WO2012147752A1 - Fluidized bed drying apparatus and integrated coal gasification combined cycle system - Google Patents

Fluidized bed drying apparatus and integrated coal gasification combined cycle system Download PDF

Info

Publication number
WO2012147752A1
WO2012147752A1 PCT/JP2012/060994 JP2012060994W WO2012147752A1 WO 2012147752 A1 WO2012147752 A1 WO 2012147752A1 JP 2012060994 W JP2012060994 W JP 2012060994W WO 2012147752 A1 WO2012147752 A1 WO 2012147752A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
fluidized bed
gas
raw
raw coal
Prior art date
Application number
PCT/JP2012/060994
Other languages
French (fr)
Japanese (ja)
Inventor
澤津橋 徹哉
功 鳥居
竜平 高島
啓二 山崎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2012248415A priority Critical patent/AU2012248415B2/en
Publication of WO2012147752A1 publication Critical patent/WO2012147752A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/084Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • F05D2220/722Application in combination with a steam turbine as part of an integrated gasification combined cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a fluidized bed drying facility applicable to a gasification system for gasifying coal and a gasification combined power generation system using coal.
  • the combined coal gasification combined power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power by gasifying coal and combining it with combined cycle power generation.
  • This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
  • Conventional coal gasification combined power generation facilities generally have a coal supply device, a drying device, a coal gasification furnace, a gas purification device, a gas turbine facility, a steam turbine facility, an exhaust heat recovery boiler, a gas purification device, and the like. ing. Therefore, the coal is dried and then pulverized, supplied to the coal gasifier as pulverized coal, and air is taken in. The coal gas is combusted and gasified in this coal gasifier, and the product gas (combustible) Gas) is produced. Then, the product gas is purified and then supplied to the gas turbine equipment to burn and generate high-temperature and high-pressure combustion gas to drive the turbine.
  • the exhaust gas after driving the turbine recovers thermal energy by the exhaust heat recovery boiler, generates steam and supplies it to the steam turbine equipment, and drives the turbine. As a result, power generation is performed.
  • the exhaust gas from which the thermal energy has been recovered is released into the atmosphere through a chimney after harmful substances are removed by the gas purification device.
  • the coal used in such a coal gasification combined cycle power generation system uses high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite coal.
  • the coal supplied to the combined coal gasification combined power generation system (IGCC) needs to be pulverized from the viewpoint of reactivity in the coal gasification furnace and air current conveyance, and a coal mill is used as a pulverized coal machine. .
  • the coal supplied as a raw material is first roughly pulverized by a crusher, then dried by a dryer, and then stored by a dry coal bunker. Subsequently, it is supplied to a coal mill by a coal supply machine, where it is pulverized and dried to be pulverized coal, and then transferred from a carrier gas and supplied to a coal gasifier (Patent Document 1).
  • an object of the present invention is to provide a fluidized bed drying facility capable of reducing a drying cost and a gasification combined power generation system using coal.
  • the first invention of the present invention for solving the above-mentioned problems is a fluidized bed drying apparatus for flowing and drying low-grade coal supplied to a drying chamber by supplying a fluidizing gas to the drying chamber;
  • a raw coal fluidized bed bunker that is provided on the upstream side of the bed dryer and stores low-quality coking coal while temporarily flowing, and raw coal fines extracted from the upper side of the raw coal fluidized bed bunker
  • a fluidized bed drying facility comprising a pulverized coal supply line to be supplied.
  • a partition wall is formed in a fluidized bed of the raw coal fluidized bed bunker, and a raw coal fine particle extraction line for discharging raw coal fine particles extracted from the partition wall is provided. It is in the fluidized bed drying facility characterized by this.
  • a first or second fluidized bed drying facility a coal gasification furnace that converts dry coal supplied from the fluidized bed drying apparatus into gasified gas, and fuels the gasified gas.
  • a combined gasification combined power generation system using coal characterized in that it includes a generator (G) connected thereto.
  • a part of the dry coal is extracted and supplied to the wet low-grade coal again, thereby reducing the moisture load at the low-grade coal charging portion.
  • FIG. 1 is a schematic diagram of a fluidized bed drying facility according to the first embodiment.
  • FIG. 2 is a schematic diagram of a fluidized bed drying facility according to the second embodiment.
  • FIG. 3 is a schematic configuration diagram of a gasification combined power generation system using coal according to the third embodiment.
  • FIG. 1 is a schematic diagram of a fluidized bed drying facility according to the first embodiment.
  • the fluidized bed drying facility 100 ⁇ / b> A according to the present embodiment is a flow in which low-grade coal supplied to the drying chamber is flowed and dried by supplying fluidized gas (steam) 107 to the drying chamber.
  • the raw coal fine particle extraction line L 11 for extracting the raw coal fine particles 101A from the upper side, the raw coal coarse particle extraction line L 12 for extracting the raw coal coarse particles 101B from the lower side of the raw coal fluidized bed bunker 50, and the raw material A pulverizer 56 for pulverizing the coarse coal particles 101B and a pulverized coal supply line L 1 for supplying the pulverized pulverized coal 101C to the drying chamber are provided.
  • the raw coal fluidized bed bunker 50 is provided on the upstream side of the fluidized bed drying apparatus 102, and preliminarily drys the raw coal (low-grade coal) 101 with the fluidized gas 52.
  • the raw coal fine 101A that is pre-dried is present in soar gas into the freeboard F, by the line L 11 extracts the raw coal fine 101A raw coal fine, withdrawal, raw coal fine separating the exhaust gas 55 and the raw coal fine 101A by a cyclone 54 which is interposed in the line L 11 withdrawal.
  • the separated raw coal fine 101A is joined to the grinding coal supply line L 1 for supplying crushed pulverized coal 101C with a pulverizer 56, and is supplied to the fluidized bed dryer 102.
  • the fluidizing gas 52 supplied from the rectifying plate 51 into the raw coal fluidized bed bunker 50 for example, nitrogen, air, or cooling exhaust gas 113 at the time of cooling dry coal is used.
  • Aeration of the fluidized gas 52 into the raw coal 101 facilitates segregation, and the raw coal fine particles 101A are separated into the upper portion and the raw coal coarse particles 101B are separated into the lower portion.
  • the raw coal fine particles 101A are supplied to the fluidized bed drying apparatus 102 via the cyclone 54 from above.
  • the raw coal coarse particles 101B are concentrated on the lower side of the fluidized bed and fluidized, the large foreign matter 53 is extracted from the lower part.
  • the raw coal coarse particles 101B are separated from the foreign matter 53 by being extracted from a predetermined position from the bottom of the fluidized bed to the middle stage.
  • Raw coal fine 101A of raw coal fluidized bed bunker 50 is when flown up in the freeboard F, by air classification is withdrawn into the cyclone 54 by raw coal fine withdrawal line L 11. Moreover, since the raw coal coarse particles 101B are put into the pulverizer 56 after removing the foreign matter, extra crushing is not required in the pulverizer 56. Thereby, the power of the pulverizer 56 can be reduced.
  • the large foreign matter 53 is removed in advance, troubles in the pulverizer 56 are avoided.
  • the foreign matter 53 may be separated into metal, earth and sand, etc. with a sorter or the like, and again introduced into the raw coal fluidized bed bunker 50 together with the raw coal 101.
  • the fine coal particles 101A are supplied to the fluidized bed drying apparatus 102 as they are, so that the pulverization by the pulverizer 56 is omitted and the pulverization efficiency of the pulverizer 56 is improved.
  • a gas discharge line L 4 provided above the drying chamber of the fluidized bed drying apparatus 102 is provided with a dust collector 105 such as a cyclone for removing dust in the generated steam 104 and a downstream side of the dust collector 105.
  • a latent heat recovery system 106 that recovers the heat of the generated steam 104 is provided.
  • the main body of the fluidized bed drying apparatus 102 is fluidized by fluidized steam 107 introduced from the pores of the rectifying plate 116 to form a fluidized bed 111.
  • the heat transfer member 103 is disposed in the fluidized bed 111.
  • 150 ° C. drying steam (superheated steam) A is supplied into the heat transfer member 103, and the pulverized charcoal 101C is indirectly dried using the latent heat of the high temperature drying steam (superheated steam) A. I am doing so.
  • the drying steam (superheated steam) A used for drying is discharged to the outside of the fluidized bed drying apparatus 102 as, for example, 150 ° C. condensed water B.
  • drying steam (superheated steam) A condenses into liquid (moisture) on the inner surface of the heat transfer member 103 as heating means, the condensed latent heat radiated at this time is used to heat the pulverized coal 101C for drying. It is used effectively.
  • any heating medium that accompanies phase change may be used, and examples thereof include Freon, pentane, and ammonia.
  • the generated steam 104 generated when the pulverized coal 101C pulverized by the heat transfer member 103 is dried is discharged from the free board F formed in the upper space of the fluidized bed 111 in the fluidized bed drying apparatus 102 to the gas discharge line L. 4 is discharged to the outside of the fluidized bed drying apparatus 102. Since this generated steam 104 contains dried and pulverized powder, it is collected by, for example, a dust collector 105 and separated as dried fine powder 115. The dried fine powder 115 is merged with the pulverized coal 101C from the pulverizer 56 and is put into the fluidized bed drying apparatus 102.
  • Dry coal 101D from the fluidized bed dryer 102 is withdrawn from the dry coal discharge line L 2 is cooled in cooler 110, cooling dry coal 101E is supplied to the coal gasification furnace 14 (see FIG. 3 to be described later) . Note that the dry fine powder 115 may join the dry charcoal 101D.
  • dry coal 101D is cooled by a cooling gas 112 such as nitrogen or air.
  • the generated steam 104 after being collected by the dust collector 105 is, for example, steam at 105 to 110 ° C., so that the heat is recovered by the latent heat recovery system 106 and then processed by the water treatment unit to be cooled by the cooling water 108. Is contributed to cooling by the cooler 110.
  • the generated steam 104 after being collected by the dust collector 105 may be applied to, for example, a heat exchanger, a steam turbine, or the like to effectively use the heat.
  • a part of the generated steam 104 after being collected by the dust collector 105 is sent into the fluidized bed drying device 102 by, for example, the circulation fan 114 interposed in the fluidizing gas supply line L 3 , It is used as fluidized steam 107 for fluidizing a fluidized bed 111 of graded coal 101.
  • a part of the generated steam 104 is reused.
  • the present invention is not limited to this. For example, nitrogen, carbon dioxide, or these gases may be used. You may use the air of the low oxygen concentration which contains.
  • the present Example has illustrated the tube-shaped heat transfer member as the heat transfer member 103 mentioned above, this invention is not limited to this, For example, you may make it use a plate-shaped heat transfer member. .
  • the structure which supplies the steam (superheated steam) A for drying to the heat-transfer member 103 and dries low grade coal indirectly was demonstrated, it is not restricted to this, The flow which flows the fluidized bed 111 of low grade coal A configuration in which the low-grade coal is directly dried by the chemical vapor 107, or a configuration in which a fluidizing gas for heating is supplied and dried may be employed.
  • the raw coal fine particles 101A and the raw coal coarse particles 101B are obtained by fluidizing the raw coal 101 with the fluidizing gas 52 in the raw coal fluidized bed bunker 50 in the stage before drying in the fluidized bed drying apparatus 102. Since the raw coal coarse particles 101B preliminarily dried with the fluidized gas are pulverized by the pulverizer 56, the low-grade coal supplied to the fluidized bed dryer 102 can be efficiently dried. Can be done.
  • FIG. 2 is a schematic diagram of a fluidized bed drying facility according to the second embodiment.
  • a partition wall 81 is partially overflowed in the fluidized bed of the raw coal fluidized bed bunker 50, and the upper part of the partition wall 81 is overflowed in the vicinity of the upper part of the fluidized bed.
  • an extraction portion 82 for extracting the raw coal fine particles 101A is extracted from the raw coal fine particles 101A.
  • the upper portion of the partition wall 81 is dropped to the extraction unit 82 overflowed raw coal fine 101A, by the line L 13 extracts the extracted raw coal particulate 101A raw coal fine, supplies pulverized coal 101C which was ground by a grinder 56 It joins with the pulverized charcoal supply line L 1 and supplies it to the fluidized bed drying apparatus 102.
  • FIG. 3 is a schematic configuration diagram of a combined gasification power generation system using coal according to the third embodiment.
  • the gasification combined cycle power generation system (IGCC: Integrated Coal Gasification Combined Cycle) using coal of Example 3 adopts an air combustion system that generates coal gas in a coal gasification furnace using air as an oxidizer, and is a gas purification device.
  • the refined coal gas is supplied as fuel gas to the gas turbine equipment for power generation.
  • the combined coal gasification combined power generation facility of this embodiment is a power generation facility of an air combustion system (air blowing).
  • low-grade coal is used as a coal raw material supplied to the coal gasifier 14.
  • Example 3 the coal gasification combined power generation facility 10 dries the raw coal 101 provided with the raw coal fluidized bed bunker 50 that predrys the low-grade coal 101 that is the raw coal.
  • the apparatus 16, the gas turbine equipment 17 that drives the turbine by burning the refined fuel gas 200 ⁇ / b> B, and the turbine exhaust gas from the gas turbine equipment 17 are introduced.
  • a steam turbine (ST) facility 18 operated by steam generated by a heat recovery boiler (HRSG) 20 and a generator (G) connected to the gas turbine
  • the low-grade coal supply facility 11 includes a raw coal fluidized bed bunker 50 and a crusher 56.
  • the raw coal bunker (not shown) can store the raw coal (low-grade coal) 101 and can drop a predetermined amount of the raw coal 101 into the raw coal fluidized bed bunker 50.
  • the raw coal coarse particles 101B dried by the raw coal fluidized bed bunker 50 are crushed to a predetermined size by a pulverizer 56 to obtain crushed coal 101C.
  • the fluidized bed drying apparatus 102A (102B) uses the apparatus of Example 1 or 2, and after the preliminary drying and classification in the raw coal fluidized bed bunker 50, drying steam (for example, by supplying superheated steam A) of about 150 ° C., the low-grade coal is heated and dried while flowing, and the moisture contained in the coal 101 can be removed.
  • the fluidized bed drying apparatus 102A (102B) is provided with a cooler 110 that cools the dried dry coal 101D taken out to the outside, and the dried and cooled dried coal 101E is stored in the dried coal bunker 34. .
  • the fluidized bed drying apparatus 102A (102B) is provided with a dust collector 105 such as a dry coal cyclone for separating dry coal particles accompanying the generated steam 104 taken out from the upper portion, and fine particles are generated from the generated steam 104. Dry charcoal particles are separated.
  • the steam from which the dry coal is separated by the dust collector 105 such as a dry coal cyclone may be supplied as the drying steam A to the fluidized bed drying apparatus 102 after being compressed by the steam compressor.
  • the dried and cooled dry coal 101E dried by the fluidized bed drying apparatus 102 and then cooled by the cooler 110 passes through the dry coal discharge line 123, and then temporarily passes through the bag filter 32 and the bottle system 33. It is stored in the dry charcoal bunker 34.
  • the coal gasification furnace 14 can supply fine dry coal 101E supplied from the dry coal bunker 34 and can be recycled by returning the char (unburned coal) 101F recovered by the char recovery device 15. It has become.
  • the coal gasification furnace 14 is connected to the compressed air supply line 41 from the gas turbine equipment 17 (compressor 61), and can supply compressed air compressed by the gas turbine equipment 17.
  • the air separation device 42 separates and generates nitrogen (N 2 ) and oxygen (O 2 ) from the air 40 in the atmosphere.
  • the first nitrogen supply line 43 is connected to the coal gasifier 14, and the first The nitrogen supply line 43 is connected to the dry coal discharge line 123.
  • the second nitrogen supply line 45 is also connected to the coal gasification furnace 14, and the char return line 46 for returning the char 101 F recovered from the char recovery device 15 is connected to the second nitrogen supply line 45.
  • the oxygen supply line 47 is connected to the compressed air supply line 41.
  • nitrogen (N 2 ) is used as a transport gas for dry charcoal 101E and char 101F
  • oxygen (O 2 ) is used as an oxidizing agent.
  • the coal gasification furnace 14 is, for example, a spouted bed type gasification furnace that combusts and gasifies dry coal 101E, char 101F, air (oxygen) supplied therein, or water vapor as a gasifying agent. At the same time, a combustible gas (generated gas, coal gas) 200 containing carbon monoxide as a main component is generated, and a gasification reaction is generated using the combustible gas 200 as a gasifying agent.
  • the coal gasification furnace 14 is provided with a foreign matter removing device 48 for removing foreign matters such as molten slag mixed with pulverized coal.
  • a spouted bed gasification furnace is illustrated as the coal gasification furnace 14, but the present invention is not limited to this, and may be, for example, a fluidized bed gasification furnace or a fixed bed gasification furnace.
  • the coal gasification furnace 14 is provided with a gas generation line 49 of the combustible gas 200 toward the char recovery device 15, and the combustible gas 200 including the char 101F can be discharged.
  • a gas cooler is separately provided in the gas generation line 49 so that the combustible gas 200 is cooled to a predetermined temperature and then supplied to the char recovery device 15.
  • the char collection device 15 has a dust collector 58 and a char supply hopper 59.
  • the dust collector 58 is constituted by one or a plurality of bag filters or cyclones, and can separate the char 101F contained in the combustible gas 200 generated in the coal gasification furnace 14.
  • the combustible gas 200 ⁇ / b> A from which the char 101 ⁇ / b> F has been separated is sent to the gas purification device 16 through the gas discharge line 60.
  • the char supply hopper 59 stores the char 101F separated from the combustible gas 200 by the dust collector 58.
  • a bin may be disposed between the dust collector 58 and the supply hopper 59, and a plurality of char supply hoppers 59 may be connected to the bin.
  • a char return line 46 from the char supply hopper 59 is connected to the second nitrogen supply line 45.
  • the gas purification device 16 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas 200A from which the char 101F has been separated by the char recovery device 15. Then, the gas purifier 16 purifies the combustible gas 200A from which the char 101F is separated to produce the fuel gas 200B, and supplies this to the gas turbine equipment 17. In this gas purifier 16, since the combustible gas 200A from which the char 101F has been separated still contains sulfur (H 2 S), for example, by removing it with an amine absorbent or the like, the sulfur content Is finally collected as gypsum and used effectively.
  • sulfur H 2 S
  • the gas turbine equipment 17 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64.
  • the combustor 62 has a compressed air supply line 65 connected to the compressor 61, a fuel gas supply line 66 connected to the gas purifier 16, and a combustion gas supply line 67 connected to the turbine 63.
  • the gas turbine equipment 17 is provided with a compressed air supply line 41 extending from the compressor 61 to the coal gasification furnace 14, and a booster 68 is provided in the middle.
  • the compressed air 40 ⁇ / b> A supplied from the compressor 61 and the fuel gas 200 ⁇ / b> B supplied from the gas purification device 16 are mixed and burned, and the rotating shaft is generated by the generated combustion gas 202 in the turbine 63.
  • the generator 19 can be driven by rotating 64.
  • the steam turbine facility 18 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 17, and the generator 19 is connected to the base end portion of the rotating shaft 64.
  • the exhaust heat recovery boiler 20 is provided in the exhaust gas line 70 from the gas turbine equipment 17 (the turbine 63), and generates steam 204 by exchanging heat between the air 40 and the high temperature exhaust gas 203. It is. Therefore, the exhaust heat recovery boiler 20 is provided with a steam supply line 71 for supplying the steam 204 to and from the turbine 69 of the steam turbine equipment 18, a steam recovery line 72 is provided, and the steam recovery line 72 has a condenser. 73 is provided. Therefore, in the steam turbine equipment 18, the turbine 69 is driven by the steam 204 supplied from the exhaust heat recovery boiler 20, and the generator 19 can be driven by rotating the rotating shaft 64.
  • the exhaust gas 205 whose heat has been recovered by the exhaust heat recovery boiler 20 has harmful substances removed by the gas purification device 74, and the purified exhaust gas 205A is discharged from the chimney 75 to the atmosphere.
  • the coal as the raw coal 101 is separated into the raw coal fine particles 101A and the raw coal coarse particles 101B by the raw coal fluidized bed bunker 50 in the low-grade coal supply facility 11. .
  • the separated raw coal coarse particles 101B are supplied to the pulverizer 56 where they are crushed to a predetermined size.
  • the crushed pulverized coal 101C is heated and dried by the fluidized bed drying apparatus 102, and after this dry coal 101D is extracted from the dry coal discharge line 123, the pulverized coal 101C is cooled by the cooler 110 and cooled to dry fine coal 101E. And stored in the dry coal bunker 34.
  • the cooled dry coal 101E stored in the dry coal bunker 34 is supplied to the coal gasifier 14 through the dry coal discharge line 123 by nitrogen supplied from the air separation device 42. Further, the char 101F recovered by the char recovery device 15 described later is supplied to the coal gasifier 14 through the char return line 46 by nitrogen supplied from the air separation device 42. Further, compressed air 37 extracted from a gas turbine facility 17 to be described later is pressurized by a booster 68 and then supplied to the coal gasifier 14 through the compressed air supply line 41 together with oxygen supplied from the air separation device 42. .
  • the supplied dry charcoal 101E and char 101F are combusted by compressed air (oxygen) 37, and the dry charcoal 101E and char 101F are gasified, so that combustibility is mainly composed of carbon monoxide.
  • a gas (coal gas) 200 can be generated.
  • the combustible gas 200 is discharged from the coal gasifier 14 through the gas generation line 49 and sent to the char recovery device 15.
  • the combustible gas 200 is first supplied to the dust collector 58, whereby the char 101F contained in the combustible gas 200 is separated here.
  • the combustible gas 200 ⁇ / b> A from which the char 101 ⁇ / b> F has been separated is sent to the gas purification device 16 through the gas discharge line 60.
  • the fine char 101F separated from the combustible gas 200 is deposited on the char supply hopper 59, returned to the coal gasifier 14 through the char return line 46, and recycled.
  • the combustible gas 200A from which the char 101F has been separated by the char recovery device 15 is subjected to gas purification by removing impurities such as sulfur compounds and nitrogen compounds in the gas purification device 16 to produce a fuel gas 200B.
  • gas purification by removing impurities such as sulfur compounds and nitrogen compounds in the gas purification device 16 to produce a fuel gas 200B.
  • the gas turbine equipment 17 when the compressor 61 generates the compressed air 40 ⁇ / b> A and supplies it to the combustor 62, the combustor 62 is supplied from the compressed air 40 ⁇ / b> A supplied from the compressor 61 and the gas purification device 16.
  • the fuel gas 200B is mixed and burned to generate a combustion gas 202.
  • the generator 19 is driven via the rotating shaft 64 to generate power. be able to.
  • the exhaust gas 203 discharged from the turbine 63 in the gas turbine equipment 17 generates heat 204 by exchanging heat with the air 40 in the exhaust heat recovery boiler 20, and the generated steam 204 is used as the steam turbine equipment 18.
  • the turbine 69 is driven by the steam 204 supplied from the exhaust heat recovery boiler 20, whereby the generator 19 can be driven via the rotating shaft 64 to generate power.
  • low-grade coal was used as a coal raw material, but even high-grade coal can be applied, and is not limited to coal, and can be used as a renewable bio-derived organic resource.
  • Biomass may be used, and for example, thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellets and chips) using these as raw materials can be used.

Abstract

This system is provided with: a fluidized bed drying device (102) in which fluidized gas (107) is fed to a drying chamber to thereby fluidize and dry low-grade coal fed to the drying chamber; a raw-coal fluidized bed bunker (50) for temporarily fluidizing and retaining low-grade raw coal (101), the raw-coal fluidized bed bunker being disposed on the upstream side of the fluidized bed drying device (102); a raw-coal particulates removal line L11 for removing raw-coal particulates (101A) from the upper side of the raw-coal fluidized bed bunker (50); a raw-coal coarse particles removal line L12 for removing raw-coal coarse particles (101B) from the lower side of the raw-coal fluidized bed bunker (50); a pulverizer (56) for pulverizing the raw-coal coarse particles (101B); and a pulverized coal fed line L1 for feeding pulverized coarse coal (101C) to the drying chamber.

Description

流動層乾燥設備及び石炭を用いたガス化複合発電システムGasification combined cycle system using fluidized bed drying equipment and coal
 本発明は、石炭をガス化するガス化システムに適用できる流動層乾燥設備及び石炭を用いたガス化複合発電システムに関するものである。 The present invention relates to a fluidized bed drying facility applicable to a gasification system for gasifying coal and a gasification combined power generation system using coal.
 例えば、石炭ガス化複合発電設備は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べてさらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。 For example, the combined coal gasification combined power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal-fired power by gasifying coal and combining it with combined cycle power generation. This coal gasification combined cycle power generation facility has a great merit that it can use coal with abundant resources, and it is known that the merit can be further increased by expanding the applicable coal types.
 従来の石炭ガス化複合発電設備は、一般的に、給炭装置、乾燥装置、石炭ガス化炉、ガス精製装置、ガスタービン設備、蒸気タービン設備、排熱回収ボイラ、ガス浄化装置などを有している。従って、石炭が乾燥されてから粉砕され、石炭ガス化炉に対して、微粉炭として供給されると共に、空気が取り込まれ、この石炭ガス化炉で石炭が燃焼ガス化されて生成ガス(可燃性ガス)が生成される。そして、この生成ガスがガス精製されてからガスタービン設備に供給されることで燃焼して高温・高圧の燃焼ガスを生成し、タービンを駆動する。タービンを駆動した後の排気ガスは、排熱回収ボイラで熱エネルギが回収され、蒸気を生成して蒸気タービン設備に供給され、タービンを駆動する。これにより発電が行なわれる。一方、熱エネルギが回収された排気ガスは、ガス浄化装置で有害物質が除去された後、煙突を介して大気へ放出される。 Conventional coal gasification combined power generation facilities generally have a coal supply device, a drying device, a coal gasification furnace, a gas purification device, a gas turbine facility, a steam turbine facility, an exhaust heat recovery boiler, a gas purification device, and the like. ing. Therefore, the coal is dried and then pulverized, supplied to the coal gasifier as pulverized coal, and air is taken in. The coal gas is combusted and gasified in this coal gasifier, and the product gas (combustible) Gas) is produced. Then, the product gas is purified and then supplied to the gas turbine equipment to burn and generate high-temperature and high-pressure combustion gas to drive the turbine. The exhaust gas after driving the turbine recovers thermal energy by the exhaust heat recovery boiler, generates steam and supplies it to the steam turbine equipment, and drives the turbine. As a result, power generation is performed. On the other hand, the exhaust gas from which the thermal energy has been recovered is released into the atmosphere through a chimney after harmful substances are removed by the gas purification device.
 ところで、このような石炭ガス化複合発電システム(IGCC)にて使用する石炭は、瀝青炭や無煙炭のように高い発熱量を有する高品位の石炭(高品位炭)を用いている。
 前記石炭ガス化複合発電システム(IGCC)に供給する石炭は、石炭ガス化炉内での反応性や気流搬送の観点より、微粉化する必要があり、微粉炭機として石炭ミルが用いられている。このため、原料として供給される石炭は、先ずクラッシャにより粗粉砕され、その後、乾燥機で乾燥された後、乾燥炭バンカで貯留される。次いで、石炭供給機により、石炭ミルに供給され、そこで粉砕・乾燥され、微粉炭とされ、その後、搬送ガスより搬送されて石炭ガス化炉に供給されている(特許文献1)。
By the way, the coal used in such a coal gasification combined cycle power generation system (IGCC) uses high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite coal.
The coal supplied to the combined coal gasification combined power generation system (IGCC) needs to be pulverized from the viewpoint of reactivity in the coal gasification furnace and air current conveyance, and a coal mill is used as a pulverized coal machine. . For this reason, the coal supplied as a raw material is first roughly pulverized by a crusher, then dried by a dryer, and then stored by a dry coal bunker. Subsequently, it is supplied to a coal mill by a coal supply machine, where it is pulverized and dried to be pulverized coal, and then transferred from a carrier gas and supplied to a coal gasifier (Patent Document 1).
 ところで、蒸気流動層乾燥で押出式(プラグフロー式)で乾燥を行う場合には、入口部分での水分負荷が最も高くなり、石炭の表面に水分が凝結して流動不良となる、という問題がある。
 従来では石炭を乾燥する装置として、被乾燥物である石炭が流動不良とならないように、入口部の流動化ガスの供給量を調整している(特許文献2)。
By the way, when drying by the extrusion type (plug flow type) with steam fluidized bed drying, the moisture load at the inlet portion becomes the highest, and moisture condenses on the surface of the coal, resulting in poor flow. is there.
Conventionally, as an apparatus for drying coal, the supply amount of fluidized gas at the inlet is adjusted so that coal that is to be dried does not flow poorly (Patent Document 2).
特開平7-279621号公報Japanese Patent Laid-Open No. 7-279621 特開平6-299176号公報JP-A-6-299176
 しかしながら、入口部においては、石炭の水分濃度が高いため、流動化ガス量が過大となり、設備面、ランニングコストが嵩むという、問題がある。
 この対策として入口部に乾燥炭を循環させて、入口部の水分負荷を低減する方法も提案されるが、循環のための付帯設備(例えばコンベア、ホッパ等)が大掛かりとなる、という問題がある。
However, since the moisture concentration of coal is high at the inlet, there is a problem that the amount of fluidized gas becomes excessive, increasing the equipment and running costs.
As a countermeasure, a method of reducing the moisture load at the inlet by circulating dry charcoal at the inlet is proposed, but there is a problem that ancillary equipment (for example, a conveyor, a hopper, etc.) for circulation becomes large. .
 また、石炭中に含まれる土砂等の異物があり、クラッシャおよび乾燥装置のトラブルが発生するという問題がある。
 さらに、原炭の破砕に関して、原炭中には微粒が含有しており、原炭すべてをクラッシャで破砕した場合には、無駄な動力を消費する、という問題がある。
Moreover, there exists a foreign material, such as earth and sand contained in coal, and there exists a problem that the trouble of a crusher and a drying apparatus generate | occur | produces.
Furthermore, regarding the crushing of the raw coal, there is a problem that fine particles are contained in the raw coal, and if all the raw coal is crushed with a crusher, useless power is consumed.
 よって、石炭をガス化するガス化システムに高効率で供給することができ、低品位炭の乾燥を行うに際してコストの削減を図ることができる流動層乾燥設備の出現が切望されている。 Therefore, the advent of a fluidized bed drying facility that can be supplied to a gasification system that gasifies coal with high efficiency and can reduce costs when drying low-grade coal is eagerly desired.
 本発明は、前記問題に鑑み、乾燥コストの削減を図ることができる流動層乾燥設備及び石炭を用いたガス化複合発電システムを提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a fluidized bed drying facility capable of reducing a drying cost and a gasification combined power generation system using coal.
 上述した課題を解決するための本発明の第1の発明は、乾燥室に流動化ガスを供給することで乾燥室に供給された低品位炭を流動させて乾燥させる流動層乾燥装置と、流動層乾燥装置の前流側に設けられ、低品位の原料炭を一時的に流動させつつ貯留する原炭流動層バンカと、前記原炭流動層バンカの上方側から原炭微粒を抜き出す、原炭微粒抜き出しラインと、前記原炭流動層バンカの下方側から原炭粗粒を抜き出す、原炭粗粒抜き出しラインと、前記原炭粗粒を粉砕する粉砕機と、粉砕した粉砕炭を乾燥室に供給する粉砕炭供給ラインとを具備することを特徴とする流動層乾燥設備にある。 The first invention of the present invention for solving the above-mentioned problems is a fluidized bed drying apparatus for flowing and drying low-grade coal supplied to a drying chamber by supplying a fluidizing gas to the drying chamber; A raw coal fluidized bed bunker that is provided on the upstream side of the bed dryer and stores low-quality coking coal while temporarily flowing, and raw coal fines extracted from the upper side of the raw coal fluidized bed bunker A fine particle extraction line, a raw coal coarse particle extraction line for extracting raw coal coarse particles from the lower side of the raw coal fluidized bed bunker, a pulverizer for pulverizing the raw coal coarse particles, and the pulverized pulverized coal in a drying chamber A fluidized bed drying facility comprising a pulverized coal supply line to be supplied.
 第2の発明は、第1の発明において、前記原炭流動層バンカの流動層内に仕切壁を形成すると共に、仕切壁から抜き出した原炭微粒を排出する原炭微粒抜き出しラインとを具備することを特徴とする流動層乾燥設備にある。 According to a second invention, in the first invention, a partition wall is formed in a fluidized bed of the raw coal fluidized bed bunker, and a raw coal fine particle extraction line for discharging raw coal fine particles extracted from the partition wall is provided. It is in the fluidized bed drying facility characterized by this.
 第3の発明は、第1又は2の流動層乾燥設備と、前記流動層乾燥装置から供給される乾燥炭を処理してガス化ガスに変換する石炭ガス化炉と、前記ガス化ガスを燃料として運転されるガスタービン(GT)と、前記ガスタービンからのタービン排ガスを導入する排熱回収ボイラで生成した蒸気により運転される蒸気タービン(ST)と、前記ガスタービン及び/又は前記蒸気タービンと連結された発電機(G)とを具備することを特徴とする石炭を用いたガス化複合発電システムにある。 According to a third aspect of the present invention, there is provided a first or second fluidized bed drying facility, a coal gasification furnace that converts dry coal supplied from the fluidized bed drying apparatus into gasified gas, and fuels the gasified gas. A gas turbine (GT) operated as a steam turbine (ST) operated by steam generated by a heat recovery steam generator that introduces turbine exhaust gas from the gas turbine, the gas turbine and / or the steam turbine, A combined gasification combined power generation system using coal, characterized in that it includes a generator (G) connected thereto.
 本発明の流動層乾燥設備によれば、乾燥炭の一部を抜き出して、再度湿った低品位炭に供給することで、低品位炭の投入部の水分負荷の低減を図ることができる。 According to the fluidized bed drying facility of the present invention, a part of the dry coal is extracted and supplied to the wet low-grade coal again, thereby reducing the moisture load at the low-grade coal charging portion.
図1は、実施例1に係る流動層乾燥設備の概略図である。FIG. 1 is a schematic diagram of a fluidized bed drying facility according to the first embodiment. 図2は、実施例2に係る流動層乾燥設備の概略図である。FIG. 2 is a schematic diagram of a fluidized bed drying facility according to the second embodiment. 図3は、実施例3に係る石炭を用いたガス化複合発電システムの概略構成図である。FIG. 3 is a schematic configuration diagram of a gasification combined power generation system using coal according to the third embodiment.
 以下に添付図面を参照して、本発明に係る流動層乾燥設備の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of a fluidized bed drying facility according to the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example, Moreover, when there exists multiple Example, what comprises combining each Example is also included.
 図1は、実施例1に係る流動層乾燥設備の概略図である。
 図1に示すように、本実施例に係る流動層乾燥設備100Aは、乾燥室に流動化ガス(蒸気)107を供給することで乾燥室に供給された低品位炭を流動させて乾燥させる流動層乾燥装置102と、流動層乾燥装置102の前流側に設けられ、低品位の原料炭101を一時的に流動させつつ貯留する原炭流動層バンカ50と、前記原炭流動層バンカ50の上方側から原炭微粒101Aを抜き出す、原炭微粒抜き出しラインL11と、前記原炭流動層バンカ50の下方側から原炭粗粒101Bを抜き出す、原炭粗粒抜き出しラインL12と、前記原炭粗粒101Bを粉砕する粉砕機56と、粉砕した粉砕炭101Cを乾燥室に供給する粉砕炭供給ラインL1とを具備するものである。
FIG. 1 is a schematic diagram of a fluidized bed drying facility according to the first embodiment.
As shown in FIG. 1, the fluidized bed drying facility 100 </ b> A according to the present embodiment is a flow in which low-grade coal supplied to the drying chamber is flowed and dried by supplying fluidized gas (steam) 107 to the drying chamber. A bed drying device 102, a raw coal fluidized bed bunker 50 provided on the upstream side of the fluidized bed drying device 102 and storing the low-grade raw coal 101 while temporarily flowing, and the raw coal fluidized bed bunker 50 The raw coal fine particle extraction line L 11 for extracting the raw coal fine particles 101A from the upper side, the raw coal coarse particle extraction line L 12 for extracting the raw coal coarse particles 101B from the lower side of the raw coal fluidized bed bunker 50, and the raw material A pulverizer 56 for pulverizing the coarse coal particles 101B and a pulverized coal supply line L 1 for supplying the pulverized pulverized coal 101C to the drying chamber are provided.
 図1に示すように、原炭流動層バンカ50は、流動層乾燥装置102の前流側に設けられて、原料炭(低品位炭)101を流動化ガス52により予備乾燥するものである。
 この予備乾燥の際に、フリーボードF内に舞い上がるガス中には予備乾燥された原炭微粒101Aが存在するので、その原炭微粒101Aを原炭微粒抜き出しラインL11により、抜き出し、原炭微粒抜き出しラインL11に介装したサイクロン54により排ガス55と原炭微粒101Aとを分離している。この分離された原炭微粒101Aは、粉砕機56で粉砕された粉砕炭101Cを供給する粉砕炭供給ラインL1に合流して、流動層乾燥装置102に供給するようにしている。
As shown in FIG. 1, the raw coal fluidized bed bunker 50 is provided on the upstream side of the fluidized bed drying apparatus 102, and preliminarily drys the raw coal (low-grade coal) 101 with the fluidized gas 52.
During this pre-drying, the raw coal fine 101A that is pre-dried is present in soar gas into the freeboard F, by the line L 11 extracts the raw coal fine 101A raw coal fine, withdrawal, raw coal fine separating the exhaust gas 55 and the raw coal fine 101A by a cyclone 54 which is interposed in the line L 11 withdrawal. The separated raw coal fine 101A is joined to the grinding coal supply line L 1 for supplying crushed pulverized coal 101C with a pulverizer 56, and is supplied to the fluidized bed dryer 102.
 ここで、原炭流動層バンカ50内に整流板51から供給される流動化ガス52としては、例えば窒素、空気又は乾燥炭冷却時の冷却排気ガス113を利用している。 Here, as the fluidizing gas 52 supplied from the rectifying plate 51 into the raw coal fluidized bed bunker 50, for example, nitrogen, air, or cooling exhaust gas 113 at the time of cooling dry coal is used.
 原料炭101中に流動化ガス52を通気することで、セグリゲーションを促し、原炭微粒101Aを上部に、原炭粗粒101Bを下部に分離させるようにしている。 Aeration of the fluidized gas 52 into the raw coal 101 facilitates segregation, and the raw coal fine particles 101A are separated into the upper portion and the raw coal coarse particles 101B are separated into the lower portion.
 流動化ガス52の流量を最適流量に設定することで、原炭微粒101Aは上部からサイクロン54を経由して流動層乾燥装置102へ供給されることとなる。 By setting the flow rate of the fluidizing gas 52 to the optimum flow rate, the raw coal fine particles 101A are supplied to the fluidized bed drying apparatus 102 via the cyclone 54 from above.
 これに対し、原炭粗粒101Bは、流動層の下部側に集中し、流動化される際に、大塊の異物53は、下部より抜き出される。
 また、原炭粗粒101Bは、流動層の底部から中段にかけての所定の位置から抜き出すことにより、異物53と分離させるようにしている。
On the other hand, when the raw coal coarse particles 101B are concentrated on the lower side of the fluidized bed and fluidized, the large foreign matter 53 is extracted from the lower part.
In addition, the raw coal coarse particles 101B are separated from the foreign matter 53 by being extracted from a predetermined position from the bottom of the fluidized bed to the middle stage.
 原炭流動層バンカ50内の原炭微粒101Aは、フリーボードF内に舞い上がった際、風力分級により、原炭微粒抜き出しラインL11によりサイクロン54に抜き出される。
 また、原炭粗粒101Bは、異物除去後に粉砕機56に投入されるため、粉砕機56において余分な破砕が不要となる。これにより、粉砕機56の動力の低減を図ることができる。
Raw coal fine 101A of raw coal fluidized bed bunker 50 is when flown up in the freeboard F, by air classification is withdrawn into the cyclone 54 by raw coal fine withdrawal line L 11.
Moreover, since the raw coal coarse particles 101B are put into the pulverizer 56 after removing the foreign matter, extra crushing is not required in the pulverizer 56. Thereby, the power of the pulverizer 56 can be reduced.
 また、大塊の異物53が予め除去されるため、粉砕機56でのトラブル回避に繋がることとなる。なお、異物53は、例えば選別機等で金属や土砂等を分離し、原料炭101と共に、再度原炭流動層バンカ50に投入するようにしてもよい。 Further, since the large foreign matter 53 is removed in advance, troubles in the pulverizer 56 are avoided. For example, the foreign matter 53 may be separated into metal, earth and sand, etc. with a sorter or the like, and again introduced into the raw coal fluidized bed bunker 50 together with the raw coal 101.
 このように、本実施例によれば、原炭流動層バンカ50内でセグリゲーションを促し、原炭101と原炭微粒101A、原炭粗粒101B、大塊の異物53に分類することで、原炭微粒101Aはそのまま流動層乾燥装置102へ供給することで、粉砕機56での粉砕を省略し、粉砕機56の粉砕効率を向上させている。 As described above, according to the present embodiment, by promoting segregation in the raw coal fluidized bed bunker 50 and classifying the raw coal 101, the raw coal fine particles 101A, the raw coal coarse particles 101B, and the large mass foreign matter 53, The fine coal particles 101A are supplied to the fluidized bed drying apparatus 102 as they are, so that the pulverization by the pulverizer 56 is omitted and the pulverization efficiency of the pulverizer 56 is improved.
 また、大塊の異物53は系外に排出することで、原炭粗粒101Bだけを選択的に粉砕機56に供給することができるため、効率的な粉砕が可能となる。よって、粉砕機56の粉砕容量の低減を図ると共に、動力低減を図ることができる。また、予め異物53を除去するので、粉砕時のトラブルを回避することができる。 In addition, since the large foreign matter 53 is discharged out of the system, only the raw coal coarse particles 101B can be selectively supplied to the pulverizer 56, so that efficient pulverization becomes possible. Therefore, the pulverization capacity of the pulverizer 56 can be reduced and the power can be reduced. Further, since the foreign matter 53 is removed in advance, troubles during pulverization can be avoided.
 流動層乾燥装置102の乾燥室の上方に設けたガス排出ラインL4には、発生蒸気104中の粉塵を除去するサイクロン等の集塵装置105と、集塵装置105の下流側に介装され、発生蒸気104の熱を回収する潜熱回収システム106が設けられている。 A gas discharge line L 4 provided above the drying chamber of the fluidized bed drying apparatus 102 is provided with a dust collector 105 such as a cyclone for removing dust in the generated steam 104 and a downstream side of the dust collector 105. A latent heat recovery system 106 that recovers the heat of the generated steam 104 is provided.
 流動層乾燥装置102の本体は、整流板116の細孔より導入される流動化蒸気107により流動されて流動層111を形成する。 The main body of the fluidized bed drying apparatus 102 is fluidized by fluidized steam 107 introduced from the pores of the rectifying plate 116 to form a fluidized bed 111.
 伝熱部材103は、この流動層111内に配置されている。伝熱部材103内には、例えば150℃の乾燥用蒸気(過熱蒸気)Aが供給され、その高温の乾燥用蒸気(過熱蒸気)Aの潜熱を利用して粉砕炭101Cを間接的に乾燥させるようにしている。乾燥に利用された乾燥用蒸気(過熱蒸気)Aは、例えば150℃の凝縮水Bとして流動層乾燥装置102の外部に排出されている。 The heat transfer member 103 is disposed in the fluidized bed 111. For example, 150 ° C. drying steam (superheated steam) A is supplied into the heat transfer member 103, and the pulverized charcoal 101C is indirectly dried using the latent heat of the high temperature drying steam (superheated steam) A. I am doing so. The drying steam (superheated steam) A used for drying is discharged to the outside of the fluidized bed drying apparatus 102 as, for example, 150 ° C. condensed water B.
 すなわち、加熱手段である伝熱部材103内面では、乾燥用蒸気(過熱蒸気)Aが凝縮して液体(水分)になるので、この際に放熱される凝縮潜熱を、粉砕石炭101Cの乾燥の加熱に有効利用している。なお、高温の乾燥用蒸気(過熱蒸気)A以外としては、相変化を伴う熱媒であれば何れでも良く、例えばフロンやペンタンやアンモニア等を例示することができる。また、伝熱部材として熱媒体を用いる以外に電気ヒータを設置してもよい。 That is, since the drying steam (superheated steam) A condenses into liquid (moisture) on the inner surface of the heat transfer member 103 as heating means, the condensed latent heat radiated at this time is used to heat the pulverized coal 101C for drying. It is used effectively. In addition to the high-temperature drying steam (superheated steam) A, any heating medium that accompanies phase change may be used, and examples thereof include Freon, pentane, and ammonia. Moreover, you may install an electric heater other than using a heat medium as a heat-transfer member.
 伝熱部材103によって粉砕された粉砕炭101Cが乾燥される際に発生する発生蒸気104は、流動層乾燥装置102内において、流動層111の上部空間に形成されるフリーボードFからガス排出ラインL4により流動層乾燥装置102の外部に排出される。この発生蒸気104は、乾燥し微粉化したものが含まれているので、例えば集塵装置105により集塵して乾燥微粉115として分離する。
 この乾燥微粉115は、粉砕機56からの粉砕石炭101Cと合流され、流動層乾燥装置102に投入される。
 流動層乾燥装置102から乾燥炭排出ラインL2より抜き出される乾燥炭101Dは、冷却機110で冷却され、冷却乾燥炭101Eは、石炭ガス化炉14(後述する図3参照)に供給される。なお、乾燥微粉115は乾燥炭101Dに合流するようにしてもよい。
 冷却機110には窒素又は空気等の冷却ガス112により、乾燥炭101Dを冷却している。
The generated steam 104 generated when the pulverized coal 101C pulverized by the heat transfer member 103 is dried is discharged from the free board F formed in the upper space of the fluidized bed 111 in the fluidized bed drying apparatus 102 to the gas discharge line L. 4 is discharged to the outside of the fluidized bed drying apparatus 102. Since this generated steam 104 contains dried and pulverized powder, it is collected by, for example, a dust collector 105 and separated as dried fine powder 115.
The dried fine powder 115 is merged with the pulverized coal 101C from the pulverizer 56 and is put into the fluidized bed drying apparatus 102.
Dry coal 101D from the fluidized bed dryer 102 is withdrawn from the dry coal discharge line L 2 is cooled in cooler 110, cooling dry coal 101E is supplied to the coal gasification furnace 14 (see FIG. 3 to be described later) . Note that the dry fine powder 115 may join the dry charcoal 101D.
In the cooler 110, dry coal 101D is cooled by a cooling gas 112 such as nitrogen or air.
 一方、集塵装置105により集塵された後の発生蒸気104は、例えば105~110℃の蒸気であるので、潜熱回収システム106で熱回収された後、水処理部で処理され、冷却水108は、冷却機110にて冷却に寄与されている。なお、集塵装置105により集塵された後の発生蒸気104は、例えば、熱交換器や蒸気タービン等に適用してその熱を有効利用するようにしてもよい。 On the other hand, the generated steam 104 after being collected by the dust collector 105 is, for example, steam at 105 to 110 ° C., so that the heat is recovered by the latent heat recovery system 106 and then processed by the water treatment unit to be cooled by the cooling water 108. Is contributed to cooling by the cooler 110. Note that the generated steam 104 after being collected by the dust collector 105 may be applied to, for example, a heat exchanger, a steam turbine, or the like to effectively use the heat.
 また、集塵装置105により集塵された後の発生蒸気104の一部は、流動化ガス供給ラインL3に介装された例えば循環ファン114により流動層乾燥装置102内に送られて、低品位炭101の流動層111を流動させる流動化蒸気107として利用される。なお、本実施例では、流動層111を流動化させる流動化媒体としては、発生蒸気104の一部を再利用しているが、これに限定されず、例えば窒素、二酸化炭素またはこれらのガスを含む低酸素濃度の空気を用いてもよい。 Further, a part of the generated steam 104 after being collected by the dust collector 105 is sent into the fluidized bed drying device 102 by, for example, the circulation fan 114 interposed in the fluidizing gas supply line L 3 , It is used as fluidized steam 107 for fluidizing a fluidized bed 111 of graded coal 101. In this embodiment, as the fluidizing medium for fluidizing the fluidized bed 111, a part of the generated steam 104 is reused. However, the present invention is not limited to this. For example, nitrogen, carbon dioxide, or these gases may be used. You may use the air of the low oxygen concentration which contains.
 なお、上述した伝熱部材103として、本実施例はチューブ形状の伝熱部材を例示しているが、本発明はこれに限定されず、例えば板状の伝熱部材を用いるようにしてもよい。
 また、乾燥用蒸気(過熱蒸気)Aを伝熱部材103に供給して低品位炭を間接的に乾燥させる構成を説明したが、これに限らず、低品位炭の流動層111を流動させる流動化蒸気107により低品位炭を直接乾燥させる構成、さらに加熱用の流動化ガスを供給して乾燥させる構成としてもよい。
In addition, although the present Example has illustrated the tube-shaped heat transfer member as the heat transfer member 103 mentioned above, this invention is not limited to this, For example, you may make it use a plate-shaped heat transfer member. .
Moreover, although the structure which supplies the steam (superheated steam) A for drying to the heat-transfer member 103 and dries low grade coal indirectly was demonstrated, it is not restricted to this, The flow which flows the fluidized bed 111 of low grade coal A configuration in which the low-grade coal is directly dried by the chemical vapor 107, or a configuration in which a fluidizing gas for heating is supplied and dried may be employed.
 本実施例では、流動層乾燥装置102での乾燥の前段階において、原炭流動層バンカ50で流動化ガス52により原料炭101を流動化させることにより、原炭微粒101Aと原炭粗粒101Bとを分離すると共に、流動ガスにより予備乾燥された原炭粗粒101Bは、粉砕機56により粉砕されるようにしているので、流動層乾燥装置102に供給された低品位炭の乾燥を効率的に行うことができる。 In this embodiment, the raw coal fine particles 101A and the raw coal coarse particles 101B are obtained by fluidizing the raw coal 101 with the fluidizing gas 52 in the raw coal fluidized bed bunker 50 in the stage before drying in the fluidized bed drying apparatus 102. Since the raw coal coarse particles 101B preliminarily dried with the fluidized gas are pulverized by the pulverizer 56, the low-grade coal supplied to the fluidized bed dryer 102 can be efficiently dried. Can be done.
 図2は、実施例2に係る流動層乾燥設備の概略図である。
 図2に示すように、本実施例に係る流動層乾燥設備100Bでは、原炭流動層バンカ50の流動層の一部に仕切壁81と、流動層の上方近傍において仕切壁81の上部をオーバーフローした原炭微粒101Aを抜き出す抜き出し部82とを設けている。
FIG. 2 is a schematic diagram of a fluidized bed drying facility according to the second embodiment.
As shown in FIG. 2, in the fluidized bed drying equipment 100B according to the present embodiment, a partition wall 81 is partially overflowed in the fluidized bed of the raw coal fluidized bed bunker 50, and the upper part of the partition wall 81 is overflowed in the vicinity of the upper part of the fluidized bed. And an extraction portion 82 for extracting the raw coal fine particles 101A.
 そして、仕切壁81の上部をオーバーフローした原炭微粒101Aを抜き出し部82に落下させ、抜き出した原炭微粒101Aを原炭微粒抜き出しラインL13により、粉砕機56で粉砕した粉砕炭101Cを供給する粉砕炭供給ラインL1に合流して、流動層乾燥装置102に供給するようにしている。 Then, the upper portion of the partition wall 81 is dropped to the extraction unit 82 overflowed raw coal fine 101A, by the line L 13 extracts the extracted raw coal particulate 101A raw coal fine, supplies pulverized coal 101C which was ground by a grinder 56 It joins with the pulverized charcoal supply line L 1 and supplies it to the fluidized bed drying apparatus 102.
 図3は、実施例3に係る石炭を用いたガス化複合発電システムの概略構成図である。 FIG. 3 is a schematic configuration diagram of a combined gasification power generation system using coal according to the third embodiment.
 実施例3の石炭を用いたガス化複合発電システム(IGCC:Integrated Coal Gasification Combined Cycle)は、空気を酸化剤として石炭ガス化炉で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。即ち、本実施例の石炭ガス化複合発電設備は、空気燃焼方式(空気吹き)の発電設備である。本実施例では、石炭ガス化炉14に供給する石炭原料として低品位炭を使用している。 The gasification combined cycle power generation system (IGCC: Integrated Coal Gasification Combined Cycle) using coal of Example 3 adopts an air combustion system that generates coal gas in a coal gasification furnace using air as an oxidizer, and is a gas purification device. The refined coal gas is supplied as fuel gas to the gas turbine equipment for power generation. That is, the combined coal gasification combined power generation facility of this embodiment is a power generation facility of an air combustion system (air blowing). In this embodiment, low-grade coal is used as a coal raw material supplied to the coal gasifier 14.
 実施例3において、図3に示すように、石炭ガス化複合発電設備10は、原料炭である低品位炭101を事前に予備乾燥する原炭流動層バンカ50を備えた原料炭101を乾燥する流動層乾燥装置102A(102B)からなる流動層乾燥設備100A(100B)と、冷却乾燥炭(乾燥炭)101Eを供給してガス化し可燃性ガス(生成ガス、石炭ガス)200を生成する石炭ガス化炉14と、ガス化ガスである可燃性ガス(生成ガス、石炭ガス)200中のチャー101Fを回収するチャー回収装置15と、可燃性ガス(生成ガス、石炭ガス)200Aを精製するガス精製装置16と、精製された燃料ガス200Bを燃焼させてタービンを駆動するガスタービン設備17と、前記ガスタービン設備17からのタービン排ガスを導入する排熱回収ボイラ(Heat Recovery Steam Generator:HRSG)20で生成した蒸気により運転される蒸気タービン(ST)設備18と、前記ガスタービン設備17及び/又は前記蒸気タービン設備18と連結された発電機(G)19とを具備している。 In Example 3, as shown in FIG. 3, the coal gasification combined power generation facility 10 dries the raw coal 101 provided with the raw coal fluidized bed bunker 50 that predrys the low-grade coal 101 that is the raw coal. Coal gas for supplying combustible gas (product gas, coal gas) 200 by supplying fluidized bed drying equipment 100A (100B) composed of fluidized bed drying apparatus 102A (102B) and cooling dry coal (dry coal) 101E to gasify Gas purification apparatus 15 for purifying the combustor 14, the char recovery device 15 for recovering the char 101F in the combustible gas (product gas, coal gas) 200 as the gasification gas, and the combustible gas (product gas, coal gas) 200A The apparatus 16, the gas turbine equipment 17 that drives the turbine by burning the refined fuel gas 200 </ b> B, and the turbine exhaust gas from the gas turbine equipment 17 are introduced. A steam turbine (ST) facility 18 operated by steam generated by a heat recovery boiler (HRSG) 20 and a generator (G) connected to the gas turbine facility 17 and / or the steam turbine facility 18 19).
 本実施例に係る低品位炭供給設備11は、原炭流動層バンカ50と、粉砕機56とを有している。原炭バンカ(図示しない)は、原料炭(低品位炭)101を貯留可能であって、所定量の原料炭101を原炭流動層バンカ50に投下することができる。原炭流動層バンカ50で乾燥された原炭粗粒101Bは、粉砕機56により所定の大きさに破砕し、粉砕石炭101Cとしている。 The low-grade coal supply facility 11 according to this embodiment includes a raw coal fluidized bed bunker 50 and a crusher 56. The raw coal bunker (not shown) can store the raw coal (low-grade coal) 101 and can drop a predetermined amount of the raw coal 101 into the raw coal fluidized bed bunker 50. The raw coal coarse particles 101B dried by the raw coal fluidized bed bunker 50 are crushed to a predetermined size by a pulverizer 56 to obtain crushed coal 101C.
 流動層乾燥装置102A(102B)は、実施例1又は2の装置を用いており、原炭流動層バンカ50で予備乾燥と分級をした後、供給された粉砕石炭101Cに対して乾燥用蒸気(例えば150℃程度の過熱蒸気)Aを供給することで、この低品位炭を流動させながら加熱乾燥するものであり、石炭101が含有する水分を除去することができる。そして、この流動層乾燥装置102A(102B)は、外部に取り出された乾燥済の乾燥炭101Dを冷却する冷却機110が設けられ、乾燥冷却済の乾燥炭101Eが乾燥炭バンカ34に貯留される。また、流動層乾燥装置102A(102B)は、上部から取り出された発生蒸気104に同伴される乾燥炭の粒子を分離する乾燥炭サイクロン等の集塵装置105が設けられ、発生蒸気104から微粒の乾燥炭の粒子を分離している。なお、乾燥炭サイクロン等の集塵装置105で乾燥炭が分離された蒸気は、蒸気圧縮機で圧縮されてから流動層乾燥装置102に乾燥用蒸気Aとして供給するようにしてもよい。 The fluidized bed drying apparatus 102A (102B) uses the apparatus of Example 1 or 2, and after the preliminary drying and classification in the raw coal fluidized bed bunker 50, drying steam ( For example, by supplying superheated steam A) of about 150 ° C., the low-grade coal is heated and dried while flowing, and the moisture contained in the coal 101 can be removed. The fluidized bed drying apparatus 102A (102B) is provided with a cooler 110 that cools the dried dry coal 101D taken out to the outside, and the dried and cooled dried coal 101E is stored in the dried coal bunker 34. . Further, the fluidized bed drying apparatus 102A (102B) is provided with a dust collector 105 such as a dry coal cyclone for separating dry coal particles accompanying the generated steam 104 taken out from the upper portion, and fine particles are generated from the generated steam 104. Dry charcoal particles are separated. The steam from which the dry coal is separated by the dust collector 105 such as a dry coal cyclone may be supplied as the drying steam A to the fluidized bed drying apparatus 102 after being compressed by the steam compressor.
 流動層乾燥装置102で乾燥され、ついで冷却機110で冷却された乾燥冷却済の乾燥炭101Eは、乾燥炭排出ライン123を介して、その後、バグフィルタ32、ビンシステム33を介して、一時、乾燥炭バンカ34に貯留される。 The dried and cooled dry coal 101E dried by the fluidized bed drying apparatus 102 and then cooled by the cooler 110 passes through the dry coal discharge line 123, and then temporarily passes through the bag filter 32 and the bottle system 33. It is stored in the dry charcoal bunker 34.
 石炭ガス化炉14は、乾燥炭バンカ34から供給される微粒の乾燥炭101Eが供給可能であると共に、チャー回収装置15で回収されたチャー(石炭の未燃分)101Fが戻されてリサイクル可能となっている。 The coal gasification furnace 14 can supply fine dry coal 101E supplied from the dry coal bunker 34 and can be recycled by returning the char (unburned coal) 101F recovered by the char recovery device 15. It has become.
 即ち、石炭ガス化炉14は、ガスタービン設備17(圧縮機61)から圧縮空気供給ライン41が接続されており、このガスタービン設備17で圧縮された圧縮空気が供給可能となっている。空気分離装置42は、大気中の空気40から窒素(N2)と酸素(O2)を分離生成するものであり、第1窒素供給ライン43が石炭ガス化炉14に接続され、この第1窒素供給ライン43は乾燥炭排出ライン123に接続されている。また、第2窒素供給ライン45も石炭ガス化炉14に接続され、この第2窒素供給ライン45にチャー回収装置15から回収されたチャー101Fを戻すチャー戻しライン46が接続されている。更に、酸素供給ライン47は、圧縮空気供給ライン41に接続されている。この場合、窒素(N2)は、乾燥炭101Eやチャー101Fの搬送用ガスとして利用され、酸素(O2)は、酸化剤として利用される。 That is, the coal gasification furnace 14 is connected to the compressed air supply line 41 from the gas turbine equipment 17 (compressor 61), and can supply compressed air compressed by the gas turbine equipment 17. The air separation device 42 separates and generates nitrogen (N 2 ) and oxygen (O 2 ) from the air 40 in the atmosphere. The first nitrogen supply line 43 is connected to the coal gasifier 14, and the first The nitrogen supply line 43 is connected to the dry coal discharge line 123. The second nitrogen supply line 45 is also connected to the coal gasification furnace 14, and the char return line 46 for returning the char 101 F recovered from the char recovery device 15 is connected to the second nitrogen supply line 45. Further, the oxygen supply line 47 is connected to the compressed air supply line 41. In this case, nitrogen (N 2 ) is used as a transport gas for dry charcoal 101E and char 101F, and oxygen (O 2 ) is used as an oxidizing agent.
 石炭ガス化炉14は、例えば、噴流床形式のガス化炉であって、内部に供給された乾燥炭101E、チャー101F、空気(酸素)、またはガス化剤としての水蒸気を燃焼・ガス化すると共に、一酸化炭素を主成分とする可燃性ガス(生成ガス、石炭ガス)200を発生させ、この可燃性ガス200をガス化剤としてガス化反応を生じさせている。なお、石炭ガス化炉14は、微粉炭の混入した溶融スラグ等の異物を除去する異物除去装置48が設けられている。
 本例では、石炭ガス化炉14として噴流床ガス化炉を例示しているが、本発明は、これに限定されず、例えば流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化炉14は、チャー回収装置15に向けて可燃性ガス200のガス生成ライン49が設けられており、チャー101Fを含む可燃性ガス200が排出可能となっている。この場合、ガス生成ライン49にガス冷却器を別途設けることで、可燃性ガス200を所定温度まで冷却してからチャー回収装置15に供給するとよい。
The coal gasification furnace 14 is, for example, a spouted bed type gasification furnace that combusts and gasifies dry coal 101E, char 101F, air (oxygen) supplied therein, or water vapor as a gasifying agent. At the same time, a combustible gas (generated gas, coal gas) 200 containing carbon monoxide as a main component is generated, and a gasification reaction is generated using the combustible gas 200 as a gasifying agent. The coal gasification furnace 14 is provided with a foreign matter removing device 48 for removing foreign matters such as molten slag mixed with pulverized coal.
In this example, a spouted bed gasification furnace is illustrated as the coal gasification furnace 14, but the present invention is not limited to this, and may be, for example, a fluidized bed gasification furnace or a fixed bed gasification furnace. The coal gasification furnace 14 is provided with a gas generation line 49 of the combustible gas 200 toward the char recovery device 15, and the combustible gas 200 including the char 101F can be discharged. In this case, a gas cooler is separately provided in the gas generation line 49 so that the combustible gas 200 is cooled to a predetermined temperature and then supplied to the char recovery device 15.
 チャー回収装置15は、集塵装置58とチャー供給ホッパ59とを有している。この場合、集塵装置58は、1つまたは複数のバグフィルタやサイクロンにより構成され、石炭ガス化炉14で生成された可燃性ガス200に含有するチャー101Fを分離することができる。そして、チャー101Fが分離された可燃性ガス200Aは、ガス排出ライン60を通してガス精製装置16に送られる。チャー供給ホッパ59は、集塵装置58で可燃性ガス200から分離されたチャー101Fを貯留するものである。なお、集塵装置58と供給ホッパ59との間にビンを配置し、このビンに複数のチャー供給ホッパ59を接続するように構成してもよい。そして、チャー供給ホッパ59からのチャー戻しライン46が第2窒素供給ライン45に接続されている。 The char collection device 15 has a dust collector 58 and a char supply hopper 59. In this case, the dust collector 58 is constituted by one or a plurality of bag filters or cyclones, and can separate the char 101F contained in the combustible gas 200 generated in the coal gasification furnace 14. The combustible gas 200 </ b> A from which the char 101 </ b> F has been separated is sent to the gas purification device 16 through the gas discharge line 60. The char supply hopper 59 stores the char 101F separated from the combustible gas 200 by the dust collector 58. A bin may be disposed between the dust collector 58 and the supply hopper 59, and a plurality of char supply hoppers 59 may be connected to the bin. A char return line 46 from the char supply hopper 59 is connected to the second nitrogen supply line 45.
 ガス精製装置16は、チャー回収装置15によりチャー101Fが分離された可燃性ガス200Aに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製装置16は、チャー101Fが分離された可燃性ガス200Aを精製して燃料ガス200Bを製造し、これをガスタービン設備17に供給する。なお、このガス精製装置16では、チャー101Fが分離された可燃性ガス200A中にはまだ硫黄分(HS)が含まれているため、例えばアミン吸収液等によって除去することで、硫黄分を最終的には石膏として回収し、有効利用する。 The gas purification device 16 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds from the combustible gas 200A from which the char 101F has been separated by the char recovery device 15. Then, the gas purifier 16 purifies the combustible gas 200A from which the char 101F is separated to produce the fuel gas 200B, and supplies this to the gas turbine equipment 17. In this gas purifier 16, since the combustible gas 200A from which the char 101F has been separated still contains sulfur (H 2 S), for example, by removing it with an amine absorbent or the like, the sulfur content Is finally collected as gypsum and used effectively.
 ガスタービン設備17は、圧縮機61、燃焼器62、タービン63を有しており、圧縮機61とタービン63は、回転軸64により連結されている。燃焼器62は、圧縮機61から圧縮空気供給ライン65が接続されると共に、ガス精製装置16から燃料ガス供給ライン66が接続され、タービン63に燃焼ガス供給ライン67が接続されている。また、ガスタービン設備17は、圧縮機61から石炭ガス化炉14に延びる圧縮空気供給ライン41が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気40Aとガス精製装置16から供給された燃料ガス200Bとを混合して燃焼し、タービン63にて、発生した燃焼ガス202により回転軸64を回転することで発電機19を駆動することができる。 The gas turbine equipment 17 includes a compressor 61, a combustor 62, and a turbine 63, and the compressor 61 and the turbine 63 are connected by a rotating shaft 64. The combustor 62 has a compressed air supply line 65 connected to the compressor 61, a fuel gas supply line 66 connected to the gas purifier 16, and a combustion gas supply line 67 connected to the turbine 63. Further, the gas turbine equipment 17 is provided with a compressed air supply line 41 extending from the compressor 61 to the coal gasification furnace 14, and a booster 68 is provided in the middle. Therefore, in the combustor 62, the compressed air 40 </ b> A supplied from the compressor 61 and the fuel gas 200 </ b> B supplied from the gas purification device 16 are mixed and burned, and the rotating shaft is generated by the generated combustion gas 202 in the turbine 63. The generator 19 can be driven by rotating 64.
 蒸気タービン設備18は、ガスタービン設備17における回転軸64に連結されるタービン69を有しており、発電機19は、この回転軸64の基端部に連結されている。排熱回収ボイラ20は、ガスタービン設備17(タービン63)からの排ガスライン70に設けられており、空気40と高温の排ガス203との間で熱交換を行うことで、蒸気204を生成するものである。そのため、排熱回収ボイラ20は、蒸気タービン設備18のタービン69との間に蒸気204を供給する蒸気供給ライン71が設けられると共に、蒸気回収ライン72が設けられ、蒸気回収ライン72に復水器73が設けられている。従って、蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気204によりタービン69が駆動し、回転軸64を回転することで発電機19を駆動することができる。 The steam turbine facility 18 has a turbine 69 connected to the rotating shaft 64 in the gas turbine facility 17, and the generator 19 is connected to the base end portion of the rotating shaft 64. The exhaust heat recovery boiler 20 is provided in the exhaust gas line 70 from the gas turbine equipment 17 (the turbine 63), and generates steam 204 by exchanging heat between the air 40 and the high temperature exhaust gas 203. It is. Therefore, the exhaust heat recovery boiler 20 is provided with a steam supply line 71 for supplying the steam 204 to and from the turbine 69 of the steam turbine equipment 18, a steam recovery line 72 is provided, and the steam recovery line 72 has a condenser. 73 is provided. Therefore, in the steam turbine equipment 18, the turbine 69 is driven by the steam 204 supplied from the exhaust heat recovery boiler 20, and the generator 19 can be driven by rotating the rotating shaft 64.
 そして、排熱回収ボイラ20で熱が回収された排ガス205は、ガス浄化装置74により有害物質を除去され、浄化された排ガス205Aは、煙突75から大気へ放出される。 Then, the exhaust gas 205 whose heat has been recovered by the exhaust heat recovery boiler 20 has harmful substances removed by the gas purification device 74, and the purified exhaust gas 205A is discharged from the chimney 75 to the atmosphere.
 ここで、実施例3の石炭ガス化複合発電設備10の作動について説明する。 Here, the operation of the coal gasification combined cycle facility 10 of the third embodiment will be described.
 実施例3の石炭ガス化複合発電設備10において、低品位炭供給設備11にて、原料炭101である石炭が原炭流動層バンカ50で原炭微粒101Aと原炭粗粒101Bとに分離する。分離された原炭粗粒101Bが粉砕機56に供給され、ここで所定の大きさに破砕される。そして、破砕された粉砕石炭101Cは、流動層乾燥装置102により加熱乾燥され、この乾燥炭101Dを乾燥炭排出ライン123より抜き出した後、冷却機110により冷却されて冷却済の微粒の乾燥炭101Eとされ、乾燥炭バンカ34に貯留される。 In the combined coal gasification combined power generation facility 10 of the third embodiment, the coal as the raw coal 101 is separated into the raw coal fine particles 101A and the raw coal coarse particles 101B by the raw coal fluidized bed bunker 50 in the low-grade coal supply facility 11. . The separated raw coal coarse particles 101B are supplied to the pulverizer 56 where they are crushed to a predetermined size. Then, the crushed pulverized coal 101C is heated and dried by the fluidized bed drying apparatus 102, and after this dry coal 101D is extracted from the dry coal discharge line 123, the pulverized coal 101C is cooled by the cooler 110 and cooled to dry fine coal 101E. And stored in the dry coal bunker 34.
 乾燥炭バンカ34に貯留された冷却済みの乾燥炭101Eは、空気分離装置42から供給される窒素により乾燥炭排出ライン123を通して石炭ガス化炉14に供給される。また、後述するチャー回収装置15で回収されたチャー101Fが、空気分離装置42から供給される窒素によりチャー戻しライン46を通して石炭ガス化炉14に供給される。更に、後述するガスタービン設備17から抽気された圧縮空気37が昇圧機68で昇圧された後、空気分離装置42から供給される酸素と共に圧縮空気供給ライン41を通して石炭ガス化炉14に供給される。 The cooled dry coal 101E stored in the dry coal bunker 34 is supplied to the coal gasifier 14 through the dry coal discharge line 123 by nitrogen supplied from the air separation device 42. Further, the char 101F recovered by the char recovery device 15 described later is supplied to the coal gasifier 14 through the char return line 46 by nitrogen supplied from the air separation device 42. Further, compressed air 37 extracted from a gas turbine facility 17 to be described later is pressurized by a booster 68 and then supplied to the coal gasifier 14 through the compressed air supply line 41 together with oxygen supplied from the air separation device 42. .
 石炭ガス化炉14では、供給された乾燥炭101E及びチャー101Fが圧縮空気(酸素)37により燃焼し、乾燥炭101Eびチャー101Fがガス化することで、一酸化炭素を主成分とする可燃性ガス(石炭ガス)200を生成することができる。そして、この可燃性ガス200は、石炭ガス化炉14からガス生成ライン49を通して排出され、チャー回収装置15に送られる。 In the coal gasification furnace 14, the supplied dry charcoal 101E and char 101F are combusted by compressed air (oxygen) 37, and the dry charcoal 101E and char 101F are gasified, so that combustibility is mainly composed of carbon monoxide. A gas (coal gas) 200 can be generated. The combustible gas 200 is discharged from the coal gasifier 14 through the gas generation line 49 and sent to the char recovery device 15.
 このチャー回収装置15にて、可燃性ガス200は、まず、集塵装置58に供給されることで、ここで可燃性ガス200に含有するチャー101Fが分離される。そして、チャー101Fが分離された可燃性ガス200Aは、ガス排出ライン60を通してガス精製装置16に送られる。一方、可燃性ガス200から分離した微粒のチャー101Fは、チャー供給ホッパ59に堆積され、チャー戻しライン46を通して石炭ガス化炉14に戻されてリサイクルされる。 In the char recovery device 15, the combustible gas 200 is first supplied to the dust collector 58, whereby the char 101F contained in the combustible gas 200 is separated here. The combustible gas 200 </ b> A from which the char 101 </ b> F has been separated is sent to the gas purification device 16 through the gas discharge line 60. On the other hand, the fine char 101F separated from the combustible gas 200 is deposited on the char supply hopper 59, returned to the coal gasifier 14 through the char return line 46, and recycled.
 チャー回収装置15によりチャー101Fが分離された可燃性ガス200Aは、ガス精製装置16にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガス200Bが製造される。そして、ガスタービン設備17では、圧縮機61が圧縮空気40Aを生成して燃焼器62に供給すると、この燃焼器62は、圧縮機61から供給される圧縮空気40Aと、ガス精製装置16から供給される燃料ガス200Bとを混合し、燃焼することで燃焼ガス202を生成し、この燃焼ガス202によりタービン63を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。 The combustible gas 200A from which the char 101F has been separated by the char recovery device 15 is subjected to gas purification by removing impurities such as sulfur compounds and nitrogen compounds in the gas purification device 16 to produce a fuel gas 200B. In the gas turbine equipment 17, when the compressor 61 generates the compressed air 40 </ b> A and supplies it to the combustor 62, the combustor 62 is supplied from the compressed air 40 </ b> A supplied from the compressor 61 and the gas purification device 16. The fuel gas 200B is mixed and burned to generate a combustion gas 202. By driving the turbine 63 with the combustion gas 202, the generator 19 is driven via the rotating shaft 64 to generate power. be able to.
 そして、ガスタービン設備17におけるタービン63から排出された排ガス203は、排熱回収ボイラ20にて、空気40と熱交換を行うことで蒸気204を生成し、この生成した蒸気204を蒸気タービン設備18に供給する。蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気204によりタービン69を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。 The exhaust gas 203 discharged from the turbine 63 in the gas turbine equipment 17 generates heat 204 by exchanging heat with the air 40 in the exhaust heat recovery boiler 20, and the generated steam 204 is used as the steam turbine equipment 18. To supply. In the steam turbine facility 18, the turbine 69 is driven by the steam 204 supplied from the exhaust heat recovery boiler 20, whereby the generator 19 can be driven via the rotating shaft 64 to generate power.
 その後、ガス浄化装置74では、排熱回収ボイラ20から排出された排ガス205の有害物質が除去され、浄化された排ガス205Aが煙突75から大気へ放出される。 Thereafter, in the gas purification device 74, harmful substances of the exhaust gas 205 discharged from the exhaust heat recovery boiler 20 are removed, and the purified exhaust gas 205A is released from the chimney 75 to the atmosphere.
 なお、本実施例では、石炭原料として低品位炭を使用したが、高品位炭であっても適用可能であり、また、石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。 In this example, low-grade coal was used as a coal raw material, but even high-grade coal can be applied, and is not limited to coal, and can be used as a renewable bio-derived organic resource. Biomass may be used, and for example, thinned wood, waste wood, driftwood, grass, waste, sludge, tires, and recycled fuel (pellets and chips) using these as raw materials can be used.
 10 石炭ガス化複合発電設備
 11 低品位炭供給設備
 14 石炭ガス化炉
 15 チャー回収装置
 16 ガス精製装置
 17 ガスタービン設備
 18 蒸気タービン設備
 19 発電機
 20 排熱回収ボイラ
 50 原炭流動層バンカ
 100A、100B 流動層乾燥設備
 101 原料炭(低品位炭)
 101A 原炭微粒
 101B 原炭粗粒
 101C 粉砕炭
 102、102A、102B 流動層乾燥装置
 103 伝熱部材(加熱手段)
 104 発生蒸気
 110 冷却機
 A 乾燥用蒸気(過熱蒸気)
 B 凝縮水
DESCRIPTION OF SYMBOLS 10 Coal gasification combined cycle power generation facility 11 Low-grade coal supply facility 14 Coal gasification furnace 15 Char recovery device 16 Gas purification device 17 Gas turbine facility 18 Steam turbine facility 19 Generator 20 Waste heat recovery boiler 50 Raw coal fluidized bed bunker 100A, 100B Fluidized bed drying equipment 101 Coking coal (low grade coal)
101A Raw coal fine particles 101B Raw coal coarse particles 101C Crushed coal 102, 102A, 102B Fluidized bed dryer 103 Heat transfer member (heating means)
104 Generated steam 110 Cooling machine A Drying steam (superheated steam)
B Condensate

Claims (3)

  1.  乾燥室に流動化ガスを供給することで乾燥室に供給された低品位炭を流動させて乾燥させる流動層乾燥装置と、
     流動層乾燥装置の前流側に設けられ、低品位の原料炭を一時的に流動させつつ貯留する原炭流動層バンカと、
     前記原炭流動層バンカの上方側から原炭微粒を抜き出す、原炭微粒抜き出しラインと、
     前記原炭流動層バンカの下方側から原炭粗粒を抜き出す、原炭粗粒抜き出しラインと、
     前記原炭粗粒を粉砕する粉砕機と、
     粉砕した粉砕炭を乾燥室に供給する粉砕炭供給ラインとを具備することを特徴とする流動層乾燥設備。
    A fluidized bed drying device that flows and dries low-grade coal supplied to the drying chamber by supplying fluidized gas to the drying chamber;
    A raw coal fluidized bed bunker that is provided on the upstream side of the fluidized bed drying apparatus and temporarily stores low-grade coking coal,
    A raw coal fine particle extraction line for extracting raw coal fine particles from the upper side of the raw coal fluidized bed bunker;
    A raw coal coarse particle extraction line for extracting raw coal coarse particles from the lower side of the raw coal fluidized bed bunker;
    A crusher for crushing the raw coal coarse particles;
    A fluidized bed drying facility comprising a pulverized coal supply line for supplying pulverized pulverized coal to a drying chamber.
  2.  請求項1において、
     前記原炭流動層バンカの流動層内に仕切壁を形成すると共に、仕切壁から抜き出した原炭微粒を排出する原炭微粒抜き出しラインとを具備することを特徴とする流動層乾燥設備。
    In claim 1,
    A fluidized bed drying facility comprising: a partition wall formed in a fluidized bed of the raw coal fluidized bed bunker, and a raw coal fine particle extraction line for discharging raw coal fine particles extracted from the partition wall.
  3.  請求項1又は2の流動層乾燥設備と、
     前記流動層乾燥装置から供給される乾燥炭を処理してガス化ガスに変換する石炭ガス化炉と、
     前記ガス化ガスを燃料として運転されるガスタービン(GT)と、
     前記ガスタービンからのタービン排ガスを導入する排熱回収ボイラで生成した蒸気により運転される蒸気タービン(ST)と、
     前記ガスタービン及び/又は前記蒸気タービンと連結された発電機(G)とを具備することを特徴とする石炭を用いたガス化複合発電システム。
    Fluidized bed drying equipment according to claim 1 or 2,
    A coal gasification furnace that processes the dry coal supplied from the fluidized bed drying device and converts it into gasification gas;
    A gas turbine (GT) operated using the gasified gas as fuel;
    A steam turbine (ST) operated by steam generated by an exhaust heat recovery boiler for introducing turbine exhaust gas from the gas turbine;
    A gasification combined power generation system using coal, comprising the generator (G) connected to the gas turbine and / or the steam turbine.
PCT/JP2012/060994 2011-04-28 2012-04-24 Fluidized bed drying apparatus and integrated coal gasification combined cycle system WO2012147752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012248415A AU2012248415B2 (en) 2011-04-28 2012-04-24 Fluidized bed drying apparatus and integrated coal gasification combined cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011102270A JP2012233073A (en) 2011-04-28 2011-04-28 Fluidized bed drying facility, and gasification combined power generation system using coal
JP2011-102270 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147752A1 true WO2012147752A1 (en) 2012-11-01

Family

ID=47072270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060994 WO2012147752A1 (en) 2011-04-28 2012-04-24 Fluidized bed drying apparatus and integrated coal gasification combined cycle system

Country Status (3)

Country Link
JP (1) JP2012233073A (en)
AU (1) AU2012248415B2 (en)
WO (1) WO2012147752A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104726137A (en) * 2015-03-04 2015-06-24 湖南谷力新能源科技股份有限公司 High-utilization-ratio biomass gasification reactor
WO2016013293A1 (en) * 2014-07-23 2016-01-28 新日鉄住金エンジニアリング株式会社 Method for producing modified coal and device for producing modified coal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6162468B2 (en) * 2013-04-26 2017-07-12 三菱日立パワーシステムズ株式会社 Coal gasification system and coal gasification power generation system
CN103743198B (en) * 2013-12-31 2015-10-21 楚雄博杉科技有限公司 There is circulating fluidised bed apparatus that is dry and crushing function
US20200284508A1 (en) * 2017-09-13 2020-09-10 Reflex Instruments Asia Pacific Pty Ltd Batch sample preparation apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496410B1 (en) * 1970-08-24 1974-02-14
JPH04353226A (en) * 1991-05-30 1992-12-08 Mitsubishi Heavy Ind Ltd Coal burning type compound power generation equipment
JP2000296343A (en) * 1999-04-12 2000-10-24 Nippon Steel Corp Coal dryer
WO2009050939A1 (en) * 2007-10-16 2009-04-23 Kabushiki Kaisha Kobe Seiko Sho Indirect heating/drying system, indirect heating/drying method for matter to be dried, and production method and production device of solid fuel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3332669B2 (en) * 1995-06-20 2002-10-07 株式会社日立製作所 Programmable controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496410B1 (en) * 1970-08-24 1974-02-14
JPH04353226A (en) * 1991-05-30 1992-12-08 Mitsubishi Heavy Ind Ltd Coal burning type compound power generation equipment
JP2000296343A (en) * 1999-04-12 2000-10-24 Nippon Steel Corp Coal dryer
WO2009050939A1 (en) * 2007-10-16 2009-04-23 Kabushiki Kaisha Kobe Seiko Sho Indirect heating/drying system, indirect heating/drying method for matter to be dried, and production method and production device of solid fuel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013293A1 (en) * 2014-07-23 2016-01-28 新日鉄住金エンジニアリング株式会社 Method for producing modified coal and device for producing modified coal
JP2016023280A (en) * 2014-07-23 2016-02-08 新日鉄住金エンジニアリング株式会社 Method for producing modified coal and modified coal production device
AU2015293497B2 (en) * 2014-07-23 2017-08-03 Ns Plant Designing Corporation Method for producing reformed coal and facility for producing reformed coal
CN104726137A (en) * 2015-03-04 2015-06-24 湖南谷力新能源科技股份有限公司 High-utilization-ratio biomass gasification reactor

Also Published As

Publication number Publication date
AU2012248415A1 (en) 2013-08-01
AU2012248415B2 (en) 2015-06-18
JP2012233073A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2012147752A1 (en) Fluidized bed drying apparatus and integrated coal gasification combined cycle system
JP2014173789A (en) Low-grade coal drying facility and gasification hybrid power system
JP5851884B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
WO2012133549A1 (en) Wet material supplying facility and gasification composite power generation system using wet material
JP5896821B2 (en) Gasification combined cycle system using fluidized bed drying equipment and coal
JP5959879B2 (en) Drying system
JP5748559B2 (en) Fluidized bed dryer
JP2011214817A (en) Fluidized bed drying device and fluidized bed drying facility
JP2012214578A (en) Low-grade coal supplying facility and gasification composite power generation system using the low-grade coal
AU2012243826B2 (en) Fluidized bed drying apparatus
JP5922338B2 (en) Fluidized bed drying equipment and gasification combined cycle power generation system using fluidized bed drying equipment
JP2012241992A (en) Drying system
JP5812896B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP2013164182A (en) Fluidized bed drying facility, and integrated gasification combined cycle system
JP2013167378A (en) Fluidized bed drying equipment and gasification complex power generation system using coal
JP2014173790A (en) Low-grade coal drying facility and gasification hybrid power system
AU2013201075B2 (en) Fluid bed drying apparatus, gasification combined power generating facility, and drying method
JP5738037B2 (en) Fluidized bed dryer
JP2013178031A (en) Fluidized bed drying equipment, gasification combined power generation system, wastewater treatment method, and lifetime determination method for activated carbon adsorption layer
JP2012241120A (en) Gasification system
JP5851883B2 (en) Non-condensable gas exhaust system and gasification combined power generation facility
JP2012233634A (en) Fluidized bed drying apparatus, and gasification composite power generation system using coal
JP6008514B2 (en) Gas purification equipment for gasification gas
JP2012241990A (en) Fluidized bed drying device
JP2012233635A (en) Fluidized bed drying apparatus and gasification composite power generation system using coal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012248415

Country of ref document: AU

Date of ref document: 20120424

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777770

Country of ref document: EP

Kind code of ref document: A1