WO2012133549A1 - Wet material supplying facility and gasification composite power generation system using wet material - Google Patents

Wet material supplying facility and gasification composite power generation system using wet material Download PDF

Info

Publication number
WO2012133549A1
WO2012133549A1 PCT/JP2012/058178 JP2012058178W WO2012133549A1 WO 2012133549 A1 WO2012133549 A1 WO 2012133549A1 JP 2012058178 W JP2012058178 W JP 2012058178W WO 2012133549 A1 WO2012133549 A1 WO 2012133549A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
raw material
dry
wet
gas
Prior art date
Application number
PCT/JP2012/058178
Other languages
French (fr)
Japanese (ja)
Inventor
章悟 吉田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011079787A external-priority patent/JP2012214578A/en
Priority claimed from JP2011079788A external-priority patent/JP5922338B2/en
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to AU2012233514A priority Critical patent/AU2012233514A1/en
Publication of WO2012133549A1 publication Critical patent/WO2012133549A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/466Entrained flow processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/02Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
    • F26B3/06Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried
    • F26B3/08Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed
    • F26B3/084Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour flowing through the materials or objects to be dried so as to loosen them, e.g. to form a fluidised bed with heat exchange taking place in the fluidised bed, e.g. combined direct and indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1678Integration of gasification processes with another plant or parts within the plant with air separation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/002Removal of contaminants
    • C10K1/003Removal of contaminants of acid contaminants, e.g. acid gas removal
    • C10K1/004Sulfur containing contaminants, e.g. hydrogen sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/026Dust removal by centrifugal forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • Conventional coal gasification combined cycle power generation facilities generally include a coal feeding device, a drying device, a coal gasification furnace, a gas purification device, a gas turbine equipment, a steam turbine equipment, an exhaust heat recovery boiler, a gas purification device, etc. ing. Therefore, the coal is dried and then crushed, and supplied as pulverized coal to the coal gasification furnace, and air is taken in, and the coal is burned and gasified in this coal gasification furnace to form product gas (flammable Gas) is produced. Then, the product gas is gas-refined and then supplied to the gas turbine equipment to burn it and generate high-temperature and high-pressure combustion gas to drive the turbine.
  • flammable Gas product gas
  • the exhaust gas After driving the turbine, the exhaust gas is recovered by the waste heat recovery boiler to generate thermal energy, which is supplied to steam turbine equipment to drive the turbine. This generates power. On the other hand, exhaust gas from which thermal energy has been recovered is released to the atmosphere through a chimney after the harmful substance is removed by the gas purification device.
  • high-grade coal high-grade coal
  • bituminous coal and anthracite coal high-grade coal
  • this low grade coal has a high moisture content (for example, about 60 %)
  • the amount of water carried in is large, and the power generation efficiency is lowered due to this water content.
  • low grade coal low grade coal is dried by the above-mentioned drying apparatus to remove water, and further crushed.
  • crushing by a mill and supplying to a gasification furnace there are problems that the number of equipment is large, the system becomes complicated, and the equipment cost becomes high.
  • a fifth aspect of the invention is the wet raw material supply system according to any one of the first to fourth aspects, wherein the empty velocity in the gasification furnace is an empty velocity at which the dried dry material does not fall. In the equipment.
  • a coarse-grained dry raw material for discharging the coarse-grained dry raw material from the vicinity of the bottom of the fluidized bed on the side different from the fine-grain-dried raw material discharge line for discharging the dry raw material for fine grains dried by heating I was provided with a line out, and a wet raw material supply equipment and supplying the fine dry ingredients discharged from fine dry ingredients discharge line to the dry material feed gasifier side by the line.
  • a wet raw material supply line comprising: In the equipment.
  • FIG. 1 is a schematic configuration diagram of a combined gasification combined cycle power generation system using low grade coal having a low grade coal supply facility according to a first embodiment.
  • FIG. 2 is a schematic view of a low grade coal supply facility according to a first embodiment.
  • FIG. 3 is a schematic configuration diagram of a combined gasification combined cycle power generation system using low grade coal having a low grade coal supply facility according to a second embodiment.
  • FIG. 4 is a schematic view of a low grade coal supply facility according to a third embodiment.
  • FIG. 5 is a schematic view of a low grade coal supply facility according to a fourth embodiment.
  • FIG. 6 is a diagram showing the relationship between various coals and the HGI index.
  • FIG. 7 is a view showing an example of the particle size distribution of dry coal.
  • the coal gasification combined cycle power generation facility 10A includes a low grade coal supply facility 11 (11A, 11B, 11C) for supplying low grade coal 101, which is raw material coal, and low grade coal.
  • a fluidized bed drying apparatus 12 for drying 101 a coal gasification furnace 14 for supplying dried low grade coal (dry coal) 101B to gasify and generating combustible gas (produced gas, coal gas) 200, and gasified gas ,
  • a char recovery device 15 for recovering the char 101C in the combustible gas (product gas, coal gas) 200
  • a gas purification device 16 for purifying the combustible gas (product gas, coal gas) 200A
  • a purified fuel A gas turbine equipment 17 for burning a gas 200B to drive a turbine, and an exhaust heat recovery boiler (Heat Recover for introducing turbine exhaust gas from the gas turbine equipment 17)
  • the dried and cooled dried coal 101 B dried in the fluidized bed drying device 12 and then cooled is then stored in the temporarily dried coal bunker 34 via the bag filter 32 and the bottle system 33.
  • the compressed air supply line 41 is connected from the gas turbine equipment 17 (compressor 61), and compressed air compressed by the gas turbine equipment 17 can be supplied.
  • the air separation device 42 separates and generates nitrogen (N 2 ) and oxygen (O 2 ) from the air 40 in the atmosphere, and the first nitrogen supply line 43 is connected to the coal gasifier 14, and The nitrogen supply line 43 is connected to the dry charcoal supply line 35.
  • the second nitrogen supply line 45 is also connected to the coal gasifier 14, and the second nitrogen supply line 45 is connected to the char return line 46 for returning the char 101 C recovered from the char recovery device 15.
  • the oxygen supply line 47 is connected to the compressed air supply line 41.
  • nitrogen (N 2 ) is used as a carrier gas for the dried carbon 101 B and the char 101 C
  • oxygen (O 2 ) is used as an oxidant.
  • the char recovery device 15 has a dust collector 51 and a char feeding hopper 52.
  • the dust collection device 51 is configured of one or more bag filters or cyclones, and can separate the char 101C contained in the flammable gas 200 generated by the coal gasifier 14. Then, the combustible gas 200A from which the char 101C is separated is sent to the gas purification device 16 through the gas discharge line 53.
  • the char supply hopper 52 stores the char 101C separated from the combustible gas 200 by the dust collection device 51.
  • a bin may be disposed between the dust collector 51 and the char feeding hopper 52, and a plurality of feeding hoppers 52 may be connected to the bin.
  • the char return line 46 from the supply hopper 52 is connected to the second nitrogen supply line 45.
  • the compressed air 40A supplied from the compressor 61 and the fuel gas 200B supplied from the gas purification device 16 are mixed and burned, and the turbine 63 generates a rotation shaft by the generated combustion gas 202. By rotating 64, the generator 19 can be driven.
  • the exhaust gas 205 whose heat has been recovered by the exhaust heat recovery boiler 20 is freed of harmful substances by the gas purification device 74, and the purified exhaust gas 205A is released from the chimney 75 to the atmosphere.
  • the combustible gas 200 is first supplied to the dust collector 51, whereby the char 101C contained in the combustible gas 200 is separated. Then, the combustible gas 200A from which the char 101C is separated is sent to the gas purification device 16 through the gas discharge line 53. On the other hand, the fine particle char 101C separated from the flammable gas 200 is deposited in the feed hopper 52, is returned to the coal gasifier 14 through the char return line 46, and is recycled.
  • a heat transfer member provided in the drying device 12 and the fluidized bed drying device 12 and supplying superheated steam (for example, steam at 150 ° C.) A to the inside of the tube to remove moisture in the pulverized low grade coal 101A ),
  • a dust collector 30 such as a cyclone for removing dust in the generated steam 104, and a heat recovery system for recovering the heat of the generated steam 104 interposed downstream of the dust collector 30 in the generated steam line 29 06, in which and a cooler 31 for cooling the dried coal 101B withdrawn from the fluidized bed dryer 12.
  • symbol 116 illustrates the straightening vane which rectifies
  • a part of the generated steam 104 collected by the dust collection device 30 is sent into the fluidized bed drying device 12 by, for example, the circulation fan 109 interposed in the branch line 108, and the pulverized low-grade coal 101A Is used as fluidizing steam 107 that causes the fluid bed 111 to flow.
  • the present invention is not limited to this, for example, nitrogen, carbon dioxide or low oxygen concentration containing these gases Air may be used.
  • the drying and low-level operation is performed without installing the pulverized coal machine used in high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite which are supplied to conventional gasifiers. Since the graded coal 101B is supplied as it is to the gasification furnace 14, equipment of the pulverizer and its utility cost can be reduced.
  • the type of coal is not particularly limited, and high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite coal, such as high moisture content such as subbituminous coal and brown coal
  • high-grade coal high-grade coal
  • bituminous coal and anthracite coal such as high moisture content such as subbituminous coal and brown coal
  • low grade coal low grade coal or high moisture coal
  • low grade coal low grade coal or high moisture coal
  • the fine particles 101B F discharged from the fine particle dried carbon discharge line 121 are cooled by the cooler 31 and only the cooled dried coal (fine particles) 101B F is supplied through the dry carbon supply line 35.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Drying Of Solid Materials (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention comprises: a pulverizer (23) for pulverizing low-grade coal (101) supplied from a raw coal banker (21); a fluidized-bed dryer (12) for drying pulverized low-grade coal (101A) which has been pulverized; and a dried coal supplying line (35) for supplying dried coal (101B), which has been dried by the fluidized-bed dryer (12), to a coal gasification furnace (14), whereby the dried and pulverized low-grade coal is supplied at a high efficiency to a gasification system which performs gasification. This makes it possible to achieve gasification by merely coarsely pulverizing and drying the low-grade coal, without using a coal powdering machine for powdering as in the prior art, whereby the device and utility cost can be reduced significantly.

Description

湿潤原料供給設備及び湿潤原料を用いたガス化複合発電システムCombined gasification combined cycle system using wet raw material supply facility and wet raw material
 本発明は、低品位炭等の湿潤原料をガス化するガス化システムに高効率で供給することができる湿潤原料供給設備及び湿潤原料を用いたガス化複合発電システムに関するものである。 The present invention relates to a wet raw material supply facility capable of efficiently supplying a gasification system for gasifying a wet raw material such as low grade coal and a gasification combined power generation system using the wet raw material.
 例えば、石炭ガス化複合発電設備は、石炭をガス化し、コンバインドサイクル発電と組み合わせることにより、従来型の石炭火力に比べてさらなる高効率化・高環境性を目指した発電設備である。この石炭ガス化複合発電設備は、資源量が豊富な石炭を利用可能であることも大きなメリットであり、適用炭種を拡大することにより、さらにメリットが大きくなることが知られている。 For example, a coal gasification combined cycle power generation facility is a power generation facility aiming at higher efficiency and higher environmental performance than conventional coal thermal power by gasifying coal and combining it with combined cycle power generation. This coal gasification combined cycle power generation facility is also a great advantage to be able to use coal rich in resource amount, and it is known that the merit will be further increased by expanding the type of applied coal.
 従来の石炭ガス化複合発電設備は、一般的に、給炭装置、乾燥装置、石炭ガス化炉、ガス精製装置、ガスタービン設備、蒸気タービン設備、排熱回収ボイラ、ガス浄化装置などを有している。従って、石炭が乾燥されてから粉砕され、石炭ガス化炉に対して、微粉炭として供給されると共に、空気が取り込まれ、この石炭ガス化炉で石炭が燃焼ガス化されて生成ガス(可燃性ガス)が生成される。そして、この生成ガスがガス精製されてからガスタービン設備に供給されることで燃焼して高温・高圧の燃焼ガスを生成し、タービンを駆動する。タービンを駆動した後の排気ガスは、排熱回収ボイラで熱エネルギが回収され、蒸気を生成して蒸気タービン設備に供給され、タービンを駆動する。これにより発電が行なわれる。一方、熱エネルギが回収された排気ガスは、ガス浄化装置で有害物質が除去された後、煙突を介して大気へ放出される。 Conventional coal gasification combined cycle power generation facilities generally include a coal feeding device, a drying device, a coal gasification furnace, a gas purification device, a gas turbine equipment, a steam turbine equipment, an exhaust heat recovery boiler, a gas purification device, etc. ing. Therefore, the coal is dried and then crushed, and supplied as pulverized coal to the coal gasification furnace, and air is taken in, and the coal is burned and gasified in this coal gasification furnace to form product gas (flammable Gas) is produced. Then, the product gas is gas-refined and then supplied to the gas turbine equipment to burn it and generate high-temperature and high-pressure combustion gas to drive the turbine. After driving the turbine, the exhaust gas is recovered by the waste heat recovery boiler to generate thermal energy, which is supplied to steam turbine equipment to drive the turbine. This generates power. On the other hand, exhaust gas from which thermal energy has been recovered is released to the atmosphere through a chimney after the harmful substance is removed by the gas purification device.
 前記石炭ガス化複合発電システム(IGCC)に供給する石炭は、ガス化炉内での反応性や気流搬送の観点より、微粉化する必要があり、微粉炭機として石炭ミルが用いられている。このため、原料として供給される石炭は、先ずクラッシャにより粗粉砕され、その後、乾燥機で乾燥された後、乾燥炭バンカで貯留される。次いで、石炭供給機により、石炭ミルに供給され、そこで粉砕・乾燥され、微粉炭とされ、その後、搬送ガスより搬送されてガス化炉に供給されている(特許文献1)。 The coal to be supplied to the integrated coal gasification combined cycle power generation system (IGCC) needs to be pulverized from the viewpoint of reactivity and gas flow in the gasification furnace, and a coal mill is used as a pulverized coal machine. For this reason, the coal supplied as a raw material is first roughly crushed by a crusher, and then dried by a drier and then stored by a dry coal bunker. Then, it is supplied to a coal mill by a coal feeder, pulverized and dried there to be pulverized coal, and then transported from a carrier gas and supplied to a gasification furnace (Patent Document 1).
特開平7-279621号公報Japanese Patent Application Laid-Open No. 7-279621
 ところで、近年においては、瀝青炭や無煙炭のように高い発熱量を有する高品位の石炭(高品位炭)以外に、例えば亜瀝青炭や褐炭のように水分含有量が多く比較的低い発熱量を有する低品位の石炭(「低品位炭」又は「高水分炭」ともいう。)を用いて、ガス化することが提案されているが、この低品位炭は、水分含有量が多い(例えば水分約60%)ので、持ち込まれる水分量が多く、この水分により発電効率が低下してしまうので、低品位炭の場合には、上述した乾燥装置により低品位炭を乾燥して水分を除去し、さらに粉砕ミルにより粉砕してガス化炉に供給する場合には、機器点数が多く、システムが複雑となると共に、機器コストが高くなるという、問題がある。 By the way, in recent years, in addition to high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite coal, for example, it has a relatively low calorific value such as subbituminous coal and brown coal which has a large moisture content It is proposed to gasify using high grade coal (also referred to as "low grade coal" or "high moisture coal"), but this low grade coal has a high moisture content (for example, about 60 %), The amount of water carried in is large, and the power generation efficiency is lowered due to this water content. In the case of low grade coal, low grade coal is dried by the above-mentioned drying apparatus to remove water, and further crushed. In the case of crushing by a mill and supplying to a gasification furnace, there are problems that the number of equipment is large, the system becomes complicated, and the equipment cost becomes high.
 よって、低品位炭をガス化するガス化システムに高効率で供給することができ、コストの削減を図ることができる低品位炭供給設備の出現が切望されている。 Therefore, there is a strong demand for the appearance of low-grade coal supply equipment that can be supplied with high efficiency to a gasification system that gasifies low-grade coal and can reduce costs.
 本発明は、前記問題に鑑み、低品位炭をガス化するガス化システムに高効率で供給することができる湿潤原料供給設備及び湿潤原料を用いたガス化複合発電システムを提供することを課題とする。 In view of the above problems, it is an object of the present invention to provide a wet raw material supply facility capable of efficiently supplying a gasification system for gasifying low grade coal with high efficiency and a gasification combined power generation system using the wet raw material. Do.
 上述した課題を解決するための本発明の第1の発明は、原料供給手段により供給された湿潤原料を粉砕する粉砕機と、粉砕された前記湿潤原料を乾燥する乾燥装置と、前記乾燥装置で乾燥された乾燥原料をガス化炉に供給する乾燥原料供給ラインと、を具備することを特徴とする湿潤原料供給設備にある。 According to a first aspect of the present invention for solving the above-mentioned problems, there are provided a crusher for grinding a wet raw material supplied by a raw material supply means, a drying device for drying the crushed wet raw material, and the drying device. And a dry raw material supply line for supplying dried dry raw material to the gasification furnace.
 第2の発明は、第1の発明において、前記乾燥装置で乾燥され、分離された微粒をガス化炉に供給する乾燥原料供給ラインを有することを特徴とする湿潤原料供給設備にある。 According to a second aspect of the present invention, there is provided a wet raw material supply facility including a dry raw material supply line for supplying fine particles dried and separated by the drying device to the gasification furnace according to the first aspect of the invention.
 第3の発明は、第1又は2の発明において、前記乾燥装置で乾燥された粗粒を燃焼させる燃焼炉を有することを特徴とする湿潤原料供給設備にある。 A third aspect of the present invention is the wet raw material supply facility according to the first or second aspect, further comprising a combustion furnace for burning the coarse particles dried by the drying device.
 第4の発明は、第1乃至3のいずれか一つの発明において、前記乾燥装置で乾燥された粗粒を、前記粉砕機の上流側又は乾燥装置の入口のいずれか一方又は両方に供給する再循環ラインを有することを特徴とする湿潤原料供給設備にある。 In a fourth invention according to any one of the first to third inventions, the coarse particles dried by the dryer are supplied to one or both of the upstream side of the crusher and the inlet of the dryer. It is a wet raw material supply facility characterized by having a circulation line.
 第5の発明は、第1乃至4のいずれか一つの発明において、前記ガス化炉内の空塔速度は、乾燥された乾燥原料が落下しない空塔速度であることを特徴とする湿潤原料供給設備にある。 A fifth aspect of the invention is the wet raw material supply system according to any one of the first to fourth aspects, wherein the empty velocity in the gasification furnace is an empty velocity at which the dried dry material does not fall. In the equipment.
 第6の発明は、第1の発明において、前記乾燥装置が、湿潤原料を乾燥する流動層乾燥室を有する流動層乾燥装置であり、該流動層乾燥装置の一端側に、前記粉砕機から粉砕された湿潤原料を投入する湿潤原料投入ラインと、前記流動層乾燥室の下部に流動化ガスを供給することで湿潤原料と共に流動層を形成する流動化ガス供給ラインと、前記流動層乾燥装置の上方から流動化ガス及び発生蒸気を排出するガス排出ラインと、前記流動層内に供給された粉砕された湿潤原料を加熱する加熱部と、前記湿潤原料投入ラインと異なる側の流動層の上部近傍から加熱乾燥した微粒の乾燥原料を排出する微粒乾燥原料排出ラインと、前記湿潤原料投入ラインと異なる側の流動層の底部近傍から加熱乾燥した粗粒の乾燥原料を排出する粗粒乾燥原料排出ラインと、を具備してなり、微粒乾燥原料排出ラインから排出される微粒の乾燥原料を前記乾燥原料供給ラインによりガス化炉側に供給することを特徴とする湿潤原料供給設備にある。 6th invention is 1st invention, The said drying apparatus is a fluid bed drying apparatus which has a fluid bed drying chamber which dries a wet raw material, It grind | pulverizes from the said grinder to the one end side of this fluid bed drying apparatus. And a fluidizing gas feed line for forming a fluid bed with the wet material by feeding the fluidizing gas to the lower part of the fluid bed drying chamber; A gas discharge line for discharging fluidizing gas and generated steam from above, a heating unit for heating the pulverized wet material supplied in the fluid bed, and the vicinity of the upper part of the fluid bed on the side different from the wet material feed line. And a coarse-grained dry raw material for discharging the coarse-grained dry raw material from the vicinity of the bottom of the fluidized bed on the side different from the fine-grain-dried raw material discharge line for discharging the dry raw material for fine grains dried by heating I was provided with a line out, and a wet raw material supply equipment and supplying the fine dry ingredients discharged from fine dry ingredients discharge line to the dry material feed gasifier side by the line.
 第7の発明は、第6の発明において、分離した粗粒の乾燥原料を前記湿潤原料投入ライン近傍から流動層乾燥室内に供給する粗粒乾燥原料循環ラインを有することを特徴とする湿潤原料供給設備にある。 According to a seventh aspect of the present invention, there is provided a wet raw material supply line according to the sixth aspect, comprising: In the equipment.
 第8の発明は、第1乃至7のいずれか一つの湿潤原料供給設備と、湿潤原料供給設備から供給される乾燥された乾燥原料を処理してガス化ガスに変換するガス化炉と、前記ガス化ガスを燃料として運転されるガスタービン(GT)と、前記ガスタービンからのタービン排ガスを導入する排熱回収ボイラで生成した蒸気により運転される蒸気タービン(ST)と、前記ガスタービン及び/又は前記蒸気タービンと連結された発電機(G)とを具備することを特徴とする湿潤原料を用いたガス化複合発電システムにある。 An eighth aspect of the invention is a wet raw material supply facility according to any one of the first to seventh aspects, a gasification furnace for processing the dried dry raw material supplied from the wet raw material supply facility and converting it into gasification gas, A gas turbine (GT) operated with gasification gas as fuel, a steam turbine (ST) operated with steam generated by an exhaust heat recovery boiler for introducing turbine exhaust gas from the gas turbine, the gas turbine and / or Alternatively, the present invention provides a gasification combined power generation system using a wet raw material, comprising: a generator (G) connected to the steam turbine.
 本発明の湿潤原料供給設備によれば、従来のような微粉化の微粉炭機を用いることなく、湿潤原料を乾燥することだけでガス化することが可能となり、機器及びユーティリティコストを大幅に低減することができる。 According to the wet raw material supply facility of the present invention, it becomes possible to gasify only by drying the wet raw material without using the pulverized coal machine as in the prior art, and the equipment and utility costs are significantly reduced. can do.
図1は、実施例1に係る低品位炭供給設備を有する低品位炭を用いたガス化複合発電システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a combined gasification combined cycle power generation system using low grade coal having a low grade coal supply facility according to a first embodiment. 図2は、実施例1に係る低品位炭供給設備の概略図である。FIG. 2 is a schematic view of a low grade coal supply facility according to a first embodiment. 図3は、実施例2に係る低品位炭供給設備を有する低品位炭を用いたガス化複合発電システムの概略構成図である。FIG. 3 is a schematic configuration diagram of a combined gasification combined cycle power generation system using low grade coal having a low grade coal supply facility according to a second embodiment. 図4は、実施例3に係る低品位炭供給設備の概略図である。FIG. 4 is a schematic view of a low grade coal supply facility according to a third embodiment. 図5は、実施例4に係る低品位炭供給設備の概略図である。FIG. 5 is a schematic view of a low grade coal supply facility according to a fourth embodiment. 図6は、各種石炭に対するHGI指数との関係を示す図である。FIG. 6 is a diagram showing the relationship between various coals and the HGI index. 図7は、乾燥炭の粒径分布の一例を示す図である。FIG. 7 is a view showing an example of the particle size distribution of dry coal.
 以下に添付図面を参照して、本発明に係る低品位炭供給設備の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of a low grade coal supply facility according to the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the embodiments, and in the case where there are a plurality of embodiments, the present invention also includes those configured by combining the respective embodiments.
 図1は、実施例1に係る低品位炭供給設備を有する低品位炭を用いたガス化複合発電システムの概略構成図である。 FIG. 1 is a schematic configuration diagram of a combined gasification combined cycle power generation system using low grade coal having a low grade coal supply facility according to a first embodiment.
 実施例1の低品位炭を用いたガス化複合発電システム(IGCC:Integrated Coal Gasification Combined Cycle)は、空気を酸化剤としてガス化炉で石炭ガスを生成する空気燃焼方式を採用し、ガス精製装置で精製した後の石炭ガスを燃料ガスとしてガスタービン設備に供給して発電を行っている。即ち、本実施例の石炭ガス化複合発電設備は、空気燃焼方式(空気吹き)の発電設備である。本実施例では、ガス化炉に供給する湿潤原料として例えば低品位炭を使用している。 The integrated coal gasification combined cycle (IGCC) using low-grade coal of Example 1 adopts an air combustion system in which coal gas is generated in a gasification furnace using air as an oxidant, and a gas purification apparatus The coal gas purified by the above is supplied as a fuel gas to a gas turbine facility to generate electricity. That is, the integrated coal gasification combined cycle power generation facility of the present embodiment is an air combustion type (air blowing) power generation facility. In the present embodiment, low-grade coal, for example, is used as the wet raw material supplied to the gasification furnace.
 実施例1において、図1に示すように、石炭ガス化複合発電設備10Aは、原料炭である低品位炭101を供給する低品位炭供給設備11(11A、11B、11C)と、低品位炭101を乾燥する流動層乾燥装置12と、乾燥低品位炭(乾燥炭)101Bを供給してガス化し可燃性ガス(生成ガス、石炭ガス)200を生成する石炭ガス化炉14と、ガス化ガスである可燃性ガス(生成ガス、石炭ガス)200中のチャー101Cを回収するチャー回収装置15と、可燃性ガス(生成ガス、石炭ガス)200Aを精製するガス精製装置16と、精製された燃料ガス200Bを燃焼させてタービンを駆動するガスタービン設備17と、前記ガスタービン設備17からのタービン排ガスを導入する排熱回収ボイラ(Heat Recovery Steam Generator:HRSG)20で生成した蒸気により運転される蒸気タービン(ST)設備18と、前記ガスタービン設備17及び/又は前記蒸気タービン設備18と連結された発電機(G)19とを具備している。 In Example 1, as shown in FIG. 1, the coal gasification combined cycle power generation facility 10A includes a low grade coal supply facility 11 (11A, 11B, 11C) for supplying low grade coal 101, which is raw material coal, and low grade coal. A fluidized bed drying apparatus 12 for drying 101, a coal gasification furnace 14 for supplying dried low grade coal (dry coal) 101B to gasify and generating combustible gas (produced gas, coal gas) 200, and gasified gas , A char recovery device 15 for recovering the char 101C in the combustible gas (product gas, coal gas) 200, a gas purification device 16 for purifying the combustible gas (product gas, coal gas) 200A, and a purified fuel A gas turbine equipment 17 for burning a gas 200B to drive a turbine, and an exhaust heat recovery boiler (Heat Recover for introducing turbine exhaust gas from the gas turbine equipment 17) Steam generator (ST) facility 18 operated by the steam generated by HRSG) 20 and a generator (G) 19 connected to the gas turbine facility 17 and / or the steam turbine facility 18 ing.
 本実施例に係る低品位炭供給設備11は、原炭バンカ21と、石炭供給機22と、粉砕機23とを有している。原炭バンカ21は、低品位炭101を貯留可能であって、所定量の低品位炭101を石炭供給機22に投下することができる。石炭供給機22は、原炭バンカ21から投下された低品位炭101を例えばコンベアなどにより搬送し、粉砕機23に投下することができる。この粉砕機23は、投下された低品位炭101を所定の大きさに破砕し、粉砕低品位炭(粉砕炭)101Aとすることができる。 The low grade coal supply facility 11 according to the present embodiment has a raw coal bunker 21, a coal supply machine 22, and a crusher 23. The raw coal bunker 21 can store low grade coal 101, and can drop a predetermined amount of low grade coal 101 onto the coal feeder 22. The coal feeder 22 can convey the low-grade coal 101 dropped from the raw coal bunker 21 by, for example, a conveyor, and can drop it onto the crusher 23. The crusher 23 can crush the low-grade coal 101 that has been dropped into a predetermined size, and can make the crushed low-grade coal (crushed coal) 101A.
 流動層乾燥装置12は、低品位炭供給設備11により投入された低品位炭101に対して乾燥用蒸気(例えば150℃程度の過熱蒸気)Aを供給することで、この低品位炭101を流動させながら加熱乾燥するものであり、低品位炭101が含有する水分を除去することができる。そして、この流動層乾燥装置12は、外部に取り出された乾燥済の乾燥炭101Bを冷却する冷却器31が設けられ、乾燥冷却済の乾燥炭101Bが乾燥炭バンカ34に貯留される。また、流動層乾燥装置12は、上部から取り出された発生蒸気104に同伴される乾燥炭の粒子を分離する乾燥炭サイクロン等の集塵装置30が設けられ、発生蒸気104から微粒の乾燥炭の粒子を分離している。なお、サイクロン等の集塵装置30で乾燥炭が分離された蒸気は、蒸気圧縮機で圧縮されてから流動層乾燥装置12に乾燥用蒸気として供給するようにしてもよい。 The fluidized bed drying apparatus 12 flows the low grade coal 101 by supplying drying steam (for example, superheated steam of about 150 ° C.) A to the low grade coal 101 charged by the low grade coal supply facility 11. The drying is carried out while heating, and the water contained in the low grade coal 101 can be removed. Then, the fluid bed drying apparatus 12 is provided with a cooler 31 for cooling the dried dried coal 101B taken out to the outside, and the dried and cooled dried coal 101B is stored in the dried coal bunker 34. Further, the fluidized bed drying apparatus 12 is provided with a dust collector 30 such as a dry charcoal cyclone or the like for separating particles of dry charcoal entrained by generated steam 104 taken out from the upper part. The particles are separated. The steam from which dry coal has been separated by the dust collector 30 such as a cyclone may be compressed by the steam compressor and then supplied to the fluid bed drying apparatus 12 as drying steam.
 流動層乾燥装置12で乾燥され、ついで冷却された乾燥冷却済の乾燥炭101Bは、その後、バグフィルタ32、ビンシステム33を介して、一時乾燥炭バンカ34に貯留される。 The dried and cooled dried coal 101 B dried in the fluidized bed drying device 12 and then cooled is then stored in the temporarily dried coal bunker 34 via the bag filter 32 and the bottle system 33.
 石炭ガス化炉14は、乾燥炭バンカ34から供給される乾燥炭101Bが供給可能であると共に、チャー回収装置15で回収されたチャー(石炭の未燃分)101Cが戻されてリサイクル可能となっている。 The coal gasification furnace 14 can be supplied with the dried coal 101B supplied from the dried coal bunker 34, and the char (unburned component of coal) 101C recovered by the char recovery device 15 is returned to be recyclable. ing.
 即ち、石炭ガス化炉14は、ガスタービン設備17(圧縮機61)から圧縮空気供給ライン41が接続されており、このガスタービン設備17で圧縮された圧縮空気が供給可能となっている。空気分離装置42は、大気中の空気40から窒素(N2)と酸素(O2)を分離生成するものであり、第1窒素供給ライン43が石炭ガス化炉14に接続され、この第1窒素供給ライン43は乾燥炭供給ライン35に接続されている。また、第2窒素供給ライン45も石炭ガス化炉14に接続され、この第2窒素供給ライン45にチャー回収装置15から回収されたチャー101Cを戻すチャー戻しライン46が接続されている。更に、酸素供給ライン47は、圧縮空気供給ライン41に接続されている。この場合、窒素(N2)は、乾燥炭101Bやチャー101Cの搬送用ガスとして利用され、酸素(O2)は、酸化剤として利用される。 That is, in the coal gasifier 14, the compressed air supply line 41 is connected from the gas turbine equipment 17 (compressor 61), and compressed air compressed by the gas turbine equipment 17 can be supplied. The air separation device 42 separates and generates nitrogen (N 2 ) and oxygen (O 2 ) from the air 40 in the atmosphere, and the first nitrogen supply line 43 is connected to the coal gasifier 14, and The nitrogen supply line 43 is connected to the dry charcoal supply line 35. In addition, the second nitrogen supply line 45 is also connected to the coal gasifier 14, and the second nitrogen supply line 45 is connected to the char return line 46 for returning the char 101 C recovered from the char recovery device 15. Furthermore, the oxygen supply line 47 is connected to the compressed air supply line 41. In this case, nitrogen (N 2 ) is used as a carrier gas for the dried carbon 101 B and the char 101 C, and oxygen (O 2 ) is used as an oxidant.
 石炭ガス化炉14は、例えば、噴流床形式のガス化炉であって、内部に供給された乾燥炭101B、チャー101C、空気(酸素)、またはガス化剤としての水蒸気を燃焼・ガス化すると共に、一酸化炭素を主成分とする可燃性ガス(生成ガス、石炭ガス)200を発生させ、この可燃性ガス200をガス化剤としてガス化反応を生じさせている。なお、石炭ガス化炉14は、微粉炭の混入した溶融スラグ等の異物を除去する異物除去装置48が設けられている。
 本例では、石炭ガス化炉14として噴流床ガス化炉を例示しているが、本発明は、これに限定されず、例えば流動床ガス化炉や固定床ガス化炉としてもよい。そして、この石炭ガス化炉14は、チャー回収装置15に向けて可燃性ガス200のガス生成ライン49が設けられており、チャー101Cを含む可燃性ガス200が排出可能となっている。この場合、ガス生成ライン49にガス冷却器を別途設けることで、可燃性ガス200を所定温度まで冷却してからチャー回収装置15に供給するとよい。
The coal gasification furnace 14 is, for example, a spouted bed type gasification furnace, which burns and gasifies dry coal 101B, char 101C, air (oxygen), or steam as a gasifying agent supplied to the inside. At the same time, a combustible gas (product gas, coal gas) 200 mainly composed of carbon monoxide is generated, and the combustible gas 200 is used as a gasifying agent to generate a gasification reaction. The coal gasifier 14 is provided with a foreign matter removing device 48 for removing foreign matter such as molten slag mixed with pulverized coal.
Although a spouted bed gasifier is illustrated as the coal gasifier 14 in the present example, the present invention is not limited to this, and may be, for example, a fluidized bed gasifier or a fixed bed gasifier. And this coal gasifier 14 is provided with the gas production line 49 of the combustible gas 200 toward the char recovery device 15, and the combustible gas 200 containing char 101C can be discharged. In this case, the combustible gas 200 may be cooled to a predetermined temperature and then supplied to the char recovery device 15 by separately providing a gas cooler in the gas generation line 49.
 チャー回収装置15は、集塵装置51とチャー供給ホッパ52とを有している。この場合、集塵装置51は、1つまたは複数のバグフィルタやサイクロンにより構成され、石炭ガス化炉14で生成された可燃性ガス200に含有するチャー101Cを分離することができる。そして、チャー101Cが分離された可燃性ガス200Aは、ガス排出ライン53を通してガス精製装置16に送られる。チャー供給ホッパ52は、集塵装置51で可燃性ガス200から分離されたチャー101Cを貯留するものである。なお、集塵装置51とチャー供給ホッパ52との間にビンを配置し、このビンに複数の供給ホッパ52を接続するように構成してもよい。そして、供給ホッパ52からのチャー戻しライン46が第2窒素供給ライン45に接続されている。 The char recovery device 15 has a dust collector 51 and a char feeding hopper 52. In this case, the dust collection device 51 is configured of one or more bag filters or cyclones, and can separate the char 101C contained in the flammable gas 200 generated by the coal gasifier 14. Then, the combustible gas 200A from which the char 101C is separated is sent to the gas purification device 16 through the gas discharge line 53. The char supply hopper 52 stores the char 101C separated from the combustible gas 200 by the dust collection device 51. A bin may be disposed between the dust collector 51 and the char feeding hopper 52, and a plurality of feeding hoppers 52 may be connected to the bin. The char return line 46 from the supply hopper 52 is connected to the second nitrogen supply line 45.
 ガス精製装置16は、チャー回収装置15によりチャー101Cが分離された可燃性ガス200Aに対して、硫黄化合物や窒素化合物などの不純物を取り除くことで、ガス精製を行うものである。そして、ガス精製装置16は、チャー101Cが分離された可燃性ガス200Aを精製して燃料ガス200Bを製造し、これをガスタービン設備17に供給する。なお、このガス精製装置16では、チャー101Cが分離された可燃性ガス200A中にはまだ硫黄分(HS)が含まれているため、例えばアミン吸収液等によって除去することで、硫黄分を最終的には石膏として回収し、有効利用する。 The gas purification device 16 performs gas purification by removing impurities such as sulfur compounds and nitrogen compounds with respect to the combustible gas 200A from which the char 101C has been separated by the char recovery device 15. Then, the gas purification device 16 purifies the combustible gas 200 A from which the char 101 C is separated to produce the fuel gas 200 B, and supplies this to the gas turbine equipment 17. In the gas purification apparatus 16, since the combustible gas 200A from which the char 101C is separated still contains sulfur (H 2 S), the sulfur content can be reduced by, for example, removing it with an amine absorbing solution or the like. Finally, it is recovered as gypsum and effectively used.
 ガスタービン設備17は、圧縮機61、燃焼器62、タービン63を有しており、圧縮機61とタービン63は、回転軸64により連結されている。燃焼器62は、圧縮機61から圧縮空気供給ライン65が接続されると共に、ガス精製装置16から燃料ガス供給ライン66が接続され、タービン63に燃焼ガス供給ライン67が接続されている。また、ガスタービン設備17は、圧縮機61から石炭ガス化炉14に延びる圧縮空気供給ライン41が設けられており、中途部に昇圧機68が設けられている。従って、燃焼器62では、圧縮機61から供給された圧縮空気40Aとガス精製装置16から供給された燃料ガス200Bとを混合して燃焼し、タービン63にて、発生した燃焼ガス202により回転軸64を回転することで発電機19を駆動することができる。 The gas turbine equipment 17 includes a compressor 61, a combustor 62, and a turbine 63. The compressor 61 and the turbine 63 are connected by a rotating shaft 64. The combustor 62 is connected to the compressed air supply line 65 from the compressor 61, is connected to the fuel gas supply line 66 from the gas purification device 16, and is connected to the combustion gas supply line 67 to the turbine 63. Further, the gas turbine equipment 17 is provided with a compressed air supply line 41 extending from the compressor 61 to the coal gasifier 14, and a booster 68 is provided in the middle. Therefore, in the combustor 62, the compressed air 40A supplied from the compressor 61 and the fuel gas 200B supplied from the gas purification device 16 are mixed and burned, and the turbine 63 generates a rotation shaft by the generated combustion gas 202. By rotating 64, the generator 19 can be driven.
 蒸気タービン設備18は、ガスタービン設備17における回転軸64に連結されるタービン69を有しており、発電機19は、この回転軸64の基端部に連結されている。排熱回収ボイラ20は、ガスタービン設備17(タービン63)からの排ガスライン70に設けられており、空気40と高温の排ガス203との間で熱交換を行うことで、蒸気204を生成するものである。そのため、排熱回収ボイラ20は、蒸気タービン設備18のタービン69との間に蒸気204を供給する蒸気供給ライン71が設けられると共に、蒸気回収ライン72が設けられ、蒸気回収ライン72に復水器73が設けられている。従って、蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気204によりタービン69が駆動し、回転軸64を回転することで発電機19を駆動することができる。 The steam turbine installation 18 has a turbine 69 connected to a rotating shaft 64 in the gas turbine installation 17, and a generator 19 is connected to the proximal end of the rotating shaft 64. The exhaust heat recovery boiler 20 is provided in an exhaust gas line 70 from the gas turbine equipment 17 (turbine 63), and generates steam 204 by performing heat exchange between the air 40 and the high temperature exhaust gas 203. It is. Therefore, the waste heat recovery boiler 20 is provided with the steam supply line 71 for supplying the steam 204 between the turbine 69 of the steam turbine equipment 18 and the steam recovery line 72, and the steam recovery line 72 is provided with a condenser. 73 are provided. Therefore, in the steam turbine equipment 18, the turbine 69 is driven by the steam 204 supplied from the exhaust heat recovery boiler 20, and the generator 19 can be driven by rotating the rotating shaft 64.
 そして、排熱回収ボイラ20で熱が回収された排ガス205は、ガス浄化装置74により有害物質を除去され、浄化された排ガス205Aは、煙突75から大気へ放出される。 Then, the exhaust gas 205 whose heat has been recovered by the exhaust heat recovery boiler 20 is freed of harmful substances by the gas purification device 74, and the purified exhaust gas 205A is released from the chimney 75 to the atmosphere.
 ここで、実施例1の石炭ガス化複合発電設備10Aの作動について説明する。 Here, the operation of the integrated coal gasification combined cycle plant 10A of the first embodiment will be described.
 実施例1の石炭ガス化複合発電設備10Aにおいて、低品位炭供給設備11(11A、11B、11C)にて、原炭である低品位炭101が原炭バンカ21に貯留されており、この原炭バンカ21の低品位炭101が石炭供給機22により粉砕機23に投下され、ここで所定の大きさに破砕される。そして、破砕された粉砕低品位炭101Aは、流動層乾燥装置12により加熱乾燥され、乾燥炭101Bとした後、冷却器31により冷却されて冷却済の乾燥炭101Bとされ、乾燥炭バンカ34に貯留される。 In the integrated coal gasification combined cycle power generation facility 10A of the first embodiment, the low grade coal 101, which is raw coal, is stored in the raw coal bunker 21 at the low grade coal supply facility 11 (11A, 11B, 11C). The low-grade coal 101 of the coal bunker 21 is dropped onto the crusher 23 by the coal feeder 22 and is crushed here to a predetermined size. Then, the crushed low-grade coal 101A is heated and dried by the fluidized bed drying device 12 to be dried coal 101B, and then cooled by the cooler 31 to be cooled dried coal 101B. It is stored.
 乾燥炭バンカ34に貯留された冷却乾燥炭101Bは、空気分離装置42から供給される窒素により乾燥炭供給ライン35を通して石炭ガス化炉14に供給される。また、後述するチャー回収装置15で回収されたチャー101Cが、空気分離装置42から供給される窒素によりチャー戻しライン46を通して石炭ガス化炉14に供給される。更に、後述するガスタービン設備17から抽気された圧縮空気37が昇圧機68で昇圧された後、空気分離装置42から供給される酸素と共に圧縮空気供給ライン41を通して石炭ガス化炉14に供給される。 The cooled dry coal 101 B stored in the dry coal bunker 34 is supplied to the coal gasifier 14 through the dry coal supply line 35 by the nitrogen supplied from the air separation device 42. In addition, the char 101C recovered by the char recovery device 15 described later is supplied to the coal gasifier 14 through the char return line 46 by the nitrogen supplied from the air separation device 42. Furthermore, after the compressed air 37 extracted from the gas turbine equipment 17 described later is boosted by the booster 68, it is supplied to the coal gasification furnace 14 through the compressed air supply line 41 together with oxygen supplied from the air separation device 42. .
 石炭ガス化炉14では、供給された乾燥炭101B及びチャー101Cが圧縮空気(酸素)37により燃焼し、乾燥炭101B及びチャー101Cがガス化することで、二酸化炭素を主成分とする可燃性ガス(石炭ガス)200を生成することができる。そして、この可燃性ガス200は、石炭ガス化炉14からガス生成ライン49を通して排出され、チャー回収装置15に送られる。 In the coal gasifier 14, the supplied dry coal 101 B and the char 101 C are burned by the compressed air (oxygen) 37, and the dry coal 101 B and the char 101 C are gasified, thereby combustible gas mainly composed of carbon dioxide. (Coal gas) 200 can be produced. Then, the flammable gas 200 is discharged from the coal gasifier 14 through the gas generation line 49 and sent to the char recovery device 15.
 このチャー回収装置15にて、可燃性ガス200は、まず、集塵装置51に供給されることで、ここで可燃性ガス200に含有するチャー101Cが分離される。そして、チャー101Cが分離された可燃性ガス200Aは、ガス排出ライン53を通してガス精製装置16に送られる。一方、可燃性ガス200から分離した微粒のチャー101Cは、供給ホッパ52に堆積され、チャー戻しライン46を通して石炭ガス化炉14に戻されてリサイクルされる。 In the char recovery device 15, the combustible gas 200 is first supplied to the dust collector 51, whereby the char 101C contained in the combustible gas 200 is separated. Then, the combustible gas 200A from which the char 101C is separated is sent to the gas purification device 16 through the gas discharge line 53. On the other hand, the fine particle char 101C separated from the flammable gas 200 is deposited in the feed hopper 52, is returned to the coal gasifier 14 through the char return line 46, and is recycled.
 チャー回収装置15によりチャー101Cが分離された可燃性ガス200Aは、ガス精製装置16にて、硫黄化合物や窒素化合物などの不純物が取り除かれてガス精製され、燃料ガス200Bが製造される。そして、ガスタービン設備17では、圧縮機61が圧縮空気40Aを生成して燃焼器62に供給すると、この燃焼器62は、圧縮機61から供給される圧縮空気40Aと、ガス精製装置16から供給される燃料ガス200Bとを混合し、燃焼することで燃焼ガス202を生成し、この燃焼ガス202によりタービン63を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。 The combustible gas 200A from which the char 101C is separated by the char recovery device 15 is purified by the gas purification device 16 to remove impurities such as sulfur compounds and nitrogen compounds, and the fuel gas 200B is produced. Then, in the gas turbine equipment 17, when the compressor 61 generates the compressed air 40A and supplies it to the combustor 62, the combustor 62 supplies the compressed air 40A supplied from the compressor 61 and the gas purification device 16 The combustion gas 202 is generated by mixing with the fuel gas 200B to be produced, and the combustion gas 202 is generated, and the turbine 63 is driven by the combustion gas 202 to drive the generator 19 via the rotating shaft 64 to generate electric power. be able to.
 そして、ガスタービン設備17におけるタービン63から排出された排ガス203は、排熱回収ボイラ20にて、空気40と熱交換を行うことで蒸気204を生成し、この生成した蒸気204を蒸気タービン設備18に供給する。蒸気タービン設備18では、排熱回収ボイラ20から供給された蒸気204によりタービン69を駆動することで、回転軸64を介して発電機19を駆動し、発電を行うことができる。 Then, the exhaust gas 203 discharged from the turbine 63 in the gas turbine equipment 17 exchanges heat with the air 40 in the exhaust heat recovery boiler 20 to generate steam 204, and the generated steam 204 is used as a steam turbine equipment 18 Supply to In the steam turbine equipment 18, by driving the turbine 69 with the steam 204 supplied from the waste heat recovery boiler 20, the generator 19 can be driven via the rotating shaft 64 to generate power.
 その後、ガス浄化装置74では、排熱回収ボイラ20から排出された排ガス205の有害物質が除去され、浄化された排ガス205Aが煙突75から大気へ放出される。 Thereafter, in the gas purification device 74, harmful substances of the exhaust gas 205 discharged from the exhaust heat recovery boiler 20 are removed, and the purified exhaust gas 205A is discharged from the chimney 75 to the atmosphere.
 図2は、実施例1に係る低品位炭供給設備の概略図である。
 図2に示すように、本実施例に係る低品位炭供給設備11Aは、粉砕機23で粉砕された水分含有量が高い粉砕低品位炭(褐炭)101Aを乾燥する乾燥室を形成する流動層乾燥装置12と、流動層乾燥装置12内に設けられ、管状の内部に過熱蒸気(例えば150℃の蒸気)Aを供給して粉砕低品位炭101A中の水分を除去する伝熱部材(加熱手段)103と、前記伝熱部材103によって粉砕低品位炭101Aが乾燥される際に発生する発生蒸気104を流動層乾燥装置12の外部に排出する発生蒸気ライン29と、前記発生蒸気ライン29に介装され、発生蒸気104中の粉塵を除去するサイクロン等の集塵装置30と、発生蒸気ライン29における集塵装置30の下流側に介装され、発生蒸気104の熱を回収する熱回収システム106と、前記流動層乾燥装置12から抜き出された乾燥炭101Bを冷却する冷却器31とを備えるものである。
 なお、符号116は流動化ガスである流動化蒸気107を整流する整流板を図示する。
FIG. 2 is a schematic view of a low grade coal supply facility according to a first embodiment.
As shown in FIG. 2, the low-grade coal supply facility 11A according to the present embodiment is a fluidized bed that forms a drying chamber for drying the pulverized low-grade coal (brown coal) 101A having a high water content pulverized by the pulverizer 23. A heat transfer member (heating means) provided in the drying device 12 and the fluidized bed drying device 12 and supplying superheated steam (for example, steam at 150 ° C.) A to the inside of the tube to remove moisture in the pulverized low grade coal 101A ), A generated steam line 29 for discharging the generated steam 104 generated when the pulverized low grade coal 101A is dried by the heat transfer member 103 to the outside of the fluidized bed drying device 12, and the generated steam line 29 And a dust collector 30 such as a cyclone for removing dust in the generated steam 104, and a heat recovery system for recovering the heat of the generated steam 104 interposed downstream of the dust collector 30 in the generated steam line 29 06, in which and a cooler 31 for cooling the dried coal 101B withdrawn from the fluidized bed dryer 12.
In addition, the code | symbol 116 illustrates the straightening vane which rectifies | straightens the fluidization vapor | steam 107 which is fluidization gas.
 低品位炭供給設備11Aにおいて、低品位炭101は、図示しない供給ホッパにより粉砕機23に供給され、粉砕され、粉砕低品位炭101Aとされる。この粉砕低品位炭101Aは、流動層乾燥装置12の図示しない投入口から内部に投入され、流動層乾燥装置12内に別に導入される流動化蒸気107により流動されて流動層111を形成する。 In the low-grade coal supply facility 11A, the low-grade coal 101 is supplied to the crusher 23 by a supply hopper (not shown) and pulverized into a pulverized low-grade coal 101A. The pulverized low-grade coal 101A is introduced into the interior of the fluidized bed drying apparatus 12 from the inlet (not shown), and is fluidized by the fluidized steam 107 separately introduced into the fluidized bed drying apparatus 12 to form the fluidized bed 111.
 伝熱部材103は、この流動層111内に配置されている。伝熱部材103内には、例えば150℃の乾燥用蒸気(過熱蒸気)Aが供給され、その高温の乾燥用蒸気(過熱蒸気)Aの潜熱を利用して粉砕低品位炭101Aを間接的に乾燥させるようにしている。乾燥に利用された乾燥用蒸気(過熱蒸気)Aは、例えば150℃の凝縮水Bとして流動層乾燥装置12の外部に排出されている。 The heat transfer member 103 is disposed in the fluidized bed 111. In the heat transfer member 103, for example, drying steam (superheated steam) A at 150 ° C. is supplied, and the low-grade coal 101A is indirectly crushed using the latent heat of the high temperature drying steam (superheated steam) A. I try to dry it. The drying steam (superheated steam) A used for drying is discharged to the outside of the fluid bed drying apparatus 12 as condensed water B at, for example, 150 ° C.
 すなわち、加熱手段である伝熱部材103内面では、乾燥用蒸気(過熱蒸気)Aが凝縮して液体(水分)になるので、この際に放熱される凝縮潜熱を、粉砕低品位炭101Aの乾燥の加熱に有効利用している。なお、高温の乾燥用蒸気(過熱蒸気)A以外としては、相変化を伴う熱媒であれば何れでも良く、例えばフロンやペンタンやアンモニア等を例示することができる。また、伝熱部材103として熱媒体を用いる以外に電気ヒータを設置してもよい。 That is, since the drying vapor (superheated vapor) A condenses and becomes a liquid (moisture) on the inner surface of the heat transfer member 103 which is the heating means, the latent heat of condensation radiated at this time is dried in the pulverized low grade coal 101A. Is effectively used for heating. Any heat medium may be used as long as it is accompanied by a phase change, except for the high temperature drying steam (superheated steam) A. For example, fluorocarbon, pentane, ammonia and the like can be exemplified. In addition to using a heat medium as the heat transfer member 103, an electric heater may be installed.
 伝熱部材103によって粉砕低品位炭101Aが乾燥される際に発生する発生蒸気104は、流動層乾燥装置12内において、流動層111の上部空間に形成されるフリーボード部Fから発生蒸気ライン29により流動層乾燥装置12の外部に排出される。この発生蒸気104は、褐炭101Aが乾燥し微粉化したものが含まれているので、例えば集塵装置30により集塵して固体成分115として分離する。
 この固体成分115は、乾燥炭供給ライン35に合流され、流動層乾燥装置12から抜き出された乾燥炭101Bと混合され、冷却器31で冷却され、その後石炭ガス化炉14に供給される。
The generated steam 104 generated when the pulverized low-grade coal 101A is dried by the heat transfer member 103 is generated from the freeboard portion F formed in the upper space of the fluidized bed 111 in the fluidized bed drying device 12. Thus, the fluid is discharged to the outside of the fluid bed drying device 12. Since the generated steam 104 contains the dried and finely pulverized lignite 101A, it is collected by, for example, the dust collector 30 and separated as the solid component 115.
The solid component 115 is joined to the dry coal supply line 35, mixed with the dry coal 101 B extracted from the fluidized bed drying device 12, cooled by the cooler 31, and then supplied to the coal gasifier 14.
 一方、集塵装置30により集塵された後の発生蒸気104は、例えば105~110℃の蒸気であるので、熱回収システム106で熱回収された後、水処理部112で処理され、排水113として流動層乾燥装置12の外部に排出されている。なお、集塵装置30により集塵された後の発生蒸気104は、例えば、熱交換器や蒸気タービン等に適用してその熱を有効利用するようにしてもよい。 On the other hand, since the generated steam 104 collected by the dust collector 30 is, for example, steam at 105 to 110 ° C., the heat is recovered by the heat recovery system 106 and then processed by the water treatment unit 112. The fluid is discharged to the outside of the fluidized bed drying device 12. The generated steam 104 collected by the dust collector 30 may be applied to, for example, a heat exchanger, a steam turbine, or the like to effectively use the heat.
 また、集塵装置30により集塵された後の発生蒸気104の一部は、分岐ライン108に介装された例えば循環ファン109により流動層乾燥装置12内に送られて、粉砕低品位炭101Aの流動層111を流動させる流動化蒸気107として利用される。なお、流動層111を流動化させる流動化媒体としては、発生蒸気104の一部を再利用しているが、これに限定されず、例えば窒素、二酸化炭素またはこれらのガスを含む低酸素濃度の空気を用いてもよい。 In addition, a part of the generated steam 104 collected by the dust collection device 30 is sent into the fluidized bed drying device 12 by, for example, the circulation fan 109 interposed in the branch line 108, and the pulverized low-grade coal 101A Is used as fluidizing steam 107 that causes the fluid bed 111 to flow. In addition, although a part of generated steam 104 is reused as a fluidizing medium for fluidizing the fluid bed 111, the present invention is not limited to this, for example, nitrogen, carbon dioxide or low oxygen concentration containing these gases Air may be used.
 なお、上述した流動層乾燥装置12は、伝熱部材103として、本実施例はチューブ形状の伝熱部材を例示しているが、本発明はこれに限定されず、例えば板状の伝熱部材を用いるようにしてもよい。
 また、乾燥用蒸気(過熱蒸気)Aを伝熱部材103に供給して粉砕低品位炭101Aを間接的に乾燥させる構成を説明したが、これに限らず、粉砕低品位炭101Aの流動層111を流動させる流動化蒸気107により粉砕低品位炭101Aを直接乾燥させる構成、さらに加熱用の流動化ガスを供給して乾燥させる構成としてもよい。
Although the fluidized bed drying apparatus 12 described above exemplifies a tube-shaped heat transfer member as the heat transfer member 103 in the present embodiment, the present invention is not limited thereto. For example, a plate-shaped heat transfer member May be used.
Further, although the configuration has been described in which the drying steam (superheated steam) A is supplied to the heat transfer member 103 to indirectly dry the pulverized low grade coal 101A, the present invention is not limited to this, the fluidized bed 111 of the pulverized low grade coal 101A. Alternatively, the low-grade coal 101A may be directly dried by the fluidizing steam 107 flowing, or may be supplied with a fluidizing gas for heating and dried.
 本実施例では、従来のようなガス化炉に供給する瀝青炭や無煙炭のように高い発熱量を有する高品位の石炭(高品位炭)で用いていた微粉炭機を設置することなく、乾燥低品位炭101Bをそのままガス化炉14に供給するようにしているので、微粉砕機の機器及びそのユーティリティコストの低減を図ることができる。 In the present embodiment, the drying and low-level operation is performed without installing the pulverized coal machine used in high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite which are supplied to conventional gasifiers. Since the graded coal 101B is supplied as it is to the gasification furnace 14, equipment of the pulverizer and its utility cost can be reduced.
 これは、本発明で用いる例えば亜瀝青炭や褐炭のように水分含有量が多い(例えば50~60%)低品位炭(又は高水分炭)101は、石炭の粉砕性の指標であるHGI(Hard Grove Index)指数が高いので、粉砕性が良好なことに起因する。 This is because HGI (Hard), which is an indicator of the crushability of coal, has a high water content (for example, 50 to 60%), such as subbituminous coal and lignite, used in the present invention (eg, 50 to 60%). As the Grove Index) index is high, the crushability is good.
 ここで、HGIとは、一定の石炭を所定時間粉砕に掛け、所定粒度以下の重量割合を、その指数とするものである。この為数字の大きいもの程粉砕されやすい石炭になるとしている。通常はHGI指数が50前後であり、HGI指数が40以下は硬いものとされ、逆にHGI指数が60以上はもろいと判断されている。 Here, HGI refers to grinding a certain amount of coal for a predetermined time, and taking a weight ratio of a predetermined particle size or less as an index thereof. For this reason, it is said that the larger the number, the easier it is to be crushed coal. Normally, the HGI index is around 50, and the HGI index of 40 or less is considered to be hard, and conversely, the HGI index of 60 or more is determined to be fragile.
 図6は、各種石炭に対するHGI指数との関係を示す図である。
 図6より、高品位炭である瀝青炭に較べて、低品位炭である褐炭はHGI指数が80以上と高く、軟らかいものであることがわかる。
 この結果、流動層111内における摩擦、衝突による粗粒の微粒化を図ることができ、微粒化率の割合を向上させるものとなる。
FIG. 6 is a diagram showing the relationship between various coals and the HGI index.
It can be seen from FIG. 6 that lignite, which is low-grade coal, has a high HGI index of 80 or more and is softer than low-grade coal, bituminous coal.
As a result, atomization of coarse particles due to friction and collision in the fluidized bed 111 can be achieved, and the ratio of atomization rate can be improved.
 図7は、乾燥炭の粒径分布の一例を示す図である。
 図7の分布は、図6の褐炭Aを5mm以下の粉砕物を用いて、流動層乾燥装置12で乾燥させた際の、ふるい上の重量割合とメッシュ(μm)との関係図である。
 図7に示すように、流動層乾燥装置12で乾燥させると、1000μm前後にピークを有する幅をもった粒径分布であることが判明した。
FIG. 7 is a view showing an example of the particle size distribution of dry coal.
The distribution of FIG. 7 is a relationship diagram between the weight ratio on the sieve and the mesh (μm) when the brown coal A of FIG. 6 is dried by the fluidized bed drying device 12 using the pulverized material of 5 mm or less.
As shown in FIG. 7, when dried by the fluid bed drying device 12, it was found that the particle size distribution had a width having a peak at around 1000 μm.
 粉砕低品位炭101Aの粒度は、粉砕機23の粉砕度合いによるが、例えば10mm以下、好ましくは5mm以下とするのが、後流側における乾燥装置での乾燥が良好であると共に、乾燥炭101Bの搬送が良好となり、好ましい。
 ここで、粉砕機23での粉砕の際における目標粒径範囲としては約2mm以下としているが、本発明はこれに限定されるものではない。
The particle size of the pulverized low-grade coal 101A depends on the degree of pulverization of the grinder 23, but for example, 10 mm or less, preferably 5 mm or less is good for drying on the downstream side with the drying device and The transport is good and preferred.
Here, the target particle size range at the time of pulverization in the pulverizer 23 is about 2 mm or less, but the present invention is not limited to this.
 また流動層乾燥装置12での乾燥度合いは、供給される粉砕低品位炭101Aの水分含有量により異なるが、乾燥度合いが15%以下、より好ましくは10%以下とするのが良い。これは、乾燥状態が良好であると、搬送性が良くなり、また、ガス化でのエネルギーロスが少なくなるからである。 Although the degree of drying in the fluidized bed drying device 12 varies depending on the water content of the pulverized low-grade coal 101A supplied, the degree of drying is preferably 15% or less, more preferably 10% or less. This is because when the dry state is good, the transportability is improved and the energy loss in gasification is reduced.
 図6及び図7より、低品位炭である褐炭は、水分含有量が高いものの、高品位炭よりもHGIが高いので、軟らかいものである。そして流動層乾燥装置12での乾燥により水分が除去されつつ流動化されるので、メッシュ径2000μm以下の割合が多いものとなり、低品位炭がガス化し易いという性質とも併せて、そのままでもガス化炉でガス化しやすい特性を備えた乾燥炭101Bとなる。
 よって、低品位炭供給設備11Aでは、従来のように石炭のような粉砕機による微粉化処理を一切省くことができる。これにより微粉炭機の設置が不要となり、ガス化複合発電システムに供給する設備のコンパクト化を図ることができる。
From FIG. 6 and FIG. 7, although low-grade coal, lignite has a high water content, it is softer because it has a higher HGI than high-grade coal. And since it is fluidized while removing water by drying in the fluidized bed dryer 12, the ratio of the mesh diameter 2000 μm or less is large, and the low-grade coal is easily gasified, along with the property that the gasification furnace is as it is The dry coal 101B has the characteristic of being easily gasified.
Therefore, in the low grade coal supply facility 11A, it is possible to dispense with the pulverizing treatment with a crusher such as coal as in the prior art. As a result, the installation of the pulverized coal machine becomes unnecessary, and the equipment to be supplied to the gasification combined cycle power generation system can be made compact.
 また、ガス化炉14内の空塔速度は、炉内に直接供給される乾燥及び冷却された冷却乾燥炭101Bが落下しない空塔速度とすることが好ましい。これにより、乾燥炭101Bの良好なガス化が可能となる。 Moreover, it is preferable to set the superficial velocity in the gasification furnace 14 as the superficial velocity in which the dried and cooled cooled dry coal 101B supplied directly into the furnace does not fall. Thereby, favorable gasification of dry charcoal 101B is attained.
 図3は、実施例2に係る低品位炭供給設備を有する低品位炭を用いたガス化複合発電システムの概略構成図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 FIG. 3 is a schematic configuration diagram of a combined gasification combined cycle power generation system using low grade coal having a low grade coal supply facility according to a second embodiment. The members having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
 実施例2において、図3に示すように、石炭ガス化複合発電設備10Bは、流動層乾燥装置12内において、乾燥炭101Bを乾燥炭(微粒)101BF(FINE)と乾燥炭(粗粒)101BR(ROUGH)とに分離している。そして、分離した乾燥炭(微粒)101BFのみを乾燥炭供給ライン35を介して石炭ガス化炉14に供給するようにしている。そして、乾燥炭101Bの粗粒101BRは、別途設けた燃焼炉80に供給し、燃焼させている。 In Example 2, as shown in FIG. 3, the integrated coal gasification combined cycle facility 10 B includes the dry coal 101 B in the fluidized bed drying device 12, dry coal (fine particles) 101 B F (FINE) and dry coal (coarse particles) It is separated into 101B R (ROUGH) . Then, only the separated dried coal (fine particles) 101 B F is supplied to the coal gasifier 14 through the dried coal supply line 35. Then, coarse particles 101B R of dry coal 101B are supplied to a separately provided combustion furnace 80 and burned.
 図4は、本実施例に係る低品位炭供給設備の概略図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 図4に示すように、本実施例に係る低品位炭供給設備11Bに係る流動層乾燥装置12は、該流動層乾燥装置12の一端側に、前記粉砕機23から粉砕された低品位炭101Aを投入する低品位炭投入ライン120と、前記流動層乾燥室の下部に流動化ガスである流動化蒸気107を供給することで低品位炭と共に流動層111を形成する分岐ライン108と、前記流動層乾燥装置12の上方から流動化ガス及び発生蒸気104を排出する発生蒸気ライン29と、前記流動層111内に供給された粉砕された低品位炭101Aを加熱する加熱部である伝熱部材103と、前記低品位炭投入ライン120と異なる側の流動層111の上部近傍から加熱乾燥した微粒の乾燥炭101BFを排出する微粒乾燥炭排出ライン121と、前記低品位炭投入ライン120と異なる側の流動層111の底部近傍から加熱乾燥した粗粒の乾燥炭101BRを排出する粗粒乾燥炭排出ライン122と、を具備してなり、微粒乾燥炭排出ライン121から排出される微粒の乾燥炭101BFを前記乾燥炭供給ライン35によりガス化炉14側に供給するようにしている。
FIG. 4: is the schematic of the low grade coal supply installation which concerns on a present Example. The members having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
As shown in FIG. 4, the fluidized bed drying apparatus 12 according to the low grade coal supply facility 11B according to the present embodiment is a low grade coal 101A pulverized from the crusher 23 at one end side of the fluidized bed drying apparatus 12. And a branch line 108 for forming the fluidized bed 111 together with the low grade coal by supplying the fluidized steam 107 which is a fluidizing gas to the lower part of the fluidized bed drying chamber; Heat transfer member 103, which is a heating unit for heating the low-grade coal 101A supplied into the fluidized bed 111, and the generated steam line 29 for discharging the fluidizing gas and the generated steam 104 from the upper side of the bed dryer 12. When a fine dry coal discharge line 121 for discharging the dried coal 101B F of fine heated drying from the upper vicinity of the low-grade coal input line 120 and different side of the fluidized bed 111, the low-grade Sumito It will be provided with coarse dry coal discharge line 122 for discharging the dried coal 101B R heating dry coarse from the vicinity of the bottom of the line 120 with different side of the fluidized bed 111, and is discharged from the fine dry coal discharge line 121 Fine-grained dry coal 101 B F is supplied to the gasification furnace 14 through the dry coal supply line 35.
 本実施例では、流動層111内で形成される微粒の乾燥炭101BFと粗粒の乾燥炭101BRとの偏りの分布の性質を利用して、微粒の乾燥炭101BFを排出する微粒乾燥炭排出ライン121と、粗粒の乾燥炭101BRを排出する粗粒乾燥炭排出ライン122とを、流動層111の層上部と層底部とに設けることにより、粗粒と微粒とを分けて排出することができる。
 これにより石炭ガス化炉14に供給する粒径のバラつきを抑制できる。
 また、後流側に微粉炭機を設置する場合においても、粗粒のみを供給することで、後流プロセスの設備容量を低減することができる。
In this embodiment, fine particle drying for discharging fine dry carbon 101 B F using the property of distribution of deviation between fine dry carbon 101 B F and coarse dry carbon 101 B R formed in the fluidized bed 111 a coal discharge line 121, and a coarse dry coal discharge line 122 for discharging the dried coal 101B R coarse grains, and by providing on the layer upper the layer bottom of the fluidized bed 111, separate the coarse particles and fine particles discharged can do.
Thereby, the dispersion of the particle size supplied to the coal gasifier 14 can be suppressed.
Moreover, also when installing a pulverized coal machine on the downstream side, the equipment capacity of a downstream process can be reduced by supplying only coarse particles.
 本発明では、石炭の種類は特に限定されるものではなく、瀝青炭や無煙炭のように高い発熱量を有する高品位の石炭(高品位炭)、例えば亜瀝青炭や褐炭のように水分含有量が多い(例えば50~60%)低品位の石炭(低品位炭又は高水分炭)のいずれも適用することができる。 In the present invention, the type of coal is not particularly limited, and high-grade coal (high-grade coal) having a high calorific value such as bituminous coal and anthracite coal, such as high moisture content such as subbituminous coal and brown coal Any of low grade coal (low grade coal or high moisture coal) can be applied (eg, 50 to 60%).
 なお、瀝青炭や無煙炭のように高い発熱量を有する高品位の石炭(高品位炭)を噴流床ガス化炉に適用する場合には、粗粉砕機・乾燥装置は用いずに微粉砕機を設置するが、例えば亜瀝青炭や褐炭のように水分含有量が多い(例えば50~60%)低品位の石炭(低品位炭又は高水分炭)の場合には、粗粉砕機及び乾燥装置を設置し、当該設備で粉砕・乾燥した石炭101Bをそのまま石炭ガス化炉14に供給することができるので、微粉砕機の機器及びそのユーティリティコストの低減を図ることができる。 When high-grade coal (high-grade coal) with high calorific value such as bituminous coal or anthracite is applied to the spouted bed gasifier, a pulverizer is installed without using a coarse crusher / dryer. However, for example, in the case of low-grade coal (low grade coal or high moisture coal) such as subbituminous coal and lignite having a high water content (for example, 50 to 60%), install a coarse crusher and a dryer. Since the coal 101B crushed and dried by the equipment can be supplied as it is to the coal gasifier 14, the equipment of the pulverizer and its utility cost can be reduced.
 そして、微粒乾燥炭排出ライン121から排出される微粒101BFは、冷却器31で冷却され、冷却された乾燥炭(微粒)101BFのみを乾燥炭供給ライン35を介して供給している。これにより、従来通りのガス化効率を維持したまま、しかも従来の瀝青炭のような高品位炭を微粉化するための微粉炭機を省略でき、コスト低減できる。 The fine particles 101B F discharged from the fine particle dried carbon discharge line 121 are cooled by the cooler 31 and only the cooled dried coal (fine particles) 101B F is supplied through the dry carbon supply line 35. As a result, while maintaining the conventional gasification efficiency, it is possible to omit a pulverizing coal machine for pulverizing high-grade coal such as conventional bituminous coal, thereby reducing the cost.
 これに対して、乾燥炭(粗粒)101BRは、別途設置された図3に示す燃焼炉80に供給され(※1)、ここで燃焼され、熱回収するようにしている。 On the other hand, dry charcoal (coarse particles) 101B R is supplied to the separately installed combustion furnace 80 shown in FIG. 3 (* 1), and is burned here to recover heat.
 ここで、微粒と粗粒との粒径の区分けは、ガス化炉14の規模と空塔速度等により適宜変更すればよいが、図7に示す粒度分布より、例えば1500~2000メッシュ(μm)以下程度のものを微粒とすることができるが、これに限定されるものではない。
 ここで、粒度分布の切り分けをすると、微粒は500~1000μm以下のものとし、粗粒は500~1000μm以上とするのが好ましいが、本発明はこれに限定されるものではない。 
Here, the classification of the particle size of the fine particles and the coarse particles may be appropriately changed according to the scale of the gasification furnace 14 and the superficial velocity, etc. However, according to the particle size distribution shown in FIG. Although the following thing can be made into a fine particle, it is not limited to this.
Here, when the particle size distribution is separated, it is preferable to set the fine particles to 500 to 1000 μm or less and the coarse particles to 500 to 1000 μm or more, but the present invention is not limited to this.
 本実施例では、乾燥炭(微粒)101BFをガス化炉14に導入するので、そのガス化炉14におけるガス化効率が向上すると共に、搬送性も良好となる。 In the present embodiment, since dry carbon (fine particles) 101B F is introduced into the gasification furnace 14, the gasification efficiency in the gasification furnace 14 is improved, and the transportability is also improved.
 図5は、本実施例に係る低品位炭供給設備の概略図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 FIG. 5: is the schematic of the low grade coal supply installation which concerns on a present Example. The members having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and the detailed description thereof is omitted.
 図5に示すように、本実施例に係る低品位炭供給設備11Cは、実施例3と同様に乾燥炭101Bを乾燥炭(微粒)101BF(FINE)と乾燥炭(粗粒)101BR(ROUGH)とに分離し、分離した乾燥炭(粗粒)101BRは、流動層乾燥装置12の入口側若しくは粉砕機23の上流側のいずれか一方又は両方に、粗粒乾燥炭循環ライン123を介して戻すようにしている。
 この場合、粗粒を分級する分級器を粗粒乾燥炭循環ライン123に設け、所定粒径以上の大径の粗粒は粉砕機23の上流側に戻し、再度粉砕機23で粉砕を行うようにすることで、全体の粉砕効率がさらに向上し、乾燥効率も向上する。
As shown in FIG. 5, the low-grade coal supply facility 11C according to the present embodiment is the same as the third embodiment, and the dry coal 101B is dry coal (fine particles) 101B F (FINE) and dry coal (coarse particles) 101B R ( ROUGH) and separated dry coal (coarse particles) 101B R is used as one or both of the inlet side of the fluidized bed drying device 12 and the upstream side of the crusher 23 in the coarse dry carbon circulation line 123 I'm trying to get back through.
In this case, a classifier for classifying coarse particles is provided in the coarse-grain dry carbon circulation line 123, and large particles having a predetermined particle size or more are returned to the upstream side of the crusher 23, and are crushed again by the crusher 23. In this way, the overall crushing efficiency is further improved, and the drying efficiency is also improved.
 なお、上述した各実施例では、湿潤原料として低品位炭を使用したが、高品位炭であっても適用可能であり、また、石炭に限らず、再生可能な生物由来の有機性資源として使用されるバイオマスであってもよく、例えば、間伐材、廃材木、流木、草類、廃棄物、汚泥、タイヤ及びこれらを原料としたリサイクル燃料(ペレットやチップ)などを使用することも可能である。 In each of the above-described embodiments, low-grade coal is used as the wet raw material, but even high-grade coal is applicable, and it is not limited to coal, but is used as an organic resource derived from renewable organisms. It is also possible to use, for example, thinned timber, waste wood, driftwood, grasses, waste, sludge, tires, and recycled fuel (pellets or chips) made from these, etc. .
 10A、10B 石炭ガス化複合発電設備
 11 低品位炭供給設備
 12 流動層乾燥装置
 14 石炭ガス化炉
 15 チャー回収装置
 16 ガス精製装置
 17 ガスタービン設備
 18 蒸気タービン設備
 19 発電機
 20 排熱回収ボイラ
 101 低品位炭
 101A 粉砕低品位炭(粉砕炭)
 101B 乾燥低品位炭(乾燥炭)
 103 伝熱部材(加熱手段)
 104 発生蒸気
 A 乾燥用蒸気(過熱蒸気)
 B 凝縮水
10A, 10B Integrated coal gasification combined cycle power plant 11 Low grade coal supply equipment 12 Fluid bed drying equipment 14 Coal gasification furnace 15 Char recovery equipment 16 Gas purification equipment 17 Gas turbine equipment 18 Steam turbine equipment 19 Generator 20 Exhaust heat recovery boiler 101 Low-grade coal 101A Pulverized low-grade coal (pulverized coal)
101B dry low grade coal (dry coal)
103 Heat transfer member (heating means)
104 Steam A Drying steam (superheated steam)
B condensed water

Claims (8)

  1.  原料供給手段により供給された湿潤原料を粉砕する粉砕機と、
     粉砕された前記湿潤原料を乾燥する乾燥装置と、
     前記乾燥装置で乾燥された乾燥原料をガス化炉に供給する乾燥原料供給ラインと、
     を具備することを特徴とする湿潤原料供給設備。
    A grinder for grinding the wet raw material supplied by the raw material supply means;
    A drying device for drying the crushed wet material;
    A dry raw material supply line for supplying a dry raw material dried by the drying device to a gasification furnace;
    Wet raw material supply equipment characterized by having.
  2.  請求項1において、
     前記乾燥装置で乾燥され、分離された微粒をガス化炉に供給する乾燥原料供給ラインを有することを特徴とする湿潤原料供給設備。
    In claim 1,
    A wet raw material supply facility characterized by comprising a dry raw material supply line for supplying fine particles dried and separated by the drying device to a gasification furnace.
  3.  請求項1又は2において、
     前記乾燥装置で乾燥された粗粒を燃焼させる燃焼炉を有することを特徴とする湿潤原料供給設備。
    In claim 1 or 2,
    A wet raw material supply facility characterized by comprising a combustion furnace which burns coarse particles dried by the drying device.
  4.  請求項1乃至3のいずれか一つにおいて、
     前記乾燥装置で乾燥された粗粒を、前記粉砕機の上流側又は乾燥装置の入口のいずれか一方又は両方に供給する再循環ラインを有することを特徴とする湿潤原料供給設備。
    In any one of claims 1 to 3,
    A wet raw material supply facility characterized by comprising a recirculation line for supplying coarse particles dried by the drying device to either or both of the upstream side of the crusher and the inlet of the drying device.
  5.  請求項1乃至4のいずれか一つにおいて、
     前記ガス化炉内の空塔速度は、乾燥された乾燥原料が落下しない空塔速度であることを特徴とする湿潤原料供給設備。
    In any one of claims 1 to 4,
    A wet raw material supply facility characterized in that the superficial velocity in the gasification furnace is a superficial velocity at which dried dry feedstock does not fall.
  6.  請求項1において、
     前記乾燥装置が、湿潤原料を乾燥する流動層乾燥室を有する流動層乾燥装置であり、
     該流動層乾燥装置の一端側に、前記粉砕機から粉砕された湿潤原料を投入する湿潤原料投入ラインと、
     前記流動層乾燥室の下部に流動化ガスを供給することで湿潤原料と共に流動層を形成する流動化ガス供給ラインと、
     前記流動層乾燥装置の上方から流動化ガス及び発生蒸気を排出するガス排出ラインと、
     前記流動層内に供給された粉砕された湿潤原料を加熱する加熱部と、
     前記湿潤原料投入ラインと異なる側の流動層の上部近傍から加熱乾燥した微粒の乾燥原料を排出する微粒乾燥原料排出ラインと、
     前記湿潤原料投入ラインと異なる側の流動層の底部近傍から加熱乾燥した粗粒の乾燥原料を排出する粗粒乾燥原料排出ラインと、を具備してなり、
     微粒乾燥原料排出ラインから排出される微粒の乾燥原料を前記乾燥原料供給ラインによりガス化炉側に供給することを特徴とする湿潤原料供給設備。
    In claim 1,
    The drying device is a fluid bed drying device having a fluid bed drying chamber for drying the wet material,
    A wet material feeding line for feeding the wet material pulverized from the crusher to one end of the fluidized bed drying apparatus;
    A fluidizing gas supply line that forms a fluid bed with the wet material by supplying fluidizing gas to the lower part of the fluid bed drying chamber;
    A gas discharge line for discharging fluidizing gas and generated steam from above the fluidized bed drying device;
    A heating unit that heats the pulverized wet raw material supplied into the fluidized bed;
    A particulate dry raw material discharge line which discharges a dry particulate dry material which has been heated and dried from the vicinity of the upper part of the fluidized bed different from the wet raw material feed line;
    And a coarse-grained dry material discharge line for discharging the coarse-grained dry material that has been heated and dried from the vicinity of the bottom of the fluid bed on the side different from the wet-material charging line.
    A wet raw material supply facility characterized in that the dry raw material of fine particles discharged from the fine particle dry raw material discharge line is supplied to the gasification furnace side by the dry raw material supply line.
  7.  請求項6において、
     分離した粗粒の乾燥原料を前記湿潤原料投入ライン近傍から流動層乾燥室内に供給する粗粒乾燥原料循環ラインを有することを特徴とする湿潤原料供給設備。
    In claim 6,
    What is claimed is: 1. A wet raw material supply facility characterized by comprising a coarse-grained dry material circulation line for supplying separated coarse-grained dry material into the fluidized bed drying chamber from the vicinity of the wet material feed line.
  8.  請求項1乃至7のいずれか一つの湿潤原料供給設備と、
     湿潤原料供給設備から供給される乾燥された乾燥原料を処理してガス化ガスに変換するガス化炉と、
     前記ガス化ガスを燃料として運転されるガスタービン(GT)と、
     前記ガスタービンからのタービン排ガスを導入する排熱回収ボイラで生成した蒸気により運転される蒸気タービン(ST)と、
     前記ガスタービン及び/又は前記蒸気タービンと連結された発電機(G)とを具備することを特徴とする湿潤原料を用いたガス化複合発電システム。
     
    The wet raw material supply facility according to any one of claims 1 to 7.
    A gasification furnace that processes dried dry raw material supplied from the wet raw material supply facility and converts it into gasified gas;
    A gas turbine (GT) operated using the gasified gas as a fuel;
    A steam turbine (ST) operated by steam generated by a waste heat recovery boiler for introducing turbine exhaust gas from the gas turbine;
    An integrated gasification combined cycle system using a wet raw material, comprising: a generator (G) connected to the gas turbine and / or the steam turbine.
PCT/JP2012/058178 2011-03-31 2012-03-28 Wet material supplying facility and gasification composite power generation system using wet material WO2012133549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012233514A AU2012233514A1 (en) 2011-03-31 2012-03-28 Wet material supplying facility and gasification composite power generation system using wet material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-079787 2011-03-31
JP2011-079788 2011-03-31
JP2011079787A JP2012214578A (en) 2011-03-31 2011-03-31 Low-grade coal supplying facility and gasification composite power generation system using the low-grade coal
JP2011079788A JP5922338B2 (en) 2011-03-31 2011-03-31 Fluidized bed drying equipment and gasification combined cycle power generation system using fluidized bed drying equipment

Publications (1)

Publication Number Publication Date
WO2012133549A1 true WO2012133549A1 (en) 2012-10-04

Family

ID=46931257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058178 WO2012133549A1 (en) 2011-03-31 2012-03-28 Wet material supplying facility and gasification composite power generation system using wet material

Country Status (2)

Country Link
AU (1) AU2012233514A1 (en)
WO (1) WO2012133549A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891771A1 (en) * 2013-09-20 2015-07-08 RWE Power Aktiengesellschaft Method for refining crude lignite
CN106642181A (en) * 2016-11-27 2017-05-10 宁波高新区世代能源科技有限公司 Efficient energy-conserving and environment-friendly coal-fired boiler control system
CN107227175A (en) * 2016-03-24 2017-10-03 通用电气公司 System And Method For Gasification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153400B2 (en) * 1980-09-30 1986-11-17 Denryoku Chuo Kenkyujo
JPH08500850A (en) * 1992-05-08 1996-01-30 ステイト・エレクトリシテイ・コミツシヨン・オブ・ビクトリア Integrated method and apparatus for drying and gasifying carbonaceous fuels
JP2000296378A (en) * 1999-04-13 2000-10-24 Mitsubishi Heavy Ind Ltd Waste treatment
JP2005247930A (en) * 2004-03-02 2005-09-15 Takuma Co Ltd Gasification system, power generation system, gasification method and power generation method
JP2009066588A (en) * 2007-08-17 2009-04-02 Mitsui Eng & Shipbuild Co Ltd Waste treatment apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6153400B2 (en) * 1980-09-30 1986-11-17 Denryoku Chuo Kenkyujo
JPH08500850A (en) * 1992-05-08 1996-01-30 ステイト・エレクトリシテイ・コミツシヨン・オブ・ビクトリア Integrated method and apparatus for drying and gasifying carbonaceous fuels
JP2000296378A (en) * 1999-04-13 2000-10-24 Mitsubishi Heavy Ind Ltd Waste treatment
JP2005247930A (en) * 2004-03-02 2005-09-15 Takuma Co Ltd Gasification system, power generation system, gasification method and power generation method
JP2009066588A (en) * 2007-08-17 2009-04-02 Mitsui Eng & Shipbuild Co Ltd Waste treatment apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2891771A1 (en) * 2013-09-20 2015-07-08 RWE Power Aktiengesellschaft Method for refining crude lignite
CN107227175A (en) * 2016-03-24 2017-10-03 通用电气公司 System And Method For Gasification
CN106642181A (en) * 2016-11-27 2017-05-10 宁波高新区世代能源科技有限公司 Efficient energy-conserving and environment-friendly coal-fired boiler control system
CN106642181B (en) * 2016-11-27 2019-08-13 宁波高新区世代能源科技有限公司 The control system of coal-fired boiler of high-efficient energy-saving environment friendly

Also Published As

Publication number Publication date
AU2012233514A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
AU2012248415B2 (en) Fluidized bed drying apparatus and integrated coal gasification combined cycle system
AU2013201098B2 (en) Fluid bed drying apparatus, gasification combined power generating facility, and drying method
JP2014173789A (en) Low-grade coal drying facility and gasification hybrid power system
WO2012133549A1 (en) Wet material supplying facility and gasification composite power generation system using wet material
AU2012243826B2 (en) Fluidized bed drying apparatus
JP5748559B2 (en) Fluidized bed dryer
WO2012133309A1 (en) Fluidized bed drying device and fluidized bed drying equipment
JP5896821B2 (en) Gasification combined cycle system using fluidized bed drying equipment and coal
JP2012214578A (en) Low-grade coal supplying facility and gasification composite power generation system using the low-grade coal
JP5959879B2 (en) Drying system
JP5922338B2 (en) Fluidized bed drying equipment and gasification combined cycle power generation system using fluidized bed drying equipment
JP2014173790A (en) Low-grade coal drying facility and gasification hybrid power system
JP2013164182A (en) Fluidized bed drying facility, and integrated gasification combined cycle system
JP5812896B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP2012241992A (en) Drying system
JP5931505B2 (en) Fluidized bed drying apparatus, gasification combined power generation facility, and drying method
JP5851883B2 (en) Non-condensable gas exhaust system and gasification combined power generation facility
JP2013167378A (en) Fluidized bed drying equipment and gasification complex power generation system using coal
JP6008514B2 (en) Gas purification equipment for gasification gas
JP5777402B2 (en) Fluidized bed dryer
JP2013178031A (en) Fluidized bed drying equipment, gasification combined power generation system, wastewater treatment method, and lifetime determination method for activated carbon adsorption layer
JP2012241120A (en) Gasification system
JP2012233634A (en) Fluidized bed drying apparatus, and gasification composite power generation system using coal
JP2012241990A (en) Fluidized bed drying device
JP2012233635A (en) Fluidized bed drying apparatus and gasification composite power generation system using coal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765518

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012233514

Country of ref document: AU

Date of ref document: 20120328

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765518

Country of ref document: EP

Kind code of ref document: A1