JPS6153400B2 - - Google Patents

Info

Publication number
JPS6153400B2
JPS6153400B2 JP55135164A JP13516480A JPS6153400B2 JP S6153400 B2 JPS6153400 B2 JP S6153400B2 JP 55135164 A JP55135164 A JP 55135164A JP 13516480 A JP13516480 A JP 13516480A JP S6153400 B2 JPS6153400 B2 JP S6153400B2
Authority
JP
Japan
Prior art keywords
gas
turbine
power generation
coal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55135164A
Other languages
Japanese (ja)
Other versions
JPS5759992A (en
Inventor
Toshio Mimaki
Tsuneo Kitami
Tomohisa Fukada
Noboru Takanari
Kazuo Kuwabara
Hiroshi Ishikawa
Hiroshi Mizutani
Yoshimi Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP55135164A priority Critical patent/JPS5759992A/en
Publication of JPS5759992A publication Critical patent/JPS5759992A/en
Publication of JPS6153400B2 publication Critical patent/JPS6153400B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は石炭ガス化複合発電方式、特にその効
率の向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal gasification combined cycle power generation system, particularly to improving the efficiency thereof.

近年における深刻な石油事情に対処するため、
石油に代る化石燃料として豊富な石炭の活用が叫
ばれており、石炭火力の推進は電力事業にとつて
緊急の命題となりつつある。ところで石炭火力の
場合石炭の生焚が従来広く行われているが、この
方式の熱効率は周知のように約36〜37%(送電端
効率)程度であつて、これ以上の効率向上には大
きな期待をかけられないのが現状である。
In order to deal with the serious oil situation in recent years,
There are calls for the use of abundant coal as a fossil fuel to replace oil, and the promotion of coal-fired power generation is becoming an urgent imperative for the electric power industry. By the way, in the case of coal-fired power generation, raw coal combustion has traditionally been widely used, but as is well known, the thermal efficiency of this method is around 36 to 37% (transmission net efficiency), and it is difficult to improve efficiency further. The current situation is that we cannot have high expectations.

そこで最近石炭ガス化複合発電方式、即ち第1
図に示す概略系統図のように、粉砕機aからの粉
砕炭を用いてガス化炉bにより作られたガスを、
燃焼器cにより高温ガス化してガスタービンdに
加えて発電したのち、その排熱エネルギを排熱ボ
イラeによる熱交換により蒸気エネルギ化して、
例えばスチームタービンfを駆動して発電する、
所謂石炭ガス化複合発電方式が提唱されている。
この方式はガスタービンのガス温度を高くするこ
とにより高効率化が可能であつて、例えばその熱
効率は42%以上にも達する。従つて生焚方式に比
して効率的に最も得策であり、しかも省エネルギ
への貢献も著しい。また環境対策面においても有
利である。
Recently, coal gasification combined cycle power generation system, i.e.
As shown in the schematic system diagram shown in the figure, the gas produced by the gasifier b using the crushed coal from the crusher a is
After converting it into high-temperature gas in the combustor c and adding it to the gas turbine d to generate electricity, the exhaust heat energy is converted into steam energy by heat exchange in the exhaust heat boiler e,
For example, driving a steam turbine f to generate electricity,
A so-called coal gasification combined cycle system has been proposed.
This system can achieve high efficiency by increasing the gas temperature of the gas turbine, and its thermal efficiency reaches, for example, 42% or more. Therefore, it is the most efficient method compared to the green-fired method, and it also makes a significant contribution to energy savings. It is also advantageous in terms of environmental measures.

しかしこの方式では石油を燃料とする場合に見
ることのできない、ガス化ガスの処理過程を必要
とする。このため石油による場合に比べて、その
分だけ熱効率の低下を生ずるのをまぬがれること
ができない。即ち石炭のガス化によつて得られた
ガス中には、多量の粉塵および硫黄分が含有され
ており、このままではガスタービンの燃料として
利用できない。そのため第1図中に示すように、
一旦サイクロンのような粉塵分離器gに通して粗
大粉塵を除去したのち、集塵装置例えば電気集塵
装置hを用いて除塵を行つたものを、脱硫装置i
を介してガスタービンdの燃焼器cに送給するこ
とが行われている。しかし一般に石炭ガス化炉出
口のガスは温度が1000℃以上、圧力が10Kg/cm2
上の高温高圧である。従つて従来のイオン化線、
対向電極などからなる電気集塵装置では、イオン
化線その他要部部材の熱的損傷、或いは風速の大
なることにもとづく粉塵捕集効率の低下などによ
り、高性能の集塵が困難であり、また脱硫部の熱
的損傷を招く。従つてガス化されたガスの温度圧
力を集塵装置などの動作温度条件、能力などに合
わせて少なくとも500℃ぐらいまで低下すること
が必要となり、その低下量を充分回収しなけれ
ば、プラント効率を低下することになる。
However, this method requires a gasification process that cannot be done when using petroleum as fuel. For this reason, compared to the case of using petroleum, it is impossible to avoid a corresponding decrease in thermal efficiency. That is, the gas obtained by gasifying coal contains a large amount of dust and sulfur, and cannot be used as fuel for a gas turbine. Therefore, as shown in Figure 1,
After passing through a dust separator g such as a cyclone to remove coarse dust, the dust is removed using a dust collector such as an electrostatic precipitator h.
The gas is fed to the combustor c of the gas turbine d via the combustor c of the gas turbine d. However, the gas at the outlet of a coal gasifier is generally high temperature and high pressure, with a temperature of 1000°C or higher and a pressure of 10 kg/cm 2 or higher. Therefore, the conventional ionization line,
With electrostatic precipitators consisting of counter electrodes, it is difficult to achieve high performance dust collection due to thermal damage to ionization wires and other important components, or a decrease in dust collection efficiency due to high wind speeds. This will cause thermal damage to the desulfurization section. Therefore, it is necessary to reduce the temperature and pressure of the gasified gas to at least 500°C depending on the operating temperature conditions and capacity of the dust collector, etc., and if this reduced amount is not recovered sufficiently, the plant efficiency will be reduced. This will result in a decline.

本発明は上記のようなガス化ガスの高い熱、高
い圧力ポテンシヤルを有効に利用しながら、温度
などを集塵装置などの動作条件に一致させるよう
にし、しかもこれによりガス化側と発電側との独
立性を高めて、系統運用上の自由度を増すことが
できる、プラント効率の高い石炭ガス化複合発電
方法の提供を目的とするものである。次に図面を
用いてその詳細を説明する。
The present invention makes effective use of the high heat and high pressure potential of the gasification gas as described above, and matches the temperature etc. with the operating conditions of the dust collector, etc., and thereby allows the gasification side and the power generation side to The purpose of this project is to provide a highly efficient coal gasification combined cycle power generation method that can increase the independence of systems and increase the degree of freedom in system operation. Next, the details will be explained using the drawings.

本発明は石炭ガス化ガスのように高温かつ粉塵
を含有する燃料、所謂高温のダーテイ含有ガスの
もつ、高エネルギーを回収するための熱交換器を
ガス化炉の出力部に設けて、スチームタービン動
力として取出して発電することにより、従来の石
炭ガス化複合発電方式におけるより、より高い効
率をプラントに持たせることができるようにしな
がら、発電量の調節によりガス温度などを集塵装
置の動作条件に合わせるようにしたものである。
The present invention provides a steam turbine by installing a heat exchanger in the output section of the gasifier to recover the high energy of high-temperature and dust-containing fuel such as coal gasification gas, so-called high-temperature dirty gas. By extracting power as power and generating it, the plant can have higher efficiency than the conventional combined coal gasification combined cycle system, while adjusting the amount of power generated to adjust the operating conditions of the dust collector, such as gas temperature. It was designed to match.

第2図は本発明の一実施例系統図であつて、図
において1は石炭の粉砕機、2は乾燥器、3はガ
ス化炉、4はその灰処理装置、5はサイクロン集
塵器、6は集塵装置、7はその塵処理装置、8は
脱硫装置、9は大出力、高効率タービン部で、次
の各部から形成される。10の燃焼器、11は圧
縮機、12はガスタービン、13は発電機、14
は中間空気冷却器である。15は排熱ボイラ、1
6は高効率スチームタービン部で、次の各部から
形成される。17は高圧タービン、18は中圧タ
ービン、19は発電機、20は給水加熱器、21
は復水器である。22は本発明のために設けた熱
交換器、23はスチームタービン、24は発電機
である。なお25は空気供給系統、26は水また
は蒸気供給系統で、本発明のための熱回収用スチ
ームタービン23としては、炭種による熱回収量
の変化により、容易に出力を変えうるものが使用
される。そして熱交換器22にはサイクロン集塵
器5を介して、ガス化炉3からの高温高圧のガス
化ガスG1が送給されて発電が行われ、また発電
量の調整により集塵装置6などの動作条件に一致
するような温度などとする。一方その排ガスG2
は集塵装置6によつて除塵され、脱硫装置8によ
り脱硫されて精製され、そのガスG3は大出力、
高効率ガスタービン9、更にはスチームタービン
16に加えられて発電が行われる。
FIG. 2 is a system diagram of one embodiment of the present invention, in which 1 is a coal crusher, 2 is a dryer, 3 is a gasifier, 4 is its ash processing device, 5 is a cyclone dust collector, 6 is a dust collector, 7 is its dust treatment device, 8 is a desulfurization device, and 9 is a high-output, high-efficiency turbine section, which is formed from the following parts. 10 combustors, 11 compressors, 12 gas turbines, 13 generators, 14
is an intermediate air cooler. 15 is a waste heat boiler, 1
6 is a high-efficiency steam turbine section, which is formed from the following parts. 17 is a high pressure turbine, 18 is an intermediate pressure turbine, 19 is a generator, 20 is a feed water heater, 21
is a condenser. 22 is a heat exchanger provided for the present invention, 23 is a steam turbine, and 24 is a generator. Note that 25 is an air supply system, and 26 is a water or steam supply system.The steam turbine 23 for heat recovery used in the present invention is one whose output can be easily changed by changing the amount of heat recovery depending on the type of coal. Ru. The heat exchanger 22 is supplied with the high-temperature, high-pressure gasified gas G 1 from the gasification furnace 3 via the cyclone dust collector 5 to generate electricity, and the dust collector 6 is also fed by adjusting the amount of power generation. The temperature shall be such that it matches the operating conditions such as. Meanwhile its exhaust gas G 2
The gas G3 is removed by the dust collector 6, desulfurized and purified by the desulfurizer 8, and the gas G3 has a high output.
It is added to the high-efficiency gas turbine 9 and further to the steam turbine 16 to generate electricity.

以上の説明から明らかなように、本発明では石
炭ガス化ガスのもつ、高い熱と圧力ポテンシヤル
を熱交換器を介してスチームタービン動力として
有効利用しながら、集塵装置の動作に必要とする
条件まで、ガス化ガスの温度などを合わせるよう
にしている。従つてそれだけ複合発電プラントの
熱効率を向上して省エネルギに貢献できる。また
2系統の発電系統が形成されることから、例えば
ガス化炉の出力ガスによつて発電するスチームタ
ービンの発電量を、所内動力や蓄電池の充電量に
振り向けることにより、負荷変動に容易に対応で
きるなど、系統運用上の自由度が大となる効果が
得られるもので、石炭ガス化複合発電システムの
実現に大きな推進力を与えるものである。
As is clear from the above description, in the present invention, the high heat and pressure potential of coal gasification gas is effectively utilized as steam turbine power through a heat exchanger, while meeting the conditions necessary for the operation of the dust collector. We are trying to match the temperature of the gasification gas until then. Therefore, it is possible to improve the thermal efficiency of the combined cycle power plant and contribute to energy saving. In addition, since two power generation systems are formed, for example, by allocating the power generated by the steam turbine that generates electricity using the output gas of the gasifier to the in-house power or the charging amount of the storage battery, it is possible to easily respond to load fluctuations. This has the effect of increasing the degree of freedom in system operation, such as the ability to adapt to various conditions, and will provide a major impetus to the realization of a coal gasification combined cycle power generation system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石炭ガス化複合発電方式の概略系統
図、第2図は本発明の一実施例を示す系統図であ
る。 1……石炭の粉砕機、2……乾燥器、3……ガ
ス化炉、4……その灰処理装置、5……サイクロ
ン集塵器、6……集塵装置、7……その灰処理装
置、8……脱硫装置、9……大出力、高効率ター
ビン部、10……燃焼器、11……圧縮機、12
……ガスタービン、13……発電機、14……中
間空気冷却器、15……排熱ボイラ、16……高
効率スチームタービン、19……発電機、20…
…給水加熱器、21……復水器、22……熱交換
器、23……熱回収用スチームタービン、24…
…発電機、25……空気供給系統、26……水ま
たは蒸気供給系統。
FIG. 1 is a schematic system diagram of a coal gasification combined cycle system, and FIG. 2 is a system diagram showing an embodiment of the present invention. 1... Coal crusher, 2... Dryer, 3... Gasifier, 4... Ash processing equipment, 5... Cyclone dust collector, 6... Dust collector, 7... Ash processing Device, 8... Desulfurization device, 9... High output, high efficiency turbine section, 10... Combustor, 11... Compressor, 12
... Gas turbine, 13 ... Generator, 14 ... Intermediate air cooler, 15 ... Exhaust heat boiler, 16 ... High efficiency steam turbine, 19 ... Generator, 20 ...
...Feed water heater, 21... Condenser, 22... Heat exchanger, 23... Steam turbine for heat recovery, 24...
... Generator, 25 ... Air supply system, 26 ... Water or steam supply system.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭ガス化複合発電において、ガス化炉出口
部に熱交換装置を設けて、その熱回収蒸気出力に
より熱回収用スチームタービンを駆動して発電す
ると共に、その発電量を制御することにより熱交
換器出口のガス温度等を集塵装置等ガス精製過程
の最適処理条件となるように制御して、精製した
のち、そのガスをガスタービンとスチームタービ
ンなどよりなる複合発電部に導びき発電して、プ
ラント効率の向上を図ることを特徴とする石炭ガ
ス化複合発電方式。
1. In coal gasification combined cycle power generation, a heat exchange device is installed at the outlet of the gasifier, and the heat recovery steam output is used to drive a heat recovery steam turbine to generate electricity, and the heat exchange is performed by controlling the amount of electricity generated. After purifying the gas by controlling the temperature of the gas at the outlet of the device to achieve the optimum processing conditions for the gas purification process, such as using a dust collector, the gas is led to a combined power generation unit consisting of a gas turbine and a steam turbine to generate electricity. , a coal gasification combined cycle system that is characterized by improving plant efficiency.
JP55135164A 1980-09-30 1980-09-30 Compound electricity generation by coal gasification Granted JPS5759992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55135164A JPS5759992A (en) 1980-09-30 1980-09-30 Compound electricity generation by coal gasification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55135164A JPS5759992A (en) 1980-09-30 1980-09-30 Compound electricity generation by coal gasification

Publications (2)

Publication Number Publication Date
JPS5759992A JPS5759992A (en) 1982-04-10
JPS6153400B2 true JPS6153400B2 (en) 1986-11-17

Family

ID=15145315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55135164A Granted JPS5759992A (en) 1980-09-30 1980-09-30 Compound electricity generation by coal gasification

Country Status (1)

Country Link
JP (1) JPS5759992A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149566U (en) * 1988-04-06 1989-10-17
WO2012133549A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Wet material supplying facility and gasification composite power generation system using wet material
JP2012214578A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Low-grade coal supplying facility and gasification composite power generation system using the low-grade coal
JP2012215326A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Fluidized bed drying facility and integrated gasification composite power generation system using fluidized bed drying facility
CN105569746A (en) * 2016-01-28 2016-05-11 上海电力股份有限公司 Ultralow-concentration gas oxidation power generation and coal slime drying, refrigeration and heating integration system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662963B2 (en) * 1989-12-26 1994-08-17 川崎製鉄株式会社 Operating method of flammable gas generator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GWF-GAS ERDGAS=1980 *
STAHL UND EISEN=1980 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149566U (en) * 1988-04-06 1989-10-17
WO2012133549A1 (en) * 2011-03-31 2012-10-04 三菱重工業株式会社 Wet material supplying facility and gasification composite power generation system using wet material
JP2012214578A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Low-grade coal supplying facility and gasification composite power generation system using the low-grade coal
JP2012215326A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Fluidized bed drying facility and integrated gasification composite power generation system using fluidized bed drying facility
CN105569746A (en) * 2016-01-28 2016-05-11 上海电力股份有限公司 Ultralow-concentration gas oxidation power generation and coal slime drying, refrigeration and heating integration system

Also Published As

Publication number Publication date
JPS5759992A (en) 1982-04-10

Similar Documents

Publication Publication Date Title
US4261167A (en) Process for the generation of power from solid carbonaceous fuels
US4756722A (en) Device for gasifying coal
JP2954972B2 (en) Gasification gas combustion gas turbine power plant
US4651519A (en) Combined gas-turbine plant preceded by a coal gasification plant
JP2000073706A (en) Coal gasification combined cycle power generation plant
CN106497609A (en) Band CO2Gasification furnace coal powder conveying system and method in the IGCC system of trapping
US4503681A (en) State-of-the-art gas turbine and steam turbine power plant
US6314715B1 (en) Modified fuel gas turbo-expander for oxygen blown gasifiers and related method
JPS6153400B2 (en)
US4444007A (en) Method for combined cycle electrical power generation
RU2105040C1 (en) Combined steam-gas plant with coal plasmathermal gasification
CN113623033A (en) IGCC system adopting air gasification and working method thereof
JPH1082306A (en) Gasification compound power generating installation
CN102374538A (en) Garbage-incinerating circulated power-generating system
US5895507A (en) Diesel or dual-fuel engine and black liquor gasifier combined cycle
RU2250872C1 (en) Combined method of electric power and a liquid synthetic fuel production by gas turbine and steam-gas installations
JPS6329720B2 (en)
JP2870929B2 (en) Integrated coal gasification combined cycle power plant
JPH11257094A (en) Coal gasification power generation system
JPS61114009A (en) Coal supplying method and apparatus for coal gasification electric power plant
JP3787820B2 (en) Gasification combined power generation facility
CN114542221A (en) Device system and method for power station peak shaving and sludge drying energy storage
RU2211927C1 (en) Method of and installation for thermal treatment of brown coal with production of electric energy
CN216720932U (en) Frequency modulation power supply and power generation system based on internal combustion engine
CN219972202U (en) Pyrolysis power generation integrated arrangement structure