inverse, les impuretés sont désorbées grâce à la machine tournante D généralement de type pompe à vide par le flux 5. Le flux d'impuretés 6 réchauffé via le fonctionnement de la machine tournante D entre dans le secteur de régénération B2 de ladite roue dessicante B. Le flux 7 contenant les impuretés dudit adsorbeur radial C et de ladite roue B est envoyé à un évent.
Un autre schéma de fonctionnement possible est présenté en Figure 6. Le fonctionnement général du procédé présenté est analogue à celui de la figure 5. La régénération de la roue dessicante B, via la zone B2 est cette-fois ci assurée grâce au flux 5, sec et chaud provenant du compresseur de produit final E. Le flux 6 contient alors le produit valorisable ainsi que les impuretés contenues dans la roue dessicante B.
Enfin, une éventuelle troisième zone peut être utilisée pour la roue dessicante.
La figure 7 propose une illustration de ce mode de fonctionnement. Ainsi un éventuel refroidissement de la zone de régénération de la roue dessicante B, notamment par l'utilisation d'une zone B3 peut être assuré via le flux 10 préalablement refroidi grâce à la mise en place d'un circuit froid E en sortie de la machine tournante D. Ce refroidissement optionnel, permet de terminer la régénération de la roue dessicante B et de préparer au mieux la zone B1 dédiée à la phase d'adsorption.
L'utilisation d'un circuit froid via un échangeur thermique situé entre la roue dessicante et la pompe à vide est optionnelle.
La vitesse et le cycle de rotation de la roue dessicante sont liés au cycle de fonctionnement du procédé (V) PSA. Un procédé d'adsorption selon l'invention présente les avantages suivants : il permet
- de passer d'une configuration centrifuge à une configuration centripète plus efficace énergétiquement.
- de se passer d'une grille dans la partie radiale ce qui simplifie notablement la construction des adsorbeurs et entraine directement une baisse du coût de cet adsorbeur.
- une diminution du volume mort coté alimentation généralement néfaste aux performances des procédés (V) PSA.
- de palier à la problématique de stockage de frigories joué par l'alumine (ou son équivalent)
- une intégration énergétique notamment en profitant de la chaleur de refoulement de la pompe à vide (ou du compresseur de produit final installé de manière optionnelle) pour la régénération de ladite roue dessicante.
L'unité selon l'invention présentée peut être utilisée dans divers procédés PSA tels que les PSA H2 devant produire de l'hydrogène à haute pureté, PSA C02, PSA 02,... Il peut également être utilisé pour sécher, décarbonater ou arrêter des impuretés secondaires d'un flux gazeux, notamment issues de l'air atmosphérique. Par impuretés secondaires on entend les traces d'hydrocarbures, les NOx, les SOx...
Enfin, l'adsorbeur selon l'invention peut être utilisé dans des procédés VSA 02 permettant de traiter un débit d'air allant d'un millier à plus de 40 000 Nm3/h, voire plus de 60 000 de Nm3/h.
A titre d'exemple, les VSA 02 de grande taille (permettant la production à plus de 30 tonnes/jour d'oxygène d'une pureté standard supérieure à 90%) présentent un intérêt économique à être radiaux et de configuration centrifuge afin de préserver une épaisseur d'alumine suffisamment importante.
Pour le cas du VSA 02, une solution selon l'invention permettant d'avoir une configuration radiale centripète couplée serait la suivante:
- Une roue d'adsorbant structuré rotative comprenant de l'alumine ou du gel de silice créant peu de perte de charge et abaissant le point de rosée du gaz d'alimentation à une température inférieure à -30°C, et au travers duquel le gaz circulerait de manière axiale ; et
- un lit d'adsorbant particulaire composé du tamis LiLSX granulé, destiné à séparer l'oxygène de l'azote, et disposé de manière classique entre 2 grilles concentriques dans ledit adsorbeur centripète, et dont le gaz résiduaire chaud est employé pour régénérer l'unité rotative amont.

Claims

Revendications
1. Unité de purification par adsorption d'un flux gazeux de type (V)PSA comprenant successivement dans le sens de circulation du flux gazeux d'alimentation :
- une roue d'adsorbant structuré rotative configurée de manière à entraîner une traversée du flux gazeux de manière axiale et permettant de sécher le gaz d'alimentation à un niveau correspondant à un point de rosée inférieur à -30°C , la roue d'adsorbant comprenant au moins une zone dédiée à l'adsorption et au moins une zone dédiée à la régénération; et
- un adsorbeur de configuration radiale centripète comprenant un lit d'adsorbant particulaire.
2. Unité de purification selon la revendication 1 , caractérisé en ce que la zone dédiée à la régénération comprend au moins une première partie soumise à un flux de température supérieure à la température du flux d'alimentation et de préférence au moins une seconde partie soumise à un flux de température inférieure à la température du flux auquel est soumise la première partie.
3. Unité de purification selon l'une des revendications 1 ou 2, caractérisé en ce que l'adsorbeur est constitué d'une virole cylindrique et de deux fonds et le lit d'adsorbant particulaire est maintenu en place au moyen de deux grilles perforées disposées de manière concentrique.
4. Unité de purification selon l'une des revendications 1 à 3, caractérisée en ce que le rapport du volume d'adsorbant particulaire sur le volume d'adsorbant structuré est compris entre 2 et 100.
5. Unité de purification selon l'une des revendications 1 à 4, caractérisé en ce que l'adsorbant particulaire comprend des billes d'alumine, de gel de silice, de charbon actif, de MOF ou de zéolites de type A, X ou Y.
6. Unité de purification selon l'une des revendications 1 à 5, caractérisé en ce que l'adsorbant structuré comprend des canaux dont les parois renferment un adsorbant.
7. Unité de purification selon la revendication 6, caractérisé en ce que l'adsorbant contenu dans les parois des canaux est choisi parmi l'alumine, le gel de silice, le charbon actif ou les zéolites de type A, X ou Y.
8. Procédé de purification par adsorption d'un flux gazeux mettant en œuvre une unité de purification selon l'une des revendications 1 à 7, dans lequel la roue d'adsorbant suit un cycle de pression comprenant une étape d'adsorption et une étape de régénération et on opère une rotation de la roue d'adsorbant à la fin de chaque étape d'adsorption.
9. Procédé de purification selon la revendication 8, dans lequel
- la roue d'adsorbant comprend au moins une zone dédiée à l'adsorption et au moins une zone dédiée à la régénération,
- la zone dédiée à l'adsorption reçoit le flux gazeux d'alimentation,
- la zone dédiée à la régénération reçoit un flux gazeux de régénération, et
- de manière continue la zone dédiée à l'adsorption devient la zone dédiée à la régénération et inversement la zone dédiée à la régénération devient la zone dédiée à l'adsorption par rotation de la roue d'adsorbant.
10. Procédé de purification selon l'une des revendications 8 ou 9, caractérisé en ce qu'on récupère en sortie de l'adsorbeur de configuration radiale centripète un flux épuré et un flux résiduel.
1 1. Procédé de purification selon la revendication 10, caractérisé en ce que le flux épuré ou le flux résiduel est utilisé comme flux de régénération de l'adsorbeur de configuration radiale centripète.
12. Procédé de purification selon l'une des revendications 9 à 1 1 , caractérisé en ce que ledit procédé est un VSA 02.
13. Procédé de purification selon la revendication 12, caractérisé en ce que ledit procédé traite un débit d'air d'au moins 10000 Nm3/h.
PCT/FR2015/051992 2014-08-01 2015-07-20 Adsorbeur avec secheur rotatif WO2016016543A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15751050.4A EP3174618A1 (fr) 2014-08-01 2015-07-20 Adsorbeur avec secheur rotatif
CN201580050049.0A CN107073383A (zh) 2014-08-01 2015-07-20 具有旋转式干燥器的吸附器
US15/500,832 US10413859B2 (en) 2014-08-01 2015-07-20 Adsorber with rotary dryer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1457481 2014-08-01
FR1457481A FR3024376B1 (fr) 2014-08-01 2014-08-01 Adsorbeur avec secheur rotatif

Publications (1)

Publication Number Publication Date
WO2016016543A1 true WO2016016543A1 (fr) 2016-02-04

Family

ID=51862445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051992 WO2016016543A1 (fr) 2014-08-01 2015-07-20 Adsorbeur avec secheur rotatif

Country Status (5)

Country Link
US (1) US10413859B2 (fr)
EP (1) EP3174618A1 (fr)
CN (1) CN107073383A (fr)
FR (1) FR3024376B1 (fr)
WO (1) WO2016016543A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3093008B1 (fr) 2019-02-21 2021-01-22 Air Liquide Installation et procédé de séparation des gaz de l’air à basse pression
FR3093169B1 (fr) * 2019-02-21 2021-01-22 Air Liquide Installation et procédé de séparation des gaz de l’air mettant en œuvre un adsorbeur de forme parallélépipèdique
FR3093009B1 (fr) * 2019-02-21 2021-07-23 Air Liquide Procédé et installation de purification d’un flux gazeux de débit élevé
CN110792428A (zh) * 2019-10-30 2020-02-14 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 一种干燥剂封装装置
CN113926289B (zh) * 2021-10-21 2023-04-28 中船(邯郸)派瑞特种气体股份有限公司 一种分析电解法制备三氟化氮粗气成分用的干燥装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043418A1 (fr) * 1998-02-27 1999-09-02 Praxair Technology, Inc. Procede de separation de gaz par adsorption modulee en pression effectue a l'aide d'adsorbants a haute diffusivite intrinseque et a faibles rapports de pressions
WO2000076631A1 (fr) * 1999-06-10 2000-12-21 Questair Technologies Inc. Systeme a etages multiples servant a separer des gaz par adsorption
EP1103525A1 (fr) * 1999-11-25 2001-05-30 Tosoh Corporation Moulage de zéolithe X sans liant de haute pureé à faible teneur en silice et procédé pour la séparation de gaz l' utilisant
US20050217481A1 (en) * 2004-03-31 2005-10-06 Dunne Stephen R Rotary adsorbent contactors for drying, purification and separation of gases

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19746698C2 (de) * 1997-10-22 1999-12-30 Linde Ag Reaktor
US7111059B1 (en) * 2000-11-10 2006-09-19 Microsoft Corporation System for gathering and aggregating operational metrics
EP1417995A1 (fr) * 2002-10-30 2004-05-12 Air Products And Chemicals, Inc. Procédé et dispositif d'adsorption d'oxyde nitreux d'un courant gazeux d'alimentation
JP4847118B2 (ja) * 2005-06-27 2011-12-28 システム エンジ サービス株式会社 希薄な揮発性炭化水素を含む大量の排ガス浄化方法
FR2938451B1 (fr) * 2008-11-18 2019-11-01 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Adsorbeurs radiaux monolits en serie
JP5067507B2 (ja) * 2009-05-22 2012-11-07 ダイキン工業株式会社 流体処理装置および流体
TW201203129A (en) * 2010-07-09 2012-01-16 Primax Electronics Ltd Image pickup system
US8313561B2 (en) * 2010-10-05 2012-11-20 Praxair Technology, Inc. Radial bed vessels having uniform flow distribution
US9314731B2 (en) * 2013-11-20 2016-04-19 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude RTSA method using adsorbent structure for CO2 capture from low pressure and low concentration sources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043418A1 (fr) * 1998-02-27 1999-09-02 Praxair Technology, Inc. Procede de separation de gaz par adsorption modulee en pression effectue a l'aide d'adsorbants a haute diffusivite intrinseque et a faibles rapports de pressions
WO2000076631A1 (fr) * 1999-06-10 2000-12-21 Questair Technologies Inc. Systeme a etages multiples servant a separer des gaz par adsorption
EP1103525A1 (fr) * 1999-11-25 2001-05-30 Tosoh Corporation Moulage de zéolithe X sans liant de haute pureé à faible teneur en silice et procédé pour la séparation de gaz l' utilisant
US20050217481A1 (en) * 2004-03-31 2005-10-06 Dunne Stephen R Rotary adsorbent contactors for drying, purification and separation of gases

Also Published As

Publication number Publication date
FR3024376B1 (fr) 2020-07-17
FR3024376A1 (fr) 2016-02-05
EP3174618A1 (fr) 2017-06-07
US10413859B2 (en) 2019-09-17
CN107073383A (zh) 2017-08-18
US20170216760A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
WO2016016543A1 (fr) Adsorbeur avec secheur rotatif
EP2129449B1 (fr) Procédé et installation de purification ou de séparation utilisant plusieurs adsorbeurs décalés en phase
FR2938451B1 (fr) Adsorbeurs radiaux monolits en serie
EP0938920A1 (fr) Procédé et dispositif de purification de gaz par adsorption a lits horizontaux fixes
WO2005000447A1 (fr) Procede de prepurification d'air par cycle tsa accelere
EP0655941A1 (fr) Procede et dispositif de separation de composants d'un gaz par adsorption
EP3122439B1 (fr) Installation et procede de purification par adsorption d'un flux gazeux comprenant une impurete corrosive
WO2020169901A1 (fr) Installation et procédé de séparation des gaz de l'air à basse pression
WO2020169900A1 (fr) Installation et procédé de séparation des gaz de l'air mettant en œuvre un adsorbeur de forme parallélépipédique
WO2013117827A1 (fr) Adsorbeur constitué de plusieurs contacteurs à passage parallèles
WO2013156697A1 (fr) « adsorbeur radial comportant un lit d'adsorbant structuré»
EP3274074B1 (fr) Procédé de production d'oxygène par vpsa comprenant quatre adsorbeurs
EP2704815A1 (fr) Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée
FR2909899A1 (fr) Adsorbeurs radiaux installes en parallele
EP3274073B1 (fr) Procédé de production d'oxygène par vpsa
FR3024375A1 (fr) (v) psa o2 traitant un flux gazeux sec enrichi en o2
EP3266511B1 (fr) Procédé de production d'oxygène de type vsa avec régénération périodique
EP3347117A1 (fr) Procédé et installation d'épuration d'air au moyen d'une roue enthalpique et d'une roue d'adsorption
EP4052776A1 (fr) Adsorbeur radial à circulation radiale d'un gaz
FR2967083A1 (fr) Procede de purification d'un flux gazeux mettant en œuvre un contacteur a passages paralleles dans un cycle psa super-rapide
EP4039354A1 (fr) Purification de flux gazeux par adsorption avec pré-régénération en boucle fermée
FR3063438A1 (fr) Sechage d'un flux d'air au moyen d'une membrane d'oxyde de graphene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751050

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015751050

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15500832

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE