JP2011214559A - Low grade coal drying system - Google Patents

Low grade coal drying system Download PDF

Info

Publication number
JP2011214559A
JP2011214559A JP2010086022A JP2010086022A JP2011214559A JP 2011214559 A JP2011214559 A JP 2011214559A JP 2010086022 A JP2010086022 A JP 2010086022A JP 2010086022 A JP2010086022 A JP 2010086022A JP 2011214559 A JP2011214559 A JP 2011214559A
Authority
JP
Japan
Prior art keywords
low
grade coal
steam
heat medium
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010086022A
Other languages
Japanese (ja)
Inventor
Hiroyuki Nakahara
博之 中拂
Norihiro Fukuda
憲弘 福田
Masaaki Kinoshita
正昭 木下
Hiromi Ishii
弘実 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010086022A priority Critical patent/JP2011214559A/en
Publication of JP2011214559A publication Critical patent/JP2011214559A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve power generation efficiency by effectively utilizing exhaust heat generated in drying low grade coal.SOLUTION: This low grade coal drying system includes: a low grade coal drying device 102 drying the low grade coal 101 indirectly with latent heat of superheated steam A; a binary cycle 120 generating power by operating a steam turbine 124 by a circulating low boiling point heat medium 121; a preheater 128 provided in a process of circulating the heat medium 121, and preheating the heat medium 121 by indirect heat exchange with generated steam 104 generated from the low grade coal 101 by drying; an evaporator 127 provided in the process of circulating the heat medium 121, and vaporizing the heat medium 121 that has passed through the preheater 128, by indirect heat exchange with the generated steam 104; and a superheater 129 provided in the process of circulating the heat medium 121, and superheating the heat medium 121 that has passed through the evaporator 127, by indirect heat exchange with condensed water B produced by condensation of the superheated steam A that has dried the low grade coal 101.

Description

本発明は、低品位炭乾燥装置により低品位炭を乾燥させた際に発生する蒸気を熱源として利用する低品位炭乾燥システムに関する。   The present invention relates to a low-grade coal drying system that uses, as a heat source, steam generated when low-grade coal is dried by a low-grade coal drying apparatus.

例えば、石炭ガス化複合発電(Integrated Coal Gasification Combined Cycle:IGCC)システムは、石炭をガス化し、ガスタービンおよび蒸気タービンからなるコンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べ、さらなる高効率化・高環境性を目指した発電システムである。この石炭ガス化複合発電システムは、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。   For example, the Integrated Coal Gasification Combined Cycle (IGCC) system gasifies coal and combines it with combined cycle power generation consisting of a gas turbine and a steam turbine to achieve higher efficiency than conventional coal-fired power generation. This is a power generation system that aims to make it more environmentally friendly. This coal gasification combined power generation system has a great merit that it can use coal with abundant resources, and it is known that the merit will be further increased by expanding the types of applied coal.

ところが、褐炭や亜瀝青炭などの低品位炭は、持ち込まれる水分が多く、この水分により発電効率が低下する問題がある。このため、低品位炭を乾燥させて水分を除去する必要がある。   However, low-grade coal such as lignite and sub-bituminous coal has a large amount of moisture that is brought in, and there is a problem that power generation efficiency decreases due to this moisture. For this reason, it is necessary to dry the low-grade coal to remove moisture.

従来、例えば、特許文献1に記載の低品位炭乾燥システム(低品位炭を燃料とする発電方法)は、低品位炭から水分を除去する脱水改質プロセスが示されている。この脱水改質プロセスでは、蒸発分離した水分が蒸気の状態にあり、この蒸気を発電プロセス由来の復水の加熱に使用する。   Conventionally, for example, a low-grade coal drying system (a power generation method using low-grade coal as a fuel) described in Patent Document 1 shows a dehydration reforming process for removing moisture from low-grade coal. In this dehydration reforming process, the evaporated and separated water is in the state of steam, and this steam is used for heating the condensate derived from the power generation process.

特許第4153448号公報Japanese Patent No. 4153448

特許文献1に記載のように、脱水改質プロセスで発生した蒸気を発電プロセス由来の復水の加熱に使用することで、発電効率の向上を図れる。しかし、近年では、さらなる発電効率の向上が切望されている。   As described in Patent Document 1, by using the steam generated in the dehydration reforming process for heating the condensate derived from the power generation process, the power generation efficiency can be improved. However, in recent years, further improvement in power generation efficiency is eagerly desired.

本発明は、前記問題に鑑み、低品位炭を乾燥させた際の排熱を有効利用して発電効率の向上を図ることのできる低品位炭乾燥システムを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a low-grade coal drying system capable of improving power generation efficiency by effectively using exhaust heat when drying low-grade coal.

上述の目的を達成するために、本発明の低品位炭乾燥システムは、過熱蒸気の潜熱で間接的に低品位炭を乾燥させる低品位炭乾燥装置と、循環する低沸点熱媒により蒸気タービンが運転されて発電するバイナリサイクルと、前記熱媒が循環する過程に設けられ、乾燥により前記低品位炭から発生する発生蒸気、または前記低品位炭を乾燥させた前記過熱蒸気が凝縮した凝縮水の少なくとも一方との間接的な熱交換により前記熱媒を予熱する予熱器と、前記熱媒が循環する過程に設けられ、前記発生蒸気または前記凝縮水の少なくとも他方との間接的な熱交換により前記予熱器を経た前記熱媒を気化させる蒸発器と、を備えたことを特徴とする。   In order to achieve the above-mentioned object, the low-grade coal drying system of the present invention includes a low-grade coal drying apparatus that indirectly dries low-grade coal with the latent heat of superheated steam, and a steam turbine that uses a circulating low-boiling-point heat medium. A binary cycle that is operated to generate electricity and a process in which the heating medium circulates, and the generated steam generated from the low-grade coal by drying or the condensed water condensed by the superheated steam that has dried the low-grade coal. A preheater that preheats the heat medium by indirect heat exchange with at least one, and a process in which the heat medium circulates, and the heat medium that is indirectly exchanged with at least the other of the generated steam or the condensed water. And an evaporator that vaporizes the heat medium that has passed through a preheater.

この低品位炭乾燥システムによれば、乾燥により低品位炭から発生する発生蒸気、および低品位炭を乾燥させた過熱蒸気が凝縮した凝縮水の排熱を、バイナリサイクルにおける熱媒の予熱および蒸発に用いることでバイナリサイクルでの発電に有効利用し、発電効率を向上することができる。   According to this low-grade coal drying system, the heat generated from the low-grade coal by drying and the exhaust heat of the condensed water condensed by the superheated steam that dries the low-grade coal are preheated and evaporated in the binary cycle. It can be effectively used for power generation in the binary cycle and can improve power generation efficiency.

また、本発明の低品位炭乾燥システムでは、前記熱媒が循環する過程に設けられ、前記低品位炭を乾燥させた前記過熱蒸気が凝縮した凝縮水との間接的な熱交換により前記蒸発器を経た前記熱媒を過熱させる過熱器を備え、前記予熱器は、乾燥により前記低品位炭から発生する発生蒸気との間接的な熱交換により前記熱媒を予熱し、前記蒸発器は、乾燥により前記低品位炭から発生する発生蒸気との間接的な熱交換により前記予熱器を経た前記熱媒を気化させることを特徴とする。   Further, in the low-grade coal drying system of the present invention, the evaporator is provided by indirect heat exchange with the condensed water in which the superheated steam obtained by drying the low-grade coal is provided in the process of circulating the heat medium. The preheater preheats the heat medium by indirect heat exchange with the generated steam generated from the low-grade coal by drying, and the evaporator is dried. Thus, the heat medium having passed through the preheater is vaporized by indirect heat exchange with generated steam generated from the low-grade coal.

この低品位炭乾燥システムによれば、乾燥により低品位炭から発生する発生蒸気、および低品位炭を乾燥させた過熱蒸気が凝縮した凝縮水の排熱を、バイナリサイクルにおける熱媒の予熱、蒸発、および過熱に用いることでバイナリサイクルでの発電に有効利用し、発電効率を向上することができる。   According to this low-grade coal drying system, the generated heat generated from the low-grade coal by drying and the exhaust heat of the condensed water condensed by the superheated steam that dried the low-grade coal are preheated and evaporated in the binary cycle. By using it for overheating, it can be effectively used for power generation in the binary cycle, and the power generation efficiency can be improved.

また、本発明の低品位炭乾燥システムでは、前記低品位炭乾燥装置により乾燥された前記低品位炭をガス化ガスとする石炭ガス化炉と、前記石炭ガス化炉から供給されるガス化ガスを燃料として運転されるガスタービンと、前記ガスタービンの運転により発電する発電機と、前記ガスタービンから排出されるタービン排ガスの排熱により生成された蒸気により運転される蒸気タービンとを有する発電システムに適用され、前記蒸気タービンから抽気した蒸気を過熱蒸気として前記低品位炭を乾燥させることを特徴とする。   In the low-grade coal drying system of the present invention, a coal gasification furnace using the low-grade coal dried by the low-grade coal drying apparatus as a gasification gas, and a gasification gas supplied from the coal gasification furnace Power generation system comprising: a gas turbine that is operated by using gas as a fuel; a generator that generates electric power by operating the gas turbine; and a steam turbine that is operated by steam generated by exhaust heat of turbine exhaust gas discharged from the gas turbine The low-grade coal is dried by using steam extracted from the steam turbine as superheated steam.

この低品位炭乾燥システムによれば、石炭ガス化複合発電システムの蒸気タービンから抽気した蒸気を、低品位炭を乾燥させる過熱蒸気として用いることができる。   According to this low-grade coal drying system, the steam extracted from the steam turbine of the coal gasification combined power generation system can be used as superheated steam for drying the low-grade coal.

また、本発明の低品位炭乾燥システムでは、前記熱媒が循環する過程に設けられて前記ガスタービンから排出されるタービン排ガスとの間接的な熱交換により前記予熱器に至る前記熱媒を事前に予熱する事前予熱器を備えたことを特徴とする。   Further, in the low-grade coal drying system of the present invention, the heating medium that reaches the preheater by indirect heat exchange with the turbine exhaust gas that is provided in the process of circulating the heating medium and exhausted from the gas turbine is preliminarily provided. A pre-heater for preheating is provided.

この低品位炭乾燥システムによれば、発電システムの排ガスの排熱を、バイナリサイクルにおける熱媒の事前予熱に用いることでバイナリサイクルでの発電に有効利用し、発電効率を向上することができる。   According to this low-grade coal drying system, exhaust heat of the exhaust gas of the power generation system is used for pre-heating of the heat medium in the binary cycle, so that it can be effectively used for power generation in the binary cycle and power generation efficiency can be improved.

本発明によれば、低品位炭を乾燥させた際の排熱を有効利用して発電効率の向上を図ることができる。   According to the present invention, it is possible to improve the power generation efficiency by effectively utilizing the exhaust heat generated when the low-grade coal is dried.

図1は、低品位炭乾燥システムの一例を示す概略図である。FIG. 1 is a schematic diagram illustrating an example of a low-grade coal drying system. 図2は、図1に示す低品位炭乾燥システムを適用した石炭ガス化複合発電システムの一例を示す概略図である。FIG. 2 is a schematic diagram showing an example of a combined coal gasification combined power generation system to which the low-grade coal drying system shown in FIG. 1 is applied. 図3は、本発明の実施の形態1に係る低品位炭乾燥システムの概略図である。FIG. 3 is a schematic diagram of the low-grade coal drying system according to Embodiment 1 of the present invention. 図4は、バイナリサイクルに用いられる熱媒を説明する温度−エントロピ線図である。FIG. 4 is a temperature-entropy diagram illustrating the heat medium used in the binary cycle. 図5は、本発明の実施の形態1に係る低品位炭乾燥システムの他の例の概略図である。FIG. 5 is a schematic diagram of another example of the low-grade coal drying system according to Embodiment 1 of the present invention. 図6は、本発明の実施の形態1に係る低品位炭乾燥システムの他の例の概略図である。FIG. 6 is a schematic diagram of another example of the low-grade coal drying system according to Embodiment 1 of the present invention. 図7は、本発明の実施の形態1に係る低品位炭乾燥システムの他の例の概略図である。FIG. 7 is a schematic diagram of another example of the low-grade coal drying system according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態1に係る低品位炭乾燥システムの他の例の概略図である。FIG. 8 is a schematic diagram of another example of the low-grade coal drying system according to Embodiment 1 of the present invention. 図9は、本発明の実施の形態1に係る低品位炭乾燥システムの他の例の概略図である。FIG. 9 is a schematic diagram of another example of the low-grade coal drying system according to Embodiment 1 of the present invention. 図10は、本発明の実施の形態2に係る低品位炭乾燥システムの概略図である。FIG. 10 is a schematic diagram of a low-grade coal drying system according to Embodiment 2 of the present invention.

以下に、本発明に係る実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

本実施の形態について、図面を参照して説明する。図1は、低品位炭乾燥システムの一例を示す概略図である。   The present embodiment will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an example of a low-grade coal drying system.

図1に示すように、低品位炭乾燥システム100は、水分含量が高い褐炭等の低品位炭101を乾燥する低品位炭乾燥装置102と、低品位炭乾燥装置102内に設けられ、管状の内部に過熱蒸気(例えば150℃蒸気)Aを供給して低品位炭101中の水分を除去する伝熱部材103と、前記伝熱部材103によって低品位炭101が乾燥される際に発生する発生蒸気104を低品位炭乾燥装置102の外部に排出する発生蒸気ラインLと、前記発生蒸気ラインLに介装され、発生蒸気104中の粉塵を除去する集塵装置105と、前記集塵装置105から粉塵が除去された発生蒸気104の一部を分岐し、流動化蒸気107として低品位炭乾燥装置102内に供給する分岐ラインLと、前記低品位炭乾燥装置102から抜き出された乾燥炭108を冷却して製品炭109とする冷却器110とを備えるものである。 As shown in FIG. 1, a low-grade coal drying system 100 includes a low-grade coal drying device 102 that dries a low-grade coal 101 such as lignite having a high water content, and a low-grade coal drying device 102 that is tubular. A heat transfer member 103 that supplies superheated steam (for example, 150 ° C. steam) A inside to remove moisture in the low-grade coal 101, and generation that occurs when the low-grade coal 101 is dried by the heat transfer member 103 A generated steam line L 1 that discharges the steam 104 to the outside of the low-grade coal drying device 102, a dust collector 105 that is interposed in the generated steam line L 1 and removes dust in the generated steam 104, and the dust collection tap a portion of the steam generated 104 dust is removed from the apparatus 105, the branch line L 2 to be supplied to the low-grade coal drying device 102 as a fluidizing steam 107, withdrawn from the low-grade coal drying device 102 The dried coal 108 is cooled is intended and a cooler 110 to a product coal 109.

低品位炭乾燥システム100において、低品位炭101は、図示しない供給手段により低品位炭乾燥装置102内に投入され、低品位炭乾燥装置102内に別に導入される流動化蒸気107により流動されて流動層111を形成する。上述した伝熱部材103は、この流動層111内に配置されている。伝熱部材103内には、150℃の過熱蒸気Aが供給され、その高温の過熱蒸気Aの潜熱を利用して低品位炭101を間接的に乾燥させるようにしている。乾燥に利用された過熱蒸気Aは、例えば150℃の凝縮水Bとして低品位炭乾燥装置102の外部に排出されている。   In the low-grade coal drying system 100, the low-grade coal 101 is introduced into the low-grade coal drying apparatus 102 by a supply means (not shown) and is fluidized by the fluidized steam 107 separately introduced into the low-grade coal drying apparatus 102. A fluidized bed 111 is formed. The heat transfer member 103 described above is disposed in the fluidized bed 111. The superheated steam A at 150 ° C. is supplied into the heat transfer member 103, and the low-grade coal 101 is dried indirectly using the latent heat of the high-temperature superheated steam A. The superheated steam A used for drying is discharged to the outside of the low-grade coal drying apparatus 102 as, for example, 150 ° C. condensed water B.

すなわち、加熱手段である伝熱部材103内面では、過熱蒸気Aが凝縮して液体(水分)になるので、この際に放熱される凝縮潜熱を、低品位炭101の乾燥の加熱に有効利用している。なお、高温の過熱蒸気A以外としては、相変化を伴う熱媒であれば何れでも良く、例えばフロンやペンタンやアンモニア等を例示することができる。   That is, on the inner surface of the heat transfer member 103 that is a heating means, the superheated steam A condenses into a liquid (moisture), so that the condensed latent heat radiated at this time is effectively used for heating the low-grade coal 101 for drying. ing. Any heating medium other than the high-temperature superheated steam A may be used as long as it is accompanied by a phase change. Examples thereof include Freon, pentane, and ammonia.

伝熱部材103によって低品位炭101が乾燥される際に発生する発生蒸気104は、低品位炭乾燥装置102内において、流動層111の上部空間に形成されるフリーボード部Fから発生蒸気ラインLにより低品位炭乾燥装置102の外部に排出される。この発生蒸気104は、低品位炭101が乾燥し微粉化したものが含まれているので、サイクロンや電気集塵機等の集塵装置105により集塵して固体成分115として分離する。この固体成分115は、低品位炭乾燥装置102から抜き出された乾燥炭108に混合し、冷却器110で冷却し、製品炭109としている。この製品炭109は、例えばボイラ、ガス化炉等の原料として利用に供される。 The generated steam 104 generated when the low-grade coal 101 is dried by the heat transfer member 103 is generated from the free board portion F formed in the upper space of the fluidized bed 111 in the low-grade coal drying apparatus 102. 1 is discharged to the outside of the low-grade coal drying apparatus 102. Since the generated steam 104 includes a powder obtained by drying and pulverizing the low-grade coal 101, the generated steam 104 is collected by a dust collector 105 such as a cyclone or an electric dust collector and separated as a solid component 115. This solid component 115 is mixed with the dry coal 108 extracted from the low-grade coal drying apparatus 102 and cooled by the cooler 110 to obtain the product coal 109. This product charcoal 109 is used as a raw material for boilers, gasifiers, and the like.

一方、集塵装置105により集塵された後の発生蒸気104は、例えば105〜110℃の蒸気として低品位炭乾燥システム100の外部に排出されている。また、集塵装置105により集塵された後の発生蒸気104の一部は、分岐ラインLに介装された循環ファン114により低品位炭乾燥装置102内に送られて、低品位炭101の流動層111を流動させる流動化蒸気107として利用される。なお、流動層111を流動化させる流動化媒体としては、発生蒸気104の一部を再利用しているが、これに限定されず、例えば窒素、二酸化炭素またはこれらのガスを含む低酸素濃度の空気を用いてもよい。 On the other hand, the generated steam 104 after being collected by the dust collector 105 is discharged to the outside of the low-grade coal drying system 100 as steam at 105 to 110 ° C., for example. Part of the steam generated 104 after being dust collecting by a dust collector 105, is sent to the low-grade coal drying device 102 by the circulation fan 114 interposed in the branch line L 2, low-grade coal 101 Is used as fluidized steam 107 for fluidizing the fluidized bed 111. As a fluidizing medium for fluidizing the fluidized bed 111, a part of the generated steam 104 is reused. However, the fluidizing medium is not limited to this. For example, nitrogen, carbon dioxide, or a low oxygen concentration containing these gases is used. Air may be used.

なお、上述した低品位炭乾燥装置102により乾燥する被乾燥物として低品位炭101を例示したが、水分含量の高いものであれば低品位炭101以外の被乾燥物を乾燥対象としてもよい。   In addition, although the low grade coal 101 was illustrated as a to-be-dried material dried with the low-grade coal drying apparatus 102 mentioned above, as long as a moisture content is high, to-be-dried materials other than the low grade coal 101 may be made into drying object.

上述した低品位炭乾燥装置102で乾燥した製品炭109を用い、石炭ガス化複合発電(Integrated Coal Gasification Combined Cycle:IGCC)システムに適用した一例を説明する。図2は、図1に示す低品位炭乾燥システムを適用した石炭ガス化複合発電システムの一例を示す概略図である。   An example applied to a coal gasification combined power generation (IGCC) system using the product coal 109 dried by the above-described low-grade coal drying apparatus 102 will be described. FIG. 2 is a schematic diagram showing an example of a combined coal gasification combined power generation system to which the low-grade coal drying system shown in FIG. 1 is applied.

図2に示すように、石炭ガス化複合発電システム200は、石炭(低品位炭乾燥システム100で乾燥された製品炭109)がミル210粉砕された微粉炭201aを処理してガス化ガス202に変換する石炭ガス化炉203と、前記ガス化ガス202を燃料として運転されるガスタービン(GT)204と、前記ガスタービン204からのタービン排ガス205を導入する排熱回収ボイラ(Heat Recovery Steam Generator:HRSG)206で生成した蒸気207により運転される蒸気タービン(ST)208と、前記ガスタービン204および/または前記蒸気タービン208と連結された発電機(G)209とを備えるものである。   As shown in FIG. 2, the coal gasification combined power generation system 200 treats pulverized coal 201 a obtained by pulverizing coal (product charcoal 109 dried by the low-grade coal drying system 100) into a gasification gas 202. A coal gasification furnace 203 for conversion, a gas turbine (GT) 204 operated using the gasification gas 202 as a fuel, and a heat recovery steam generator (heat recovery steam generator) for introducing turbine exhaust gas 205 from the gas turbine 204 The steam turbine (ST) 208 operated by the steam 207 generated by the HRSG) 206, and the generator (G) 209 connected to the gas turbine 204 and / or the steam turbine 208 are provided.

この石炭ガス化複合発電システム200は、ミル210で粉砕された微粉炭201aを石炭ガス化炉203でガス化し、生成ガスであるガス化ガス202を得る。このガス化ガス202は、サイクロン211およびガス精製装置212で除塵およびガス精製された後、発電手段であるガスタービン204の燃焼器213に供給され、ここで燃焼して高温高圧の燃焼ガス214を生成する。そして、この燃焼ガス214によってガスタービン204を駆動する。このガスタービン204は、発電機209と連結されており、ガスタービン204が駆動することによって発電機209が電力を発生する。ガスタービン204を駆動した後のタービン排ガス205は、まだ約500〜600℃の温度を持っているため、排熱回収ボイラ(HRSG)206へ送られ、ここで熱エネルギーが回収される。この排熱回収ボイラ(HRSG)206では、タービン排ガス205の熱エネルギーによって蒸気207が生成され、この蒸気207によって蒸気タービン208を駆動する。この排熱回収ボイラ(HRSG)206で熱エネルギーが回収された排ガス215は、ガス浄化装置216で排ガス215中のNOxおよびSOx分が除去された後、煙突217を介して大気中へ放出される。なお、図中、符号218は復水器、219は空気、220は圧縮機、221は空気を窒素(N)と酸素(O)とに分離する空気分離装置(ASU)を各々図示する。 The coal gasification combined power generation system 200 gasifies pulverized coal 201a pulverized by a mill 210 in a coal gasification furnace 203 to obtain a gasified gas 202 which is a generated gas. The gasified gas 202 is subjected to dust removal and gas purification by a cyclone 211 and a gas purification device 212, and then supplied to a combustor 213 of a gas turbine 204, which is a power generation means, where it is burned to produce a high-temperature and high-pressure combustion gas 214. Generate. The gas turbine 204 is driven by the combustion gas 214. The gas turbine 204 is connected to a generator 209, and the generator 209 generates electric power when the gas turbine 204 is driven. Since the turbine exhaust gas 205 after driving the gas turbine 204 still has a temperature of about 500 to 600 ° C., it is sent to an exhaust heat recovery boiler (HRSG) 206, where thermal energy is recovered. In the exhaust heat recovery boiler (HRSG) 206, steam 207 is generated by the thermal energy of the turbine exhaust gas 205, and the steam turbine 208 is driven by the steam 207. The exhaust gas 215 from which heat energy has been recovered by the exhaust heat recovery boiler (HRSG) 206 is released into the atmosphere via the chimney 217 after the NOx and SOx components in the exhaust gas 215 are removed by the gas purification device 216. . In the figure, reference numeral 218 denotes a condenser, 219 denotes air, 220 denotes a compressor, and 221 denotes an air separation device (ASU) that separates air into nitrogen (N 2 ) and oxygen (O 2 ). .

この石炭ガス化複合発電システム200によれば、高い水分を有する低品位炭101を用いてガス化する場合においても、効率的な低品位炭乾燥装置102により低品位炭101を乾燥しているので、ガス化効率が向上し、長期間に亙って安定して発電を行うことができる。   According to this coal gasification combined cycle power generation system 200, even when gasifying using low-grade coal 101 having high moisture, the low-grade coal 101 is dried by the efficient low-grade coal drying device 102. Gasification efficiency is improved and power generation can be performed stably over a long period of time.

また、石炭ガス化複合発電システム200においては、ガスタービンおよび蒸気タービンの組み合わせによって、従来40%程度であった石炭焚発電プラントの効率を約46%まで向上させることができる。このプラント効率の向上によって、COの排出量は従来の石炭焚ボイラに対して約13%削減できる。 Moreover, in the coal gasification combined cycle power generation system 200, the efficiency of the coal-fired power plant, which has been about 40% in the past, can be improved to about 46% by combining the gas turbine and the steam turbine. By improving the plant efficiency, CO 2 emissions can be reduced by about 13% compared to conventional coal fired boilers.

なお、本実施の形態に係る低品位炭乾燥システム100で乾燥した製品炭109を用いた発電システムとしては、上述した石炭ガス化複合発電システム200に限らない。例えば、図には明示しないが、低品位炭乾燥システム100で乾燥した製品炭109をボイラ火炉に供給し、当該ボイラ火炉で発生した蒸気で蒸気タービンを駆動して発電機により出力を得る褐炭炊ボイラによる発電システムであってもよい。   Note that the power generation system using the product coal 109 dried by the low-grade coal drying system 100 according to the present embodiment is not limited to the coal gasification combined power generation system 200 described above. For example, although not clearly shown in the figure, the charcoal 109 dried by the low-grade coal drying system 100 is supplied to a boiler furnace, the steam turbine is driven by steam generated in the boiler furnace, and the output is generated by a generator. A power generation system using a boiler may be used.

[実施の形態1]
図3は、本実施の形態に係る低品位炭乾燥システムの概略図である。図3に示すように、本実施の形態の低品位炭乾燥システム100は、集塵装置105により集塵された後の約105〜110℃の発生蒸気104を、バイナリサイクル120に利用している。
[Embodiment 1]
FIG. 3 is a schematic diagram of a low-grade coal drying system according to the present embodiment. As shown in FIG. 3, the low-grade coal drying system 100 of the present embodiment uses the generated steam 104 at about 105 to 110 ° C. after being collected by the dust collector 105 in the binary cycle 120. .

バイナリサイクル120は、熱媒121を循環させる熱媒循環ライン122に、循環ポンプ123、蒸気タービン124および復水器125が設けられている。蒸気タービン124は、発電機(G)126が連結されている。熱媒循環ライン122に循環される熱媒121は、低沸点熱媒であり、タービン膨張過程で湿り域に入らないもの、すなわち図4の熱媒を説明する温度−エントロピ線図に示すように、タービン膨張過程での蒸発側の飽和曲線の勾配が正であることが好ましく、例えば、イソブタンやイソペンタンなどが適用される。   In the binary cycle 120, a circulation pump 123, a steam turbine 124 and a condenser 125 are provided in a heat medium circulation line 122 for circulating the heat medium 121. The steam turbine 124 is connected to a generator (G) 126. The heat medium 121 circulated through the heat medium circulation line 122 is a low boiling point heat medium that does not enter the wet region during the turbine expansion process, that is, as shown in the temperature-entropy diagram illustrating the heat medium in FIG. The slope of the saturation curve on the evaporation side during the turbine expansion process is preferably positive, and for example, isobutane or isopentane is applied.

また、バイナリサイクル120は、熱媒循環ライン122に、蒸発器127、予熱器128および過熱器129が設けられている。そして、バイナリサイクル120は、熱媒循環ライン122における熱媒の循環方向で、循環ポンプ123、予熱器128、蒸発器127、過熱器129、蒸気タービン124、復水器125の順で配置されている。   In the binary cycle 120, an evaporator 127, a preheater 128, and a superheater 129 are provided in the heat medium circulation line 122. The binary cycle 120 is arranged in the order of the circulation of the heat medium in the heat medium circulation line 122 in the order of the circulation pump 123, the preheater 128, the evaporator 127, the superheater 129, the steam turbine 124, and the condenser 125. Yes.

蒸発器127は、熱媒121を通過させるケーシング127a内に、発生蒸気ラインLに繋がる管状の伝熱部材127bが設けられている。また、予熱器128は、熱媒121を通過させるケーシング128a内に、発生蒸気ラインLに繋がる管状の伝熱部材128bが設けられている。そして、低品位炭乾燥装置102から発生蒸気ラインLに排出された発生蒸気104は、蒸発器127、予熱器128の順で蒸発器127および予熱器128を経由する。すなわち、低品位炭乾燥装置102にて低品位炭101の乾燥により発生する発生蒸気104は、蒸発器127にて間接的な熱交換により熱媒121を気化させる。その後、発生蒸気104は、予熱器128にて間接的な熱交換により熱媒121を予熱する。 Evaporator 127, in a casing 127a for passing the heating medium 121, the heat transfer member 127b of the tubular which leads to generating steam line L 1 is provided. Furthermore, the preheater 128, in a casing 128a for passing the heating medium 121, the heat transfer member 128b of the tubular which leads to generating steam line L 1 is provided. Then, the generated steam 104 discharged from the low-grade coal drying apparatus 102 to the generated steam line L 1 passes through the evaporator 127 and the preheater 128 in the order of the evaporator 127 and the preheater 128. That is, the generated steam 104 generated by drying the low-grade coal 101 in the low-grade coal drying apparatus 102 vaporizes the heat medium 121 by indirect heat exchange in the evaporator 127. Thereafter, the generated steam 104 preheats the heat medium 121 by indirect heat exchange in the preheater 128.

過熱器129は、熱媒121を通過させるケーシング129a内に、低品位炭乾燥装置102における伝熱部材103の凝縮水Bを排出する側のラインに繋がる管状の伝熱部材129bが設けられている。すなわち、低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bは、過熱器129を経由し、間接的な熱交換により熱媒121を過熱する。   In the superheater 129, a tubular heat transfer member 129 b connected to the line on the side where the condensed water B of the heat transfer member 103 in the low-grade coal drying apparatus 102 is discharged is provided in the casing 129 a through which the heat medium 121 passes. . That is, the condensed water B in which the superheated steam A obtained by drying the low-grade coal 101 is condensed passes through the superheater 129 and heats the heat medium 121 by indirect heat exchange.

バイナリサイクル120は、循環ポンプ123により熱媒循環ライン122に熱媒121が循環する過程で、予熱器128にて熱媒121が予熱され、続いて蒸発器127にて熱媒121が気化され、続いて過熱器129にて熱媒121が過熱されて蒸気タービン124に供給される。そして、蒸気タービン124が気化・過熱された熱媒121により運転され発電機126が電力を発生する。   The binary cycle 120 is a process in which the heat medium 121 circulates in the heat medium circulation line 122 by the circulation pump 123, the heat medium 121 is preheated by the preheater 128, and then the heat medium 121 is vaporized by the evaporator 127. Subsequently, the heating medium 121 is heated by the superheater 129 and supplied to the steam turbine 124. Then, the steam turbine 124 is operated by the vaporized and superheated heat medium 121, and the generator 126 generates electric power.

このように、本実施の形態の低品位炭乾燥システム100は、過熱蒸気Aの潜熱で間接的に低品位炭101を乾燥させる低品位炭乾燥装置102と、循環する低沸点熱媒121により蒸気タービン124が運転されて発電するバイナリサイクル120と、熱媒121が循環する熱媒循環ライン122に設けられて乾燥により低品位炭101から発生する発生蒸気104との間接的な熱交換により熱媒121を予熱する予熱器128と、熱媒循環ライン122に設けられて発生蒸気104との間接的な熱交換により予熱器128を経た熱媒121を気化させる蒸発器127と、熱媒循環ライン122に設けられて低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bとの間接的な熱交換により蒸発器127を経た熱媒121を過熱する過熱器129とを備える。   As described above, the low-grade coal drying system 100 according to the present embodiment uses the low-grade coal drying apparatus 102 that indirectly dries the low-grade coal 101 with the latent heat of the superheated steam A and the circulating low-boiling-point heat medium 121 to generate steam. The heat medium is obtained by indirect heat exchange between the binary cycle 120 that generates power by operating the turbine 124 and the generated steam 104 that is provided in the heat medium circulation line 122 through which the heat medium 121 circulates and is generated from the low-grade coal 101 by drying. A preheater 128 that preheats 121, an evaporator 127 that is provided in the heat medium circulation line 122 and vaporizes the heat medium 121 that has passed through the preheater 128 by indirect heat exchange with the generated steam 104, and the heat medium circulation line 122. The heating medium 121 that has passed through the evaporator 127 is heated by indirect heat exchange with the condensed water B condensed with the superheated steam A that has been dried on the low-grade coal 101. And a vessel 129.

この低品位炭乾燥システム100によれば、乾燥により低品位炭101から発生する発生蒸気104、および低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bの排熱を、バイナリサイクル120における熱媒121の予熱、蒸発、および過熱に用いることでバイナリサイクル120での発電に有効利用し、発電効率を向上することが可能になる。   According to the low-grade coal drying system 100, the generated steam 104 generated from the low-grade coal 101 by drying and the exhaust heat of the condensed water B condensed by the superheated steam A drying the low-grade coal 101 are converted into a binary cycle 120. By using it for preheating, evaporation, and overheating of the heat medium 121, it is possible to effectively use it for power generation in the binary cycle 120 and improve power generation efficiency.

ところで、上述した低品位炭乾燥システム100は、低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bを、バイナリサイクル120の過熱器129での熱媒121の過熱に利用しているが、この限りではない。図5〜図9は、本実施の形態に係る低品位炭乾燥システムの他の例の概略図である。   By the way, the low-grade coal drying system 100 described above uses the condensed water B condensed with the superheated steam A obtained by drying the low-grade coal 101 for overheating the heating medium 121 in the superheater 129 of the binary cycle 120. But this is not the case. 5 to 9 are schematic views of other examples of the low-grade coal drying system according to the present embodiment.

図5に示す低品位炭乾燥システム100では、図3の過熱器129を有さない代わりに、蒸発器127のケーシング127a内に、低品位炭乾燥装置102における伝熱部材103の凝縮水Bを排出する側のラインに繋がる管状の伝熱部材127cが設けられている。すなわち、低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bは、蒸発器127を経由し、間接的な熱交換により熱媒121を気化させる。   In the low-grade coal drying system 100 shown in FIG. 5, the condensed water B of the heat transfer member 103 in the low-grade coal drying device 102 is placed in the casing 127 a of the evaporator 127 instead of having the superheater 129 of FIG. 3. A tubular heat transfer member 127c connected to the line on the discharge side is provided. That is, the condensed water B in which the superheated steam A obtained by drying the low-grade coal 101 is condensed passes through the evaporator 127 and vaporizes the heat medium 121 through indirect heat exchange.

図6に示す低品位炭乾燥システム100では、図3の過熱器129を有さない代わりに、予熱器128のケーシング128a内に、低品位炭乾燥装置102における伝熱部材103の凝縮水Bを排出する側のラインに繋がる管状の伝熱部材128cが設けられている。すなわち、低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bは、予熱器128を経由し、間接的な熱交換により熱媒121を予熱する。   In the low-grade coal drying system 100 shown in FIG. 6, the condensed water B of the heat transfer member 103 in the low-grade coal drying device 102 is placed in the casing 128 a of the preheater 128 instead of having the superheater 129 of FIG. 3. A tubular heat transfer member 128c connected to the line on the discharge side is provided. That is, the condensed water B condensed with the superheated steam A obtained by drying the low-grade coal 101 preheats the heat medium 121 through indirect heat exchange via the preheater 128.

図7に示す低品位炭乾燥システム100では、図3の過熱器129を有さない代わりに、蒸発器127のケーシング127a内に、伝熱部材127bと共に伝熱部材127cが設けられている。また、予熱器128のケーシング128a内に、伝熱部材128bと共に伝熱部材128cが設けられている。すなわち、低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bは、発生蒸気104と共に蒸発器127を経由し、間接的な熱交換により熱媒121を気化させる。また、低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bは、発生蒸気104と共に予熱器128を経由し、間接的な熱交換により熱媒121を予熱する。   In the low-grade coal drying system 100 shown in FIG. 7, a heat transfer member 127c is provided together with the heat transfer member 127b in the casing 127a of the evaporator 127 instead of having the superheater 129 of FIG. Further, a heat transfer member 128c is provided in the casing 128a of the preheater 128 together with the heat transfer member 128b. That is, the condensed water B condensed with the superheated steam A obtained by drying the low-grade coal 101 passes through the evaporator 127 together with the generated steam 104 and vaporizes the heat medium 121 by indirect heat exchange. The condensed water B condensed with the superheated steam A obtained by drying the low-grade coal 101 passes through the preheater 128 together with the generated steam 104 and preheats the heat medium 121 by indirect heat exchange.

図8に示す低品位炭乾燥システム100では、図3の過熱器129を有さない代わりに、蒸発器127のケーシング127a内に、伝熱部材127bと共に伝熱部材127cが設けられている。すなわち、低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bは、発生蒸気104と共に蒸発器127を経由し、間接的な熱交換により熱媒121を気化させる。   In the low-grade coal drying system 100 shown in FIG. 8, a heat transfer member 127c is provided together with the heat transfer member 127b in the casing 127a of the evaporator 127 instead of having the superheater 129 of FIG. That is, the condensed water B condensed with the superheated steam A obtained by drying the low-grade coal 101 passes through the evaporator 127 together with the generated steam 104 and vaporizes the heat medium 121 by indirect heat exchange.

図9に示す低品位炭乾燥システム100では、図3の過熱器129を有さない代わりに、予熱器128のケーシング128a内に、伝熱部材128bと共に伝熱部材128cが設けられている。すなわち、低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bは、発生蒸気104と共に予熱器128を経由し、間接的な熱交換により熱媒121を予熱する。   In the low-grade coal drying system 100 shown in FIG. 9, the heat transfer member 128 c is provided together with the heat transfer member 128 b in the casing 128 a of the preheater 128 instead of having the superheater 129 of FIG. 3. That is, the condensed water B condensed with the superheated steam A obtained by drying the low-grade coal 101 passes through the preheater 128 together with the generated steam 104 and preheats the heat medium 121 by indirect heat exchange.

このように、本実施の形態の低品位炭乾燥システム100の他の例は、過熱蒸気Aの潜熱で間接的に低品位炭101を乾燥させる低品位炭乾燥装置102と、循環する低沸点熱媒121により蒸気タービン124が運転されて発電するバイナリサイクル120と、熱媒121が循環する熱媒循環ライン122に設けられ、乾燥により低品位炭101から発生する発生蒸気104、または低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bの少なくとも一方との間接的な熱交換により熱媒121を予熱する予熱器128と、熱媒121が循環する熱媒循環ライン122に設けられ、発生蒸気104または凝縮水Bの少なくとも他方との間接的な熱交換により予熱器を経た熱媒121を気化させる蒸発器127とを備える。   As described above, another example of the low-grade coal drying system 100 according to the present embodiment includes a low-grade coal drying apparatus 102 that indirectly dries the low-grade coal 101 with the latent heat of the superheated steam A, and a circulating low boiling point heat. The generated steam 104 generated from the low-grade coal 101 or the low-grade coal 101 provided in the binary cycle 120 in which the steam turbine 124 is operated by the medium 121 to generate electric power and the heat-medium circulation line 122 through which the heat medium 121 circulates is generated. A preheater 128 that preheats the heat medium 121 by indirect heat exchange with at least one of the condensed water B condensed with the superheated steam A dried, and a heat medium circulation line 122 through which the heat medium 121 circulates. An evaporator 127 that vaporizes the heat medium 121 that has passed through the preheater by indirect heat exchange with at least the other of the generated steam 104 or the condensed water B.

この低品位炭乾燥システム100によれば、乾燥により低品位炭101から発生する発生蒸気104、および低品位炭101を乾燥させた過熱蒸気Aが凝縮した凝縮水Bの排熱を、バイナリサイクル120における熱媒121の予熱および蒸発に用いることでバイナリサイクル120での発電に有効利用し、発電効率を向上することが可能になる。   According to the low-grade coal drying system 100, the generated steam 104 generated from the low-grade coal 101 by drying and the exhaust heat of the condensed water B condensed by the superheated steam A drying the low-grade coal 101 are converted into a binary cycle 120. By using it for preheating and evaporation of the heat medium 121 in the above, it is possible to effectively use it for power generation in the binary cycle 120 and improve power generation efficiency.

[実施の形態2]
図10は、本実施の形態に係る低品位炭乾燥システムの概略図である。図10に示すように、本実施の形態の低品位炭乾燥システム100では、バイナリサイクル120は、上述した図3に示す実施の形態1の低品位炭乾燥システム100に加え、熱媒循環ライン122の循環ポンプ123と予熱器128との間であって、予熱器128に至る以前の熱媒121に係り事前予熱器130が設けられている。
[Embodiment 2]
FIG. 10 is a schematic diagram of a low-grade coal drying system according to the present embodiment. As shown in FIG. 10, in the low-grade coal drying system 100 of the present embodiment, the binary cycle 120 is added to the above-described low-grade coal drying system 100 of the first embodiment shown in FIG. The pre-heater 130 is provided between the circulation pump 123 and the pre-heater 128 and the heat medium 121 before reaching the pre-heater 128.

そして、事前予熱器130は、熱媒121を通過させるケーシング130a内に、タービン排ガス205が供給される管状の伝熱部材130bが設けられている。タービン排ガス205は、低品位炭乾燥装置102により乾燥された低品位炭101(製品炭109)が適用される上述した石炭ガス化複合発電システム200においてガスタービン204から排出されるものである。すなわち、事前予熱器130は、ガスタービン204から排出されるタービン排ガス205との間接的な熱交換により予熱器128に至る熱媒121を事前に予熱する。   The pre-heater 130 is provided with a tubular heat transfer member 130b to which the turbine exhaust gas 205 is supplied in a casing 130a through which the heat medium 121 passes. The turbine exhaust gas 205 is discharged from the gas turbine 204 in the above-described coal gasification combined power generation system 200 to which the low-grade coal 101 (product coal 109) dried by the low-grade coal drying apparatus 102 is applied. That is, the pre-heater 130 pre-heats the heat medium 121 reaching the pre-heater 128 in advance by indirect heat exchange with the turbine exhaust gas 205 discharged from the gas turbine 204.

このように、本実施の形態の低品位炭乾燥システム100は、上述した図3に示す実施の形態1の低品位炭乾燥システム100に加え、低品位炭乾燥装置102により乾燥された低品位炭101(製品炭109)をガス化ガス202とする石炭ガス化炉203と、石炭ガス化炉203から供給されるガス化ガス202を燃料として運転されるガスタービン(GT)204と、ガスタービン204の運転により発電する発電機(G)209と、を有する発電システムに適用され、熱媒121が循環する熱媒循環ライン122に設けられてガスタービン204から排出されるタービン排ガス205との間接的な熱交換により予熱器128に至る熱媒121を事前に予熱する事前予熱器130を備える。   Thus, the low-grade coal drying system 100 of the present embodiment is a low-grade coal dried by the low-grade coal drying apparatus 102 in addition to the low-grade coal drying system 100 of the first embodiment shown in FIG. 3 described above. 101 (product charcoal 109) as a gasification gas 202, a gas gasification furnace 203, a gas turbine (GT) 204 operated using the gasification gas 202 supplied from the coal gasification furnace 203 as a fuel, and a gas turbine 204 And a generator (G) 209 that generates electricity by the operation of the above, and is indirectly provided with a turbine exhaust gas 205 provided in a heat medium circulation line 122 through which the heat medium 121 circulates and discharged from the gas turbine 204. A pre-heater 130 that pre-heats the heat medium 121 that reaches the pre-heater 128 by heat exchange is provided.

この低品位炭乾燥システム100によれば、発電システムの排ガスの排熱を、バイナリサイクル120における熱媒121の事前予熱に用いることでバイナリサイクル120での発電に有効利用し、発電効率を向上することが可能になる。   According to the low-grade coal drying system 100, the exhaust heat of the exhaust gas from the power generation system is used for pre-heating of the heat medium 121 in the binary cycle 120, so that it can be effectively used for power generation in the binary cycle 120 to improve power generation efficiency. It becomes possible.

ところで、上述した事前予熱器130は、上述した図5〜図9に示す実施の形態1の低品位炭乾燥システム100に加えることもできる。この低品位炭乾燥システム100においても、発電システムの排ガスの排熱を、バイナリサイクル120における熱媒121の事前予熱に用いることでバイナリサイクル120での発電に有効利用し、発電効率を向上することが可能になる。   By the way, the pre-heater 130 mentioned above can also be added to the low-grade coal drying system 100 of Embodiment 1 shown in FIGS. 5-9 mentioned above. Also in this low-grade coal drying system 100, exhaust heat of the exhaust gas from the power generation system is used for pre-heating of the heat medium 121 in the binary cycle 120 so that it can be effectively used for power generation in the binary cycle 120 to improve power generation efficiency. Is possible.

なお、上述した実施の形態1および実施の形態2の低品位炭乾燥システム100において、低品位炭乾燥装置102の伝熱部材103に供給する過熱蒸気Aとして、上述した石炭ガス化複合発電システム200の蒸気タービン208から抽気した蒸気を用いてもよい。   In the low-grade coal drying system 100 according to Embodiment 1 and Embodiment 2 described above, the above-described coal gasification combined power generation system 200 is used as the superheated steam A supplied to the heat transfer member 103 of the low-grade coal drying apparatus 102. The steam extracted from the steam turbine 208 may be used.

この低品位炭乾燥システム100によれば、石炭ガス化複合発電システム200の蒸気タービン208から抽気した蒸気を、低品位炭101を乾燥させる過熱蒸気Aとして用いることで、蒸気タービン208で得られる蒸気を有効利用することが可能になる。   According to this low-grade coal drying system 100, steam extracted from the steam turbine 208 of the coal gasification combined power generation system 200 is used as superheated steam A for drying the low-grade coal 101, so that steam obtained by the steam turbine 208 is obtained. Can be used effectively.

なお、上述した実施の形態1および実施の形態2の低品位炭乾燥システム100では、低品位炭乾燥装置102は、伝熱部材103として管状のもので説明したが、過熱蒸気Aが内部に供給されるものであればよく、例えば板状のものであってもよい。   In the low-grade coal drying system 100 according to Embodiment 1 and Embodiment 2 described above, the low-grade coal drying device 102 has been described as a tubular heat transfer member 103, but superheated steam A is supplied to the inside. For example, a plate shape may be used.

また、上述した実施の形態1および実施の形態2の低品位炭乾燥システム100では、低品位炭乾燥装置102は、流動化蒸気107が低品位炭乾燥装置102内に導入されて低品位炭101を流動させる形態の、いわゆる流動層乾燥装置を一例として説明したが、これに限らない。例えば、スクリューフィーダを用いて低品位炭101を攪拌させつつ搬送することで低品位炭101を流動させる形態であってもよい。   Further, in the low-grade coal drying system 100 according to the first and second embodiments described above, the low-grade coal drying apparatus 102 includes the low-grade coal 101 in which the fluidized steam 107 is introduced into the low-grade coal drying apparatus 102. Although the so-called fluidized bed drying apparatus in the form of fluidizing has been described as an example, it is not limited thereto. For example, the low grade coal 101 may be fluidized by conveying the low grade coal 101 while stirring it using a screw feeder.

以上のように、本発明に係る低品位炭乾燥システムは、低品位炭を乾燥させた際の排熱を有効利用して発電効率の向上を図ることに適している。   As described above, the low-grade coal drying system according to the present invention is suitable for improving the power generation efficiency by effectively utilizing the exhaust heat when the low-grade coal is dried.

100 低品位炭乾燥システム
101 低品位炭
102 低品位炭乾燥装置
103 伝熱部材
104 発生蒸気
105 集塵装置
107 流動化蒸気
108 乾燥炭
109 製品炭
110 冷却器
111 流動層
114 循環ファン
115 固体成分
120 バイナリサイクル
121 低沸点熱媒
122 熱媒循環ライン
123 循環ポンプ
124 蒸気タービン
125 復水器
126 発電機
127 蒸発器
127a ケーシング
127b 伝熱部材
127c 伝熱部材
128 予熱器
128a ケーシング
128b 伝熱部材
128c 伝熱部材
129 過熱器
129a ケーシング
129b 伝熱部材
130 事前予熱器
130a ケーシング
130b 伝熱部材
200 石炭ガス化複合発電システム
201 石炭
202 ガス化ガス
203 石炭ガス化炉
204 ガスタービン
205 タービン排ガス
208 蒸気タービン
A 過熱蒸気
B 凝縮水
F フリーボード部
発生蒸気ライン
分岐ライン
DESCRIPTION OF SYMBOLS 100 Low grade coal drying system 101 Low grade coal 102 Low grade coal drying apparatus 103 Heat transfer member 104 Generated steam 105 Dust collector 107 Fluidized steam 108 Dry coal 109 Product coal 110 Cooler 111 Fluidized bed 114 Circulation fan 115 Solid component 120 Binary cycle 121 Low boiling point heat medium 122 Heat medium circulation line 123 Circulation pump 124 Steam turbine 125 Condenser 126 Generator 127 Evaporator 127a Casing 127b Heat transfer member 127c Heat transfer member 128 Preheater 128a Casing 128b Heat transfer member 128c Heat transfer Member 129 Superheater 129a Casing 129b Heat transfer member 130 Pre-heater 130a Casing 130b Heat transfer member 200 Coal gasification combined cycle system 201 Coal 202 Gasification gas 203 Coal gasification furnace 204 Gas turbine 205 Turbine exhaust gas 208 Steam turbine A Superheated steam B Condensate F Free board section L 1 Generation steam line L 2 Branch line

Claims (4)

過熱蒸気の潜熱で間接的に低品位炭を乾燥させる低品位炭乾燥装置と、
循環する低沸点熱媒により蒸気タービンが運転されて発電するバイナリサイクルと、
前記熱媒が循環する過程に設けられ、乾燥により前記低品位炭から発生する発生蒸気、または前記低品位炭を乾燥させた前記過熱蒸気が凝縮した凝縮水の少なくとも一方との間接的な熱交換により前記熱媒を予熱する予熱器と、
前記熱媒が循環する過程に設けられ、前記発生蒸気または前記凝縮水の少なくとも他方との間接的な熱交換により前記予熱器を経た前記熱媒を気化させる蒸発器と、
を備えたことを特徴とする低品位炭乾燥システム。
A low-grade coal drying device that indirectly dries low-grade coal with the latent heat of superheated steam;
A binary cycle in which a steam turbine is operated by a circulating low boiling point heat medium to generate electricity;
Indirect heat exchange with at least one of the generated steam generated from the low-grade coal by drying or the condensed water condensed by the superheated steam drying the low-grade coal provided in the process of circulating the heat medium A preheater for preheating the heat medium,
An evaporator that is provided in a process in which the heat medium circulates and vaporizes the heat medium that has passed through the preheater by indirect heat exchange with at least the other of the generated steam or the condensed water;
A low-grade coal drying system characterized by comprising
前記熱媒が循環する過程に設けられ、前記低品位炭を乾燥させた前記過熱蒸気が凝縮した凝縮水との間接的な熱交換により前記蒸発器を経た前記熱媒を過熱させる過熱器を備え、
前記予熱器は、乾燥により前記低品位炭から発生する発生蒸気との間接的な熱交換により前記熱媒を予熱し、前記蒸発器は、乾燥により前記低品位炭から発生する発生蒸気との間接的な熱交換により前記予熱器を経た前記熱媒を気化させることを特徴とする請求項1に記載の低品位炭乾燥システム。
Provided in a process in which the heat medium circulates, comprising a superheater that superheats the heat medium that has passed through the evaporator by indirect heat exchange with condensed water in which the superheated steam that has dried the low-grade coal is condensed. ,
The preheater preheats the heating medium by indirect heat exchange with the generated steam generated from the low-grade coal by drying, and the evaporator is indirectly connected with the generated steam generated from the low-grade coal by drying. 2. The low-grade coal drying system according to claim 1, wherein the heat medium that has passed through the preheater is vaporized by natural heat exchange.
前記低品位炭乾燥装置により乾燥された前記低品位炭をガス化ガスとする石炭ガス化炉と、前記石炭ガス化炉から供給されるガス化ガスを燃料として運転されるガスタービンと、前記ガスタービンの運転により発電する発電機と、前記ガスタービンから排出されるタービン排ガスの排熱により生成された蒸気により運転される蒸気タービンとを有する発電システムに適用され、
前記蒸気タービンから抽気した蒸気を過熱蒸気として前記低品位炭を乾燥させることを特徴とする請求項1または2に記載の低品位炭乾燥システム。
A coal gasification furnace using the low-grade coal dried by the low-grade coal drying apparatus as a gasification gas, a gas turbine operated using the gasification gas supplied from the coal gasification furnace as fuel, and the gas Applied to a power generation system having a generator that generates electricity by operating a turbine, and a steam turbine that is operated by steam generated by exhaust heat of turbine exhaust gas discharged from the gas turbine;
The low-grade coal drying system according to claim 1 or 2, wherein the steam extracted from the steam turbine is used as superheated steam to dry the low-grade coal.
前記熱媒が循環する過程に設けられて前記ガスタービンから排出されるタービン排ガスとの間接的な熱交換により前記予熱器に至る前記熱媒を事前に予熱する事前予熱器を備えたことを特徴とする請求項3に記載の低品位炭乾燥システム。   A pre-heater is provided in the process of circulating the heat medium to pre-heat the heat medium reaching the pre-heater in advance by indirect heat exchange with the turbine exhaust gas discharged from the gas turbine. The low-grade coal drying system according to claim 3.
JP2010086022A 2010-04-02 2010-04-02 Low grade coal drying system Withdrawn JP2011214559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086022A JP2011214559A (en) 2010-04-02 2010-04-02 Low grade coal drying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086022A JP2011214559A (en) 2010-04-02 2010-04-02 Low grade coal drying system

Publications (1)

Publication Number Publication Date
JP2011214559A true JP2011214559A (en) 2011-10-27

Family

ID=44944525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086022A Withdrawn JP2011214559A (en) 2010-04-02 2010-04-02 Low grade coal drying system

Country Status (1)

Country Link
JP (1) JP2011214559A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103162547A (en) * 2013-03-23 2013-06-19 山西易通环能科技集团有限公司 Method and device of generating power using sintering kiln tail gas low-temperature waste heat
JP2013174182A (en) * 2012-02-24 2013-09-05 Central Research Institute Of Electric Power Industry Coal-fired power generation system
JP2013180243A (en) * 2012-03-01 2013-09-12 Metawater Co Ltd Sludge drying system
JP2013184147A (en) * 2012-03-09 2013-09-19 Metawater Co Ltd Drying system of sludge
CN103939158A (en) * 2014-05-09 2014-07-23 湖南华银能源技术有限公司 Low-rank coal purification power generation system
CN114152033A (en) * 2021-12-07 2022-03-08 国能生物发电集团有限公司 Biomass drying equipment
CN114352364A (en) * 2021-07-22 2022-04-15 杭州绿能环保发电有限公司 Main steam temperature control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174182A (en) * 2012-02-24 2013-09-05 Central Research Institute Of Electric Power Industry Coal-fired power generation system
JP2013180243A (en) * 2012-03-01 2013-09-12 Metawater Co Ltd Sludge drying system
JP2013184147A (en) * 2012-03-09 2013-09-19 Metawater Co Ltd Drying system of sludge
CN103162547A (en) * 2013-03-23 2013-06-19 山西易通环能科技集团有限公司 Method and device of generating power using sintering kiln tail gas low-temperature waste heat
CN103939158A (en) * 2014-05-09 2014-07-23 湖南华银能源技术有限公司 Low-rank coal purification power generation system
CN114352364A (en) * 2021-07-22 2022-04-15 杭州绿能环保发电有限公司 Main steam temperature control device
CN114352364B (en) * 2021-07-22 2023-11-21 杭州绿能环保发电有限公司 Main steam temperature control device
CN114152033A (en) * 2021-12-07 2022-03-08 国能生物发电集团有限公司 Biomass drying equipment

Similar Documents

Publication Publication Date Title
US6167706B1 (en) Externally fired combined cycle gas turbine
JP2011214559A (en) Low grade coal drying system
JP2011214562A (en) Coal gasification combined power generation system
JP5632075B2 (en) Classification mixed power generation system and method based on pyrolysis of solid fuel and combustion of semi-coke
JP5857340B2 (en) Combined system using coal for char / raw gas production and power generation
JP5473732B2 (en) Low grade coal drying system
KR101200228B1 (en) Composite-type coal gasification power plant facility
JP2008201964A (en) Process and system for producing solid fuel
JP2012215316A (en) Fluidized bed drying device, fluid bed drying facility and wet raw material drying method
CN102859304B (en) The method of driving steam turbine generating equipment and the device by brown coal generation steam
JP6130114B2 (en) Power generation system
JPH04505789A (en) power generation process
JP5634100B2 (en) Fluidized bed drying apparatus and fluidized bed drying equipment
JP2011214810A (en) Low-grade coal drying system
WO2013011542A1 (en) Fluidized bed drying facility
JP5473734B2 (en) Low grade coal drying system
JP2011214805A (en) Fluidized-bed dryer and fluidized-bed drying facility
JP2011214818A (en) Fluidized bed drying equipment
JP2014070847A (en) Power generating facility
FI80757C (en) KOMBINERAT GASTURBINS- OCH AONGTURBINSKRAFTVERK OCH FOERFARANDE FOER ATT UTNYTTJA BRAENSLETS VAERME-ENERGI FOER ATT FOERBAETTRA KRAFTVERKSPROCESSENS TOTALA VERKNINGSGRAD.
JP5822504B2 (en) Fluidized bed drying equipment
JP5812896B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
KR20060069852A (en) Steam power plant
JPH11197698A (en) Method and device for gasifying waste
JPH11200815A (en) Waste gasifying compound power generation plant

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604