EP2704815A1 - Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée - Google Patents

Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée

Info

Publication number
EP2704815A1
EP2704815A1 EP12722442.6A EP12722442A EP2704815A1 EP 2704815 A1 EP2704815 A1 EP 2704815A1 EP 12722442 A EP12722442 A EP 12722442A EP 2704815 A1 EP2704815 A1 EP 2704815A1
Authority
EP
European Patent Office
Prior art keywords
adsorber
channels
parallel
adsorber according
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12722442.6A
Other languages
German (de)
English (en)
Inventor
Benoit Davidian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2704815A1 publication Critical patent/EP2704815A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Definitions

  • Adsorber comprising parallel passage contactors with integrated insulation
  • the invention relates to the isolation of an adsorber comprising several parallel-passage contactors and to the use of this same adsorber.
  • Adsorption is a physical phenomenon that is increasingly used industrially to separate or purify gas flows.
  • adsorption is conventionally used to dry various gas streams, in particular air, natural gas, for the production of hydrogen, for the production of oxygen and / or nitrogen from air atmospheric, to capture many components of various effluents before their use in a downstream process or venting such as VOC, nitrogen oxides, mercury ...
  • the present invention will particularly relate to TSA.
  • the adsorbent used is generally in the form of particles filled with an adsorber. These particles can be in the form of granules, rods, balls, crushed. The characteristic dimensions of these particles generally range from 0.5 mm to 5 mm.
  • Axial cylinders of conventional adsorbents in the form of balls use thermal insulation between the beds of balls and the ambient.
  • thermal insulation between the beds of balls and the ambient.
  • a small bottle typically with a diameter of less than 2 m, it is rather used an external insulation reported on the outer shell of the bottle, type insulation glass wool, or cellular glass or polyurethane foam: this insulation remains inefficient because during the heating phase in regeneration of the bottle, a portion of the thermal energy is used to heat the metal of the bottle, requiring the heat loss to be compensated by over-sizing the regeneration flow rate.
  • an internal insulation On a large bottle, typically with a diameter greater than 2m, an internal insulation is used: it must mechanically be able to contain the beds of adsorbent beads, not to favor the creation of preferential gas passage (outside the adsorbent bed) and be able to withstand any compression / decompression cycles between adsorption and regeneration.
  • a system of single or double gas blades which serves as an insulating cushion is conventionally used, considering that the air space remains stationary. These blades, relatively efficient in terms of insulation, are difficult to implement and cost relatively expensive.
  • a solution of the invention is an adsorber for adsorption of a fluid, comprising a bottle with at least two parallel-passage contactors arranged in series in the direction of the path of the fluid to be adsorbed, and characterized in that each contactor comprises an insulation internal.
  • internal insulation is meant an insulation which is specific to each contactor with parallel passages; in other words integrated in each contactor.
  • Parallel passage contactor means a device in which the fluid passes through channels whose walls contain adsorbent.
  • the fluid circulates in essentially obstacle free channels, these channels allowing the fluid to flow from an input to an output of the contactor.
  • These channels can be rectilinear connecting directly the input to the output of the contactor or present changes of direction.
  • the fluid is in contact with at least one adsorbent present at said walls.
  • the parallel-channel contactors have less pressure losses, which allows loss of equivalent charges to reduce the diameter of the adsorber, possibly increasing its height.
  • the contactors with parallel passages of the adsorber according to the invention may comprise one or the other of the following internal isolations.
  • the internal insulation of each of the contactors comprises:
  • Watertight means that prevents the creation of preferential gas passage outside the contactor with parallel passages.
  • Figure 1 shows a contactor with parallel passages with the double environment.
  • Figure 2 shows an adsorber according to the invention comprising a series of contactors with parallel passages with the double environment.
  • the insulation is preferably chosen from perlite, glass wool, rockwool, cellular glass, vacuum, airgel, multilayer insulation or any other insulation or combination of insulators conventionally used. artwork...
  • this first alternative can be supplemented by sealing elements fixed on the outer shell of the double environment facing the inner ferrule of the bottle.
  • the sealing elements are preferably selected from brushes, seals, welds or welded elements, glue or glued elements and preferably sized to overcome the possible differential expansion between the shell of the adsorber and the double environment of the parallel passage contactors during regeneration of the adsorber.
  • each parallel-channel contactor has channels and the channels are at least partly obstructed over a centripetal radial distance of 20 cm, preferably 10 cm, even more preferably 5 cm starting from the outer perimeter of the parallel-path contactor. .
  • This obstruction prevents the creation of preferential gas passage in the channels concerned.
  • the parallel passage contactors may optionally have a ferrule. Therefore, the term "outer perimeter" means the edge of the contactor with parallel passages or the edge of the ferrule of the contactor with parallel passages.
  • the channels to be partially obstructed are filled, over at least part of their length, with resin, mastic, silicone or any element that can be applied in liquid or pasty form to permanently close the channels concerned; and or
  • At least one of the ends of the channels to be partially obstructed is obstructed by a metal plate, or a plastic plate, or a silicone or rubberized seal, or any solid element that can be placed or fixed
  • the obstruction may be made at the top, bottom or part of each channel concerned. It can be envisaged to block the entire length of each channel concerned.
  • Figure 3 shows a parallel passage contactor with a metal plate at the upper ends of the channels to be clogged.
  • Figure 4 shows an adsorber according to the invention comprising a series of parallel passage contactors with a metal plate at the upper ends of the channels to be clogged.
  • the obstruction of the channels makes it possible to block the circulation of the fluid in these channels, and to create an insulation in the image of tiny blades of gas.
  • the immobile gas cells being much smaller than the conventional gas blades, a much better thermal insulation is obtained.
  • equivalent thermal insulation performance can greatly reduce the thickness of the insulation.
  • this second alternative may be supplemented by sealing elements fixed on the outer face of the parallel passage contactors facing the inner ferrule of the bottle.
  • the sealing elements are preferably chosen from brushes, seals, welds or welded elements, glue or glued elements and preferably dimensioned to overcome the possible differential expansion between the ferrule of the adsorber, and the outer perimeter of the parallel passage contactors during the regeneration of the adsorber.
  • the adsorbents that may be used in the parallel-passage contactors are those used in the conventional gas stream separation or purification units. The choice depends on the application. It is possible in the same contactor to use successively several different adsorbents. Mention may be made of silica gels, optionally doped activated alumina, activated carbons, zeolites of various types (3A, 4A, 5A, type X, LSX, Y etc. optionally exchanged, etc.). The zeolites are generally used in the form of microcrystals or even nano-crystals according to the synthetic methods. Other adsorbents, for example activated carbons, can be crushed to obtain micron-sized particles.
  • the contactors may be identical or on the contrary, it is possible to use this invention to singularize at least one contactor and adapt it to the operating conditions at this level of the adsorber. Regarding this modification, it may be another type of adsorbent, a change in the thickness of the adsorbent layer, the passage section, etc.
  • the device according to the invention can be used in various processes such as TSA, PTSA ... It can also be used to dry, decarbonate or stop secondary impurities of a gas stream, in particular from atmospheric air.
  • secondary impurities we mean the traces of hydrocarbons, NOx, SOx ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

Adsorbeur pour absorption d'un fluide, comprenant une bouteille avec au moins deux contacteurs à passages parallèles disposés en série dans le sens du trajet du fluide à absorber, comprenant une isolation interne. Chaque contacteur à passages parallèles présente des canaux et les canaux sont au moins en partie obstrués sur une distance radiale centripète de 20 cm en partant du périmètre extérieur du contacteur à passages parallèles.

Description

Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée
L'invention se rapporte à l'isolation d'un adsorbeur comprenant plusieurs contacteurs à passages parallèles et à l'utilisation de ce même adsorbeur.
L'adsorption est un phénomène physique de plus en plus utilisé industriellement pour séparer ou épurer des flux gazeux.
Par exemple, l'adsorption est utilisée classiquement pour sécher des flux gazeux divers, en particulier l'air, le gaz naturel, pour la production d'hydrogène, pour la production d'oxygène et/ou d'azote à partir d'air atmosphérique, pour capturer de nombreux constituants d'effluents variés avant leur utilisation dans un procédé aval ou leur mise à l'évent comme les VOC, des oxydes d'azote, du mercure...
Les procédés mis en œuvre sont soit à charge perdue (on parle alors généralement de lit de garde) soit régénérables. La régénération s'effectue soit par baisse de pression soit par augmentation de la température. On peut aussi coupler ces deux effets. On parle respectivement de PS A (pressure swing adsorption = adsorption à pression modulée), TSA (température swing adsorption = adsorption à température modulée), PTSA (pressure température swing adsorption = adsorption à pression et température modulée).
Lorsque la régénération d'un PSA s'effectue sous vide, on utilise généralement le sigle VSA (vacuum swing adsorption = adsorption avec variations de vide).
La présente invention concernera en particulier les TSA.
L'adsorbant utilisé se présente généralement sous forme de particules dont on remplit un adsorbeur. Ces particules peuvent se trouver sous forme de granulés, de bâtonnets, de billes, de concassés. Les dimensions caractéristiques de ces particules vont généralement de 0.5 mm à 5mm.
Les particules les plus petites permettent d'améliorer la cinétique d'adsorption et par là l'efficacité du procédé mais en contre partie elles créent sur la phase fluide des pertes de charge importantes.
Les bouteilles axiales d'adsorbants classiques sous forme de billes (circulation du fluide ascendante ou descendante) utilisent une isolation thermique entre les lits de billes et l'ambiante. Sur une petite bouteille, typiquement avec un diamètre inférieur à 2m, on utilise plutôt une isolation externe rapportée sur la virole extérieure de la bouteille, de type isolation laine de verre, ou verre cellulaire ou mousse de polyuréthane : cette isolation reste peu performante, car en phase de chauffage en régénération de la bouteille, une partie de l'énergie thermique est utilisée pour chauffer le métal de la bouteille, nécessitant de compenser la perte thermique en sur-dimensionnant le débit de régénération.
Sur une bouteille de grande taille, typiquement avec un diamètre supérieure à 2m, on utilise une isolation interne : celle-ci doit mécaniquement pouvoir contenir les lits de billes d'adsorbants, ne pas favoriser la création de passage préférentiel de gaz (en dehors du lit d'adsorbants) et pouvoir résister aux éventuels cycles de compression / décompression entre l'adsorption et la régénération. On utilise classiquement un système de simple ou double lames de gaz qui fait office de coussin isolant, considérant que la lame d'air reste immobile. Ces lames, relativement performantes en terme d'isolation, sont difficiles à mettre en œuvre et coûtent relativement chères.
Partant de là, un problème qui se pose est de fournir des adsorbeurs présentant une meilleure isolation, pour un fonctionnement en TSA.
Une solution de l'invention est un adsorbeur pour adsorption d'un fluide, comprenant une bouteille avec au moins deux contacteurs à passages parallèles disposés en série dans le sens du trajet du fluide à adsorber, et caractérisé en ce que chaque contacteur comprend une isolation interne.
Par « isolation interne », on entend une isolation qui est propre à chaque contacteur à passages parallèles ; autrement dit intégrée dans chaque contacteur.
Par contacteur à passages parallèles, on entend un dispositif dans lequel le fluide passe dans des canaux dont les parois contiennent de l'adsorbant. Le fluide circule dans des canaux essentiellement libres d'obstacles, ces canaux permettant au fluide de circuler d'une entrée à une sortie du contacteur. Ces canaux peuvent être rectilignes reliant directement l'entrée à la sortie du contacteur ou présenter des changements de direction. Au cours de sa circulation, le fluide est en contact avec au moins un adsorbant présent au niveau des dites parois.
La solution selon l'invention apporte les avantages suivants :
- Facilité de mise en œuvre, car intégrée aux contacteurs à passages parallèles : l'isolation est mise en place en même temps que l'on met en place les contacteurs dans Γ adsorbeur. - Isolation de type interne, équivalente à une multitude de lames d'air immobile : très bonne performance d'isolation thermique, permettant soit de réduire sa taille à performance équivalent, soit d'augmenter la performance thermique à taille équivalente
- Peu cher.
Par ailleurs, les contacteurs à passages parallèles font moins de pertes de charges, ce qui permet à perte de charges équivalentes de réduire le diamètre de l'adsorbeur, en augmentant éventuellement sa hauteur.
Selon le cas, les contacteurs à passages parallèles de l'adsorbeur selon l'invention peuvent comprendre l'une ou l'autre des isolations internes suivantes.
Selon une première alternative, l'isolation interne de chacun des contacteurs comprend :
- un double envirolage étanche fixé sur l'ensemble de la hauteur du contacteur, et
- un isolant introduit dans l'espace formé par le double envirolage.
On entend par étanche « qui empêche la création de passage préférentiel de gaz en dehors du contacteur à passages parallèles ».
La Figure 1 représente un contacteur à passages parallèles avec le double envirolage.
La Figure 2 représente un adsorbeur selon l'invention comprenant une série de contacteurs à passages parallèles avec le double envirolage.
L'isolant est de préférence choisi parmi la perlite, la laine de verre, la laine de roche, du verre cellulaire, du vide, de l'aérogel, de l'isolant multicouches ou tout autre isolant ou combinaison d'isolants classiquement mise en oeuvre...
D'autre part, cette première alternative peut être complétée par des éléments d'étanchéité fixés sur la virole externe du double envirolage face à la virole interne de la bouteille. Les éléments d'étanchéité sont de préférence choisis parmi les balayettes, les joints, des soudures ou des éléments soudés, de la colle ou des éléments collés et de préférence dimensionnés de manière à pallier à l'éventuelle dilatation différentielle entre la virole de l'adsorbeur et le double envirolage des contacteurs à passages parallèles lors de la régénération de l'adsorbeur.
Selon une deuxième alternative, chaque contacteur à passages parallèles présente des canaux et les canaux sont au moins en partie obstrués sur une distance radiale centripète de 20 cm, préférentiellement 10 cm, encore plus préférentiellement 5 cm en partant du périmètre extérieur du contacteur à passages parallèles. Cette obstruction empêche la création de passage préférentiel de gaz dans les canaux concernés.
Notons que dans cette deuxième alternative, les contacteurs à passages parallèles peuvent éventuellement présenter une virole. Dès lors, par « périmètre extérieur » on entend le bord du contacteur à passages parallèles ou le bord de la virole du contacteur à passages parallèles.
Pour réaliser l'obstruction des canaux :
- les canaux devant être en partie obstrués sont comblés, sur au moins une partie de leur longueur, par de la résine, du mastic, du silicone ou tout élément qui peut être appliqué sous forme liquide ou pâteuse pour boucher durablement les canaux concernés ; et/ou
- au moins une des extrémités des canaux devant être en partie obstrués est obstruée par une plaque métallique, ou une plaque plastique, ou un joint silicone ou caoutchouté, ou tout élément solide qui peut être posé ou fixé
L'obstruction peut être faite en partie haute, en partie basse ou en partie de chaque canal concerné. Il peut être envisagé de boucher l'intégralité de la longueur de chaque canal concerné.
La Figure 3 représente un contacteur à passages parallèles avec une plaque métallique aux extrémités supérieures des canaux devant être obstrués.
La Figure 4 représente un adsorbeur selon l'invention comprenant une série de contacteurs à passages parallèles avec une plaque métallique aux extrémités supérieures des canaux devant être obstrués.
Dans cette seconde alternative, l'obstruction des canaux permet de bloquer la circulation du fluide dans ces canaux, et de créer une isolation à l'image de minuscules lames de gaz. Les cellules de gaz immobiles étant beaucoup plus petites que les lames de gaz classiques, on obtient une isolation thermique nettement plus performante. Alternativement, à performance d'isolation thermique équivalente, on peut fortement réduire l'épaisseur de l'isolation.
D'autre part, cette seconde alternative peut être complétée par des éléments d'étanchéité fixés sur la face externe des contacteurs à passages parallèles face à la virole interne de la bouteille. Les éléments d'étanchéité sont de préférence choisis parmi les balayettes, les joints, des soudures ou des éléments soudés, de la colle ou des éléments collés et de préférence dimensionnés de manière à pallier à l'éventuelle dilatation différentielle entre la virole de l'adsorbeur, et le périmètre extérieur des contacteurs à passages parallèles lors de la régénération de l'adsorbeur.
Les adsorbants susceptibles d'être utilisés dans les contacteurs à passages parallèles sont ceux utilisés dans les unités de séparation ou purification de flux gazeux classiques. Le choix dépend de l'application. Il est possible dans un même contacteur d'utiliser successivement plusieurs adsorbants différents. On pourra citer les gels de silice, l'alumine activée éventuellement dopée, les charbons actifs, les zéolites de type divers (3A, 4A, 5A, type X, LSX, Y etc. éventuellement échangées...). Les zéolites sont généralement utilisées sous forme de microcristaux, voire de nano cristaux selon les procédés de synthèse. D'autres adsorbants, par exemple les charbons actifs, peuvent être concassés pour obtenir des particules de l'ordre du micron.
Les contacteurs peuvent être identiques ou au contraire, il est possible d'utiliser cette invention pour singulariser au moins un contacteur et l'adapter aux conditions opératoires se trouvant à ce niveau de l'adsorbeur. Concernant cette modification, il peut s'agir d'un autre type d'adsorbant, d'une modification de l'épaisseur de la couche adsorbante, de la section de passage, etc....
Le dispositif selon l'invention peut être utilisé dans divers procédés tels que les TSA, PTSA... Il peut également être utilisé pour sécher, décarbonater ou arrêter des impuretés secondaires d'un flux gazeux, notamment issu de l'air atmosphérique. Par impuretés secondaires on entend les traces d'hydrocarbures, les NOx, les SOx...

Claims

Revendications
1. Adsorbeur pour adsorption d'un fluide, comprenant une bouteille avec au moins deux contacteurs à passages parallèles disposés en série dans le sens du trajet du fluide à adsorber, et caractérisé en ce que chaque contacteur comprend une isolation interne, chaque contacteur à passages parallèles présentant des canaux et les canaux étant au moins en partie obstrués sur une distance radiale centripète de 20 cm en partant du périmètre extérieur du contacteur à passages parallèles.
2. Adsorbeur selon la revendication 1, caractérisé en ce que les canaux en partie obstrués sont comblés, sur au moins une partie de leur longueur, par un liquide ou une pâte, de préférence par de la résine, du mastic, ou de la silicone.
3. Adsorbeur selon la revendication 1, caractérisé ce qu'au moins une des extrémités des canaux en partie obstrués est obstruée par un élément solide posé ou fixé, de préférence par une plaque métallique, une plaque plastique, ou un joint silicone ou caoutchouté.
4. Adsorbeur selon l'une des revendications 1 à 3, caractérisé en ce que ledit adsorbeur comprend des éléments d'étanchéité fixés sur la face externe des contacteurs à passages parallèles face à la virole interne de la bouteille.
5. Adsorbeur selon la revendication 4, caractérisé en ce que les éléments d'étanchéité sont choisis parmi les balayettes, les joints, des soudures, des éléments soudés, de la colle ou des éléments collés.
6. Adsorbeur selon l'une des revendications 4 ou 5, caractérisé en ce que les éléments d'étanchéité sont dimensionnés de manière à pallier à la dilatation différentielle entre la virole de la bouteille et le périmètre extérieur des contacteurs à passages parallèles lors de la régénération de Γ adsorbeur.
7. Utilisation d'un adsorbeur selon l'une des revendications 1 à 6, pour sécher, décarbonater ou arrêter des impuretés secondaires d'un flux gazeux.
8. Utilisation d'un adsorbeur selon l'une des revendications 1 à 6, pour capturer les NOx, les SOx ou les traces d'hydrocarbures contenu dans un flux gazeux.
9. Utilisation d'un adsorbeur selon l'une des revendications 1 à 6 dans un cycle TSA, ou PTSA.
EP12722442.6A 2011-05-03 2012-04-20 Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée Withdrawn EP2704815A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1153756A FR2974735B1 (fr) 2011-05-03 2011-05-03 Adsorbeur comprenant des contacteurs a passages paralleles avec isolation integree
PCT/FR2012/050859 WO2012172219A1 (fr) 2011-05-03 2012-04-20 Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée

Publications (1)

Publication Number Publication Date
EP2704815A1 true EP2704815A1 (fr) 2014-03-12

Family

ID=46146938

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12722442.6A Withdrawn EP2704815A1 (fr) 2011-05-03 2012-04-20 Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée

Country Status (5)

Country Link
US (1) US9339754B2 (fr)
EP (1) EP2704815A1 (fr)
CN (1) CN103517750B (fr)
FR (1) FR2974735B1 (fr)
WO (1) WO2012172219A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1023302B1 (nl) 2015-07-23 2017-01-26 Atlas Copco Airpower Naamloze Vennootschap Werkwijze voor het vervaardigen van een adsorptiemiddel voor het behandelen van samengeperst gas, adsorptiemiddel verkregen met zulke werkwijze en adsorptie-inrichting voorzien van zulk adsorptiemiddel
EP4331707A1 (fr) * 2015-08-31 2024-03-06 ATLAS COPCO AIRPOWER, naamloze vennootschap Dispositif d'adsorption pour gaz comprimé
EP3736034A1 (fr) * 2019-05-08 2020-11-11 Linde GmbH Récipient sous pression avec isolation interne

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096916A1 (fr) * 2009-02-27 2010-09-02 Andre Boulet Structure de type contacteur fluidique à passages parallèles

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2038071A (en) * 1932-11-09 1936-04-21 Patent Finance Corp Fluid treating device
US2995208A (en) * 1958-08-15 1961-08-08 Phillips Petroleum Co Adsorption process and apparatus
US4386947A (en) * 1980-04-25 1983-06-07 Nippon Soken, Inc. Apparatus for adsorbing fuel vapor
JPS5954682A (ja) * 1982-09-20 1984-03-29 日本碍子株式会社 セラミツクハニカム構造体の開口端面封止方法
JPS60131620U (ja) * 1984-02-14 1985-09-03 本田技研工業株式会社 触媒コンバ−タ
DE8812817U1 (de) * 1988-10-10 1988-12-29 HWT Gesellschaft für Hydrid- und Wasserstofftechnik mbH, 4330 Mülheim Vorrichtung zur Reinigung von Gas
US5260035A (en) * 1992-08-05 1993-11-09 Corning Incorporated Apparatus and method for modifying gaseous mixtures
EP0745416B1 (fr) * 1995-06-02 2003-09-17 Corning Incorporated Dispositif pour l'élimination des contaminants de courants fluides
FR2757427B1 (fr) * 1996-12-24 1999-02-05 Air Liquide Reacteur isole thermiquement
DE19814132A1 (de) * 1998-03-30 1999-10-14 Emitec Emissionstechnologie Wabenkörper mit Adsorbermaterial, insbesondere für eine Kohlenwasserstoff-Falle
DE60018794T2 (de) * 1999-12-09 2006-03-30 Eminox Ltd., Gainsborough Vorrichtung zur behandlung von gasstrom
EP1491248B1 (fr) * 2002-03-29 2008-10-15 Ibiden Co., Ltd. Filtre en ceramique et unite de decontamination de gaz d'echappement
US7160361B2 (en) * 2003-10-15 2007-01-09 Delphi Technologies, Inc. Evaporative emission treatment device
JP2005270755A (ja) 2004-03-24 2005-10-06 Ngk Insulators Ltd ハニカム構造体及びその製造方法
US7722705B2 (en) * 2006-05-11 2010-05-25 Corning Incorporated Activated carbon honeycomb catalyst beds and methods for the use thereof
US7731782B2 (en) * 2007-05-18 2010-06-08 Exxonmobil Research And Engineering Company Temperature swing adsorption of CO2 from flue gas utilizing heat from compression
US7806956B2 (en) * 2007-08-09 2010-10-05 Cummins Filtration Ip, Inc. Tuning particulate filter performance through selective plugging and use of multiple particulate filters to reduce emissions and improve thermal robustness
DE102008016236A1 (de) * 2008-03-27 2009-10-01 J. Eberspächer GmbH & Co. KG Abgasbehandlungseinrichtung
SG189782A1 (en) * 2008-04-30 2013-05-31 Exxonmobil Upstream Res Co Method and apparatus for removal of oil from utility gas stream
WO2010081809A1 (fr) * 2009-01-15 2010-07-22 Shell Internationale Research Maatschappij B.V. Procédés et appareil pour séparer l'azote d'un courant mixte comprenant de l'azote et du méthane
WO2011030461A1 (fr) * 2009-09-14 2011-03-17 イビデン株式会社 Procédé de fabrication d'une structure en nid-d'abeilles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096916A1 (fr) * 2009-02-27 2010-09-02 Andre Boulet Structure de type contacteur fluidique à passages parallèles

Also Published As

Publication number Publication date
WO2012172219A1 (fr) 2012-12-20
US20140083293A1 (en) 2014-03-27
FR2974735B1 (fr) 2015-11-20
CN103517750A (zh) 2014-01-15
FR2974735A1 (fr) 2012-11-09
WO2012172219A8 (fr) 2013-01-24
CN103517750B (zh) 2016-12-14
US9339754B2 (en) 2016-05-17

Similar Documents

Publication Publication Date Title
AU2008254535B2 (en) Temperature swing adsorption of CO2 from flue gas using a parallel channel contactor
EP2501459A1 (fr) Procede de purification d'un flux gazeux mettant en uvre un contacteur a passages paralleles presentant une conservation de ses performances
EP1338324A2 (fr) Utilisation d'un adsorbant sous forme de mousse solide pour la purification ou la séparation de gaz
WO2013117827A1 (fr) Adsorbeur constitué de plusieurs contacteurs à passage parallèles
EP2168913B1 (fr) Procédé de production d'hydrogène avec captation totale du c02 et recyclage du méthane non converti
JP2014509556A (ja) ガスを分離するための急速温度スイング吸着接触器
TWI681808B (zh) 一種快速循環變壓吸附法及其使用之吸附劑層壓板
SA111320418B1 (ar) نظام وطريقة لاحتجاز ثاني أكسيد الكربون وتنحية أيوناته
EP2704815A1 (fr) Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée
WO2020169899A1 (fr) Procédé et installation de purification d'un flux gazeux de débit élevé
EP2866917B1 (fr) Assemblage de modules d'adsorbants structurés
FR2937258A1 (fr) Repressurisation d'un vsa traitant un melange gazeux comprenant un combustible
FR2974520A1 (fr) Adsorbeur en position horizontale
FR2937261A1 (fr) Filtre au charbon actif preimpregne pour le filtrage de composes organiques volatils
EP2877270B1 (fr) Installation de purification d'un flux gazeux humide, contenant du co2 et des nox
FR2909899A1 (fr) Adsorbeurs radiaux installes en parallele
FR2533622A1 (fr) Moteur thermique par diffusion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180523

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210220