WO2016015260A1 - 一种下行信道质量测量方法、发送端、接收端和系统 - Google Patents

一种下行信道质量测量方法、发送端、接收端和系统 Download PDF

Info

Publication number
WO2016015260A1
WO2016015260A1 PCT/CN2014/083354 CN2014083354W WO2016015260A1 WO 2016015260 A1 WO2016015260 A1 WO 2016015260A1 CN 2014083354 W CN2014083354 W CN 2014083354W WO 2016015260 A1 WO2016015260 A1 WO 2016015260A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
receiving end
downlink
channel quality
channel
Prior art date
Application number
PCT/CN2014/083354
Other languages
English (en)
French (fr)
Inventor
杨敬
周宏睿
马霓
谷炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14898988.2A priority Critical patent/EP3154208B1/en
Priority to JP2017504686A priority patent/JP6436371B2/ja
Priority to CN201480009034.5A priority patent/CN105474555B/zh
Priority to EP18212879.3A priority patent/EP3514979A1/en
Priority to KR1020177001954A priority patent/KR101979125B1/ko
Priority to PCT/CN2014/083354 priority patent/WO2016015260A1/zh
Publication of WO2016015260A1 publication Critical patent/WO2016015260A1/zh
Priority to US15/416,544 priority patent/US10122433B2/en
Priority to US16/139,238 priority patent/US10236962B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/04Reselecting a cell layer in multi-layered cells

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a downlink channel quality measurement method, a transmitting end, a receiving end, and a system. Background technique
  • Beam-domain communication that is, adding an auxiliary beam antenna based on the traditional macro-station antenna, and combining the auxiliary beam antenna to serve the terminal in the sector, thereby realizing the capacity performance improvement, and the essence is to maximize the use of the spatial dimension.
  • Gain This spatial multiplexing of at least one auxiliary beam antenna based on the traditional macro station antenna leads to a key problem: how to accurately select the appropriate antenna for the end user, that is, the base station (including indoor and outdoor) Before a base station needs to send data to a terminal, it needs to know which antenna to use for the terminal. Therefore, the base station needs to measure the downlink channel quality of the equivalent channel corresponding to each antenna when serving the terminal.
  • the reference signal i.e., the pilot signal
  • the reference signal is a known signal that is provided by the transmitting end to the receiving end for channel estimation or signal measurement.
  • the SRS sounding reference signal
  • the uplink pilot that is, the pilot signal transmitted by the terminal to the base station
  • the base station acquires each according to the SRS received by each antenna.
  • the antenna is directed to the uplink channel quality of the terminal.
  • the base station estimates the downlink channel quality according to the measured uplink channel quality by using channel reciprocity.
  • the FDD Frequency Division Duplex
  • the embodiments of the present invention provide a downlink channel quality measurement method, a transmitting end, a receiving end, and a system, which can accurately obtain the downlink channel quality of an equivalent channel of a specified antenna.
  • a first aspect of the embodiment of the present invention provides a sending end, including:
  • a signal transmitting module configured to transmit at least two hybrids to the receiving end through at least two physical antennas respectively
  • the mixed pilot signal-frequency signal is obtained by weighting the precoding weighting matrix
  • An instruction sending module configured to send, to the receiving end, a first codebook subset constraint instruction, where the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI, so that the receiving end Obtaining a downlink channel quality of an equivalent channel of the specified antenna according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal;
  • a feedback message receiving module configured to receive a channel quality feedback message that is received by the receiving end according to downlink channel quality feedback of an equivalent channel of the specified antenna.
  • the RANK and the PMI are directed to a first constraint codebook matrix, where the first constraint codebook matrix is used to obtain spatial multiplexing of at least two auxiliary beam antennas, etc.
  • the first constraint codebook matrix is used to obtain spatial multiplexing of at least two auxiliary beam antennas, etc.
  • the channel quality feedback message received by the feedback message receiving module includes a downlink CQI of an equivalent channel of each of the at least two auxiliary beam antennas;
  • the sending end further includes:
  • a first beam determining module configured to determine, according to the downlink CQI of the equivalent channel of the at least two auxiliary beam antennas received by the feedback message receiving module, whether to use any one of the at least two auxiliary beam antennas
  • the antenna serves the receiving end.
  • the first beam determining module includes: an auxiliary beam antenna whose row CQI is greater than a preset threshold;
  • a target auxiliary beam antenna acquiring unit configured to: if an auxiliary beam antenna having an equivalent CQI of the equivalent channel in the at least two auxiliary beam antennas is greater than a preset threshold, according to an equivalent channel of the at least two auxiliary beam antennas a downlink CQI, where the target auxiliary antenna is acquired in the at least two auxiliary beam antennas;
  • the first codebook subset constraint instruction carries at least two PMIs, and each of the RANK and the at least two PMIs respectively point to at least Two second constrained codebook matrices, wherein the at least two second constrained codebook matrices are respectively used to obtain downlink channel quality of an equivalent channel of at least two auxiliary beam antennas;
  • the channel quality feedback message received by the feedback message receiving module includes a PMI corresponding to the target auxiliary beam antenna, and the target auxiliary beam antenna is configured by the receiving end according to the mixed pilot signal, the at least two second constraints a codebook matrix and the respective preset pilot signals are determined from the at least two auxiliary beam antennas;
  • the sending end further includes:
  • a second beam determining module configured to identify the target auxiliary beam antenna according to the channel quality feedback message, and determine to use the target auxiliary beam antenna to serve the receiving end.
  • the method further includes:
  • a recording module configured to record a downlink CQI of an equivalent channel of the target auxiliary antenna in a first preset time period
  • the instruction sending module is further configured to:
  • the channel quality feedback message received by the feedback message receiving module further includes a downlink CQI of an equivalent channel of each of the at least two macro station antennas;
  • the sending end further includes:
  • a third beam determining module configured to determine, according to a downlink CQI of an equivalent channel of each of the macro station antennas, and a downlink CQI of the recorded equivalent antenna of the target auxiliary antenna in a first preset time period, The receiving end is served using any one of the at least two macro station antennas.
  • the third beam determining module includes:
  • a spectrum efficiency obtaining unit configured to acquire, according to a downlink CQI of an equivalent channel of each of the macro station antennas, a downlink spectrum efficiency of an equivalent channel of each of the macro station antennas, and according to the recorded in the first preset time period Calculating the target auxiliary antenna by using a downlink CQI of an equivalent channel of the target auxiliary antenna Downlink spectral efficiency of the equivalent channel;
  • a determining unit configured to determine whether to use any one of the at least two macro station antennas according to a downlink spectral efficiency of an equivalent channel of each of the macro station antennas and a downlink spectral efficiency of an equivalent channel of the target auxiliary antenna
  • the station antenna serves the receiving end.
  • the method further includes:
  • a signal receiving module configured to separately receive the detection reference signal of the receiving end by using the at least two physical antennas
  • a receiving power obtaining module configured to acquire, according to the sounding reference signal received in the second preset time period, the received power of the at least two physical antennas respectively for the receiving end;
  • a first determining module configured to determine, according to the received power of the at least two physical antennas for the receiving end, that the receiving end meets an initial condition that uses an auxiliary beam antenna, where the signal transmitting module transmits to the receiving end After the pilot signal is mixed, the instruction sending module is triggered to send a first codebook subset constraint instruction to the receiving end.
  • the method further includes:
  • a signal receiving module configured to separately receive the detection reference signal of the receiving end by using the at least two physical antennas
  • a receiving power obtaining module configured to acquire, according to the sounding reference signal received in the second preset time period, the received power of the at least two physical antennas respectively for the receiving end;
  • a second determining module configured to determine, according to the received power of the at least two physical antennas, the main beam and the multiplexed antenna beam of the receiving end;
  • the RANK and the PMI are directed to a fourth constraint codebook matrix, and the fourth constraint codebook matrix is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam;
  • the channel quality feedback message received by the feedback message receiving module includes a downlink CQI of an equivalent channel of the main beam and a downlink CQI of an equivalent channel of the multiplexed antenna beam;
  • the sending end further includes:
  • a fourth beam determining module configured to determine whether to use the main beam and the multiplexing day according to a downlink CQI of an equivalent channel of the main beam and a downlink CQI of an equivalent channel of the multiplexed antenna beam
  • a line beam serves the receiving end.
  • a second aspect of the present invention provides a receiving end, including: a pilot signal, where the at least two mixed pilot signals respectively pass preset pilot signals corresponding to each of the at least two logical antennas
  • the weighting matrix is weighted and obtained;
  • An instruction receiving module configured to receive a first codebook subset constraint instruction sent by the sending end, where the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI; a channel quality acquiring module, And a method for acquiring, according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal, a downlink channel quality of an equivalent channel of a specified antenna;
  • a feedback message sending module configured to feed back the channel quality feedback message to the sending end according to the downlink channel quality of the equivalent channel of the specified antenna.
  • the RANK and the PMI are directed to a first constraint codebook matrix, where the first constraint codebook matrix is used to obtain spatial multiplexing of at least two auxiliary beam antennas, etc.
  • the first constraint codebook matrix is used to obtain spatial multiplexing of at least two auxiliary beam antennas, etc.
  • the channel quality obtaining module is specifically configured to:
  • the message sending module is specifically used to:
  • the channel quality feedback message sent by the feedback message sending module includes a downlink CQI of an equivalent channel of the at least two auxiliary beam antennas, so that the transmitting end is based on an equivalent channel of the at least two auxiliary beam antennas
  • the downlink CQI determines whether to use the auxiliary beam antenna of any one of the at least two auxiliary beam antennas to serve the receiving end.
  • the first codebook subset constraint instruction carries at least two PMIs, and the RANK and each of the at least two PMIs respectively point to at least two a two-constrained codebook matrix, wherein the at least two second constraint codebook matrices are respectively used to acquire at least two The downlink channel quality of the equivalent channel of the auxiliary beam antennas;
  • the channel quality obtaining module is specifically configured to:
  • the message sending module is specifically used to:
  • the channel quality feedback message sent by the feedback message sending module includes a PMI of the target auxiliary beam antenna, so that the sending end uses the target auxiliary beam antenna to serve the receiving end according to the PMI.
  • the instruction receiving module is further configured to:
  • a second codebook subset constraint instruction where the RANK and the PMI carried by the second codebook subset constraint instruction are directed to a third constraint codebook matrix, where the third constraint codebook matrix is used for acquiring Downlink channel quality of an equivalent channel spatially multiplexed by at least two macro station antennas;
  • the channel quality obtaining module is further specifically configured to:
  • the feedback message sending module is further specifically configured to:
  • the channel quality feedback message sent by the feedback message sending module further includes a downlink CQI of an equivalent channel of the at least two macro station antennas, so that the sending end is configured according to the at least two macro stations
  • the downlink CQI of the equivalent channel of the line determines whether to use the macro station antenna of the at least two macro station antennas to serve the receiving end.
  • the method further includes:
  • a signal sending module configured to send a sounding reference signal to the transmitting end, so that the transmitting end determines, according to the sounding reference signal, that the receiving end meets an initial condition of using any of the at least two auxiliary beam antennas.
  • the method further includes:
  • a signal sending module configured to send a sounding reference signal to the transmitting end, so that the transmitting end determines the main beam and the multiplexed antenna beam of the receiving end according to the sounding reference signal
  • the RANK and the PMI are directed to a fourth constraint codebook matrix, and the fourth constraint codebook matrix is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam;
  • the channel quality acquisition module is specifically used to:
  • the feedback message sending module is specifically configured to:
  • the channel quality feedback message fed back by the feedback message sending module to the sending end includes a downlink CQI of an equivalent channel of the main beam and the multiplexed antenna beam, so that the transmitting end is configured according to the main beam And determining, by using the downlink CQI of the equivalent channel of the multiplexed antenna beam, whether to use the main beam and the multiplexed antenna beam to serve the receiving end.
  • a third aspect of the present invention provides a downlink channel quality measurement method, including:
  • the transmitting end transmits at least two mixed pilot signals to the receiving end through at least two physical antennas, respectively.
  • the page signal is obtained by weighting the precoding weight matrix
  • the sending end Transmitting, by the sending end, a first codebook subset constraint instruction to the receiving end, where the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI, so that the receiving end is configured according to the The hybrid pilot signal, the first codebook subset constraint instruction, and the preset pilot signal acquire downlink channel quality of an equivalent channel of a specified antenna;
  • the transmitting end receives a channel quality feedback message that is received by the receiving end according to the downlink channel quality of the equivalent channel of the specified antenna.
  • the RANK and the PMI are directed to a first constraint codebook matrix, where the first constraint codebook matrix is used to obtain spatial multiplexing of at least two auxiliary beam antennas, etc.
  • the first constraint codebook matrix is used to obtain spatial multiplexing of at least two auxiliary beam antennas, etc.
  • Downlink channel quality of the effective channel downlink channel quality indication CQI of the equivalent channel of the antenna;
  • the transmitting end further includes: a downlink CQI of the channel, determining whether to use the at least two auxiliary beam antennas Any of the auxiliary beam antennas serve the receiving end.
  • An auxiliary beam antenna having a CQI greater than a preset threshold
  • the transmitting end is downlinked according to an equivalent channel of the at least two auxiliary beam antennas
  • the first codebook subset constraint instruction carries At least two PMIs, each of the RANK and the at least two PMIs respectively pointing to at least two second constraint codebook matrices, the at least two second constraint codebook matrices respectively for acquiring at least two assistants Downlink channel quality of the equivalent channel of the beam antenna;
  • the channel quality feedback message includes a PMI corresponding to the target auxiliary beam antenna, and the target auxiliary beam antenna is configured by the receiving end according to the mixed pilot signal, the at least two second constraint codebook matrices, and each Presetting a pilot signal, which is determined from the at least two auxiliary beam antennas; and the transmitting end receives the channel quality feedback message that is received by the receiving end according to the acquired downlink channel quality feedback of the specified antenna, and further Includes:
  • the transmitting end identifies the target auxiliary beam antenna according to the channel quality feedback message; and in combination with the second or the third possible implementation manner of the third aspect, after the fourth possible, the method further includes:
  • the transmitting end receives a channel quality feedback message including a downlink CQI of an equivalent channel of each of the at least two macro station antennas;
  • the sending end is configured according to a downlink CQI of an equivalent channel of each of the macro station antennas and a first preset time period. Determining whether to use any one of the at least two macro station antennas to serve the receiving end by using a downlink CQI of the equivalent channel of the target auxiliary antenna includes:
  • the transmitting end acquires each of the downlink CQIs according to the equivalent channel of each of the macro station antennas a downlink spectrum efficiency of an equivalent channel of the macro station antenna, and calculating a downlink spectrum of the equivalent channel of the target auxiliary antenna according to a downlink CQI of an equivalent channel of the target auxiliary antenna recorded in the first preset time period effectiveness;
  • the antenna serves the receiving end.
  • a sixth possible implementation manner before the sending end sends the first codebook subset constraint instruction to the receiving end, Also includes:
  • the method before the transmitting end sends the first codebook subset constraint instruction to the receiving end, the method further includes: a signal;
  • the RANK and the PMI are directed to a fourth constraint codebook matrix, and the fourth constraint codebook matrix is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam;
  • the channel quality feedback message includes a downlink CQI of an equivalent channel of the main beam and a downlink CQI of an equivalent channel of the multiplexed antenna beam;
  • the method further includes:
  • a fourth aspect of the embodiments of the present invention provides a downlink channel quality measurement method, including:
  • the preset pilot signals are obtained by weighting the precoding weighting matrix
  • the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI;
  • the receiving end acquires a downlink channel quality of an equivalent channel of the specified antenna according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal;
  • the receiving end feeds back a channel quality feedback message to the transmitting end according to the downlink channel quality of the equivalent channel of the designated antenna.
  • the RANK and the PMI are directed to a first constraint codebook matrix, where the first constraint codebook matrix is used to obtain spatial multiplexing of at least two auxiliary beam antennas, etc.
  • the first constraint codebook matrix is used to obtain spatial multiplexing of at least two auxiliary beam antennas, etc.
  • the receiving end obtains, by the receiving end, the downlink channel quality of the equivalent channel of the specified antenna according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal, including:
  • the receiving end acquires the first constraint codebook matrix according to the RANK and the PMI; the receiving end acquires according to the mixed pilot signal, the first constraint codebook matrix, and the preset pilot signal.
  • the receiving, by the receiving end, the channel quality feedback message to the sending end according to the downlink channel quality of the equivalent channel of the specified antenna includes:
  • the receiving end acquires downlink CQIs of the equivalent channels of the at least two auxiliary beam antennas according to the downlink channel quality of the equivalent channels of the at least two auxiliary beam antennas;
  • the channel quality feedback message fed back by the receiving end to the sending end includes the at least a downlink CQI of an equivalent channel of the two auxiliary beam antennas, so that the transmitting end determines whether to use any one of the at least two auxiliary beam antennas according to a downlink CQI of an equivalent channel of the at least two auxiliary beam antennas
  • An auxiliary beam antenna serves the receiving end.
  • the first codebook subset constraint instruction carries at least two PMIs, and the RANK and each of the at least two PMIs respectively point to at least two a two-constrained codebook matrix, wherein the at least two second constrained codebook matrices are respectively used to obtain downlink channel quality of an equivalent channel of at least two auxiliary beam antennas;
  • the receiving end obtains, by the receiving end, the downlink channel quality of the equivalent channel of the specified antenna according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal, including:
  • the receiving end acquires the at least two second constraint codebook matrices according to the RANK and the at least two PMIs respectively;
  • the receiving, by the receiving end, the channel quality feedback message to the sending end according to the downlink channel quality of the equivalent channel of the specified antenna includes:
  • the receiving end acquires downlink CQIs of the equivalent channels of the at least two auxiliary beam antennas according to the downlink channel quality of the equivalent channels of the at least two auxiliary beam antennas;
  • the channel quality feedback message fed back by the receiving end to the transmitting end includes a PMI of the target auxiliary beam antenna, so that the sending end determines, according to the PMI, that the target auxiliary beam antenna is used as the receiving end. service.
  • the receiving end is configured according to the downlink channel quality of the equivalent channel of the specified antenna After the sender feeds back the channel quality feedback message, it also includes:
  • the third constraint code is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed by at least two macro station antennas; the receiving end acquires the third constraint codebook matrix according to the RANK and the PMI; Obtaining, by the hybrid pilot signal, the third constraint codebook matrix, and the preset pilot signal, a downlink channel quality of an equivalent channel spatially multiplexed by the at least two macro station antennas;
  • the receiving end feeds back a channel quality feedback message to the sending end, where the channel quality feedback message includes a downlink CQI of an equivalent channel of the at least two macro station antennas, so that the sending end is according to the at least two A downlink CQI of an equivalent channel of the macro station antenna determines whether to use the macro station antenna of the at least two macro station antennas to serve the receiving end.
  • the receiving end receives the first codebook sent by the sending end Before the constraint instruction is set, it also includes:
  • the receiving end transmits a sounding reference signal to the transmitting end, so that the transmitting end determines, according to the sounding reference signal, that the receiving end satisfies an initial condition of using any of the at least two auxiliary beam antennas.
  • the method before the receiving end receives the first codebook subset constraint instruction sent by the sending end, the method further includes:
  • the receiving end sends a sounding reference signal to the transmitting end, so that the transmitting end determines the main beam and the multiplexed antenna beam of the receiving end according to the detecting reference signal.
  • the RANK and the PMI are directed to a fourth constraint codebook matrix, and the fourth constraint codebook matrix is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam; And feeding back the channel quality feedback message to the sending end according to the downlink channel quality of the equivalent channel of the specified antenna includes:
  • the receiving end acquires the fourth constraint codebook matrix according to the RANK and the PMI; the receiving end acquires according to the mixed pilot signal, the fourth constraint codebook matrix, and the preset pilot signal.
  • Downlink channel quality of the equivalent channel of the main beam and the multiplexed antenna beam Downlink channel quality of the equivalent channel;
  • the receiving, by the receiving end, the channel quality feedback message to the sending end according to the downlink channel quality of the equivalent channel of the specified antenna includes:
  • the channel quality feedback message fed back by the receiving end to the transmitting end includes a downlink CQI of an equivalent channel of the main beam and the multiplexed antenna beam, so that the transmitting end is configured according to the main beam and Determining, by the downlink CQI of the equivalent channel of the antenna beam, determining whether to use the main beam and the multiplexed antenna beam to serve the receiving end.
  • a fifth aspect of the embodiments of the present invention provides a transmitting end, where the sending end includes a wireless transceiver, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the storage in the memory.
  • Program code used to do the following:
  • the frequency signal is obtained by weighting the precoding weighting matrix
  • a sixth aspect of the embodiments of the present invention provides a receiving end, where the receiving end includes a wireless transceiver, a memory, and a processor, wherein the memory stores a set of program codes, and the processor is configured to call the storage in the memory.
  • Program code used to do the following: The pilot signal is obtained by weighting the precoding weighting matrix;
  • a seventh aspect of the embodiments of the present invention provides a downlink channel quality measurement system, where the system includes a transmitting end and a receiving end, where
  • the transmitting end is as in the first aspect, or the first possible implementation manner of the first aspect, or the second possible implementation manner of the first aspect, or the third possible implementation manner of the first aspect, or the A fourth possible implementation manner of the first aspect, or the fifth possible implementation manner of the first aspect, or the sixth possible implementation manner of the first aspect, or the seventh possible implementation manner of the first aspect Transmitting end;
  • the receiving end is the second aspect, or the first possible implementation manner of the second aspect, or the second possible implementation manner of the second aspect, or the third possible implementation manner of the second aspect, or the A fourth possible implementation of the second aspect, or a receiving end of the fifth possible implementation of the second aspect.
  • An eighth aspect of the embodiments of the present invention provides a computer storage medium storing a program, the program including some or all of the steps of the downlink channel quality measurement method provided by the third aspect.
  • a ninth aspect of the embodiments of the present invention provides a computer storage medium storing a program, the program including some or all of the steps of the downlink channel quality measurement method provided by the fourth aspect.
  • the transmitting end may respectively transmit at least two mixed pilot signals to the receiving end by using at least two physical antennas, where the at least two mixed pilot signals respectively are logics of the at least two logical antennas
  • the preset pilot signal corresponding to the antenna is obtained by weighting the precoding weighting matrix, and the transmitting end sends the codebook subset constraint instruction to the receiving end, and the receiving end can receive the
  • the mixed pilot signal, the codebook subset constraint instruction, and the respective preset pilot signals acquire the downlink channel quality of the equivalent channel of the specified antenna, and the transmitting end may acquire the equivalent channel of the designated antenna according to the channel quality feedback message.
  • the downlink channel quality accurately acquires the downlink channel quality of the equivalent channel of the specified antenna, and further, the transmitting end can select an appropriate service beam for the receiving end, thereby improving the signal quality.
  • FIG. 1 is a schematic structural diagram of a transmitting end according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another transmitting end according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first beam determining module according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another transmitting end according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another transmitting end according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a third beam determining module according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another transmitting end according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another transmitting end according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a receiving end according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another receiving end according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another receiving end according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a downlink channel quality measurement method according to an embodiment of the present invention
  • FIG. 13 is a schematic flowchart of a beam selection method according to an embodiment of the present invention
  • FIG. 14 is a schematic flowchart of another method for selecting a beam according to an embodiment of the present invention
  • FIG. 15 is a schematic flowchart of a method for managing mobility according to an embodiment of the present invention
  • FIG. 17 is a schematic flowchart of an indoor beam selection method according to an embodiment of the present invention
  • FIG. 18 is a schematic diagram of a layout structure of an indoor antenna according to an embodiment of the present invention
  • FIG. 19 is a schematic structural diagram of a downlink channel quality measurement system according to an embodiment of the present invention.
  • the transmitting end of the embodiment of the present invention includes at least one auxiliary beam antenna, and the receiving end includes at least two receiving antennas.
  • the number of transmitting antennas at the transmitting end is 4, that is, the number of physical antennas is 4, wherein two widely covered macro stations Antenna macro0, macrol and two auxiliary beam antennas beam0, beaml, there are two receiving antennas at the receiving end;
  • the precoding weighting matrix r is preset, as shown by matrix (1), and ⁇ is CSI-RS (Channel- The power factor of the state information reference signal, the channel state information reference signal, can be selected according to the requirements.
  • the number of rows of the coding weight matrix is not limited.
  • FIG. 1 is a schematic structural diagram of a transmitting end according to an embodiment of the present invention.
  • the transmitting end provided by the embodiment of the present invention may include an indoor base station or an outdoor base station.
  • the transmitting end 100 in the embodiment of the present invention may include at least a signal transmitting module 101, an instruction sending module 102, and a feedback message receiving module 103, where:
  • a signal transmitting module 101 configured to respectively transmit at least two to the receiving end by using at least two physical antennas
  • the pilot signal is obtained by weighting the precoding weight matrix.
  • the signal transmitting module 101 includes at least two physical antennas, and the signal transmitting module 101 each time When the mixed pilot signal is sent to the receiving end, the mixed pilot signal corresponding to each physical antenna is sent to the receiving end through all the physical antennas.
  • the signal transmitting module 101 includes four physical antennas, and the four physical bodies are passed each time. The antenna transmits a mixed pilot signal to the receiving end.
  • the mixed pilot signal after the weighting of the preset pilot signals by the precoding weight matrix may be as shown in the matrix (3). If the correspondence between the physical antenna and the logic antenna is: beamO corresponds to Port 15, The beam 1 corresponds to Port 15, the macro0 corresponds to Portl7, and the macro 1 corresponds to Portl8.
  • the mixed pilot signals corresponding to the physical antennas are: beamO corresponds to the first column of mixed pilot signals, and beam1 corresponds to the second column of mixed pilot signals.
  • the macro0 corresponds to the third column of mixed pilot signals, and the macro 1 corresponds to the fourth column of mixed pilot signals.
  • the signal transmitting module 101 can generate a mixed pilot signal in advance, and then the signal transmitting module 101 controls its own physical antennas every preset period, such as 5 ms. Transmitting the mixed pilot signals corresponding to the physical antennas; the signal transmitting module 101 may also generate the mixed pilot signals every preset period.
  • the signal transmitting module 101 only pre-weights the preset pilot signal, and in other alternative embodiments, especially in the release 8 (3GPP protocol version for LTE) protocol version.
  • the signal transmitting module 101 can pre-weight the common pilot (CRS) signal, and cooperate with the codebook constraint function to enable the receiving end to implement the downlink channel of the equivalent channel of the specified antenna.
  • CRS common pilot
  • the instruction sending module 102 is configured to send, to the receiving end, a first codebook subset constraint instruction, where the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI, so that the receiving And obtaining, by the terminal, a downlink channel quality of an equivalent channel of the specified antenna according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal.
  • the feedback message receiving module 103 is configured to receive a channel quality feedback message that is received by the receiving end according to downlink channel quality feedback of an equivalent channel of the specified antenna.
  • the RANK and the PMI are directed to a first constraint codebook matrix, and the first constraint codebook matrix is configured to obtain downlink channel quality of an equivalent channel after spatial multiplexing of at least two auxiliary beam antennas.
  • the channel quality feedback message received by the feedback message receiving module 103, the transmitting end 100 further includes a first beam determining module 104, as shown in FIG. 2, for receiving according to the feedback message receiving module 103. Determining a downlink CQI of an equivalent channel of the at least two auxiliary beam antennas, determining whether to use the auxiliary beam antenna of the at least two auxiliary beam antennas to serve the receiving end.
  • the first beam determining module 104 of the embodiment of the present invention may include: a detecting unit 1041, a target auxiliary beam antenna acquiring unit 1042, and a determining unit, where: The auxiliary beam antenna whose downlink CQI is greater than a preset threshold;
  • the target auxiliary beam antenna acquiring unit 1042 is configured to: if the downlink CQI of the equivalent channel in the at least two auxiliary beam antennas is greater than a preset threshold, the equivalent of the at least two auxiliary beam antennas a downlink CQI of the channel, where the target auxiliary antenna is obtained in the at least two auxiliary beam antennas;
  • the determining unit 1042 is configured to determine to use the target auxiliary beam antenna to serve the receiving end.
  • the sending end 100 may further include: a signal receiving module 105, a receiving power acquiring module 106, and a first determining module 107, where: The signal receiving module 105 is configured to separately receive the sounding reference signals of the receiving end by using the at least two physical antennas;
  • the receiving power obtaining module 106 is configured to obtain, according to the sounding reference signal received in the second preset time period, the received power of the at least two physical antennas respectively for the receiving end;
  • the first determining module 107 is configured to determine, according to the received power of the at least two physical antennas for the receiving end, that the receiving end meets an initial condition for using the auxiliary beam antenna, when the signal transmitting module 101 receives the After transmitting the mixed pilot signal, the instruction sending module 102 is triggered to send the first codebook subset constraint instruction to the receiving end.
  • the first codebook subset constraint instruction carries at least two PMIs, and each of the RANK and the at least two PMIs respectively points to at least two second constraint codebook matrices 4, the first codebook subset constraint refers to carrying two PMIs, the RANK and one of the PMIs point to a second constraint codebook matrix, and the RANK and another PMI point to another second constraint codebook matrix,
  • the at least two second constraint codebook matrices are respectively used to obtain downlink channel quality of an equivalent channel of at least two auxiliary beam antennas, and the channel quality feedback message received by the feedback message receiving module 103 includes a target auxiliary beam antenna corresponding to PMI, the target auxiliary beam antenna is from the receiving end according to the mixed pilot signal, the at least two second constraint codebook matrices, and the respective preset pilot signals, from the at least two Determined in the auxiliary beam antenna;
  • the transmitting end 100 further includes a second beam determining module 108, configured to identify the target auxiliary beam antenna according to the channel quality feedback message, and determine to use the target auxiliary beam antenna as described in FIG. Receiver service.
  • a second beam determining module 108 configured to identify the target auxiliary beam antenna according to the channel quality feedback message, and determine to use the target auxiliary beam antenna as described in FIG. Receiver service.
  • the transmitting end 100 may further include: a signal receiving module 105, a receiving power obtaining module 106, and a first determining module 107, where:
  • the signal receiving module 105 is configured to separately receive the sounding reference signal of the receiving end by using the at least two physical antennas;
  • the receiving power obtaining module 106 is configured to obtain, according to the sounding reference signal received in the second preset time period, the received power of the at least two physical antennas respectively for the receiving end;
  • the first determining module 107 is configured to determine, according to the received power of the at least two physical antennas for the receiving end, that the receiving end meets an initial condition that uses an auxiliary beam antenna, when the signal is After transmitting the mixed pilot signal to the receiving end, the transmitting module 101 triggers the command sending module 102 to send a first codebook subset constraint instruction to the receiving end.
  • the transmitting end 100 may further include a recording module 109 and a third beam determining module 110, where:
  • a recording module configured to record a downlink CQI of an equivalent channel of the target auxiliary antenna in a first preset time period
  • the recording module 109 records the downlink CQI of the equivalent channel of the target auxiliary antenna in the first preset time period, and the command sending module 102 may further send the second code book to the receiving end.
  • a constraint instruction where the RANK and the PMI carried by the second codebook subset constraint instruction point to a third constraint codebook matrix, where the third constraint codebook matrix is used to obtain spatial multiplexing of at least two macro station antennas, etc.
  • the downlink channel quality of the effect channel, the channel quality feedback message received by the feedback message receiving module 103 further includes a downlink CQI of an equivalent channel of each of the at least two macro station antennas;
  • the third beam determining module 110 is configured to: according to the downlink CQI of the equivalent channel of each of the macro station antennas and the equivalent channel of the target auxiliary antenna recorded by the recording module 109 in the first preset time period The downlink CQI determines whether to use the macro station antenna of the at least two macro station antennas to serve the receiving end.
  • the third judging module 110 may further include: a spectrum efficiency obtaining unit 1101 and a judging unit 1102, where:
  • a spectrum efficiency obtaining unit 1101 configured to acquire downlink spectrum efficiency of an equivalent channel of each macro station antenna according to a downlink CQI of an equivalent channel of each macro station antenna, and record according to the first preset time period Calculating a downlink spectrum efficiency of an equivalent channel of the target auxiliary antenna by using a downlink CQI of an equivalent channel of the target auxiliary antenna;
  • a determining unit 1102 configured to perform downlink spectrum efficiency according to an equivalent channel of each of the macro station antennas And determining, by using a downlink spectrum efficiency of an equivalent channel of the target auxiliary antenna, whether to use the macro station antenna of the at least two macro station antennas to serve the receiving end.
  • FIG. 7 is a schematic structural diagram of another transmitting end according to the embodiment of the present invention.
  • the transmitting end 100 further includes: a signal receiving module 111, a receiving power acquiring module 112, and a first a second determining module 113 and a fourth beam determining module 114, wherein: the signal receiving module 111 is configured to receive the sounding reference signals of the receiving end by the at least two physical antennas respectively;
  • the receiving power obtaining module 112 is configured to obtain, according to the sounding reference signal received in the second preset time period, the received power of the at least two physical antennas respectively for the receiving end;
  • a second determining module 113 configured to determine, according to the received power of the at least two physical antennas, the main beam and the multiplexed antenna beam of the receiving end, respectively;
  • the RANK and the PMI are directed to a fourth constraint codebook matrix, and the fourth constraint codebook matrix is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam, the feedback message
  • the channel quality feedback message received by the receiving module 103 includes a downlink CQI of an equivalent channel of the main beam and a downlink CQI of an equivalent channel of the multiplexed antenna beam;
  • the fourth beam determining module 114 is configured to determine, according to the downlink CQI of the equivalent channel of the main beam and the downlink CQI of the equivalent channel of the multiplexed antenna beam, whether to use the main beam and the multiplex antenna beam Serving the receiving end.
  • FIG. 8 is a schematic structural diagram of a transmitting end according to another embodiment of the present invention.
  • the transmitting end 800 may include: at least one processor 801, such as a CPU, at least one communication bus 802.
  • the wireless signal transceiver 803 includes a physical antenna for receiving a wireless signal transmitted by the terminal (ie, the receiving end) and transmitting a wireless signal to the terminal; the communication bus 803 is configured to implement connection communication between the components.
  • the memory 804 may be a high speed RAM memory or a non-volatile memory (non-volatile) Memory ), such as at least one disk storage.
  • a set of program codes is stored in the memory 804, and the processor 801 is configured to call the program code stored in the memory 804 for performing the following operations:
  • the preset pilot signals are obtained by weighting the precoding weighting matrix
  • the RANK and the PMI are directed to a first constraint codebook matrix, and the first constraint codebook matrix is configured to obtain downlink channel quality of an equivalent channel after spatial multiplexing of at least two auxiliary beam antennas;
  • the processor 801 After receiving the channel quality feedback message of the downlink channel quality feedback of the equivalent channel of the specified antenna by the wireless signal transceiver 803, the processor 801 further performs the following operations:
  • the CQI determines whether to use the auxiliary beam antenna of the at least two auxiliary beam antennas to serve the receiving end.
  • the downlink CQI of the equivalent channel, determining whether to use any one of the at least two auxiliary beam antennas to serve the receiving end may be:
  • the first codebook subset constraint instruction carries at least two PMIs, and the RANK and each of the at least two PMIs respectively point to at least two second constraint codes, and the like.
  • the channel quality feedback message includes a PMI corresponding to the target auxiliary beam antenna, and the target auxiliary beam antenna is configured by the receiving end according to the mixed pilot signal, the at least two second constraint codebook matrices, and the respective presets. a pilot signal determined from the at least two auxiliary beam antennas;
  • the processor 801 After receiving the channel quality feedback message of the downlink channel quality feedback of the specified antenna obtained by the receiving end, the processor 801 further performs the following operations: identifying the target according to the channel quality feedback message. Auxiliary beam antenna
  • a channel quality feedback message including a downlink CQI of an equivalent channel of each of the at least two macro station antennas
  • the processor 801 determines, according to the downlink CQI of the equivalent channel of each macro station antenna and the downlink CQI of the equivalent channel of the target auxiliary antenna recorded in the first preset time period, whether to use the at least two Any macro station antenna in the macro station antenna serves the receiving end as follows:
  • the RANK and the PMI are directed to a fourth constraint codebook matrix, and the fourth constraint codebook matrix is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam;
  • the feedback message includes a downlink CQI of an equivalent channel of the main beam and a downlink CQI of an equivalent channel of the multiplexed antenna beam;
  • the processor 803 After receiving, by the wireless signal transceiver 803, the processor 803 receives the channel quality feedback message of the downlink channel quality feedback of the specified antenna obtained by the receiving end, the processor 801 further performs the following operations: according to the downlink of the equivalent channel of the main beam Determining whether to use the main beam and the multiplexed antenna beam as the receiving end by using a CQI and a downlink CQI of an equivalent channel of the multiplexed antenna beam Business.
  • FIG. 9 is a schematic structural diagram of a receiving end according to an embodiment of the present invention.
  • the receiving end provided by the embodiment of the present invention may be a communication terminal such as a mobile phone, a personal computer, or a PAD.
  • the receiving end 900 in the embodiment of the present invention as shown in FIG. 9 may further include: a signal receiving module 901, an instruction receiving module 902, a channel quality acquiring module 903, and a feedback message sending module 904, where:
  • the signal receiving module 901 is configured to receive at least two mixed pilot signals that are sent by the transmitting end by using at least two physical antennas, where the at least two mixed pilot signals are pre-corresponding to each of the at least two logical antennas.
  • the pilot signal is obtained by weighting the precoding weight matrix;
  • the instruction receiving module 902 is configured to receive a first codebook subset constraint instruction sent by the sending end, where the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI;
  • the channel quality obtaining module 903 is configured to acquire, according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal, a downlink channel quality of an equivalent channel of the specified antenna; 904.
  • the method is used to feed back a channel quality feedback message to the sending end according to a downlink channel quality of an equivalent channel of the specified antenna.
  • the RANK and the PMI are directed to a first constraint codebook matrix, and the first constraint codebook matrix is configured to obtain downlink channel quality of an equivalent channel after spatial multiplexing of at least two auxiliary beam antennas. ;
  • the channel quality obtaining module 903 is specifically configured to:
  • the feedback message sending module 904 is specifically configured to:
  • the channel quality feedback message sent by the feedback message sending module 904 includes a downlink CQI of an equivalent channel of the at least two auxiliary beam antennas, so that the transmitting end is based on the equivalent of the at least two auxiliary beam antennas.
  • the downlink CQI of the channel determines whether to use the auxiliary beam antenna of the at least two auxiliary beam antennas to serve the receiving end.
  • the first codebook subset constraint instruction carries at least two PMIs, and each of the RANK and the at least two PMIs respectively points to at least two second constraint codebook matrices
  • the first codebook subset constraint instruction carries two PMIs, that is, the RANK and one of the PMIs point to one of the second constraint codebook matrices, and the RANK and another PMI point to another second constraint code.
  • the matrix, the at least two second constraint codebook matrices are respectively used to obtain downlink channel quality of an equivalent channel of at least two auxiliary beam antennas;
  • the channel quality obtaining module 903 is specifically configured to:
  • the message sending module 904 is specifically configured to:
  • the channel quality feedback message sent by the feedback message sending module 904 includes a PMI of the target auxiliary beam antenna, so that the transmitting end uses the target auxiliary beam antenna to serve the receiving end according to the PMI.
  • instruction receiving module 902 can also be used to:
  • the channel quality obtaining module 903 is further specifically configured to:
  • the feedback message sending module 904 is further specifically configured to:
  • the channel quality feedback message sent by the feedback message sending module 904 further includes a downlink CQI of an equivalent channel of the at least two macro station antennas, so that the sending end is configured according to the at least two macro station antennas, etc.
  • the downlink CQI of the effect channel determines whether to use the macro station antenna of the at least two macro station antennas to serve the receiving end.
  • the receiving end in the embodiment of the present invention may further include a signal sending module 905, configured to send a sounding reference signal to the transmitting end, so that the sending end determines, according to the sounding reference signal, that the receiving end meets the usage point.
  • a signal sending module 905 configured to send a sounding reference signal to the transmitting end, so that the sending end determines, according to the sounding reference signal, that the receiving end meets the usage point.
  • the receiving end 900 may further include a signal sending module 905, configured to send a sounding reference signal to the sending end, so that the sending end is based on the sounding reference.
  • the signal determines a main beam and a multiplexed antenna beam of the receiving end;
  • the RANK and the PMI are directed to a fourth constraint codebook matrix, and the fourth constraint codebook matrix is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam;
  • the obtaining module 903 is specifically configured to:
  • the feedback message sending module 904 is specifically configured to: Acquiring a downlink CQI of an equivalent channel of the main beam according to a downlink channel quality of an equivalent channel of the main beam, and acquiring the multiplexed antenna beam according to a downlink channel quality of an equivalent channel of the multiplexed antenna beam Downlink CQI of the equivalent channel;
  • the channel quality feedback message fed back by the feedback message sending module 904 to the sending end includes a downlink CQI of an equivalent channel of the main beam and the multiplexed antenna beam, so that the sending end is according to the main And determining, by the beam and the downlink CQI of the equivalent channel of the multiplexed antenna beam, whether to use the main beam and the multiplexed antenna beam to serve the receiving end.
  • FIG. 11 is a schematic structural diagram of a receiving end according to another embodiment of the present invention.
  • the transmitting end 1100 may include: at least one processor 1101, such as a CPU, at least one communication bus 1102.
  • the wireless signal transceiver 1103 includes a physical antenna for receiving a wireless signal transmitted by the base station (ie, the transmitting end) and transmitting a wireless signal to the base station; the communication bus 1103 is configured to implement connection communication between the components.
  • the memory 1104 may be a high speed RAM memory or a non-volatile memory such as at least one disk memory.
  • a set of program codes is stored in the memory 1104, and the processor 1101 is configured to call the program code stored in the memory 1104 for performing the following operations:
  • the pilot signal is obtained by weighting the precoding weighting matrix
  • the RANK and the PMI are directed to a first constraint codebook matrix, and the first constraint codebook matrix is configured to obtain downlink channel quality of an equivalent channel after spatial multiplexing of at least two auxiliary beam antennas. ;
  • the processor 1101 may obtain, according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal, a downlink channel quality of an equivalent channel of the specified antenna, which may be:
  • the processor 1101 may feed back the channel quality feedback message to the sending end according to the downlink channel quality of the equivalent channel of the specified antenna.
  • the channel quality feedback message fed back to the transmitting end includes a downlink CQI of an equivalent channel of the at least two auxiliary beam antennas, so that the transmitting end is based on an equivalent channel of the at least two auxiliary beam antennas
  • the downlink CQI determines whether to use the auxiliary beam antenna of the at least two auxiliary beam antennas to serve the receiving end.
  • the first codebook subset constraint instruction carries at least two PMIs, and the RANK and each of the at least two PMIs respectively point to at least two second constraint codes, and the like.
  • the processor 1101 may obtain, according to the mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal, a downlink channel quality of an equivalent channel of the specified antenna, which may be:
  • the feedback channel quality feedback message may specifically be:
  • the channel quality feedback message fed back to the transmitting end includes a PMI of the target auxiliary beam antenna, so that the transmitting end serves the receiving end using the target auxiliary beam antenna according to the PMI decision.
  • a second codebook subset constraint instruction where the RANK and the PMI carried by the second codebook subset constraint instruction are directed to a third constraint codebook matrix, where the third constraint codebook matrix is used for acquiring Downlink channel quality of an equivalent channel spatially multiplexed by at least two macro station antennas;
  • the sending end feeding back, by the sending end, a channel quality feedback message, where the channel quality feedback message includes a downlink CQI of an equivalent channel of the at least two macro station antennas, so that the sending end is configured according to the at least two macro station antennas
  • the downlink CQI of the equivalent channel determines whether to use the macro station antenna of the at least two macro station antennas to serve the receiving end.
  • processor 1101 receives the first codebook subset constraint instruction sent by the sending end, the following operations may also be performed:
  • the processor 1101 receives the first codebook sent by the sending end. Before you set the constraint instructions, you also do the following:
  • the RANK and the PMI are directed to a fourth constraint codebook matrix, and the fourth constraint codebook matrix is configured to obtain a downlink channel quality of an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam;
  • the processor 1101 may feed back the channel quality feedback message to the sending end according to the downlink channel quality of the equivalent channel of the specified antenna.
  • the processor 1101 may feed back the channel quality feedback message to the sending end according to the downlink channel quality of the equivalent channel of the specified antenna.
  • the channel quality feedback message fed back to the transmitting end includes a downlink CQI of an equivalent channel of the main beam and the multiplexed antenna beam, so that the transmitting end according to the main beam and the multiplexing A downlink CQI of an equivalent channel of the antenna beam determines whether the primary beam and the multiplexed antenna beam are used to serve the receiving end.
  • FIG. 12 is a schematic flowchart of a downlink channel quality measurement method according to an embodiment of the present invention.
  • the transmitting end provided by the embodiment of the present invention includes an indoor base station or an outdoor base station.
  • the downlink channel quality measurement process in this embodiment, as shown in FIG. 12, may include:
  • Step S1201 The transmitting end transmits at least two hybrids to the receiving end by using at least two physical antennas respectively. a pilot signal, the at least two mixed pilot signals
  • the frequency signal is obtained by weighting the precoding weight matrix.
  • the mixed pilot signal after the weighting of the preset pilot signals by the precoding weight matrix may be as shown in the matrix (3). If the correspondence between the physical antenna and the logic antenna is: beamO corresponds to Port 15, The beam 1 corresponds to Port 15, the macro0 corresponds to Portl7, and the macro 1 corresponds to Portl8.
  • the mixed pilot signals corresponding to the physical antennas are: beamO corresponds to the first column of mixed pilot signals, and beam1 corresponds to the second column of mixed pilot signals.
  • the macro0 corresponds to the third column of mixed pilot signals, and the macrol corresponds to the fourth column of mixed pilot signals.
  • the transmitting end may generate a mixed pilot signal in advance, and then, the transmitting end may preset the preset period number; the transmitting end may also generate the mixed pilot signals every preset period, and then respectively transmit by each physical antenna.
  • the mixed pilot signals corresponding to the respective physical antennas.
  • the transmitting end and the receiving end may store the preset pilot signal in advance, and the preset pilot signal stored by the receiving end may be sent by the sending end to the receiving end.
  • Step S1202 The sending end sends a first codebook subset constraint instruction to the receiving end, where the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI, so that the receiving end is configured according to The mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal acquire downlink channel quality of an equivalent channel of a specified antenna.
  • the transmitting end and the receiving end may configure a plurality of constrained codebook matrices in advance, and the receiving end may obtain an equivalent channel of the specified antenna according to the constrained codebook matrix, and the constrained codebook matrix is determined by RANK and PMI, wherein RANK represents an independent virtual channel.
  • the number for example, an antenna system with 4 transmissions and 2 receptions, the number of layers of the antenna may be 1 or 2 in different channel environments, and the maximum does not exceed the minimum number of antennas at both ends of the receiving and transmitting, that is, RANK
  • the maximum value is 2.
  • the sending end may send the first codebook subset constraint instruction to the receiving end, where the first codebook subset constraint instruction carries the RANK and the at least one PMI, so that the receiving end acquires according to the RANK and the PMI.
  • a constrained codebook matrix corresponding to the PMI and acquiring an equivalent channel of the specified antenna according to the constraint codebook matrix and the at least two mixed pilot signals, and acquiring a de-pilot sequence according to the preset pilot signal
  • the receiving end removes the preset pilot signal of the equivalent channel of the specified antenna according to the de-pilot sequence, so as to obtain the downlink channel quality of the equivalent channel of the specified antenna.
  • the code weighting matrix is weighted and mapped onto the physical antenna, and then transmitted through the at least two physical antennas.
  • the equivalent signal receiving model of the receiving end can be expressed as:
  • H is the equivalent channel from the sender to the receiver
  • the superscript of h is the receiving antenna of the receiving end
  • the subscript is the transmitting antenna of the transmitting end
  • is the precoding weighting matrix
  • is the preset corresponding to each logical antenna of the transmitting end. Pilot signal.
  • the receiving end can obtain the equivalent channel of the specified antenna by using the specified constraint codebook matrix. If the RANK and the PMI carried by the first codebook subset constraint instruction point to the first constraint codebook matrix, as shown in the matrix (4), the equivalent channel obtained by the receiving end is:
  • the receiving end may obtain the equivalent channel spatially multiplexed by the auxiliary beam antennas beamO and beaml according to the first constraint codebook matrix. If the first codebook subset constraint instruction carries two PMIs, the RANK and one of the PMIs point to one of the second constraint codebook matrices, as shown by the matrix (5), the RANK and another
  • the PMI points to another second constraint codebook matrix: as shown in matrix (6), the equivalent channel expressions obtained by the receivers are:
  • the receiving end can obtain the equivalent channel of the auxiliary beam antenna beamO according to the matrix (5), and can obtain the equivalent channel of the auxiliary beam antenna beam1 according to the matrix (6).
  • Step S1203 The transmitting end receives a channel quality feedback message that is received by the receiving end according to the downlink channel quality of the equivalent channel of the specified antenna.
  • the channel quality feedback message may include a downlink CQI (channel quality indication) of an equivalent channel spatially multiplexed by at least two auxiliary beam antennas.
  • the receiving end may acquire downlink CQIs of the equivalent channels of the at least two auxiliary beam antennas according to the downlink channel quality of the equivalent channel spatially multiplexed by the at least two auxiliary beam antennas, and then the at least two The downlink CQI of the equivalent channel of the auxiliary beam antenna is fed back to the transmitting end through the channel quality feedback message.
  • the channel quality feedback message may further include a PMI of the target auxiliary beam antenna.
  • the receiving end may acquire, according to the downlink channel quality of the equivalent channel of the at least two auxiliary beam antennas, the downlink CQI of the equivalent channel of the at least two auxiliary beam antennas, and then the auxiliary beam antenna corresponding to the maximum downlink CQI.
  • the target auxiliary beam antenna is determined, and the PMI corresponding to the target auxiliary beam antenna is fed back to the transmitting end by using the channel quality feedback message.
  • the channel quality feedback message may further include a downlink CQI of an equivalent channel spatially multiplexed by at least two macro station antennas.
  • the receiving end may obtain the downlink of the equivalent channel of the at least two macro station antennas according to the equivalent channel downlink channel quality after spatial multiplexing of the at least two macro station antennas.
  • the CQI further feeds back the downlink CQI of the equivalent channel of the at least two macro station antennas to the transmitting end by using the channel quality feedback message.
  • the channel quality feedback message may include a downlink CQI of an equivalent channel of the main beam and a downlink CQI of an equivalent channel of the multiplexed antenna beam.
  • the transmitting end may transmit at least two mixed pilot signals and a codebook subset constraint instruction to the receiving end by using at least two physical antennas, and the at least two mixed pilot signal code weighting matrix weights are used. Obtaining, so that the receiving end acquires the downlink channel quality of the equivalent channel of the specified antenna according to the received mixed pilot signal, the codebook subset constraint instruction, and the preset pilot signal, and feeds back to the transmitting end, so that the transmitting end can accurately Get the downlink channel quality of the equivalent channel of the specified antenna.
  • FIG. 13 is a schematic flow chart of a beam selection method according to an embodiment of the present invention.
  • the beam selection method provided by the embodiment of the present invention is described by the receiving end and the transmitting end, where the sending end is an outdoor base station, and the receiving end may include a terminal such as a mobile phone, a PAD or a notebook computer.
  • the beam selection process provided in this embodiment may include:
  • Step S1301 The transmitting end transmits at least two hybrids to the receiving end by using at least two physical antennas respectively.
  • the frequency signal is obtained by weighting the precoding weight matrix.
  • Step S1302 The sending end sends a first codebook subset constraint instruction to the receiving end, where the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI, so that the receiving end is configured according to The mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal acquire downlink channel quality of an equivalent channel of a specified antenna.
  • the sending end may separately receive the sounding reference signal of the receiving end by using the at least two physical antennas, according to the second preset
  • the sounding reference signal received in the time period acquires the received power of the at least two physical antennas respectively, and determines that the receiving end satisfies the initial condition of using the auxiliary beam antenna.
  • the receiving end may periodically send the sounding reference signal, and each of the at least two physical antennas of the transmitting end may receive the sounding reference signal of the receiving end, and the transmitting end may receive the sounding reference of each physical antenna last time.
  • the signal strength of the signal is used as the received power of the respective physical antennas for the receiving end; the receiving end may also statistically average the signal strengths of the sounding reference signals received by the respective physical antennas in the second preset time period, The statistical average result is used as the received power of the respective physical antennas for the receiving end; if the transmitting end determines that the receiving end satisfies the initial condition of using the auxiliary beam antenna according to the received power, the transmitting end sends the receiving end to the receiving end The first codebook subset constraint instruction is used. Otherwise, the transmitting end determines to use the macro station antenna to serve the receiving end, which improves beam selection efficiency. Less than two mixed pilot signals.
  • the receiving end detects the common pilot channel in real time, and if the mixed pilot signal is detected, the receiving end receives the mixed pilot signal.
  • step S1303 and the step S1302 may be not limited, that is, the step S1303 may be performed before the step S1302, and the step S1403 and the step S1402 may be simultaneously performed, which is not limited by the present invention.
  • Step S1304 The receiving end receives the first codebook subset constraint instruction, and acquires the first constraint codebook matrix according to the RANK and the PMI.
  • the receiving end and the transmitting end may store the correspondence between the RANK and the PMI and the constraint codebook matrix in advance.
  • the receiving end may acquire the RANK in the corresponding relationship.
  • the first constraint codebook matrix pointed to by the PMI if the precoding weight matrix is as shown in the matrix (2), the first constraint codebook matrix may be as shown in the matrix (4), wherein the RANK and the sender and the receiver are The correspondence between the PMI and the constraint codebook matrix should be the same.
  • Step S1305 The receiving end acquires an equivalent channel spatially multiplexed by the at least two auxiliary beam antennas according to the mixed pilot signal and the first constraint codebook matrix.
  • Step S1306 The receiving end acquires downlink channel quality of an equivalent channel of the at least two auxiliary beam antennas according to an equivalent channel of the at least two auxiliary beam antennas.
  • the corresponding preset pilot signal acquires a corresponding de-pilot sequence, and the receiving end may remove the mixed pilot signal in the obtained equivalent channel according to the de-pilot sequence, thereby obtaining an equivalent channel of each auxiliary beam antenna.
  • Downstream channel quality The receiving end acquires downlink channel quality of an equivalent channel of the at least two auxiliary beam antennas according to an equivalent channel of the at least two auxiliary beam antennas.
  • the corresponding preset pilot signal acquires a corresponding de-pilot sequence, and the receiving end may remove the mixed pilot signal in the obtained equivalent channel according to the de-pilot sequence, thereby obtaining an equivalent channel of each auxiliary beam antenna.
  • Step S1307 The receiving end acquires downlink CQIs of the equivalent channels of the at least two auxiliary beam antennas according to the downlink channel quality of the equivalent channels of the at least two auxiliary beam antennas, and passes the downlink CQIs through the channels. A quality feedback message is sent to the sender.
  • the receiving end may obtain the signal to interference and noise ratio of the equivalent channel of each auxiliary beam antenna according to the downlink channel quality of the equivalent channel of each of the auxiliary beam antennas, and obtain the auxiliary beam antennas according to the Shannon formula.
  • the downlink CQI of the effect channel the receiving end sends the downlink CQI of the equivalent channel of each auxiliary beam antenna to the transmitting end by using the channel quality feedback message.
  • Step S1308 The transmitting end determines, according to the downlink CQI in the channel quality feedback message, whether to use any one of the at least two auxiliary beam antennas to serve the receiving end.
  • the receiving end serves.
  • the downlink CQI of the equivalent channel of each auxiliary beam antenna is greater than the first pre-antenna serving the receiving end.
  • the transmitting end may determine, according to the downlink CQI of the equivalent channel of the auxiliary beam antenna, that the target auxiliary beam antenna is the Receiver service.
  • the target auxiliary beam antenna may be an auxiliary beam antenna corresponding to a maximum downlink CQI, or may be any auxiliary beam antenna.
  • the transmitting end when the transmitting end needs to obtain the downlink CQI of the equivalent channel spatially multiplexed by each auxiliary beam antenna, the transmitting end may send the first codebook subset constraint instruction of the carried PMI and RANK to the receiving end, The PMI and the RANK are directed to the first constraint codebook matrix, and the receiving end may obtain the equivalent channel of each auxiliary beam antenna according to the received mixed pilot signal, the first constraint codebook matrix, and the preset pilot signal.
  • FIG. 14 is a schematic flowchart of another beam selection method according to an embodiment of the present invention.
  • the beam selection method provided by the embodiment of the present invention is described by the receiving end and the transmitting end, and the transmitting end is an outdoor base station, and the receiving end may include a terminal such as a mobile phone, a PAD, or a notebook computer.
  • the beam selection process provided in this embodiment may include:
  • Step S1401 The transmitting end separately receives the detection reference signal of the receiving end by using the at least two physical antennas.
  • Step S1402 The sending end obtains, according to the sounding reference signal received in the second preset time period, the received power of the at least two physical antennas for the receiving end.
  • the receiving end may periodically send the sounding reference signal, and the transmitting end may use the signal strength of the sounding reference signal received by each of the at least two physical antennas as the received power of the respective physical antennas for the receiving end;
  • the receiving end can also place each physical antenna in the second
  • the signal strength of the sounding reference signals received in the preset time period is statistically averaged, and the statistical average result is used as the received power of the respective physical antennas for the receiving end.
  • Receiving power determining that the receiving end satisfies the initial condition of using the auxiliary beam antenna.
  • the transmitting end determines that the receiving end satisfies the use of the auxiliary beam antenna.
  • step S1404 in the initial condition that the receiving end determines that the receiving end meets the use of the auxiliary beam antenna, step S1404 is performed. In other optional embodiments, the sending end may directly perform step S1404.
  • Step S1404 The transmitting end transmits at least two hybrids to the receiving end by using at least two physical antennas respectively.
  • the frequency signal is obtained by weighting the precoding weight matrix.
  • Step S1405 The sending end sends a first codebook subset constraint instruction to the receiving end, where the first codebook subset constraint instruction carries a rank indication RANK and at least one precoding matrix index PMI, so that the receiving end is configured according to The mixed pilot signal, the first codebook subset constraint instruction, and the preset pilot signal acquire downlink channel quality of an equivalent channel of a specified antenna.
  • Step S1406 The receiving end receives the at least two mixed pilot signals transmitted by the at least two physical antennas.
  • the receiving end detects the common pilot channel in real time, and if the mixed pilot signal is detected, the receiving end receives the mixed pilot signal.
  • Step S1407 The receiving end receives the first codebook subset constraint instruction, and acquires at least two second constraint codebook matrices corresponding to the respective PMIs according to the RANK and the respective PMIs.
  • the first codebook subset constraint instruction takes an example of carrying two PMIs, and the receiving end and the transmitting end may store a correspondence between the RANK and the PMI and the constraint codebook matrix in advance, when the receiving end receives the first
  • the receiving end acquires one of the second constraint codebook matrices according to the RANK and one of the PMIs, and obtains another second constraint codebook matrix according to the RAN and another PMI, if the precoding weighting matrix is a matrix (2)
  • the two second constrained codebook matrices may be as shown in the matrix (5) and the matrix (6), wherein the correspondence between the RANK and the PMI and the constrained codebook matrix in the transmitting end and the receiving end It should be the same.
  • Step S1408 The receiving end acquires an equivalent channel of each of the auxiliary beam antennas according to the received mixed pilot signal and the at least two second constraint codebook matrices.
  • the equivalent channel obtained by the receiving end is:
  • the receiving end can respectively obtain the equivalent channels of the auxiliary beam antenna beamO and the auxiliary beam antenna beaml according to the two second constraint codebook matrices.
  • Step S1409 The receiving end obtains downlink channel quality of an equivalent channel of each auxiliary beam antenna according to an equivalent channel of the at least two auxiliary beam antennas.
  • the receiving end may obtain a corresponding de-pilot sequence according to the preset pilot signal corresponding to the auxiliary beam antenna beamO, and the receiving end may remove the mixed pilot signal in the equivalent channel of the beamO according to the de-pilot sequence, thereby obtaining assistance.
  • the pilot signal is mixed to obtain the downlink channel quality of the equivalent channel of the auxiliary beam antenna beaml.
  • Step S1410 The receiving end acquires downlink CQIs of the equivalent channels of the at least two auxiliary beam antennas according to downlink channel qualities of the equivalent channels of the at least two auxiliary beam antennas.
  • the receiving end may obtain the signal to interference and noise ratio of the equivalent channel of each auxiliary beam antenna according to the downlink channel quality of the equivalent channel of each of the auxiliary beam antennas, and obtain the auxiliary beam antennas according to the Shannon formula.
  • the downlink CQI of the effect channel And beaming the PMI corresponding to the target auxiliary beam antenna to the transmitting end by using a channel quality feedback message.
  • Step S1412 The transmitting end identifies the target auxiliary beam antenna according to the PMI, and determines to use the target auxiliary beam antenna to serve the receiving end.
  • the sending end may send, to the receiving end, a first codebook subset constraint instruction that carries at least two PMIs, where the at least two PMIs and the RANK respectively point to at least two second constraint codebook matrices,
  • the receiving end may obtain the downlink of the equivalent channel of each auxiliary beam antenna according to the received mixed pilot signal, at least two second constraint codebook matrices, and each preset pilot signal.
  • FIG. 15 is a flowchart diagram of a mobility management method according to an embodiment of the present invention. Intention.
  • the mobility management method provided by the embodiment of the present invention is to describe the line from the receiving end and the sending end. That is, the embodiment of the present invention may further execute the flow on the basis of the flow shown in FIG. 13 or FIG. 14 .
  • the sending end is an outdoor base station, and the receiving end may include a terminal such as a mobile phone, a PAD or a notebook computer.
  • the mobility management process provided in this embodiment may include:
  • Step S1501 The transmitting end records the downlink CQI of the equivalent channel of the target auxiliary antenna in the first preset time period.
  • the target auxiliary beam antenna is an auxiliary beam antenna currently serving the receiving end.
  • the transmitting end uses the target auxiliary beam antenna to serve the receiving end, and records the first The downlink CQI of the equivalent channel of the target auxiliary beam antenna within a preset time period.
  • Step S1502 The transmitting end transmits at least two hybrids to the receiving end through at least two physical antennas respectively.
  • the frequency signal is obtained by weighting the precoding weight matrix.
  • Step S1503 The sending end sends a second codebook subset constraint instruction to the receiving end, where the RANK and PMI carried by the second codebook subset constraint instruction point to a third constraint codebook matrix, and the third constraint codebook The matrix is used to obtain the downlink channel quality of the equivalent channel spatially multiplexed by at least two macro station antennas, after the transmitting end determines that the target auxiliary beam antenna is used as the receiving end, and the service duration of the target auxiliary beam antenna reaches the first preset During the time period, when the transmitting end transmits at least two mixed pilot signals to the receiving end through the at least two physical antennas respectively, the transmitting end sends the second codebook subset constraint instruction to the receiving end. Pilot signal.
  • the receiving end detects the common pilot channel in real time, and if the mixed pilot signal is detected, the receiving end receives the mixed pilot signal.
  • Step S1505 the receiving end receives the second codebook subset constraint instruction, and according to the RANK And the PMI acquires the third constraint codebook matrix.
  • the receiving end and the transmitting end may store the correspondence between the RANK and the PMI and the constraint codebook matrix in advance.
  • the receiving end may acquire the RANK in the corresponding relationship.
  • the third constraint codebook matrix pointed to by the PMI if the precoding weight matrix is as shown in the matrix (2), the third constraint codebook matrix may be as shown in the matrix (7), wherein the RANK and the sender and the receiver are The correspondence between the PMI and the constraint codebook matrix should be the same.
  • Step S1507 The receiving end acquires downlink channel quality of an equivalent channel of each macro station antenna according to an equivalent channel of each macro station antenna of the at least two macro station antennas.
  • the receiving end may obtain a corresponding de-pilot sequence according to the preset pilot signal corresponding to each macro station antenna, and the receiving end may remove the mixed pilot signal in the obtained equivalent channel according to the de-pilot sequence, thereby obtaining The downlink channel quality of the equivalent channel of each macro station antenna.
  • Step S1508 The receiving end acquires the downlink CQI of the equivalent channel of the macro station antenna according to the downlink channel quality of the equivalent channel of each macro station antenna, and sends the downlink CQI to the station by using the channel quality feedback message. Said sender.
  • the receiving end may acquire the signal to interference and noise ratio of the equivalent channel of each macro station antenna according to the downlink channel quality of the equivalent channel of each of the macro station antennas, and obtain the macro station antennas according to the Shannon formula.
  • the downlink CQI of the effect channel the receiving end sends the downlink CQI of the equivalent channel of each macro station antenna to the transmitting end by using the channel quality feedback message.
  • Step S1509 The transmitting end acquires the downlink spectral efficiency of the equivalent channel of each macro station antenna according to the downlink CQI of the equivalent channel of each macro station antenna, and according to the target auxiliary recorded in the first preset time period.
  • the downlink CQI of the equivalent channel of the beam antenna calculates the downlink spectral efficiency of the equivalent channel of the auxiliary beam antenna.
  • the downlink spectrum efficiency is a symbol transmission efficiency in a unit frequency band
  • the first preset time record may be an average value of the most recently recorded or most recent records.
  • Step S1510 The transmitting end determines, according to the downlink spectral efficiency of the equivalent channel of each macro station antenna and the downlink efficiency of the equivalent channel of the target auxiliary beam antenna, whether to use any one of the at least two macro station antennas.
  • the macro station antenna serves the receiving end.
  • the transmitting end determines to use any one of the at least two macro station antennas.
  • the antenna serves the receiving end, otherwise, the transmitting end continues to use the target auxiliary beam antenna to serve the receiving end.
  • the transmitting end determines to use the at least Any macro station antenna of the two macro station antennas serves the receiving end, otherwise the transmitting end continues to serve the receiving end using the target auxiliary beam antenna.
  • the transmitting end determines to continue to use the target auxiliary beam antenna to serve the receiving end, the transmitting end needs to set the RANK and the PMI back to the state before the change, even if the RANK and the PMI point are used to obtain at least two auxiliary beam antennas.
  • the transmitting end may send the second codebook subset constraint instruction to the receiving end, and the PMI and RANK pointing in the second codebook subset constraint instruction.
  • the third constraint codebook matrix, the receiving end may obtain the downlink of the equivalent channel of each macro station antenna according to the received mixed pilot signal, the third constraint codebook matrix, and the preset pilot signals corresponding to the respective macro station antennas.
  • the CQI, the transmitting end may determine, according to the downlink CQI of the equivalent channel of each of the macro station antennas and the downlink CQI of the equivalent channel of the auxiliary beam antenna recorded in the first preset time period, whether to use at least two macro station antennas Any macro station antenna serves the receiving end, and the transmitting end can adaptively switch the antenna for the moving receiving end, thereby enhancing the user experience.
  • FIG. 16 is a schematic flowchart diagram of another mobility management method according to an embodiment of the present invention.
  • the mobility management method provided by the embodiment of the present invention is described from the receiving end and the sending end.
  • the sending end is an outdoor base station, and the receiving end may include a terminal such as a mobile phone, a PAD or a notebook computer.
  • the mobility management process provided in this embodiment may include:
  • Step S1601 The sending end acquires the first precoding weighting matrix in the preset two precoding weighting matrices according to the preset period.
  • the transmitting end may preset two precoding weighting matrices, where the first precoding weight matrix and the downlink channel quality are measured, and the second precoding weight matrix and the second constraint code matrix may implement at least two macro station antenna spaces.
  • the downlink channel quality of the multiplexed equivalent channel is measured.
  • a first pre-coding matrix as the weighting matrix ⁇ ⁇ (8), a first codebook constraint matrix A matrix W 8 (9), the first The second precoding weight matrix F M is as shown in the matrix (10), and the second constrained code matrix W2 is as a matrix (11)
  • the code weighting matrix and the first constraint codebook matrix can measure the downlink channel quality of the equivalent channel after spatial multiplexing of the auxiliary beam antenna;
  • the coding weight matrix and the second constraint code matrix can measure the downlink channel quality after spatial multiplexing of the macro station antenna
  • only the specific precoding weight matrix and the constrained codebook matrix can be used by the receiving end to measure the equivalent channel of the specified antenna.
  • the preset period may be a transmission period of the CSI-RS, for example, 5 ms, the sender may first acquire the first precoding weight matrix, and then acquire the second precoding weight matrix according to the preset period;
  • the second precoding weighting matrix is obtained by the second precoding weighting matrix, which is not limited by the present invention.
  • Step S1602 The transmitting end weights the preset pilot signals corresponding to the at least two logical antennas by using the first precoding weighting matrix, so as to obtain at least two mixed pilot signals.
  • the transmitting end weights the preset pilot signal corresponding to the logical antenna according to the obtained first precoding weight matrix to obtain a plurality of mixed pilot signals, where the preset pilot signal includes a CSI-RS.
  • the at least two mixed pilot signals are respectively mapped to the at least two physical antennas, and the at least two mixed pilot signals are transmitted to the receiving end by the at least two physical antennas.
  • the transmitting end needs to acquire a corresponding precoding weighting matrix every predetermined period to pre-weight the preset pilot signal, and then map to each physical antenna.
  • the transmitting end may acquire at least two mixed pilot signals in advance, and directly acquire the at least two mixed pilot signals every preset period, that is, the transmitting end does not need to be in each pre- The preset pilot signals are weighted in the set period.
  • Step S1604 The sending end sends a first codebook subset constraint instruction to the receiving end, where the RANK and PMI carried by the first codebook subset constraint instruction point to the first constraint codebook matrix.
  • Step S1605 The receiving end receives the at least two mixed pilot signals transmitted by the at least two physical antennas.
  • Step S1606 The receiving end receives the first codebook subset constraint instruction, and acquires the first constraint codebook matrix according to the RANK and the PMI.
  • Step S1607 The receiving end acquires an equivalent channel spatially multiplexed by at least two auxiliary beam antennas according to the mixed pilot signal and the first constraint codebook matrix.
  • Step S1608 The receiving end acquires downlink channel quality of an equivalent channel of the at least two auxiliary beam antennas according to the equivalent channel.
  • Step S1609 The receiving end acquires downlink CQIs of the equivalent channels of the at least two auxiliary beam antennas according to the downlink channel quality of the equivalent channels of the at least two auxiliary beam antennas, and passes the downlink CQIs through channel quality feedback. A message is sent to the sender.
  • Step S1610 The transmitting end acquires downlink CQIs of the equivalent channels of the at least two auxiliary beam antennas according to the channel quality feedback message. Obtaining a second precoding weighting matrix.
  • Step S1612 The transmitting end weights the preset pilot signals corresponding to the at least two logical antennas by using the second precoding weight matrix to obtain at least two mixed pilot signals.
  • the at least two mixed pilot signals are respectively mapped to the at least two physical antennas, and the at least two mixed pilot signals are transmitted to the receiving end by the at least two physical antennas.
  • Step S1614 The sender sends a second codebook subset constraint instruction to the receiver, where the RANK and the PMI carried by the second codebook subset constraint instruction point to the second constraint codebook matrix.
  • Step S1615 The receiving end receives the at least two mixed pilot signals transmitted by the at least two physical antennas.
  • Step S1616 The receiving end receives the second codebook subset constraint instruction, and acquires the second constraint codebook matrix according to the RANK and the PMI.
  • Step S1617 The receiving end acquires an equivalent channel spatially multiplexed by at least two macro station antennas according to the mixed pilot signal and the second constraint codebook matrix.
  • Step S1618 The receiving end acquires downlink channel quality of an equivalent channel of the at least two macro station antennas according to the equivalent channel.
  • Step S1619 The receiving end acquires downlink CQIs of the equivalent channels of the at least two macro station antennas according to the downlink channel quality of the equivalent channels of the at least two macro station antennas, and passes the downlink CQIs through channel quality feedback. A message is sent to the sender.
  • Step S1620 The transmitting end determines, according to the downlink CQI of the equivalent channel of the at least two macro station antennas and the downlink CQI of the equivalent channel of the at least two auxiliary beam antennas, whether to use the at least two macro station antennas. Any macro station antenna serves the receiving end.
  • the transmitting end may obtain the downlink spectral efficiency of the equivalent channel of the at least two macro station antennas according to the downlink CQI of the equivalent channel of each of the at least two macro station antennas, according to the downlink of the equivalent channel of the at least two auxiliary beam antennas.
  • CQI obtaining downlink spectral efficiency downlink spectral efficiency of the equivalent channel of at least two auxiliary beam antennas satisfies any of the following cases, and the transmitting end determines to use any macro station antenna of the macro station antenna to serve the receiving end:
  • the downlink spectral efficiency of the equivalent channel of all auxiliary beam antennas is less than the preset proportional threshold of the downlink frequency efficiency of the equal channel of all macro station antennas;
  • the downlink spectrum efficiency of the equivalent channel of all the auxiliary beam antennas is smaller than the preset proportional threshold of the downlink spectrum efficiency of the equivalent channel of any one of the macro station antennas;
  • the downlink spectrum efficiency of the equivalent channel of any one of the auxiliary beam antennas is smaller than the preset proportional threshold of the downlink frequency efficiency of the equal channel of all the macro station antennas;
  • the downlink spectrum efficiency of the equivalent channel of any one of the auxiliary beam antennas is less than the preset proportional threshold of the downlink spectrum efficiency of the equivalent channel of any one of the macro station antennas.
  • step S1621 the transmitting end and the receiving end repeatedly perform steps S1601 to S1620.
  • the preset period is 5ms. That is, the sender can first obtain the first precoding weight matrix at T+Oms, and obtain the second precoding weight matrix at T+5ms. A precoding weighting matrix, which acquires a second precoding weighting matrix at T+15 ms, and so on.
  • the codebook subset constraint command sent by the sending end in the adjacent preset period is different.
  • the codebook sent by the sending end in each preset period is Set
  • the constraint instructions may be the same, that is, the codebook subset constraint instruction carries the RANK and at least two PMIs, the RANK and one of the PMIs point to the first constraint codebook matrix, and the RANK and the other PMI point to the second constraint codebook matrix.
  • the transmitting end uses the auxiliary beam antenna to serve the receiving end, if the downlink channel quality of the equivalent channel in the macro station antenna state is to be measured, the RANK and the PMI need to be reset to reset.
  • the latter RANK and PMI point to the constrained codebook matrix used to obtain the equivalent channel spatially multiplexed by the macro station antenna, and if the transmitting end determines that the auxiliary beam antenna is still used for the receiving end, the transmitting end needs to reset the RANK.
  • the PMI, and when the RANK and the PMI are reset, the signal may be interrupted.
  • each precoding weight matrix is configured with a corresponding RANK and PMI, and the transmitting end only needs to periodically Changing the precoding weight matrix can measure the channel information in different states without re-setting the RANK and PMI, simplifying the operation and improving the quality of service of the base station.
  • FIG. 17 is a schematic flow chart of a beam selection method according to an embodiment of the present invention.
  • the beam selection method provided by the embodiment of the present invention is described by the receiving end and the transmitting end, where the sending end is an indoor base station, and the receiving end may include a terminal such as a mobile phone, a PAD or a notebook computer.
  • the beam selection process provided in this embodiment may include:
  • Step S1701 The transmitting end respectively receives the sounding reference signals of the receiving end through the at least two physical antennas, and acquires, according to the sounding reference signals received in the second preset time period, the at least two physical antennas respectively for the receiving end. Receive power.
  • each room is equipped with one transmitting antenna. More complicated situations can be deduced by analogy.
  • the transmitting antenna typically emits the main lobe from the ceiling to the ground user with a few additional lobes in the other direction.
  • the main interference may come from the antenna signal of the room on the previous floor passing through the ceiling and reaching the user equipment on the floor.
  • the antenna signal on the next floor is refracted by the ground and then penetrates the ceiling to reach the floor.
  • the antenna signal adjacent to the room will also cause interference to the user equipment in the target room.
  • the above lower floor is used as an example to show interference production. Raw diagram.
  • the receiving end may periodically send the sounding reference signal, and each physical antenna of the transmitting end may receive the sounding reference signal of the receiving end, and the transmitting end may use the signal strength of the sounding reference signal received by each physical antenna as the physical antenna.
  • the receiving end can be used for the receiving power of the receiving end, and the receiving end can also statistically average the signal strengths of the sounding reference signals received by the physical antennas in the first preset time period, and the statistical average results are respectively used as the physical antennas.
  • the received power of the receiving end Receiving power, determining the main beam and the multiplexed antenna beam of the receiving end.
  • the transmitting end may obtain the received power of the P0, P1, P2, and P3 for the UE2 according to the sounding reference signals sent by the UE2 received by the P0, the P1, the P2, and the P3 respectively, where the transmitting end may utilize the path loss reciprocity to receive the power.
  • the largest antenna is determined to be the main beam, and the second strongest received power is the strongest signal interference. Assuming that the received power received by P0 for UE2 is the second strongest, the transmitting end may determine P0 as the multiplexed antenna beam of the main beam.
  • Step S1703 Transmit at least two mixed pilots to the receiving end by using at least two physical antennas
  • Step S1704 the sending end sends a first codebook subset constraint instruction to the receiving end, where the RANK and PMI carried by the first codebook subset constraint instruction point to a fourth constraint codebook matrix, and the fourth constraint
  • the codebook matrix is used to obtain the downlink channel quality of the equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam.
  • the fourth constraint codebook matrix should be as shown in matrix (4). That is, the fourth constraint codebook matrix may be the first constraint codebook matrix.
  • Step S1705 The receiving end receives the at least two mixed pilot signals transmitted by the at least two physical antennas.
  • Step S1706 The receiving end receives the first codebook subset constraint instruction, and acquires a fourth constraint codebook matrix according to the RANK and the PMI.
  • Step S1707 The receiving end acquires an equivalent channel spatially multiplexed between the main beam and the multiplexed antenna beam according to the mixed pilot signal and the fourth constraint codebook matrix.
  • Step S1708 The receiving end acquires downlink channel quality of the main beam and the multiplexed antenna beam equivalent channel according to the spatially multiplexed equal channel of the main beam and the multiplexed antenna beam.
  • Step S1709 The receiving end acquires a downlink CQI of an equivalent channel of the main beam according to a downlink channel quality of an equivalent channel of the main beam, and acquires the downlink channel quality according to an equivalent channel of the multiplexed antenna beam.
  • the downlink CQI of the equivalent channel of the antenna beam is multiplexed, and the obtained downlink CQI is sent to the sending end by using the channel quality feedback message.
  • Step S1710 The transmitting end determines, according to the downlink CQI of the main beam and the equivalent channel of the multiplexed antenna beam, whether to use the main beam and the multiplexed antenna beam to serve the receiving end.
  • the transmitting end determines to use the main beam and the multiplexed antenna beam as the receiving end. service.
  • the transmitting end determines that the primary beam and the multiplexed antenna beam are used as the receiving end Business.
  • the transmitting end may determine the multiplexed antenna beam of the main beam according to the sounding reference signal sent by the receiving end, and then, by using the downlink channel quality measuring method of the first embodiment, the transmitting end may accurately acquire the main beam and the complex beam.
  • the downlink CQI of the equivalent channel of the antenna beam is used, so that the transmitting end can accurately determine whether the main beam and the multiplexed antenna beam are selected to jointly serve the receiving end.
  • FIG. 19 is a schematic structural diagram of a downlink channel quality measurement system according to an embodiment of the present invention.
  • the downlink channel quality measurement system provided by the embodiment of the present invention includes a transmitting end and at least one receiving end, and the transmitting end and the receiving end are referred to the corresponding embodiments in FIG. 1 to FIG. 11 , and details are not described herein again.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种下行信道质量测量方法、发送端、接收端和系统,其中一种下行信道质量测量方法包括:发送端分别通过至少两个物理天线向接收端发射至少两个混合导频信号,所述至少两个混合导频信号分别是将所述至少两个逻辑天线中各个逻辑天线对应的预设导频信号通过预编码加权矩阵加权后获得;所述发送端向所述接收端发送第一码本子集约束指令,所述第一码本子集约束指令携带秩指示RANK和至少一个预编码矩阵索引PMI;所述发送端接收所述接收端根据所述指定天线的等效信道的下行信道质量反馈的信道质量反馈消息。采用本发明,可以精确获取指定天线的等效信道的下行信道质量,从而,为接收端选择合适的服务天线,进而,提高信号质量。

Description

一种下行信道质量测量方法、 发送端、 接收端和系统 技术领域
本发明涉及无线通信领域,尤其涉及一种下行信道质量测量方法、发送端、 接收端和系统。 背景技术
波束域通信, 即在传统宏站天线的基础上增加辅助波束天线, 结合辅助波 束天线为该扇区内的终端服务,从而实现了容量性能的提升, 其本质是最大化 利用空间维度所带来的增益。这种在传统宏站天线的基础上叠加至少一个辅助 波束天线进行空间复用, 引申出一个关键的问题: 如何比较精确地为终端用户 选择合适的天线, 也就是说, 基站(包括室内、 室外基站)要向某个终端发送 数据之前, 需要明确使用哪根天线为该终端服务。 因此, 基站需要测量每根天 线在对该终端进行服务时对应的等效信道的下行信道质量。
参考信号,也就是导频信号,是由发送端提供给接收端用于信道估计或信 号测量的一种已知信号。 在 LTE ( Long Term Evolution, 长期演进) 系统中, SRS ( sounding reference signal, 探测参考信号)被用于上行导频, 即终端向基 站发射的导频信号, 基站根据各个天线接收到的 SRS获取各个天线针对所述 终端的上行信道质量, 一般情况下,基站利用信道互易性根据测量的上行信道 质量估算下行信道质量。 但是, 对于 FDD(Frequency Division Duplex, 频分双 工) 系统, 由于上下行频点不一致, 通过信道互易性估算下行信道质量误差较 大。 发明内容
本发明实施例提供了一种下行信道质量测量方法、发送端、接收端和系统, 可以精确获取指定天线的等效信道的下行信道质量。
本发明实施例第一方面提供了一种发送端, 包括:
信号发射模块,用于分别通过至少两个物理天线向接收端发射至少两个混 混合导频信- 频信号通过预编码加权矩阵加权后获得;
指令发送模块, 用于向所述接收端发送第一码本子集约束指令, 所述第一 码本子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使 所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述预设 导频信号获取指定天线的等效信道的下行信道质量;
反馈消息接收模块,用于接收所述接收端根据所述指定天线的等效信道的 下行信道质量反馈的信道质量反馈消息。
在第一方面的第一种可能的实现方式中, 所述 RANK和 PMI指向第一约 束码本矩阵,所述第一约束码本矩阵用于获取至少两个辅助波束天线空间复用 后的等效信道的下行信道质量;
所述反馈消息接收模块所接收的信道质量反馈消息包括所述至少两个辅 助波束天线中各个辅助波束天线的等效信道的下行 CQI;
所述发送端还包括:
第一波束判断模块,用于根据所述反馈消息接收模块接收到的所述至少两 个辅助波束天线的等效信道的下行 CQI,判断是否使用所述至少两个辅助波束 天线中任一辅助波束天线为所述接收端服务。
结合第一方面的第一种可能实现方式,在第二种可能的实现方式中, 所述 第一波束判断模块包括: 行 CQI大于预设阔值的辅助波束天线;
目标辅助波束天线获取单元,用于若所述至少两个辅助波束天线中存在等 效信道的下行 CQI 大于预设阔值的辅助波束天线, 则根据所述至少两个辅助 波束天线的等效信道的下行 CQI,在所述至少两个辅助波束天线中获取目标辅 助天线;
确定单元, 用于确定使用所述目标辅助波束天线为所述接收端服务。 在第一方面的第三种可能的实现方式中,所述第一码本子集约束指令携带 至少两个 PMI,所述 RANK和所述至少两个 PMI中的各个 PMI分别指向至少 两个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取至少两 个辅助波束天线的等效信道的下行信道质量;
所述反馈消息接收模块所接收的信道质量反馈消息包括目标辅助波束天 线对应的 PMI, 所述目标辅助波束天线是由所述接收端根据所述混合导频信 号、所述至少两个第二约束码本矩阵以及所述各个预设导频信号,从所述至少 两个辅助波束天线中确定得出;
所述发送端还包括:
第二波束判断模块,用于根据所述信道质量反馈消息识别所述目标辅助波 束天线, 并确定使用所述目标辅助波束天线为所述接收端服务。
结合第一方面的第二种或第三种中任一种可能实现方式,在第四种可能的 实现方式中, 还包括:
记录模块,用于记录在第一预设时间段内所述目标辅助天线的等效信道的 下行 CQI;
所述指令发送模块还用于:
向所述接收端发送第二码本子集约束指令,所述第二码本子集约束指令携 带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩阵用于获取 至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述反馈消息接收模块所接收的信道质量反馈消息还包括所述至少两个 宏站天线中各个宏站天线的等效信道的下行 CQI;
所述发送端还包括:
第三波束判断模块, 用于根据所述各个宏站天线的等效信道的下行 CQI 和所述记录的在第一预设时间段内所述目标辅助天线的等效信道的下行 CQI, 判断是否使用所述至少两个宏站天线中任一宏站天线为所述接收端服务。
结合第一方面的第四种可能实现方式,在第五种可能的实现方式中, 所述 第三波束判断模块包括:
频谱效率获取单元, 用于根据所述各个宏站天线的等效信道的下行 CQI 获取所述各个宏站天线的等效信道的下行频谱效率,且根据所述第一预设时间 段内记录的所述目标辅助天线的等效信道的下行 CQI计算所述目标辅助天线 的等效信道的下行频谱效率;
判断单元,用于根据所述各个宏站天线的等效信道的下行频谱效率和所述 目标辅助天线的等效信道的下行频谱效率,判断是否使用所述至少两个宏站天 线中任一宏站天线为所述接收端服务。
结合第一方面或第一方面的第一种至第五种中任一种可能实现方式,在第 六种可能的实现方式中, 还包括:
信号接收模块,用于通过所述至少两个物理天线分别接收所述接收端的探 测参考信号;
接收功率获取模块, 用于根据第二预设时间段内接收的所述探测参考信 号, 获取所述至少两个物理天线分别针对所述接收端的接收功率;
第一确定模块,用于根据所述至少两个物理天线分别针对所述接收端的接 收功率,确定所述接收端满足使用辅助波束天线的初始条件, 当所述信号发射 模块向所述接收端发射混合导频信号后,触发所述指令发送模块向所述接收端 发送第一码本子集约束指令。
在第一方面的第七种可能的实现方式中, 还包括:
信号接收模块,用于通过所述至少两个物理天线分别接收所述接收端的探 测参考信号;
接收功率获取模块, 用于根据第二预设时间段内接收的所述探测参考信 号, 获取所述至少两个物理天线分别针对所述接收端的接收功率;
第二确定模块,用于根据所述至少两个物理天线分别针对所述接收端的接 收功率, 确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与所述复用天线波束空间复用后的等效信道的下行信道质量; 所述反馈消息接收模块所接收的信道质量反馈消息包括所述主波束的等 效信道的下行 CQI和所述复用天线波束的等效信道的下行 CQI;
所述发送端还包括:
第四波束判断模块, 用于根据所述主波束的等效信道的下行 CQI和所述 复用天线波束的等效信道的下行 CQI,判断是否使用所述主波束和所述复用天 线波束为所述接收端服务。
本发明实施例第二方面提供一种接收端, 包括: 合导频信号,所述至少两个混合导频信号分别是将至少两个逻辑天线中各个逻 辑天线对应的预设导频信号通过预编码加权矩阵加权后获得;
指令接收模块, 用于接收所述发送端发送的第一码本子集约束指令, 所述 第一码本子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI; 信道质量获取模块,用于根据所述混合导频信号、所述第一码本子集约束 指令以及所述预设导频信号获取指定天线的等效信道的下行信道质量;
反馈消息发送模块,用于根据所述指定天线的等效信道的下行信道质量向 所述发送端反馈信道质量反馈消息。
在第二方面的第一种可能的实现方式中, 所述 RANK和 PMI指向第一约 束码本矩阵,所述第一约束码本矩阵用于获取至少两个辅助波束天线空间复用 后的等效信道的下行信道质量;
所述信道质量获取模块具体用于:
根据所述 RANK和 PMI获取所述第一约束码本矩阵;
根据所述混合导频信号、 所述第一约束码本矩阵以及所述预设导频信号, 获取所述至少两个辅助波束天线空间复用后的等效信道的下行信道质量; 所述反馈消息发送模块具体用于:
根据所述至少两个辅助波束天线的等效信道的下行信道质量,获取所述至 少两个辅助波束天线的等效信道的下行 CQI;
所述反馈消息发送模块发送的所述信道质量反馈消息包括所述至少两个 辅助波束天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个辅助 波束天线的等效信道的下行 CQI,判断是否使用所述至少两个辅助波束天线中 的任一辅助波束天线为所述接收端服务。
在第二方面的第二种可能的实现方式中,所述第一码本子集约束指令携带 至少两个 PMI,所述 RANK与所述至少两个 PMI中的各个 PMI分别指向至少 两个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取至少两 个辅助波束天线的等效信道的下行信道质量;
所述信道质量获取模块具体用于:
根据所述 RANK和所述至少两个 PMI分别获取所述至少两个第二约束码 本矩阵;
根据所述混合导频信号、所述至少两个第二约束码本矩阵以及所述各个预 设导频信号, 获取所述至少两个辅助波束天线的等效信道的下行信道质量; 所述反馈消息发送模块具体用于:
根据所述至少两个辅助波束天线的等效信道的下行信道质量,获取所述至 少两个辅助波束天线的等效信道的下行 CQI;
根据所述至少两个辅助波束天线的等效信道的下行 CQI,在所述至少两个 辅助波束天线中确定目标辅助波束天线;
所述反馈消息发送模块发送的所述信道质量反馈消息包括所述目标辅助 波束天线的 PMI, 以使所述发送端根据所述 PMI判断使用所述目标辅助波束 天线为所述接收端服务。
结合第二方面的第一种或第二种中任一种可能实现方式,在第三种可能的 实现方式中, 所述指令接收模块还用于:
接收所述发送端发送的第二码本子集约束指令,所述第二码本子集约束指 令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩阵用于 获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述信道质量获取模块具体还用于:
根据所述 RANK和 PMI获取所述第三约束码本矩阵;
根据所述混合导频信号、 所述第三约束码本矩阵以及所述预设导频信号, 获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述反馈消息发送模块具体还用于:
根据所述至少两个宏站天线空间复用后的等效信道的下行信道质量,获取 所述至少两个宏站天线的等效信道的下行 CQI;
所述反馈消息发送模块发送的所述信道质量反馈消息还包括所述至少两 个宏站天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个宏站天 线的等效信道的下行 CQI,判断是否使用所述至少两个宏站天线中任一宏站天 线为所述接收端服务。
结合第二方面或第二方面的第一种至第三种中任一种可能实现方式,在第 四种可能的实现方式中, 还包括:
信号发送模块, 用于向所述发送端发送探测参考信号, 以使所述发送端根 据探测参考信号确定所述接收端满足使用所述至少两个辅助波束天线中任意 辅助波束天线的初始条件。
在第二方面的第五种可能的实现方式中, 还包括:
信号发送模块, 用于向所述发送端发送探测参考信号, 以使所述发送端根 据所述探测参考信号确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与所述复用天线波束空间复用后的等效信道的下行信道质量; 所述信道质量获取模块具体用于:
根据所述 RANK和 PMI获取所述第四约束码本矩阵;
根据所述混合导频信号、 所述第四约束码本矩阵以及所述预设导频信号, 获取所述主波束的等效信道的下行信道质量和所述复用天线波束的等效信道 的下行信道质量;
所述反馈消息发送模块具体用于:
根据所述主波束的等效信道的下行信道质量获取所述主波束的等效信道 的下行 CQI,并根据所述复用天线波束的等效信道的下行信道质量获取所述复 用天线波束的等效信道的下行 CQI;
所述反馈消息发送模块向所述发送端反馈的所述信道质量反馈消息包括 所述主波束和所述复用天线波束的等效信道的下行 CQI,以使所述发送端根据 所述主波束和所述复用天线波束的等效信道的下行 CQI,判断是否使用所述主 波束和所述复用天线波束为所述接收端服务。
本发明第三方面提供一种下行信道质量测量方法, 包括:
发送端分别通过至少两个物理天线向接收端发射至少两个混合导频信号, 页信号通过预 编码加权矩阵加权后获得;
所述发送端向所述接收端发送第一码本子集约束指令,所述第一码本子集 约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使所述接收 端根据所述混合导频信号、所述第一码本子集约束指令以及所述预设导频信号 获取指定天线的等效信道的下行信道质量;
所述发送端接收所述接收端根据所述指定天线的等效信道的下行信道质 量反馈的信道质量反馈消息。
在第三方面的第一种可能的实现方式中, 所述 RANK和 PMI指向第一约 束码本矩阵,所述第一约束码本矩阵用于获取至少两个辅助波束天线空间复用 后的等效信道的下行信道质量; 天线的等效信道的下行信道质量指示 CQI;
所述发送端接收所述接收端根据所述指定天线的等效信道的下行信道质 量反馈的信道质量反馈消息之后, 还包括: 信道的下行 CQI,判断是否使用所述至少两个辅助波束天线中任一辅助波束天 线为所述接收端服务。
结合第三方面的第一种可能实现方式,在第二种可能的实现方式中, 所述 行 CQI,判断是否使用所述至少两个辅助波束天线中任一辅助波束天线为所述 接收端服务包括:
CQI大于预设阔值的辅助波束天线;
若存在,所述发送端则根据所述至少两个辅助波束天线的等效信道的下行
CQI, 在所述至少两个辅助波束天线中获取目标辅助天线; 在第三方面的第三种可能的实现方式中,所述第一码本子集约束指令携带 至少两个 PMI,所述 RANK与所述至少两个 PMI中的各个 PMI分别指向至少 两个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取至少两 个辅助波束天线的等效信道的下行信道质量;
所述信道质量反馈消息包括目标辅助波束天线对应的 PMI,所述目标辅助 波束天线是由所述接收端根据所述混合导频信号、所述至少两个第二约束码本 矩阵以及所述各个预设导频信号, 从所述至少两个辅助波束天线中确定得出; 所述发送端接收所述接收端根据所述获取得到的指定天线的下行信道质 量反馈的信道质量反馈消息之后, 还包括:
所述发送端根据所述信道质量反馈消息识别所述目标辅助波束天线; 结合第三方面的第二种或第三种中任一种可能实现方式,在第四种可能的 后, 还包括:
所述发送端在第一预设时间段内记录所述目标辅助天线的等效信道的下 行 CQI;
所述发送端向所述接收端发送第二码本子集约束指令,所述第二码本子集 约束指令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩 阵用于获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述发送端接收包括所述至少两个宏站天线中各个宏站天线的等效信道 的下行 CQI的信道质量反馈消息;
所述发送端根据所述各个宏站天线的等效信道的下行 CQI和所述第一预 设时间段内记录的所述目标辅助天线的等效信道的下行 CQI,判断是否使用所 述至少两个宏站天线中任一宏站天线为所述接收端服务。
结合第三方面的第四种可能实现方式,在第五种可能的实现方式中, 所述 发送端根据所述各个宏站天线的等效信道的下行 CQI和第一预设时间段内记 录的所述目标辅助天线的等效信道的下行 CQI,判断是否使用所述至少两个宏 站天线中任一宏站天线为所述接收端服务包括:
所述发送端根据所述各个宏站天线的等效信道的下行 CQI获取所述各个 宏站天线的等效信道的下行频谱效率,且根据所述第一预设时间段内记录的所 述目标辅助天线的等效信道的下行 CQI计算所述目标辅助天线的等效信道的 下行频谱效率;
所述发送端根据所述各个宏站天线的等效信道的下行频谱效率和所述目 标辅助天线的等效信道的下行频谱效率,判断是否使用所述至少两个宏站天线 中任一宏站天线为所述接收端服务。
结合第三方面或第三方面的第一种至第五种可能实现方式,在第六种可能 的实现方式中, 所述发送端向所述接收端发送第一码本子集约束指令之前,还 包括:
所述发送端通过所述至少两个物理天线分别接收所述接收端的探测参考 信号;
所述发送端根据第二预设时间段内接收的所述探测参考信号,获取所述至 少两个物理天线分别针对所述接收端的接收功率; 确定所述接收端满足使用辅助波束天线的初始条件。
在第三方面的第七种可能的实现方式中,所述发送端向所述接收端发送第 一码本子集约束指令之前, 还包括: 信号;
所述发送端根据第二预设时间段内接收的所述探测参考信号,获取所述至 少两个物理天线分别针对所述接收端的接收功率; 确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与所述复用天线波束空间复用后的等效信道的下行信道质量; 所述信道质量反馈消息包括所述主波束的等效信道的下行 CQI和所述复 用天线波束的等效信道的下行 CQI;
所述发送端接收所述接收端根据所述指定天线的等效信道的下行信道质 量反馈的信道质量反馈消息之后, 还包括:
所述发送端根据所述主波束的等效信道的下行 CQI和所述复用天线波束 的等效信道的下行 CQI,判断是否使用所述主波束和所述复用天线波束为所述 接收端服务。
本发明实施例第四方面提供一种下行信道质量测量方法, 包括:
的预设导频信号通过预编码加权矩阵加权后获得;
所述接收端接收所述发送端发送的第一码本子集约束指令,所述第一码本 子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI;
所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述 预设导频信号获取指定天线的等效信道的下行信道质量;
所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息。
在第四方面的第一种可能的实现方式中, 所述 RANK和 PMI指向第一约 束码本矩阵,所述第一约束码本矩阵用于获取至少两个辅助波束天线空间复用 后的等效信道的下行信道质量;
所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述 预设导频信号获取指定天线的等效信道的下行信道质量包括:
所述接收端根据所述 RANK和 PMI获取所述第一约束码本矩阵; 所述接收端根据所述混合导频信号、所述第一约束码本矩阵以及所述预设 导频信号,获取所述至少两个辅助波束天线空间复用后的等效信道的下行信道 质量;
所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息包括:
所述接收端根据所述至少两个辅助波束天线的等效信道的下行信道质量, 获取所述至少两个辅助波束天线的等效信道的下行 CQI;
所述接收端向所述发送端反馈的所述信道质量反馈消息中包括所述至少 两个辅助波束天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个 辅助波束天线的等效信道的下行 CQI,判断是否使用所述至少两个辅助波束天 线中任一辅助波束天线为所述接收端服务。
在第四方面的第二种可能的实现方式中,所述第一码本子集约束指令携带 至少两个 PMI,所述 RANK与所述至少两个 PMI中的各个 PMI分别指向至少 两个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取至少两 个辅助波束天线的等效信道的下行信道质量;
所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述 预设导频信号获取指定天线的等效信道的下行信道质量包括:
所述接收端根据所述 RANK和至少两个 PMI分别获取所述至少两个第二 约束码本矩阵;
所述接收端根据所述混合导频信号、所述至少两个第二约束码本矩阵以及 所述各个预设导频信号,获取所述至少两个辅助波束天线的等效信道的下行信 道质量;
所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息包括:
所述接收端根据所述至少两个辅助波束天线的等效信道的下行信道质量, 获取所述至少两个辅助波束天线的等效信道的下行 CQI;
所述发送端根据所述至少两个辅助波束天线的等效信道的下行 CQI,在所 述至少两个辅助波束天线中确定目标辅助波束天线;
所述接收端向所述发送端反馈的所述信道质量反馈消息包括所述目标辅 助波束天线的 PMI, 以使所述发送端根据所述 PMI判定使用所述目标辅助波 束天线为所述接收端服务。
结合第四方面的第一种或第二种中任一种可能实现方式,在第三种可能的 实现方式中,所述接收端根据所述指定天线的等效信道的下行信道质量向所述 发送端反馈信道质量反馈消息之后, 还包括:
所述接收端接收所述发送端发送的第二码本子集约束指令,所述第二码本 子集约束指令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码 本矩阵用于获取至少两个宏站天线空间复用后的等效信道的下行信道质量; 所述接收端根据所述 RANK和 PMI获取所述第三约束码本矩阵; 所述接收端根据所述混合导频信号、所述第三约束码本矩阵以及所述预设 导频信号, 获取所述至少两个宏站天线空间复用后的等效信道的下行信道质 量;
所述接收端根据所述至少两个宏站天线空间复用后的等效信道的下行信 道质量, 获取所述至少两个宏站天线的等效信道的下行 CQI;
所述接收端向所述发送端反馈信道质量反馈消息,所述信道质量反馈消息 包括所述至少两个宏站天线的等效信道的下行 CQI,以使所述发送端根据所述 至少两个宏站天线的等效信道的下行 CQI,判断是否使用所述至少两个宏站天 线中的任一宏站天线为所述接收端服务。
结合第四方面或第四方面的第一种或第三种中任一种可能实现方式,在第 四种可能的实现方式中,所述接收端接收所述发送端发送的第一码本子集约束 指令之前, 还包括:
所述接收端向所述发送端发射探测参考信号,以使所述发送端根据所述探 测参考信号确定所述接收端满足使用所述至少两个辅助波束天线中任意辅助 波束天线的初始条件。
在第四方面的第五种可能的实现方式中,所述接收端接收所述发送端发送 的第一码本子集约束指令之前, 还包括:
所述接收端向所述发送端发送探测参考信号,以使所述发送端根据所述探 测参考信号确定所述接收端的主波束和复用天线波束,
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与复用天线波束空间复用后的等效信道的下行信道质量; 所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息包括:
所述接收端根据所述 RANK和 PMI获取所述第四约束码本矩阵; 所述接收端根据所述混合导频信号、所述第四约束码本矩阵以及所述预设 导频信号,获取所述主波束的等效信道的下行信道质量和所述复用天线波束的 等效信道的下行信道质量;
所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息包括:
所述接收端根据所述主波束的等效信道的下行信道质量获取所述主波束 的等效信道的下行 CQI,并根据所述复用天线波束的等效信道的下行信道质量 获取所述复用天线波束的等效信道的下行 CQI;
所述接收端向所述发送端反馈的所述信道质量反馈消息中包括所述主波 束和所述复用天线波束的等效信道的下行 CQI,以使所述发送端根据所述主波 束和所述复用天线波束的等效信道的下行 CQI,判断是否使用所述主波束和所 述复用天线波束为所述接收端服务。
本发明实施例第五方面提供一种发送端, 其特征在于, 所述发送端包括无 线收发装置、 存储器以及处理器, 其中, 存储器中存储一组程序代码, 且处理 器用于调用存储器中存储的程序代码, 用于执行以下操作:
分别通过无线收发装置中的至少两个物理天线向接收端发射至少两个混
频信号通过预编码加权矩阵加权后获得;
向所述接收端发送第一码本子集约束指令,所述第一码本子集约束指令携 带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使所述接收端根据所述 混合导频信号、所述第一码本子集约束指令以及所述预设导频信号获取指定天 线的等效信道的下行信道质量;
通过无线收发装置接收所述接收端根据所述指定天线的等效信道的下行 信道质量反馈的信道质量反馈消息。
本发明实施例第六方面提供一种接收端, 其特征在于, 所述接收端包括无 线收发装置、 存储器以及处理器, 其中, 存储器中存储一组程序代码, 且处理 器用于调用存储器中存储的程序代码, 用于执行以下操作: 导频信号通过预编码加权矩阵加权后获得;
接收所述发送端发送的第一码本子集约束指令,所述第一码本子集约束指 令携带秩指示 RANK和至少一个预编码矩阵索引 PMI;
根据所述混合导频信号、所述第一码本子集约束指令以及所述预设导频信 号获取指定天线的等效信道的下行信道质量;
根据所述指定天线的等效信道的下行信道质量向所述发送端反馈信道质 量反馈消息。
本发明实施例第七方面提供一种下行信道质量测量系统, 其特征在于, 所 述系统包括发送端和接收端, 其中,
所述发送端如第一方面, 或者第一方面的第一种可能的实现方式, 或者第 一方面的第二种可能的实现方式, 或者第一方面的第三种可能的实现方式, 或 者第一方面的第四种可能的实现方式, 或者第一方面的第五种可能的实现方 式, 或者第一方面的第六种可能的实现方式, 或者第一方面的第七种可能的实 现方式中的发送端;
所述接收端为第二方面, 或者第二方面的第一种可能的实现方式, 或者第 二方面的第二种可能的实现方式, 或者第二方面的第三种可能的实现方式,或 者第二方面的第四种可能的实现方式,或者第二方面的第五种可能的实现方式 中的接收端。
本发明实施例第八方面提供一种计算机存储介质,所述计算机存储介质存 储有程序,该程序执行时包括第三方面提供的下行信道质量测量方法的部分或 全部步骤。
本发明实施例第九方面提供一种计算机存储介质,所述计算机存储介质存 储有程序,该程序执行时包括第四方面提供的下行信道质量测量方法的部分或 全部步骤。
实施本发明实施例,发送端可以分别通过至少两个物理天线向接收端发射 至少两个混合导频信号,所述至少两个混合导频信号分别是将所述至少两个逻 辑天线中各个逻辑天线对应的预设导频信号通过预编码加权矩阵加权后获得, 所述发送端再向所述接收端发送码本子集约束指令,接收端则可以根据接收到 的混合导频信号、所述码本子集约束指令以及所述各个预设导频信号获取指定 天线的等效信道的下行信道质量,发送端可以根据信道质量反馈消息获取指定 天线的等效信道的下行信道质量,精确地获取了指定天线的等效信道的下行信 道质量, 进而, 发送端可以为接收端选择合适的服务波束, 提高了信号质量。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的一种发送端的结构示意图;
图 2是本发明实施例提供的另一种发送端的结构示意图;
图 3是本发明实施例提供的第一波束判断模块的结构示意图;
图 4是本发明实施例提供的另一种发送端的结构示意图;
图 5是本发明实施例提供的另一种发送端的结构示意图;
图 6是本发明实施例提供的第三波束判断模块的结构示意图;
图 7是本发明实施例提供的另一种发送端的结构示意图;
图 8是本发明实施例提供的另一种发送端的结构示意图;
图 9是本发明实施例提供的一种接收端的结构示意图;
图 10是本发明实施例提供的另一种接收端的结构示意图;
图 11是本发明实施例提供的另一种接收端的结构示意图;
图 12是本发明实施例提供的一种下行信道质量测量方法的流程示意图; 图 13是本发明实施例提供的一种波束选择方法的流程示意图;
图 14是本发明实施例提供的另一种波束选择方法的流程示意图; 图 15是本发明实施例提供的一种移动性管理方法的流程示意图; 图 16是本发明实施例提供的另一种移动性管理方法的流程示意图; 图 17是本发明实施例提供的一种室内波束选择方法的流程示意图; 图 18是本发明实施例提供的一种室内天线布局结构示意图; 图 19是本发明实施例提供的一种下行信道质量测量系统的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例中的发送端包括至少一个辅助波束天线,接收端包括至少两 个接收天线, 假设, 发送端发射天线数目为 4, 即物理天线数目为 4, 其中, 两个广覆盖的宏站天线 macro0、 macrol和两个辅助波束天线 beam0、 beaml , 接收端存在两个接收天线; 所述预编码加权矩阵 r是预先设置的, 如矩阵(1 ) 所示, Ρ是 CSI-RS ( Channel-State Information reference signal, 信道状态信息 参考信号)的功率因子, 发送端可以根据需求进行选择, 这个值默认配置可以 为 = ^, 其中, 预编码加权矩阵的列数等于发送端物理天线的数目, 预编码 加权矩阵的行数不限定。
Figure imgf000019_0001
请参阅图 1, 图 1是本发明实施例提供的一种发送端的结构示意图。 本发 明实施例提供的发送端可以包括室内基站或室外基站。如图 1所示, 本发明实 施例中的发送端 100至少可以包括信号发射模块 101、 指令发送模块 102以及 反馈消息接收模块 103, 其中:
信号发射模块 101, 用于分别通过至少两个物理天线向接收端发射至少两
设导频信号通过预编码加权矩阵加权后获得。
其中,信号发射模块 101包括至少两个物理天线,信号发射模块 101每次 向接收端发送混合导频信号时,通过自身所有的物理天线向接收端发送各个物 理天线对应的混合导频信号, 例如, 信号发射模块 101包括 4根物理天线, 则 每次通过该 4根物理天线向接收端发射混合导频信号。
假设, 预编码加权矩阵 Γ的具体值如矩阵(2 ) 所示, 逻辑天线 Portl5、 Portl6、 Port 17 和 Portl8分别对应的预设导频信号为 sP。 。 , 则所述各个预设导频信号经过所述预编码加权矩阵加权之后的混合导频信号 可以如矩阵(3 ) 所示, 如果, 物理天线与逻辑天线的对应关系为: beamO对 应 Port 15, beam 1对应 Port 15, macroO对应 Portl7, macro 1对应 Portl8, 则所 述各个物理天线对应的混合导频信号分别为: beamO对应第一列混合导频信 号, beaml对应第二列混合导频信号, macroO对应第三列混合导频信号, macro 1 对应第四列混合导频信号。
Figure imgf000020_0001
s
°Port l5 °Port l6 °Port I7 °Portl8
°Port I7 °Portl8
- s Port 16 °Port I7 °Portl8
°Port l5 - s Port 16 °Port I7 °Portl8 _ ( 3 ) 具体地, 信号发射模块 101可以预先生成混合导频信号, 然后, 信号发射 模块 101每隔预设周期如 5ms控制自身各个物理天线分别发射所述各个物理 天线对应的混合导频信号;信号发射模块 101也可以每隔预设周期生成所述各 混合导频信号。
需要指出的是,在本发明实施例中,信号发射模块 101只是对预设导频信 号进行预加权, 在其他可选实施例中, 特别是在 release 8 ( 3GPP针对 LTE的 协议版本)协议版本下,信号发射模块 101可以对公共导频 (CRS)信号进行预 加权, 配合码本约束功能,使接收端实现对指定天线等效信道的下行信道进行 测量, 其中对 CRS导频进行预加权时, 所有基于 CRS导频解调的公共信道或 者数据信道也需要同步进行预加权。
指令发送模块 102, 用于向所述接收端发送第一码本子集约束指令, 所述 第一码本子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述 预设导频信号获取指定天线的等效信道的下行信道质量。
反馈消息接收模块 103, 用于接收所述接收端根据所述指定天线的等效信 道的下行信道质量反馈的信道质量反馈消息。
一种可选的实施方式, 所述 RANK和 PMI指向第一约束码本矩阵, 所述 第一约束码本矩阵用于获取至少两个辅助波束天线空间复用后的等效信道的 下行信道质量,则所述反馈消息接收模块 103所接收的信道质量反馈消息包括 所述发送端 100如图 2所示进一步还可以包括第一波束判断模块 104, 用 于根据所述反馈消息接收模块 103接收到的所述至少两个辅助波束天线的等 效信道的下行 CQI,判断是否使用所述至少两个辅助波束天线中任一辅助波束 天线为所述接收端服务。
具体地, 如图 3示出的本发明实施例的第一波束判断模块的结构示意图, 第一波束判断模块 104可以包括: 检测单元 1041、 目标辅助波束天线获取单 元 1042以及确定单元, 其中: 道的下行 CQI大于预设阔值的辅助波束天线;
目标辅助波束天线获取单元 1042, 用于若所述至少两个辅助波束天线中 存在等效信道的下行 CQI 大于预设阔值的辅助波束天线, 则根据所述至少两 个辅助波束天线的等效信道的下行 CQI,在所述至少两个辅助波束天线中获取 目标辅助天线;
确定单元 1042, 用于确定使用所述目标辅助波束天线为所述接收端服务。 进一步地, 所述发送端 100还可以包括: 信号接收模块 105、 接收功率获 取模块 106以及第一确定模块 107, 其中: 信号接收模块 105, 用于通过所述至少两个物理天线分别接收所述接收端 的探测参考信号;
接收功率获取模块 106, 用于根据第二预设时间段内接收的所述探测参考 信号, 获取所述至少两个物理天线分别针对所述接收端的接收功率;
第一确定模块 107, 用于根据所述至少两个物理天线分别针对所述接收端 的接收功率,确定所述接收端满足使用辅助波束天线的初始条件, 当所述信号 发射模块 101向所述接收端发射混合导频信号后, 触发所述指令发送模块 102 向所述接收端发送第一码本子集约束指令。
另一种可选的实施方式, 所述第一码本子集约束指令携带至少两个 PMI, 所述 RANK与所述至少两个 PMI中的各个 PMI分别指向至少两个第二约束码 本矩阵, 4 设, 第一码本子集约束指携带两个 PMI, 所述 RANK与其中一个 PMI指向一个第二约束码本矩阵, 所述 RANK与另一个 PMI指向另一个第二 约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取至少两个辅助波 束天线的等效信道的下行信道质量,所述反馈消息接收模块 103所接收的信道 质量反馈消息包括目标辅助波束天线对应的 PMI,所述目标辅助波束天线是由 所述接收端根据所述混合导频信号、所述至少两个第二约束码本矩阵以及所述 各个预设导频信号, 从所述至少两个辅助波束天线中确定得出;
所述发送端 100如图 4所示进一步还可以包括第二波束判断模块 108, 用 于根据所述信道质量反馈消息识别所述目标辅助波束天线,并确定使用所述目 标辅助波束天线为所述接收端服务。
进一步地, 所述发送端 100还可以包括: 信号接收模块 105、 接收功率获 取模块 106以及第一确定模块 107, 其中:
信号接收模块 105, 用于通过所述至少两个物理天线分别接收所述接收端 的探测参考信号;
接收功率获取模块 106, 用于根据第二预设时间段内接收的所述探测参考 信号, 获取所述至少两个物理天线分别针对所述接收端的接收功率;
第一确定模块 107, 用于根据所述至少两个物理天线分别针对所述接收端 的接收功率,确定所述接收端满足使用辅助波束天线的初始条件, 当所述信号 发射模块 101向所述接收端发射混合导频信号后, 触发所述指令发送模块 102 向所述接收端发送第一码本子集约束指令。
再进一步地,如图 5出示的本发明实施例提供的另一种发送端的结构示意 图, 所述发送端 100还可以包括记录模块 109以及第三波束判断模块 110, 其 中:
记录模块,用于记录在第一预设时间段内所述目标辅助天线的等效信道的 下行 CQI;
当第一判断模块 104判定使用目标辅助波束天线为所述接收端服务时,或 者, 第二波束判断模块 108根据信道质量反馈消息识别出目标辅助波束天线, 并确定使用所述目标辅助波束天线为所述接收端服务时,记录模块 109则记录 在第一预设时间段内所述目标辅助天线的等效信道的下行 CQI,指令发送模块 102还可以向所述接收端发送第二码本子集约束指令, 所述第二码本子集约束 指令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩阵用 于获取至少两个宏站天线空间复用后的等效信道的下行信道质量,所述反馈消 息接收模块 103 所接收的信道质量反馈消息还包括所述至少两个宏站天线中 各个宏站天线的等效信道的下行 CQI;
第三波束判断模块 110, 用于根据所述各个宏站天线的等效信道的下行 CQI和所述记录模块 109所记录的在第一预设时间段内所述目标辅助天线的等 效信道的下行 CQI,判断是否使用所述至少两个宏站天线中任一宏站天线为所 述接收端服务。
具体地, 如图 6示出的本发明实施例的第三波束判断模块的结构示意图, 所述第三判断模块 110进一步可以包括: 频谱效率获取单元 1101 以及判断单 元 1102, 其中:
频谱效率获取单元 1101, 用于根据所述各个宏站天线的等效信道的下行 CQI获取所述各个宏站天线的等效信道的下行频谱效率,且根据所述第一预设 时间段内记录的所述目标辅助天线的等效信道的下行 CQI计算所述目标辅助 天线的等效信道的下行频谱效率;
判断单元 1102, 用于根据所述各个宏站天线的等效信道的下行频谱效率 和所述目标辅助天线的等效信道的下行频谱效率,判断是否使用所述至少两个 宏站天线中任一宏站天线为所述接收端服务。
再一种可选的实施方式,如图 7出示的本发明实施例提供的另一种发送端 的结构示意图, 所述发送端 100进一步还可以包括: 信号接收模块 111、 接收 功率获取模块 112、 第二确定模块 113以及第四波束判断模块 114, 其中: 信号接收模块 111, 用于通过所述至少两个物理天线分别接收所述接收端 的探测参考信号;
接收功率获取模块 112, 用于根据第二预设时间段内接收的所述探测参考 信号, 获取所述至少两个物理天线分别针对所述接收端的接收功率;
第二确定模块 113, 用于根据所述至少两个物理天线分别针对所述接收端 的接收功率, 确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与复用天线波束空间复用后的等效信道的下行信道质量,所述 反馈消息接收模块 103 所接收的信道质量反馈消息包括所述主波束的等效信 道的下行 CQI和所述复用天线波束的等效信道的下行 CQI;
第四波束判断模块 114,用于根据所述主波束的等效信道的下行 CQI和所 述复用天线波束的等效信道的下行 CQI,判断是否使用所述主波束和所述复用 天线波束为所述接收端服务。
可理解的是,本实施例的接收端 100的各功能模块的功能可根据下述方法 实施例中的方法具体实现,可以具体对应参考图 12至图 17方法实施例的相关 描述, 此处不再赘述。 请参阅图 8, 图 8是本发明另一实施例提供的一种发送端的结构示意图, 如图 8所示, 该发送端 800可以包括: 至少一个处理器 801, 例如 CPU, 至少 一个通信总线 802, 无线信号收发装置 803以及存储器 804。 其中, 无线信号 收发装置 803包括物理天线, 用于接收终端(即接收端)发射的无线信号以及 向终端发射无线信号; 通信总线 803用于实现这些组件之间的连接通信。存储 器 804 可以是高速 RAM存储器, 也可以是非不稳定的存储器( non- volatile memory ), 例如至少一个磁盘存储器。 存储器 804中存储一组程序代码, 且处 理器 801用于调用存储器 804中存储的程序代码, 用于执行以下操作:
分别通过无线信号收发装置 803 中的至少两个物理天线向接收端发射至
的预设导频信号通过预编码加权矩阵加权后获得;
向所述接收端发送第一码本子集约束指令,所述第一码本子集约束指令携 带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使所述接收端根据所述 混合导频信号、所述第一码本子集约束指令以及所述预设导频信号获取指定天 线的等效信道的下行信道质量;
通过无线信号收发装置 803 接收所述接收端根据所述指定天线的等效信 道的下行信道质量反馈的信道质量反馈消息。
一种可选实施方式, 所述 RANK和 PMI指向第一约束码本矩阵, 所述第 一约束码本矩阵用于获取至少两个辅助波束天线空间复用后的等效信道的下 行信道质量; 天线的等效信道的下行信道质量指示 CQI;
处理器 801通过无线信号收发装置 803接收所述接收端根据所述指定天线 的等效信道的下行信道质量反馈的信道质量反馈消息之后, 还执行以下操作:
CQI, 判断是否使用所述至少两个辅助波束天线中任一辅助波束天线为所述接 收端服务。 的等效信道的下行 CQI,判断是否使用所述至少两个辅助波束天线中任一辅助 波束天线为所述接收端服务具体可以为:
检测所述至少两个辅助波束天线中是否存在等效信道的下行 CQI 大于预 设阔值的辅助波束天线;
若存在, 则根据所述至少两个辅助波束天线的等效信道的下行 CQI, 在所 述至少两个辅助波束天线中获取目标辅助天线;
确定使用所述目标辅助波束天线为所述接收端服务。
另一种可选的实施方式, 所述第一码本子集约束指令携带至少两个 PMI, 所述 RANK与所述至少两个 PMI中的各个 PMI分别指向至少两个第二约束码 的等效信道的下行信道质量;
信道质量反馈消息包括目标辅助波束天线对应的 PMI,所述目标辅助波束 天线是由所述接收端根据所述混合导频信号、所述至少两个第二约束码本矩阵 以及所述各个预设导频信号, 从所述至少两个辅助波束天线中确定得出;
处理器 801通过无线信号收发装置 803接收所述接收端根据所述获取得到 的指定天线的下行信道质量反馈的信道质量反馈消息之后, 还执行以下操作: 根据所述信道质量反馈消息识别所述目标辅助波束天线;
确定使用所述目标辅助波束天线为所述接收端服务。
进一步地,处理器 801确定使用所述目标辅助波束天线为所述接收端服务 之后, 还执行以下操作:
在第一预设时间段内记录所述目标辅助天线的等效信道的下行 CQI;
向所述接收端发送第二码本子集约束指令,所述第二码本子集约束指令携 带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩阵用于获取 至少两个宏站天线空间复用后的等效信道的下行信道质量;
接收包括所述至少两个宏站天线中各个宏站天线的等效信道的下行 CQI 的信道质量反馈消息;
根据所述各个宏站天线的等效信道的下行 CQI和所述第一预设时间段内 记录的所述目标辅助天线的等效信道的下行 CQI,判断是否使用所述至少两个 宏站天线中任一宏站天线为所述接收端服务。
其中, 处理器 801根据所述各个宏站天线的等效信道的下行 CQI和第一 预设时间段内记录的所述目标辅助天线的等效信道的下行 CQI,判断是否使用 所述至少两个宏站天线中任一宏站天线为所述接收端服务具体为:
根据所述各个宏站天线的等效信道的下行 CQI获取所述各个宏站天线的 等效信道的下行频谱效率,且根据所述第一预设时间段内记录的所述目标辅助 天线的等效信道的下行 CQI计算所述目标辅助天线的等效信道的下行频谱效 率;
根据所述各个宏站天线的等效信道的下行频谱效率和所述目标辅助天线 的等效信道的下行频谱效率,判断是否使用所述至少两个宏站天线中任一宏站 天线为所述接收端服务。
再进一步地, 处理器 801向所述接收端发送第一码本子集约束指令之前, 还执行以下操作:
通过所述至少两个物理天线分别接收所述接收端的探测参考信号; 根据第二预设时间段内接收的所述探测参考信号,获取所述至少两个物理 天线分别针对所述接收端的接收功率;
根据所述至少两个物理天线分别针对所述接收端的接收功率,确定所述接 收端满足使用辅助波束天线的初始条件。
再一种可选的实施方式,处理器 801向所述接收端发送第一码本子集约束 指令之前, 还执行以下操作:
通过所述至少两个物理天线分别接收所述接收端的探测参考信号; 根据第二预设时间段内接收的所述探测参考信号,获取所述至少两个物理 天线分别针对所述接收端的接收功率;
根据所述至少两个物理天线分别针对所述接收端的接收功率,确定所述接 收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与复用天线波束空间复用后的等效信道的下行信道质量; 所述信道质量反馈消息包括所述主波束的等效信道的下行 CQI和所述复 用天线波束的等效信道的下行 CQI;
处理器 801通过无线信号收发装置 803接收所述接收端根据所述获取得到 的指定天线的下行信道质量反馈的信道质量反馈消息之后, 还执行以下操作: 根据所述主波束的等效信道的下行 CQI和所述复用天线波束的等效信道 的下行 CQI, 判断是否使用所述主波束和所述复用天线波束为所述接收端服 务。
可理解的是,本实施例的接收端 800的各功能模块的功能可根据下述方法 实施例中的方法具体实现,可以具体对应参考图 12至图 17方法实施例的相关 描述, 此处不再赘述。 上述详细阐述了本发明实施例的发送端 100, 下面为了便于更好地实施本 发明实施例的上述方案, 相应地, 下面还提供一种接收端;
请参阅图 9, 图 9是本发明实施例提供的一种接收端的结构示意图。 本发 明实施例提供的接收端可以是手机、 个人电脑、 PAD等通信终端。 如图 9所 示本发明实施例中的接收端 900至少可以包括: 信号接收模块 901、 指令接收 模块 902、 信道质量获取模块 903以及反馈消息发送模块 904, 其中:
信号接收模块 901, 用于接收发送端通过至少两个物理天线发射的至少两 个混合导频信号,所述至少两个混合导频信号分别是将至少两个逻辑天线中各 个逻辑天线对应的预设导频信号通过预编码加权矩阵加权后获得;
指令接收模块 902, 用于接收所述发送端发送的第一码本子集约束指令, 所述第一码本子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI;
信道质量获取模块 903, 用于根据所述混合导频信号、 所述第一码本子集 约束指令以及所述预设导频信号获取指定天线的等效信道的下行信道质量; 反馈消息发送模块 904, 用于根据所述指定天线的等效信道的下行信道质 量向所述发送端反馈信道质量反馈消息。
一种可选的实施方式, 所述 RANK和 PMI指向第一约束码本矩阵, 所述 第一约束码本矩阵用于获取至少两个辅助波束天线空间复用后的等效信道的 下行信道质量;
所述信道质量获取模块 903具体用于:
根据所述 RANK和 PMI获取所述第一约束码本矩阵;
根据所述混合导频信号、 所述第一约束码本矩阵以及所述预设导频信号, 获取所述至少两个辅助波束天线空间复用后的等效信道的下行信道质量; 所述反馈消息发送模块 904具体用于:
根据所述至少两个辅助波束天线的等效信道的下行信道质量,获取所述至 少两个辅助波束天线的等效信道的下行 CQI;
所述反馈消息发送模块 904发送的所述信道质量反馈消息包括所述至少 两个辅助波束天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个 辅助波束天线的等效信道的下行 CQI,判断是否使用所述至少两个辅助波束天 线中的任一辅助波束天线为所述接收端服务。
另一种可选的实施方式, 所述第一码本子集约束指令携带至少两个 PMI, 所述 RANK与所述至少两个 PMI中的各个 PMI分别指向至少两个第二约束码 本矩阵, 假设第一码本子集约束指令携带两个 PMI, 也就是说, 所述 RANK 与其中一个 PMI指向其中一个第二约束码本矩阵, 所述 RANK与另一个 PMI 指向另一个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取 至少两个辅助波束天线的等效信道的下行信道质量;
所述信道质量获取模块 903具体用于:
根据所述 RANK和所述至少两个 PMI分别获取所述至少两个第二约束码 本矩阵;
根据所述混合导频信号、所述至少两个第二约束码本矩阵以及所述各个预 设导频信号, 获取所述至少两个辅助波束天线的等效信道的下行信道质量; 所述反馈消息发送模块 904具体用于:
根据所述至少两个辅助波束天线的等效信道的下行信道质量,获取所述至 少两个辅助波束天线的等效信道的下行 CQI;
根据所述至少两个辅助波束天线的等效信道的下行 CQI,在所述至少两个 辅助波束天线中确定目标辅助波束天线;
所述反馈消息发送模块 904发送的所述信道质量反馈消息包括所述目标 辅助波束天线的 PMI, 以使所述发送端根据所述 PMI判断使用所述目标辅助 波束天线为所述接收端服务。
进一步地, 所述指令接收模块 902还可以用于:
接收所述发送端发送的第二码本子集约束指令,所述第二码本子集约束指 令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩阵用于 获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述信道质量获取模块 903具体还用于:
根据所述 RANK和 PMI获取所述第三约束码本矩阵;
根据所述混合导频信号、 所述第三约束码本矩阵以及所述预设导频信号, 获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述反馈消息发送模块 904具体还用于:
根据所述至少两个宏站天线空间复用后的等效信道的下行信道质量,获取 所述至少两个宏站天线的等效信道的下行 CQI;
所述反馈消息发送模块 904发送的所述信道质量反馈消息还包括所述至 少两个宏站天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个宏 站天线的等效信道的下行 CQI,判断是否使用所述至少两个宏站天线中任一宏 站天线为所述接收端服务。
再进一步地, 本发明实施例中的接收端还可以包括信号发送模块 905, 用 于向所述发送端发送探测参考信号,以使所述发送端根据探测参考信号确定所 述接收端满足使用所述至少两个辅助波束天线中任意辅助波束天线的初始条 件。
再一种可选的实施方式, 接收端 900如图 10所示, 进一步还可以包括信 号发送模块 905, 用于向所述发送端发送探测参考信号, 以使所述发送端根据 所述探测参考信号确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与复用天线波束空间复用后的等效信道的下行信道质量; 所述信道质量获取模块 903具体用于:
根据所述 RANK和 PMI获取所述第四约束码本矩阵;
根据所述混合导频信号、 所述第四约束码本矩阵以及所述预设导频信号, 获取所述主波束的等效信道的下行信道质量和所述复用天线波束的等效信道 的下行信道质量;
所述反馈消息发送模块 904具体用于: 根据所述主波束的等效信道的下行信道质量获取所述主波束的等效信道 的下行 CQI,并根据所述复用天线波束的等效信道的下行信道质量获取所述复 用天线波束的等效信道的下行 CQI;
所述反馈消息发送模块 904 向所述发送端反馈的所述信道质量反馈消息 包括所述主波束和所述复用天线波束的等效信道的下行 CQI,以使所述发送端 根据所述主波束和所述复用天线波束的等效信道的下行 CQI,判断是否使用所 述主波束和所述复用天线波束为所述接收端服务。
可理解的是,本实施例的接收端 900的各功能模块的功能可根据下述方法 实施例中的方法具体实现,可以具体对应参考图 12至图 17方法实施例的相关 描述, 此处不再赘述。 请参阅图 11,图 11是本发明另一实施例提供的一种接收端的结构示意图, 如图 11所示, 该发送端 1100可以包括: 至少一个处理器 1101, 例如 CPU, 至少一个通信总线 1102, 无线信号收发装置 1103以及存储器 1104。 其中, 无 线信号收发装置 1103包括物理天线, 用于接收基站 (即发送端)发射的无线 信号以及向基站发射无线信号; 通信总线 1103用于实现这些组件之间的连接 通信。 存储器 1104 可以是高速 RAM存储器, 也可以是非不稳定的存储器 ( non-volatile memory ), 例如至少一个磁盘存储器。 存储器 1104中存储一组 程序代码,且处理器 1101用于调用存储器 1104中存储的程序代码, 用于执行 以下操作:
导频信号通过预编码加权矩阵加权后获得;
接收所述发送端发送的第一码本子集约束指令,所述第一码本子集约束指 令携带秩指示 RANK和至少一个预编码矩阵索引 PMI;
根据所述混合导频信号、所述第一码本子集约束指令以及所述预设导频信 号获取指定天线的等效信道的下行信道质量;
根据所述指定天线的等效信道的下行信道质量向所述发送端反馈信道质 量反馈消息。
一种可选的实施方式, 所述 RANK和 PMI指向第一约束码本矩阵, 所述 第一约束码本矩阵用于获取至少两个辅助波束天线空间复用后的等效信道的 下行信道质量;
处理器 1101根据所述混合导频信号、 所述第一码本子集约束指令以及所 述预设导频信号获取指定天线的等效信道的下行信道质量具体可以为:
根据所述 RANK和 PMI获取所述第一约束码本矩阵;
根据所述混合导频信号、 所述第一约束码本矩阵以及所述预设导频信号, 获取所述至少两个辅助波束天线空间复用后的等效信道的下行信道质量;
处理器 1101根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息具体可以为:
根据所述至少两个辅助波束天线的等效信道的下行信道质量,获取所述至 少两个辅助波束天线的等效信道的下行 CQI;
向所述发送端反馈的所述信道质量反馈消息中包括所述至少两个辅助波 束天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个辅助波束天 线的等效信道的下行 CQI,判断是否使用所述至少两个辅助波束天线中任一辅 助波束天线为所述接收端服务。
另一种可选的实施方式, 所述第一码本子集约束指令携带至少两个 PMI, 所述 RANK与所述至少两个 PMI中的各个 PMI分别指向至少两个第二约束码 的等效信道的下行信道质量;
处理器 1101根据所述混合导频信号、 所述第一码本子集约束指令以及所 述预设导频信号获取指定天线的等效信道的下行信道质量具体可以为:
根据所述 RANK和至少两个 PMI分别获取所述至少两个第二约束码本矩 阵;
根据所述混合导频信号、所述至少两个第二约束码本矩阵以及所述各个预 设导频信号, 获取所述至少两个辅助波束天线的等效信道的下行信道质量; 处理器 1101根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息具体可以为:
根据所述至少两个辅助波束天线的等效信道的下行信道质量,获取所述至 少两个辅助波束天线的等效信道的下行 CQI;
根据所述至少两个辅助波束天线的等效信道的下行 CQI,在所述至少两个 辅助波束天线中确定目标辅助波束天线;
向所述发送端反馈的所述信道质量反馈消息包括所述目标辅助波束天线 的 PMI, 以使所述发送端根据所述 PMI判定使用所述目标辅助波束天线为所 述接收端服务。
进一步地, 处理器 1101根据所述指定天线的等效信道的下行信道质量向 所述发送端反馈信道质量反馈消息之后, 还执行以下操作:
接收所述发送端发送的第二码本子集约束指令,所述第二码本子集约束指 令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩阵用于 获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
根据所述 RANK和 PMI获取所述第三约束码本矩阵;
根据所述混合导频信号、 所述第三约束码本矩阵以及所述预设导频信号, 获取所述至少两个宏站天线空间复用后的等效信道的下行信道质量;
根据所述至少两个宏站天线空间复用后的等效信道的下行信道质量,获取 所述至少两个宏站天线的等效信道的下行 CQI;
向所述发送端反馈信道质量反馈消息,所述信道质量反馈消息包括所述至 少两个宏站天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个宏 站天线的等效信道的下行 CQI,判断是否使用所述至少两个宏站天线中的任一 宏站天线为所述接收端服务。
再进一步地, 处理器 1101接收所述发送端发送的第一码本子集约束指令 之前, 还可以执行以下操作:
向所述发送端发射探测参考信号,以使所述发送端根据所述探测参考信号 确定所述接收端满足使用所述至少两个辅助波束天线中任意辅助波束天线的 初始条件。
另一种可选的实施方式, 处理器 1101接收所述发送端发送的第一码本子 集约束指令之前, 还执行以下操作:
向所述发送端发送探测参考信号,以使所述发送端根据所述探测参考信号 确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与复用天线波束空间复用后的等效信道的下行信道质量;
处理器 1101根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息具体可以为:
根据所述 RANK和 PMI获取所述第四约束码本矩阵;
根据所述混合导频信号、 所述第四约束码本矩阵以及所述预设导频信号, 获取所述主波束的等效信道的下行信道质量和所述复用天线波束的等效信道 的下行信道质量;
处理器 1101根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息具体可以为:
根据所述主波束的等效信道的下行信道质量获取所述主波束的等效信道 的下行 CQI,并根据所述复用天线波束的等效信道的下行信道质量获取所述复 用天线波束的等效信道的下行 CQI;
向所述发送端反馈的所述信道质量反馈消息中包括所述主波束和所述复 用天线波束的等效信道的下行 CQI,以使所述发送端根据所述主波束和所述复 用天线波束的等效信道的下行 CQI,判断是否使用所述主波束和所述复用天线 波束为所述接收端服务。
可理解的是, 本实施例的接收端 1100的各功能模块的功能可根据下述方 法实施例中的方法具体实现,可以具体对应参考图 12至图 17方法实施例的相 关描述, 此处不再赘述。 请参阅图 12, 图 12是本发明实施例提供的一种下行信道质量测量方法的 流程示意图。 本发明实施例提供的发送端包括室内基站或室外基站。 如图 12 所示本实施例中的下行信道质量测量流程可以包括:
步骤 S1201 ,发送端分别通过至少两个物理天线向接收端发射至少两个混 合导频信号, 所述至少两个 混合导频信
频信号通过预编码加权矩阵加权后获得。
假设, 预编码加权矩阵 Γ的具体值如矩阵(2 ) 所示, 逻辑天线 Portl5、 Portl6、 Port 17 和 Portl8分别对应的预设导频信号为 sP。 。 , 则所述各个预设导频信号经过所述预编码加权矩阵加权之后的混合导频信号 可以如矩阵(3 ) 所示, 如果, 物理天线与逻辑天线的对应关系为: beamO对 应 Port 15, beam 1对应 Port 15, macroO对应 Portl7, macro 1对应 Portl8, 则所 述各个物理天线对应的混合导频信号分别为: beamO对应第一列混合导频信 号, beaml对应第二列混合导频信号, macroO对应第三列混合导频信号, macrol 对应第四列混合导频信号。
Figure imgf000035_0001
°Port l5 °Port l6 °Port I7 °Portl8
_ Q
Sportte - s Port 17 °Portl8
_ Q ( 3 )
- s Port 16 °Port I7 °Portl8
°Port l5 - s Port 16 - s Port 17 °Portl8
具体地, 发送端可以预先生成混合导频信号, 然后, 发送端每隔预设周期 号; 发送端也可以每隔预设周期生成所述各个混合导频信号,再通过自身各个 物理天线分别发射所述各个物理天线对应的混合导频信号。
其中,发送端与接收端预先可以存储所述预设导频信号,接收端存储的预 设导频信号可以是发送端指示所述接收端生成的。
步骤 S1202, 发送端向所述接收端发送第一码本子集约束指令, 所述第一 码本子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使 所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述预设 导频信号获取指定天线的等效信道的下行信道质量。 发送端和接收端预先可以配置多个约束码本矩阵,接收端可以根据约束码 本矩阵获取指定天线的等效信道,约束码本矩阵由 RANK和 PMI确定,其中, RANK表示独立的虚拟信道的数目, 例如, 4发 2收的天线系统, 在不同的信 道环境下, 其天线的层数可能是 1或者 2, 最大不会超过接收和发送两端天线 数目的最小值, 也就是说, RANK的最大值为 2。
具体的,发送端可以向接收端发送第一码本子集约束指令, 所述第一码本 子集约束指令携带 RANK和至少一个 PMI, 以使所述接收端根据所述 RANK 和 PMI获取与所述 PMI对应的约束码本矩阵, 并根据所述约束码本矩阵以及 所述至少两个混合导频信号获取指定天线的等效信道,且根据所述预设导频信 号获取去导频序列,接收端再根据所述去导频序列去除所述指定天线的等效信 道的预设导频信号, 从而获取所述指定天线的等效信道的下行信道质量。 码加权矩阵加权后映射到物理天线上,再通过所述至少两个物理天线发射,接 收端等效的信号接收模型可以表达为:
Y = HrSCSI + N
「SBeamO
h 11BueamO h 11Bueaml h 11MuacroO h 11Muacrol Beaml ^
AntO ^
^BeamO ^Beaml ^MacroO ^Macrol Macro
Antl
Macro _
其中, H为发送端到接收端的等效信道, h的上标为接收端的接收天线, 下标为发送端的发射天线, Γ为预编码加权矩阵, ^ 为发送端的每个逻辑天 线对应的预设导频信号。
接收端可以使用约束码本矩阵获取指定天线的等效信道,其等效信道表达 式为: Heff = HT W, 其中, W为约束码本矩阵。
如果, 接收端要获取部分物理天线(如两个物理天线)的等效信道, 那么 rw需要满足类似如下的关系:
Figure imgf000037_0001
对于 rw矩阵最后的列向量, 每列只有一个非零元素, 且两个非 0元素的 行向量索引必须不同。 因此,存在7=WHri = WlH ,且 和^ 必须都是 W。和 的正交向量, 而^和 不一定要正交。
如果, 接收端要获取某个单发物理天线的等效信道, 那么 rw需要满足类 似如下的关系:
1
rw
Figure imgf000037_0005
其中, =wQ, r1 ? τ2和 ^ 必须是 wQ的正交向量, 而 和 不一定要正交。 也就是说, 接收端可以使用指定约束码本矩阵获取指定天线的等效信道。 若所述第一码本子集约束指令携带的 RANK和 PMI指向第一约束码本矩 阵, 如矩阵(4) 所示, 则接收端获取得到的等效信道为:
Figure imgf000037_0002
Η eff ΗΓ Ws
Figure imgf000037_0003
0 1
Be mO 1 0
M crol 0 0
0 0
Figure imgf000037_0004
也就是说, 接收端可以根据所述第一约束码本矩阵获取辅助波束天线 beamO和 beaml空间复用后的等效信道。 若所述第一码本子集约束指令携带两个 PMI,所述 RANK与其中一个 PMI 指向其中一个第二约束码本矩阵, 如矩阵(5 ) 所示, 所述 RANK和另一个
PMI指向另一个第二约束码本矩阵: 如矩阵(6 )所示, 则接收端分别获取的 等效信道表达式为:
Figure imgf000038_0001
H PmiO ΗΓ Wn
Figure imgf000038_0003
Figure imgf000038_0002
H Pmi8 Hr Ws
Figure imgf000039_0001
也就是说, 接收端可以根据矩阵(5 )获取辅助波束天线 beamO的等效信 道, 可以根据矩阵(6 )获取辅助波束天线 beaml的等效信道。
步骤 S1203,发送端接收所述接收端根据所述指定天线的等效信道的下行 信道质量反馈的信道质量反馈消息。
一种可选的实施方式,所述信道质量反馈消息可以包括至少两个辅助波束 天线空间复用后的等效信道的下行 CQI (channel quality indication,信道质量指 示)。 具体的, 接收端可以根据至少两个辅助波束天线空间复用后的等效信道 的下行信道质量, 获取所述至少两个辅助波束天线的等效信道的下行 CQI, 再 将所述至少两个辅助波束天线的等效信道的下行 CQI通过所述信道质量反馈 消息反馈给所述发送端。
另一种可选的实施方式,所述信道质量反馈消息还可以包括目标辅助波束 天线的 PMI。具体的,接收端可以根据至少两个辅助波束天线的等效信道的下 行信道质量, 获取所述至少两个辅助波束天线的等效信道的下行 CQI, 再将最 大值下行 CQI对应的辅助波束天线确定为目标辅助波束天线, 并将所述目标 辅助波束天线对应的 PMI通过所述信道质量反馈消息反馈给所述发送端。
进一步的,所述信道质量反馈消息还可以包括至少两个宏站天线空间复用 后的等效信道的下行 CQI。 具体的,接收端可以根据至少两个宏站天线空间复 用后的等效信道下行信道质量,获取所述至少两个宏站天线的等效信道的下行 CQI,再将所述至少两个宏站天线的等效信道的下行 CQI通过所述信道质量反 馈消息反馈给所述发送端。
再一种可选实施方式,所述信道质量反馈消息可以包括主波束的等效信道 的下行 CQI和复用天线波束的等效信道的下行 CQI。
实施本发明实施例,发送端可以分别通过至少两个物理天线向接收端发射 至少两个混合导频信号以及码本子集约束指令,所述至少两个混合导频信号分 码加权矩阵加权后获得, 以使接收端根据接收到的混合导频信号、码本子集约 束指令以及预设导频信号获取指定天线的等效信道的下行信道质量并反馈给 发送端, 发送端从而可以精确地获取指定天线的等效信道的下行信道质量。 请参阅图 13, 图 13是本发明实施例提供的一种波束选择方法的流程示意 图。本发明实施例提供的波束选择方法是从接收端与发送端进行描述的, 所述 发送端为室外基站, 所述接收端可以包括手机、 PAD 或笔记本电脑等终端。 本实施例提供的波束选择流程可以包括:
步骤 S1301 ,发送端分别通过至少两个物理天线向接收端发射至少两个混
频信号通过预编码加权矩阵加权后获得。
步骤 S1302, 发送端向所述接收端发送第一码本子集约束指令, 所述第一 码本子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使 所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述预设 导频信号获取指定天线的等效信道的下行信道质量。
可选的,发送端向所述接收端发送第一码本子集约束指令之前, 所述发送 端可以通过所述至少两个物理天线分别接收所述接收端的探测参考信号,根据 第二预设时间段内接收的所述探测参考信号,获取所述至少两个物理天线分别 述接收端的接收功率, 确定所述接收端满足使用辅助波束天线的初始条件。 具体实现中,接收端可以周期性的发送探测参考信号,发送端的至少两个 物理天线中的各个物理天线可以接收所述接收端的探测参考信号,发送端可以 将各个物理天线最近一次接收的探测参考信号的信号强度作为所述各个物理 天线的分别针对所述接收端的接收功率;接收端也可以将各个物理天线在第二 预设时段内接收的探测参考信号的信号强度进行统计平均,将所述统计平均结 果作为所述各个物理天线分别针对所述接收端的接收功率;若发送端根据所述 接收功率判定所述接收端满足使用辅助波束天线的初始条件,发送端才向所述 接收端发送所述第一码本子集约束指令, 否则,发送端判定使用宏站天线为所 述接收端服务, 提高了波束选择效率。 少两个混合导频信号。
接收端实时检测公共导频信道, 若检测到所述混合导频信号, 所述接收端 则接收所述混合导频信号。
需要指出的是,步骤 S1303与步骤 S1302的先后顺序可以不限定,也就是 说, 步骤 S1303可以在步骤 S1302之前执行, 步骤 S 1403与步骤 S 1402也可 以同时执行, 本发明不做限定。
步骤 S1304, 接收端接收所述第一码本子集约束指令, 并根据所述 RANK 和 PMI获取所述第一约束码本矩阵。
接收端与发送端预先可以存储 RANK和 PMI与约束码本矩阵之间的对应 关系, 当接收端接收到第一码本子集约束指令时,接收端可以在所述对应关系 中获取所述 RANK和 PMI指向的第一约束码本矩阵, 若预编码加权矩阵如矩 阵(2 )所示, 则第一约束码本矩阵可以如矩阵(4 )所示, 其中, 发送端与接 收端中 RANK和 PMI与约束码本矩阵之间的对应关系应该相同。
步骤 S1305,接收端根据所述混合导频信号和第一约束码本矩阵获取所述 至少两个辅助波束天线空间复用后的等效信道。
若第一约束码本矩阵如矩阵(4 )所示, 则接收端获取得到的等效信道为: H ff = Hr W8
Figure imgf000042_0001
LBe ml ^BeamO
1
LBe ml ¾eam0 步骤 S1306, 接收端根据所述至少两个辅助波束天线的等效信道, 获取所 述至少两个辅助波束天线的等效信道的下行信道质量。 对应的预设导频信号获取对应的去导频序列,接收端可以根据去导频序列去除 获取得到的等效信道中的混合导频信号,从而获得所述各个辅助波束天线的等 效信道的下行信道质量。
步骤 S1307,接收端根据所述至少两个辅助波束天线的等效信道的下行信 道质量, 获取所述至少两个辅助波束天线的等效信道的下行 CQI, 并将所述下 行 CQI通过所述信道质量反馈消息发送给所述发送端。
具体的,接收端可以根据所述各个辅助波束天线的等效信道的下行信道质 量获取各个辅助波束天线的等效信道的信干噪比,根据香农公式从而可以获取 所述各个辅助波束天线的等效信道的下行 CQI,接收端再将所述各个辅助波束 天线的等效信道的下行 CQI通过所述信道质量反馈消息发送给所述发送端。
步骤 S1308,发送端根据所述信道质量反馈消息中的下行 CQI判断是否使 用所述至少两个辅助波束天线中的任一辅助波束天线为所述接收端服务。
优选的, 若各个辅助波束天线的等效信道的下行 CQI 中存在大于第一预 一辅助波束天线为所述接收端服务。 可选的, 若各个辅助波束天线的等效信道的下行 CQI都大于所述第一预 天线为所述接收端服务。
进一步的, 若发送端确定使用辅助波束天线为所述接收端服务,发送端可 以根据辅助波束天线的等效信道的下行 CQI,在所述各个辅助波束天线中确定 出目标辅助波束天线为所述接收端服务。
其中, 所述目标辅助波束天线可以为最大下行 CQI对应的辅助波束天线, 也可以是任意一个辅助波束天线。
本发明实施例中,当发送端需要获取各个辅助波束天线空间复用后的等效 信道的下行 CQI时,发送端可以向接收端发送携带的 PMI和 RANK的第一码 本子集约束指令, 所述 PMI和 RANK指向第一约束码本矩阵, 所述接收端则 可以根据接收到的混合导频信号、第一约束码本矩阵以及预设导频信号获取各 个辅助波束天线的等效信道的下行信道质量并反馈给发送端,发送端则可以根 据各个辅助波束天线的等效信道的下行 CQI判断是否使用所述各个辅助波束 天线中任一辅助波束天线为所述接收端服务,使得发送端可以为接收端选择合 适的服务波束, 提高了信号质量。 请参阅图 14, 图 14是本发明实施例提供的另一种波束选择方法的流程示 意图。本发明实施例提供的波束选择方法是从接收端与发送端进行描述的, 所 述发送端为室外基站, 所述接收端可以包括手机、 PAD或笔记本电脑等终端。 本实施例提供的波束选择流程可以包括:
步骤 S1401 ,发送端通过所述至少两个物理天线分别接收所述接收端的探 测参考信号。
步骤 S1402, 发送端根据第二预设时间段内接收的所述探测参考信号, 获 取所述至少两个物理天线分别针对所述接收端的接收功率。
接收端可以周期性的发送探测参考信号,发送端可以将至少两个物理天线 中各个物理天线最近一次接收的探测参考信号的信号强度作为所述各个物理 天线的分别针对所述接收端的接收功率;接收端也可以将各个物理天线在第二 预设时段内接收的探测参考信号的信号强度进行统计平均,将所述统计平均结 果作为所述各个物理天线分别针对所述接收端的接收功率。 收功率, 确定所述接收端满足使用辅助波束天线的初始条件。
若 BeamO接收到的针对所述接收端的接收功率与 Beaml接收到的针对所 述接收端的接收功率的差值满足第一预设功率门限值, 和 /或任意一个辅助波 束天线接收到的针对所述接收端的接收功率与任意一个宏站天线接收到的针 对所述接收端的接收功率的差值满足第二预设功率门限值,发送端则判定所述 接收端满足使用所述辅助波束天线的初始条件。
需要说明的是,本发明实施例在发送端确定接收端满足使用辅助波束天线 的初始条件下, 才执行步骤 S1404, 在其他可选实施例中, 发送端可以直接执 行步骤 S1404。
步骤 S1404,发送端分别通过至少两个物理天线向接收端发射至少两个混
频信号通过预编码加权矩阵加权后获得。
步骤 S1405, 发送端向所述接收端发送第一码本子集约束指令, 所述第一 码本子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使 所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述预设 导频信号获取指定天线的等效信道的下行信道质量。
步骤 S1406,接收端接收所述至少两个物理天线发射的所述至少两个混合 导频信号。
接收端实时检测公共导频信道, 若检测到所述混合导频信号, 所述接收端 则接收所述混合导频信号。
步骤 S1407, 接收端接收所述第一码本子集约束指令, 并根据所述 RANK 与所述各个 PMI分别获取与各个 PMI对应的至少两个第二约束码本矩阵。
所述第一码本子集约束指令以携带两个 PMI为例, 接收端与发送端预先 可以存储 RANK和 PMI与约束码本矩阵之间的对应关系, 当接收端接收到第 一码本子集约束指令时, 接收端根据 RANK与其中一个 PMI获取其中一个第 二约束码本矩阵, 根据 RAN与另一个 PMI获取另一个第二约束码本矩阵, 若 预编码加权矩阵如矩阵(2)所示, 则两个第二约束码本矩阵可以如矩阵(5) 和矩阵( 6 )所示, 其中, 发送端与接收端中 RANK和 PMI与约束码本矩阵之 间的对应关系应该相同。
步骤 S1408, 接收端根据接收到的混合导频信号、 所述至少两个第二约束 码本矩阵分别获取所述各个辅助波束天线的等效信道。
若第二约束码本矩阵如矩阵( 5 )所示, 则接收端获取得到的等效信道为:
H PmiO
Figure imgf000045_0001
若第二约束码本矩阵如矩阵( 6 )所示: 则接收端获取得到的等效信道为
HLmi8 =HrW0
1 1 1 1
h BeamO h Beaml h Macrol 1 1 -1 -1
-1 1 -1
-1 -1 1
Figure imgf000045_0003
Figure imgf000045_0002
即接收端可以根据两个第二约束码本矩阵分别获取辅助波束天线 beamO 和辅助波束天线 beaml的等效信道。
步骤 S1409, 接收端根据所述至少两个辅助波束天线的等效信道, 分别获 取所述各个辅助波束天线的等效信道的下行信道质量。
具体的, 接收端可以根据辅助波束天线 beamO对应的预设导频信号获取 对应的去导频序列, 接收端可以根据去导频序列去除 beamO 的等效信道中的 混合导频信号, 从而获得辅助波束天线 beamO 的等效信道的下行信道质量; 接收端可以根据辅助波束天线 beaml 对应的预设导频信号获取对应的去导频 序列, 接收端可以根据去导频序列去除 beaml的等效信道中的混合导频信号, 从而获得辅助波束天线 beaml的等效信道的下行信道质量。
步骤 S1410,接收端根据所述至少两个辅助波束天线的等效信道的下行信 道质量获取所述至少两个辅助波束天线的等效信道的下行 CQI。
具体的,接收端可以根据所述各个辅助波束天线的等效信道的下行信道质 量获取各个辅助波束天线的等效信道的信干噪比,根据香农公式从而可以获取 所述各个辅助波束天线的等效信道的下行 CQI。 波束天线, 并将所述目标辅助波束天线对应的 PMI通过信道质量反馈消息发 送给所述发送端。
步骤 S1412,发送端根据所述 PMI识别出所述目标辅助波束天线,并确定 使用所述目标辅助波束天线为所述接收端服务。
本发明实施例中, 发送端可以向接收端发送携带至少两个 PMI的第一码 本子集约束指令, 所述至少两个 PMI分别与 RANK指向至少两个第二约束码 本矩阵, 所述接收端则可以根据接收到的混合导频信号、至少两个第二约束码 本矩阵以及各个预设导频信号, 获取各个辅助波束天线的等效信道的下行
请参阅图 15, 图 15是本发明实施例提供的一种移动性管理方法的流程示 意图。 本发明实施例提供的移动性管理方法是在从接收端与发送端进行描述 行的, 也就是说, 本发明实施例可以在图 13或图 14出示的流程的基础上, 进 一步执行的流程。 所述发送端为室外基站, 所述接收端可以包括手机、 PAD 或笔记本电脑等终端。 本实施例提供的移动性管理流程可以包括:
步骤 S 1501,发送端在第一预设时间段内记录目标辅助天线的等效信道的 下行 CQI。
所述目标辅助波束天线是当前为接收端服务的辅助波束天线,当发送端确 定使用目标辅助波束天线为接收端服务时,发送端则使用目标辅助波束天线为 接收端服务,并记录在第一预设时间段内所述目标辅助波束天线的等效信道的 下行 CQI。
步骤 S1502,发送端分别通过至少两个物理天线向接收端发射至少两个混
频信号通过预编码加权矩阵加权后获得。
步骤 S1503, 发送端向所述接收端发送第二码本子集约束指令, 所述第二 码本子集约束指令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约 束码本矩阵用于获取至少两个宏站天线空间复用后的等效信道的下行信道质 在发送端确定使用目标辅助波束天线为接收端服务之后,且目标辅助波束 天线的服务时长达到第一预设时间段,当发送端分别通过至少两个物理天线向 接收端发射至少两个混合导频信号时,发送端则向接收端发送第二码本子集约 束指令。 合导频信号。
接收端实时检测公共导频信道, 若检测到所述混合导频信号, 所述接收端 则接收所述混合导频信号。
步骤 S1505, 接收端接收所述第二码本子集约束指令, 并根据所述 RANK 和 PMI获取所述第三约束码本矩阵。
接收端与发送端预先可以存储 RANK和 PMI与约束码本矩阵之间的对应 关系, 当接收端接收到第二码本子集约束指令时,接收端可以在所述对应关系 中获取所述 RANK和 PMI指向的第三约束码本矩阵, 若预编码加权矩阵如矩 阵(2 )所示, 则第三约束码本矩阵可以如矩阵(7 )所示, 其中, 发送端与接 收端中 RANK和 PMI与约束码本矩阵之间的对应关系应该相同。
一 ιΊ
Figure imgf000048_0001
步骤 S1506,接收端根据所接收到的混合导频信号和所述第三约束码本矩 阵获取所述各个宏站天线空间复用后的等效信道。 若第三约束码本矩阵如矩阵(7 )所示, 则接收端获取得到的等效信道为: H„ = ΗΓ W.
Figure imgf000048_0002
步骤 S1507,接收端根据所述至少两个宏站天线中各个宏站天线的等效信 道, 获取所述各个宏站天线的等效信道的下行信道质量。
具体的,接收端可以根据各个宏站天线对应的预设导频信号获取对应的去 导频序列,接收端可以根据去导频序列去除获取得到的等效信道中的混合导频 信号, 从而获得所述各个宏站天线等效信道的下行信道质量。 步骤 S1508,接收端根据所述各个宏站天线的等效信道的下行信道质量获 取所述宏站天线的等效信道的下行 CQI, 并将所述下行 CQI通过所述信道质 量反馈消息发送给所述发送端。
具体的,接收端可以根据所述各个宏站天线的等效信道的下行信道质量获 取各个宏站天线的等效信道的信干噪比,根据香农公式从而可以获取所述各个 宏站天线的等效信道的下行 CQI,接收端再将所述各个宏站天线的等效信道的 下行 CQI通过所述信道质量反馈消息发送给所述发送端。
步骤 S1509,发送端根据所述各个宏站天线的等效信道的下行 CQI获取所 述各个宏站天线的等效信道的下行频谱效率,且根据所述第一预设时间段内记 录的目标辅助波束天线的等效信道的下行 CQI计算所述辅助波束天线的等效 信道的下行谱效率。
其中, 下行频谱效率为单位频带内的码元传输效率, 所述第一预设时间内 记录的可以是最近一次记录的或者最近几次记录的平均值。
步骤 S1510,发送端根据所述各个宏站天线的等效信道的下行频谱效率和 所述目标辅助波束天线的等效信道的下行语效率,判断是否使用所述至少两个 宏站天线中任一宏站天线为所述接收端服务。
优选的,若所述目标辅助波束天线的下行频谱效率小于所有宏站天线的下 行频谱效率的预设比例门限,所述发送端则判定使用所述至少两个宏站天线中 的任一宏站天线为所述接收端服务, 否则,发送端继续使用所述目标辅助波束 天线为所述接收端服务。
可选的,若所述目标辅助波束天线的下行频谱效率小于所述至少两个宏站 天线中任一宏站天线的下行频谱效率的预设比例门限,所述发送端则判定使用 所述至少两个宏站天线中任一宏站天线为所述接收端服务, 否则,发送端继续 使用目标辅助波束天线为所述接收端服务。
其中, 若发送端确定继续使用目标辅助波束天线为所述接收端服务时,发 送端需要将 RANK和 PMI设置回改变前的状态, 即使 RANK和 PMI指向用 于获取至少两个辅助波束天线空间复用后的等效信道的下行信道质量的第一 约束码本矩阵。 本发明实施例中, 当发送端在使用辅助波束天线为接收端服务时,发送端 可以向接收端发送第二码本子集约束指令, 第二码本子集约束指令中的 PMI 和 RANK指向第三约束码本矩阵,接收端则可以根据接收到的混合导频信号、 第三约束码本矩阵以及各个宏站天线对应的预设导频信号,获取各个宏站天线 的等效信道的下行 CQI,发送端可以根据所述各个宏站天线的等效信道的下行 CQI和第一预设时间段内记录的辅助波束天线的等效信道的下行 CQI,判断是 否使用至少两个宏站天线中的任一宏站天线为所述接收端服务,针对正在移动 的接收端, 发送端可以自适应的切换天线, 从而增强了用户体验。 请参阅图 16, 图 16是本发明实施例提供的另一种移动性管理方法的流程 示意图。 本发明实施例提供的移动性管理方法是从接收端与发送端进行描述 的。 所述发送端为室外基站, 所述接收端可以包括手机、 PAD 或笔记本电脑 等终端。 本实施例提供的移动性管理流程可以包括:
步骤 S1601 ,发送端根据预设周期在预设的两个预编码加权矩阵中获取第 一预编码加权矩阵。
发送端可以预先设置两个预编码加权矩阵,其中第一预编码加权矩阵与第 下行信道质量进行测量,第二预编码加权矩阵与第二约束码本矩阵可以实现对 至少两个宏站天线空间复用后的等效信道的下行信道质量进行测量。
假设, 物理天线的排列顺序为 macro0、 macro 1 , beamO和 beaml, 第一预 编码加权矩阵 ΓΒ如矩阵(8 )所示, 第一约束码本矩阵 W8如矩阵(9 )所示, 第二预编码加权矩阵 FM如矩阵( 10 )所示,第二约束码本矩阵 W2如矩阵( 11 )
Figure imgf000050_0001
Figure imgf000051_0001
码加权矩阵与第一约束码本矩阵可以实现对辅助波束天线空间复用后的等效 信道的下行信道质量进行测量;
rMw 2 _
Figure imgf000051_0002
编码加权矩阵与第二约束码本矩阵可以实现对宏站天线空间复用后的下行信 道质量进行测量; 并且
Figure imgf000052_0001
也就是说, 只有特定的预编码加权矩阵与约束码本矩阵,接收端才可以对 指定天线的等效信道进行测量。
所述预设周期可以是 CSI-RS的发射周期, 例如, 5ms, 发送端可以先获 取第一预编码加权矩阵,再根据预设周期获取第二预编码加权矩阵; 发送端也 可以先获取第二预编码加权矩阵, 再根据预设周期获取第一预编码加权矩阵, 本发明不做限定。
步骤 S1602,发送端将至少两个逻辑天线对应的预设导频信号通过所述第 一预编码加权矩阵进行加权, 从而获取至少两个混合导频信号。
发送端根据所获取的第一预编码加权矩阵对逻辑天线对应的预设导频信 号进行加权, 从而获得多个混合导频信号, 所述预设导频信号包括 CSI-RS。 应关系,将所述至少两个混合导频信号分别映射到所述至少两个物理天线, 并 通过所述至少两个物理天线向接收端发射所述至少两个混合导频信号。
本发明实施例中,发送端每隔预设周期都需要获取对应的预编码加权矩阵 对预设导频信号进行预加权, 再映射到各个物理天线。 在其他可选实施例中, 发送端可以预先获取至少两个混合导频信号,每隔预设周期直接获取所述至少 两个混合导频信号,也就是说,发送端不需要在每个预设周期中都对预设导频 信号进行加权。
步骤 S1604, 发送端向接收端发送第一码本子集约束指令, 所述第一码本 子集约束指令携带的 RANK和 PMI指向第一约束码本矩阵。 步骤 S1605,接收端接收所述至少两个物理天线发射的所述至少两个混合 导频信号。
步骤 S1606, 接收端接收所述第一码本子集约束指令, 并根据所述 RANK 和 PMI获取所述第一约束码本矩阵。
步骤 S1607,接收端根据所述混合导频信号和所述第一约束码本矩阵获取 至少两个辅助波束天线空间复用后的等效信道。
步骤 S1608,接收端根据所述等效信道获取所述至少两个辅助波束天线的 等效信道的下行信道质量。
步骤 S1609,接收端根据所述至少两个辅助波束天线的等效信道的下行信 道质量, 获取所述至少两个辅助波束天线的等效信道的下行 CQI, 并将所述下 行 CQI通过信道质量反馈消息发送给所述发送端。
步骤 S1610,发送端根据所述信道质量反馈消息获取所述至少两个辅助波 束天线的等效信道的下行 CQI。 中获取第二预编码加权矩阵。
步骤 S1612,发送端将至少两个逻辑天线对应的预设导频信号通过所述第 二预编码加权矩阵进行加权, 从而获取至少两个混合导频信号。 应关系,将所述至少两个混合导频信号分别映射到所述至少两个物理天线, 并 通过所述至少两个物理天线向接收端发射所述至少两个混合导频信号。
步骤 S1614, 发送端向接收端发送第二码本子集约束指令, 所述第二码本 子集约束指令携带的 RANK和 PMI指向第二约束码本矩阵。
步骤 S1615,接收端接收所述至少两个物理天线发射的所述至少两个混合 导频信号。
步骤 S1616, 接收端接收所述第二码本子集约束指令, 并根据所述 RANK 和 PMI获取所述第二约束码本矩阵。
步骤 S1617,接收端根据所述混合导频信号和所述第二约束码本矩阵获取 至少两个宏站天线空间复用后的等效信道。 步骤 S1618,接收端根据所述等效信道获取所述至少两个宏站天线的等效 信道的下行信道质量。
步骤 S1619,接收端根据所述至少两个宏站天线的等效信道的下行信道质 量, 获取所述至少两个宏站天线的等效信道的下行 CQI, 并将所述下行 CQI 通过信道质量反馈消息发送给所述发送端。
步骤 S1620, 发送端根据所述至少两个宏站天线的等效信道的下行 CQI 和所述至少两个辅助波束天线的等效信道的下行 CQI,判断是否使用所述至少 两个宏站天线中任一宏站天线为所述接收端服务。
发送端可以根据各个至少两个宏站天线的等效信道的下行 CQI,获取至少 两个宏站天线的等效信道的下行频谱效率,根据所述至少两个辅助波束天线的 等效信道的下行 CQI, 获取至少两个辅助波束天线的等效信道的下行频谱效 下行频谱效率满足以下任意一种情况,发送端则确定使用所述宏站天线中任一 宏站天线为所述接收端服务:
所有的辅助波束天线的等效信道的下行谱效率都小于所有宏站天线的等 效信道的下行频语效率的预设比例门限;
所有的辅助波束天线的等效信道的下行谱效率小于任意一个宏站天线的 等效信道的下行频谱效率的预设比例门限;
任意一个辅助波束天线的等效信道的下行谱效率小于所有宏站天线的等 效信道的下行频语效率的预设比例门限;
任意一个辅助波束天线的等效信道的下行谱效率小于任意一个宏站天线 等效信道的下行频谱效率的预设比例门限。
步骤 S1621, 发送端与接收端重复执行步骤 S1601~步骤 S1620。
预设周期以 5ms为例, 也就是说, 发送端首先可以在 T+Oms时获取第一 预编码加权矩阵, 在 T+5ms时获取第二预编码加权矩阵, 在 T+lOms时可以 获取第一预编码加权矩阵,在 T+15ms时获取第二预编码加权矩阵,以此类推。
需要指出的是, 本发明实施例中,发送端在相邻预设周期发送的码本子集 约束指令不同,在他其他可选实施例中,发送端每个预设周期发送的码本子集 约束指令可以相同,即码本子集约束指令携带 RANK和至少两个 PMI, RANK 和其中一个 PMI指向第一约束码本矩阵, RANK和另一个 PMI指向第二约束 码本矩阵。
在上一实施例中,发送端在使用辅助波束天线为接收端服务的条件下,如 果要测量宏站天线状态下的等效信道的下行信道质量,则需要重新设置 RANK 和 PMI, 使重新设置后的 RANK和 PMI指向用于获取宏站天线空间复用后的 等效信道的约束码本矩阵, 并且,如果发送端判定仍然使用辅助波束天线为接 收端服务时, 发送端还需要重新设置 RANK和 PMI, 并且在重新设置 RANK 和 PMI时, 可能导致信号中断, 相比上一实施例, 在本实施例中, 每个预编 码加权矩阵配置对应的 RANK和 PMI, 发送端只需要周期性地更改预编码加 权矩阵则可以实现对不同状态下的信道信息进行测量,不需要重新设置 RANK 和 PMI, 简化了操作, 并提高了基站的服务质量。 请参阅图 17, 图 17是本发明实施例提供的一种波束选择方法的流程示意 图。本发明实施例提供的波束选择方法是从接收端与发送端进行描述的, 所述 发送端为室内基站, 所述接收端可以包括手机、 PAD 或笔记本电脑等终端。 本实施例提供的波束选择流程可以包括:
步骤 S1701 ,发送端通过至少两个物理天线分别接收接收端的探测参考信 号, 并根据第二预设时间段内接收的所述探测参考信号, 获取所述至少两个物 理天线分别针对所述接收端的接收功率。
在室内环境条件下, 由于每个楼层都会安装多个信号天线, 不同楼层之间 存在着多个服务波束相互干扰的场景,假设每个房间配备一个发射天线, 更复 杂的情形可以以此类推, 通常, 为了使信号更好地覆盖房间内的各个位置, 发 射天线一般自天花板向地面用户方向上发射主波瓣,并附带少许另外方向上的 副波瓣。对每一楼层某个特定房间来说, 主要干扰可能来自于上一楼层房间的 天线信号穿过天花板后到达本楼层的用户设备,下一楼层天线信号经地面折射 后再穿透天花板到达本楼层用户设备。另外相邻于该房间的天线信号也会对该 目标房间内的用户设备造成干扰, 如图 18所示, 以上下楼层为例显示干扰产 生示意图。
接收端可以周期性的发送探测参考信号,发送端的各个物理天线可以接收 所述接收端的探测参考信号,发送端可以将各个物理天线最近一次接收的探测 参考信号的信号强度作为所述各个物理天线的分别针对所述接收端的接收功 率;接收端也可以将各个物理天线在第一预设时段内接收的探测参考信号的信 号强度进行统计平均,将所述统计平均结果作为所述各个物理天线分别针对所 述接收端的接收功率。 收功率, 确定所述接收端的主波束和复用天线波束。
以图 18为例, H没所述接收端为 UE2, 则主波束为天线 PI发射的波束。 发送端可以根据 P0、 Pl、 P2以及 P3分别接收的 UE2发送的探测参考信号获 取 P0、 Pl、 P2以及 P3分别针对 UE2的接收功率, 其中, 发送端可以利用路 损互易性,将接收功率最大的天线确定为主波束, 次强接收功率为最强信号干 扰, 假设 P0接收的针对 UE2的接收功率为次强, 发送端则可以将 P0确定为 所述主波束的复用天线波束。
步骤 S1703, 分别通过至少两个物理天线向接收端发射至少两个混合导频
通过预编码加权矩阵加权后获得。
步骤 S1704, 发送端向所述接收端发送第一码本子集约束指令, 所述第一 码本子集约束指令携带的所述 RANK和 PMI指向第四约束码本矩阵, 所述第 四约束码本矩阵用于获取所述主波束与复用天线波束空间复用后的等效信道 的下行信道质量。
若预编码加权矩阵如矩阵(2 )所示, P0、 Pl、 P2、 P3发射的混合导频信 号如矩阵(3 )所示, 则第四约束码本矩阵应该如矩阵(4 )所示, 即第四约束 码本矩阵可以为第一约束码本矩阵。
步骤 S1705,接收端接收所述至少两个物理天线发射的所述至少两个混合 导频信号。 步骤 S1706, 接收端接收所述第一码本子集约束指令, 并根据所述 RANK 和 PMI获取第四约束码本矩阵。
步骤 S1707,接收端根据所述混合导频信号和第四约束码本矩阵获取所述 主波束和所述复用天线波束空间复用后的等效信道。
若第四约束码本矩阵如矩阵(4 )所示, 则接收端获取得到的等效信道为:
Heff = ΗΓ W8
Figure imgf000057_0001
步骤 S1708,接收端根据所述主波束和所述复用天线波束空间复用后的等 效信道, 获取所述主波束和所述复用天线波束等效信道的下行信道质量。
步骤 S1709,接收端根据所述主波束的等效信道的下行信道质量获取所述 主波束的等效信道的下行 CQI,并根据所述复用天线波束的等效信道的下行信 道质量获取所述复用天线波束的等效信道的下行 CQI,并将所述获取得到的下 行 CQI通过所述信道质量反馈消息发送给所述发送端。
步骤 S1710,发送端根据所述主波束和所述复用天线波束的等效信道的下 行 CQI, 判断是否使用所述主波束和所述复用天线波束为所述接收端服务。
优选的, 若主波束和复用天线波束的等效信道的下行 CQI 中存在大于第 二预设阔值的下行 CQI,所述发送端则判定使用主波束和复用天线波束为所述 接收端服务。
可选的, 若主波束和复用天线波束的等效信道的下行 CQI都大于所述第 二预设阈值, 所述发送端则判定使用主波束和复用天线波束为所述接收端服 务。
实施本发明实施例,发送端可以根据接收端发送的探测参考信号确定主波 束的复用天线波束,再通过实施例一的下行信道质量测量方法,发送端可以精 确的获取所述主波束与复用天线波束的等效信道的下行 CQI,从而,发送端可 以准确地判断是否选择所述主波束和所述复用天线波束共同为所述接收端服 务。 请参阅图 19, 图 19是本发明实施例提供的一种下行信道质量测量系统的 结构示意图。本发明实施例提供的下行信道质量测量系统包括发送端和至少一 个接收端, 其中, 所述发送端以及接收端请参阅图 1至图 11对应的实施例, 在此不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种发送端, 其特征在于, 包括:
信号发射模块,用于分别通过至少两个物理天线向接收端发射至少两个混
Figure imgf000059_0001
频频信信号号通通过过预预编编码码加加权权矩矩阵阵加加权权后后获获得得;;
指指令令发发送送模模块块,, 用用于于向向所所述述接接收收端端发发送送第第一一码码本本子子集集约约束束指指令令,, 所所述述第第一一 码码本本子子集集约约束束指指令令携携带带秩秩指指示示 RRAANNKK和和至至少少一一个个预预编编码码矩矩阵阵索索引引 PPMMII,, 以以使使 1100 所所述述接接收收端端根根据据所所述述混混合合导导频频信信号号、、所所述述第第一一码码本本子子集集约约束束指指令令以以及及所所述述预预设设 导导频频信信号号获获取取指指定定天天线线的的等等效效信信道道的的下下行行信信道道质质量量;;
反反馈馈消消息息接接收收模模块块,,用用于于接接收收所所述述接接收收端端根根据据所所述述指指定定天天线线的的等等效效信信道道的的 下下行行信信道道质质量量反反馈馈的的信信道道质质量量反反馈馈消消息息。。
1155 22、、如如权权利利要要求求 11所所述述的的发发送送端端,, 其其特特征征在在于于,, 所所述述 RRAANNKK和和 PPMMII指指向向第第 一一约约束束码码本本矩矩阵阵,,所所述述第第一一约约束束码码本本矩矩阵阵用用于于获获取取至至少少两两个个辅辅助助波波束束天天线线空空间间 复复用用后后的的等等效效信信道道的的下下行行信信道道质质量量;;
所所述述反反馈馈消消息息接接收收模模块块所所接接收收的的信信道道质质量量反反馈馈消消息息包包括括所所述述至至少少两两个个辅辅 助助波波束束天天线线中中各各个个辅辅助助波波束束天天线线的的等等效效信信道道的的下下行行 CCQQII;;
2200 所所述述发发送送端端还还包包括括::
第第一一波波束束判判断断模模块块,,用用于于根根据据所所述述反反馈馈消消息息接接收收模模块块接接收收到到的的所所述述至至少少两两 个个辅辅助助波波束束天天线线的的等等效效信信道道的的下下行行 CCQQII,,判判断断是是否否使使用用所所述述至至少少两两个个辅辅助助波波束束 天天线线中中任任一一辅辅助助波波束束天天线线为为所所述述接接收收端端服服务务。。
2255 33、、 如如权权利利要要求求 22所所述述的的发发送送端端,, 其其特特征征在在于于,, 所所述述第第一一波波束束判判断断模模块块包包
Figure imgf000059_0002
下 行 CQI大于预设阔值的辅助波束天线; 目标辅助波束天线获取单元,用于若所述至少两个辅助波束天线中存在等 效信道的下行 CQI 大于预设阔值的辅助波束天线, 则根据所述至少两个辅助 波束天线的等效信道的下行 CQI,在所述至少两个辅助波束天线中获取目标辅 助天线;
确定单元, 用于确定使用所述目标辅助波束天线为所述接收端服务。
4、 如权利要求 1所述的发送端, 其特征在于, 所述第一码本子集约束指 令携带至少两个 PMI,所述 RANK与所述至少两个 PMI中的各个 PMI分别指 向至少两个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取 至少两个辅助波束天线的等效信道的下行信道质量;
所述反馈消息接收模块所接收的信道质量反馈消息包括目标辅助波束天 线对应的 PMI, 所述目标辅助波束天线是由所述接收端根据所述混合导频信 号、所述至少两个第二约束码本矩阵以及所述各个预设导频信号,从所述至少 两个辅助波束天线中确定得出;
所述发送端还包括:
第二波束判断模块,用于根据所述信道质量反馈消息识别所述目标辅助波 束天线, 并确定使用所述目标辅助波束天线为所述接收端服务。
5、 如权利要求 3或 4任一项所述的发送端, 其特征在于, 还包括: 记录模块,用于记录在第一预设时间段内所述目标辅助天线的等效信道的 下行 CQI;
所述指令发送模块还用于:
向所述接收端发送第二码本子集约束指令,所述第二码本子集约束指令携 带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩阵用于获取 至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述反馈消息接收模块所接收的信道质量反馈消息还包括所述至少两个 宏站天线中各个宏站天线的等效信道的下行 CQI;
所述发送端还包括: 第三波束判断模块, 用于根据所述各个宏站天线的等效信道的下行 CQI 和所述记录的在第一预设时间段内所述目标辅助天线的等效信道的下行 CQI, 判断是否使用所述至少两个宏站天线中任一宏站天线为所述接收端服务。
6、 如权利要求 5所述的发送端, 其特征在于, 所述第三波束判断模块包 括:
频谱效率获取单元, 用于根据所述各个宏站天线的等效信道的下行 CQI 获取所述各个宏站天线的等效信道的下行频谱效率,且根据所述第一预设时间 段内记录的所述目标辅助天线的等效信道的下行 CQI计算所述目标辅助天线 的等效信道的下行频谱效率;
判断单元,用于根据所述各个宏站天线的等效信道的下行频谱效率和所述 目标辅助天线的等效信道的下行频谱效率,判断是否使用所述至少两个宏站天 线中任一宏站天线为所述接收端服务。
7、 如权利要求 1-6任一项所述的发送端, 其特征在于, 还包括: 信号接收模块,用于通过所述至少两个物理天线分别接收所述接收端的探 测参考信号;
接收功率获取模块, 用于根据第二预设时间段内接收的所述探测参考信 号, 获取所述至少两个物理天线分别针对所述接收端的接收功率;
第一确定模块,用于根据所述至少两个物理天线分别针对所述接收端的接 收功率,确定所述接收端满足使用辅助波束天线的初始条件, 当所述信号发射 模块向所述接收端发射混合导频信号后,触发所述指令发送模块向所述接收端 发送第一码本子集约束指令。
8、 如权利要求 1所述的发送端, 其特征在于, 所述发送端还包括: 信号接收模块,用于通过所述至少两个物理天线分别接收所述接收端的探 测参考信号;
接收功率获取模块, 用于根据第二预设时间段内接收的所述探测参考信 号, 获取所述至少两个物理天线分别针对所述接收端的接收功率; 第二确定模块,用于根据所述至少两个物理天线分别针对所述接收端的接 收功率, 确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与所述复用天线波束空间复用后的等效信道的下行信道质量; 所述反馈消息接收模块所接收的信道质量反馈消息包括所述主波束的等 效信道的下行 CQI和所述复用天线波束的等效信道的下行 CQI;
所述发送端还包括:
第四波束判断模块, 用于根据所述主波束的等效信道的下行 CQI和所述 复用天线波束的等效信道的下行 CQI,判断是否使用所述主波束和所述复用天 线波束为所述接收端服务。
9、 一种接收端, 其特征在于, 包括: 合导频信号,所述至少两个混合导频信号分别是将至少两个逻辑天线中各个逻 辑天线对应的预设导频信号通过预编码加权矩阵加权后获得;
指令接收模块, 用于接收所述发送端发送的第一码本子集约束指令, 所述 第一码本子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI; 信道质量获取模块,用于根据所述混合导频信号、所述第一码本子集约束 指令以及所述预设导频信号获取指定天线的等效信道的下行信道质量;
反馈消息发送模块,用于根据所述指定天线的等效信道的下行信道质量向 所述发送端反馈信道质量反馈消息。
10、 如权利要求 9所述的接收端, 其特征在于, 所述 RANK和 PMI指向 第一约束码本矩阵,所述第一约束码本矩阵用于获取至少两个辅助波束天线空 间复用后的等效信道的下行信道质量;
所述信道质量获取模块具体用于:
根据所述 RANK和 PMI获取所述第一约束码本矩阵; 根据所述混合导频信号、 所述第一约束码本矩阵以及所述预设导频信号, 获取所述至少两个辅助波束天线空间复用后的等效信道的下行信道质量; 所述反馈消息发送模块具体用于:
根据所述至少两个辅助波束天线的等效信道的下行信道质量,获取所述至 少两个辅助波束天线的等效信道的下行 CQI;
所述反馈消息发送模块发送的所述信道质量反馈消息包括所述至少两个 辅助波束天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个辅助 波束天线的等效信道的下行 CQI,判断是否使用所述至少两个辅助波束天线中 的任一辅助波束天线为所述接收端服务。
11、 如权利要求 9所述的接收端, 其特征在于, 所述第一码本子集约束指 令携带至少两个 PMI,所述 RANK与所述至少两个 PMI中的各个 PMI分别指 向至少两个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取 至少两个辅助波束天线的等效信道的下行信道质量;
所述信道质量获取模块具体用于:
根据所述 RANK和所述至少两个 PMI分别获取所述至少两个第二约束码 本矩阵;
根据所述混合导频信号、所述至少两个第二约束码本矩阵以及所述各个预 设导频信号, 获取所述至少两个辅助波束天线的等效信道的下行信道质量; 所述反馈消息发送模块具体用于:
根据所述至少两个辅助波束天线的等效信道的下行信道质量,获取所述至 少两个辅助波束天线的等效信道的下行 CQI;
根据所述至少两个辅助波束天线的等效信道的下行 CQI,在所述至少两个 辅助波束天线中确定目标辅助波束天线;
所述反馈消息发送模块发送的所述信道质量反馈消息包括所述目标辅助 波束天线的 PMI, 以使所述发送端根据所述 PMI判断使用所述目标辅助波束 天线为所述接收端服务。
12、 如权利要求 10或 11任一项所述的接收端, 其特征在于, 所述指令接 收模块还用于:
接收所述发送端发送的第二码本子集约束指令,所述第二码本子集约束指 令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩阵用于 获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述信道质量获取模块具体还用于:
根据所述 RANK和 PMI获取所述第三约束码本矩阵;
根据所述混合导频信号、 所述第三约束码本矩阵以及所述预设导频信号, 获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述反馈消息发送模块具体还用于:
根据所述至少两个宏站天线空间复用后的等效信道的下行信道质量,获取 所述至少两个宏站天线的等效信道的下行 CQI;
所述反馈消息发送模块发送的所述信道质量反馈消息还包括所述至少两 个宏站天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个宏站天 线的等效信道的下行 CQI,判断是否使用所述至少两个宏站天线中任一宏站天 线为所述接收端服务。
13、 如权利要求 9-12任一项所述的接收端, 其特征在于, 还包括: 信号发送模块, 用于向所述发送端发送探测参考信号, 以使所述发送端根 据探测参考信号确定所述接收端满足使用所述至少两个辅助波束天线中任意 辅助波束天线的初始条件。
14、 如权利要求 9所述的接收端, 其特征在于, 所述接收端还包括: 信号发送模块, 用于向所述发送端发送探测参考信号, 以使所述发送端根 据所述探测参考信号确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与复用天线波束空间复用后的等效信道的下行信道质量; 所述信道质量获取模块具体用于: 根据所述 RANK和 PMI获取所述第四约束码本矩阵;
根据所述混合导频信号、 所述第四约束码本矩阵以及所述预设导频信号, 获取所述主波束的等效信道的下行信道质量和所述复用天线波束的等效信道 的下行信道质量;
所述反馈消息发送模块具体用于:
根据所述主波束的等效信道的下行信道质量获取所述主波束的等效信道 的下行 CQI,并根据所述复用天线波束的等效信道的下行信道质量获取所述复 用天线波束的等效信道的下行 CQI;
所述反馈消息发送模块向所述发送端反馈的所述信道质量反馈消息包括 所述主波束和所述复用天线波束的等效信道的下行 CQI,以使所述发送端根据 所述主波束和所述复用天线波束的等效信道的下行 CQI,判断是否使用所述主 波束和所述复用天线波束为所述接收端服务。
15、 一种下行信道质量测量方法, 其特征在于, 包括:
发送端分别通过至少两个物理天线向接收端发射至少两个混合导频信号,
编码加权矩阵加权后获得;
所述发送端向所述接收端发送第一码本子集约束指令,所述第一码本子集 约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使所述接收 端根据所述混合导频信号、所述第一码本子集约束指令以及所述预设导频信号 获取指定天线的等效信道的下行信道质量;
所述发送端接收所述接收端根据所述指定天线的等效信道的下行信道质 量反馈的信道质量反馈消息。
16、如权利要求 15所述的方法, 其特征在于, 所述 RANK和 PMI指向第 一约束码本矩阵,所述第一约束码本矩阵用于获取至少两个辅助波束天线空间 复用后的等效信道的下行信道质量; 天线的等效信道的下行信道质量指示 CQI;
所述发送端接收所述接收端根据所述指定天线的等效信道的下行信道质 量反馈的信道质量反馈消息之后, 还包括: 信道的下行 CQI,判断是否使用所述至少两个辅助波束天线中任一辅助波束天 线为所述接收端服务。
17、 如权利要求 16所述的方法, 其特征在于, 所述发送端根据所述至少 两个辅助波束天线中各个辅助波束天线的等效信道的下行 CQI,判断是否使用 所述至少两个辅助波束天线中任一辅助波束天线为所述接收端服务包括:
CQI大于预设阔值的辅助波束天线;
若存在,所述发送端则根据所述至少两个辅助波束天线的等效信道的下行 CQI, 在所述至少两个辅助波束天线中获取目标辅助天线;
18、 如权利要求 15所述的方法, 其特征在于, 所述第一码本子集约束指 令携带至少两个 PMI,所述 RANK与所述至少两个 PMI中的各个 PMI分别指 向至少两个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取 至少两个辅助波束天线的等效信道的下行信道质量;
所述信道质量反馈消息包括目标辅助波束天线对应的 PMI,所述目标辅助 波束天线是由所述接收端根据所述混合导频信号、所述至少两个第二约束码本 矩阵以及所述各个预设导频信号, 从所述至少两个辅助波束天线中确定得出; 所述发送端接收所述接收端根据所述获取得到的指定天线的下行信道质 量反馈的信道质量反馈消息之后, 还包括:
所述发送端根据所述信道质量反馈消息识别所述目标辅助波束天线;
19、 如权利要求 17或 18任一项所述的方法, 其特征在于, 所述发送端确 定使用所述目标辅助波束天线为所述接收端服务之后, 还包括:
所述发送端在第一预设时间段内记录所述目标辅助天线的等效信道的下 行 CQI;
所述发送端向所述接收端发送第二码本子集约束指令,所述第二码本子集 约束指令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码本矩 阵用于获取至少两个宏站天线空间复用后的等效信道的下行信道质量;
所述发送端接收包括所述至少两个宏站天线中各个宏站天线的等效信道 的下行 CQI的信道质量反馈消息;
所述发送端根据所述各个宏站天线的等效信道的下行 CQI和所述第一预 设时间段内记录的所述目标辅助天线的等效信道的下行 CQI,判断是否使用所 述至少两个宏站天线中任一宏站天线为所述接收端服务。
20、 如权利要求 19所述的方法, 其特征在于, 所述发送端根据所述各个 宏站天线的等效信道的下行 CQI和第一预设时间段内记录的所述目标辅助天 线的等效信道的下行 CQI,判断是否使用所述至少两个宏站天线中任一宏站天 线为所述接收端服务包括:
所述发送端根据所述各个宏站天线的等效信道的下行 CQI获取所述各个 宏站天线的等效信道的下行频谱效率,且根据所述第一预设时间段内记录的所 述目标辅助天线的等效信道的下行 CQI计算所述目标辅助天线的等效信道的 下行频语效率;
所述发送端根据所述各个宏站天线的等效信道的下行频谱效率和所述目 标辅助天线的等效信道的下行频谱效率,判断是否使用所述至少两个宏站天线 中任一宏站天线为所述接收端服务。
21、 如权利要求 15-20任一项所述的方法, 其特征在于, 所述发送端向所 述接收端发送第一码本子集约束指令之前, 还包括: 信号; . 、
所述发送端根据第二预设时间段内接收的所述探测参考信号,获取所述至 少两个物理天线分别针对所述接收端的接收功率; 确定所述接收端满足使用辅助波束天线的初始条件。
22、 如权利要求 15所述的方法, 其特征在于, 所述发送端向所述接收端 发送第一码本子集约束指令之前, 还包括: 信号; . 、
所述发送端根据第二预设时间段内接收的所述探测参考信号,获取所述至 少两个物理天线分别针对所述接收端的接收功率; 确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与所述复用天线波束空间复用后的等效信道的下行信道质量; 所述信道质量反馈消息包括所述主波束的等效信道的下行 CQI和所述复 用天线波束的等效信道的下行 CQI;
所述发送端接收所述接收端根据所述指定天线的等效信道的下行信道质 量反馈的信道质量反馈消息之后, 还包括:
所述发送端根据所述主波束的等效信道的下行 CQI和所述复用天线波束 的等效信道的下行 CQI,判断是否使用所述主波束和所述复用天线波束为所述 接收端服务。
23、 一种下行信道质量测量方法, 其特征在于, 包括:
Figure imgf000068_0001
的预设导频信号通过预编码加权矩阵加权后获得;
所述接收端接收所述发送端发送的第一码本子集约束指令,所述第一码本 子集约束指令携带秩指示 RANK和至少一个预编码矩阵索引 PMI;
所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述 预设导频信号获取指定天线的等效信道的下行信道质量;
所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息。
24、如权利要求 23所述的方法, 其特征在于, 所述 RANK和 PMI指向第 一约束码本矩阵,所述第一约束码本矩阵用于获取至少两个辅助波束天线空间 复用后的等效信道的下行信道质量;
所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述 预设导频信号获取指定天线的等效信道的下行信道质量包括:
所述接收端根据所述 RANK和 PMI获取所述第一约束码本矩阵; 所述接收端根据所述混合导频信号、所述第一约束码本矩阵以及所述预设 导频信号,获取所述至少两个辅助波束天线空间复用后的等效信道的下行信道 质量;
所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息包括:
所述接收端根据所述至少两个辅助波束天线的等效信道的下行信道质量, 获取所述至少两个辅助波束天线的等效信道的下行 CQI;
所述接收端向所述发送端反馈的所述信道质量反馈消息中包括所述至少 两个辅助波束天线的等效信道的下行 CQI,以使所述发送端根据所述至少两个 辅助波束天线的等效信道的下行 CQI,判断是否使用所述至少两个辅助波束天 线中任一辅助波束天线为所述接收端服务。
25、 如权利要求 23所述的方法, 其特征在于, 所述第一码本子集约束指 令携带至少两个 PMI,所述 RANK与所述至少两个 PMI中的各个 PMI分别指 向至少两个第二约束码本矩阵,所述至少两个第二约束码本矩阵分别用于获取 至少两个辅助波束天线的等效信道的下行信道质量;
所述接收端根据所述混合导频信号、所述第一码本子集约束指令以及所述 预设导频信号获取指定天线的等效信道的下行信道质量包括:
所述接收端根据所述 RANK和至少两个 PMI分别获取所述至少两个第二 约束码本矩阵;
所述接收端根据所述混合导频信号、所述至少两个第二约束码本矩阵以及 所述各个预设导频信号,获取所述至少两个辅助波束天线的等效信道的下行信 道质量;
所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息包括:
所述接收端根据所述至少两个辅助波束天线的等效信道的下行信道质量, 获取所述至少两个辅助波束天线的等效信道的下行 CQI;
所述发送端根据所述至少两个辅助波束天线的等效信道的下行 CQI,在所 述至少两个辅助波束天线中确定目标辅助波束天线;
所述接收端向所述发送端反馈的所述信道质量反馈消息包括所述目标辅 助波束天线的 PMI, 以使所述发送端根据所述 PMI判定使用所述目标辅助波 束天线为所述接收端服务。
26、 如权利要求 24或 25任一项所述的方法, 其特征在于, 所述接收端根 据所述指定天线的等效信道的下行信道质量向所述发送端反馈信道质量反馈 消息之后, 还包括:
所述接收端接收所述发送端发送的第二码本子集约束指令,所述第二码本 子集约束指令携带的 RANK和 PMI指向第三约束码本矩阵, 所述第三约束码 本矩阵用于获取至少两个宏站天线空间复用后的等效信道的下行信道质量; 所述接收端根据所述 RANK和 PMI获取所述第三约束码本矩阵; 所述接收端根据所述混合导频信号、所述第三约束码本矩阵以及所述预设 导频信号, 获取所述至少两个宏站天线空间复用后的等效信道的下行信道质 量;
所述接收端根据所述至少两个宏站天线空间复用后的等效信道的下行信 道质量, 获取所述至少两个宏站天线的等效信道的下行 CQI;
所述接收端向所述发送端反馈信道质量反馈消息,所述信道质量反馈消息 包括所述至少两个宏站天线的等效信道的下行 CQI,以使所述发送端根据所述 至少两个宏站天线的等效信道的下行 CQI,判断是否使用所述至少两个宏站天 线中的任一宏站天线为所述接收端服务。
27、 如权利要求 23-26任一项所述的方法, 其特征在于, 所述接收端接收 所述发送端发送的第一码本子集约束指令之前, 还包括:
所述接收端向所述发送端发射探测参考信号,以使所述发送端根据所述探 测参考信号确定所述接收端满足使用所述至少两个辅助波束天线中任意辅助 波束天线的初始条件。
28、 如权利要求 23所述的方法, 其特征在于, 所述接收端接收所述发送 端发送的第一码本子集约束指令之前, 还包括:
所述接收端向所述发送端发送探测参考信号,以使所述发送端根据所述探 测参考信号确定所述接收端的主波束和复用天线波束;
所述 RANK和 PMI指向第四约束码本矩阵, 所述第四约束码本矩阵用于 获取所述主波束与所述复用天线波束空间复用后的等效信道的下行信道质量; 所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息包括:
所述接收端根据所述 RANK和 PMI获取所述第四约束码本矩阵; 所述接收端根据所述混合导频信号、所述第四约束码本矩阵以及所述预设 导频信号,获取所述主波束的等效信道的下行信道质量和所述复用天线波束的 等效信道的下行信道质量;
所述接收端根据所述指定天线的等效信道的下行信道质量向所述发送端 反馈信道质量反馈消息包括:
所述接收端根据所述主波束的等效信道的下行信道质量获取所述主波束 的等效信道的下行 CQI,并根据所述复用天线波束的等效信道的下行信道质量 获取所述复用天线波束的等效信道的下行 CQI;
所述接收端向所述发送端反馈的所述信道质量反馈消息中包括所述主波 束和所述复用天线波束的等效信道的下行 CQI,以使所述发送端根据所述主波 束和所述复用天线波束的等效信道的下行 CQI,判断是否使用所述主波束和所 述复用天线波束为所述接收端服务。
29、 一种发送端, 其特征在于, 所述发送端包括无线收发装置、 存储器以 及处理器, 其中, 存储器中存储一组程序代码, 且处理器用于调用存储器中存 储的程序代码, 用于执行以下操作:
分别通过无线收发装置中的至少两个物理天线向接收端发射至少两个混
频信号通过预编码加权矩阵加权后获得;
向所述接收端发送第一码本子集约束指令,所述第一码本子集约束指令携 带秩指示 RANK和至少一个预编码矩阵索引 PMI, 以使所述接收端根据所述 混合导频信号、所述第一码本子集约束指令以及所述预设导频信号获取指定天 线的等效信道的下行信道质量;
通过无线收发装置接收所述接收端根据所述指定天线的等效信道的下行 信道质量反馈的信道质量反馈消息。
30、 一种接收端, 其特征在于, 所述接收端包括无线收发装置、 存储器以 及处理器, 其中, 存储器中存储一组程序代码, 且处理器用于调用存储器中存 储的程序代码, 用于执行以下操作:
导频信号通过预编码加权矩阵加权后获得;
接收所述发送端发送的第一码本子集约束指令,所述第一码本子集约束指 令携带秩指示 RANK和至少一个预编码矩阵索引 PMI;
根据所述混合导频信号、所述第一码本子集约束指令以及所述预设导频信 号获取指定天线的等效信道的下行信道质量;
根据所述指定天线的等效信道的下行信道质量向所述发送端反馈信道质 量反馈消息。
31、 一种下行信道质量测量系统, 其特征在于, 所述系统包括发送端和接 收端, 其中,
所述发送端为如权利要求 1~8任一项所述的发送端;
所述接收端为如权利要求 9~14任一项所述的接收端,
32、一种计算机存储介质,其特征在于,所述计算机存储介质存储有程序, 所述程序执行时包括权利要求 15~22任一项所述的步骤。
33、一种计算机存储介质,其特征在于,所述计算机存储介质存储有程序, 所述程序执行时包括权利要求 23~28任一项所述的步骤。
PCT/CN2014/083354 2014-07-30 2014-07-30 一种下行信道质量测量方法、发送端、接收端和系统 WO2016015260A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14898988.2A EP3154208B1 (en) 2014-07-30 2014-07-30 Method for measuring quality of downlink channel, sending end, receiving end and system
JP2017504686A JP6436371B2 (ja) 2014-07-30 2014-07-30 下りチャネル品質の測定方法、送信端、受信端およびシステム
CN201480009034.5A CN105474555B (zh) 2014-07-30 2014-07-30 一种下行信道质量测量方法、发送端、接收端和系统
EP18212879.3A EP3514979A1 (en) 2014-07-30 2014-07-30 Method for measuring downlink channel quality, transmit end, receive end, and system
KR1020177001954A KR101979125B1 (ko) 2014-07-30 2014-07-30 다운링크 채널 품질을 측정하기 위한 방법, 송신단, 수신단 및 시스템
PCT/CN2014/083354 WO2016015260A1 (zh) 2014-07-30 2014-07-30 一种下行信道质量测量方法、发送端、接收端和系统
US15/416,544 US10122433B2 (en) 2014-07-30 2017-01-26 Method for measuring downlink channel quality, transmit end, receive end, and system
US16/139,238 US10236962B2 (en) 2014-07-30 2018-09-24 Method for measuring downlink channel quality, transmit end, receive end, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083354 WO2016015260A1 (zh) 2014-07-30 2014-07-30 一种下行信道质量测量方法、发送端、接收端和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/416,544 Continuation US10122433B2 (en) 2014-07-30 2017-01-26 Method for measuring downlink channel quality, transmit end, receive end, and system

Publications (1)

Publication Number Publication Date
WO2016015260A1 true WO2016015260A1 (zh) 2016-02-04

Family

ID=55216621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083354 WO2016015260A1 (zh) 2014-07-30 2014-07-30 一种下行信道质量测量方法、发送端、接收端和系统

Country Status (6)

Country Link
US (2) US10122433B2 (zh)
EP (2) EP3514979A1 (zh)
JP (1) JP6436371B2 (zh)
KR (1) KR101979125B1 (zh)
CN (1) CN105474555B (zh)
WO (1) WO2016015260A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX356016B (es) * 2010-06-17 2018-05-09 Sun Patent Trust Método de precodificación y transmisor.
EP3264648B1 (en) 2010-06-17 2023-09-06 Sun Patent Trust Pre-coding method and transmitter
CN103404061B (zh) 2011-02-21 2016-08-31 松下电器(美国)知识产权公司 预编码方法、预编码装置
US9294165B2 (en) 2011-04-19 2016-03-22 Panasonic Intellectual Property Corporation Of America Signal generating method and signal generating device
EP3232590B1 (en) 2011-04-19 2018-12-05 Sun Patent Trust Communication method and device
EP3787196B1 (en) 2011-04-19 2022-06-01 Sun Patent Trust Transmission and reception method and apparatus
CN107104716B (zh) 2011-04-19 2020-10-02 太阳专利托管公司 信号生成方法及装置、信号处理方法及装置
EP3242454B1 (en) 2015-01-30 2019-08-28 Huawei Technologies Co. Ltd. Method and apparatus for acquiring downlink channel information and network side device
CN109792303B (zh) * 2016-10-04 2022-01-11 瑞典爱立信有限公司 确定来自多个天线的总辐射功率的方法和无线电网络节点
US10582503B2 (en) * 2017-11-10 2020-03-03 Apple Inc. UE initiated beam management procedure
CN111416641B (zh) * 2019-01-08 2021-08-03 大唐移动通信设备有限公司 码本约束、码本参数确定方法及装置
US11038621B2 (en) * 2019-09-20 2021-06-15 Qualcomm Incorporated Spectral efficiency (SPEF) to channel quality indicator (CQI) mapping adaptation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960727A (zh) * 2008-02-25 2011-01-26 爱立信电话股份有限公司 预编码mimo传输的接收器参数协方差估计
US20110103504A1 (en) * 2009-10-30 2011-05-05 Futurewei Technologies, Inc. System and Method for User Specific Antenna Down Tilt in Wireless Cellular Networks
CN103141053A (zh) * 2010-10-01 2013-06-05 交互数字专利控股公司 用于在多个天线上传送导频的方法和设备
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置
CN103918195A (zh) * 2011-11-07 2014-07-09 摩托罗拉移动有限责任公司 在具有协作多点传输的正交频分复用通信系统中联合处理方案的csi反馈的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559877B2 (en) 2008-06-27 2013-10-15 Kyocera Corporation Radio communication device and radio communication method
KR101635883B1 (ko) * 2009-02-03 2016-07-20 엘지전자 주식회사 하향링크 참조 신호 송수신 기법
JP6026082B2 (ja) * 2011-04-05 2016-11-16 シャープ株式会社 端末、基地局、通信方法および集積回路
US8942302B2 (en) * 2012-12-20 2015-01-27 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
US20140198868A1 (en) * 2013-01-17 2014-07-17 Nokia Solutions And Networks Oy DL MIMO Precoding Enhancement
EP3011685A4 (en) * 2013-06-20 2017-01-11 Telefonaktiebolaget LM Ericsson (publ) Mapping codewords
US9667328B2 (en) * 2014-03-31 2017-05-30 Samsung Electronics Co., Ltd. Precoding matrix codebook design and periodic channel state information feedback for advanced wireless communication systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960727A (zh) * 2008-02-25 2011-01-26 爱立信电话股份有限公司 预编码mimo传输的接收器参数协方差估计
US20110103504A1 (en) * 2009-10-30 2011-05-05 Futurewei Technologies, Inc. System and Method for User Specific Antenna Down Tilt in Wireless Cellular Networks
CN103141053A (zh) * 2010-10-01 2013-06-05 交互数字专利控股公司 用于在多个天线上传送导频的方法和设备
CN103918195A (zh) * 2011-11-07 2014-07-09 摩托罗拉移动有限责任公司 在具有协作多点传输的正交频分复用通信系统中联合处理方案的csi反馈的方法和装置
CN103746779A (zh) * 2013-12-31 2014-04-23 上海华为技术有限公司 一种信道状态信息测量、参考信号的发送方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3154208A4 *

Also Published As

Publication number Publication date
US20190028171A1 (en) 2019-01-24
CN105474555B (zh) 2018-10-19
EP3154208B1 (en) 2019-03-13
KR20170021858A (ko) 2017-02-28
EP3154208A4 (en) 2017-08-02
EP3514979A1 (en) 2019-07-24
KR101979125B1 (ko) 2019-05-15
EP3154208A1 (en) 2017-04-12
US20170141834A1 (en) 2017-05-18
US10236962B2 (en) 2019-03-19
JP6436371B2 (ja) 2018-12-12
CN105474555A (zh) 2016-04-06
US10122433B2 (en) 2018-11-06
JP2017528955A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2016015260A1 (zh) 一种下行信道质量测量方法、发送端、接收端和系统
US11637642B2 (en) Method and apparatus for CSI reporting in wireless communication system
CN108288991B (zh) 波束信息、配置信息的反馈方法及装置
CN107466461B (zh) 用于为信道状态信息参考信号传送选择波束参考信号的系统和方法
JP7076542B2 (ja) 可変コヒーレンス適応アンテナアレイ
EP3909159A1 (en) Low overhead channel state information (csi) feedback for multi-transmission point (trp) transmission
KR102060386B1 (ko) 다중 셀 협력전송을 위한 피드백 송수신 방법 및 장치
CN110475337A (zh) 通信方法及装置
JP5550200B2 (ja) 多入力多出力システムにおけるダウンリンク伝送方法及び基地局
US9071389B2 (en) Method for communicating in a MIMO network
US20150312919A1 (en) Virtual antenna mapping method and apparatus for feedback of virtual antenna mapping information in mimo system
KR101978771B1 (ko) 무선 통신 시스템에서 스트림 별 채널 이득 피드백을 통한 다중 스트림 mu-cqi 추정 방법 및 장치
CN109041233B (zh) 一种资源配置的方法及设备
US9276658B2 (en) Method for communicating in a MIMO network
CN110035518A (zh) 一种通信方法及装置
US11722196B2 (en) Uneven frequency-domain basis allocation for type II CSI enhancements
CN103339873A (zh) 多节点系统中的信道状态信息反馈方法和装置
CN113892238A (zh) 基于多波束预编码器的信道状态信息
WO2018028536A1 (zh) 参考信号的配置、确定方法及装置、基站、终端
CN104221313B (zh) 用于数据传输的方法和装置
WO2015135157A1 (zh) 信道质量指示反馈方法、资源调度信息发送方法和装置
CN107210795A (zh) 一种信道质量测量方法、装置及系统
US20220385341A1 (en) Method and Apparatus for Multi-User Multi-Antenna Transmission
WO2014089836A1 (zh) 信道质量指示反馈方法、装置和用户设备
CN103067064A (zh) 预编码矢量的确定方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009034.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898988

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014898988

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898988

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177001954

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017504686

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE