WO2016015552A1 - 发光装置及投影系统 - Google Patents

发光装置及投影系统 Download PDF

Info

Publication number
WO2016015552A1
WO2016015552A1 PCT/CN2015/083505 CN2015083505W WO2016015552A1 WO 2016015552 A1 WO2016015552 A1 WO 2016015552A1 CN 2015083505 W CN2015083505 W CN 2015083505W WO 2016015552 A1 WO2016015552 A1 WO 2016015552A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
splitting
laser
excitation
Prior art date
Application number
PCT/CN2015/083505
Other languages
English (en)
French (fr)
Inventor
胡飞
杨佳翼
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to US15/326,873 priority Critical patent/US9897899B2/en
Priority to EP15826666.8A priority patent/EP3176638B1/en
Priority to JP2017503111A priority patent/JP6393403B2/ja
Priority to KR1020177005306A priority patent/KR101978376B1/ko
Priority to KR1020197011322A priority patent/KR102088741B1/ko
Publication of WO2016015552A1 publication Critical patent/WO2016015552A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/06Colour photography, other than mere exposure or projection of a colour film by additive-colour projection apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources

Definitions

  • the present invention relates to the field of laser display technology, and more particularly to a light emitting device and a projection system.
  • the excitation light emitted by different light sources is incident on different wavelength conversion devices to generate lasers of different colors, such as red, green, and blue lasers, and then the lasers of these different colors are combined.
  • a beam of white light is used to display the projected image.
  • a projection system disclosed in the prior art includes blue light emitting laser modules 31, 32 and 33; / wavelength conversion device for yellow phosphor 11 , wavelength conversion device 12 with red/yellow phosphor and astigmatism color wheel 13; concentrating lens corresponding to wavelength conversion devices 11 and 12 respectively 21 and 22 for concentrating collimated light; a filter for transmitting blue light by reflecting blue light, a filter for transmitting red light for red light 42 , and a filter for transmitting red light for reflecting other light 40 A filter that reflects blue light and transmits other light 43 .
  • the blue light emitted by the laser module 31 passes through the filter 41 and the collecting lens 21, and is incident on the wavelength conversion device. Green light is generated, and the green light is reflected by the filter 41 and the filter 40, and then incident on the filter 43.
  • the blue light emitted by the laser module 32 passes through the filter 42 and the collecting lens 22 Thereafter, red light is generated incident on the wavelength conversion device 12, and the red light is reflected by the filter 42 and transmitted by the filter 40 to be incident on the filter 43; the blue light emitted by the laser module 33 is astigmatically colored by the color wheel 13 After astigmatism, it is incident on the filter 43; the green light and the red light transmitted by the filter 43 are combined with the blue light reflected by the filter 43 to form a white light which can be displayed by the projected image.
  • the projection system uses different light sources to excite different lasers, and uses different filters to filter or synthesize different lasers. Therefore, the projection system is bulky and costly.
  • the present invention provides a light-emitting device and a projection system to solve the problems of large volume and high cost of the projection system in the prior art.
  • the present invention provides the following technical solutions:
  • a light emitting device comprising:
  • spectroscopic unit on the exiting light path of the excitation light, the spectroscopic unit having a splitting portion that splits the excitation light into first and second excitation light propagating along different paths;
  • a first wavelength conversion device having a first wavelength conversion layer on the exiting optical path of the first excitation light, the first wavelength conversion layer absorbing the first excitation light to generate a first laser light, and Reflecting the first received laser light back to the beam splitting sheet;
  • a second wavelength conversion device located on the exiting optical path of the second excitation light and reflecting the second excitation light back to the optical splitting sheet;
  • the spectroscopic light combining sheet further has a light combining portion located around the light splitting portion, and the light combining portion is configured to combine the first laser light and the second laser light that are reflected back to the light splitting light combiner The combined position of the beam of light.
  • the light splitting portion is located in a central region of the light splitting light combiner, and the light splitting portion is a transflective diaphragm.
  • the second wavelength conversion device further has a second wavelength conversion layer, the second wavelength conversion layer absorbs the second beam of excitation light to generate a second laser beam, and reflects the second laser beam back The spectroscopic light combining sheet.
  • the light combining portion is the first laser light, the second laser light, and the first light to be reflected back to the light combining film
  • the two beams of excitation light combine to form a combined portion of light.
  • the light combining portion is a filter that reflects the first laser beam, transmits the second laser beam and the second laser beam, or the light combining portion is the first receiving portion A laser transmission, a filter that reflects the second laser and the second excitation light.
  • the light splitting portion is a portion that transmits and partially reflects the excitation light, reflects the first laser beam, transmits the filter to the second laser light, or the light splitting portion is The excitation light is partially transmitted, partially reflected, and transmitted to the first laser-receiving filter.
  • the first wavelength conversion layer or the second wavelength conversion layer is a wavelength conversion layer having a red phosphor, and the received laser light generated by the red phosphor absorbs the excitation light includes near-infrared light.
  • the first wavelength conversion layer has a yellow light.
  • the wavelength conversion layer of the phosphor is a wavelength conversion layer having a red phosphor, and the laser light generated by the red phosphor contains near-infrared light, the first wavelength conversion layer has a yellow light.
  • the wavelength conversion layer of the phosphor is a wavelength conversion layer having a red phosphor, and the laser light generated by the red phosphor contains near-infrared light.
  • the light combining portion has a transmission wavelength smaller than 480 nm and light larger than 650 nm, a filter that reflects light having a wavelength between 480 nm and 650 nm, and the spectroscopic portion has a reflection wavelength of 480 nm to 650 nm.
  • the light combining portion has a reflection wavelength smaller than 480 nm and light larger than 650 nm, a filter that transmits light having a wavelength between 480 nm and 650 nm, and the light splitting portion has a transmission wavelength of 480 nm to 650 nm.
  • the second wavelength conversion layer has yellow light.
  • the wavelength conversion layer of the phosphor is a wavelength conversion layer having a red phosphor, and the laser light generated by the red phosphor contains near-infrared light, the second wavelength conversion layer has yellow light.
  • the wavelength conversion layer of the phosphor is a wavelength conversion layer having a red phosphor, and the laser light generated by the red phosphor contains near-infrared light.
  • the light combining portion has a transmission wavelength greater than 650 nm light, a filter that reflects light having a wavelength less than 650 nm, and the light splitting portion has a light having a reflection wavelength between 480 nm and 650 nm and a transmission wavelength greater than 650 nm.
  • a partially transmissive filter that transmits light at wavelengths less than 480 nm.
  • the light combining portion has a reflection wavelength greater than a light filter of 650 nm and a light having a wavelength of less than 650 nm, the light splitting portion also having a light having a transmission wavelength between 480 nm and 650 nm and a reflection wavelength greater than 650 nm.
  • a partially transmissive filter that transmits light at wavelengths less than 480 nm.
  • the method further includes:
  • a first concentrating lens located between the first wavelength converting device and the beam splitting sheet and located on the first beam excitation light and the first laser beam exiting light path;
  • a second concentrating lens located between the second wavelength converting device and the beam splitting sheet and located on the second beam excitation light and the second laser beam exiting light path.
  • a projection system comprising the illumination device of any of the above.
  • a projection system comprising the illumination device of any of the above.
  • the illuminating device and the projection system provided by the present invention divide the excitation light emitted by the same light source into the first beam and the second beam of excitation light propagating along different paths through the light splitting portion of the beam splitting plate, thereby exciting different laser beams. Therefore, the number of light sources is reduced, the volume and cost of the light-emitting device and the projection system are reduced; and the light-emitting device and the projection system provided by the present invention are located at the light-combining portion around the light-splitting portion, and are firstly subjected to laser light and reflected The second excitation light combines a beam of light. Since the light combining portion and the light splitting portion are located in the same splitting light combiner, the number of filters is reduced, thereby further reducing the volume and cost of the light emitting device and the projection system.
  • FIG. 1 is a schematic structural view of a projection system provided by the prior art
  • FIG. 2 is a schematic structural view of a light emitting device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram showing the distribution of a region of a light splitting light sheet according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a light emitting device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a light emitting device according to Embodiment 3 of the present invention.
  • the existing projection system uses a plurality of light sources to excite laser light, and uses a plurality of filters to filter and synthesize different laser beams, so that the projection system has a large volume and a high cost.
  • the present invention provides a light-emitting device to overcome the above problems existing in the prior art, including:
  • a light source that emits excitation light
  • a light combining light sheet located on an outgoing light path of the excitation light, the light splitting light combining sheet having a splitting light that splits the excitation light into first and second excitation light propagating along different paths a first wavelength conversion device having a first wavelength conversion layer on the exiting optical path of the first excitation light, the first wavelength conversion layer absorbing the first excitation light to generate a first laser And reflecting the first received laser light back to the beam splitting sheet; on the outgoing light path of the second beam of excitation light, and reflecting the second beam of excitation light back to the beam splitting sheet a two-wavelength conversion device; wherein the light-splitting light-storing sheet further has a light-combining portion located around the light-splitting portion, wherein the light-combining portion is the first laser light and the first light to be reflected back to the light-splitting light combining sheet The two beams of excitation light combine to form a combined portion of light.
  • the present invention also provides a projection system comprising the illumination device as described above.
  • the illuminating device and the projection system provided by the present invention divide the excitation light emitted by the same light source into the first beam and the second beam of excitation light propagating along different paths through the light splitting portion of the beam splitting plate, thereby exciting different laser beams.
  • the first laser light and the light-receiving portion located around the light-splitting portion
  • the reflected second excitation light combines a beam of light, and since the light combining portion and the light splitting portion are located in the same splitting light combining sheet, the number of the filter is reduced, thereby further reducing the volume and cost of the light emitting device and the projection system.
  • the present embodiment provides a light-emitting device, as shown in FIG. 2, comprising a light source 201 that emits excitation light ⁇ 21; a light-splitting light-storing sheet 202 on an outgoing light path of the excitation light ⁇ 21, the light-splitting light-collecting sheet 202 having excitation light ⁇ 21 is divided into a first beam excitation light ⁇ 211 and a second beam excitation light ⁇ 212 that are propagated along different paths; a first wavelength conversion device 203 having a first wavelength conversion layer is located on the outgoing light path of the first beam excitation light ⁇ 211 The first wavelength conversion layer absorbs the first excitation light ⁇ 211 to generate a first received laser ⁇ 22, and reflects the first received laser ⁇ 22 back to the optical splitting sheet 202; on the outgoing optical path of the second excitation light ⁇ 212 The second excitation light ⁇ 212 is reflected back to the second wavelength conversion device 204 of the beam splitting sheet 202; the light combining light sheet 202 further has a light
  • the light source 201 is a laser light source that emits blue light.
  • the first wavelength conversion layer on the first wavelength conversion device 203 is a yellow light phosphor, and the light splitting portion 2021 is a transflective diaphragm, which is excited by transmission or reflection.
  • the light ⁇ 21 is divided into a first excitation light ⁇ 211 and a second excitation light ⁇ 212 which propagate along different paths, and the light combining portion 2022 is a filter that reflects the first laser light ⁇ 22 and transmits the second excitation light ⁇ 212.
  • the excitation light ⁇ 21 transmitted by the light splitting portion 2021 is the first excitation light ⁇ 211, and the reflected excitation light ⁇ 21 is the second excitation light ⁇ 212.
  • the present invention is not limited thereto.
  • the ratio of the transmitted or reflected light of the light splitting portion 2021 can be adjusted according to actual needs. Preferably, the ratio of transmission to reflection is less than or equal to 7:3.
  • the propagation path of the transmitted first excitation light ⁇ 211 does not change, and is still the same as the propagation path of the excitation light ⁇ 21, but the propagation path of the second excitation light ⁇ 212 after the reflection changes, specifically,
  • the propagation direction and the propagation angle of the two excitation light ⁇ 212 are related to the angle between the beam splitting plate 202 and the excitation light ⁇ 21, and the angle can be adjusted according to actual needs.
  • the second wavelength conversion device 204 only has a reflective sheet that reflects the second excitation light ⁇ 212 back to the optical splitting sheet 202.
  • the second wavelength conversion device 204 also has a second absorption.
  • the excitation light ⁇ 212 is generated and a second laser-converted second wavelength conversion layer is produced. Since the second wavelength conversion device 204 has both the reflection sheet and the second wavelength conversion layer, the light extraction angle of the second excitation light and the second laser light after reflection can be made smaller, and the uniformity of light emission is better.
  • the second wavelength conversion layer may be a yellow phosphor or a red phosphor, wherein the laser light generated by the red phosphor after absorbing the excitation light includes a near infrared Light.
  • the first wavelength conversion layer is a red phosphor; when the second wavelength conversion layer is a red phosphor, the first wavelength conversion layer is a yellow phosphor.
  • the light combining portion 2022 combines the first laser beam, the second laser beam, and the second laser beam reflected back to the beam splitting sheet to form a beam of light.
  • the illuminating device provided by this embodiment or other embodiments further includes a first ray between the first wavelength converting device 203 and the beam splitting plate 202, and located at the first beam excitation light ⁇ 211 and the first laser beam ⁇ 22.
  • a collecting lens 205 for concentrating the collimated light and between the second wavelength converting device 204 and the beam splitting plate 202, and located at the second beam excitation light ⁇ 212 or the second beam excitation light ⁇ 212 and the second laser beam ⁇ 23
  • the second collecting lens 206 on the outgoing light path.
  • the blue light emitted by the light source 201 passes through the light splitting portion 2021 of the light combining and combining sheet 202, and is divided into a first blue light ⁇ 211 and a second blue light ⁇ 212.
  • a first received laser light that is, a yellow light ⁇ 22 is generated, and the yellow light ⁇ 22 is concentrated by the first condensing lens 205, and then incident.
  • the second blue light ⁇ 212 is reflected by the second wavelength converting device 204, and then incident on the light combining portion 2022 of the light combining and combining sheet 202,
  • the light combining portion 2022 is transmitted.
  • a yellow light ⁇ 22 reflected by the light combining portion 2022 and a second white light blue light ⁇ 212 transmitted are combined to form a white light, and after being passed through a device such as a homogenizing device, a projected image is displayed.
  • the excitation light emitted by the same light source is split into the first beam and the second beam of excitation light propagating along different paths by the light splitting portion of the beam splitting plate, thereby exciting different laser beams. Therefore, the number of light sources is reduced, and the volume and cost of the light-emitting device and the projection system are reduced.
  • the light-emitting device and the projection system provided in this embodiment pass the first laser and the reflection through the light-combining portion located around the light-splitting portion. The second excitation light is combined to form a beam of light. Since the junction portion and the beam splitting portion are located in the same beam splitting sheet, the number of filters is reduced, thereby further reducing the volume and cost of the light emitting device and the projection system.
  • the present embodiment provides a light-emitting device, as shown in FIG. 4, including a light source 401 that emits excitation light ⁇ 41, and a light-splitting light-sinking sheet 402 that is located on the outgoing light path of the excitation light ⁇ 41 and has a light-splitting portion 4021 and a light-combining portion 4022.
  • the light splitting portion 4021 is a semi-transflective diaphragm that splits the excitation light ⁇ 41 into a first excitation light ⁇ 411 and a second excitation light ⁇ 412 that propagate along different paths, and the propagation path and excitation of the first excitation light ⁇ 411
  • the propagation path of the light ⁇ 41 is the same as shown in FIG.
  • the light combining portion 4022 is a filter that combines the second laser beam ⁇ 412 and the second laser beam ⁇ 43 and the first laser beam ⁇ 42 into one beam, and the light splitting portion 4021 and the light combining portion 4022 are located on the same beam splitting plate 402.
  • the light splitting portion 4021 is located in a central region of the light splitting light combiner 402, and the light combining portion 4022 is located around the light splitting portion 4021.
  • the light splitting portion 4021 is a filter that partially transmits and partially reflects the excitation light ⁇ 41, reflects the first received laser light ⁇ 42, and transmits the second received laser light ⁇ 43;
  • the light combining portion 4022 is A filter that is first reflected by the laser light ⁇ 42 and transmitted to the second received laser light ⁇ 43 and the second laser light ⁇ 412.
  • the light combining portion 4022 can be the first laser beam ⁇ 42, the second laser beam ⁇ 43, and the reflected portion.
  • the two excitation lights ⁇ 412 synthesize a beam of light.
  • the inventors have found that, as shown in FIG. 1, when a blue light, a green light, and a red light are combined into a single beam in a conventional manner, since the combined light filter filters out light larger than 590 nm, the dominant wavelength of the red light is Near 620nm, therefore, most of the red and yellow light will be filtered out when combined, resulting in a small amount of near-infrared light with a wavelength exceeding 650nm in the synthesized beam, which cannot meet the needs of some special projectors.
  • the excitation light emitted by the light source 401 is blue light
  • the first wavelength conversion layer on the first wavelength conversion device 404 is a yellow light phosphor, which generates yellow light under excitation of blue light
  • the second wavelength conversion device The second wavelength conversion layer on 405 is a red phosphor
  • the laser light generated under the excitation of blue light is red light containing near-infrared light.
  • the light combining portion provided by the embodiment can seamlessly synthesize a beam of light by reflecting or transmitting light of a specific wavelength region, so as to solve the problem that the near-infrared light in the beam synthesized in the prior art is small.
  • the light combining portion 4022 is a filter that transmits light having a wavelength of less than 480 nm and a wavelength of more than 650 nm, and reflects light having a wavelength between 480 nm and 650 nm; and the light splitting portion 4021 is a transflective half of a light having a transflective wavelength of less than 480 nm.
  • the anti-diaphragm, and the spectroscopic portion 4021 further has a filter that reflects light having a wavelength between 480 nm and 650 nm and transmits light having a wavelength greater than 650 nm.
  • the blue light ⁇ 41 emitted by the light source 401 is split by the light splitting portion 4021 of the light splitting film 402, the blue light having a wavelength of less than 480 nm forms a first blue light ⁇ 411 and a second blue light ⁇ 412 which propagate along different paths, wherein The propagation path of the first blue light ⁇ 411 is the same as the propagation path of the blue light ⁇ 41;
  • the first blue light ⁇ 411 is incident on the first wavelength converting device 404 and generates a first received laser light, that is, a yellow light ⁇ 42, which is concentrated by the first collecting lens 403.
  • the light incident portion 4022 is incident on the light combining and condensing sheet 402, wherein light having a wavelength greater than 480 nm and less than 650 nm in the yellow light ⁇ 42 is reflected by the light combining portion 4022;
  • the second blue light ⁇ 412 is incident on the second wavelength conversion device 405 after passing through the second condensing lens 406 , and a part of the second blue light ⁇ 412 is reflected by the reflection sheet back to the light combining portion 4022 of the light combining condensing sheet 402 , and part of the second blue ⁇ 412 It is absorbed by the second wavelength conversion layer and generates a second laser beam, that is, a red light ⁇ 43 containing near-infrared light, which is concentrated by the second condensing lens 406 and incident on the light combining portion of the beam combining film 402. 4022, wherein a light having a wavelength greater than 650 nm in the second blue light ⁇ 412 and the red light ⁇ 43 having a wavelength less than 480 nm is transmitted by the light combining portion 4022;
  • the light having a wavelength of less than 480 nm after being transmitted through the light combining portion 4022, the light having a wavelength greater than 480 nm and less than 650 nm after reflection, and the light having a wavelength greater than 650 nm after transmission are seamlessly combined to form a light beam containing light of each wavelength band.
  • white light containing near-infrared light can meet the needs of various projectors.
  • the wavelength region is divided by 650 nm as an example, because the light loss of the yellow light at 650 nm is within 10%, and the light loss of the near-infrared light having a dominant wavelength of around 690 nm at 650 nm is also Within 10%.
  • the wavelength region may be divided according to actual conditions.
  • the positions of the first wavelength conversion device 404 and the second wavelength conversion device 405 are interchanged.
  • the excitation light is partially transmissive, partially reflected, and transmitted to the first received laser light, to the second laser-received filter; the light combining portion is transmissive to the first received laser light, and the second light is transmitted A filter that is reflected by the laser and the second excitation light.
  • the first laser beam, the second laser beam, and the second laser beam have different wavelength ranges, the first laser beam, the second laser beam, and the second laser beam after the light combining portion can be combined into one bundle. Light.
  • the light combining portion provided by the embodiment may be a light filter that reflects light having a wavelength of less than 480 nm and greater than 650 nm and transmits light having a wavelength between 480 nm and 650 nm.
  • the light splitting portion may be a transflective portion. A transflective diaphragm having a wavelength of less than 480 nm, and a filter that transmits light having a wavelength between 480 nm and 650 nm and reflecting light having a wavelength greater than 650 nm.
  • the principle of the light combining is the same as that of the embodiment, and details are not described herein again.
  • the spot and the angle before the excitation light is incident on the wavelength conversion device are small, and therefore, the spectroscopic portion of the spectroscopic light combining sheet can be split; when the excitation light is incident on the wavelength converting device, the light is emitted.
  • the spot and angle of the laser are increased. Therefore, when the laser is incident on the beam splitting film, the entire area can be filled.
  • the light splitting portion also has light reflecting or transmitting light between 480 nm and 650 nm, transmission or a filter that reflects light having a wavelength greater than 650 nm. Therefore, even if the light reflected back onto the optical splitting film falls on the light splitting portion, the filter of the light splitting portion can still be combined, thereby neglecting the light at the light splitting portion. Loss.
  • the proportion of red light required by the light source is small, and the efficiency of the red phosphor at low power and low temperature is high, the proportion of the second blue light ⁇ 412 for exciting the red phosphor is Smaller, that is, the ratio of the first blue light ⁇ 411 and the second blue light ⁇ 412 is greater than or equal to 7:3.
  • the light-emitting device reduces the volume and cost by reducing the number of the light source and the filter, and transmits or reflects the light beams of different wavelength regions through the beam splitting sheet, and forms a continuous white light with seamless overlapping without overlapping. It reduces the light loss during the merging, while retaining the near-infrared light in the beam, which enhances the energy of the combined beam and the near-infrared light it contains.
  • the embodiment of the present invention provides a light-emitting device that is different from the light-emitting device of the second embodiment in that the first wavelength conversion layer in the first wavelength conversion device is a red phosphor.
  • the laser light generated by the red phosphor includes near-infrared light
  • the second wavelength conversion layer in the second wavelength conversion device having the reflection sheet is a yellow phosphor, and the propagation path of the second excitation light and the excitation light The propagation paths are the same. Therefore, the illumination device provided in this embodiment is as shown in FIG. 5.
  • the light splitting portion of the light splitting and combining sheet is a portion that transmits and partially reflects the excitation light, and transmits the first laser beam to the second laser beam;
  • the light combining portion is A filter that is first transmitted by the laser and that reflects the second laser and the second excitation light.
  • the light splitting portion provided in this embodiment may be a transflective diaphragm having a transflective wavelength of less than 480 nm, and the spectroscopic portion further has a light having a reflection wavelength between 480 nm and 650 nm and a transmission wavelength greater than 650 nm.
  • the light filter, the light combining portion of the light splitting film may be a light filter that transmits light of more than 650 nm and reflects light of less than 650 nm.
  • the blue light ⁇ 51 emitted by the light source 501 is split by the light splitting portion 5021 of the light splitting light sheet 502, the blue light having a wavelength of less than 480 nm forms a first blue light ⁇ 511 and a second blue light ⁇ 512 which propagate along different paths, wherein the second blue light ⁇ 512
  • the propagation path is the same as the propagation path of the blue light ⁇ 51. Since the second wavelength conversion device 504 is located on the outgoing light path of the second blue light 512, the second wavelength conversion device 504 is located on the outgoing light path of the blue light ⁇ 51, as shown in FIG. 5;
  • the second blue light ⁇ 512 is incident on the second wavelength conversion device 504 after passing through the first condensing lens 503, and a part of the second blue light ⁇ 512 is directly reflected back to the optical splitting 502, and the other second blue ⁇ 512 is absorbed and generated.
  • the second laser light that is, the yellow light ⁇ 52, is concentrated by the second condensing lens 503 and is incident on the light combining 502.
  • the light having a wavelength less than 650 nm in the yellow light ⁇ 52 is reflected by the light combining portion 5022.
  • the first blue light ⁇ 511 is incident on the first wavelength conversion device 505 after passing through the first concentrating lens 506, and the first blue light ⁇ 511 is absorbed by the first wavelength conversion layer and generates a first received laser light, that is, red light containing near-infrared light.
  • a first received laser light that is, red light containing near-infrared light.
  • the red light ⁇ 53 is converged and collimated by the first condensing lens 506 and then incident on the light combining portion 5022 of the beam splitting light 502, wherein the light having a wavelength greater than 650 nm in the red light ⁇ 53 is transmitted by the light combining portion 4022;
  • the light having a wavelength of less than 650 nm reflected by the light combining portion 4022 and the light having a wavelength greater than 650 nm after transmission are seamlessly combined to form a beam of light containing light of each wavelength band, especially white light containing near-infrared light, which can satisfy each The needs of a projector.
  • the position of the first wavelength conversion device 505 is interchanged with the position of the second wavelength conversion device 504.
  • the light splitting portion is a filter that partially transmits and partially reflects the excitation light, is reflected by the first laser beam, and is transmitted to the second laser beam; the light combining portion is the first laser beam Reflecting, a filter that transmits the second laser and the second excitation light.
  • the light splitting portion provided by the embodiment may be a transflective diaphragm with a transflective wavelength of less than 480 nm, and the spectroscopic portion further has a light having a transmission wavelength between 480 nm and 650 nm and a reflection wavelength greater than 650 nm.
  • the light absorbing filter, the light combining portion of the light combining condensing sheet may be a light reflecting light having a wavelength greater than 650 nm and a light transmitting light having a wavelength of less than 650 nm, and the light combining principle is the same as that of the embodiment, and details are not described herein again.
  • the light-emitting device reduces the volume and cost by reducing the number of the light source and the filter, and transmits or reflects the light beams of different wavelength regions through the beam splitting sheet, and forms a continuous white light with seamless overlapping without overlapping. It reduces the light loss during the merging, while retaining the near-infrared light in the beam, which enhances the energy of the combined beam and the near-infrared light it contains.
  • the embodiment provides a light-emitting device, which differs from the light-emitting device of the above embodiment mainly in that the excitation light emitted by the light source includes blue light and ultraviolet light, and at this time, the light splitting portion of the light splitting light sheet reflects or transmits the wavelength.
  • the excitation light is greater than 420 nm and less than 480 nm to filter out the ultraviolet light in the light source; the light combining portion also needs to adjust the wavelength of the transmitted or reflected light accordingly.
  • the excitation light having a wavelength between 420 nm and 480 nm is divided into two light beams, and is incident on the first wavelength conversion device and the second wavelength conversion device, respectively.
  • the excitation light having a wavelength between 420 nm and 480 nm is transmitted, and the wavelength is between 480 nm and 650 nm.
  • a second laser beam that is reflected by the laser and has a wavelength greater than 650 nm is transmitted to form a beam of light, and after passing through a subsequent light homogenizing device or the like, display of the projected image is performed.
  • the light-emitting device reduces the volume and cost by reducing the number of the light source and the filter, and transmits or reflects the light beams of different wavelength regions through the beam splitting sheet, and forms a continuous white light with seamless overlapping without overlapping. It reduces the light loss during the merging, while retaining the near-infrared light in the beam, which enhances the energy of the combined beam and the near-infrared light it contains.
  • the present embodiment provides a projection system, including the illumination device provided by any of the embodiments described above, which reduces the number of light sources and filters by splitting and combining light, thereby reducing the volume of the projection system and Cost; and, through the beam splitting light transmission or reflection of light beams of different wavelength regions, the seamless non-overlapping connection forms a continuous white light of wavelength, which reduces the light loss during the combined light while retaining the near-infrared light in the light beam, The energy of the combined light beam and the near-infrared light contained therein is enhanced.

Abstract

一种发光装置,包括:发射激发光(λ41)的光源(401),位于激发光(λ41)的出射光路上的分光合光片(402),具有第一波长转换层的第一波长转换装置(404),以及第二波长转换装置(405)。分光合光片(402)具有将激发光(λ41)分成沿不同路径传播的第一(λ411)和第二激发光(λ412)的分光部位(4021),以及位于分光部位(4021)四周的合光部位(4022)。第一波长转换装置(404)位于第一激发光(λ411)的出射光路上。第一波长转换层吸收第一激发光(λ411)后产生第一受激光(λ42)。第二波长转换装置(405)位于第二激发光(λ412)的出射光路上且将第二激发光(λ412)反射回分光合光片(402)。合光部位(4022)将反射回分光合光片(402)的第一受激光(λ42)和第二激发光(λ412)合并。还公开了一种包括该发光装置的投影系统。该投影系统体积小,成本低。

Description

发光装置及投影系统 技术领域
本发明涉及激光显示技术领域,更具体地说,涉及一种发光装置及投影系统。
背景技术
现有的投影系统,将不同光源发射的激发光入射到不同波长转换装置上产生不同颜色的受激光,如红色受激光、绿色受激光和蓝色受激光,然后将这些不同颜色的受激光合成一束白光,进行投影图像的显示。
如图 1 所示,现有技术公开的一种投影系统,包括发射蓝光的激光模组 31 、 32 和 33 ;具有绿色 / 黄光荧光粉的波长转换装置 11 、具有红色 / 黄光荧光粉的波长转换装置 12 以及散光色轮 13 ;与波长转换装置 11 和 12 分别对应的聚光透镜 21 和 22 ,用于会聚准直光线;透射蓝光反射其他光的滤光片 41 、透射蓝光反射红光的滤光片 42 、透射红光反射其他光的滤波片 40 、反射蓝光透射其他光的滤光片 43 。
其中,激光模组 31 发射的蓝光经过滤光片 41 以及聚光透镜 21 后,入射到波长转换装置 11 上产生绿光,该绿光被滤光片 41 以及滤光片 40 反射后入射到滤光片 43 上;激光模组 32 发射的蓝光经过滤光片 42 以及聚光透镜 22 后,入射到波长转换装置 12 上产生红光,该红光被滤光片 42 反射以及滤光片 40 透射后入射到滤光片 43 上;激光模组 33 发射的蓝光被散光色轮 13 散光后入射到滤光片 43 上;被滤光片 43 透射的绿光和红光与被滤光片 43 反射的蓝光合成一束光后,形成可进行投影图像显示的白光。
但是,该投影系统采用了不同的光源来激发不同的受激光,并采用了不同的滤光片来过滤或合成不同的受激光,因此,该投影系统的体积较大、成本较高。
技术问题
有鉴于此,本发明提供了一种发光装置及投影系统,以解决现有技术中的投影系统体积较大、成本较高的问题。
为实现上述目的,本发明提供如下技术方案:
一种发光装置,包括:
发射激发光的光源;
位于所述激发光的出射光路上的分光合光片,所述分光合光片具有将所述激发光分成沿不同路径传播的第一束和第二束激发光的分光部位;
位于所述第一束激发光的出射光路上,且具有第一波长转换层的第一波长转换装置,所述第一波长转换层吸收所述第一束激发光后产生第一受激光,并将所述第一受激光反射回所述分光合光片;
位于所述第二束激发光的出射光路上,且将所述第二束激发光反射回所述分光合光片的第二波长转换装置;
其中,所述分光合光片还具有位于所述分光部位四周的合光部位,所述合光部位为将反射回所述分光合光片的所述第一受激光和第二束激发光合成一束光的合光部位。
优选的,所述分光部位位于所述分光合光片的中心区域,且所述分光部位为半透半反膜片。
优选的,所述第二波长转换装置还具有第二波长转换层,所述第二波长转换层吸收所述第二束激发光后产生第二受激光,并将所述第二受激光反射回所述分光合光片。
优选的,当所述第二波长转换装置具有所述第二波长转换层时,所述合光部位为将反射回所述分光合光片的所述第一受激光、第二受激光和第二束激发光合成一束光的合光部位。
优选的,所述合光部位为对所述第一受激光反射、对所述第二受激光和第二束激发光透射的滤光片,或者所述合光部位为对所述第一受激光透射,对所述第二受激光和第二束激发光反射的滤光片。
优选的,所述分光部位为对所述激发光部分透射、部分反射,对所述第一受激光反射,对所述第二受激光透射的滤光片,或者所述分光部位为对所述激发光部分透射、部分反射,对所述第一受激光透射,对所述第二受激光反射的滤光片。
优选的,所述第一波长转换层或第二波长转换层为具有红光荧光粉的波长转换层,所述红光荧光粉吸收激发光后产生的受激光包含近红外光。
优选的,当所述第二波长转换层为具有红光荧光粉的波长转换层,且所述红光荧光粉产生的受激光包含近红外光时,所述第一波长转换层为具有黄光荧光粉的波长转换层。
优选的,当所述第一束激发光的传播路径与所述激发光的传播路径相同时,所述合光部位为透射波长小于 480nm 以及大于 650nm 的光线、反射波长位于 480nm~650nm 之间的光线的滤光片,所述分光部位还具有反射波长位于 480nm~650nm 之间的光线、透射波长大于 650nm 的光线、对波长小于 480nm 的光线部分透射、部分反射的滤光片。
优选的,当所述第二束激发光的传播路径与所述激发光的传播路径相同时,所述合光部位为反射波长小于 480nm 以及大于 650nm 的光线、透射波长位于 480nm~650nm 之间的光线的滤光片,所述分光部位还具有透射波长位于 480nm~650nm 之间的光线、反射波长大于 650nm 的光线、对波长小于 480nm 的光线部分透射、部分反射的滤光片。
优选的,当所述第一波长转换层为具有红光荧光粉的波长转换层,且所述红光荧光粉产生的受激光包含近红外光时,所述第二波长转换层为具有黄光荧光粉的波长转换层。
优选的,当所述第二束激发光的传播路径与所述激发光的传播路径相同时,所述合光部位为透射波长大于 650nm 的光线、反射波长小于 650nm 的光线的滤光片,所述分光部位还具有反射波长位于 480nm~650nm 之间的光线、透射波长大于 650nm 的光线、对波长小于 480nm 的光线部分透射、部分反射的滤光片。
优选的,当所述第一束激发光的传播路径与所述激发光的传播路径相同时,所述合光部位为反射波长大于 650nm 的光线、透射波长小于 650nm 的光线的滤光片,所述分光部位还具有透射波长位于 480nm~650nm 之间的光线、反射波长大于 650nm 的光线、对波长小于 480nm 的光线部分透射、部分反射的滤光片。
优选的,还包括:
位于所述第一波长转换装置和所述分光合光片之间且位于所述第一束激发光和所述第一受激光出射光路上的第一聚光透镜;
位于所述第二波长转换装置和所述分光合光片之间且位于所述第二束激发光和所述第二受激光出射光路上的第二聚光透镜。
一种投影系统,包括如上任一项所述的发光装置。
一种投影系统,包括如上任一项所述的发光装置。
与现有技术相比,本发明所提供的技术方案具有以下优点:
本发明所提供的发光装置及投影系统,通过分光合光片的分光部位将同一光源发射的激发光分成沿不同路径传播的第一束和第二束激发光,以此来激发不同的受激光,从而减少了光源的数量,减小了发光装置及投影系统的体积和成本;并且,本发明提供的发光装置及投影系统,位于分光部位四周的合光部位将第一受激光和反射后的第二束激发光合成一束光,由于合光部位和分光部位位于同一分光合光片,因此,减少了滤光片的数量,从而进一步减小了发光装置及投影系统的体积和成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图 1 为现有技术提供的一种投影系统的结构示意图;
图 2 为本发明实施例一提供的发光装置结构示意图;
图 3 为本发明实施例一提供的分光合光片区域分布示意图;
图 4 为本发明实施例二提供的发光装置的结构示意图;
图 5 为本发明实施例三提供的发光装置的结构示意图。
本发明的实施方式
正如背景技术所述,现有的投影系统采用多个光源激发受激光,采用多个滤光片过滤、合成不同的受激光,使得投影系统的体积较大,成本较高。
基于此,本发明提供了一种发光装置,以克服现有技术存在的上述问题,包括:
发射激发光的光源;位于所述激发光的出射光路上的分光合光片,所述分光合光片具有将所述激发光分成沿不同路径传播的第一束和第二束激发光的分光部位;位于所述第一束激发光的出射光路上,且具有第一波长转换层的第一波长转换装置,所述第一波长转换层吸收所述第一束激发光后产生第一受激光,并将所述第一受激光反射回所述分光合光片;位于所述第二束激发光的出射光路上,且将所述第二束激发光反射回所述分光合光片的第二波长转换装置;其中,所述分光合光片还具有位于所述分光部位四周的合光部位,所述合光部位为将反射回所述分光合光片的所述第一受激光和第二束激发光合成一束光的合光部位。
本发明还提供了一种投影系统,包括如上所述的发光装置。
本发明所提供的发光装置及投影系统,通过分光合光片的分光部位将同一光源发射的激发光分成沿不同路径传播的第一束和第二束激发光,以此来激发不同的受激光,从而减少了光源的数量,减小了发光装置及投影系统的体积和成本;并且,本发明提供的发光装置及投影系统,通过位于所述分光部位四周的合光部位将第一受激光和反射后的第二束激发光合成一束光,由于合光部位和分光部位位于同一分光合光片,因此,减少了滤光片的数量,从而进一步减小了发光装置及投影系统的体积和成本。
以上是本发明的核心思想,为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
下面通过几个实施例详细描述。
实施例一
本实施例提供了一种发光装置,如图2所示,包括发射激发光λ21的光源201;位于激发光λ21的出射光路上的分光合光片202,该分光合光片202具有将激发光λ21分成沿不同路径传播的第一束激发光λ211和第二束激发光λ212的分光部位2021;位于第一束激发光λ211的出射光路上,具有第一波长转换层的第一波长转换装置203,该第一波长转换层吸收第一束激发光λ211后产生第一受激光λ22,并将第一受激光λ22反射回所述分光合光片202;位于第二束激发光λ212的出射光路上,将第二束激发光λ212反射回所述分光合光片202的第二波长转换装置204;所述分光合光片202还具有位于分光部位2021四周的合光部位2022,该合光部位2022将反射到分光合光片202的第一受激光λ22和第二束激发光的λ212合成一束光,其中,分光部位2021和合光部位2022位于同一分光合光片202上,且其分布区域如图3所示,分光部位2021位于分光合光片202的中心区域,合光部位2022位于分光部位2021的四周。
本实施例中,光源201为发射蓝光的激光光源,第一波长转换装置203上的第一波长转换层为黄光荧光粉,分光部位2021为半透半反膜片,通过透射或反射将激发光λ21分成沿不同路径传播的第一束激发光λ211和第二束激发光λ212,合光部位2022为反射第一受激光λ22透射第二束激发光λ212的滤光片。
如图2所示,分光部位2021透射的激发光λ21为第一束激发光λ211,反射的激发光λ21为第二束激发光λ212,当然,本发明并不仅限于此。其中,分光部位2021透射或反射光线的比例可以根据实际需要进行调整,优选地,透射与反射的比例小于或等于7:3。
此外,透射后的第一束激发光λ211的传播路径并未发生改变,仍与激发光λ21的传播路径相同,但反射后的第二束激发光λ212的传播路径发生了改变,具体地,第二束激发光λ212的传播方向和传播角度与分光合光片202与激发光λ21之间的夹角有关,可根据实际需求对该夹角进行调整。
本实施例中,第二波长转换装置204仅具有将第二束激发光λ212反射回分光合光片202的反射片,而在其他实施例中,第二波长转换装置204上还具有吸收第二束激发光λ212并产生第二受激光的第二波长转换层。由于第二波长转换装置204上同时具有反射片和第二波长转换层,因此,可以使反射后的第二束激发光和第二受激光的出光角度更小,出光均匀性更好。
当第二波长转换装置204具有第二波长转换层时,第二波长转换层可以为黄光荧光粉或红光荧光粉,其中所述红光荧光粉吸收激发光后产生的受激光包含近红外光。当第二波长转换层为黄光荧光粉时,第一波长转换层为红光荧光粉;当第二波长转换层为红光荧光粉时,第一波长转换层为黄光荧光粉。此时,合光部位2022将反射回所述分光合光片的所述第一受激光、第二受激光和第二束激发光合成一束光。
本实施例或其他实施例提供的发光装置,还包括位于第一波长转换装置203和分光合光片202之间,且位于第一束激发光λ211和第一受激光λ22出射光路上的第一聚光透镜205,用于会聚准直光线;以及位于第二波长转换装置204和分光合光片202之间,且位于第二束激发光λ212或第二束激发光λ212和第二受激光λ23的出射光路上的第二聚光透镜206。
本实施例中,光源201发射的蓝光经过分光合光片202的分光部位2021后,分成第一束蓝光λ211和第二束蓝光λ212。第一束蓝光λ211通过第一聚光透镜205入射到第一波长转换装置203后,产生第一受激光,即黄光λ22,该黄光λ22被第一聚光透镜205会聚准直后,入射到分光合光片202的合光部位2022后,被合光部位2022反射;第二束蓝光λ212被第二波长转换装置204反射后,入射到分光合光片202的合光部位2022后,被合光部位2022透射。被合光部位2022反射后的黄光λ22和被透射后的第二束蓝光λ212合成一束白光,经过后续的匀光装置等装置后,进行投影图像的显示。
本实施例提供的发光装置及投影系统,通过分光合光片的分光部位将同一光源发射的激发光分成沿不同路径传播的第一束和第二束激发光,以此来激发不同的受激光,从而减少了光源的数量,减小了发光装置及投影系统的体积和成本;并且,本实施例提供的发光装置及投影系统,通过位于分光部位四周的合光部位将第一受激光和反射后的第二束激发光合成一束光,由于合光部位和分光部位位于同一分光合光片,因此,减少了滤光片的数量,从而进一步减少了发光装置及投影系统的体积和成本。
实施例二
本实施例提供了一种发光装置,如图4所示,包括发射激发光λ41的光源401;位于激发光λ41的出射光路上且具有分光部位4021和合光部位4022的分光合光片402;第一聚光透镜403以及具有第一波长转换层的第一波长转换装置404;具有反射片和第二波长转换层的第二波长转换装置405以及第二聚光透镜406。
其中,分光部位4021为将激发光λ41分成沿不同路径传播的第一束激发光λ411和第二束激发光λ412的半反半透膜片,并且,第一束激发光λ411的传播路径与激发光λ41的传播路径相同,如图4所示。合光部位4022为将第二束激发光λ412和第二受激光λ43、第一受激光λ42合成一束光的滤光片,并且,分光部位4021和合光部位4022位于同一分光合光片402上,分光部位4021位于分光合光片402的中心区域,且合光部位4022位于分光部位4021的四周。
本实施例中,分光部位4021为对所述激发光λ41部分透射、部分反射,对所述第一受激光λ42反射,对所述第二受激光λ43透射的滤光片;合光部位4022为对第一受激光λ42反射、对所述第二受激光λ43和第二束激发光λ412透射的滤光片。
由于第一受激光λ42、第二受激光λ43和第二束激发光λ412的波长范围各不相同,因此,合光部位4022能够将第一受激光λ42、第二受激光λ43和反射后的第二束激发光λ412合成一束光。
发明人研究发现,如图1所示,采用传统的方式将蓝光、绿光和红光合成一束光时,由于合光的滤光片会过滤掉大于590nm的光,而红光的主波长在620nm附近,因此,合光时会过滤掉大部分的红光和黄光,导致合成的光束中波长超过650nm的近红外光很少,无法满足一些特殊投影机的需求。
基于此,本实施例中,光源401发射的激发光为蓝光,第一波长转换装置404上的第一波长转换层为黄光荧光粉,在蓝光的激发下产生黄光,第二波长转换装置405上的第二波长转换层为红光荧光粉,在蓝光的激发下产生的受激光为包含近红外光的红光。并且,本实施例提供的一种合光部位,能够通过反射或透射特定波长区域的光线来无缝合成一束光,以解决现有技术中合成的光束中近红外光很少的问题。
具体地,合光部位4022为透射波长小于480nm以及波长大于650nm的光线、反射波长位于480nm~650nm之间的光线的滤光片;分光部位4021为半透半反波长小于480nm光线的半透半反膜片,且所述分光部位4021还具有反射波长位于480nm~650nm之间的光线、透射波长大于650nm的光线的滤光片。
如图4所示,光源401发射的蓝光λ41经过分光合光片402的分光部位4021分光后,波长小于480nm的蓝光形成沿不同路径传播的第一束蓝光λ411和第二束蓝光λ412,其中,第一束蓝光λ411的传播路径与蓝光λ41的传播路径相同;
第一束蓝光λ411经过第一聚光透镜403后,入射到第一波长转换装置404上并产生第一受激光,即黄光λ42,该黄光λ42被第一聚光透镜403会聚准直后入射到分光合光片402的合光部位4022,其中,黄光λ42中波长大于480nm且小于650nm的光线被合光部位4022反射;
第二束蓝光λ412经过第二聚光透镜406后入射到第二波长转换装置405上,部分第二束蓝光λ412被反射片反射回分光合光片402的合光部位4022,部分第二束蓝光λ412被第二波长转换层吸收并产生第二受激光,即包含近红外光的红光λ43,该红光λ43被第二聚光透镜406会聚准直后入射到分光合光片402的合光部位4022,其中,波长小于480nm的第二束蓝光λ412和红光λ43中波长大于650nm的光线被合光部位4022透射;
经过合光部位4022透射后的波长小于480nm的光线、反射后的波长大于480nm且小于650nm的光线、透射后的波长大于650nm的光线无缝合成了一束光,该束光为包含各个波段光线尤其是包含近红外光的白光,能够满足各种投影机的需求。
其中,本实施例是以650nm为例来进行波长区域的划分,原因在于可使黄光在650nm处的光损失在10%以内,主波长在690nm附近的近红外光在650nm处的光损失也在10%以内。当然,在其他实施例中,可以根据实际情况对波长区域进行划分。
在其他实施例中,当第二束蓝光λ412的传播路径与蓝光λ41的传播路径相同时,第一波长转换装置404与第二波长转换装置405的位置发生互换,此时,分光部位为对所述激发光部分透射、部分反射,对所述第一受激光透射,对所述第二受激光反射的滤光片;合光部位为对所述第一受激光透射,对所述第二受激光和第二束激发光反射的滤光片。并且,由于第一受激光、第二受激光和第二束激发光的波长范围不同,因此,经过合光部位后的第一受激光、第二受激光和第二束激发光能够合成一束光。
具体地,该实施例提供的一种合光部位可以为反射波长小于480nm以及大于650nm的光线、透射波长位于480nm~650nm之间的光线的滤光片,同样,分光部位可以为半透半反波长小于480nm光线的半透半反膜片,且还具有透射波长位于480nm~650nm之间的光线、反射波长大于650nm的光线的滤光片。其合光原理与本实施例相同,在此不再赘述。
本实施例提供的发光装置中,激发光入射到波长转换装置之前的光斑和角度都很小,因此,可以在分光合光片的分光部位进行分光;当激发光入射到波长转换装置之后,出射的受激光的光斑和角度均有所增加,因此,受激光入射到分光合光片时可以充满整个区域,但是,由于分光部位还具有反射或透射波长位于480nm~650nm之间的光线、透射或反射波长大于650nm的光线的滤光片,因此,即便被反射回分光合光片上的光线落在了分光部位上,所述分光部位的滤光片仍能够进行合光,从而可以忽略光线在分光部位的损失。
本实施例中,由于光源需要的红光比例较小,并且,红光荧光粉在低功率、低温度时的效率很高,因此,用于激发红光荧光粉的第二束蓝光λ412的比例较小,即第一束蓝光λ411和第二束蓝光λ412的比例大于或等于为7:3。
本实施例提供的发光装置,在通过减少光源和滤光片数量减小体积和成本的同时,通过分光合光片透射或反射不同波长区域的光束,无缝无重叠连接形成了波长连续的白光,减小了合光时的光损失,同时保留了光束中的近红外光,提升了合光后的光束及其包含的近红外光的能量。
实施例三
本实施例提供了一种发光装置,其与实施例二中的发光装置的主要不同之处在于,本实施例中第一波长转换装置中的第一波长转换层为红光荧光粉,且所述红光荧光粉产生的受激光包含近红外光,具有反射片的第二波长转换装置中的第二波长转换层为黄光荧光粉,且第二束激发光的传播路径与所述激发光的传播路径相同,因此,本实施例提供的发光装置如图5所示。
其中,分光合光片的分光部位为对所述激发光部分透射、部分反射,对所述第一受激光透射,对所述第二受激光反射的滤光片;合光部位为对所述第一受激光透射,对所述第二受激光和第二束激发光反射的滤光片。
本实施例提供的一种分光部位可以为半透半反波长小于480nm光线的半透半反膜片,且所述分光部位还具有反射波长位于480nm~650nm之间的光线、透射波长大于650nm的光线的滤光片,分光合光片的合光部位可以为透射大于650nm的光线、反射小于650nm的光线的滤光片。
光源501发射的蓝光λ51经过分光合光片502的分光部位5021分光后,波长小于480nm的蓝光形成沿不同路径传播的第一束蓝光λ511和第二束蓝光λ512,其中,第二束蓝光λ512的传播路径与蓝光λ51的传播路径相同,由于第二波长转换装置504位于第二束蓝光512的出射光路上,因此,第二波长转换装置504位于蓝光λ51的出射光路上,如图5所示;
第二束蓝光λ512经过第一聚光透镜503后入射到第二波长转换装置504上,部分第二束蓝光λ512被直接反射回分光合光片502,另一部分第二束蓝光λ512被吸收并产生第二受激光,即黄光λ52,该黄光λ52被第二聚光透镜503会聚准直后入射到分光合光片502,其中,黄光λ52中波长小于650nm的光线被合光部位5022反射;
第一束蓝光λ511经过第一聚光透镜506后入射到第一波长转换装置505上,第一束蓝光λ511被第一波长转换层吸收并产生第一受激光,即包含近红外光的红光λ53,该红光λ53被第一聚光透镜506会聚准直后入射到分光合光片502的合光部位5022,其中,红光λ53中波长大于650nm的光线被合光部位4022透射;
经过合光部位4022反射后的波长小于650nm的光线、透射后的波长大于650nm的光线无缝合成了一束光,该束光为包含各个波段光线尤其是包含近红外光的白光,能够满足各种投影机的需求。
同样,在其他实施例中,当第一束激发光λ511的传播路径与所述激发光λ51的传播路径相同时,第一波长转换装置505的位置与第二波长转换装置504的位置互换,此时,分光部位为对所述激发光部分透射、部分反射,对所述第一受激光反射,对所述第二受激光透射的滤光片;合光部位为对所述第一受激光反射、对所述第二受激光和第二束激发光透射的滤光片。
该实施例提供的一种分光部位可以为半透半反波长小于480nm光线的半透半反膜片,且所述分光部位还具有透射波长位于480nm~650nm之间的光线、反射波长大于650nm的光线的滤光片,分光合光片的合光部位可以为反射波长大于650nm的光线、透射波长小于650nm的光线的滤光片,其合光原理与本实施例相同,在此不再赘述。
本实施例提供的发光装置,在通过减少光源和滤光片数量减小体积和成本的同时,通过分光合光片透射或反射不同波长区域的光束,无缝无重叠连接形成了波长连续的白光,减小了合光时的光损失,同时保留了光束中的近红外光,提升了合光后的光束及其包含的近红外光的能量。
实施例四
本实施例提供了一种发光装置,其与上述实施例的发光装置的不同之处主要在于,光源发射的激发光包括蓝光和紫外光,此时,分光合光片的分光部位反射或透射波长大于420nm且小于480nm的激发光,以过滤掉光源中的紫外光;合光部位也需对透射或反射的光线的波长进行相应的调整。
例如,激发光经过分光合光片的分光部位后,波长在420nm~480nm之间的激发光被分成了两束光,并分别入射到第一波长转换装置和第二波长转换装置上,产生的第一受激光、第二受激光和第二束激发光被反射至分光合光片的合光部位后,波长在420nm~480nm之间的激发光被透射、波长在480nm~650nm之间的第一受激光被反射和波长大于650nm的第二受激光被透射后合成一束光,经过后续的匀光装置等后,进行投影图像的显示。
本实施例提供的发光装置,在通过减少光源和滤光片数量减小体积和成本的同时,通过分光合光片透射或反射不同波长区域的光束,无缝无重叠连接形成了波长连续的白光,减小了合光时的光损失,同时保留了光束中的近红外光,提升了合光后的光束及其包含的近红外光的能量。
实施例五
本实施例提供了一种投影系统,包括如上所述任一实施例提供的发光装置,通过分光后再合光的方式减少了光源和滤光片的数量,从而减小了投影系统的体积和成本;并且,通过分光合光片透射或反射不同波长区域的光束,无缝无重叠连接形成了波长连续的白光,减小了合光时的光损失,同时保留了光束中的近红外光,提升了合光后的光束及其包含的近红外光的能量。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种发光装置,其特征在于,包括:
    发射激发光的光源;
    位于所述激发光的出射光路上的分光合光片,所述分光合光片具有将所述激发光分成沿不同路径传播的第一束和第二束激发光的分光部位;
    位于所述第一束激发光的出射光路上,且具有第一波长转换层的第一波长转换装置,所述第一波长转换层吸收所述第一束激发光后产生第一受激光,并将所述第一受激光反射回所述分光合光片;
    位于所述第二束激发光的出射光路上,且将所述第二束激发光反射回所述分光合光片的第二波长转换装置;
    其中,所述分光合光片还具有位于所述分光部位四周的合光部位,所述合光部位为将反射回所述分光合光片的所述第一受激光和第二束激发光合成一束光的合光部位。
  2. 根据权利要求1所述的发光装置,其特征在于,所述分光部位位于所述分光合光片的中心区域,且所述分光部位为半透半反膜片。
  3. 根据权利要求2所述的发光装置,其特征在于,所述第二波长转换装置还具有第二波长转换层,所述第二波长转换层吸收所述第二束激发光后产生第二受激光,并将所述第二受激光反射回所述分光合光片。
  4. 根据权利要求3所述的发光装置,其特征在于,当所述第二波长转换装置具有所述第二波长转换层时,所述合光部位为将反射回所述分光合光片的所述第一受激光、第二受激光和第二束激发光合成一束光的合光部位。
  5. 根据权利要求4所述的发光装置,其特征在于,所述合光部位为对所述第一受激光反射、对所述第二受激光和第二束激发光透射的滤光片,或者所述合光部位为对所述第一受激光透射,对所述第二受激光和第二束激发光反射的滤光片。
  6. 如权利要求5所述的发光装置,其特征在于,所述分光部位为对所述激发光部分透射、部分反射,对所述第一受激光反射,对所述第二受激光透射的滤光片,或者所述分光部位为对所述激发光部分透射、部分反射,对所述第一受激光透射,对所述第二受激光反射的滤光片。
  7. 根据权利要求5或6所述的发光装置,其特征在于,所述第一波长转换层或第二波长转换层为具有红光荧光粉的波长转换层,所述红光荧光粉吸收激发光后产生的受激光包含近红外光。
  8. 根据权利要求7所述的发光装置,其特征在于,当所述第二波长转换层为具有红光荧光粉的波长转换层,且所述红光荧光粉产生的受激光包含近红外光时,所述第一波长转换层为具有黄光荧光粉的波长转换层。
  9. 根据权利要求8所述的发光装置,其特征在于,当所述第一束激发光的传播路径与所述激发光的传播路径相同时,所述合光部位为透射波长小于480nm以及大于650nm的光线、反射波长位于480nm~650nm之间的光线的滤光片,所述分光部位还具有反射波长位于480nm~650nm之间的光线、透射波长大于650nm的光线、对波长小于480nm的光线部分透射、部分反射的滤光片。
  10. 根据权利要求8所述的发光装置,其特征在于,当所述第二束激发光的传播路径与所述激发光的传播路径相同时,所述合光部位为反射波长小于480nm以及大于650nm的光线、透射波长位于480nm~650nm之间的光线的滤光片,所述分光部位还具有透射波长位于480nm~650nm之间的光线、反射波长大于650nm的光线、对波长小于480nm的光线部分透射、部分反射的滤光片。
  11. 根据权利要求7所述的发光装置,其特征在于,当所述第一波长转换层为具有红光荧光粉的波长转换层,且所述红光荧光粉产生的受激光包含近红外光时,所述第二波长转换层为具有黄光荧光粉的波长转换层。
  12. 根据权利要求11所述的发光装置,其特征在于,当所述第二束激发光的传播路径与所述激发光的传播路径相同时,所述合光部位为透射波长大于650nm的光线、反射波长小于650nm的光线的滤光片,所述分光部位还具有反射波长位于480nm~650nm之间的光线、透射波长大于650nm的光线、对波长小于480nm的光线部分透射、部分反射的滤光片。
  13. 根据权利要求11所述的发光装置,其特征在于,当所述第一束激发光的传播路径与所述激发光的传播路径相同时,所述合光部位为反射波长大于650nm的光线、透射波长小于650nm的光线的滤光片,所述分光部位还具有透射波长位于480nm~650nm之间的光线、反射波长大于650nm、对波长小于480nm的光线部分透射、部分反射的光线的滤光片。
  14. 根据权利要求9、10、12或13所述的发光装置,其特征在于,还包括:
    位于所述第一波长转换装置和所述分光合光片之间且位于所述第一束激发光和所述第一受激光出射光路上的第一聚光透镜;
    位于所述第二波长转换装置和所述分光合光片之间且位于所述第二束激发光和所述第二受激光出射光路上的第二聚光透镜。
  15. 一种投影系统,其特征在于,包括权利要求1-14任一项所述的发光装置。
PCT/CN2015/083505 2014-07-28 2015-07-08 发光装置及投影系统 WO2016015552A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/326,873 US9897899B2 (en) 2014-07-28 2015-07-08 Light-emitting device and projection system
EP15826666.8A EP3176638B1 (en) 2014-07-28 2015-07-08 Light-emitting device and projection system
JP2017503111A JP6393403B2 (ja) 2014-07-28 2015-07-08 発光装置及び投影システム
KR1020177005306A KR101978376B1 (ko) 2014-07-28 2015-07-08 발광 장치 및 프로젝션 시스템
KR1020197011322A KR102088741B1 (ko) 2014-07-28 2015-07-08 발광 장치 및 프로젝션 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410364651.9A CN105319819B (zh) 2014-07-28 2014-07-28 发光装置及投影系统
CN201410364651.9 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016015552A1 true WO2016015552A1 (zh) 2016-02-04

Family

ID=55216749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083505 WO2016015552A1 (zh) 2014-07-28 2015-07-08 发光装置及投影系统

Country Status (6)

Country Link
US (1) US9897899B2 (zh)
EP (1) EP3176638B1 (zh)
JP (1) JP6393403B2 (zh)
KR (2) KR101978376B1 (zh)
CN (1) CN105319819B (zh)
WO (1) WO2016015552A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI690765B (zh) * 2018-06-25 2020-04-11 中強光電股份有限公司 照明系統以及投影裝置
JP2022017397A (ja) * 2016-02-10 2022-01-25 パナソニックIpマネジメント株式会社 投写型映像表示装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016170966A1 (ja) * 2015-04-20 2018-03-08 ソニー株式会社 光源装置、投射型表示装置および表示システム
CN107329356B (zh) * 2016-04-29 2020-08-21 中强光电股份有限公司 照明系统以及投影装置
CN107402494A (zh) * 2016-05-19 2017-11-28 深圳市光峰光电技术有限公司 一种光源系统及其投影设备、照明装置
US10133164B2 (en) * 2016-05-25 2018-11-20 Panasonic Intellectual Property Management Co., Ltd. Projection display apparatus for improving the chromaticity of blue light
CN107561836B (zh) * 2016-07-01 2019-10-25 深圳光峰科技股份有限公司 一种光源和投影系统
CN107688274A (zh) * 2016-08-05 2018-02-13 深圳市光峰光电技术有限公司 一种光源装置以及投影设备
CN108020927A (zh) * 2016-11-01 2018-05-11 深圳市绎立锐光科技开发有限公司 一种光源系统及其调节方法
CN108572497B (zh) * 2017-03-14 2019-12-17 深圳光峰科技股份有限公司 光源装置及投影系统
CN110928124A (zh) 2017-03-14 2020-03-27 深圳光峰科技股份有限公司 光源装置及投影系统
JP6926589B2 (ja) * 2017-03-29 2021-08-25 セイコーエプソン株式会社 光源装置及びプロジェクター
CN107315312B (zh) * 2017-08-18 2020-10-09 广景视睿科技(深圳)有限公司 一种投影激光光源
CN207318919U (zh) * 2017-09-14 2018-05-04 深圳市光峰光电技术有限公司 光源系统及投影系统
JP2019174600A (ja) 2018-03-28 2019-10-10 セイコーエプソン株式会社 プロジェクター
CN110389486B (zh) * 2018-04-16 2022-03-04 深圳光峰科技股份有限公司 光源装置及显示设备
CN110412818A (zh) 2018-04-28 2019-11-05 中强光电股份有限公司 照明系统、投影装置及其操作方法
EP3647856B1 (en) * 2018-10-31 2022-11-09 Ricoh Company, Ltd. Image projection apparatus and mobile object
CN111190322A (zh) * 2018-11-15 2020-05-22 中强光电股份有限公司 照明系统与投影装置
CN111736415A (zh) * 2020-07-15 2020-10-02 成都极米科技股份有限公司 一种混合光源装置以及投影显示设备
CN114200754A (zh) * 2020-09-17 2022-03-18 深圳光峰科技股份有限公司 光源装置及激光投影系统
CN112631054B (zh) * 2020-11-23 2022-03-15 无锡视美乐激光显示科技有限公司 一种激光光源结构、投影光学系统及其色温调节方法
CN112904549A (zh) * 2021-01-29 2021-06-04 武汉联影智融医疗科技有限公司 多色混光照明方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120242912A1 (en) * 2011-03-23 2012-09-27 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN203217230U (zh) * 2012-12-28 2013-09-25 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN103913936A (zh) * 2012-12-28 2014-07-09 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN204028554U (zh) * 2014-07-28 2014-12-17 深圳市绎立锐光科技开发有限公司 发光装置及投影系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101498415B (zh) * 2008-01-30 2011-01-26 绎立锐光科技开发(深圳)有限公司 基于荧光粉提高混合光出射效率的光源及其方法
JP5770433B2 (ja) * 2010-06-18 2015-08-26 ソニー株式会社 光源装置及び画像投影装置
JP5474698B2 (ja) * 2010-07-29 2014-04-16 三洋電機株式会社 光源装置及び投写型映像表示装置
JP2012123180A (ja) * 2010-12-08 2012-06-28 Seiko Epson Corp 光源装置およびプロジェクター
TWI410740B (zh) * 2010-12-14 2013-10-01 Delta Electronics Inc 光源系統及包含該光源系統之投影裝置
JP2012141411A (ja) * 2010-12-28 2012-07-26 Jvc Kenwood Corp 光源装置
JP5987368B2 (ja) * 2011-07-05 2016-09-07 株式会社リコー 照明装置および投射装置
JP2013114125A (ja) * 2011-11-30 2013-06-10 Seiko Epson Corp プロジェクター
CN102722073B (zh) * 2011-12-18 2014-12-31 深圳市光峰光电技术有限公司 光源系统及投影装置
CN102720954B (zh) * 2012-01-14 2014-08-27 深圳市光峰光电技术有限公司 发光装置和发光系统
JP2013122930A (ja) * 2013-02-07 2013-06-20 Casio Computer Co Ltd 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ
CN104020633B (zh) * 2013-02-28 2015-12-09 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN107632487B (zh) * 2013-04-20 2020-03-24 深圳光峰科技股份有限公司 发光装置及相关光源系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120242912A1 (en) * 2011-03-23 2012-09-27 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN203217230U (zh) * 2012-12-28 2013-09-25 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN103913936A (zh) * 2012-12-28 2014-07-09 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN204028554U (zh) * 2014-07-28 2014-12-17 深圳市绎立锐光科技开发有限公司 发光装置及投影系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022017397A (ja) * 2016-02-10 2022-01-25 パナソニックIpマネジメント株式会社 投写型映像表示装置
TWI690765B (zh) * 2018-06-25 2020-04-11 中強光電股份有限公司 照明系統以及投影裝置
US10948811B2 (en) 2018-06-25 2021-03-16 Coretronic Corporation Illumination system and projection apparatus

Also Published As

Publication number Publication date
EP3176638A1 (en) 2017-06-07
CN105319819B (zh) 2019-09-20
JP6393403B2 (ja) 2018-09-19
KR101978376B1 (ko) 2019-05-14
KR20190044137A (ko) 2019-04-29
US9897899B2 (en) 2018-02-20
EP3176638B1 (en) 2020-09-02
JP2017524154A (ja) 2017-08-24
KR20170036064A (ko) 2017-03-31
KR102088741B1 (ko) 2020-03-13
EP3176638A4 (en) 2018-03-21
CN105319819A (zh) 2016-02-10
US20170205695A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
WO2016015552A1 (zh) 发光装置及投影系统
WO2013029463A1 (zh) 投影系统及其发光装置
WO2014169784A1 (zh) 发光装置及投影系统
US9188709B2 (en) Optical multiplexing apparatus and projector
US9170423B2 (en) Light module for a projection apparatus and method for generating the blue component in a light module for a projection apparatus
US20190179220A1 (en) Light-source system and projection device
JP5080987B2 (ja) 多数の光源のエテンデュー効率のよい合波
WO2012004959A1 (ja) 光源装置及びプロジェクター
JP6414199B2 (ja) 色分解合成プリズムおよびそれを用いた光学系、プロジェクタ
WO2016161932A1 (zh) 发光装置和投影显示设备
WO2016091106A1 (zh) 投影系统
CN104791717B (zh) 带有初级光单元和荧光材料元件的照明装置
JP6293385B1 (ja) レーザ発振装置
JP2006343721A (ja) 画像生成装置
JP2015165484A (ja) 光波長変換器及びそれを有する照明システム
WO2017064868A1 (ja) プロジェクター
US20090257462A1 (en) Laser device, laser display device, and laser irradiation device
JP4944769B2 (ja) 照明装置及びそれを用いた投写型表示装置
TWI498662B (zh) 雷射投影設備
US11402735B2 (en) Projection system for projection display
JP6512919B2 (ja) 画像表示装置
JP2009545139A5 (zh)
JP2007093970A (ja) 投写型映像表示装置
WO2006017015A1 (en) Light source arrangement
JP7086518B2 (ja) 光源光学系およびこれを用いた投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326873

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017503111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015826666

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015826666

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177005306

Country of ref document: KR

Kind code of ref document: A