EP0655941A1 - Procede et dispositif de separation de composants d'un gaz par adsorption - Google Patents
Procede et dispositif de separation de composants d'un gaz par adsorptionInfo
- Publication number
- EP0655941A1 EP0655941A1 EP93918807A EP93918807A EP0655941A1 EP 0655941 A1 EP0655941 A1 EP 0655941A1 EP 93918807 A EP93918807 A EP 93918807A EP 93918807 A EP93918807 A EP 93918807A EP 0655941 A1 EP0655941 A1 EP 0655941A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- compartment
- treated
- components
- compartments
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
- B01D53/0446—Means for feeding or distributing gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/102—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/12—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/40—Further details for adsorption processes and devices
- B01D2259/414—Further details for adsorption processes and devices using different types of adsorbents
- B01D2259/4141—Further details for adsorption processes and devices using different types of adsorbents within a single bed
- B01D2259/4145—Further details for adsorption processes and devices using different types of adsorbents within a single bed arranged in series
- B01D2259/4148—Multiple layers positioned apart from each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/0407—Constructional details of adsorbing systems
- B01D53/0431—Beds with radial gas flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/261—Drying gases or vapours by adsorption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to a method of separating components of a gas by adsorption.
- Current state of the art
- the cryogenic technique is applied for very high quantities of gas to be treated. These are high-tech centralized installations due to the extremely low temperatures to be reached in order to obtain the liquefaction necessary for the separation of the components from the gas to be treated.
- the cryogenic technique has the significant drawbacks of having many exchangers and devices operating at very low temperatures (-100 to -190 ° C) and of consuming a great deal of energy.
- This type of process is costly in investment: to obtain a sufficient return, it is necessary to build very large centralized units in order to benefit from the "size effect" and it is necessary to deliver the pure gas to the users by means of a wide network of canalisa- tions, or by transporting this gas in liquid form and this requires very expensive specific means.
- This known PSA process comprises (FIG. 1) two or more reactors A and B filled with adsorbent mass, a gas compressor 15 which supplies the reactor A with gas after cooling in an exchanger 106 by opening the valve 101.
- the gas to be separated into its components passes through the reactor A, the adsorbent material being chosen to preferentially retain one or more components of the air (H20, N2 for example).
- the gas gradually depletes these components until they are almost completely eliminated.
- the chosen component oxygen for example
- the components not chosen are adsorbed and accumulate in the adsorbent mass which is rapidly saturated. It is therefore necessary to regenerate the adsorbent. To avoid stopping production during regeneration, a second or more reactors operating alternately or substantially simultaneously are required. While the component to be extracted (N2 for example) is adsorbed in reactor A, the same adsorbed component is desorbed in the mass of reactor B. To this end, reactor B isolated from the reactor A by closing of valves 111 and 113 is subjected to a pressure drop when opening a valve 112, LEMENT the adsorbed gas being extracted by a vacuum created by the vacuum pump 6. The adsorbed gas is thus progressively evacuated from the adsorbent mass by the effect of pressure change.
- the adsorbent mass of the reactor A is saturated and that of the reactor B is regenerated, and the gas circuits are inverted.
- the fresh gas is sent to reactor B and the desorption is carried out in reactor A by reversing the valves 101, 102, 111, ' 112, 103, 113.
- the residual gases contained in the gases are evacuated reactors, by reverse sweeping of pure gas (oxygen for example) by means of valves 104 and 114.
- the known PSA process described above although of fairly recent development, has the drawback of comprising a large number of operating valves very frequent, i.e. 500,000 operations per year. This requires the use of very high quality materials and an efficient maintenance service. The high number of reversal operations imposes a limit diameter of the valves, and consequently a limited gas treatment capacity.
- energy consumption although lower compared to the cryogenic technique, is still very high.
- Patent application EP-A-0 512 534 filed on 07.05.92 describes a P.S.A. system. composed of a fixed or mobile reactor, divided into compartments (2 to 8) and fed by one or two horizontal rotary flat valves rotating between fixed plates.
- the present invention aims to remedy the drawbacks of the techniques, methods and systems described above and to provide a process which is particularly economical, both in terms of investment and consumption, and which makes it possible to use separation equipment.
- gas of any size from 50 to 20,000 ⁇ v '/ h of oxygen production for example
- valves devices with high wear intensity
- the separation method according to the invention consists, in an enclosure divided into the same separate, sealed compartments which are each lined with an adsorbent material chosen as a function of the gas to be treated and which are each arranged to temporarily allow the admission of the gas to be sorted and the evacuation of at least one of the selected components of this gas while the other component (s) are adsorbed by the aforementioned material, to admit the gas to be treated in one of the compartments until a determined pressure is reached while in the following compartments and in order, from the one closest to said compartment where the gas is pressurized, the operations are carried out following: one admits, in at least one compartment, of the gas to be treated and one authorizes the escape therefrom of the aforementioned chosen component, one lets, in the following compartment, drop the pressure to proceed natu actually a partial desorption of the non-selected components of the gas, a rinsing fluid is injected into the last compartment to ensure the final desorption of the aforementioned material.
- At least one additional compartment is provided, between the compartment where the pressure is allowed to drop and the compartment where the rinsing fluid is injected, in which a vacuum is created.
- an additional compartment is provided, between the compartment in which there is a vacuum and the compartment in which the gas to be treated is placed ⁇ : ⁇ pressure, in which naturally accepts the gas to be treated.
- ⁇ pressure in which naturally accepts the gas to be treated.
- the energy produced by the above-mentioned pressure drop is recovered.
- the invention also relates to a device for implementing the above method.
- this device comprises similar compartments, with double bottom, which are separate, sealed and each lined with at least one same adsorbent material resting on the upper bottom and which are each provided with two orifices made in a wall of the compartment and selectively intended for the passage of the gas to be treated, its components and the rinsing fluid, one of the orifices being disposed between the two bottoms and the other at the level of the material adsorbed, a passage being provided in the upper bottom and communicating with a space in the same compartment situated opposite the aforesaid orifices and delimited by a grid extending transversely to the upper bottom, a second grid being arranged substantially parallel to the wall having the two aforementioned orifices and being arranged close to the latter in the compartment, the adsorbent material being held between these two grids, said compartments being fixed and regularly distributed around distribution means comprising a distributor cylinder arranged to be able to rotate around its axis in order to cooperate in turn tower with the afore
- FIG. 1 schematically represents the system for implementing the P. S.A. method as described above.
- Figure 2 is a schematic representation in elevation and in axial section, along line II-II of Figure 3, of a device according to the invention- tion for the implementation of the process according to the invention.
- FIG. 3 shows a cross section of said device at the location of line III-III of FIG. 2.
- FIGS. 4 to 11 each show a cross section of said device at the location of the respective lines IV-IV to XI-XI of FIG. 2.
- FIG. 12 shows in section and in elevation, with broken lines, an enlarged detail of FIG. 2, in order to explain an arrangement of O-ring seals.
- Figures 13 and 14 each show in elevation and in development, with broken lines, an enlarged detail of Figure 2, seen according to arrows respec ⁇ tive XIII or XIV, on the periphery of the distributor cylinder.
- the method and its implementation device according to the invention are characterized inter alia by the continuity of operation, by the absence of means for opening and closing the passage of gases comprising organs requiring maintenance such as usual valves, and by the possibility of producing units of any size (50 to 20,000 m 3 / h of oxygen for example), leading to an ever lower production cost.
- the method and its implementation device according to the invention can be used in multiple applications indicated below without limitation: production of industrial or medical oxygen or nitrogen from ambient air (depending on the nature of the adsorbent), separation of carbon dioxide from natural gas, production of pure hydrogen from hydrogenated gas.
- the gas separation process according to the invention is based on the preferential adsorption of the components of the gas on adsorbent and it works by periodically changing the pressure to ensure the various phases required, ie : - pressurization, adsorption and emission of pure gas, decompression and partial desorption, preferably with energy recovery, vacuum and final desorption, - vacuum recovery, possibly with energy recovery.
- the device 100 for implementing the method of the invention is made up of a fixed closed cylindrical or polygonal envelope 1 which is the enclosure 1 of the adsorption reactor comprising an internal cylindrical duct 2 provided with gas passage openings 3 and 4 (preferably one of each per compartment).
- a rotary tubular distributor or distributor cylinder 5 supplies the enclosure 1 with raw gas and makes it possible to evacuate the desorbed gas during decompression by vacuum and possibly by vacuum produced by vacuum pump 6, 66.
- the enclosure is divided into compartments 27 having the form of sectors of a circle or of a polygon 27 in cross section, represented in FIG. 3 and separated from each other by vertical, waterproof walls 28.
- Each compartment 27 is filled with at least one adsorbent material suitable for the nature of the gas to be extracted: a desiccant 7 and / or a zeolite 8 by example, or even other specific adsorption masses. Different adsorbent materials 7, 8 are preferably separated by one or more grids (9).
- each compartment 27 is provided with an inlet opening 3 for raw gas, this opening 3 also being intended for discharging the gas during desorp ⁇ tion from the mass by the effect of pressure drop.
- a sheet 10 fixed on the same wall 2 inside the enclosure 1 forms with the bottom 99 of the enclosure 1 a double bottom and makes it possible to direct the passage of the incoming raw gas (arrow 98) or the desorbed gas outgoing (arrow 97) from the compartments 27 towards, or coming from the internal periphery of the enclosure 1, in order to ensure a radial passage of the gases not only between this double bottom between 10 and 99 but especially through the mass or masses 7, 8 (arrow 96 during absorption and 95 during desorption).
- this sheet 10 On this sheet 10 are fixed grids 11, 9, 12 for the peripheral distribution of the gases and for retaining the adsorbent masses 7, 8 without mixing them.
- a first adsorbent mass intended to adsorb a first set of gas components, a desiccant for example, is represented by 7 and is placed between the grids 11 and 9.
- a second adsorbent material intended to specifically adsorb a second component of the gas is shown in 8 (special zeolite or activated carbon for example) and is placed between the grids 9 and 12. It is also possible to provide at least a third type of specific adsorbent mass for extract a third component from the gas, this is not shown in the figures.
- the same wall 2 of the enclosure 1 is provided with evacuation orifices 4 for the purified gas, or component selected, arranged on the internal cylinder 2. The opening and closing of these orifices is controlled by the rotary distributor 5.
- the rotary distributor 5 is intended to transfer the gases into the various appropriate compartments 27, either the raw gas or the desorbed gases extracted from the adsorbent masses 7, 8, or the purified gas.
- This distributor is also a means of transferring the various gases coming from or to the external connections, for example a raw gas blower 15, energy recovery turbines 16, one or more vacuum pumps 6, 66.
- the rotary distributor 5 is provided with ports 33, 34 intended for the flow of gases and located inside the enclosure 1 and others located outside the enclosure 1 for the routing gas exté ⁇ (see Figure 2 and Figures 4 to 11).
- the rotary distributor 5 is also provided with gas flow channels a, b, c, d, e, f, (FIGS. 3 and 4 to 11) formed along the axis of the distributor 5 and ensuring the selective passage of the gas to their destination.
- the rotary cylindrical distributor 5 is provided with O-rings 13 and with sealing segments 14 shown in FIGS. 2 and 12 to 1.
- the gas leaks are thus eliminated both in the enclosure 1 and in the external part of the above distribution means connected to the outside, and this despite the play existing between the internal fixed cylinder 2 and the rotary distributor 5 .
- the rotary distributor 5 is driven in a rotational movement, at adjustable speed, for example between 0.2 and 5 revolutions / minute, by means of an electric or pneumatic motor 23 according to a continuous or sequential mode of rotation (not step by step).
- the system described above can be simplified by reducing the number of compartments, i.e.
- the fan 15 is driven by an electric motor 80 to the shaft of which the energy recovery turbine 16A is also coupled.
- vacuum pumps 6, 66 are driven for example by an electric motor 81 to the shaft of which the energy recovery turbine 16B can be coupled. Operation of the method and device according to the invention.
- the raw gas (air for example) is brought under pressure and at ambient temperature from the blower 15 to the base of the reactor 1 where it accesses the rotary distributor 5 via the orifices 17 (FIG. 2) and the internal channel a (FIG. 3 and Figure 6).
- the raw gas is distributed in a number of compartments 27, four for example through the orifices provided in the distributor 5 (orifices 33 in Figures 2 and 5).
- the raw gas is oriented inside the compartments 27 in the adsorption phase thanks to the plate
- the gas is distributed in a first adsorbent mass 7 ((drying for example) by means of a grid 11 radially from the outside to the inside of the reactor. tor (arrows 96) and the gas gets rid of a first component (humidity for example) then it passes through a special adsorbent mass 8 (zeolite or activated carbon), going towards the axis of the reactor 1.
- adsorbent mass 8 zeolite or activated carbon
- the gas thus purified (oxygen for example) is collected in the central part of the reactor 1 between the grid 12 and the inner fixed cylinder 2. It is directed towards the other end of the reactor, for example upwards, through the orifices 4 and the openings 44 uncovered of the rotary distributor 5 (see section of FIG. 4) and situated to the right of the channel a (FIG. 3) but opening into a channel g leading to the outlet of the enclosure 1, along arrow 94 (the channel g being separated from the other channels by a watertight radial partition 50).
- the pure gas is thus evacuated outside the enclosure 1 (at 93) and transferred to use. It should be noted that when four compartments 27 are connected at the same time to the channel a for their pressurization with the gas to be treated (orifices 17, FIG. 6), only three of these compartments 27 are connected to the channel g ( orifices 44a, FIG. 4), the remaining compartment 27 being first pressurized without the possibility of escaping the chosen gas or component. Multiple role of the rotary distributor 5
- compartment 27 is decomorimated to atmospheric pressure by channel b, Figures 3 and 7 (port 18).
- a next compartment 27 is placed under partial vacuum by the channel c (orifice 19, FIG. 8).
- a next compartment 27 is placed under final vacuum by the channel d, Figures 3 and 9 (orifice 20).
- a following compartment 27 is maintained under vacuum and swept by a stream of gas or of pure component chosen to eliminate any trace of absorbed gas, via the channel e, FIGS. 3 and 10 (orifice 21).
- the gases thus desorbed are discharged into the atmosphere in the distributor 5, through various orifices 18, 19, 20, 21 in FIG. 2 and in FIGS. 4 to 11 and by the energy recovery machines 16 (A and B) or the pumps empty 6, 66.
- a last compartment 27, previously under vacuum, can be naturally filled with atmospheric raw gas via the channel f (FIG. 3) and the orifice 22 (FIGS. 2 and 11).
- This circuit can be provided with an energy recovery turbine 16B actuated by the natural flow of this gas.
- the central rotary distributor 5, therefore allows each compartment 27 to carry out separately and successively each of the operations required by the method, ie admission of raw gas (orifice 22, channel f) uncompressed with recovery of energy by the ecou ⁇ Lement filling the vacuum prevailing in the corresponding compartment 27, compression (by the orifices 17, channel a), absorption of gas and production of pure gas (leaving by the orifices 44, channel g), partial decompression and recovery of the energy of gas absorbed under pressure (via orifice 18, channel b),
- the speed of rotation of the rotary distributor 5 is adjustable, from 0.2 to 5 revolutions / minute, either according to a continuous rhythm, or step by step and allows the process to be optimized by its gas production capacity, by the quality of the pure gas, by the quantity of absorbent mass, etc.
- the adsorption period of a compartment 27 is short-lived: 10 seconds to 1 minute.
- the distributor 5 having made a rotational movement, the supply of raw gas and the evacuation of pure gas are interrupted by closing the orifices 3 in communication with the sector a of the distributor 5 (FIG. 3) and the orifice 4.
- the compartment is then decompressed via the channel b (FIG. 3) of the distributor 5 and there is partial desorption, the gas being evacuated to the atmosphere via the orifice 18 (FIG. 2), possibly passing through a energy recovery turbine 16 ( Figure 2).
- the vacuum is carried out in one or two stages via the orifices 3, the channels c, d, of the distributor 5 (FIG. 3) of the orifices 19, 20 ( Figure 2) and vacuum pumps 6 and 66. In this operation, all the adsorbed gas
- the total adsorbed gas is then removed by purging with pure gas, by injection of this gas via orifice 4 (figure 2) and the calibrated purge orifice 44b of the distributor 5 ( Figures 2 and 4), the compartment 27 being purged, its orifice 3 ( Figure 2) the channel e of the distributor ( Figure 3) the orifice 21 ( Figures 2 and 10), the vacuum pump 66.
- an expansion turbine 16 (figure 2) which recovers the decompression energy and one can split the vacuum level into two or more circuits and vacuum pumps 6, 66 ( Figure 2).
- the vacuum energy is recovered by incorporating raw gas (atmospheric air for example) via the orifice 22 of the rotary distributor 5, the channel f ( Figures 3 and 11) and ori ⁇ fice 3. This operation saves an amount of raw gas that must be compressed otherwise.
- the flow rates of the gases passing through the absorption masses 7, 8 are progressively reduced as the absorption reaction progresses, for example: 10 m 3 of raw air at the inlet, 1 m 3 d pure oxygen at the outlet.
- the device may comprise only one enclosure 1 of simple construction; in addition, it does not include equipment in devices with frequent operations and susceptible to wear (unlike the valves of the known PSA units described above).
- the process according to the invention and its technical implementation have characteristics making it possible to manufacture gas separators of any capacity, for example 50 to 20,000 m J / h.
- a device may be able to operate in a flow range from 1 to 6 by adjusting the speed of rotation of the distributor 5.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Procédé de séparation de composants d'un gaz par adsorption, consistant, dans une enceinte (1) divisée en mêmes compartiments (27) séparés, étanches qui sont garnis chacun d'une matière adsorbante (7, 8) choisie en fonction du gaz à traiter et qui sont agencés chacun pour temporairement autoriser l'admission du gaz à traiter et l'évacuation d'au moins un des composants choisis de ce gaz tandis que le ou les autres composants de ce dernier sont adsorbés par la matière (7, 8) susdite, à admettre le gaz à traiter dans un des compartiments (27) jusqu'à ce qu'une pression déterminée soit atteinte pendant que dans les compartiments (27) suivants on admet, dans au moins un compartiment (27), du gaz à traiter et on y autorise l'échappement du composant choisi, on laisse, dans un compartiment (27) suivant, chuter la pression pour procéder à une désorption partielle du ou des composants non choisis du gaz, on injecte, dans le premier compartiment, un fluide de rinçage pour assurer la désorption finale, et dispositif pour la mise en oeuvre du procédé.
Description
"Procédé et dispositif de séparation de composants d'un gaz par adsorption"
La présente invention concerne un procédé de séparation de composants d'un gaz par adsorption. Etat actuel de la technique
La séparation des gaz est réalisée par les techniques connues suivantes : cryogénie, adsorption sélective des composants du gaz sur adsorbant, en procédant par cycles alternés dans deux ou plusieurs réacteurs fonctionnant chacun en adsorption et desorption successives, par effet de changement de température (T.S.A. = Température Switch Adsorption) , ou par changement de pression (P.S.A. = Pressure Switch Adsorption) .
La technique cryogénique est appliquée pour des quantités très élevées de gaz à traiter. Il s'agit d'installations centralisées de haute technologie en raison des températures extrêmement basses à atteindre pour obtenir la liquéfaction nécessaire à la séparation des composants du gaz à traiter.
La technique cryogénique a les inconvénients importants de comporter de nombreux échangeurs et appareils fonctionnant à très basse température (-100 à -190°C) et d'être grande consommatrice d'énergie. Ce type de procédé est coûteux en investissement : pour obtenir un rendement suffisant, il faut construire de très grandes unités centralisées afin de bénéficier de "l'effet de taille" et il faut livrer le gaz pur aux utilisateurs au moyen d'un réseau étendu de canalisa-
tions, ou par transport de ce gaz sous forme liquide et cela nécessite des moyens spécifiques très onéreux.
Le procédé connu de type P.S.A. est basé sur le système représenté à la figure 1 et est en voie de développement depuis 1970. Ce procédé et les moyens de mise en oeuvre de ce dernier sont décrits ci-dessous (voir par exemple le brevet britannique 1.150.346 déposé le 22.09.1966) .
Ce procédé P.S.A. connu comporte (figure 1) deux ou plusieurs réacteurs A et B remplis de masse adsorbante, un compresseur de gaz 15 qui alimente le réacteur A en gaz après refroidissement dans un échan- geur 106 par ouverture de la vanne 101. Le gaz à séparer en ses composants (par exemple de l'air dont on veut tirer l'oxygène) traverse le réacteur A, la matière adsorbante étant choisie pour retenir préférentiellement un ou des composants de l'air (H20, N2 par exemple). Le gaz s'appauvrit progressivement en ces composants jusqu'à leur élimination quasi totale. Le composant choisi (oxygène par exemple) quitte le réacteur A via la vanne 103 vers l'utilisation 108. Dans l'exemple choisi, c'est donc un gaz débarrassé de son humidité et de l'azote qui sort du réacteur A, c'est-à-dire un gaz constitué d'oxygène et d'argon. Les composants non choisis sont adsorbés et s'accumulent dans la masse adsorbante qui est rapidement saturée. Il est donc nécessaire de régénérer l'adsorbant. Pour éviter un arrêt de production pendant la régénération il faut un second ou plusieurs réacteurs fonctionnant en alternance ou sensiblement simultanément. Pendant que l'on procède à l'adsorption du composant à extraire (N2 par exemple) dans le réacteur A, on procède à la desorption de ce même composant adsorbé dans la masse du réacteur B. A cet effet, le réacteur B isolé du réacteur A par ferme- ture de vannes 111 et 113 est soumis à une baisse de pression lors de l'ouverture d'une vanne 112, éventuel-
lement le gaz adsorbé étant extrait par un vide créé par la pompe à vide 6. Le gaz adsorbé est ainsi progressive¬ ment évacué de la masse adsorbante par l'effet de changement de pression. Après un temps de fonctionnement assez court (1 à 3 minutes par exemple) , la masse adsorbante du réacteur A est saturée et celle du réac¬ teur B est régénérée, et on procède à l'inversion des circuits de gaz. Le gaz frais est envoyé au réacteur B et la desorption est réalisée dans le réacteur A par inversion des vannes 101, 102, 111, '112, 103, 113. De plus, il est procédé à l'évacuation des gaz résiduels contenus dans les réacteurs, par balayage inverse de gaz pur (oxygène par exemple) au moyen des vannes 104 et 114. Le procédé P.S.A. connu décrit ci-dessus, bien que de développement assez récent, a l'inconvénient de comporter un grand nombre de vannes à fonctionnements très fréquents, soit 500.000 manoeuvres par an. Cela nécessite la mise en oeuvre de matériels de très haute qualité et un service d'entretien efficace. Le nombre élevé d'opérations d'inversion impose un diamètre limite des vannes, et en conséquence une capacité de traitement de gaz limitée. De plus, la consommation d'énergie, bien que moindre vis-à-vis de la technique cryogénique, est encore très importante.
D'autres systèmes P.S.A. récents ont été élaborés. Par exemple la demande de brevet EP-A- 0 512 534 déposée le 07.05.92 décrit un système P.S.A. composé d'un réacteur fixe ou mobile, divisé en compar- timents (2 à 8) et alimenté par une ou deux vannes plates rotatives horizontales tournant entre des pla¬ teaux fixes.
Ce dernier système P.S.A. a entre autres comme inconvénients sensibles le fait de comporter une ou deux surfaces glissantes (vannes plates) placées entre des surfaces fixes et cela donne lieu à des fuites
de gaz importantes, et nécessite un entretien coûteux pour combattre l'érosion et l'usure de ces surfaces. Il faut aussi une force motrice importante pour entraîner ces dispositifs rotatifs. La consommation énergétique de ce système est aussi élevée que celle des procédés P.S.A. précédents. Description de l'invention
La présente invention a pour but de remédier aux inconvénients des techniques, procédés et systèmes décrits ci-dessus et de procurer un procédé qui est particulièrement économique, tant en investissement qu'en consommation, et qui permet d'utiliser des équipe¬ ments de séparation de gaz de toute taille (de 50 à 20.000 πv'/h de production d'oxygène par exemple) sans faire appel à des matériels spécifiques coûteux (cryogé¬ nie) , ni à des appareils à haute intensité d'usure (vannes) .
A cet effet, le procédé de séparation suivant l'invention consiste, dans une enceinte divisée en mêmes compartiments séparés, étanches qui sont garnis chacun d'une matière adsorbante choisie en fonction du gaz à traiter et qui sont agencés chacun pour temporai¬ rement autoriser l'admission du gaz à triiter et l'éva¬ cuation d'au moins un des composants choisis de ce gaz tandis que le ou les autres composants de ce dernier sont adsorbés par la matière susdite, à admettre le gaz à traiter dans un des compartiments jusqu'à ce qu'une pression déterminée soit atteinte pendant que dans les compartiments suivants et dans l'ordre, à partir de celui qui est le plus proche dudit compartiment où la mise sous pression du gaz s'effectue, on procède aux opérations suivantes : on admet, dans au moins un compartiment, du gaz à traiter et on y autorise l'échap¬ pement du composant choisi susdit, on laisse, dans le compartiment suivant, chuter la pression pour procéder naturellement à une desorption partielle du ou des
composants non choisis du gaz, on injecte, dans le dernier compartiment, un fluide de rinçage pour assurer la desorption finale de la matière précitée.
Suivant un mode de réalisation avantageux de l'invention, on prévoit au moins un compartiment supplé¬ mentaire, entre le compartiment où on laisse chuter la pression et le compartiment où on injecte le fluide de rinçage, dans lequel on fait le vide.
Suivant un mode de réalisation particulière- ment avantageux de l'invention, on prévoit un comparti¬ ment supplémentaire, entre le compartiment dans lequel on fait le vide et le compartiment dans lequel le gaz à traiter est mis Ξ: Ξ pression, dans lequel on admet naturellement le gaz à traiter. Suivant un mode préféré de l'invention, on récupère l'énergie produite par la chute de pression précitée. De plus, on peut avantageusement récupérer l'énergie produite lors de la mise sous pression du compartiment mis sous vide. L'invention concerne aussi un dispositif pour la mise en oeuvre du procédé susdit.
Suivant l'invention, ce dispositif comprend des compartiments semblables, à double fond, qui sont séparés, étanches et garnis chacun d'au moins une même matière adsorbante reposant sur le fond supérieur et qui sont pourvus chacun de deux orifices réalisés dans une paroi du compartiment et destinés sélectivement au passage du gaz à traiter, de ses composants et du fluide de rinçage, l'un des orifices étant disposé entre les deux fonds et l'autre au niveau de la matière adsorban¬ te, un passage étant prévu dans le fond supérieur et communiquant avec un espace du même compartiment situé à l'opposé des orifices susdits et délimité par une grille s ' étendant transversalement au fond supérieur, une seconde grille étant agencée sensiblement parallèle¬ ment à la paroi présentant les deux orifices susdits et
étant disposée à proximité de cette dernière dans le compartiment, la matière adsorbante étant maintenue entre ces deux grilles, lesdits compartiments étant fixes et régulièrement répartis autour de moyens de distribution comprenant un cylindre distributeur agencé pour pouvoir tourner autour de son axe afin de coopérer tour à tour avec les orifices susdits de chacun des compartiments pour permettre sélectivement le passage du gaz à traiter, des composants et du fluide de rinçage précités, des moyens étant prévus, d'une part, pour entraîner en rotation le cylindre distributeur soit en continu, soit pas à pas et, d'autre part, pour fournir aux moyens de distribution le gaz à traiter et le fluide de rinçage ainsi que pour permettre l'évacuation du composant choisi et du ou des composants non choisis, des moyens d'étanchéité étant prévus pour isoler sélec¬ tivement les uns des autres les éléments d'acheminement du gaz à traiter, du fluide de rinçage et des composants choisis et non choisis respectifs à travers les moyens de distribution et les compartiments.
D'autres détails et particularités de 1 ' invention ressortiront de la description des dessins qui sont annexés au présent mémoire et qui illustrent, à titre d'exemples non limitatifs, le procédé et une forme de réalisation particulière du dispositif suivant 1 ' invention. Brève description des figures
La figure 1 représente schématiquement le système pour la mise en oeuvre du procédé P. S.A. comme exposé ci-dessus.
La figure 2 est une représentation schémati¬ que en élévation et en section axiale, suivant la ligne II-II de la figure 3, d'un dispositif suivant l'inven-
tion pour la mise en oeuvre du procédé suivant 1' inven¬ tion.
La figure 3 montre une coupe transversale dudit dispositif à l'endroit de la ligne III-III de la figure 2.
Les figures 4 à 11 montrent chacune une section transversale dudit dispositif à l'endroit des lignes respectives IV-IV à XI-XI de la figure 2.
La figure 12 montre en section et en éléva- tion, avec brisures, un détail agrandi de la figure 2, pour expliciter un agencement de joints toriques d'étan¬ chéité.
Les figures 13 et 14 montrent chacune en élévation et en développement, avec brisures, un détail agrandi de la figure 2 , vu suivant les flèches respec¬ tives XIII ou XIV, sur la périphérie du cylindre distri¬ buteur.
Dans les différentes figures, les mêmes notations de référence désignent des éléments identiques ou analogues.
Le procédé et son dispositif de mise en oeuvre suivant 1 ' invention sont caractérisés entre autres par la continuité du fonctionnement, par l'ab¬ sence de moyens d'ouverture et de fermeture de passage des gaz comportant des organes nécessitant un entretien tels que des vannes usuelles, et par la possibilité de réaliser des unités de toute taille (50 à 20.000 m3/h d'oxygène par exemple) , conduisant à un coût de produc¬ tion toujours plus faible. Le procédé et son dispositif de mise en oeuvre suivant l'invention peuvent être utilisés dans de multiples applications indiquées ci-dessous à titre non limitatif : production d'oxygène industriel ou médical ou encore d'azote au départ d'air ambiant (suivant la nature de 1 'adsorbant) ,
séparation de gaz carbonique du gaz naturel, production d'hydrogène pur au départ de gaz hydrogé¬ né.
Le procédé de séparation de gaz suivant l'invention, expliqué en détail ci-après, est basé sur 1'adsorption préférentielle des composants du gaz sur adsorbant et il fonctionne par changement périodique de la pression pour assurer les différentes phases requi¬ ses, soit : - mise sous pression, adsorption et émission de gaz pur, décompression et desorption partielle, avec de préférence une récupération d'énergie, mise sous vide et desorption finale, - récupération du vide, avec éventuellement un récupé¬ ration d'énergie.
Suivant l'invention, le dispositif 100 pour la mise en oeuvre du procédé de l'invention est consti¬ tué d'une enveloppe cylindrique ou polygonale fermée fixe 1 qui est l'enceinte 1 du réacteur d'adsorption comportant un conduit cylindrique intérieur 2 muni d'ouvertures de passage de gaz 3 et 4 (de préférence une de chaque par compartiment) .
Un distributeur tubulaire rotatif ou cylin- dre distributeur 5 alimente l'enceinte 1 en gaz brut et permet d'évacuer le gaz désorbé en cours de décompres¬ sion par dépression et éventuellement par vide réalisé par pompe à vide 6, 66.
L'enceinte est divisée en compartiments 27 ayant la forme de secteurs de cercle ou de polygone 27 en section transversale, représentés à la figure 3 et séparés les uns des autres par des parois verticales 28 étanches.
Chaque compartiment 27 est rempli d'au moins une matière adsorbante appropriée à la nature du gaz à extraire : un desséchant 7 et/ou une zéolithe 8 par
exemple, ou encore d'autres masses d'adsorption spécifi¬ ques. Des matières adsorbantes différentes 7, 8 sont de préférence séparées par une ou plusieurs grilles (9) . Sur une paroi ou conduit cylindrique 2, chaque compartiment 27 est pourvu d'une ouverture d'admission 3 de gaz brut, cette ouverture 3 étant également destinée à évacuer le gaz en cours de desorp¬ tion de la masse par l'effet d'une chute de pression. Une tôle 10 fixée sur la même paroi 2 à l'intérieur de l'enceinte 1 forme avec le fond 99 de l'enceinte 1 un double fond et permet d'orienter le passage du gaz brut entrant (flèche 98) ou du gaz désorbé sortant (flèche 97) des compartiments 27 vers, ou en provenance de la périphérie interne de l'enceinte 1, afin d'assurer un passage radial des gaz non seulement entre ce double fond entre 10 et 99 mais surtout à travers la ou les masses 7, 8 (flèche 96 en cours d'absorption et 95 en cours de desorption) .
Sur cette tôle 10 sont fixées des grilles 11, 9, 12 de distribution périphérique des gaz et de retenue des masses adsorbantes 7, 8 sans mélange de celles-ci.
Une première masse adsorbante destinée à adsorber un premier ensemble de composants du gaz , un desséchant par exemple, est représentée par 7 et est placée entre les grilles 11 et 9.
Une seconde matière adsorbante destinée à adsorber spécifiquement un deuxième composant du gaz est représentée en 8 (zéolithe spéciale ou charbon actif par exemple) et est placée entre les grilles 9 et 12. On peut également prévoir au moins un troisième type de masse adsorbante spécifique pour extraire un troisième composant du gaz, ceci n'est pas représenté sur les figures. La même paroi 2 de l'enceinte 1 est pourvue d'orifices d'évacuation 4 du gaz épuré, ou composant
choisi, ménagés sur le cylindre interne 2. L'ouverture et la fermeture de ces orifices est contrôlée par le distributeur rotatif 5.
Le distributeur rotatif 5 est destiné à transférer les gaz dans les différents compartiments 27 appropriés, soit le gaz brut, soit les gaz désorbés extraits des masses adsorbantes 7, 8, ou le gaz épuré. Ce distributeur est également un moyen de transfert des différents gaz en provenance des ou vers les raccorde- ments extérieurs, par exemple une soufflante de gaz brut 15, des turbines de récupération d'énergie 16, une ou des pompes à vide 6, 66.
Le distributeur rotatif 5 est pourvu d'ori¬ fices 33, 34 destinés à l'écoulement des gaz et situés à l'intérieur de l'enceinte 1 et d'autres situés à l'extérieur de l'enceinte 1 pour l'acheminement exté¬ rieur des gaz (voir la figure 2 et les figures 4 à 11) . Le distributeur rotatif 5 est également pourvu de chenaux d'écoulement de gaz a, b, c, d, e, f, (figures 3 et 4 à 11) ménagés le long de l'axe du distributeur 5 et assurant le passage sélectif des gaz vers leur destination.
Afin d'assurer l'étanchéité du système, le distributeur cylindrique rotatif 5 est pourvu de joints toriques 13 et de segments d'étanchéité 14 représentés aux figures 2 et 12 à 1 . Les fuites de gaz sont ainsi éliminées tant dans l'enceinte 1 que dans la partie extérieure des moyens de distribution ci-dessus connec¬ tée à l'extérieur, et cela malgré le jeu existant entre le cylindre fixe intérieur 2 et le distributeur rotatif 5.
Le distributeur rotatif 5 est entraîné en un mouvement de rotation, à vitesse réglable, par exemple entre 0,2 et 5 tours/minute, au moyen d'un moteur élec- trique ou pneumatique 23 suivant un mode de rotation continu ou séquentiel (pas à pas) .
Le système décrit ci-dessus peut être simplifié par réduction du nombre de compartiments, soit
9 compartiments indiqués à la figure 3, par suppression de machines de récupération d'énergie 16, de pompes à vide 6, 66 et par simplification conséquente des dispo¬ sitifs prévus sur le distributeur rotatif 5. Il en résulte alors une réduction du nombre d'orifices, de chenaux et de joints. Il en résulte donc un équipement moins coûteux mais ayant une consommation énergétique augmentée, entre autre par absence de récupération d'énergie.
A titre d'exemple, pour diminuer la consom¬ mation en énergie, la soufflante 15 est entraînée par un moteur électrique 80 à l'arbre duquel est aussi accou- plée la turbine de récupération d'énergie 16A.
De plus, les pompes à vide 6, 66 sont entraînées par exemple par un moteur électrique 81 à l'arbre duquel peut être accouplée la turbine de récupé¬ ration d'énergie 16B. Fonctionnement des procédé et dispositif suivant l'in¬ vention.
Le gaz brut (air par exemple) est amené sous pression et à température ambiante en provenance de la soufflante 15 vers la base du réacteur 1 où il accède au distributeur rotatif 5 via les orifices 17 (figure 2) et le chenal interne a (figure 3 et figure 6) .
Le gaz brut est distribué dans un certain nombre de compartiments 27, quatre par exemple grâce aux orifices prévus dans le distributeur 5 (orifices 33 aux figures 2 et 5) .
Le gaz brut est orienté à 1 * intérieur des compartiments 27 en phase d'adsorption grâce au plateau
10 (figure 2) vers la périphérie du réacteur 1. Le gaz est distribué dans une première masse adsorbante 7, (desséchant par exemple) au moyen d'une grille 11 de façon radiale de l'extérieur vers l'intérieur du réac-
teur (flèches 96) et le gaz se débarrasse d'un premier composant (humidité par exemple) puis il traverse une masse adsorbante spéciale 8 (zéolithe ou charbon actif) , en se dirigeant vers 1 'axe du réacteur 1. Les diverses masses adsorbantes indiquées ci-dessus sont séparées par une grille 9. Le gaz brut se débarrasse alors par adsorption du composant de gaz à éliminer (azote par exemple dans le cas d'une production d'oxygène) . Le gaz ainsi purifié (oxygène par exemple) est recueilli dans la partie centrale du réacteur 1 entre la grille 12 et le cylindre fixe intérieur 2. Il est dirigé vers l'autre extrémité du réacteur, par exemple vers le haut, par les orifices 4 et les orifices 44 découverts du distributeur rotatif 5 (voir section de la figure 4) et situés au droit du chenal a (figure 3) mais débouchant dans un chenal g amenant à la sortie de l'enceinte 1, suivant la flèche 94 (le chenal g étant séparé des autres chenaux par une cloison radiale 50 étanche) .
Le gaz pur est ainsi évacué vers l'extérieur de l'enceinte 1 (en 93) et transféré vers l'utilisation. Il est à remarquer qu'au moment où quatre compartiments 27 sont reliés en même temps au chenal a pour leur mise sous pression avec le gaz à traiter (orifices 17, figure 6) , seulement trois de ces compartiments 27 sont reliés au chenal g (orifices 44a, figure 4) , le compartiment 27 restant étant d'abord mis sous pression sans possibilité d'échappement du gaz ou composant choisi. Rôle multiple du distributeur rotatif 5
Simultanément à l'injection de gaz brut dans un nombre défini de compartiments 27 (quatre par exem¬ ple) via le canal a (figures 3 à 11) , on procède à la décompression des compartiments 27 voisins par étapes successives. Par exemple on décomorime un compartiment 27 jusqu'à la pression atmosphérique par le chenal b,
figures 3 et 7 (orifice 18) . Un compartiment 27 suivant est mis sous vide partiel par le chenal c (orifice 19, figure 8) . Un compartiment 27 suivant est mis sous vide final par le chenal d, figures 3 et 9 (orifice 20) . En outre, un compartiment 27 suivant est maintenu sous vide et balayé par un courant de gaz ou de composant pur choisi pour éliminer toute trace de gaz absorbé, via le chenal e, figures 3 et 10 (orifice 21) .
Les gaz ainsi désorbés sont rejetés à l'atmosphère dans le distributeur 5, par différents orifices 18, 19, 20, 21 figure 2 et figures 4 à 11 et par les machines de récupération d'énergie 16 (A et B) ou les pompes à vide 6, 66.
Enfin, un dernier compartiment 27, préala- blement sous vide peut être rempli de façon naturelle de gaz brut atmosphérique via le chenal f (figure 3) et l'orifice 22 (figures 2 et 11) . Ce circuit peut être pourvu d'une turbine de récupération d'énergie 16B actionnée par l'écoulement naturel de ce gaz. Le distributeur rotatif central 5, permet donc à chaque compartiment 27 de réaliser séparément et successivement chacune des opérations requises par le procédé, soit admission de gaz brut (orifice 22, chenal f) non comprimé avec récupération de l'énergie par l'écou¬ lement comblant le vide régnant dans le compartiment 27 correspondant, compression (par les orifices 17, chenal a) , absorp¬ tion de gaz et production de gaz pur (sortant par les orifices 44, chenal g) , décompression partielle et récupération de l'énergie de gaz absorbé sous pression (via l'orifice 18, chenal b) ,
- décompression progressive en une ou deux étapes (via les orifices 19 et 20 et les chenaux respectifs c et
d) et desorption totale par l'intermédiaire des pompes à vide 6, 66, purge sous vide au moyen de gaz pur (orifices 44b et 21, chenaux respectifs g et e, dans le sens de g vers e) .
Comme déjà dit, la vitesse de rotation du distributeur rotatif 5 est réglable, de 0,2 à 5 tours/minute, soit suivant un rythme continu, soit pas à pas et permet d'optimaliser le procédé par sa capacité de production de gaz, par la qualité du gaz pur, par la quantité de masse absorbante, etc.
La période d'adsorption d'un compartiment 27 est de courte durée : 10 secondes à 1 minute. Après ce délai, le distributeur 5 ayant effectué un déplacement en rotation, l'alimentation en gaz brut et l'évacuation de gaz pur sont interrompus par obturation des orifices 3 en communication avec le secteur a du distributeur 5 (figure 3) et de l'orifice 4. Le compartiment est alors décomprimé via le chenal b (figure 3) du distributeur 5 et il y a desorption partielle, le gaz étant évacué à l'atmosphère via l'orifice 18 (figure 2) , éventuellement en passant par une turbine de récupération d'énergie 16 (figure 2) .
Après un temps de décompression partielle correspondant à la rotation du distributeur 5, on procède à la mise sous vide en une ou deux étapes via les orifices 3, les canaux c, d, du distributeur 5 (figure 3) des orifices 19, 20 (figure 2) et des pompes à vide 6 et 66. Dans cette opération, tout le gaz adsorbé
(azote par exemple) est progressivement éliminé par abaissement progressif de la pression dans le comparti¬ ment 27 correspondant.
On procède ensuite éventuellement à l'élimi- nation totale de gaz adsorbé par une purge au moyen de gaz pur, par injection de ce gaz via l'orifice 4 (figure
2) et l'orifice calibré de purge 44b du distributeur 5 (figures 2 et 4) , le compartiment 27 en cours de purge, son orifice 3 (figure 2) le chenal e du distributeur (figure 3) l'orifice 21 (figures 2 et 10), la pompe à vide 66.
Afin de minimiser la consommation d'énergie nécessaire pour obtenir le vide, on peut installer une turbine de détente 16 (figure 2) qui récupère l'énergie de décompression et on peut scinder le niveau de vide en deux ou plusieurs circuits et pompes à vide 6, 66 (figure 2) .
L'opération de mise sous vide et de purge étant terminée, il est procédé à la récupération de l'énergie de vide par incorporation de gaz brut (air atmosphérique par exemple) via l'orifice 22 du distribu¬ teur rotatif 5, le chenal f (figures 3 et 11) et l'ori¬ fice 3. Cette opération économise une quantité de gaz brut qu'il faut comprimer sinon.
Il faut remarquer que la production de gaz pur ainsi que l'ensemble des flux extérieurs sont continus.
Avantages du procédé et du dispositif suivant l'inven¬ tion
Les débits des gaz traversant les masses d'absorption 7, 8 sont progressivement diminués au fur et à mesure de l'avancement de la réaction d'absorption, exemple : 10 m3 d'air brut à l'entrée, 1 m3 d'oxygène pur à la sortie.
Le procédé et la technique proposés permet- tent de fonctionner avec une vitesse de gaz sensiblement constante dans la masse, grâce au trajet radial et à la section de passage progressivement diminuée du comparti¬ ment 27 qui a la forme géométrique d'un secteur de cercle en coupe transversale. Ceci permet d'optimaliser l'efficacité de la masse absorbante (minimum de masse) 7, 8.
Pour la mise en oeuvre du procédé suivant l'invention, le dispositif peut ne comprendre qu'une enceinte 1 de construction simple; de plus, il ne comporte pas d'équipement en appareils à fonctionnements fréquents et susceptibles d'usure (à l'opposé des vannes des unités PSA connues décrites ci-dessus) .
Le procédé marche en continu selon la rotation du distributeur 5.
Le procédé suivant 1 ' invention et sa mise en oeuvre technique ont des caractéristiques permettant de fabriquer des séparateurs de gaz de toute capacité, exemple 50 à 20.000 mJ/h. Un appareil peut être capable de fonctionner dans une gamme de débit de 1 à 6 par ajustage de la vitesse de rotation du distributeur 5.
La consommation d'énergie d'un séparateur de gaz suivant l'invention (alimentation des compresseur de gaz, pompe à vide...) est fortement diminuée par rapport à celle des unités de séparation connues précitées.
Le tableau ci-dessous en donne un exemple pour la production d'oxygène.
Il doit être entendu que la présente inven¬ tion n'est en aucune façon limitée aux modes et formes de réalisation décrites ci-dessus, et que bien des modifications peuvent y être apportées sans sortie du cadre de la présente invention.
Claims
1. Procédé de séparation de composants d'un gaz par adsorption, caractérisé en ce qu'il consiste, dans une enceinte (1) divisée en mêmes compartiments (27) séparés, étanches qui sont garnis chacun d'une matière adsorbante (7, 8) choisie en fonction du gaz à traiter et qui sont agencés chacun pour temporairement autoriser l'admission du gaz à traiter et l'évacuation d'au moins un des composants choisis de ce gaz tandis que le ou les autres composants de ce dernier sont adsorbés par la matière (7, 8) susdite, à admettre le gaz à traiter dans un des compartiments (27) jusqu'à ce qu'un pression déterminée soit atteinte pendant que dans les compartiments (27) suivants et dans l'ordre, à partir de celui qui est le plus proche dudit comparti¬ ment (27) où la mise sous pression du gaz s'effectue, on procède aux opérations suivantes : on admet, dans au moins un compartiment (27) , du gaz à traiter et on y autorise l'échappement du composant choisi susdit, on laisse, dans le compartiment (27) suivant, chuter la pression pour procéder naturellement à une desorption partielle du ou des composants non choisis du gaz, on injecte, dans le dernier compartiment, un fluide de rinçage pour assurer la desorption finale de la matière précitée.
2. Procédé suivant la revendication 1, caractérisé en ce qu'on prévoit au moins un compartiment (27) supplémentaire, entre le compartiment (27) où on laisse chuter la pression et le compartiment (27) où on injecte le fluide de rinçage, dans lequel on fait le vide.
3. Procédé suivant la revendication 2, caractérisé en ce qu'on prévoit un compartiment (27) supplémentaire, entre le compartiment (27) dans lequel on fait le vide et le compartiment (27) dans lequel le gaz à traiter est mis sous pression, dans lequel on admet naturellement le gaz à traiter.
4. Procédé suivant la revendication 1, caractérisé en ce qu'on récupère l'énergie produite par la chute de pression précitée.
5. Procédé suivant la revendication 3, caractérisé en ce qu'on récupère l'énergie produite lors de la mise sous pression du compartiment (27) mis sous vide.
6. Dispositif pour la mise en oeuvre du procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend des compartiments (27) semblables, à double fond (10, 99) , qui sont séparés, étanches et garnis chacun d'au moins une même matière adsorbante (7, 8) reposant sur le fond supérieur (10) et qui sont pourvus chacun de deux orifices (3, 4) réalisés dans une paroi (2) du compartiment (27) , et destinés sélectivement au passage du gaz à traiter, de ses composants et du fluide de rinçage, l'un des orifi- ces (3) étant disposé entre les deux fonds (10, 99) et l'autre au niveau de la matière adsorbante (7, 8) , un passage étant prévu dans le fond supérieur (10) et communiquant avec un espace du même compartiment (27) situé à l'opposé des orifices (3, 4) susdits et délimité par une grille (il) s 'étendant transversalement au fond supérieur (10) , une seconde grille (12) étant agencée sensiblement parallèlement à la paroi (2) présentant les deux orifices (3, 4) susdits et étant disposée à proxi¬ mité de cette dernière dans le compartiment (27) , la matière adsorbante (7, 8) étant maintenue entre ces deux grilles (11, 12) , lesdits compartiments (27) étant fixes et régulièrement répartis autour de moyens de distribu¬ tion comprenant un cylindre distributeur (5) agencé pour pouvoir tourner autour de son axe afin de coopérer tour à tour avec les orifices (3, 4) susdits de chacun des compartiments (27) pour permettre sélectivement le passage du gaz à traiter, des composants et du fluide de rinçage précités, des moyens (23) étant prévus, d'une part, pour entraîner en rotation le cylindre distribu¬ teur (5) soit en continu, soit pas à pas et, d'autre part, pour fournir aux moyens de distribution le gaz à traiter et le fluide de rinçage ainsi que pour permettre l'évacuation du composant choisi et du ou des composants non choisis, des moyens d'étanchéité (13, 14) étant prévus pour isoler sélectivement les uns des autres les éléments d'acheminement du gaz à traiter, du fluide de rinçage et des composants choisis et non choisis respec¬ tifs à travers les moyens de distribution et les compar¬ timents (27) .
7. Dispositif suivant la revendication 6, caractérisé en ce que le cylindre distributeur (5) est divisé en un nombre de chenaux longitudinaux (a à f) destinés au passage de gaz à traiter sous pression, du composant à décomprimer des composants désorbés vers la pompe à vide (6, 66) , du fluide de rinçage vers la pompe à vide (66) , de gaz à traiter admis naturellement et en ce qu'il est pourvu d'orifices (17 à 22, 33, 44) mettant sélectivement en communication ces chenaux (a à f) , d'une part, avec les compartiments (27) appropriés de l'enceinte (1) et, d'autre part, avec des canalisations fixes extérieures du gaz sous pression à traiter, du ou des composants non choisis à décharger à l'extérieur vers une turbine de récupération (16B) éventuelle, des composants non choisis à décharger vers une ou des pompes à vide (6, 66) , et du gaz à traiter à pression atmosphérique éventuellement au travers d'une turbine de récupération (16A) .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU88160 | 1992-08-18 | ||
LU88160A LU88160A1 (fr) | 1992-08-18 | 1992-08-18 | Procede et dispositif de separation de gaz par adsorption selective a pression variable |
PCT/BE1993/000053 WO1994004249A1 (fr) | 1992-08-18 | 1993-08-18 | Procede et dispositif de separation de composants d'un gaz par adsorption |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0655941A1 true EP0655941A1 (fr) | 1995-06-07 |
Family
ID=19731370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93918807A Withdrawn EP0655941A1 (fr) | 1992-08-18 | 1993-08-18 | Procede et dispositif de separation de composants d'un gaz par adsorption |
Country Status (5)
Country | Link |
---|---|
US (1) | US5632804A (fr) |
EP (1) | EP0655941A1 (fr) |
AU (1) | AU4936593A (fr) |
LU (1) | LU88160A1 (fr) |
WO (1) | WO1994004249A1 (fr) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE1008700A3 (fr) | 1994-09-21 | 1996-07-02 | Synergal Sa | Vanne. |
US5779771A (en) * | 1995-11-07 | 1998-07-14 | Calgon Carbon Corporation | Rotating flow distributor assembly for use in continuously distributing decontamination and regeneration fluid flow |
BE1010028A6 (fr) * | 1996-03-04 | 1997-11-04 | Tamis Moleculaires Pour La Pro | Procede et dispositif de separation selective d'au moins un composant d'un melange gazeux. |
SE517561C2 (sv) * | 1996-03-04 | 2002-06-18 | Aga Ab | Förfarande och anordning för framställning av en gas genom separation från en gasblandning |
USRE38493E1 (en) * | 1996-04-24 | 2004-04-13 | Questair Technologies Inc. | Flow regulated pressure swing adsorption system |
US6063161A (en) * | 1996-04-24 | 2000-05-16 | Sofinoy Societte Financiere D'innovation Inc. | Flow regulated pressure swing adsorption system |
US5814130A (en) * | 1996-09-27 | 1998-09-29 | The Boc Group, Inc. | Process and apparatus for gas separation |
US5814131A (en) * | 1996-09-27 | 1998-09-29 | The Boc Group, Inc. | Process and apparatus for gas separation |
US5807423A (en) * | 1996-09-27 | 1998-09-15 | The Boc Group, Inc. | Process and apparatus for gas separation |
US6056804A (en) * | 1997-06-30 | 2000-05-02 | Questor Industries Inc. | High frequency rotary pressure swing adsorption apparatus |
DE19746698C2 (de) * | 1997-10-22 | 1999-12-30 | Linde Ag | Reaktor |
US7094275B2 (en) * | 1997-12-01 | 2006-08-22 | Questair Technologies, Inc. | Modular pressure swing adsorption apparatus |
RU2217220C2 (ru) | 1997-12-01 | 2003-11-27 | Квестэйр Текнолоджис, Инк. | Модульное устройство адсорбции с колебанием давления |
US6143056A (en) * | 1998-11-19 | 2000-11-07 | Praxair Technology, Inc. | Rotary valve for two bed vacuum pressure swing absorption system |
US6253778B1 (en) | 1998-11-19 | 2001-07-03 | Praxair Technology, Inc. | Rotary valve |
US6086659A (en) * | 1999-01-29 | 2000-07-11 | Air Products And Chemicals, Inc. | Radial flow adsorption vessel |
AU5381200A (en) | 1999-06-09 | 2001-01-02 | Questair Technologies, Inc. | Rotary pressure swing adsorption apparatus |
ATE275435T1 (de) | 1999-06-10 | 2004-09-15 | Questair Technologies Inc | Chemischer reaktor mit druckwechseladsorption |
US6231644B1 (en) * | 1999-07-23 | 2001-05-15 | The Boc Group, Inc. | Air separation using monolith adsorbent bed |
US6521019B2 (en) | 1999-07-23 | 2003-02-18 | The Boc Group, Inc. | Air separation using monolith adsorbent bed |
US7250073B2 (en) | 1999-12-09 | 2007-07-31 | Questair Technologies, Inc. | Life support oxygen concentrator |
US6514319B2 (en) * | 1999-12-09 | 2003-02-04 | Questair Technologies Inc. | Life support oxygen concentrator |
CA2306311C (fr) | 2000-04-20 | 2007-04-10 | Quest Air Gases Inc. | Structures lamellees adsorbantes |
BE1014185A3 (fr) * | 2001-05-18 | 2003-06-03 | Ribesse Jacques | Procede et dispositif pour la separation de gaz par adsorption, en particulier pour la production d'oxygene industriel. |
DE10134904A1 (de) * | 2001-07-18 | 2003-02-06 | Tsu Tech Dienste Sicherheit Un | Apparat zur Durchführung eines aus mindestens zwei verfahrenstechnischen diskontinuierlichen Prozessen oder Prozeßschritten bestehenden verfahrenstechnisch zumindest nahezu kontinuierlichen Gesamtprozesses |
US6755895B2 (en) * | 2002-04-09 | 2004-06-29 | H2Gen Innovations, Inc. | Method and apparatus for pressure swing adsorption |
US6770120B2 (en) * | 2002-05-01 | 2004-08-03 | Praxair Technology, Inc. | Radial adsorption gas separation apparatus and method of use |
US7011693B2 (en) * | 2003-11-12 | 2006-03-14 | General Motors Corporation | Control of a hydrogen purifying pressure swing adsorption unit in fuel processor module for hydrogen generation |
US20050098034A1 (en) * | 2003-11-12 | 2005-05-12 | Gittleman Craig S. | Hydrogen purification process using pressure swing adsorption for fuel cell applications |
BE1015848A3 (fr) * | 2004-01-08 | 2005-10-04 | Jacques Ribesse | Distributeur rotatif fonctionnant en continu. |
US7354463B2 (en) * | 2004-12-17 | 2008-04-08 | Texaco Inc. | Apparatus and methods for producing hydrogen |
US7354464B2 (en) * | 2004-12-17 | 2008-04-08 | Texaco Inc. | Apparatus and method for producing hydrogen |
US7402287B2 (en) * | 2004-12-17 | 2008-07-22 | Texaco Inc. | Apparatus and methods for producing hydrogen |
WO2007031859A1 (fr) * | 2005-09-16 | 2007-03-22 | Tongaat Hulett Limited | Element de distribution |
ITMI20080115A1 (it) * | 2008-01-25 | 2009-07-26 | Polaris Srl | Apparecchio e metodo per distribuire una pluralita' di correnti di fluido attraverso una pluralita' di camere, in particolare per attuare processi di adsorbimento. |
US8808426B2 (en) * | 2012-09-04 | 2014-08-19 | Exxonmobil Research And Engineering Company | Increasing scales, capacities, and/or efficiencies in swing adsorption processes with hydrocarbon gas feeds |
EP2938425A4 (fr) | 2012-12-31 | 2016-11-23 | Inventys Thermal Technologies Inc | Système et procédé de séparation intégrée de gaz carbonique à partir de gaz de combustion |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL65498C (fr) * | 1931-12-03 | |||
US2204431A (en) * | 1936-02-14 | 1940-06-11 | Pittsburgh Res Corp | Adsorption apparatus and method |
FR1011378A (fr) * | 1949-01-27 | 1952-06-23 | Ateliers Et Chantiers De La Lo | Perfectionnement à la captation des vapeurs dans les milieux gazeux |
US2759560A (en) * | 1953-03-02 | 1956-08-21 | Jefferson Lake Sulphur Co | Method of removing water vapor and recovering condensable hydrocarbons from natural gas under high pressure |
US2751032A (en) * | 1954-11-09 | 1956-06-19 | Adsorption Res Corp | Fluid treating apparatus |
US2799363A (en) * | 1956-11-05 | 1957-07-16 | Jefferson Lake Sulphur Co | Cyclic adsorption process |
GB871242A (en) * | 1956-12-12 | 1961-06-21 | Croftshaw Eng | Improved adsorption apparatus |
US2861651A (en) * | 1957-10-07 | 1958-11-25 | Jefferson Lake Sulphur Co | Cyclic adsorption processes for recovery of h2s from natural gas employing two activation cycles |
DE1181674B (de) * | 1959-01-05 | 1964-11-19 | Dr Josef Heyes | Vorrichtung zur Trennung von Gas- oder Fluessigkeitsgemischen |
NL250983A (fr) * | 1959-05-02 | |||
US3231492A (en) * | 1962-05-16 | 1966-01-25 | Universal Oil Prod Co | Fluid-solid contacting process |
GB1150346A (en) * | 1965-10-18 | 1969-04-30 | Rimer Mfg Company Ltd | Method and apparatus for Drying or Fractionating Compressed Air or an Oxygen-Containing Gaseous Mixture |
US3504483A (en) * | 1967-09-08 | 1970-04-07 | Hitachi Ltd | Apparatus for the removal of sulfur oxides from waste gases |
JPS51136571A (en) * | 1975-05-21 | 1976-11-26 | Nittetsu Kakoki Kk | Solid-fluid contact apparatus |
GB1551732A (en) * | 1975-05-30 | 1979-08-30 | Boc Ltd | Gas separation |
GB2033777B (en) * | 1978-11-09 | 1983-05-05 | Air Prod & Chem | Separating oxygen and nitrogen from air by adsorption |
US4469494A (en) * | 1983-01-31 | 1984-09-04 | Kinetics Technology International Corporation | Disc operated gas purification system |
US4612022A (en) * | 1985-06-21 | 1986-09-16 | Progress Equities Incorporated | Process for increasing the concentration of one component in a multi-component _gaseous mixture |
DE68928556T2 (de) * | 1988-11-02 | 1998-04-30 | Colortronic Co | Lufttrockner mit Adsorptionsmittel |
US5112367A (en) * | 1989-11-20 | 1992-05-12 | Hill Charles C | Fluid fractionator |
US5057128A (en) * | 1990-07-03 | 1991-10-15 | Flakt, Inc. | Rotary adsorption assembly |
US5169414A (en) * | 1990-07-03 | 1992-12-08 | Flakt, Inc. | Rotary adsorption assembly |
US5298054A (en) * | 1990-10-01 | 1994-03-29 | Fmc Corporation | Pressure and temperature swing adsorption system |
FR2667801B1 (fr) * | 1990-10-11 | 1992-12-04 | Air Liquide | Procede et equipement de separation par adsorption d'au moins un constituant d'un melange gazeux. |
US5248325A (en) * | 1991-05-09 | 1993-09-28 | Mitsubishi Jukogyo Kabushiki Kaisha | Gas separating system and gas recovery system |
-
1992
- 1992-08-18 LU LU88160A patent/LU88160A1/fr unknown
-
1993
- 1993-08-18 AU AU49365/93A patent/AU4936593A/en not_active Abandoned
- 1993-08-18 EP EP93918807A patent/EP0655941A1/fr not_active Withdrawn
- 1993-08-18 US US08/387,747 patent/US5632804A/en not_active Expired - Fee Related
- 1993-08-18 WO PCT/BE1993/000053 patent/WO1994004249A1/fr not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO9404249A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU4936593A (en) | 1994-03-15 |
US5632804A (en) | 1997-05-27 |
WO1994004249A1 (fr) | 1994-03-03 |
LU88160A1 (fr) | 1993-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0655941A1 (fr) | Procede et dispositif de separation de composants d'un gaz par adsorption | |
EP0218660B1 (fr) | Procede et appareil de production d'ozone | |
EP0480840B1 (fr) | Procédé et équipement de séparation par adsorption d'au moins un constituant d'un mélange gazeux | |
EP0350373B1 (fr) | Procédé de traitement d'un mélange gazeux par adsorption | |
EP0798028B1 (fr) | Procédé de traitement d'un mélange de gaz par adsorption à variation de pression | |
EP1095689A1 (fr) | Installation de traitement cyclique de fluide par adsorption avec vannes à étanchéité améliorée | |
EP2129449A2 (fr) | Procédé de purification ou de séparation utilisant plusieurs adsorbeurs décalés en phase | |
EP0689862B1 (fr) | Procédé de traitement d'un mélange gazeux par adsorption à variation de pression | |
FR3024376A1 (fr) | Adsorbeur avec secheur rotatif | |
EP0325536B1 (fr) | Installation de dessiccation de gaz | |
BE897344Q (fr) | Procede d'absorption a pression alternee pour la decomposition ou la purification de melanges de gaz | |
EP1004343B1 (fr) | Procédé de séparation par absorption modulée en pression d'un mélange de gaz | |
BE1023605B1 (fr) | Procédé et appareil pour comprimer et sécher un gaz | |
EP2179776B1 (fr) | Repressurisation d'un VSA CO2 traitant un mélange gazeux comprenant un combustible | |
EP0940164A1 (fr) | Procédé et installation de séparation par adsorption d'un mélange gazeux | |
EP1714061B1 (fr) | Distributeur rotatif fonctionnant en continu | |
WO2002094417A1 (fr) | Procede et dispositif pour la separation de gaz par adsorption, en particulier pour la production d'oxygene industriel | |
EP0842691A1 (fr) | Procédé et installation de séparation de mélanges gazeux par adsorption à variation de pression | |
EP3274074B1 (fr) | Procédé de production d'oxygène par vpsa comprenant quatre adsorbeurs | |
BE1010028A6 (fr) | Procede et dispositif de separation selective d'au moins un composant d'un melange gazeux. | |
FR2719039A1 (fr) | Nouveau procédé de déshydratation d'alcool par adsorption/regénération sur tamis moléculaire, et installation pour sa mise en Óoeuvre. | |
FR2624759A1 (fr) | Procede de traitement d'un melange gazeux par adsorption | |
JP2020058989A (ja) | 気体精製装置及び気体精製方法 | |
FR2633846A1 (fr) | Procede de traitement d'un melange gazeux par adsorption a variation de pression | |
FR2776940A1 (fr) | Installation psa avec capacite tampon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950209 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19951013 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TAMOX SPRL |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 19980526 |