WO2016013293A1 - Method for producing modified coal and device for producing modified coal - Google Patents

Method for producing modified coal and device for producing modified coal Download PDF

Info

Publication number
WO2016013293A1
WO2016013293A1 PCT/JP2015/065461 JP2015065461W WO2016013293A1 WO 2016013293 A1 WO2016013293 A1 WO 2016013293A1 JP 2015065461 W JP2015065461 W JP 2015065461W WO 2016013293 A1 WO2016013293 A1 WO 2016013293A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
dry
drying
air
moisture
Prior art date
Application number
PCT/JP2015/065461
Other languages
French (fr)
Japanese (ja)
Inventor
小菅 克志
淳志 小林
白水 渡
Original Assignee
新日鉄住金エンジニアリング株式会社
Nsプラント設計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金エンジニアリング株式会社, Nsプラント設計株式会社 filed Critical 新日鉄住金エンジニアリング株式会社
Priority to AU2015293497A priority Critical patent/AU2015293497B2/en
Priority to CN201580039513.6A priority patent/CN106661476B/en
Publication of WO2016013293A1 publication Critical patent/WO2016013293A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/084Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange

Definitions

  • the present invention relates to a method for producing modified coal for producing modified coal from high-moisture coal, and an apparatus for producing modified coal.
  • This application claims priority based on Japanese Patent Application No. 2014-150073 for which it applied to Japan on July 23, 2014, and uses the content here.
  • coal with high water content such as lignite and bituminous coal (high moisture coal) is dried and dry-distilled, etc., and the fuel ratio is adjusted from 2 to 4, which is equivalent to low volatile steam coal.
  • a method for producing reformed coal to be a good fuel is being studied.
  • the fuel ratio said here means the weight ratio of the fixed carbon part with bad combustibility with respect to the volatile matter with good combustibility in coal.
  • the reformed coal having a fuel ratio of 2 to 4 is used by being burned for power generation at a power plant, for example.
  • drying of the high moisture coal is important, and the following methods are known as the drying method.
  • Patent Document 1 describes a method of providing a preheating device for preheating high moisture coal to improve fluidization of the high moisture coal in the dryer.
  • Patent Document 2 discloses that steam discharged from a drying apparatus is compressed and used for drying high-moisture coal, and steam drain from the drying apparatus is used for preheating drying.
  • a WTA method described in Non-Patent Document 1 is known as a similar drying method.
  • Brown coal which is representative of high-moisture coal, has the property of being easily ignited (spontaneous ignition) when the water content decreases. Therefore, for example, when high-moisture coal is indirectly heated with steam to dry high-moisture coal containing 50 to 60% of water by mass to an extent containing 10% of water by mass, drying operation As a countermeasure against ignition, a method of drying the inside of a dryer in a water vapor atmosphere without oxygen is being put into practical use.
  • the present invention has been made in view of such problems, and can dry high-moisture coal without igniting it, obtain water vapor for drying high-moisture coal at low cost, and high
  • An object of the present invention is to provide a modified coal production method and a modified coal production apparatus capable of reducing the amount of water vapor for drying the moisture coal.
  • a method for producing a modified coal is a method for producing a modified coal from a high-moisture coal that is a coal containing at least 45% of water in a mass ratio. Heating the taken-in air, fluidizing the high moisture coal with the heated air to form a coal fluidized bed, and evaporating moisture from the high moisture coal in the coal fluidized bed to form primary dry coal
  • the reforming A cooling step for cooling the charcoal, wherein in the first drying step, the air is indirectly heated with the first water vapor, and in the second drying step, the primary drying is performed using the second water vapor. It is characterized by indirectly heating coal.
  • An apparatus for producing modified coal is an apparatus for producing modified coal that produces modified coal from high-moisture coal, which is coal containing 45% or more of water by mass ratio.
  • a drying unit that evaporates water from moisture coal to form dry coal a dry distillation unit that carbonizes the dry coal to form reformed coal, and a cooling unit that cools the modified coal, and the drying unit Heating the air taken in from the outside, fluidizing the high moisture coal with the heated air to form a coal fluidized bed, evaporating moisture from the high moisture coal in the coal fluidized bed and primary dry coal
  • a first drying unit that indirectly heats the primary dry coal further evaporates water from the primary dry coal to form the dry coal, and collects the first water vapor evaporated from the primary dry coal
  • a second drying section, and The distilling section generates the second steam by exhaust heat recovery of the combustion exhaust gas after carbonizing the dry coal and supplying the carbonization heat necessary for the dry distillation of the dry coal, the first drying section, The air is indirectly heated with the first water vapor,
  • the first drying step it is more preferable to indirectly heat the coal fluidized bed with the first steam.
  • the first drying section indirectly heats the coal fluidized bed with the first steam.
  • the amount of moisture that evaporates from the primary dry coal in the second drying step after the high moisture coal becomes the primary dry coal with respect to the amount of moisture that evaporates from the high moisture coal in the first drying step. Is more preferably doubled.
  • the first drying step it is more preferable to indirectly heat the air with the second water vapor.
  • high moisture coal can be dried without igniting, and steam for drying the high moisture coal can be obtained at low cost.
  • the amount of water vapor for drying the high moisture coal can also be reduced.
  • FIG. 1 It is a block diagram of the manufacturing apparatus of the modified coal of 1st Embodiment of this invention. It is a block diagram of the carbonization equipment of the manufacturing apparatus shown in FIG. It is a flowchart which shows the manufacturing method of the modified coal of 1st Embodiment. It is an operation diagram which shows drying operation of a 1st drying process based on the low temperature humidity chart with respect to air and water. It is a block diagram of the manufacturing apparatus of the modified coal of 2nd Embodiment of this invention.
  • production apparatus a modified coal production apparatus (hereinafter also abbreviated as “production apparatus”) according to the present invention will be described with reference to FIGS. 1 to 4.
  • the manufacturing apparatus 1 includes a drying facility (drying unit) 10 that evaporates moisture from a high-moisture coal M1 to dry coal M3, and dry coal from which moisture has evaporated in the drying facility 10.
  • a dry distillation facility (dry distillation section) 30 that carbonizes M3 into reformed coal M4 and a cooling facility (cooling section) 40 that cools the modified coal M4 obtained by the dry distillation facility 30 are provided.
  • high moisture coal M1 said here means the coal which contains a water
  • Reference numerals M3 and M4 and reference numeral M2 to be described later do not mean pipes and conveyors, but mean dry coal, modified coal, and primary dry coal supplied by these pipes and conveyors.
  • the drying facility 10 includes a first drying facility (first drying unit) 11 and a second drying facility (second drying unit) 12.
  • the first drying equipment 11 heats the air M5 taken from the outside, fluidizes the high-moisture coal M1 with the heated air M5 to form a coal fluidized bed M6, thereby performing a drying operation, and high moisture Coal M1 is designated as primary dry coal M2.
  • the second drying facility 12 indirectly heats the primary dry coal M2 treated in the first drying facility 11 with a carbonization process steam (hereinafter referred to as second steam), which will be described later, to further remove moisture from the primary dry coal M2. Evaporate to dry coal M3.
  • second steam carbonization process steam
  • the first drying equipment 11 includes an air fan 15 that takes in air M5 from the outside, an air preheater 16 that heats the air M5 taken in by the air fan 15, and air heating that further heats the air M5 heated by the air preheater 16. And an air fluidized bed dryer (hereinafter referred to as a dryer) 18 to which air M5 heated by the air heater 17 is supplied.
  • a dryer air fluidized bed dryer
  • the high-moisture coal M1 is supplied to the dryer 18 at a constant predetermined weight per hour.
  • the dryer 18 is connected to an exhaust air dust collector (hereinafter referred to as a dust collector) 19 for recovering coal fines and the like accompanying the exhaust air.
  • a dust collector an exhaust air dust collector
  • the other end of the supply pipe 21 is connected to the dry distillation facility 30.
  • the end of the heating pipe 22 on the side not connected to the supply pipe 21 is collected in a pipe (not shown) in which steam condensate is arranged at substantially atmospheric pressure, and is returned as steam condensate as necessary. .
  • the second drying facility 12 is connected to the dryer 18 of the first drying facility 11.
  • the primary dry coal M2 supplied into the second drying facility 12 from the dryer 18 is indirectly heated by contacting the outer surface of the heating pipe 22 installed in the second drying facility 12, and the primary dry coal is obtained. It is dried by evaporating the water in M2.
  • the pipe 23 branches from the supply pipe 21 and is connected to the air heater 17. In order to heat the air M ⁇ b> 5 taken from the outside by the air heater 17, water vapor (second water vapor described later) is supplied to the air heater 17 through the pipe 23.
  • a first water vapor supply pipe (hereinafter referred to as a supply pipe) 24 through which indirect heating and drying process water vapor (hereinafter referred to as a first water vapor) flows is connected to the second drying facility 12 via a dust collector 25. ing.
  • the other end of the supply pipe 24 extends to the air preheater 16 and is connected to the air preheater 16.
  • the first water vapor is supplied from the second drying equipment 12 to the air preheater 16 via the supply pipe 24.
  • the air M5 taken from the outside is indirectly heated by the first water vapor in the air preheater 16.
  • the carbonization facility 30 includes, for example, a known external heat type rotary kiln 31, a secondary combustion device 32 connected to the rotary kiln 31, a steam generation device 33 connected to the secondary combustion device 32, A dust removing device 34 connected to the steam generating device 33, a suction fan 35 connected to the dust removing device 34, and an exhaust gas treatment device 36 connected to the suction fan 35 are included.
  • the rotary kiln 31 is connected to the second drying facility 12 of the drying facility 10.
  • the inside of the rotary kiln 31 is set in an environment of, for example, several hundred degrees C. in which oxygen does not exist, and dry coal M3 supplied from the second drying equipment 12 is dry-distilled to obtain reformed coal M4.
  • the reformed coal M4 is supplied to the cooling facility 40.
  • the secondary combustion device 32, the steam generation device 33, the dust removal device 34, the suction fan 35, and the exhaust gas treatment device 36 will be described later.
  • the cooling facility 40 cools the reformed coal M4 carbonized in the carbonization facility 30 to a temperature at which it does not ignite by contact oxidation with air, for example, several tens of degrees centigrade.
  • FIG. 3 is a flowchart showing the manufacturing method of this embodiment.
  • This production method includes a drying step S10 in which moisture is evaporated from the high-moisture coal M1 to obtain dry coal M3, a dry distillation step S20 in which dry coal M3 is subjected to dry distillation after the drying step S10 to obtain reformed coal M4, And a cooling step S30 for cooling the modified coal M4 after the step S20.
  • the air-fluidized bed drying step (hereinafter referred to as the first drying step) S11 that dries the high-moisture coal M1 to the primary dry coal M2, and the primary dry coal M2 is further dried to obtain the dry coal M3.
  • An indirect heating drying step (hereinafter referred to as a second drying step) S12.
  • the first drying step S11 heats the air M5 taken from outside, fluidizes the high moisture coal M1 with the heated air M5 to form a coal fluidized bed M6, and evaporates moisture from the high moisture coal M1 during the flow. Dry to obtain primary dry coal M2.
  • the second drying step S12 after the first drying step S11, water is further evaporated from the primary dry coal M2 to obtain dry coal M3.
  • air M5 is taken in from the outside by the air fan 15.
  • the first water vapor is supplied from the second drying equipment 12 to the dust collector 25 through the supply pipe 24 and is further supplied from the dust collector 25 to the air preheater 16 through the supply pipe 24.
  • the taken-in air M5 is indirectly heated by the first steam by contacting the outer surface of the supply pipe 24 in the air preheater 16.
  • the air M5 heated by the air preheater 16 is further supplied to the air heater 17.
  • the second water vapor is supplied from the dry distillation equipment 30 to the air heater 17 through the pipe 23.
  • the taken-in air M5 is indirectly heated with the second steam by contacting the outer surface of the pipe 23 in the air heater 17. That is, the air M5 heated by the air preheater 16 is further indirectly heated by the air heater 17.
  • steam respectively used by the air preheater 16 and the air heater 17 are discharged
  • the air M5 is indirectly heated by contacting the outer surface of the supply pipe 24 in the air preheater 16 and the outer surface of the pipe 23 in the air heater 17.
  • the configuration for indirectly heating the air M5 is not limited to the supply pipes 24 and 23.
  • an indirect heat exchanger such as a multi-tube type (shell-and-tube type) or a plate type is appropriately used. It can be selected and used. The same applies to the heating tube 22 of the second drying facility 12 and the heating tube 52 of the dryer 18 described later.
  • the air M5 heated by the air heater 17 is supplied to the dryer 18.
  • the temperature of the air M5 when it is supplied to the dryer 18 may be a temperature that does not reach the ignition temperature even when the high moisture coal M1 generates heat by oxidation, and is preferably 120 ° C. or less, for example, from the viewpoint of preventing ignition.
  • High moisture coal M1 is supplied to the dryer 18.
  • the average particle diameter of the high moisture coal M1 is, for example, 3 mm.
  • the high moisture coal M1 before performing the first drying step S11 supplied to the dryer 18 contains, for example, 60% by mass of moisture, and the remaining 40% is composed of volatile matter and fixed carbon. Each is composed of about 20% and some ash.
  • the high moisture coal M1 supplied to the dryer 18 is fluidized by the air M5 supplied to the dryer 18 to become a coal fluidized bed M6.
  • the high moisture coal M1 in the coal fluidized bed M6 is heated by the heated air M5, whereby the moisture evaporates from the high moisture coal M1.
  • the high moisture coal M1 which comprises the coal fluidized bed M6 turns into primary dry coal M2 because a water
  • the air M5 supplied to the dryer 18 is humidified with the evaporated water from the high moisture coal M1.
  • the air M5 that has been humidified in the dryer 18 becomes exhausted air accompanied by fine coal powder and the like, is discharged from the dryer 18, and is supplied to the dust collector 19.
  • the exhaust air is separated into exhaust air and fine coal powder by the dust collector 19.
  • the fine coal powder or the like separated by the dust collector 19 is collected, and is granulated as necessary, and returned to the primary dry coal M2.
  • the exhaust air (air) from which the coal fine powder and the like are separated is discharged from the dust collector 19 to the outside.
  • the temperature inside the coal fluidized bed M6 of the dryer 18 is desirably a temperature at which the high moisture coal M1 does not generate oxidation heat due to oxygen in the air M5, and is preferably 60 ° C. or less, for example. That is, it is preferable that the dryer 18 performs drying until the moisture content of the primary dry coal M2 reaches the limit moisture content. For example, as an example, it is preferable to perform a drying operation in a range until the water content is reduced to 20% by weight, that is, in a constant rate drying speed region. Even when the primary dry coal M2 is dried to a moisture content lower than the limit moisture content, the high temperature coal M1 can be dried by setting the internal temperature of the coal fluidized bed M6 to a relatively low temperature of 60 ° C. or less. preferable.
  • the drying operation of the coal fluidized bed M6 in the dryer 18 is finished, the first drying step S11 is finished, the process proceeds to the second drying step S12, and the primary drying coal M2 processed by the dryer 18 is used as the second drying equipment. 12 is supplied.
  • the primary dry coal M ⁇ b> 2 is indirectly heated by the second steam supplied through the supply pipe 21 through the heating pipe 22 in the second drying facility 12.
  • the primary dry coal M ⁇ b> 2 is indirectly heated by contacting the outer surface of the heating pipe 22.
  • the primary dry coal M2 is heated by the heating pipe 22 arranged in the second drying facility 12, and thereby moisture is evaporated from the primary dry coal M2.
  • drying step S10 drying is performed until the high moisture coal M1 becomes the dry coal M3.
  • the amount of water evaporated until the primary dry coal M2 becomes the dry coal M3 in the second drying step S12 is the total amount of the first water vapor obtained from the water evaporated in the second drying step S12, and the first drying step. It is preferable from the viewpoint of thermal efficiency to set so that the total amount of steam required for drying from the high moisture coal M1 to the primary dry coal M2 in step S11 is balanced (equal).
  • the temperature of the air M5 when supplied to the dryer 18 is, for example, 120 ° C. or less
  • the temperature inside the dryer 18 is, for example, 60 ° C. or less
  • the second water vapor supplied to the heating pipe 22 installed in the second drying facility 12 through the supply pipe 21 is condensed in the heating pipe 22 and discharged as vapor condensed water.
  • the first water vapor which is water evaporated from the primary dry coal M2, is collected and supplied to the dust collector 25 through the supply pipe 24. Thereby, even if, for example, coal fine powder or the like is accompanied with the first water vapor, the first water vapor and the coal fine powder or the like can be separated in the dust collector 25.
  • the separated first water vapor is supplied from the dust collector 25 to the air preheater 16 through the supply pipe 24. That is, as shown in FIG. 3, the first water vapor obtained in the second drying step S12 is used in the first drying step S11.
  • a part of the first steam supplied from the dust collector 25 to the air preheater 16 through the supply pipe 24 is branched from the supply pipe 24 and supplied to the second drying facility 12, for example.
  • primary dry coal M2 can be dried under the atmosphere of water vapor like usual.
  • ventilation means such as a fan which is not shown in figure.
  • indirect heating can be performed while fluidizing the primary dry coal M2 in the second drying equipment 12.
  • the fine coal powder or the like separated by the dust collector 25 may be returned to the dry coal M3 supplied from the second drying facility 12 to the dry distillation facility 30, for example, after increasing the particle size as necessary.
  • the dry coal M3 is carbonized as described above in the carbonization facility 30.
  • gas and tar components are generated by thermally decomposing volatile components of the dry coal M3 in the rotary kiln 31 shown in FIG.
  • the gas and tar generated inside the rotary kiln 31 are discharged from the inside of the rotary kiln 31 to the outside, and are combusted together with the air supplied to heat the rotary kiln 31 outside.
  • heat amount (dry distillation heat) required for dry distillation of dry coal M3 can be obtained.
  • This dry distillation heat is supplied to the rotary kiln 31.
  • the gas and tar remaining without being burned in the rotary kiln 31 are supplied from the rotary kiln 31 to the secondary combustion device 32.
  • a high-temperature combustion exhaust gas can be obtained.
  • the second steam can be obtained by recovering exhaust heat using the combustion exhaust gas.
  • the second water vapor may be a low-pressure water vapor having a relatively low pressure (for example, 0.4 MPaG (megapascal gauge) or more).
  • the combustion exhaust gas is sucked by the suction fan 35 through the dust removing process by the dust removing device 34. Further, the combustion exhaust gas is exhausted from the dry distillation equipment 30 through exhaust gas treatment such as desulfurization by the exhaust gas treatment device 36.
  • the second water vapor is supplied to the second drying facility 12 through the supply pipe 21 and the heating pipe 22. That is, as shown in FIG. 3, the second water vapor obtained in the dry distillation step S20 is used in the second drying step S12. A part of the second water vapor flowing through the supply pipe 21 is supplied to the air heater 17 through the pipe 23 shown in FIG.
  • the modified coal M4 produced in the dry distillation facility 30 is supplied to the cooling facility 40.
  • dry distillation process S20 is complete
  • it is 400 degreeC or more and 650 degrees C or less, for example, as for the temperature of the modified coal M4 when dry distillation process S20 is complete
  • the modified coal M4 produced by the dry distillation equipment 30 is cooled to about several tens of degrees Celsius by a known cooling method. Through the above steps, a modified coal M4 corresponding to low volatile steam coal having a fuel ratio of 2 to 4 can be produced.
  • FIG. 4 is a low temperature humidity chart for air and water.
  • the horizontal axis of FIG. 4 represents air temperature (dry bulb temperature), and the vertical axis represents air humidity (absolute humidity, kg-water vapor / kg-dryair).
  • the curve which goes to the right in FIG. 4 represents the relative humidity.
  • the dryer 18 will be described on the premise of a drying operation before the moisture content of the primary dry coal M2 reaches the limit moisture content. In air fluidized bed drying, the amount of water evaporated from coal is equal to the amount of water taken out of the system by air. Therefore, the amount of moisture taken out by air is shown using a low temperature humidity chart.
  • this air is in the state of point A if the relative humidity (relative humidity) is 100%.
  • the air in the state of point A is heated to, for example, 70 ° C., the temperature rises while the amount of water vapor contained in the air remains constant, and the air enters the state of point B1.
  • the air in the state of point B1 is supplied to the dryer 18 of the drying facility 10, the air is adiabatically cooled while fluidizing the high-moisture coal and moves along the adiabatic cooling line (straight-downward straight line in FIG. 4).
  • the point C1 is about 35 ° C. and the relative humidity is 95%. That is, the air at the outlet of the dryer 18 is in the state of point C1.
  • the water content of 0.014 (kg-water vapor / kg-dryair) corresponding to the length L1 of the vertical axis between the point B1 and the point C1 is increased to a high water content. It can be removed from coal by evaporation (water can be taken into the air).
  • the relative humidity is 95% due to adiabatic cooling is described here, it is not limited to 95%.
  • the relative humidity is affected, for example, by the operating conditions of the dryer.
  • the drying step S10 includes the first drying step S11 and the second drying step S12. Then, the first steam generated in the second drying step S12 is used to indirectly heat the air taken from the outside in the first drying step S11, and the second steam produced by exhaust heat recovery in the dry distillation step S20 is used. In the second drying step S12, the primary dry coal M2 is indirectly heated.
  • the inexpensive second water vapor produced by waste heat recovery in the carbonization step S20 can be used for the second drying step S12.
  • high moisture coal M1 is used for 1st drying process S11 and 2nd drying process S12. It can be dried in two steps.
  • the first water vapor generated in the second drying step S12 is used for internal circulation.
  • the amount of steam used for internal circulation can be reduced, and the amount of water vapor required to dry the high-moisture coal M1 can be reduced by 30 compared to the conventional manufacturing methods described in Patent Documents 1 and 2, for example. % Can be reduced.
  • enormous electric power is not required for drying the high moisture coal M1, and the amount of water vapor for drying the high moisture coal M1 can be reduced.
  • the temperature inside the dryer 18 is relatively low at 60 ° C. or lower, the high moisture coal M1 can be dried without igniting.
  • the amount of water evaporated in the second drying step S12 is doubled from the amount of water evaporated in the first drying step S11 from the fixed amount of high moisture coal M1. Thereby, the total amount of the first steam obtained in the second drying step S12 is equal to the total amount of steam required for drying in the first drying step S11, and the thermal efficiency in this manufacturing method can be increased.
  • the temperature of the air M5 can be more reliably increased by indirectly heating the air M5 taken from the outside with the second water vapor.
  • the air M5 taken from the outside is supplied to the dryer 18, but an inert gas such as nitrogen may be used instead of the air M5.
  • the manufacturing apparatus 2 of the present embodiment is connected to the connection pipe 51 connected to the supply pipe 24 and the connection pipe 51 in addition to the components of the manufacturing apparatus 1 of the first embodiment.
  • a heating pipe (heating pipe) 52 disposed in the dryer 18.
  • the heating pipe 52 is disposed so as to be horizontal to a portion where the coal fluidized bed M6 is formed (the surface of the coal fluidized bed M6).
  • the coal fluidized bed M ⁇ b> 6 in the dryer 18 contacts the outer surface of the heating pipe 52.
  • the first water vapor passing through the supply pipe 24 is supplied to the heating pipe 52 through the connection pipe 51.
  • the coal fluidized bed M6 is indirectly heated by the first steam by contacting the outer surface of the heating pipe 52.
  • one end of the heating pipe 52 is connected to the connection pipe 51.
  • the first steam becomes steam condensed water via the other end of the heating pipe 52 and is discharged to the outside.
  • the manufacturing method of this embodiment using the manufacturing apparatus 2 configured as described above will be described.
  • the first drying step S ⁇ b> 11 the first water vapor that has flowed from the second drying facility 12 to the supply pipe 24 further flows into the connection pipe 51 and the heating pipe 52.
  • the coal fluidized bed M6 can be indirectly heated with the first steam through the heating pipe 52.
  • the high-moisture coal M1 is indirectly heated not only by the air M5 taken from outside and heated, but also by the first water vapor.
  • any heat source having a temperature higher than the wet bulb temperature of 49 ° C., which is the temperature at the intersection of the line passing through the point C3 and parallel to the vertical axis, and the horizontal axis can be used in place of the first water vapor.
  • the production apparatus 2 can be used even with the first steam at about 110 ° C.
  • the effect corresponding to the amount of heat when the fluidized bed M6 is indirectly heated by the heating pipe 52 is that the air is heated by the amount of heat corresponding to the amount of heat that heats the fluidized bed M6 from 120 ° C. Equivalent drying effect. Further, the heating calorie ratio between the amount of heat by the heated air and the amount of heat by indirect heating using the heating tube 52 may be other than 1: 1.
  • the high-moisture coal M1 is dried without igniting, and the water vapor for drying the high-moisture coal M1 is inexpensive. Waste heat recovery steam (second steam) can be used. In addition, the amount of water vapor can be reduced.
  • the coal fluidized bed M ⁇ b> 6 is indirectly heated with the first steam through the heating pipe 52. Therefore, by indirectly heating not only with the air M5 but also with the first water vapor, more water can be evaporated from the high-moisture coal M1 while maintaining the temperature inside the dryer 18 at a relatively low temperature. it can. Thus, by providing the heating tube 52, the air volume required for drying can be reduced, and the manufacturing apparatus 2 can be reduced in size.
  • the air M5 in order to further increase the temperature of the air M5 when supplied to the dryer 18, the air M5 is heated with water vapor obtained outside the manufacturing apparatus. Also good.
  • the air M5 supplied to the dryer 18 when the temperature of the air M5 supplied to the dryer 18 is sufficiently high, the air M5 may not be heated with the second steam.
  • moisture is evaporated from the high moisture coal M1 to primary dry coal M2, and water is further evaporated from the primary dry coal M2 to dry coal M3.
  • water evaporation for example, directly measuring the moisture content of each of the primary dry coal M2 and dry coal M3, the drying temperature in each dry equipment, What is necessary is just to estimate a drying condition based on the residence time etc. which were calculated
  • the second water vapor may flow through the heating pipe 52.
  • the manufacturing apparatus may not include the air heater 17.
  • the temperature of the drying air M5 is, for example, a maximum of 100 ° C., preferably 70 to 90 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

A method for producing modified coal, said method comprising: a first drying step (S11) for heating air taken from the outside, fluidizing high-water content coal using the heated air to give a fluidized coal bed, and evaporating moisture from the high-water content coal in the fluidized coal bed to give primarily dried coal; a second drying step (S12) for indirectly heating the primarily dried coal, further evaporating moisture from the primarily dried coal to give dried cool and, at the same time, recovering first steam evaporated from the primarily dried coal; a dry distillation step (S20) for dry distilling the dried coal to give modified coal and, at the same time, recovering, as exhaust gas, combustion exhaust gas that remains after supplying dry distillation heat required for dry distillation of the dried coal to thereby generate second steam; and a cooling step (S30) for cooling the modified coal. In the first drying step, the air is indirectly heated by the first steam. In the second drying step, the primarily dried coal is indirectly heated using the second steam.

Description

改質石炭の製造方法及び改質石炭の製造装置Modified coal production method and modified coal production apparatus
 本発明は、高水分石炭から改質石炭を製造する改質石炭の製造方法及び改質石炭の製造装置に関する。
 本願は、2014年7月23日に日本に出願された特願2014-150073号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing modified coal for producing modified coal from high-moisture coal, and an apparatus for producing modified coal.
This application claims priority based on Japanese Patent Application No. 2014-150073 for which it applied to Japan on July 23, 2014, and uses the content here.
 近年、褐炭や瀝青炭等の水分の含有量が多い石炭(高水分石炭)を乾燥及び乾留させる等して、燃料比を低揮発分一般炭相当の2から4に調整し、長距離輸送が可能な燃料とする改質石炭の製造方法が検討されている。なお、ここで言う燃料比とは、石炭中における燃焼性の良い揮発分に対する、燃焼性の悪い固定炭素分の重量比率のことを意味する。この燃料比2から4の改質石炭は、例えば、発電所で発電用に燃やして用いられる。
 この種の高水分石炭からの改質石炭の製造方法においては、高水分石炭の乾燥が重要であり、その乾燥方法としては、以下の方法が知られている。
In recent years, coal with high water content such as lignite and bituminous coal (high moisture coal) is dried and dry-distilled, etc., and the fuel ratio is adjusted from 2 to 4, which is equivalent to low volatile steam coal. A method for producing reformed coal to be a good fuel is being studied. In addition, the fuel ratio said here means the weight ratio of the fixed carbon part with bad combustibility with respect to the volatile matter with good combustibility in coal. The reformed coal having a fuel ratio of 2 to 4 is used by being burned for power generation at a power plant, for example.
In the method for producing modified coal from this type of high moisture coal, drying of the high moisture coal is important, and the following methods are known as the drying method.
 例えば、特許文献1には、高水分石炭を予熱する予熱装置を設け、乾燥機内における高水分石炭の流動化を改善する方法が記載されている。
 特許文献2には、乾燥装置から放出される水蒸気を圧縮して高水分石炭の乾燥に用いるとともに、予熱乾燥に乾燥装置からの蒸気ドレンを用いることが開示されている。
 これらの他に、同様の乾燥方法として非特許文献1に記載されたWTA方式が知られている。
For example, Patent Document 1 describes a method of providing a preheating device for preheating high moisture coal to improve fluidization of the high moisture coal in the dryer.
Patent Document 2 discloses that steam discharged from a drying apparatus is compressed and used for drying high-moisture coal, and steam drain from the drying apparatus is used for preheating drying.
In addition to these, a WTA method described in Non-Patent Document 1 is known as a similar drying method.
特開2013-178026号公報JP 2013-178026 A 特開2013-178028号公報JP 2013-178028 A
 高水分石炭の代表である褐炭は、水分の含有量が低下すると発火(自然発火)しやすい性質がある。
 従って、例えば、高水分石炭を水蒸気で間接的に加熱して、質量比で水分を50~60%含有する高水分石炭を、質量比で水分を10%含有する程度まで乾燥させる場合、乾燥操作時の発火対策として、乾燥機内部を酸素がない水蒸気雰囲気下で乾燥させる方法が実用化されつつある。
Brown coal, which is representative of high-moisture coal, has the property of being easily ignited (spontaneous ignition) when the water content decreases.
Therefore, for example, when high-moisture coal is indirectly heated with steam to dry high-moisture coal containing 50 to 60% of water by mass to an extent containing 10% of water by mass, drying operation As a countermeasure against ignition, a method of drying the inside of a dryer in a water vapor atmosphere without oxygen is being put into practical use.
 しかしながら、高水分石炭を間接的に加熱して乾燥するためには、多量の加熱用水蒸気が必要である。このため、安価な水蒸気を用いて高水分石炭を乾燥させないと、高水分石炭の乾燥コストが高くなり、その分、改質石炭の製造コストも高くなるという問題がある。 However, in order to indirectly heat and dry high moisture coal, a large amount of steam for heating is required. For this reason, if high moisture coal is not dried using cheap water vapor | steam, the drying cost of high moisture coal will become high, and there exists a problem that the manufacturing cost of reformed coal will also become high correspondingly.
 そこで、大量の加熱用水蒸気を確保する方法として、例えば高水分石炭の乾燥時に蒸発した水蒸気を圧縮し、この圧縮した水蒸気を高水分石炭の乾燥に使用することで、高水分石炭の乾燥に必要な外部からの水蒸気量を減らす方法が開発されている。
 しかしながら、水蒸気を圧縮するためには、高価な圧縮機と、圧縮するための莫大な電力とが必要になる。したがって、この従来の方法で得られる高水分石炭の乾燥用の水蒸気は、安価なものにならない。
Therefore, as a method for securing a large amount of steam for heating, for example, by compressing the steam evaporated during drying of the high moisture coal, and using this compressed steam for drying the high moisture coal, it is necessary to dry the high moisture coal. A method for reducing the amount of water vapor from the outside has been developed.
However, in order to compress water vapor, an expensive compressor and enormous electric power for compression are required. Therefore, the steam for drying the high moisture coal obtained by this conventional method is not inexpensive.
 本発明は、このような問題点に鑑みてなされたものであって、高水分石炭を発火させることなく乾燥させるとともに、高水分石炭を乾燥させるための水蒸気を安価に得ることができ、且つ高水分石炭を乾燥させるための水蒸気の量も低減することができる改質石炭の製造方法及び改質石炭の製造装置を提供することを目的とする。 The present invention has been made in view of such problems, and can dry high-moisture coal without igniting it, obtain water vapor for drying high-moisture coal at low cost, and high An object of the present invention is to provide a modified coal production method and a modified coal production apparatus capable of reducing the amount of water vapor for drying the moisture coal.
 本発明の一態様に係る改質石炭の製造方法は、水分を質量比で45%以上含有する石炭である高水分石炭から改質石炭を製造する改質石炭の製造方法であって、外部から取り込んだ空気を加熱し、加熱した前記空気で前記高水分石炭を流動化させて石炭流動層とし、前記石炭流動層内の前記高水分石炭から水分を蒸発させて一次乾燥石炭とする第一乾燥工程と、前記一次乾燥石炭を間接的に加熱し、前記一次乾燥石炭から水分をさらに蒸発させて乾燥石炭とするとともに、前記一次乾燥石炭から蒸発させた第一水蒸気を回収する第二乾燥工程と、前記乾燥石炭を乾留して前記改質石炭とすると共に、前記乾燥石炭の乾留に必要な乾留熱を供給したあとの燃焼排ガスを排熱回収することにより、第二水蒸気を発生させる乾留工程と、前記改質石炭を冷却する冷却工程と、を備え、前記第一乾燥工程において、前記空気を前記第一水蒸気で間接的に加熱し、前記第二乾燥工程においては、前記第二水蒸気を用いて前記一次乾燥石炭を間接的に加熱する、ことを特徴としている。 A method for producing a modified coal according to one aspect of the present invention is a method for producing a modified coal from a high-moisture coal that is a coal containing at least 45% of water in a mass ratio. Heating the taken-in air, fluidizing the high moisture coal with the heated air to form a coal fluidized bed, and evaporating moisture from the high moisture coal in the coal fluidized bed to form primary dry coal A step of indirectly heating the primary dry coal, further evaporating water from the primary dry coal to obtain dry coal, and recovering the first water vapor evaporated from the primary dry coal; A dry distillation step of generating second steam by dry distillation of the dry coal to obtain the modified coal, and exhaust heat recovery of the combustion exhaust gas after supplying the dry distillation heat necessary for the dry distillation of the dry coal; The reforming A cooling step for cooling the charcoal, wherein in the first drying step, the air is indirectly heated with the first water vapor, and in the second drying step, the primary drying is performed using the second water vapor. It is characterized by indirectly heating coal.
 本発明の一態様に係る改質石炭の製造装置は、水分を質量比で45%以上含有する石炭である高水分石炭から改質石炭を製造する改質石炭の製造装置であって、前記高水分石炭から水分を蒸発させて乾燥石炭とする乾燥部と、前記乾燥石炭を乾留して前記改質石炭とする乾留部と、前記改質石炭を冷却する冷却部と、を備え、前記乾燥部は、外部から取り込んだ空気を加熱し、加熱した前記空気で前記高水分石炭を流動化させて石炭流動層とし、前記石炭流動層内の前記高水分石炭から水分を蒸発させて一次乾燥石炭とする第一乾燥部と、前記一次乾燥石炭を間接的に加熱し、前記一次乾燥石炭から水分をさらに蒸発させて前記乾燥石炭とするとともに、前記一次乾燥石炭から蒸発させた第一水蒸気を回収する第二乾燥部と、を有し、前記乾留部は、前記乾燥石炭を乾留し、前記乾燥石炭の乾留に必な乾留熱を供給したあとの燃焼排ガスを排熱回収することにより、第二水蒸気を発生させ、前記第一乾燥部は、前記空気を前記第一水蒸気で間接的に加熱し、前記第二乾燥部は、第二水蒸気を用いて前記一次乾燥石炭を間接的に加熱する、ことを特徴としている。 An apparatus for producing modified coal according to one aspect of the present invention is an apparatus for producing modified coal that produces modified coal from high-moisture coal, which is coal containing 45% or more of water by mass ratio. A drying unit that evaporates water from moisture coal to form dry coal, a dry distillation unit that carbonizes the dry coal to form reformed coal, and a cooling unit that cools the modified coal, and the drying unit Heating the air taken in from the outside, fluidizing the high moisture coal with the heated air to form a coal fluidized bed, evaporating moisture from the high moisture coal in the coal fluidized bed and primary dry coal A first drying unit that indirectly heats the primary dry coal, further evaporates water from the primary dry coal to form the dry coal, and collects the first water vapor evaporated from the primary dry coal A second drying section, and The distilling section generates the second steam by exhaust heat recovery of the combustion exhaust gas after carbonizing the dry coal and supplying the carbonization heat necessary for the dry distillation of the dry coal, the first drying section, The air is indirectly heated with the first water vapor, and the second drying section indirectly heats the primary dry coal with the second water vapor.
 前記第一乾燥工程において、前記石炭流動層を前記第一水蒸気で間接的に加熱することがより好ましい。 In the first drying step, it is more preferable to indirectly heat the coal fluidized bed with the first steam.
 前記第一乾燥部は、前記石炭流動層を前記第一水蒸気で間接的に加熱することがより好ましい。 More preferably, the first drying section indirectly heats the coal fluidized bed with the first steam.
 前記高水分石炭から前記第一乾燥工程で蒸発する水分の量に対して、前記高水分石炭が前記一次乾燥石炭となった後で前記一次乾燥石炭から前記第二乾燥工程で蒸発する水分の量が2倍であることがより好ましい。 The amount of moisture that evaporates from the primary dry coal in the second drying step after the high moisture coal becomes the primary dry coal with respect to the amount of moisture that evaporates from the high moisture coal in the first drying step. Is more preferably doubled.
 前記第一乾燥工程において、前記空気を前記第二水蒸気で間接的に加熱することがより好ましい。 In the first drying step, it is more preferable to indirectly heat the air with the second water vapor.
 本発明の改質石炭の製造方法及び改質石炭の製造装置によれば、高水分石炭を発火させることなく乾燥させるとともに、高水分石炭を乾燥させるための水蒸気を安価に得ることができ、さらに高水分石炭を乾燥させるための水蒸気の量も低減することができる。 According to the modified coal production method and modified coal production apparatus of the present invention, high moisture coal can be dried without igniting, and steam for drying the high moisture coal can be obtained at low cost. The amount of water vapor for drying the high moisture coal can also be reduced.
本発明の第1実施形態の改質石炭の製造装置のブロック図である。It is a block diagram of the manufacturing apparatus of the modified coal of 1st Embodiment of this invention. 図1に示す製造装置の乾留設備のブロック図である。It is a block diagram of the carbonization equipment of the manufacturing apparatus shown in FIG. 第1実施形態の改質石炭の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the modified coal of 1st Embodiment. 空気及び水に対する低温度湿度図表をもとに第一乾燥工程の乾燥操作を示す操作線図である。It is an operation diagram which shows drying operation of a 1st drying process based on the low temperature humidity chart with respect to air and water. 本発明の第2実施形態の改質石炭の製造装置のブロック図である。It is a block diagram of the manufacturing apparatus of the modified coal of 2nd Embodiment of this invention.
(第1実施形態)
 以下、本発明に係る改質石炭の製造装置(以下、「製造装置」とも略称する)の第1実施形態を、図1から図4を参照しながら説明する。
(First embodiment)
Hereinafter, a first embodiment of a modified coal production apparatus (hereinafter also abbreviated as “production apparatus”) according to the present invention will be described with reference to FIGS. 1 to 4.
 図1に示すように、本実施形態の製造装置1は、高水分石炭M1から水分を蒸発させて乾燥石炭M3とする乾燥設備(乾燥部)10と、乾燥設備10で水分が蒸発した乾燥石炭M3を乾留して改質石炭M4とする乾留設備(乾留部)30と、乾留設備30で得られた改質石炭M4を冷却する冷却設備(冷却部)40と、を備えている。 As shown in FIG. 1, the manufacturing apparatus 1 according to the present embodiment includes a drying facility (drying unit) 10 that evaporates moisture from a high-moisture coal M1 to dry coal M3, and dry coal from which moisture has evaporated in the drying facility 10. A dry distillation facility (dry distillation section) 30 that carbonizes M3 into reformed coal M4 and a cooling facility (cooling section) 40 that cools the modified coal M4 obtained by the dry distillation facility 30 are provided.
 なお、ここで言う高水分石炭M1とは、水分を質量比で45%以上含有する石炭のことを意味する。符号M3、M4、及び後述する符号M2は配管やコンベア等を意味せずに、これらの配管やコンベア等により供給される乾燥石炭、改質石炭、及び一次乾燥石炭のことを意味する。 In addition, the high moisture coal M1 said here means the coal which contains a water | moisture content 45% or more by mass ratio. Reference numerals M3 and M4 and reference numeral M2 to be described later do not mean pipes and conveyors, but mean dry coal, modified coal, and primary dry coal supplied by these pipes and conveyors.
 乾燥設備10は、第一乾燥設備(第一乾燥部)11、及び第二乾燥設備(第二乾燥部)12を備えている。 The drying facility 10 includes a first drying facility (first drying unit) 11 and a second drying facility (second drying unit) 12.
 第一乾燥設備11は、外部から取り込んだ空気M5を加熱し、この加熱された空気M5で高水分石炭M1を流動化させて石炭流動層M6とすることで、乾燥操作を実施し、高水分石炭M1を一次乾燥石炭M2とする。
 第二乾燥設備12は、第一乾燥設備11で処理された一次乾燥石炭M2を後述する乾留工程水蒸気(以下、第二水蒸気と称する)で間接的に加熱し、一次乾燥石炭M2から水分をさらに蒸発させて乾燥石炭M3とする。
The first drying equipment 11 heats the air M5 taken from the outside, fluidizes the high-moisture coal M1 with the heated air M5 to form a coal fluidized bed M6, thereby performing a drying operation, and high moisture Coal M1 is designated as primary dry coal M2.
The second drying facility 12 indirectly heats the primary dry coal M2 treated in the first drying facility 11 with a carbonization process steam (hereinafter referred to as second steam), which will be described later, to further remove moisture from the primary dry coal M2. Evaporate to dry coal M3.
 第一乾燥設備11は、外部から空気M5を取り込む空気ファン15と、空気ファン15が取り込んだ空気M5を加熱する空気予熱器16と、空気予熱器16が加熱した空気M5をさらに加熱する空気加熱器17と、空気加熱器17が加熱した空気M5が供給される空気流動層乾燥機(以下、乾燥機と称する)18と、を有している。 The first drying equipment 11 includes an air fan 15 that takes in air M5 from the outside, an air preheater 16 that heats the air M5 taken in by the air fan 15, and air heating that further heats the air M5 heated by the air preheater 16. And an air fluidized bed dryer (hereinafter referred to as a dryer) 18 to which air M5 heated by the air heater 17 is supplied.
 乾燥機18には、高水分石炭M1が時間あたり一定の所定重量で供給される。また、乾燥機18には、排空気に同伴される石炭微粉等を回収するための排空気集塵機(以下、集塵機と称する)19が接続されている。 The high-moisture coal M1 is supplied to the dryer 18 at a constant predetermined weight per hour. The dryer 18 is connected to an exhaust air dust collector (hereinafter referred to as a dust collector) 19 for recovering coal fines and the like accompanying the exhaust air.
 第二乾燥設備12内には、第二水蒸気が流れる第二水蒸気供給配管(以下、供給配管と称する)21の一端部に接続(連通)する加熱管(加熱配管)22が配設されている。
 供給配管21の他端部は、乾留設備30に接続されている。加熱管22のうち、供給配管21に接続されていない側の端部は、蒸気凝縮水がほぼ大気圧下に配置された図示しない配管に集められ、必要に応じて水蒸気用復水として戻される。
A heating pipe (heating pipe) 22 that is connected (communication) to one end of a second steam supply pipe (hereinafter referred to as supply pipe) 21 through which the second steam flows is disposed in the second drying facility 12. .
The other end of the supply pipe 21 is connected to the dry distillation facility 30. The end of the heating pipe 22 on the side not connected to the supply pipe 21 is collected in a pipe (not shown) in which steam condensate is arranged at substantially atmospheric pressure, and is returned as steam condensate as necessary. .
 第二乾燥設備12は、第一乾燥設備11の乾燥機18に接続されている。乾燥機18から第二乾燥設備12内に供給された一次乾燥石炭M2は、第二乾燥設備12の内部に設置された加熱管22の外面に接触することで間接的に加熱され、一次乾燥石炭M2中の水分が蒸発することで乾燥する。配管23は、供給配管21から分岐し、空気加熱器17に接続されている。
 外部から取り込んだ空気M5を空気加熱器17にて加熱するために、配管23を介して空気加熱器17に水蒸気(後述する第二水蒸気)が供給される。
The second drying facility 12 is connected to the dryer 18 of the first drying facility 11. The primary dry coal M2 supplied into the second drying facility 12 from the dryer 18 is indirectly heated by contacting the outer surface of the heating pipe 22 installed in the second drying facility 12, and the primary dry coal is obtained. It is dried by evaporating the water in M2. The pipe 23 branches from the supply pipe 21 and is connected to the air heater 17.
In order to heat the air M <b> 5 taken from the outside by the air heater 17, water vapor (second water vapor described later) is supplied to the air heater 17 through the pipe 23.
 第二乾燥設備12には、間接加熱乾燥工程水蒸気(以下、第一水蒸気と称する)が流れる第一水蒸気供給配管(以下、供給配管と称する)24の一端部が、集塵機25を介して接続されている。
 供給配管24の他端部は、空気予熱器16まで延びていて、空気予熱器16に接続されている。これにより、供給配管24を介して第一水蒸気が第二乾燥設備12から空気予熱器16に供給される。外部から取り込んだ空気M5は、空気予熱器16において第一水蒸気により間接的に加熱される。
One end of a first water vapor supply pipe (hereinafter referred to as a supply pipe) 24 through which indirect heating and drying process water vapor (hereinafter referred to as a first water vapor) flows is connected to the second drying facility 12 via a dust collector 25. ing.
The other end of the supply pipe 24 extends to the air preheater 16 and is connected to the air preheater 16. As a result, the first water vapor is supplied from the second drying equipment 12 to the air preheater 16 via the supply pipe 24. The air M5 taken from the outside is indirectly heated by the first water vapor in the air preheater 16.
 乾留設備30は、図2に示すように、例えば公知の外熱式ロータリーキルン31と、ロータリーキルン31に接続された二次燃焼装置32と、二次燃焼装置32に接続された蒸気発生装置33と、蒸気発生装置33に接続された除塵装置34と、除塵装置34に接続された吸引ファン35と、吸引ファン35に接続された排ガス処理装置36と、を有している。 As shown in FIG. 2, the carbonization facility 30 includes, for example, a known external heat type rotary kiln 31, a secondary combustion device 32 connected to the rotary kiln 31, a steam generation device 33 connected to the secondary combustion device 32, A dust removing device 34 connected to the steam generating device 33, a suction fan 35 connected to the dust removing device 34, and an exhaust gas treatment device 36 connected to the suction fan 35 are included.
 ロータリーキルン31は、乾燥設備10の第二乾燥設備12に接続されている。ロータリーキルン31は、内部が、酸素が存在しない例えば数百℃の環境下に設定されており、第二乾燥設備12から供給された乾燥石炭M3を内部で乾留し、改質石炭M4を得る。改質石炭M4は、冷却設備40に供給される。
 なお、二次燃焼装置32、蒸気発生装置33、除塵装置34、吸引ファン35、及び排ガス処理装置36の説明については後述する。
The rotary kiln 31 is connected to the second drying facility 12 of the drying facility 10. The inside of the rotary kiln 31 is set in an environment of, for example, several hundred degrees C. in which oxygen does not exist, and dry coal M3 supplied from the second drying equipment 12 is dry-distilled to obtain reformed coal M4. The reformed coal M4 is supplied to the cooling facility 40.
The secondary combustion device 32, the steam generation device 33, the dust removal device 34, the suction fan 35, and the exhaust gas treatment device 36 will be described later.
 冷却設備40は、乾留設備30で乾留された改質石炭M4を、空気との接触酸化により発火しない温度、例えば数十℃まで冷却する。 The cooling facility 40 cools the reformed coal M4 carbonized in the carbonization facility 30 to a temperature at which it does not ignite by contact oxidation with air, for example, several tens of degrees centigrade.
 次に、以上のように構成された製造装置1を用いた、本実施形態の改質石炭M4の製造方法(以下、「製造方法」とも略称する)について説明する。 Next, a method for manufacturing the modified coal M4 of the present embodiment (hereinafter also abbreviated as “manufacturing method”) using the manufacturing apparatus 1 configured as described above will be described.
 図3は、本実施形態の製造方法を示すフローチャートである。
 本製造方法は、高水分石炭M1から水分を蒸発させて乾燥石炭M3とする乾燥工程S10と、乾燥工程S10の後で乾燥石炭M3を乾留して改質石炭M4とする乾留工程S20と、乾留工程S20の後で改質石炭M4を冷却する冷却工程S30と、を備えている。
FIG. 3 is a flowchart showing the manufacturing method of this embodiment.
This production method includes a drying step S10 in which moisture is evaporated from the high-moisture coal M1 to obtain dry coal M3, a dry distillation step S20 in which dry coal M3 is subjected to dry distillation after the drying step S10 to obtain reformed coal M4, And a cooling step S30 for cooling the modified coal M4 after the step S20.
 乾燥工程S10は、高水分石炭M1を乾燥させて一次乾燥石炭M2にする空気流動層乾燥工程(以下第一乾燥工程と称する)S11と、一次乾燥石炭M2をさらに乾燥させて乾燥石炭M3とする間接加熱乾燥工程(以下、第二乾燥工程と称する)S12と、を備えている。 In the drying step S10, the air-fluidized bed drying step (hereinafter referred to as the first drying step) S11 that dries the high-moisture coal M1 to the primary dry coal M2, and the primary dry coal M2 is further dried to obtain the dry coal M3. An indirect heating drying step (hereinafter referred to as a second drying step) S12.
 第一乾燥工程S11は、外部から取り込んだ空気M5を加熱し、この加熱した空気M5で高水分石炭M1を流動化させて石炭流動層M6とし、流動中に高水分石炭M1から水分を蒸発、乾燥させて一次乾燥石炭M2を得る。
 第二乾燥工程S12は、第一乾燥工程S11の後で、一次乾燥石炭M2からさらに水分を蒸発させて乾燥石炭M3とする。
The first drying step S11 heats the air M5 taken from outside, fluidizes the high moisture coal M1 with the heated air M5 to form a coal fluidized bed M6, and evaporates moisture from the high moisture coal M1 during the flow. Dry to obtain primary dry coal M2.
In the second drying step S12, after the first drying step S11, water is further evaporated from the primary dry coal M2 to obtain dry coal M3.
 第一乾燥工程S11では、空気ファン15により外部から空気M5を取り込む。なお、後述するように、第一水蒸気は、第二乾燥設備12から供給配管24を通して集塵機25に供給され、さらに集塵機25から供給配管24を通して空気予熱器16に供給される。これにより、取り込んだ空気M5は、空気予熱器16内で供給配管24の外面に接触することで、第一水蒸気により間接的に加熱される。 In the first drying step S11, air M5 is taken in from the outside by the air fan 15. As will be described later, the first water vapor is supplied from the second drying equipment 12 to the dust collector 25 through the supply pipe 24 and is further supplied from the dust collector 25 to the air preheater 16 through the supply pipe 24. Thereby, the taken-in air M5 is indirectly heated by the first steam by contacting the outer surface of the supply pipe 24 in the air preheater 16.
 空気予熱器16で加熱した空気M5は、さらに空気加熱器17に供給される。なお、後述するように、第二水蒸気は、配管23を通して乾留設備30から空気加熱器17に供給される。これにより、取り込んだ空気M5は、空気加熱器17内で配管23の外面に接触することで、第二水蒸気で間接的に加熱される。
 すなわち、空気予熱器16で加熱した空気M5を、空気加熱器17でさらに間接的に加熱する。
The air M5 heated by the air preheater 16 is further supplied to the air heater 17. As will be described later, the second water vapor is supplied from the dry distillation equipment 30 to the air heater 17 through the pipe 23. Thereby, the taken-in air M5 is indirectly heated with the second steam by contacting the outer surface of the pipe 23 in the air heater 17.
That is, the air M5 heated by the air preheater 16 is further indirectly heated by the air heater 17.
 なお、空気予熱器16、空気加熱器17でそれぞれ用いられた第一水蒸気、及び第二水蒸気は、蒸気凝縮水として外部に排出される、或いは必要に応じて水蒸気用復水として戻される。 In addition, the 1st water vapor | steam and the 2nd water vapor | steam respectively used by the air preheater 16 and the air heater 17 are discharged | emitted outside as steam condensate, or are returned as steam condensate as needed.
 なお、本実施形態では、空気M5が、空気予熱器16内における供給配管24の外面に接触すると共に、空気加熱器17内における配管23の外面に接触することで、それぞれ間接的に加熱される場合を例にしている。
 但し、空気M5を間接的に加熱するための構成は、供給配管24、23に限られるものではなく、例えば、多チューブ式(シェルアンドチューブ式)や、プレート式等の間接熱交換器を適宜選択して用いることができる。
 第二乾燥設備12の加熱管22、及び、後述する乾燥機18の加熱管52についても同様である。
In the present embodiment, the air M5 is indirectly heated by contacting the outer surface of the supply pipe 24 in the air preheater 16 and the outer surface of the pipe 23 in the air heater 17. Take the case as an example.
However, the configuration for indirectly heating the air M5 is not limited to the supply pipes 24 and 23. For example, an indirect heat exchanger such as a multi-tube type (shell-and-tube type) or a plate type is appropriately used. It can be selected and used.
The same applies to the heating tube 22 of the second drying facility 12 and the heating tube 52 of the dryer 18 described later.
 空気加熱器17で加熱された空気M5は、乾燥機18に供給される。乾燥機18に供給するときの空気M5の温度は、高水分石炭M1が酸化発熱しても発火温度に到達しない温度であればよく、例えば120℃以下であることが発火防止の観点で好ましい。 The air M5 heated by the air heater 17 is supplied to the dryer 18. The temperature of the air M5 when it is supplied to the dryer 18 may be a temperature that does not reach the ignition temperature even when the high moisture coal M1 generates heat by oxidation, and is preferably 120 ° C. or less, for example, from the viewpoint of preventing ignition.
 乾燥機18には、高水分石炭M1が供給される。高水分石炭M1の平均粒径は、例えば3mmである。この例では、乾燥機18に供給される第一乾燥工程S11を行う前の高水分石炭M1は、例えば水分を質量比で60%含有し、残りの40%は、揮発分と固定炭素分がそれぞれ約20%、それに若干の灰分で構成されている。 High moisture coal M1 is supplied to the dryer 18. The average particle diameter of the high moisture coal M1 is, for example, 3 mm. In this example, the high moisture coal M1 before performing the first drying step S11 supplied to the dryer 18 contains, for example, 60% by mass of moisture, and the remaining 40% is composed of volatile matter and fixed carbon. Each is composed of about 20% and some ash.
 乾燥機18に供給された高水分石炭M1は、乾燥機18に供給された空気M5で流動化され、石炭流動層M6となる。石炭流動層M6内の高水分石炭M1は、加熱された空気M5により加熱されることで、高水分石炭M1から水分が蒸発する。このように、高水分石炭M1から水分が蒸発することで、石炭流動層M6を構成する高水分石炭M1は、一次乾燥石炭M2となる。 The high moisture coal M1 supplied to the dryer 18 is fluidized by the air M5 supplied to the dryer 18 to become a coal fluidized bed M6. The high moisture coal M1 in the coal fluidized bed M6 is heated by the heated air M5, whereby the moisture evaporates from the high moisture coal M1. Thus, the high moisture coal M1 which comprises the coal fluidized bed M6 turns into primary dry coal M2 because a water | moisture content evaporates from the high moisture coal M1.
 なお、乾燥機18に供給された空気M5は、前記高水分石炭M1からの蒸発水分を伴って増湿する。乾燥機18内で増湿した空気M5は、石炭微粉等を同伴した排空気となって乾燥機18内から排出され、集塵機19に供給される。この排空気は、集塵機19で排空気と、石炭微粉等とに分離される。集塵機19で分離された石炭微粉等は回収され、必要に応じて増粒化されて、一次乾燥石炭M2に戻される。一方、石炭微粉等が分離された排空気(空気)は、集塵機19から外部に排出される。 In addition, the air M5 supplied to the dryer 18 is humidified with the evaporated water from the high moisture coal M1. The air M5 that has been humidified in the dryer 18 becomes exhausted air accompanied by fine coal powder and the like, is discharged from the dryer 18, and is supplied to the dust collector 19. The exhaust air is separated into exhaust air and fine coal powder by the dust collector 19. The fine coal powder or the like separated by the dust collector 19 is collected, and is granulated as necessary, and returned to the primary dry coal M2. On the other hand, the exhaust air (air) from which the coal fine powder and the like are separated is discharged from the dust collector 19 to the outside.
 乾燥機18の石炭流動層M6内部の温度は、高水分石炭M1が空気M5中の酸素により酸化発熱が生じない温度が望ましく、例えば60℃以下であることが好ましい。すなわち、乾燥機18は、一次乾燥石炭M2の水分量が限界含水率に到達する前まで乾燥を行うことが好ましい。例えば、一例として、水分が重量比で20%に低下するまでの範囲、すなわち恒率乾燥速度域での乾燥操作を行うことが好ましい。
 なお、一次乾燥石炭M2を限界含水率より低い水分量まで乾燥させる場合においても、石炭流動層M6の内部温度を60℃以下という比較的低い温度にして、高水分石炭M1の乾燥を行うことが好ましい。
The temperature inside the coal fluidized bed M6 of the dryer 18 is desirably a temperature at which the high moisture coal M1 does not generate oxidation heat due to oxygen in the air M5, and is preferably 60 ° C. or less, for example. That is, it is preferable that the dryer 18 performs drying until the moisture content of the primary dry coal M2 reaches the limit moisture content. For example, as an example, it is preferable to perform a drying operation in a range until the water content is reduced to 20% by weight, that is, in a constant rate drying speed region.
Even when the primary dry coal M2 is dried to a moisture content lower than the limit moisture content, the high temperature coal M1 can be dried by setting the internal temperature of the coal fluidized bed M6 to a relatively low temperature of 60 ° C. or less. preferable.
 乾燥機18での石炭流動層M6の乾燥操作が終わると、第一乾燥工程S11を終了して第二乾燥工程S12に移行し、乾燥機18で処理された一次乾燥石炭M2を第二乾燥設備12に供給する。 When the drying operation of the coal fluidized bed M6 in the dryer 18 is finished, the first drying step S11 is finished, the process proceeds to the second drying step S12, and the primary drying coal M2 processed by the dryer 18 is used as the second drying equipment. 12 is supplied.
 第二乾燥工程S12では、第二乾燥設備12内において、一次乾燥石炭M2を、供給配管21を通して供給される第二水蒸気により加熱管22を介して間接的に加熱する。第二乾燥設備12内では、一次乾燥石炭M2は加熱管22の外面に接触することで間接的に加熱される。
 以上のことにより、一次乾燥石炭M2は、第二乾燥設備12内に配置された加熱管22により加熱されることで、一次乾燥石炭M2から水分が蒸発する。
In the second drying step S <b> 12, the primary dry coal M <b> 2 is indirectly heated by the second steam supplied through the supply pipe 21 through the heating pipe 22 in the second drying facility 12. In the second drying facility 12, the primary dry coal M <b> 2 is indirectly heated by contacting the outer surface of the heating pipe 22.
As described above, the primary dry coal M2 is heated by the heating pipe 22 arranged in the second drying facility 12, and thereby moisture is evaporated from the primary dry coal M2.
 乾燥工程S10では、高水分石炭M1が乾燥石炭M3になるまで乾燥を行う。
 このとき、第二乾燥工程S12において一次乾燥石炭M2が乾燥石炭M3になるまでに蒸発する水分の量は、第二乾燥工程S12で蒸発する水分から得られる第一水蒸気の全量と、第一乾燥工程S11において高水分石炭M1から一次乾燥石炭M2までの乾燥に必要とする蒸気量全量とがバランスする(等しくなる)ように設定することが熱効率的の観点から好ましい。
In the drying step S10, drying is performed until the high moisture coal M1 becomes the dry coal M3.
At this time, the amount of water evaporated until the primary dry coal M2 becomes the dry coal M3 in the second drying step S12 is the total amount of the first water vapor obtained from the water evaporated in the second drying step S12, and the first drying step. It is preferable from the viewpoint of thermal efficiency to set so that the total amount of steam required for drying from the high moisture coal M1 to the primary dry coal M2 in step S11 is balanced (equal).
 一定量の高水分石炭M1から第一乾燥工程S11で蒸発する水分の量に対して、この一定量の高水分石炭M1が第一乾燥工程S11で一次乾燥石炭M2となった後でこの一次乾燥石炭M2から第二乾燥工程S12で蒸発する水分の量が2倍であることが好ましい。
 すなわち、例えば、乾燥工程S10にて水分含有量が重量比で60%の高水分石炭M1を、水分含有量が重量比で10%の乾燥石炭M3になるまで乾燥させる場合、第一乾燥工程S11において水分含有量が重量比で60%の高水分石炭M1を乾燥させて、水分含有量が重量比で50%の一次乾燥石炭M2にすることが好ましい。
The primary drying after the fixed amount of high moisture coal M1 becomes the primary dry coal M2 in the first drying step S11 with respect to the amount of moisture evaporated in the first drying step S11 from the fixed amount of high moisture coal M1. It is preferable that the amount of water evaporated from the coal M2 in the second drying step S12 is twice.
That is, for example, in the case where the high moisture coal M1 having a moisture content of 60% by weight in the drying step S10 is dried until the dry coal M3 has a moisture content of 10% by weight, the first drying step S11. It is preferable to dry the high moisture coal M1 having a moisture content of 60% by weight to obtain a primary dry coal M2 having a moisture content of 50% by weight.
 さらに、乾燥機18に供給されるときの空気M5の温度を例えば120℃以下、乾燥機18の内部の温度を例えば60℃以下とし、さらに、第一乾燥工程S11の終了時の一次乾燥石炭M2の水分含有量を重量比で50%とすることで、第一乾燥工程S11において空気M5の雰囲気下でも高水分石炭M1を発火させることなく乾燥させることができる。 Further, the temperature of the air M5 when supplied to the dryer 18 is, for example, 120 ° C. or less, the temperature inside the dryer 18 is, for example, 60 ° C. or less, and the primary dry coal M2 at the end of the first drying step S11. By setting the water content of the water to 50% by weight, the high-moisture coal M1 can be dried without being ignited even in an atmosphere of air M5 in the first drying step S11.
 供給配管21の管路を通して第二乾燥設備12内に設置された加熱管22に供給された第二水蒸気は、加熱管22内で凝縮して蒸気凝縮水として排出される。
 一次乾燥石炭M2から蒸発した水分である第一水蒸気は回収され、供給配管24を通して集塵機25に供給される。これにより、第一水蒸気に例えば石炭微粉等が同伴されていたとしても、集塵機25内で第一水蒸気と石炭微粉等とを分離できる。分離された第一水蒸気は、集塵機25から供給配管24を通して空気予熱器16に供給される。すなわち、図3に示すように第二乾燥工程S12で得られた第一水蒸気が第一乾燥工程S11で用いられる。
The second water vapor supplied to the heating pipe 22 installed in the second drying facility 12 through the supply pipe 21 is condensed in the heating pipe 22 and discharged as vapor condensed water.
The first water vapor, which is water evaporated from the primary dry coal M2, is collected and supplied to the dust collector 25 through the supply pipe 24. Thereby, even if, for example, coal fine powder or the like is accompanied with the first water vapor, the first water vapor and the coal fine powder or the like can be separated in the dust collector 25. The separated first water vapor is supplied from the dust collector 25 to the air preheater 16 through the supply pipe 24. That is, as shown in FIG. 3, the first water vapor obtained in the second drying step S12 is used in the first drying step S11.
 なお、集塵機25から供給配管24を通して空気予熱器16に供給される第一水蒸気の一部は、例えば途中で供給配管24から分岐して第二乾燥設備12に供給される。これにより、第二乾燥工程12では、従来と同様に水蒸気の雰囲気下で一次乾燥石炭M2を乾燥することができる。
 なお、第一水蒸気の一部を第二乾燥設備12に供給する際、図示しないファン等の送風手段を利用して流量を高めても良い。これにより、第二乾燥設備12内で一次乾燥石炭M2を流動化させながら間接加熱することができる。
 なお、集塵機25で分離された石炭微粉等は、例えば必要に応じて増粒化した後、第二乾燥設備12から乾留設備30に供給される乾燥石炭M3に戻しても良い。
A part of the first steam supplied from the dust collector 25 to the air preheater 16 through the supply pipe 24 is branched from the supply pipe 24 and supplied to the second drying facility 12, for example. Thereby, in the 2nd drying process 12, primary dry coal M2 can be dried under the atmosphere of water vapor like usual.
In addition, when supplying a part of 1st water vapor | steam to the 2nd drying equipment 12, you may raise flow volume using ventilation means, such as a fan which is not shown in figure. Thereby, indirect heating can be performed while fluidizing the primary dry coal M2 in the second drying equipment 12.
The fine coal powder or the like separated by the dust collector 25 may be returned to the dry coal M3 supplied from the second drying facility 12 to the dry distillation facility 30, for example, after increasing the particle size as necessary.
 第二乾燥設備12での一次乾燥石炭M2の乾燥処理が終了して、乾燥石炭M3が製造されると、第二乾燥設備12で製造された乾燥石炭M3は乾留設備30に供給される。
 これにより、第二乾燥工程S12が終了して、乾留工程S20に移行する。
When the drying process of the primary dry coal M2 in the second drying facility 12 is completed and the dry coal M3 is manufactured, the dry coal M3 manufactured in the second drying facility 12 is supplied to the dry distillation facility 30.
Thereby, 2nd drying process S12 is complete | finished and it transfers to dry distillation process S20.
 乾留工程S20では、乾留設備30において、乾燥石炭M3を前述のように乾留する。この乾留操作では、図2に示すロータリーキルン31内で乾燥石炭M3の揮発分が熱分解することで、ガスやタール分が発生する。
 ロータリーキルン31の内部で発生したガスやタール分は、ロータリーキルン31の内部から外部に排出され、外部においてロータリーキルン31を加熱するために供給された空気と共に燃焼される。これにより、乾燥石炭M3の乾留に必要な熱量(乾留熱)を得ることができる。この乾留熱は、ロータリーキルン31に供給される。
In the carbonization step S20, the dry coal M3 is carbonized as described above in the carbonization facility 30. In this dry distillation operation, gas and tar components are generated by thermally decomposing volatile components of the dry coal M3 in the rotary kiln 31 shown in FIG.
The gas and tar generated inside the rotary kiln 31 are discharged from the inside of the rotary kiln 31 to the outside, and are combusted together with the air supplied to heat the rotary kiln 31 outside. Thereby, calorie | heat amount (dry distillation heat) required for dry distillation of dry coal M3 can be obtained. This dry distillation heat is supplied to the rotary kiln 31.
 なお、ロータリーキルン31で燃焼せずに残ったガスやタール分は、ロータリーキルン31から二次燃焼装置32に供給される。二次燃焼装置32においてガスやタール分をさらに完全に燃焼させることで、高温の燃焼排ガスを得ることができる。
 蒸気発生装置33において、この燃焼排ガスを用いて排熱回収することで、第二水蒸気を得ることができる。
The gas and tar remaining without being burned in the rotary kiln 31 are supplied from the rotary kiln 31 to the secondary combustion device 32. By burning the gas and tar content more completely in the secondary combustion device 32, a high-temperature combustion exhaust gas can be obtained.
In the steam generation apparatus 33, the second steam can be obtained by recovering exhaust heat using the combustion exhaust gas.
 この第二水蒸気は、比較的低圧(例えば0.4MPaG(メガパスカル・ゲージ)以上)の低圧水蒸気でよい。燃焼排ガスは、除塵装置34による除塵処理を経て、吸引ファン35で吸引される。さらに、燃焼排ガスは、排ガス処理装置36による脱硫等の排ガス処理を経て、乾留設備30から排出される。 The second water vapor may be a low-pressure water vapor having a relatively low pressure (for example, 0.4 MPaG (megapascal gauge) or more). The combustion exhaust gas is sucked by the suction fan 35 through the dust removing process by the dust removing device 34. Further, the combustion exhaust gas is exhausted from the dry distillation equipment 30 through exhaust gas treatment such as desulfurization by the exhaust gas treatment device 36.
 第二水蒸気は、図1に示すように、供給配管21及び加熱管22を通り、第二乾燥設備12に供給される。すなわち、図3に示すように乾留工程S20で得られた第二水蒸気が第二乾燥工程S12で用いられる。
 供給配管21を流れる第二水蒸気の一部は、図1に示す配管23を通して空気加熱器17に供給される。
As shown in FIG. 1, the second water vapor is supplied to the second drying facility 12 through the supply pipe 21 and the heating pipe 22. That is, as shown in FIG. 3, the second water vapor obtained in the dry distillation step S20 is used in the second drying step S12.
A part of the second water vapor flowing through the supply pipe 21 is supplied to the air heater 17 through the pipe 23 shown in FIG.
 乾留設備30での改質石炭M4の製造が終わると、乾留設備30で製造された改質石炭M4は、冷却設備40に供給される。これにより、乾留工程S20が終了して、冷却工程S30に移行する。
 なお、乾留工程S20が終了したときの改質石炭M4の温度は、燃料比2から4に対して、例えば400℃以上650℃以下であることが好ましく、450℃以上600℃以下であることがより好ましい。
When the production of the modified coal M4 in the dry distillation facility 30 is finished, the modified coal M4 produced in the dry distillation facility 30 is supplied to the cooling facility 40. Thereby, dry distillation process S20 is complete | finished and it transfers to cooling process S30.
In addition, it is preferable that it is 400 degreeC or more and 650 degrees C or less, for example, as for the temperature of the modified coal M4 when dry distillation process S20 is complete | finished with respect to fuel ratio 2-4, and it is 450 degrees C or more and 600 degrees C or less. More preferred.
 冷却工程S30では、乾留設備30で製造された改質石炭M4を公知の冷却方式により数十℃程度まで冷却する。
 以上の工程により、燃料比が2から4の低揮発分一般炭相当の改質石炭M4を製造することができる。
In the cooling step S30, the modified coal M4 produced by the dry distillation equipment 30 is cooled to about several tens of degrees Celsius by a known cooling method.
Through the above steps, a modified coal M4 corresponding to low volatile steam coal having a fuel ratio of 2 to 4 can be produced.
(実施例)
 ここで、本発明の実施例を、具体例を示してより詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。
 図4は、空気及び水に対する低温度湿度図表である。図4の横軸は空気の温度(乾球温度)を表し、縦軸は空気の湿度(絶対湿度、kg-水蒸気/kg-dryair)を表す。また、図4において右上がりの曲線は、関係湿度を表す。
 乾燥機18では、一次乾燥石炭M2の水分量が限界含水率に到達する前までの乾燥操作を前提に説明する。空気流動層乾燥では、石炭からの水分蒸発量が空気によって系外に持ち出された水分量と等しくなる。そこで、空気が持ち出す水分量を、低温度湿度図表を用いて示す。
(Example)
Here, an embodiment of the present invention will be described in more detail with specific examples. However, the present invention is not limited to the following examples.
FIG. 4 is a low temperature humidity chart for air and water. The horizontal axis of FIG. 4 represents air temperature (dry bulb temperature), and the vertical axis represents air humidity (absolute humidity, kg-water vapor / kg-dryair). Moreover, the curve which goes to the right in FIG. 4 represents the relative humidity.
The dryer 18 will be described on the premise of a drying operation before the moisture content of the primary dry coal M2 reaches the limit moisture content. In air fluidized bed drying, the amount of water evaporated from coal is equal to the amount of water taken out of the system by air. Therefore, the amount of moisture taken out by air is shown using a low temperature humidity chart.
 外部の空気の温度を25℃とすると、この空気は関係湿度(相対湿度)100%とすると点Aの状態にある。点Aの状態の空気を、例えば70℃まで加熱すると、空気に含まれる水蒸気の量が一定のまま温度が上昇し、空気は点B1の状態になる。 If the temperature of the outside air is 25 ° C., this air is in the state of point A if the relative humidity (relative humidity) is 100%. When the air in the state of point A is heated to, for example, 70 ° C., the temperature rises while the amount of water vapor contained in the air remains constant, and the air enters the state of point B1.
 この点B1の状態の空気を乾燥設備10の乾燥機18に供給すると、空気は高水分石炭を流動化しながら断熱冷却され、断熱冷却線(図4における右下がりの直線)に沿って移動することで、約35℃、関係湿度が95%の点C1の状態になる。すなわち、乾燥機18の出口における空気が点C1の状態になる。
 空気の状態が点B1から点C1になるときに、点B1と点C1との間の縦軸の長さL1に対応する0.014(kg-水蒸気/kg-dryair)の水分量を高水分石炭から蒸発により除去することができる(水分を空気に取り込める)。
 なお、ここでは空気が断熱冷却により関係湿度が95%になる場合を説明しているが、95%に限定されるものではない。関係湿度は、例えば乾燥機の操作条件により影響される。
When the air in the state of point B1 is supplied to the dryer 18 of the drying facility 10, the air is adiabatically cooled while fluidizing the high-moisture coal and moves along the adiabatic cooling line (straight-downward straight line in FIG. 4). Thus, the point C1 is about 35 ° C. and the relative humidity is 95%. That is, the air at the outlet of the dryer 18 is in the state of point C1.
When the air state changes from the point B1 to the point C1, the water content of 0.014 (kg-water vapor / kg-dryair) corresponding to the length L1 of the vertical axis between the point B1 and the point C1 is increased to a high water content. It can be removed from coal by evaporation (water can be taken into the air).
In addition, although the case where the relative humidity is 95% due to adiabatic cooling is described here, it is not limited to 95%. The relative humidity is affected, for example, by the operating conditions of the dryer.
 点Aの状態の空気を、例えば120℃まで加熱すると、空気は点B2の状態になる。この点B2の状態の空気を乾燥機18に供給すると、空気は約42℃、関係湿度95%まで断熱冷却されて点C2の状態になる。
 空気の状態が点B2から点C2になるときに、点B2と点C2との間の縦軸の長さL2に対応する0.031(kg-水蒸気/kg-dryair)の水分を蒸発させることができる。
When the air in the state of point A is heated to, for example, 120 ° C., the air is in the state of point B2. When the air in the state of point B2 is supplied to the dryer 18, the air is adiabatically cooled to about 42 ° C. and a relative humidity of 95% to be in the state of point C2.
When the air condition changes from point B2 to point C2, 0.031 (kg-water vapor / kg-dryair) of water corresponding to the length L2 of the vertical axis between point B2 and point C2 is evaporated. Can do.
 なお、実際には高水分石炭が発火する可能性が高くなるので、空気を以下の温度まで加熱することは難しいが、参考までに一例を説明する。
 点Aの状態の空気を、図4に記載された範囲外となる例えば220℃まで加熱し、この状態の空気を乾燥機18に供給すると、空気は断熱冷却されて関係湿度が95%の点C3の状態になる。この場合、長さL3に対応する0.058(kg-水蒸気/kg-dryair)の水分を蒸発させることができる。
In addition, since the possibility that high moisture coal will ignite becomes high in practice, it is difficult to heat the air to the following temperature, but an example will be described for reference.
When the air in the state of point A is heated to, for example, 220 ° C., which is outside the range described in FIG. 4, and the air in this state is supplied to the dryer 18, the air is adiabatically cooled and the relative humidity is 95%. It will be in the state of C3. In this case, 0.058 (kg-water vapor / kg-dryair) of water corresponding to the length L3 can be evaporated.
 以上説明したように、本実施形態の改質石炭の製造装置1及び製造方法によれば、乾燥工程S10は第一乾燥工程S11及び第二乾燥工程S12を有している。
 そして、第二乾燥工程S12で発生する第一水蒸気を用いて第一乾燥工程S11で外部から取り込んだ空気を間接的に加熱し、乾留工程S20で排熱回収により製造した第二水蒸気を用いて第二乾燥工程S12で一次乾燥石炭M2を間接的に加熱する。
As described above, according to the modified coal manufacturing apparatus 1 and the manufacturing method of the present embodiment, the drying step S10 includes the first drying step S11 and the second drying step S12.
Then, the first steam generated in the second drying step S12 is used to indirectly heat the air taken from the outside in the first drying step S11, and the second steam produced by exhaust heat recovery in the dry distillation step S20 is used. In the second drying step S12, the primary dry coal M2 is indirectly heated.
 このように、乾留工程S20で廃熱回収により製造した安価な第二水蒸気を第二乾燥工程S12に使用することができる。また、乾燥工程S10では、第二乾燥工程S12で発生する第一水蒸気を第一乾燥工程S11での乾燥熱源に利用するために、高水分石炭M1を第一乾燥工程S11及び第二乾燥工程S12の2段階により乾燥することができる。 Thus, the inexpensive second water vapor produced by waste heat recovery in the carbonization step S20 can be used for the second drying step S12. Moreover, in drying process S10, in order to utilize the 1st water vapor | steam generate | occur | produced in 2nd drying process S12 for the drying heat source in 1st drying process S11, high moisture coal M1 is used for 1st drying process S11 and 2nd drying process S12. It can be dried in two steps.
 本実施形態では、第二乾燥工程S12で発生する第一水蒸気は、内部循環利用となる。このため、内部循環利用分の蒸気使用量分を削減でき、高水分石炭M1を乾燥するのに必要な水蒸気の量を、例えば特許文献1及び2に記載された従来の製造方法に比べて30%減らすことができる。
 このように、高水分石炭M1の乾燥に莫大な電力を必要とせず、高水分石炭M1を乾燥させるための水蒸気の量を低減させることができる。
 さらに、乾燥機18の内部の温度が60℃以下と比較的低いため、高水分石炭M1を発火させることなく、乾燥することができる。
In the present embodiment, the first water vapor generated in the second drying step S12 is used for internal circulation. For this reason, the amount of steam used for internal circulation can be reduced, and the amount of water vapor required to dry the high-moisture coal M1 can be reduced by 30 compared to the conventional manufacturing methods described in Patent Documents 1 and 2, for example. % Can be reduced.
Thus, enormous electric power is not required for drying the high moisture coal M1, and the amount of water vapor for drying the high moisture coal M1 can be reduced.
Furthermore, since the temperature inside the dryer 18 is relatively low at 60 ° C. or lower, the high moisture coal M1 can be dried without igniting.
 一定量の高水分石炭M1から第一乾燥工程S11で蒸発する水分の量に対して、第二乾燥工程S12で蒸発する水分の量を2倍とする。これにより、第二乾燥工程S12で得られる第一水蒸気の全量と、第一乾燥工程S11において乾燥に必要とする蒸気量全量と、が等しくなり、本製造方法における熱効率を高めることができる。 The amount of water evaporated in the second drying step S12 is doubled from the amount of water evaporated in the first drying step S11 from the fixed amount of high moisture coal M1. Thereby, the total amount of the first steam obtained in the second drying step S12 is equal to the total amount of steam required for drying in the first drying step S11, and the thermal efficiency in this manufacturing method can be increased.
 第一乾燥工程S11において、外部から取り込んだ空気M5を第二水蒸気で間接的に加熱することで、この空気M5の温度をより確実に高めることができる。
 なお、乾燥工程S10では外部から取り込んだ空気M5を乾燥機18に供給したが、空気M5に代えて、例えば窒素等のイナート(不活性)ガスを用いてもよい。
In the first drying step S11, the temperature of the air M5 can be more reliably increased by indirectly heating the air M5 taken from the outside with the second water vapor.
In the drying step S10, the air M5 taken from the outside is supplied to the dryer 18, but an inert gas such as nitrogen may be used instead of the air M5.
(第2実施形態)
 次に、本発明の第2実施形態について図4及び図5を参照しながら説明する。但し、本実施形態では、第1実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. However, in the present embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and only different points will be described.
 図5に示すように、本実施形態の製造装置2は、第1実施形態の製造装置1の各構成に加えて、供給配管24に接続された接続配管51と、接続配管51に接続され、乾燥機18内に配設された加熱管(加熱配管)52とを備えている。 As shown in FIG. 5, the manufacturing apparatus 2 of the present embodiment is connected to the connection pipe 51 connected to the supply pipe 24 and the connection pipe 51 in addition to the components of the manufacturing apparatus 1 of the first embodiment. And a heating pipe (heating pipe) 52 disposed in the dryer 18.
 加熱管52は、例えば石炭流動層M6が形成される部分(石炭流動層M6の表面)に水平となるように配置されている。乾燥機18内の石炭流動層M6は、加熱管52の外面に接触する。供給配管24を通る第一水蒸気は、接続配管51を通して加熱管52に供給される。これにより、石炭流動層M6は、加熱管52の外面に接触することによって、第一水蒸気により間接的に加熱される。
 なお、加熱管52の一端部は、接続配管51に接続されている。第一水蒸気は、加熱管52の他端部を介して蒸気凝縮水となって外部に排出される。
For example, the heating pipe 52 is disposed so as to be horizontal to a portion where the coal fluidized bed M6 is formed (the surface of the coal fluidized bed M6). The coal fluidized bed M <b> 6 in the dryer 18 contacts the outer surface of the heating pipe 52. The first water vapor passing through the supply pipe 24 is supplied to the heating pipe 52 through the connection pipe 51. Thereby, the coal fluidized bed M6 is indirectly heated by the first steam by contacting the outer surface of the heating pipe 52.
Note that one end of the heating pipe 52 is connected to the connection pipe 51. The first steam becomes steam condensed water via the other end of the heating pipe 52 and is discharged to the outside.
 以上のように構成された製造装置2を用いた、本実施形態の製造方法について説明する。
 第一乾燥工程S11において、第二乾燥設備12から供給配管24に流れた第一水蒸気は、さらに接続配管51、及び加熱管52に流れ込む。これにより、石炭流動層M6を、加熱管52を介して第一水蒸気で間接的に加熱することができる。
 これにより、高水分石炭M1は、外部から取り込まれて加熱された空気M5だけでなく、第一水蒸気によっても間接的に加熱される。
The manufacturing method of this embodiment using the manufacturing apparatus 2 configured as described above will be described.
In the first drying step S <b> 11, the first water vapor that has flowed from the second drying facility 12 to the supply pipe 24 further flows into the connection pipe 51 and the heating pipe 52. Thereby, the coal fluidized bed M6 can be indirectly heated with the first steam through the heating pipe 52.
As a result, the high-moisture coal M1 is indirectly heated not only by the air M5 taken from outside and heated, but also by the first water vapor.
(実施例)
 ここで、本発明の実施例を、具体例を示してより詳細に説明する。但し、本発明は以下の実施例に限定されるものではない。
(Example)
Here, an embodiment of the present invention will be described in more detail with specific examples. However, the present invention is not limited to the following examples.
 図4において、点Aの状態の空気を、例えば120℃まで加熱すると、空気は点B2の状態になる。乾燥機18内に設けた加熱管52で石炭流動層M6を加熱する際に、加熱空気による熱量と、加熱管52を利用した間接加熱による熱量と、の加熱熱量比が1:1となる(図4中の長さL3が、長さL2の2倍となる)ように加熱すると、点B2の状態の空気は前述の点C3の状態になる。
 このため、点C3を通り縦軸に平行な線と横軸との交点の温度である湿球温度49℃よりも高い温度の熱源であれば、第一水蒸気に代えて使用可能である。
In FIG. 4, when the air in the state of point A is heated to, for example, 120 ° C., the air is in the state of point B2. When the coal fluidized bed M6 is heated by the heating pipe 52 provided in the dryer 18, the heating heat quantity ratio between the heat quantity by the heated air and the heat quantity by indirect heating using the heating pipe 52 becomes 1: 1 ( When heating is performed so that the length L3 in FIG. 4 is twice the length L2, the air in the state of point B2 is in the state of point C3 described above.
For this reason, any heat source having a temperature higher than the wet bulb temperature of 49 ° C., which is the temperature at the intersection of the line passing through the point C3 and parallel to the vertical axis, and the horizontal axis can be used in place of the first water vapor.
 このように、加熱空気による熱量と、加熱管52を利用した間接加熱による熱量と、の加熱熱量比が1:1の場合には、110℃程度の第一水蒸気であっても、製造装置2の外部において外部の空気を120℃から220℃まで予熱したのと同じ、0.058(kg-水蒸気/kg-dryair)の水分を蒸発できる効果が得られる。 Thus, when the heating heat quantity ratio of the heat quantity by the heated air and the heat quantity by the indirect heating using the heating pipe 52 is 1: 1, the production apparatus 2 can be used even with the first steam at about 110 ° C. The effect of evaporating the moisture of 0.058 (kg-water vapor / kg-dryair), which is the same as the preheating of the outside air from 120 ° C. to 220 ° C., is obtained.
 なお、前記加熱管52で石炭流動層M6を間接加熱した場合の熱量相当分の効果は、外部の空気を120℃から石炭流動層M6を加熱した熱量に見合う熱量分、空気を加熱した場合と同等の乾燥効果となる。
 また、加熱空気による熱量と、加熱管52を利用した間接加熱による熱量と、の加熱熱量比は1:1以外でもよい。
The effect corresponding to the amount of heat when the fluidized bed M6 is indirectly heated by the heating pipe 52 is that the air is heated by the amount of heat corresponding to the amount of heat that heats the fluidized bed M6 from 120 ° C. Equivalent drying effect.
Further, the heating calorie ratio between the amount of heat by the heated air and the amount of heat by indirect heating using the heating tube 52 may be other than 1: 1.
 以上説明したように、本実施形態の改質石炭の製造装置2及び製造方法によれば、高水分石炭M1を発火させることなく乾燥させるとともに、高水分石炭M1を乾燥させるための水蒸気を安価な廃熱回収蒸気(第二水蒸気)とすることができる。また、水蒸気の量も低減させることができる。 As described above, according to the modified coal manufacturing apparatus 2 and the manufacturing method of the present embodiment, the high-moisture coal M1 is dried without igniting, and the water vapor for drying the high-moisture coal M1 is inexpensive. Waste heat recovery steam (second steam) can be used. In addition, the amount of water vapor can be reduced.
 さらに、第一乾燥工程S11において、石炭流動層M6を、加熱管52を介して第一水蒸気で間接的に加熱する。従って、空気M5だけでなく第一水蒸気で間接的に加熱することで、乾燥機18の内部の温度を比較的低い温度に維持しつつ、高水分石炭M1からより多くの水分を蒸発させることができる。
 このように、加熱管52を備えることで、乾燥に必要な風量を低減することができ、製造装置2を小型化することができる。
Furthermore, in the first drying step S <b> 11, the coal fluidized bed M <b> 6 is indirectly heated with the first steam through the heating pipe 52. Therefore, by indirectly heating not only with the air M5 but also with the first water vapor, more water can be evaporated from the high-moisture coal M1 while maintaining the temperature inside the dryer 18 at a relatively low temperature. it can.
Thus, by providing the heating tube 52, the air volume required for drying can be reduced, and the manufacturing apparatus 2 can be reduced in size.
 以上、本発明の第1実施形態及び第2実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。さらに、各実施形態で示した構成のそれぞれを適宜組み合わせて利用できる。 As mentioned above, although 1st Embodiment and 2nd Embodiment of this invention were explained in full detail with reference to drawings, the concrete structure is not restricted to this embodiment, The structure of the range which does not deviate from the summary of this invention Changes, combinations, deletions, etc. are also included. Furthermore, each of the configurations shown in each embodiment can be used in appropriate combination.
 例えば、前記第1実施形態及び第2実施形態において、乾燥機18に供給するときの空気M5の温度をさらに高くするために、製造装置の外部で得られた水蒸気でこの空気M5を加熱してもよい。一方で、乾燥機18に供給するときの空気M5の温度が充分に高いときには、この空気M5を第二水蒸気で加熱しなくてもよい。 For example, in the first embodiment and the second embodiment, in order to further increase the temperature of the air M5 when supplied to the dryer 18, the air M5 is heated with water vapor obtained outside the manufacturing apparatus. Also good. On the other hand, when the temperature of the air M5 supplied to the dryer 18 is sufficiently high, the air M5 may not be heated with the second steam.
 また、前記第1実施形態及び第2実施形態において、高水分石炭M1から水分を蒸発させて一次乾燥石炭M2とし、一次乾燥石炭M2からさらに水分を蒸発させて乾燥石炭M3としているが、各乾燥設備の乾燥具合(水分の蒸発具合)を把握する場合には、例えば直接一次乾燥石炭M2や乾燥石炭M3の各石炭の水分量を測定することや、各乾燥設備内での乾燥温度や、石炭層の差圧より求めた滞留時間等に基づいて乾燥具合を推定すれば良い。但し、これらの方法に限定されるものではない。 In the first embodiment and the second embodiment, moisture is evaporated from the high moisture coal M1 to primary dry coal M2, and water is further evaporated from the primary dry coal M2 to dry coal M3. When grasping the dryness of the equipment (water evaporation), for example, directly measuring the moisture content of each of the primary dry coal M2 and dry coal M3, the drying temperature in each dry equipment, What is necessary is just to estimate a drying condition based on the residence time etc. which were calculated | required from the differential pressure | voltage of the layer. However, it is not limited to these methods.
 また、製造装置に余剰の第二水蒸気がある場合には、加熱管52を通して第二水蒸気を流してもよい。
 製造装置は空気加熱器17を備えなくてもよい。この場合、乾燥用の空気M5の温度は例えば最大100℃、好ましくは70~90℃となる。
In addition, when there is surplus second water vapor in the manufacturing apparatus, the second water vapor may flow through the heating pipe 52.
The manufacturing apparatus may not include the air heater 17. In this case, the temperature of the drying air M5 is, for example, a maximum of 100 ° C., preferably 70 to 90 ° C.
 本発明によれば、高水分石炭を発火させることなく乾燥させるとともに、高水分石炭を乾燥させるための水蒸気を安価に得ることができ、さらに高水分石炭を乾燥させるための水蒸気の量も低減することができる。従って、産業上の利用可能性を有する。 ADVANTAGE OF THE INVENTION According to this invention, while drying high moisture coal, it can obtain the water vapor | steam for drying high moisture coal cheaply, and also the quantity of the water vapor | steam for drying high moisture coal is also reduced. be able to. Therefore, it has industrial applicability.
 1、2…製造装置(改質石炭の製造装置)
 10…乾燥設備(乾燥部)
 11…第一乾燥設備(第一乾燥部)
 12…第二乾燥設備(第二乾燥部)
 30…乾留設備(乾留部)
 40…冷却設備(冷却部)
 51…接続配管
 M1…高水分石炭
 M2…一次乾燥石炭
 M3…乾燥石炭
 M4…改質石炭
 M5…空気
 M6…石炭流動層
 S10…乾燥工程
 S11…第一乾燥工程(空気流動層乾燥工程)
 S12…第二乾燥工程(間接加熱乾燥工程)
 S20…乾留工程
 S30…冷却工程
1, 2 ... Production equipment (Production equipment for modified coal)
10 ... Drying equipment (drying section)
11 ... First drying equipment (first drying section)
12 ... Second drying equipment (second drying section)
30 ... Carbonization equipment (carbonization section)
40 ... Cooling equipment (cooling section)
DESCRIPTION OF SYMBOLS 51 ... Connection piping M1 ... High moisture coal M2 ... Primary dry coal M3 ... Dry coal M4 ... Modified coal M5 ... Air M6 ... Coal fluidized bed S10 ... Drying process S11 ... First drying process (air fluidized bed drying process)
S12 ... Second drying step (indirect heating drying step)
S20 ... dry distillation process S30 ... cooling process

Claims (6)

  1.  水分を質量比で45%以上含有する石炭である高水分石炭から改質石炭を製造する改質石炭の製造方法であって、
     外部から取り込んだ空気を加熱し、加熱した前記空気で前記高水分石炭を流動化させて石炭流動層とし、前記石炭流動層内の前記高水分石炭から水分を蒸発させて一次乾燥石炭とする第一乾燥工程と、
     前記一次乾燥石炭を間接的に加熱し、前記一次乾燥石炭から水分をさらに蒸発させて乾燥石炭とするとともに、前記一次乾燥石炭から蒸発させた第一水蒸気を回収する第二乾燥工程と、
     前記乾燥石炭を乾留して前記改質石炭とすると共に、前記乾燥石炭の乾留に必要な乾留熱を供給したあとの燃焼排ガスを排熱回収することにより、第二水蒸気を発生させる乾留工程と、
     前記改質石炭を冷却する冷却工程と、を備え、
     前記第一乾燥工程において、前記空気を前記第一水蒸気で間接的に加熱し、
     前記第二乾燥工程においては、前記第二水蒸気を用いて前記一次乾燥石炭を間接的に加熱する、改質石炭の製造方法。
    A method for producing modified coal, which produces modified coal from high-moisture coal that contains 45% or more of water by mass,
    Heating air taken from outside, fluidizing the high moisture coal with the heated air to form a coal fluidized bed, and evaporating moisture from the high moisture coal in the coal fluidized bed to form primary dry coal A drying process;
    A second drying step of indirectly heating the primary dry coal, further evaporating moisture from the primary dry coal to dry coal, and recovering the first water vapor evaporated from the primary dry coal;
    A dry distillation step of generating second steam by carbonizing the dry coal to form the modified coal, and recovering exhaust heat from the combustion exhaust gas after supplying the dry distillation heat necessary for the dry distillation of the dry coal;
    A cooling step for cooling the modified coal,
    In the first drying step, the air is indirectly heated with the first water vapor,
    In the second drying step, the primary dry coal is indirectly heated using the second water vapor.
  2.  前記第一乾燥工程において、前記石炭流動層を前記第一水蒸気で間接的に加熱する、請求項1に記載の改質石炭の製造方法。 The method for producing reformed coal according to claim 1, wherein, in the first drying step, the coal fluidized bed is indirectly heated with the first steam.
  3.  前記高水分石炭から前記第一乾燥工程で蒸発する水分の量に対して、前記高水分石炭が前記一次乾燥石炭となった後で前記一次乾燥石炭から前記第二乾燥工程で蒸発する水分の量が2倍である、請求項1又は2に記載の改質石炭の製造方法。 The amount of moisture that evaporates from the primary dry coal in the second drying step after the high moisture coal becomes the primary dry coal with respect to the amount of moisture that evaporates from the high moisture coal in the first drying step. The method for producing reformed coal according to claim 1 or 2, wherein is 2 times.
  4.  前記第一乾燥工程において、前記空気を前記第二水蒸気で間接的に加熱する、請求項1の記載の改質石炭の製造方法。 The method for producing modified coal according to claim 1, wherein in the first drying step, the air is indirectly heated with the second steam.
  5.  水分を質量比で45%以上含有する石炭である高水分石炭から改質石炭を製造する改質石炭の製造装置であって、
     前記高水分石炭から水分を蒸発させて乾燥石炭とする乾燥部と、
     前記乾燥石炭を乾留して前記改質石炭とする乾留部と、
     前記改質石炭を冷却する冷却部と、を備え、
     前記乾燥部は、
      外部から取り込んだ空気を加熱し、加熱した前記空気で前記高水分石炭を流動化させて石炭流動層とし、前記石炭流動層内の前記高水分石炭から水分を蒸発させて一次乾燥石炭とする第一乾燥部と、
      前記一次乾燥石炭を間接的に加熱し、前記一次乾燥石炭から水分をさらに蒸発させて前記乾燥石炭とするとともに、前記一次乾燥石炭から蒸発させた第一水蒸気を回収する第二乾燥部と、を有し、
     前記乾留部は、前記乾燥石炭を乾留し、前記乾燥石炭の乾留に必要な乾留熱を供給したあとの燃焼排ガスを排熱回収することにより、第二水蒸気を発生させ、
     前記第一乾燥部は、前記空気を前記第一水蒸気で間接的に加熱し、
     前記第二乾燥部は、第二水蒸気を用いて前記一次乾燥石炭を間接的に加熱する、改質石炭の製造装置。
    An apparatus for producing modified coal that produces modified coal from high-moisture coal that contains 45% or more of water by mass,
    A drying unit that evaporates moisture from the high moisture coal to dry coal;
    A carbonization section for carbonizing the dry coal into the modified coal;
    A cooling unit for cooling the modified coal,
    The drying unit
    Heating air taken from outside, fluidizing the high moisture coal with the heated air to form a coal fluidized bed, and evaporating moisture from the high moisture coal in the coal fluidized bed to form primary dry coal One drying section,
    Indirectly heating the primary dry coal to further evaporate water from the primary dry coal to form the dry coal, and a second drying unit for recovering the first water vapor evaporated from the primary dry coal; Have
    The dry distillation section generates the second water vapor by dry distillation of the dry coal and exhaust heat recovery of the combustion exhaust gas after supplying the dry distillation heat necessary for the dry distillation of the dry coal,
    The first drying unit indirectly heats the air with the first water vapor,
    The said 2nd drying part is a manufacturing apparatus of the modified coal which heats the said primary dry coal indirectly using 2nd water vapor | steam.
  6.  前記第一乾燥部は、前記石炭流動層を前記第一水蒸気で間接的に加熱する、請求項5に記載の改質石炭の製造装置。 The modified coal production apparatus according to claim 5, wherein the first drying unit indirectly heats the coal fluidized bed with the first steam.
PCT/JP2015/065461 2014-07-23 2015-05-28 Method for producing modified coal and device for producing modified coal WO2016013293A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2015293497A AU2015293497B2 (en) 2014-07-23 2015-05-28 Method for producing reformed coal and facility for producing reformed coal
CN201580039513.6A CN106661476B (en) 2014-07-23 2015-05-28 The manufacturing method of modified coal and the manufacturing device of modified coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014150073A JP6322509B2 (en) 2014-07-23 2014-07-23 Modified coal production method and modified coal production apparatus
JP2014-150073 2014-07-23

Publications (1)

Publication Number Publication Date
WO2016013293A1 true WO2016013293A1 (en) 2016-01-28

Family

ID=55162829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065461 WO2016013293A1 (en) 2014-07-23 2015-05-28 Method for producing modified coal and device for producing modified coal

Country Status (4)

Country Link
JP (1) JP6322509B2 (en)
CN (1) CN106661476B (en)
AU (1) AU2015293497B2 (en)
WO (1) WO2016013293A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107869896A (en) * 2017-10-25 2018-04-03 长沙科悦企业管理咨询有限公司 Steam-type medicinal material sterilizing and drying device
CN114517116A (en) * 2022-02-14 2022-05-20 三门峡市精捷自动化设备有限公司 Low-volatile coal body thermal steaming and cold quenching process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440669A (en) * 2016-11-30 2017-02-22 陈锦权 Normal-pressure and negative-pressure combined drying equipment using self-produced superheated steam and material drying method thereof
JP6419375B1 (en) * 2018-05-16 2018-11-07 新日鉄住金エンジニアリング株式会社 Drying apparatus and drying method
JP7416654B2 (en) * 2020-03-30 2024-01-17 日鉄エンジニアリング株式会社 Modified coal manufacturing method and manufacturing equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962696A (en) * 1982-10-01 1984-04-10 Hitachi Ltd Improvement of coal
JPS6262892A (en) * 1985-09-13 1987-03-19 Hitachi Ltd Modification of low-grade coal
WO2012147752A1 (en) * 2011-04-28 2012-11-01 三菱重工業株式会社 Fluidized bed drying apparatus and integrated coal gasification combined cycle system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203700277U (en) * 2014-01-22 2014-07-09 鞍山兴德工程技术有限公司 Gas-flow ejecting dense-phase fast carbonization upgrading system for low-rank coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962696A (en) * 1982-10-01 1984-04-10 Hitachi Ltd Improvement of coal
JPS6262892A (en) * 1985-09-13 1987-03-19 Hitachi Ltd Modification of low-grade coal
WO2012147752A1 (en) * 2011-04-28 2012-11-01 三菱重工業株式会社 Fluidized bed drying apparatus and integrated coal gasification combined cycle system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107869896A (en) * 2017-10-25 2018-04-03 长沙科悦企业管理咨询有限公司 Steam-type medicinal material sterilizing and drying device
CN114517116A (en) * 2022-02-14 2022-05-20 三门峡市精捷自动化设备有限公司 Low-volatile coal body thermal steaming and cold quenching process

Also Published As

Publication number Publication date
AU2015293497B2 (en) 2017-08-03
AU2015293497A1 (en) 2017-02-16
JP6322509B2 (en) 2018-05-09
CN106661476B (en) 2019-11-01
CN106661476A (en) 2017-05-10
JP2016023280A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
WO2016013293A1 (en) Method for producing modified coal and device for producing modified coal
US4245395A (en) Fluidized bed drying
KR101450660B1 (en) Reduction of white smoke abatement systems and methods
JP2009522097A (en) Method and apparatus for treating biomass
WO2012132700A1 (en) Coal-fired power generation plant and coal-fired power generation method
JP2007270018A (en) Dry carbonization system
JP5502698B2 (en) Heat treatment equipment and method
JP5906348B1 (en) Semi-carbide manufacturing apparatus and power generation system
CN102679689A (en) Low energy consumption, low emission, coal quality guaranteed and safe drying method and device for chemical feed coal
JP2011214559A (en) Low grade coal drying system
JP5847524B2 (en) Carbonization system
JP2014059085A5 (en)
JP5632410B2 (en) Heat treatment equipment and method
WO2013011542A1 (en) Fluidized bed drying facility
RU2169889C2 (en) Method of treatment of moisture-laden fuel and device for realization of this method
KR101512423B1 (en) Drying system for high water content material using organ rankine cycle and drying method using the same
CN101532769A (en) New dry heat reutilization method
US20140041394A1 (en) Integration of power generation and post combustion capture plants
JP5634101B2 (en) Fluidized bed drying equipment
KR101842132B1 (en) Multistage device for torrefaction of biomass
JP3600421B2 (en) Method and apparatus for producing modified coal
JP2013190145A (en) Heating processing facility and method
CN110747034A (en) Coal upgrading method
JP6173187B2 (en) Solid fuel reforming method and apparatus
JP2001232397A (en) Method for manufacturing carbonized sludge and apparatus for carbonizing sludge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015293497

Country of ref document: AU

Date of ref document: 20150528

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15825073

Country of ref document: EP

Kind code of ref document: A1