EP2501459A1 - Procede de purification d'un flux gazeux mettant en uvre un contacteur a passages paralleles presentant une conservation de ses performances - Google Patents

Procede de purification d'un flux gazeux mettant en uvre un contacteur a passages paralleles presentant une conservation de ses performances

Info

Publication number
EP2501459A1
EP2501459A1 EP10779271A EP10779271A EP2501459A1 EP 2501459 A1 EP2501459 A1 EP 2501459A1 EP 10779271 A EP10779271 A EP 10779271A EP 10779271 A EP10779271 A EP 10779271A EP 2501459 A1 EP2501459 A1 EP 2501459A1
Authority
EP
European Patent Office
Prior art keywords
compound
main adsorber
hydrogen
contactor
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP10779271A
Other languages
German (de)
English (en)
Inventor
Christian Monereau
François Fuentes
Céline CARRIERE
Bhadra S. Grover
Yudong Chen
Madhava R. Kosuri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP2501459A1 publication Critical patent/EP2501459A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0473Rapid pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/406Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40001Methods relating to additional, e.g. intermediate, treatment of process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/41Further details for adsorption processes and devices using plural beds of the same adsorbent in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the invention relates to a method for purifying a gas flow comprising at least a first compound chosen from the compounds of the first group formed by water, ammonia, aromatics, hydrocarbons of alkane, alkene or C5 + alkyne type, that is to say having at least 5 carbon atoms, aldehydes, ketones, halogenated hydrocarbons, hydrogen sulphide, hydrogen chloride and at least a second and a third compound selected from the compounds of the second group formed by helium, hydrogen, nitrogen, oxygen, argon, monoxide of carbon, carbon dioxide, hydrocarbons less than C5, by variable pressure adsorption (PSA), using at least one main adsorber comprising at least one contactor with parallel passages.
  • PSA variable pressure adsorption
  • Adsorption is a physical phenomenon that is increasingly used industrially to separate or purify gas flows.
  • adsorption is conventionally used to dry various gas streams, in particular air, natural gas, for the production of hydrogen, for the production of oxygen and / or nitrogen from air atmospheric, to capture many components of various effluents before their use in a downstream process or venting such as VOC, nitrogen oxides, mercury ...
  • VSA vacuum swing adsorption
  • PSA and TSA to describe all these adsorption processes comprising an in situ regeneration step depending on whether the predominant effect used to regenerate the adsorbent is pressure or temperature.
  • the adsorbent used is generally in the form of particles filled with an adsorber. These particles can be in the form of granules, rods, balls, crushed. The characteristic dimensions of these particles generally range from 0.5 mm to 5 mm.
  • adsorbers having a large fluid passage section are used, such as cylindrical adsorbers with a horizontal axis or radial adsorbers.
  • a disadvantage to this gain is an increased pollution risk for the adsorbent.
  • the document FR 2 800 297 deals with this aspect by referring to the humidity inputs which concern increasingly smaller quantities of sieves as the cycles improve.
  • Removing moisture inputs helps to maintain efficiency over time as water-sensitive adsorbents are used.
  • the solutions are conventional and range from strengthening seals, using dry barrier gas, controlled leakage outwards to prevent any entry of water into the system. If the unit is shut down, a slight pressurization of the unit is also foreseen, with a possible slight leakage, for the same purpose and possibly to avoid the migration of impurities from the inlet to the contactor output. .
  • a conventional unit that is to say a unit which does not comprise a contactor with parallel passages and having a step time greater than 30 seconds generally, it is common to frame the duration of a step by a value minimum and a maximum value and calculate the duration of the current step depending on the operating conditions, in particular the flow.
  • many regulations and / or security can intervene to correct the defect or to put the unit in security.
  • the response times are of the order of one second, that is to say a few percent of the step time. This can result in the fact that we enter for example 3% more gas than expected in the design, that is to say also 3% more impurities.
  • an impurity corresponds to at least one adsorbent.
  • the impurity will not leave its adsorption zone or at worst will spill over the next zone.
  • the impurity will be adsorbed at least in the next layer and most likely in many of the following layers.
  • a problem that arises is to provide a process for purifying a gas stream using a PSA comprising at least one contactor with parallel passages and the integrity of the initial performance is preserved.
  • the subject of the invention is a process for purifying a gaseous flow comprising at least a first compound chosen from the compounds of the first group formed by water, ammonia, aromatics and alkane-type hydrocarbons. , alkenes or alkynes containing at least 5 carbon atoms, aldehydes, ketones, halogenated hydrocarbons, hydrogen sulphide, hydrogen chloride and at least a second and a third compound chosen from the compounds of the second group formed by helium, hydrogen, nitrogen, oxygen, argon, carbon monoxide, carbon dioxide, hydrocarbons below C5, by variable pressure adsorption (PSA), using at least one main adsorber (17-2) comprising at least one parallel passage contactor, characterized in that:
  • PSA variable pressure adsorption
  • the first compound is at least partially stopped by a TSA unit (17-1) placed upstream of said main adsorber (17-2), and
  • the main adsorber follows a pressure cycle comprising an adsorption phase of less than 15 seconds, and a regeneration phase in which the waste gas is withdrawn from the main adsorber.
  • At least a portion of the waste gas is compressed for later use.
  • the waste gas is enriched in CO2
  • its compression requires that it be dry in order to avoid corrosion problems.
  • the upstream TSA solves this problem.
  • Figure 15 schematically shows a device for carrying out the purification process according to the invention.
  • the main adsorber is also shown in references 16-2, 17-2 and 18-2.
  • FIGS 1 to 7 show schematically, but not limited to, the different types of contactors with parallel passages. Indeed, the contactors may comprise channels of different shapes and sizes. We then distinguish:
  • the fluid can also circulate in the free space left by solid walls presented in the form of cylinders or fibers (Figure 6).
  • the solid walls may also have the configuration "packing" as used in distillation ( Figure 7). In the latter case, it is possible to use all the geometric possibilities relating to said packings by playing on the bending angles, the orientation of the passages relative to the vertical (supposed vertical contactor), the dimensions of the channels ...
  • the fluid which is preferably a gaseous flow, circulates in channels presenting little (or no) obstacle to flow. and the adsorbent is located or constitutes the wall of said channels.
  • the documents EP 1 413 348, EP 1 121 981 and WO 2005/094987 describe contactors with parallel passages
  • the parallel-channel contactors are preferred to the conventional solution of particle beds when the effects of a decrease in the pressure drop become preponderant and make it possible to compensate for the probable overcost linked to the adoption of the new type. adsorber.
  • the embodiment of the contactor itself, and more particularly of the support-wall assembly, is done according to various techniques which can for example be classified according to the way the adsorbent is integrated into the wall.
  • the adsorbent in the case of “monolith”, constitutes directly the wall of the channels (FIG. 8).
  • the adsorbent (110) is fixed on a support (1 1 1), for example a metal foil.
  • the adhesion to the wall can be done via the binder.
  • adsorbent (whose role is then double: agglomeration of adsorbent micro particles between them and attachment to the wall) as shown in Figure 9 or via a specific glue (120) ( Figure 10).
  • the support will generally have been treated to facilitate the adhesion, it can be porous by nature (membrane, tissue ...); many materials can be used such as polymers, ceramics, metals, paper ...
  • the support of the adsorbent may be folded (before or after deposition of the adsorbent layer) and this folded sheet itself wound around a central axis.
  • Figure 3 of US 5,771,707 shows such an arrangement. In the case of folds substantially triangular shape, the height of the triangle and its base will generally be between 0.5 and 5 mm.
  • the adsorbent can also be trapped.
  • "imprisonment” can be homogeneous, that is to say that the adsorbent particles (130) are immobilized by a network of fibers (131) thin and dense which occupy the entire volume of the wall ( Figure 11).
  • An adhesive may be added to strengthen the attachment.
  • the entrapment of adsorbent particles in fiber networks has been used in the manufacture of gas masks. Note, however, that in this In the latter case, the air flowing through the adsorbent medium while in the case considered here, the gas flow along the wall containing the adsorbent.
  • the adsorbent particles (140) are held between two walls (141, 142) porous to the fluid ( Figure 12).
  • a binder and / or an adhesive may be added to improve if necessary the maintenance of the particles between the porous walls.
  • These walls may be of metal type, polymers ... They are chosen so that they can simultaneously contain the adsorbent particles and not create significant resistance to the diffusion of the molecules.
  • Figure 13 shows the base cell, i.e. the smallest element that can be used to describe the geometry of a parallel-pass contactor.
  • the channel (20) in which circulates the gaseous flow, of total thickness 2 epf, the porous membrane maintaining the adsorbent (21) of epm thickness, the adsorbent layer (22) thick epads, an adhesive layer (23) of epc thickness and the support sheet (24) of total thickness 2 eps.
  • the base cell is epf + epm + epads + epc + eps.
  • the orders of magnitude of these thicknesses are for example:
  • the basic cell would therefore have in the example a thickness of 210 microns (75 + 25 + 50 + 10 + 50)
  • the support sheet by its density, its heat capacity, its thermal conductivity, possibly its porosity;
  • the adhesive layer by its density, its heat capacity, its thermal conductivity, possibly its porosity
  • the adsorbent layer by its total porosity, by the average size of the macro pores, by the density of the adsorbent particles, possibly their size, their internal porosity, their heat capacity, their thermal conductivity as well as by the isotherms of adsorption and co-adsorption binding the adsorbent and the molecules present in the gas stream;
  • the membrane by its total porosity, the average pore diameter, the heat capacity, the density, the thermal conductivity, the fluid side wall roughness.
  • FIG. 14 represents an example of an adsorber comprising a contactor with parallel passages.
  • the cylindrical contactor (1) is housed in a metal casing (2) comprising a bottom bottom and an upper bottom with openings for the passage of the gas stream.
  • the contactor rests on the bottom bottom of the envelope (4).
  • Diffusers (3) at the top and bottom the good distribution of the incoming and outgoing gas flows.
  • Sealing at the inner wall of the casing (4), to avoid a preferential passage of the gas stream at this location, is achieved by simply pressing the contactor previously rolled on the wall of the casing. If necessary, this seal can be improved by any of the known means (seals, welding, gluing ...)
  • a parallel passage contactor means a device in which the fluid passes through channels whose walls contain adsorbent.
  • the fluid circulates in essentially obstacle free channels, these channels allowing the fluid to flow from an input to an output of the contactor.
  • These channels can be rectilinear connecting directly the input to the output of the contactor or present changes of direction.
  • the fluid is in contact with at least one adsorbent present at said walls.
  • the adsorber according to the invention may comprise one or more of the following characteristics:
  • a stream enriched in the second compound and depleted in the third compound is recovered at the outlet of the main adsorber;
  • the main adsorber follows a pressure cycle whose adsorption time is less than 30 seconds, preferably between 2 and 15 seconds; we will speak in this case of PS A fast.
  • the main adsorber follows a pressure cycle comprising an adsorption phase of less than 5 seconds duration, and a regeneration phase in which the waste gas is withdrawn from the main adsorber, and a variable portion of said waste gas is recycled to the supply side of the main adsorber.
  • adsorption phase can be significantly shorter than the time required to obtain the maximum efficiency that can be expected from this type of unit.
  • the adsorption time is generally between 0.1 to 5 seconds.
  • the first compound is at least partially stopped by an adsorption unit (17-1) or a permeation membrane (16-1) placed upstream of said main adsorber (FIGS. 16 and 17);
  • the adsorption unit (17-1) is chosen from a renewable charge guard bed, a TSA unit, a PSA unit having an adsorption time greater than 15 seconds, or a PSA unit (18-1) comprising a parallel passage contactor combined with a guard bed (18-3) (Figs. 17 and 18);
  • the adsorption unit is regenerated or the permeation membrane is eluted by a stream (17-3 or 16-3) coming from the main adsorber or by a flow outside the main adsorber;
  • the main adsorber comprises at least two parallel passage switches arranged in series.
  • the use of parallel-series contactors arranged in series makes it possible to treat large quantities of fluid, in particular gas flows of several hundred or several thousand Nm / h and / or to obtain products of very high purity (99.9% for example) ;
  • the second compound is hydrogen or C0 2 ;
  • the second compound is hydrogen
  • the third compound is chosen from carbon dioxide, methane, carbon monoxide and nitrogen
  • a hydrogen enriched and depleted stream is recovered at the outlet of the main adsorber; in third compound.
  • the adsorbents that may be used in the parallel-passage contactors are those used in the conventional gas stream separation or purification units. The choice depends on the application. It is possible in the same contactor to use successively several different adsorbents. Mention may be made of silica gels, optionally doped activated alumina, activated carbons, various type zeolites (3A, 4A, 5A, type X, LSX, Y, etc., optionally exchanged, etc.), framing adsorbents. metal-organic (MOF .7) Zeolites are generally used in the form of microcrystals, even nano-crystals according to the synthetic methods. Other adsorbents, for example activated carbons, can be crushed to obtain micron-sized particles.
  • an additional means for limiting the problem of decreasing the initial performance of the main adsorber is to choose adsorbents not having too much affinity for the constituents present.
  • the PSA may not be regenerated by a simple pressure effect.
  • Figure 19 illustrates in particular the arrangement of three contactors in series in an adsorber.
  • the three contactors (10), (1 1) and (12) are superimposed in the same envelope (4) having a lower bottom and an upper bottom equipped with inlet / outlet openings of the gas flows.
  • Deflectors or diffusers (15) allow in the lower and upper part the good distribution of the gas flow.
  • Intermediate distributors (16) make it possible to recover the flows leaving one contactor and redistribute them homogeneously in the next.
  • These distributors (16) can be special pieces of equipment making transition between two contactors and making sure not to plug the channels devolved to the fluids. It may especially be grating, metal grid, spider and more generally a spacer having no resistance to the flow of fluid.
  • the ends of at least one contactor can be adapted to facilitate the flow of fluid between the contactors.
  • This adaptation may consist of notching, for example, the last centimeter of the support in order to create a large passage zone for the fluid which can thus be redistributed more easily in the second contactor.
  • Another solution may be to make each of the contactors solitary with the wall of the outer casing leaving for example a clearance (free space) between contactors.
  • the three contactors may be identical or on the contrary, it is possible to use this invention to singularize at least one contactor and adapt it to the operating conditions at this level of the adsorber.
  • it may be another type of adsorbent, a change in the thickness of the adsorbent layer, the passage section, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Procédé de purification d'un flux gazeux comprenant au moins un premier composé choisi parmi les composés du premier groupe formé par l'eau, l'ammoniac, les aromatiques, les hydrocarbures de type alcane, alcène ou alcyne comportant au moins 5 atomes de carbones, les aldéhydes, les cétones, les hydrocarbures halogènes, le sulfure d'hydrogène, le chlorure d'hydrogène et au moins un deuxième et un troisième composés choisis parmi les composés du deuxième groupe formé par l'hélium, l'hydrogène, l'azote, l'oxygène, l'argon, le monoxyde de carbone, le dioxyde de carbone, les hydrocarbures inférieures à C5, par adsorption à pression variable (PSA), mettant en oeuvre au moins un adsorbeur principal (17-2) comprenant au moins un contacteur à passages parallèles, caractérisé en ce que le premier composé est au moins partiellement arrêté à l'amont (17-1) dudit adsorbeur principal.

Description

Procédé de purification d'un flux gazeux mettant en œuvre un contacteur à passages parallèles présentant une conservation de ses performances L'invention se rapporte à un procédé de purification d'un flux gazeux comprenant au moins un premier composé choisi parmi les composés du premier groupe formé par l'eau, l'ammoniac, les aromatiques, les hydrocarbures de type alcane, alcène ou alcyne C5+, c'est-à-dire comportant au moins 5 atomes de carbones, les aldéhydes, les cétones, les hydrocarbures halogénés, le sulfure d'hydrogène, le chlorure d'hydrogène et au moins un deuxième et un troisième composés choisis parmi les composés du deuxième groupe formé par l'hélium, l'hydrogène, l'azote, l'oxygène, l'argon, le monoxyde de carbone, le dioxyde de carbone, les hydrocarbures inférieures à C5, par adsorption à pression variable (PSA), mettant en œuvre au moins un adsorbeur principal comprenant au moins un contacteur à passages parallèles.
L'adsorption est un phénomène physique de plus en plus utilisé industriellement pour séparer ou épurer des flux gazeux.
Par exemple, l'adsorption est utilisée classiquement pour sécher des flux gazeux divers, en particulier l'air, le gaz naturel, pour la production d'hydrogène, pour la production d'oxygène et/ou d'azote à partir d'air atmosphérique, pour capturer de nombreux constituants d'effluents variés avant leur utilisation dans un procédé aval ou leur mise à l'évent comme les VOC, des oxydes d'azote, du mercure...
Les procédés mis en œuvre sont soit à charge perdue (on parle alors généralement de lit de garde) soit régénérables. La régénération s'effectue soit par baisse de pression soit par augmentation de la température. On peut aussi coupler ces deux effets. On parle respectivement de PSA (pressure swing adsorption = adsorption à pression modulée), TSA
(température swing adsorption = adsorption à température modulée), PTSA (adsorption à pression et température modulée).
Lorsque la régénération d'un PSA s'effectue sous vide, on utilise généralement le sigle VSA (vacuum swing adsorption).
Par la suite, et sauf application particulière, nous n'utiliserons, par souci de simplicité que les termes PSA et TSA pour décrire tous ces procédés d'adsorption comportant une étape de régénération in situ suivant que l'effet prépondérant utilisé pour régénérer l'adsorbant soit la pression ou la température..
L'adsorbant utilisé se présente généralement sous forme de particules dont on remplit un adsorbeur. Ces particules peuvent se trouver sous forme de granulés, de bâtonnets, de billes, de concassés. Les dimensions caractéristiques de ces particules vont généralement de 0.5 mm à 5mm.
Les particules les plus petites permettent d'améliorer la cinétique d'adsorption et par là l'efficacité du procédé mais en contre partie elles créent sur la phase fluide des pertes de charge importantes.
Pour contrebalancer cet effet, on utilise des adsorbeurs présentant une grande section de passage au fluide tels que les adsorbeurs cylindriques à axe horizontal ou les adsorbeurs radiaux.
Cependant, lorsqu'on veut aller plus loin dans l'amélioration de la perte de charge et/ ou de la cinétique, cette technologie conduit à des géométries d'adsorbeurs non industrielles.
C'est par exemple le cas lorsqu'on veut traiter d'importants débits gazeux en basse pression comme pour la capture du C02 dans des effiuents à pression atmosphérique ou lorsqu'on veut réaliser des cycles rapides, en particulier des cycles PSA.
Dès 1996, Ruthven et Thaeron -in Gas Sep. Purif. Vol. 10, p.63- montrent qu'une telle amélioration peut être obtenue en utilisant des contacteurs à passages parallèles.
Il s'agit de système dans lequel le fluide passe dans des canaux dont les parois contiennent de l'adsorbant.
L'utilisation de ce type de contacteur permet d'accélérer les cycles et donc d'augmenter la productivité.
Un inconvénient à ce gain est un risque de pollution accru pour l'adsorbant. Le document FR 2 800 297 traite de cet aspect en se référant aux entrées d'humidité qui concernent des quantités de plus en plus faibles de tamis au fur et à mesure de l'amélioration des cycles. L'article « PSA technology hits the fast lane ; Fast cycle technology promises to reduce the size and costs of PSA gas séparation equipment » de Matt Babicki et tiré du site internet chemicalprocessing.com traite des PSA H2 à contacteurs et à cycle rapide. Le chapitre « Not Perfect » de cet article explique aussi que la faible quantité d'adsorbant mise en jeu rend le PSA plus vulnérable à la contamination par les liquides (eau, hydrocarbures) et recommande un dimensionnement soigné du séparateur liquide-gaz à l'amont du PSA pour éviter tout entraînement et par là toute contamination. Des matériaux améliorés utilisés dans les contacteurs, matériaux non dévoilés, peuvent également éviter cette contamination.
La suppression des entrées d'humidité aide bien sûr à maintenir l'efficacité dans le temps dès lors que sont utilisés des adsorbants sensibles à l'eau. Les solutions sont classiques et vont du renforcement des étanchéités, de l'emploi de gaz de barrage sec, de fuites vers l'extérieur contrôlées pour éviter toute entrée d'eau dans le système. En cas d'arrêt de l'unité, il est également prévu une légère pressurisation de l'unité, avec une fuite minime éventuelle, dans le même but et éventuellement pour éviter la migration d'impuretés de l'entrée vers la sortie du contacteur.
Il s'avère que ces précautions ne sont généralement pas suffisantes et que malgré leur emploi, l'efficacité du système chute rapidement dans un certain nombre de cas.
Dans une unité classique, c'est-à-dire une unité ne comprenant pas de contacteur à passages parallèles et présentant un temps d'étape supérieur à 30 secondes généralement, il est courant d'encadrer la durée d'une étape par une valeur minimale et une valeur maximale et de calculer la durée de l'étape en cours en fonction des conditions opératoires, en particulier du débit. En cas de problème, de nombreuses régulations et/ou sécurités peuvent intervenir pour corriger le défaut ou mettre l'unité en sécurité. Les temps de réponse sont de l'ordre de la seconde, c'est-à-dire quelques pourcent du temps d'étape. Cela peut se traduire par le fait qu'on entre par exemple 3% de gaz en plus que prévu dans le design , c'est-à-dire aussi 3% d'impuretés en plus.
Inversement, dans le cas d'unités PSA à contacteurs à passages parallèles, lorsqu'on parle de quelques secondes, voire de fractions de seconde, le moindre dérèglement du cycle va conduire à introduire plusieurs dizaines de pourcent d'impuretés en plus, voire plusieurs fois la quantité nominale.
A partir d'une telle situation, difficilement évitable avec des organes de contrôle industriels standards, on peut constater des évolutions totalement différentes des performances des unités. Après une pollution temporaire de la production pendant quelques cycles, certaines unités vont retrouver leurs performances d'origine alors que d'autres ne vont pas récupérer ces performances initiales.
Il apparaît que la séquence des adsorbants vis-à-vis des impuretés joue un rôle primordial pour expliquer cet effet. En effet, l'optimisation des cycles PSA conduit au système suivant : à une impureté correspond au moins un adsorbant. Lors d'un incident du type décrit ci-dessus, dans un PSA classique, l'impureté ne sortira pas de sa zone d'adsorption ou au pire débordera sur la zone suivante. Dans le cas d'un PSA comprenant un contacteur à passages parallèles, l'impureté ira s'adsorber au minimum dans la couche suivante et très probablement dans plusieurs des couches suivantes.
Partant de là, un problème qui se pose est de fournir un procédé de purification d'un flux gazeux mettant en œuvre un PSA comprenant au moins un contacteur à passages parallèles et dont l'intégrité des performances initiales est préservée.
A cet effet, l'invention a pour objet un procédé de purification d'un flux gazeux comprenant au moins un premier composé choisi parmi les composés du premier groupe formé par l'eau, l'ammoniac, les aromatiques, les hydrocarbures de type alcane, alcène ou alcyne comportant au moins 5 atomes de carbones, les aldéhydes, les cétones, les hydrocarbures halogénés, le sulfure d'hydrogène, le chlorure d'hydrogène et au moins un deuxième et un troisième composés choisis parmi les composés du deuxième groupe formé par l'hélium, l'hydrogène, l'azote, l'oxygène, l'argon, le monoxyde de carbone, le dioxyde de carbone, les hydrocarbures inférieures à C5, par adsorption à pression variable (PSA), mettant en œuvre au moins un adsorbeur principal ( 17-2) comprenant au moins un contacteur à passages parallèles, caractérisé en ce que :
- le premier composé est au moins partiellement arrêté par une unité TSA (17-1) placée en amont dudit adsorbeur principal (17-2), et
- l'adsorbeur principal suit un cycle de pression comprenant une phase d'adsorption de durée inférieure à 15 secondes, et une phase de régénération dans laquelle le gaz résiduaire est soutiré de l'adsorbeur principal.
De préférence au moins une partie du gaz résiduaire est comprimée en vue d'une utilisation ultérieure. Notons que si le gaz résiduaire est enrichi en C02, sa compression nécessite qu'il soit sec afin d'éviter les problèmes de corrosion. Le TSA placé en amont permet de résoudre ce problème.
La figure 15 représente de façon schématique un dispositif permettant la mise en œuvre du procédé de purification selon l'invention. Dans les figures 16 à 18, l'adsorbeur principal est également représenté aux références 16-2, 17-2 et 18-2.
Les figures 1 à 7 représentent schématiquement, de manière non exhaustive, les différents types de contacteurs à passages parallèles. En effet, les contacteurs peuvent comprendre des canaux de différentes formes et de dimensions différentes. On distingue alors :
- les canaux rectangulaires d'épaisseur ep faible par rapport à leur largeur 1, c'est à dire avec 1 supérieur à 10 ep (figure 1);
- les canaux essentiellement carrés ou rectangulaires mais avec ep dans le même ordre de grandeur que la largeur 1 (figure 2) ;
- les canaux de forme intermédiaire, avec la grande dimension dans un rapport 1.5 à 10 par rapport à la petite dimension (ellipse, rectangle...)
- les canaux disposés en couronnes circulaires (figure 3) ;
- les canaux disposés en hélice (figure 4) ;
- les canaux circulaires (figure 5).
Le fluide peut également circuler dans l'espace libre laissé par des parois solides présentés sous forme de cylindres ou fibres (figure 6). Les parois solides peuvent également avoir la configuration « garnissage » comme utilisée en distillation (figure 7). Dans ce dernier cas, il est possible d'utiliser toutes les possibilités géométriques relatives aux dits garnissages en jouant sur les angles de pliage, l'orientation des passages par rapport à la verticale (contacteur supposé vertical), les dimensions des canaux...
De nombreuses configurations sont possibles car la géométrie des canaux est variée (triangle, trapèze, ellipse...). De façon générale, dans tous ces types de contacteurs, susceptibles d'être utilisés dans le cadre de l'invention, le fluide qui est préférentiellement un flux gazeux, circule dans des canaux présentant peu (ou pas) d'obstacle à l'écoulement et l'adsorbant est situé -ou constitue- la paroi des dits canaux. A titre d'exemple, les documents EP 1 413 348, EP 1 121 981 et WO 2005/094987 décrivent des contacteurs à passages parallèles
De manière générale, les contacteurs à passages parallèles sont préférés à la solution classique des lits de particules dès lors que les effets d'une diminution de la perte de charge deviennent prépondérants et permettent de compenser le surcoût probable lié à l'adoption du nouveau type d'adsorbeur.
La réalisation du contacteur lui-même, et plus particulièrement de l'ensemble support -paroi, se fait suivant diverses techniques qui peuvent par exemple se classer selon la façon dont l'adsorbant est intégré à la paroi.
Dans le cas de « monolithe », l'adsorbant, éventuellement mélangé à un liant constitue directement la paroi des canaux (Figure 8).
Dans le cas plus général d'adsorbant « supporté », l'adsorbant (110) est fixé sur un support (1 1 1), par exemple une feuille métallique, L'adhésion à la paroi peut se faire par l'intermédiaire du liant de l'adsorbant (dont le rôle est alors double : agglomération des micro particules d'adsorbants entre elles et fixation à la paroi) comme illustré dans la Figure 9 ou via une colle (120) spécifique (Figure 10). Le support aura généralement été traité pour faciliter l'adhésion, il peut être poreux par nature (membrane, tissu...) ; de nombreux matériaux peuvent être utilisés tels que des polymères, des céramiques, des métaux, du papier...
Le support de l'adsorbant peut être plié (avant ou après dépôt de la couche adsorbante) et cette feuille pliée elle-même enroulée autour d'un axe central. La figure 3 du document US 5 771 707 montre un tel arrangement. Dans le cas de plis de forme essentiellement triangulaire, la hauteur du triangle et sa base seront généralement comprises entre 0.5 et 5 mm.
L'adsorbant peut également être emprisonné. On trouve également deux sous groupes pour cette technique : « l'emprisonnement « peut être homogène, c'est-à-dire que les particules d'adsorbants (130) sont immobilisées par un réseau de fibres (131) fines et denses qui occupent tout le volume de la paroi (Figure 11). Un adhésif peut être ajouté pour renforcer la fixation. L'emprisonnement de particules d'adsorbant dans des réseaux de fibres a été utilisé dans la fabrication de masque à gaz. On notera cependant que dans ce dernier cas, l'air respiré traversait le milieu adsorbant alors que dans le cas envisagé ici, le flux gazeux longe la paroi contenant l'adsorbant.
Selon un autre mode de réalisation, les particules d'adsorbants (140) sont maintenues entre 2 parois (141 ,142) poreuses au fluide (Figure 12). Dans ce cas également, un liant et /ou une colle peuvent être ajoutés pour améliorer si nécessaire le maintien des particules entre les parois poreuses.
Ces parois peuvent être de type métallique, polymères ...Elles sont choisies de façon à pouvoir simultanément contenir les particules d'adsorbants et ne pas créer de résistance significative à la diffusion des molécules.
A titre d'exemple, les documents US 7 300 905 et US 5 120694 décrivent de façon non exhaustive ces technologies.
La Figure 13 représente la cellule de base, c'est-à-dire le plus petit élément qui permet de décrire la géométrie d'un contacteur à passage parallèle.
De gauche à droite, on trouve le canal (20), dans lequel circule le flux gazeux, d'épaisseur totale 2 epf, la membrane poreuse maintenant l'adsorbant (21) d'épaisseur epm, la couche d'adsorbant (22) d'épaisseur epads, une couche adhésive (23) d'épaisseur epc et la feuille support (24) d'épaisseur totale 2 eps. La cellule de base a donc pour dimension epf+epm+epads+epc+eps. Les ordres de grandeurs de ces épaisseurs sont par exemple :
• De 50microns à 3mm pour le canal, mettons 2 epf = 150microns
· De 10 à 100 microns pour la membrane poreuse, si elle existe, mettons 25 microns
• De 20 microns à 3mm pour la couche d'adsorbants, mettons 50 microns
• De 5 à 500 microns pour la couche adhésive , si elle existe, mettons 10 microns
• De 5 microns à 1mm pour la feuille support, si elle existe , mettons 2 eps= 100 microns.
La cellule de base aurait donc dans l'exemple une épaisseur de 210 microns (75+25+50+10+50)
Chacune de ces couches est caractérisée par une série de propriétés physiques :
- la feuille support par sa densité, sa capacité calorifique, sa conductibilité thermique, éventuellement sa porosité ;
- de même la couche adhésive par sa densité, sa capacité calorifique, sa conductibilité thermique, éventuellement sa porosité ; - la couche d'adsorbant par sa porosité totale, par la taille moyenne des macro pores, par la densité des particules d'adsorbants, éventuellement leur dimension, leur porosité interne, sa capacité calorifique, sa conductibilité thermique ainsi que par les isothermes d'adsorption et de co-adsorption liant l'adsorbant et les molécules présentes dans le flux gazeux ;
- la membrane par sa porosité totale, le diamètre moyen des pores, la capacité calorifique, la densité, la conductibilité thermique, la rugosité côté paroi fluide.
La figure 14 représente un exemple d'adsorbeur comprenant un contacteur à passages parallèles. Le contacteur cylindrique (1) est logé dans une enveloppe métallique (2) comprenant un fond inférieur et un fond supérieur avec des ouvertures pour le passage du flux gazeux. Le contacteur repose sur le fond inférieur de l'enveloppe (4). Des diffuseurs (3) en partie supérieure et inférieure la bonne distribution des flux gazeux entrant et sortant. L'étanchéité au niveau de la paroi interne de l'enveloppe (4), pour éviter un passage préférentiel du flux gazeux à cet endroit, est réalisée par la simple pression du contacteur préalablement roulé sur la paroi de l'enveloppe. Si nécessaire, cette étanchéité peut être améliorée par un quelconque des moyens connus (joints, soudure, collage...)
En résumé, par contacteur à passages parallèles, on entend un dispositif dans lequel le fluide passe dans des canaux dont les parois contiennent de l'adsorbant. Le fluide circule dans des canaux essentiellement libres d'obstacles, ces canaux permettant au fluide de circuler d'une entrée à une sortie du contacteur. Ces canaux peuvent être rectilignes reliant directement l'entrée à la sortie du contacteur ou présenter des changements de direction. Au cours de sa circulation, le fluide est en contact avec au moins un adsorbant présent au niveau des dites parois.
Selon le cas, l'adsorbeur selon l'invention peut comprendre une ou plusieurs des caractéristiques suivantes :
- on récupère en sortie de l'adsorbeur principal un flux enrichi en deuxième composé et appauvri en troisième composé ;
- l'adsorbeur principal suit un cycle de pression dont la durée d'adsorption est inférieure à 30 secondes, préférentiellement comprise entre 2 et 15 secondes ; on parlera dans ce cas de PS A rapide.
- l'adsorbeur principal suit un cycle de pression comprenant une phase d'adsorption de durée inférieure à 5 secondes, et une phase de régénération dans laquelle le gaz résiduaire est soutiré de l'adsorbeur principal, et on recycle une partie variable dudit gaz résiduaire du côté alimentation de l'adsorbeur principal. On parlera dans ce cas de PSA super-rapide. En effet, grâce au recyclage, la durée de la phase d'adsorption peut être sensiblement plus courte que la durée nécessaire pour obtenir l'efficacité maximale que l'on peut attendre de ce type d'unité. La durée d'adsorption est généralement comprise entre 0,1 à 5 secondes.
- le premier composé est au moins partiellement arrêté par une unité d'adsorption (17-1) ou une membrane de perméation (16-1) placée en amont dudit adsorbeur principal (figures 16 et 17);
- l'unité d'adsorption (17-1) est choisie parmi un lit de garde à charge renouvelable, une unité TSA, une unité PSA présentant un temps d'adsorption supérieur à 15 secondes, ou une unité PSA (18-1) comprenant un contacteur à passages parallèles, combinée à un lit de garde (18-3) (figures 17 et 18);
- l'unité d'adsorption est régénérée ou la membrane de perméation est éluée par un flux (17-3 ou 1 6-3) issu de l'adsorbeur principal ou par un flux extérieur à l'adsorbeur principal ;
- l'adsorbeur principal comprend au moins deux contacteurs à passages parallèles disposés en série. L'utilisation de contacteurs à passages parallèles disposés en série permet de traiter de grandes quantités de fluide, en particulier des flux gazeux de plusieurs centaines ou plusieurs milliers de Nm /h et/ou d'obtenir des produits de pureté très élevée (99.9% par exemple) ;
- le deuxième composé est de l'hydrogène ou du C02 ;
- le deuxième composé est de l'hydrogène, le troisième composé est choisi parmi le dioxyde de carbone, le méthane, le monoxyde de carbone et l'azote, et on récupère en sortie de l'adsorbeur principal un flux enrichi en hydrogène et appauvri en troisième composé.
Les adsorbants susceptibles d'être utilisés dans les contacteurs à passages parallèles sont ceux utilisés dans les unités de séparation ou purification de flux gazeux classiques. Le choix dépend de l'application. Il est possible dans un même contacteur d'utiliser successivement plusieurs adsorbants différents. On pourra citer les gels de silice, l'alumine activée éventuellement dopée, les charbons actifs, les zéolites de type divers (3A, 4A, 5A, type X, LSX, Y etc. éventuellement échangées...), les adsorbants à charpente métalo- organique (MOF....) Les zéolites sont généralement utilisées sous forme de microcristaux, voire de nano cristaux selon les procédés de synthèse. D'autres adsorbants, par exemple les charbons actifs, peuvent être concassés pour obtenir des particules de l'ordre du micron.
Néanmoins, un moyen supplémentaire pour limiter le problème de diminution des performances initiales de l'adsorbeur principal est de choisir des adsorbants ne présentant pas une trop grande affinité pour les constituants présents. En effet, si les adsorbants des couches supérieures à celle où ladite impureté devait normalement être arrêtée présente une trop grande affinité pour cette dernière, le PSA pourra ne pas se régénérer par simple effet de pression.
Il est possible par exemple d'utiliser du gel de silice, de l'alumine activée et/ou du charbon dans un PSA C02 à la place du tamis moléculaire 13X. On pourra perdre au plus quelques pourcents au niveau des performances mais la solution sans tamis sera beaucoup plus robuste. On pourra utiliser des PSA H2 avec comme adsorbant du charbon actif ou gel de silice / charbon actif en lieu et place des multi-couches très spécialisées.
La figure 19 illustre en particulier la disposition de trois contacteurs en série dans un adsorbeur. Les trois contacteurs (10), (1 1) et (12) sont superposés dans une même enveloppe (4) comportant un fond inférieur et un fond supérieur équipés d'ouvertures d'entrée/sortie des flux gazeux. Des déflecteurs ou diffuseurs (15) permettent en partie inférieure et supérieure la bonne distribution du flux gazeux. Des distributeurs intermédiaires (16) permettent de récupérer les flux sortant d'un contacteur et de les redistribuer de façon homogène dans le suivant. Ces distributeurs (16) peuvent être des pièces d'équipement particulières faisant transition entre deux contacteurs et faisant en sorte de ne pas boucher les canaux dévolus aux fluides. Il peut notamment s'agir de caillebotis, grille métallique, croisillon et de façon plus générale d'espaceur ne présentant pas de résistance à l'écoulement du fluide. D'autre part, les extrémités d'au moins un contacteur peuvent être adaptées afin de faciliter l'écoulement du fluide entre les contacteurs. Cette adaptation peut consister à échancrer par exemple le dernier centimètre du support afin de créer une zone de passage importante pour le fluide qui pourra ainsi se redistribuer plus aisément dans le second contacteur. Une autre solution peut consister à rendre solitaire chacun des contacteurs avec la paroi de l'enveloppe externe en laissant par exemple un jeu (espace libre) entre contacteurs. Les trois contacteurs peuvent être identiques ou au contraire, il est possible d'utiliser cette invention pour singulariser au moins un contacteur et l'adapter aux conditions opératoires se trouvant à ce niveau de l'adsorbeur. Concernant cette modification, il peut s'agir d'un autre type d'adsorbant, d'une modification de l'épaisseur de la couche adsorbante, de la section de passage, etc....

Claims

Revendications
1. Procédé de purification d'un flux gazeux comprenant au moins un premier composé choisi parmi les composés du premier groupe formé par l'eau, l' ammoniac, les aromatiques, les hydrocarbures de type alcane, alcène ou alcyne comportant au moins 5 atomes de carbones, les aldéhydes, les cétones, les hydrocarbures halogénés, le sulfure d'hydrogène, le chlorure d'hydrogène et au moins un deuxième et un troisième composés choisis parmi les composés du deuxième groupe formé par l'hélium, l'hydrogène, l'azote, l'oxygène, l'argon, le monoxyde de carbone, le dioxyde de carbone, les hydrocarbures inférieures à C5, par adsorption à pression variable (PSA), mettant en œuvre au moins un adsorbeur principal (17-2) comprenant au moins un contacteur à passages parallèles, caractérisé en ce que :
- le premier composé est au moins partiellement arrêté par une unité TSA (17-1) placée en amont dudit adsorbeur principal (17-2), et
- l'adsorbeur principal suit un cycle de pression comprenant une phase d'adsorption de durée inférieure à 15 secondes, et une phase de régénération dans laquelle le gaz résiduaire est soutiré de l'adsorbeur principal.
2. Procédé selon la revendication 1 , caractérisé en ce qu'on récupère en sortie de l'adsorbeur principal un flux enrichi en deuxième composé et appauvri en troisième composé.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'adsorbeur principal suit un cycle de pression dont la durée d'adsorption est comprise entre 2 et 15 secondes.
4. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que l'adsorbeur principal suit un cycle de pression comprenant une phase d'adsorption de durée inférieure à 5 secondes, et une phase de régénération dans laquelle le gaz résiduaire est soutiré de l'adsorbeur principal, et on recycle une partie variable dudit gaz résiduaire du côté alimentation de l'adsorbeur principal.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'adsorbeur principal comprend au moins deux contacteurs à passages parallèles disposés en série.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le deuxième composé est de l'hydrogène ou du C02.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le deuxième composé est de l'hydrogène, le troisième composé est choisi parmi le dioxyde de carbone, le méthane, le monoxyde de carbone et l'azote, et on récupère en sortie de l'adsorbeur principal un flux enrichi en hydrogène et appauvri en troisième composé.
EP10779271A 2009-11-19 2010-11-04 Procede de purification d'un flux gazeux mettant en uvre un contacteur a passages paralleles presentant une conservation de ses performances Ceased EP2501459A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0958170A FR2952553B1 (fr) 2009-11-19 2009-11-19 Procede de purification d'un flux gazeux mettant en oeuvre un contacteur a passages paralleles presentant une conservation de ses performances
PCT/EP2010/066770 WO2011061056A1 (fr) 2009-11-19 2010-11-04 Procede de purification d'un flux gazeux mettant en œuvre un contacteur a passages paralleles presentant une conservation de ses performances

Publications (1)

Publication Number Publication Date
EP2501459A1 true EP2501459A1 (fr) 2012-09-26

Family

ID=42244626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10779271A Ceased EP2501459A1 (fr) 2009-11-19 2010-11-04 Procede de purification d'un flux gazeux mettant en uvre un contacteur a passages paralleles presentant une conservation de ses performances

Country Status (5)

Country Link
US (1) US20120227583A1 (fr)
EP (1) EP2501459A1 (fr)
CN (1) CN102665857B (fr)
FR (1) FR2952553B1 (fr)
WO (1) WO2011061056A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2992573B1 (fr) * 2012-06-29 2017-10-20 Air Liquide Assemblage de modules d'adsorbants structures
US9073001B2 (en) * 2013-02-14 2015-07-07 The Boeing Company Monolithic contactor and associated system and method for collecting carbon dioxide
CN104436992B (zh) * 2014-10-15 2016-08-17 北京氢璞创能科技有限公司 具有前置气体成份分离装置的变压吸附气体提纯器组件
FR3029803B1 (fr) 2014-12-11 2019-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Melange adsorbant a capacite thermique amelioree
FR3034027B1 (fr) 2015-03-26 2018-11-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de production d'oxygene par vpsa comprenant 4 adsorbeurs
EP3093550A1 (fr) 2015-05-11 2016-11-16 Basf Se Récipient de stockage comprenant au moins un corps façonné à partir d'un solide poreux
US9795915B2 (en) * 2016-01-29 2017-10-24 Air Products And Chemicals, Inc. Heater arrangement for TEPSA system
SG11201900842QA (en) 2016-09-01 2019-03-28 Exxonmobil Upstream Res Co Swing adsorption processes for removing water using 3a zeolite structures
AU2017379685B2 (en) 2016-12-21 2020-03-12 Exxonmobil Upstream Research Company Self-supporting structures having foam-geometry structure and active materials
AU2017379684B2 (en) 2016-12-21 2020-03-12 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
CN109647131B (zh) * 2019-02-27 2022-02-11 大连大学 一种脉动射流变压吸附净化气体的装置
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
WO2021071755A1 (fr) 2019-10-07 2021-04-15 Exxonmobil Upstream Research Company Procédés et systèmes d'adsorption utilisant une commande d'élévation de pas de soupapes champignon à actionnement hydraulique
EP4045173A1 (fr) 2019-10-16 2022-08-24 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Procédés de déshydratation utilisant une zéolite rho cationique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329158A (en) * 1980-06-13 1982-05-11 Air Products And Chemicals, Inc. Air fractionation by pressure swing adsorption
US4472178A (en) * 1983-07-05 1984-09-18 Air Products And Chemicals, Inc. Adsorptive process for the removal of carbon dioxide from a gas
US4770676A (en) * 1986-05-16 1988-09-13 Air Products And Chemicals, Inc. Recovery of methane from land fill gas
US5120694A (en) 1989-07-28 1992-06-09 Uop Method of coating aluminum substrates with solid adsorbent
US5451248A (en) * 1990-07-19 1995-09-19 The Boc Group Plc Storage and transportation of goods under controlled atmospheres
CA2133302A1 (fr) * 1993-10-06 1995-04-07 Ravi Kumar Procede integre pour purifier et liquefier une alimentation de melange gazeux, tenant compte de son constituant le moins fortement adsorbe et de volatilite minimale
US5753010A (en) * 1996-10-28 1998-05-19 Air Products And Chemicals, Inc. Hydrogen recovery by pressure swing adsorption integrated with adsorbent membranes
CA2195282C (fr) 1997-01-16 2004-05-11 Frederic Lagace Echangeur thermique autonome pour le transfert air-air de vapeur d'eau et d'enthalpie
US5914455A (en) * 1997-09-30 1999-06-22 The Boc Group, Inc. Air purification process
FR2788993B1 (fr) * 1999-01-29 2001-02-23 Air Liquide Procede d'epuration d'un gaz par adsorption
FR2800297B1 (fr) 1999-10-28 2001-12-28 Air Liquide Installation de traitement cyclique de fluide par adsorption avec vannes a etancheite amelioree
JP3489048B2 (ja) 2000-02-01 2004-01-19 日産自動車株式会社 排気ガス浄化用触媒
CN1327948C (zh) 2001-01-05 2007-07-25 探索空气技术公司 吸附涂层组合物,及含有该组合物的层压材料和吸附器组件及制造它们的方法及应用
US20030037672A1 (en) * 2001-08-27 2003-02-27 Shivaji Sircar Rapid thermal swing adsorption
US7077891B2 (en) 2002-08-13 2006-07-18 Air Products And Chemicals, Inc. Adsorbent sheet material for parallel passage contactors
US20050211100A1 (en) 2004-03-23 2005-09-29 Doughty David T Shaped composite adsorbent material
WO2006079028A1 (fr) * 2005-01-21 2006-07-27 Exxonmobil Research And Engineering Company Hydrocraquage de charges d'alimentation lourdes avec une meilleure gestion de l'hydrogene
US20090214902A1 (en) * 2005-06-15 2009-08-27 Pelman Aaron M Adsorptive Bulk Separation for Upgrading Gas Streams
CA2672653C (fr) * 2007-01-24 2014-10-14 Xebec Adsorption Inc. Couches de protection pour dispositifs a adsorption modulee en pression a cycle rapide
US7959720B2 (en) * 2007-05-18 2011-06-14 Exxonmobil Research And Engineering Company Low mesopore adsorbent contactors for use in swing adsorption processes
US7909913B2 (en) * 2008-07-17 2011-03-22 Air Products And Chemicals, Inc. Gas purification by adsorption of hydrogen sulfide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531809A (en) * 1994-09-14 1996-07-02 Air Products And Chemicals, Inc. Pretreatment layer for CO-VSA

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BABICKI MATT; HALL ET AL: "PSA technology hits the Fast Lane", 1 August 2003 (2003-08-01), pages 6 PP, XP055175607, Retrieved from the Internet <URL:http://www.xebecinc.com/pdf/e_h2x_fast_lane.pdf> [retrieved on 20150311] *
See also references of WO2011061056A1 *

Also Published As

Publication number Publication date
FR2952553B1 (fr) 2012-06-01
FR2952553A1 (fr) 2011-05-20
WO2011061056A1 (fr) 2011-05-26
CN102665857B (zh) 2014-09-24
US20120227583A1 (en) 2012-09-13
CN102665857A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
EP2501459A1 (fr) Procede de purification d&#39;un flux gazeux mettant en uvre un contacteur a passages paralleles presentant une conservation de ses performances
CA2729366C (fr) Traitement de gaz humide contenant des poussieres
EP3393621A1 (fr) Procede de production de biomethane par epuration de biogaz issu d&#39;installations de stockage de dechets non-dangereux (isdnd) et installation pour la mise en uvre du procede
EP0938920A1 (fr) Procédé et dispositif de purification de gaz par adsorption a lits horizontaux fixes
EP2178621A2 (fr) Procede de purification d&#39;un gaz contenant du co2 par integration d&#39;unite de purification par adsorption
EP2488278A1 (fr) Procédé de production d&#39;au moins un gaz pauvre en co2 et d&#39;au moins un fluide riche en co2
EP3122439B1 (fr) Installation et procede de purification par adsorption d&#39;un flux gazeux comprenant une impurete corrosive
WO2013117827A1 (fr) Adsorbeur constitué de plusieurs contacteurs à passage parallèles
CA2743951A1 (fr) Adsorbeurs radiaux monolits en serie
WO2020169901A1 (fr) Installation et procédé de séparation des gaz de l&#39;air à basse pression
CN114222619A (zh) 制造高填充率复合吸附体床层的方法、包括床层的吸附器和使用吸附器的基于吸附的气体分离
WO2020169900A1 (fr) Installation et procédé de séparation des gaz de l&#39;air mettant en œuvre un adsorbeur de forme parallélépipédique
FR2913969A1 (fr) Ecretement des pics d&#39;impurete
EP2179776B1 (fr) Repressurisation d&#39;un VSA CO2 traitant un mélange gazeux comprenant un combustible
FR2988623A1 (fr) Reduction des volumes morts d&#39;un adsorbeur pour adsorption d&#39;un flux gazeux
FR2836058A1 (fr) Procede de separation d&#39;un melange gazeux et installation de mise en oeuvre d&#39;un tel procede
FR2967083A1 (fr) Procede de purification d&#39;un flux gazeux mettant en œuvre un contacteur a passages paralleles dans un cycle psa super-rapide
WO2012172219A1 (fr) Adsorbeur comprenant des contacteurs à passages parallèles avec isolation intégrée
FR2974520A1 (fr) Adsorbeur en position horizontale
EP3775668A1 (fr) Proc&amp; xc9;d&amp; xc9; de production d&#39;un flux gazeux mettant en &amp; x152;uvre un r&amp; xc9;servoir de stockage
FR2992573A1 (fr) Assemblage de modules d&#39;adsorbants structures
WO2013057387A1 (fr) Procédé de captage d&#39;un composé contenu dans un gaz par adsorption sur lit vertical
FR2899890A1 (fr) Procede psa h2 avec elution par du gaz de production ou exterieur
EP2682174A1 (fr) Dispositif de purification et procédé de régénération du SF6

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120619

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20160603