JP3787820B2 - Gasification combined power generation facility - Google Patents

Gasification combined power generation facility Download PDF

Info

Publication number
JP3787820B2
JP3787820B2 JP2888696A JP2888696A JP3787820B2 JP 3787820 B2 JP3787820 B2 JP 3787820B2 JP 2888696 A JP2888696 A JP 2888696A JP 2888696 A JP2888696 A JP 2888696A JP 3787820 B2 JP3787820 B2 JP 3787820B2
Authority
JP
Japan
Prior art keywords
gas
nitrogen
saturation
facility
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2888696A
Other languages
Japanese (ja)
Other versions
JPH09222031A (en
Inventor
敬一郎 橋本
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP2888696A priority Critical patent/JP3787820B2/en
Publication of JPH09222031A publication Critical patent/JPH09222031A/en
Application granted granted Critical
Publication of JP3787820B2 publication Critical patent/JP3787820B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gasification composite generating equipment to increase the output of a gas turbine and reduce the generation of NOx by a combustor without lowering the output of a steam turbine. SOLUTION: Gasification compound generating equipment is formed such that a saturation equipment 5 for fuel gas is provided to humidity fuel gas, in which hydrocarbon fuel is gasified, with steam provided and humidified fuel gas is fed to the combustor 6a of a gas turbine. The gasification compound generating equipment comprises saturation equipment 12 for nitrogen to moisten nitrogen, which is separated, from air with steam; and a nitrogen gas injection line 14 to feed moistened nitrogen gas to the combustor of the gas turbine. Each of the saturation equipment for fuel gas and saturation equipment for nitrogen is provided with a hot water circulation line 13 common to respectively independent multistage contact towers 5a and 12a.

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素系燃料をガス化してガスタービンの燃料にするガス化複合発電設備に関する。
【0002】
【従来の技術】
図2は、従来のガス化複合発電設備のフロー図である。石炭,重質油等の炭化水素系燃料をガス化設備1で水蒸気と酸素ガスを用いてガス化して粗製ガスにし、これを脱塵装置2で脱塵し、粗ガスクーラ3で冷却し湿式脱硫設備4で脱硫してサチュレーション設備5に供給し、更に加湿された燃料ガスをガスタービン発電機6の燃焼器6aに供給する。一方、ガスタービン発電機6の過剰空気が抽気されて空気分離器7に供給され、抽気空気と大気から空気分離装置7により酸素を分離し、この酸素をガス化設備1に供給してガス化用に供し、分離された窒素ガスはガスタービンの燃焼器に供給される。
【0003】
ガスタービン発電設備6では、圧縮器6bで加圧された圧縮空気により燃料ガスが燃焼し、加湿水蒸気と窒素ガスで増量された燃焼ガスによりガスタービン6cを駆動して発電機6dにより発電し、ガスタービン6cの排ガスは排熱回収ボイラ8に供給されて水蒸気を発生させ、この水蒸気により蒸気タービン9を駆動して発電し、更に排ガスより熱回収して給水加熱し、加熱された給水の一部がサチュレーション設備5に供給されて加湿に用いられる。
【0004】
サチュレーション設備5は、ガスと水が接触する多段接触塔5aと熱水を循環させるポンプ5bからなり、低温(例えば約40℃)で流入する燃料ガスを約150℃前後の熱水を用いて約140℃前後まで加熱するとともに、この温度における飽和点まで水蒸気を加湿している。
【0005】
【発明が解決しようとする課題】
上述した従来のガス化複合発電設備では、サチュレーション設備5により燃料ガスを昇温及び加湿することにより、燃焼器6aによる燃焼ガスの流量を増加させてガスタービン発電設備6の出力を増大させ、同時に加湿された水蒸気により燃焼器6aにおけるNOx 発生量を低減している。
【0006】
しかし、かかる従来のガス化複合発電設備では、空気分離装置7からの窒素ガスによる増量を加えても、出力増加は約10%程度にすぎず、かつ燃料ガス中の飽和蒸気量だけでは、NOx 低減も十分ではない問題点があった。
そのため、排熱回収ボイラ8で発生する水蒸気を燃焼器6aに直接噴射してガスタービンの出力増大とNOx 低減を図ることも考えられるが、この場合には、過熱水蒸気を消費するので蒸気タービン9の出力低下を招き、発電効率が低下する問題点があった。
【0007】
本発明は上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、蒸気タービンの出力を低下させることなく、ガスタービンの出力増加と燃焼器による低NOx 化を図ることができるガス化複合発電設備を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、炭化水素系燃料をガス化した燃料ガスに水蒸気を加湿する燃料ガス用サチュレーション設備を備え、加湿した燃料ガスをガスタービンの燃焼器に供給するガス化複合発電設備において、空気分離した窒素ガスに水蒸気を加湿する窒素用サチュレーション設備と、加湿した窒素ガスをガスタービンの燃焼器に供給する窒素ガス噴射ラインと、を更に備え、前記燃料ガス用サチュレーション設備と窒素用サチュレーション設備は、それぞれ独立した多段接触塔と共通の熱水循環ラインを備える、ことを特徴とするガス化複合発電設備が提供される。
【0010】
上記本発明の構成によれば、空気分離設備により大量に発生する窒素ガスに窒素用サチュレーション設備により飽和水蒸気を大量に加湿することができ、窒素ガス噴射ラインにより飽和水蒸気を含んだ大量の窒素ガスをガスタービンの燃焼器に噴射することができる。従って、燃焼器による燃焼ガスの流量を大幅に増加させてガスタービン発電設備の出力を増大させ、同時に加湿された大量の水蒸気により燃焼器におけるNOx 発生量を更に低減することができる。
【0011】
また、排熱回収ボイラと蒸気タービンに供給されるガスタービンの排ガス流量も増大するため、排熱回収ボイラによる蒸気量と蒸気タービンの発電出力も増大する。更に、窒素用サチュレーション設備は、蒸気タービンの排熱で加熱された給水の一部が用いられるので、排熱回収ボイラで発生した水蒸気を全て発電等に有効利用することができ、発電効率も高めることができる。
【0012】
更に、燃料ガス用サチュレーション設備と窒素用サチュレーション設備が、それぞれ独立した多段接触塔と共通の熱水循環ラインを備えることにより、それぞれのサチュレーション設備を最適条件で運転することができると共に、熱水循環ポンプ等の数量を低減し、設備の簡素化を図ることができる。
【0013】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し重複した説明を省略する。
図1は、本発明によるガス化複合発電設備の全体フロー図である。この図において、ガス化複合発電設備10は、炭化水素系燃料をガス化した燃料ガスに水蒸気を加湿する燃料ガス用サチュレーション設備5を備え、加湿した燃料ガスをガスタービン6の燃焼器6aに供給するようになっている。かかる構成は図2に示した従来のガス化複合発電設備と同様である。
【0014】
本発明のガス化複合発電設備10は、空気分離装置7により空気分離した窒素ガスに水蒸気を加湿する窒素用サチュレーション設備12と、この設備により加湿した窒素ガスをガスタービン6の燃焼器6aに供給する窒素ガス噴射ライン14と、を更に備えている。
【0015】
図1に示すように、燃料ガス用サチュレーション設備5と窒素用サチュレーション設備12は、それぞれ独立した多段接触塔5a,12aと共通の熱水循環ライン13とを備えている。熱水循環ライン13には、共通ポンプ13aが設置され、このポンプ13aにより、多段接触塔5aの循環水をその下部から取り出し上部に供給すると共に、多段接触塔12aの循環水もその下部から取り出し上部に供給するようになっている。
【0016】
窒素用サチュレーション設備12には、窒素ライン12bを介して空気分離装置7により分離された窒素ガスが供給され、窒素用サチュレーション設備12で加湿された窒素ガスは、窒素ガス噴射ライン14により燃焼器6aに噴射されるようになっている。なお、図1において、15a,15b,15c,15dはそれぞれ熱交換器である。
【0017】
図1のガス化複合発電設備10は、以下のように作動する。
▲1▼石炭,重質油等の炭化水素系燃料をガス化設備1で水蒸気と酸素ガスを用いてガス化した粗製ガスは、脱塵装置2で脱塵され、熱交換器15a,15bで冷却されて粗ガスクーラ3に入り、ここで更に冷却され湿式脱硫設備4で脱硫されて約40℃の燃料ガス(精製ガス)となり、サチュレーション設備5に供給され、ここで加湿され熱交換器15aで加熱されてガスタービン発電機6の燃焼器6aに供給される。
【0018】
▲2▼一方、ガスタービン発電機6の過剰空気の一部は抽気され、熱交換器15c,15dで冷却されて空気分離器7に供給され、空気分離装置7により分離された酸素はガス化設備1に供給され、余剰窒素ガスは約165℃の温度で窒素ライン12bを介して窒素用サチュレーション設備12に供給される。
▲3▼窒素用サチュレーション設備12では、熱水循環ライン13の共通ポンプ13aにより、多段接触塔12aの循環水がその下部から取り出し上部に供給されており、多段接触塔12aの内部で循環水と窒素ガスが気液接触し、窒素ガス中に飽和点まで水蒸気を加湿する。
【0019】
▲4▼水蒸気を加湿された窒素ガスは、窒素ガス噴射ライン14を介して熱交換器15cで予熱されて燃焼器6aに噴射される。ガスタービン発電設備6では、圧縮器6bで加圧された圧縮空気により燃料ガスが燃焼し、加湿水蒸気と窒素ガスで増量された燃焼ガスによりガスタービン6cを駆動して発電機6dにより発電し、ガスタービン6cの排ガスは排熱回収ボイラ8に供給されて水蒸気を発生させ、この水蒸気により蒸気タービン9を駆動して発電し、更に排ガスより熱回収して給水加熱し、加熱された給水の一部がサチュレーション設備5及び窒素用サチュレーション設備12に供給されて加湿に用いられる。
【0020】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更できることは勿論である。
【0021】
【発明の効果】
上述した本発明のガス化複合発電設備10によれば、空気分離設備7により大量に発生する窒素ガスに窒素用サチュレーション設備12により飽和水蒸気を大量に加湿することができ、窒素ガス噴射ライン14により飽和水蒸気を含んだ大量の窒素ガスをガスタービンの燃焼器6aに噴射することができる。従って、燃焼器6aによる燃焼ガスの流量を大幅に増加させてガスタービン発電設備6の出力を増大させ、同時に加湿された大量の水蒸気により燃焼器6aにおけるNOx 発生量を更に低減することができる。
【0022】
また、排熱回収ボイラ8と蒸気タービン9に供給されるガスタービンの排ガス流量も増大するため、排熱回収ボイラ8による蒸気量と蒸気タービンの発電出力も増大する。更に、窒素用サチュレーション設備12は、蒸気タービンの排熱で加熱された給水の一部が用いられるので、排熱回収ボイラ8で発生した水蒸気を全て発電等に有効利用することができ、発電効率も高めることができる。
【0023】
更に、燃料ガス用サチュレーション設備5と窒素用サチュレーション設備12が、それぞれ独立した多段接触塔5a,12aと共通の熱水循環ライン13を備えることにより、それぞれのサチュレーション設備を最適条件で運転することができると共に、熱水循環ポンプ13a等の数量を低減し、設備の簡素化を図ることができる。
【0024】
従って、本発明のガス化複合発電設備は、蒸気タービンの出力を低下させることなく、ガスタービンの出力増加と燃焼器による低NOx 化を図ることができる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明によるガス化複合発電設備の全体フロー図である。
【図2】従来のガス化複合発電設備のフロー図である。
【符号の説明】
1 ガス化設備
2 脱塵装置
3 粗ガスクーラ
4 湿式脱硫設備
5 サチュレーション設備
5a 多段接触塔
5b ポンプ
6 ガスタービン発電機
6a 燃焼器
6b 圧縮器
6c ガスタービン
6d 発電機
7 空気分離器
8 排熱回収ボイラ
9 蒸気タービン
10 ガス化複合発電設備
12 窒素用サチュレーション設備
12a 多段接触塔
12b 窒素ライン
13 熱水循環ライン
13a 共通ポンプ
14 窒素ガス噴射ライン
15a,15b,15c,15d 熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combined gasification power generation facility that gasifies a hydrocarbon-based fuel into fuel for a gas turbine.
[0002]
[Prior art]
FIG. 2 is a flow diagram of a conventional gasification combined power generation facility. Hydrocarbon fuels such as coal and heavy oil are gasified using steam and oxygen gas in the gasification facility 1 to form crude gas, which is dedusted by the dust removing device 2, cooled by the crude gas cooler 3, and wet desulfurized. The sulfur is desulfurized by the equipment 4 and supplied to the saturation equipment 5, and the humidified fuel gas is supplied to the combustor 6 a of the gas turbine generator 6. On the other hand, excess air from the gas turbine generator 6 is extracted and supplied to the air separator 7, oxygen is separated from the extracted air and the atmosphere by the air separation device 7, and this oxygen is supplied to the gasification facility 1 for gasification. The separated and separated nitrogen gas is supplied to the combustor of the gas turbine.
[0003]
In the gas turbine power generation facility 6, the fuel gas is combusted by the compressed air pressurized by the compressor 6b, the gas turbine 6c is driven by the combustion gas increased by the humidified water vapor and nitrogen gas, and the power is generated by the generator 6d. The exhaust gas from the gas turbine 6c is supplied to the exhaust heat recovery boiler 8 to generate steam, and the steam turbine 9 is driven by the steam to generate electric power. Further, heat is recovered from the exhaust gas and heated to feed water. The part is supplied to the saturation equipment 5 and used for humidification.
[0004]
The saturation equipment 5 includes a multi-stage contact tower 5a in which gas and water are in contact with each other and a pump 5b in which hot water is circulated. A fuel gas flowing in at a low temperature (for example, about 40 ° C.) is heated to about 150 ° C. While heating to around 140 ° C., the steam is humidified to the saturation point at this temperature.
[0005]
[Problems to be solved by the invention]
In the conventional combined gasification power generation facility described above, the temperature of the fuel gas is increased and humidified by the saturation facility 5, thereby increasing the flow rate of the combustion gas by the combustor 6a and increasing the output of the gas turbine power generation facility 6. The amount of NOx generated in the combustor 6a is reduced by the humidified water vapor.
[0006]
However, in such a conventional combined gasification power generation facility, even if an increase due to nitrogen gas from the air separation device 7 is added, the output increase is only about 10%, and the amount of saturated steam in the fuel gas alone will cause NOx. There was a problem that the reduction was not sufficient.
Therefore, it is conceivable that the steam generated in the exhaust heat recovery boiler 8 is directly injected into the combustor 6a to increase the output of the gas turbine and reduce NOx. In this case, however, the steam turbine 9 consumes superheated steam. As a result, the power generation efficiency is reduced.
[0007]
The present invention has been developed to solve the above-described problems. That is, an object of the present invention is to provide a combined gasification power generation facility capable of increasing the output of a gas turbine and reducing NOx by a combustor without reducing the output of the steam turbine.
[0008]
[Means for Solving the Problems]
According to the present invention, in a gasification combined power generation facility including a fuel gas saturation facility for humidifying water vapor to a fuel gas obtained by gasifying a hydrocarbon-based fuel, and supplying the humidified fuel gas to a combustor of a gas turbine, A nitrogen saturation facility for humidifying water vapor into the separated nitrogen gas; and a nitrogen gas injection line for supplying the humidified nitrogen gas to a combustor of the gas turbine, wherein the fuel gas saturation facility and the nitrogen saturation facility are There is provided a combined gasification power generation facility comprising a multi-stage contact tower and an independent hot water circulation line .
[0010]
According to the configuration of the present invention, a large amount of saturated water vapor can be humidified by a nitrogen saturation facility to a large amount of nitrogen gas generated by an air separation facility, and a large amount of nitrogen gas containing saturated water vapor can be obtained by a nitrogen gas injection line. Can be injected into the combustor of the gas turbine. Therefore, the flow rate of the combustion gas from the combustor can be greatly increased to increase the output of the gas turbine power generation facility, and at the same time, the amount of NOx generated in the combustor can be further reduced by the large amount of humidified water vapor.
[0011]
Moreover, since the exhaust gas flow rate of the gas turbine supplied to the exhaust heat recovery boiler and the steam turbine also increases, the amount of steam by the exhaust heat recovery boiler and the power generation output of the steam turbine also increase. Further, since the nitrogen saturation facility uses a part of the water supply heated by the exhaust heat of the steam turbine, all the steam generated in the exhaust heat recovery boiler can be effectively used for power generation and the like, and the power generation efficiency is also increased. be able to.
[0012]
Furthermore, the fuel gas saturation facility and the nitrogen saturation facility are provided with independent multi-stage contact towers and a common hot water circulation line, so that each saturation facility can be operated under optimum conditions, and hot water circulation The number of pumps can be reduced and the equipment can be simplified.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
FIG. 1 is an overall flow chart of a combined gasification power generation facility according to the present invention. In this figure, a combined gasification power generation facility 10 includes a fuel gas saturation facility 5 for humidifying water vapor to a fuel gas obtained by gasifying a hydrocarbon fuel, and supplies the humidified fuel gas to a combustor 6 a of a gas turbine 6. It is supposed to be. Such a configuration is the same as that of the conventional combined gasification power generation facility shown in FIG.
[0014]
The combined gasification power generation facility 10 of the present invention supplies a nitrogen saturation facility 12 for humidifying water vapor to the nitrogen gas separated by the air separation device 7, and supplies the nitrogen gas humidified by this facility to the combustor 6 a of the gas turbine 6. And a nitrogen gas injection line 14 for performing.
[0015]
As shown in FIG. 1, the fuel gas saturation equipment 5 and the nitrogen saturation equipment 12 include independent multi-stage contact towers 5 a and 12 a and a common hot water circulation line 13. The hot water circulation line 13 is provided with a common pump 13a. The pump 13a takes out the circulating water of the multistage contact tower 5a from its lower part and supplies it to the upper part, and also removes the circulating water of the multistage contact tower 12a from its lower part. It is designed to be supplied to the upper part.
[0016]
Nitrogen gas separated by the air separation device 7 is supplied to the nitrogen saturation facility 12 via the nitrogen line 12b, and the nitrogen gas humidified by the nitrogen saturation facility 12 is combusted by the nitrogen gas injection line 14 in the combustor 6a. Is to be injected. In addition, in FIG. 1, 15a, 15b, 15c, 15d is a heat exchanger, respectively.
[0017]
The gasification combined power generation facility 10 of FIG. 1 operates as follows.
(1) Crude gas obtained by gasifying hydrocarbon fuel such as coal and heavy oil in the gasification facility 1 using water vapor and oxygen gas is dedusted by the dust removing device 2, and is then removed by the heat exchangers 15a and 15b. It is cooled and enters the crude gas cooler 3, where it is further cooled and desulfurized by the wet desulfurization equipment 4 to become a fuel gas (refined gas) of about 40 ° C., which is supplied to the saturation equipment 5, where it is humidified by the heat exchanger 15 a. It is heated and supplied to the combustor 6 a of the gas turbine generator 6.
[0018]
(2) On the other hand, a part of excess air of the gas turbine generator 6 is extracted, cooled by the heat exchangers 15c and 15d, supplied to the air separator 7, and the oxygen separated by the air separator 7 is gasified. The excess nitrogen gas is supplied to the facility 1 and supplied to the nitrogen saturation facility 12 through the nitrogen line 12b at a temperature of about 165 ° C.
(3) In the nitrogen saturation facility 12, the circulating water of the multi-stage contact tower 12a is taken out from the lower part by the common pump 13a of the hot water circulation line 13, and supplied to the upper part. Nitrogen gas comes into gas-liquid contact, and steam is humidified in the nitrogen gas to the saturation point.
[0019]
(4) The nitrogen gas humidified with water vapor is preheated by the heat exchanger 15c through the nitrogen gas injection line 14 and injected into the combustor 6a. In the gas turbine power generation facility 6, the fuel gas is combusted by the compressed air pressurized by the compressor 6b, the gas turbine 6c is driven by the combustion gas increased by the humidified water vapor and nitrogen gas, and the power is generated by the generator 6d. The exhaust gas from the gas turbine 6c is supplied to the exhaust heat recovery boiler 8 to generate steam, and the steam turbine 9 is driven by the steam to generate electric power. Further, heat is recovered from the exhaust gas and heated to feed water. The portion is supplied to the saturation equipment 5 and the nitrogen saturation equipment 12 and used for humidification.
[0020]
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0021]
【The invention's effect】
According to the gasification combined power generation facility 10 of the present invention described above, a large amount of saturated water vapor can be humidified by the nitrogen saturation facility 12 to the nitrogen gas generated in a large amount by the air separation facility 7. A large amount of nitrogen gas containing saturated water vapor can be injected into the combustor 6a of the gas turbine. Therefore, the flow rate of the combustion gas from the combustor 6a can be significantly increased to increase the output of the gas turbine power generation facility 6, and at the same time, the amount of NOx generated in the combustor 6a can be further reduced by the large amount of humidified steam.
[0022]
Further, since the exhaust gas flow rate of the gas turbine supplied to the exhaust heat recovery boiler 8 and the steam turbine 9 also increases, the amount of steam by the exhaust heat recovery boiler 8 and the power generation output of the steam turbine also increase. Further, since the nitrogen saturation facility 12 uses a part of the feed water heated by the exhaust heat of the steam turbine, all the water vapor generated in the exhaust heat recovery boiler 8 can be used effectively for power generation, etc. Can also be increased.
[0023]
Further, the fuel gas saturation facility 5 and the nitrogen saturation facility 12 are provided with independent multi-stage contact towers 5a and 12a and a common hot water circulation line 13, respectively, so that each saturation facility can be operated under optimum conditions. In addition, the number of hot water circulation pumps 13a and the like can be reduced, and the equipment can be simplified.
[0024]
Therefore, the combined gasification power generation facility of the present invention has excellent effects such as an increase in the output of the gas turbine and a reduction in NOx by the combustor without reducing the output of the steam turbine.
[Brief description of the drawings]
FIG. 1 is an overall flow diagram of a combined gasification power generation facility according to the present invention.
FIG. 2 is a flow diagram of a conventional gasification combined power generation facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gasification equipment 2 Dedusting device 3 Coarse gas cooler 4 Wet desulfurization equipment 5 Saturation equipment 5a Multistage contact tower 5b Pump 6 Gas turbine generator 6a Combustor 6b Compressor 6c Gas turbine 6d Generator 7 Air separator 8 Waste heat recovery boiler 9 Steam Turbine 10 Gasification Combined Cycle Power Generation Facility 12 Nitrogen Saturation Facility 12a Multistage Contact Tower 12b Nitrogen Line 13 Hot Water Circulation Line 13a Common Pump 14 Nitrogen Gas Injection Lines 15a, 15b, 15c, 15d

Claims (1)

炭化水素系燃料をガス化した燃料ガスに水蒸気を加湿する燃料ガス用サチュレーション設備を備え、加湿した燃料ガスをガスタービンの燃焼器に供給するガス化複合発電設備において、
空気分離した窒素ガスに水蒸気を加湿する窒素用サチュレーション設備と、加湿した窒素ガスをガスタービンの燃焼器に供給する窒素ガス噴射ラインと、を更に備え、
前記燃料ガス用サチュレーション設備と窒素用サチュレーション設備は、それぞれ独立した多段接触塔と共通の熱水循環ラインを備える、ことを特徴とするガス化複合発電設備。
In a combined gasification power generation facility that includes a fuel gas saturation facility for humidifying water vapor into a fuel gas obtained by gasifying a hydrocarbon fuel, and supplying the humidified fuel gas to a combustor of a gas turbine,
A nitrogen saturation facility for humidifying water vapor into the nitrogen gas separated from the air; and a nitrogen gas injection line for supplying the humidified nitrogen gas to a combustor of the gas turbine,
The gasification combined power generation facility characterized in that the fuel gas saturation facility and the nitrogen saturation facility each include an independent multistage contact tower and a common hot water circulation line .
JP2888696A 1996-02-16 1996-02-16 Gasification combined power generation facility Expired - Fee Related JP3787820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2888696A JP3787820B2 (en) 1996-02-16 1996-02-16 Gasification combined power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2888696A JP3787820B2 (en) 1996-02-16 1996-02-16 Gasification combined power generation facility

Publications (2)

Publication Number Publication Date
JPH09222031A JPH09222031A (en) 1997-08-26
JP3787820B2 true JP3787820B2 (en) 2006-06-21

Family

ID=12260890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2888696A Expired - Fee Related JP3787820B2 (en) 1996-02-16 1996-02-16 Gasification combined power generation facility

Country Status (1)

Country Link
JP (1) JP3787820B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19837251C1 (en) * 1998-08-17 2000-02-10 Siemens Ag Fossil-fuel burning gas and steam-turbine installation for power generation
US6343462B1 (en) * 1998-11-13 2002-02-05 Praxair Technology, Inc. Gas turbine power augmentation by the addition of nitrogen and moisture to the fuel gas
DE60033738T2 (en) * 1999-07-01 2007-11-08 General Electric Co. Device for humidifying and heating fuel gas
US7788930B2 (en) * 2007-05-01 2010-09-07 General Electric Company Methods and systems for gas moisturization control
JP5412205B2 (en) * 2009-07-31 2014-02-12 三菱重工業株式会社 Gas turbine plant and gasification fuel power generation facility equipped with the same
JP2013253611A (en) * 2013-09-17 2013-12-19 Mitsubishi Heavy Ind Ltd Gas turbine plant, method of operating the same, and gasification fuel power generation facility including gas turbine plant

Also Published As

Publication number Publication date
JPH09222031A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
US8371099B2 (en) Power generation system incorporating multiple Rankine cycles
JP2954972B2 (en) Gasification gas combustion gas turbine power plant
US5507141A (en) Process for recovering energy from a combustible gas
FI84290B (en) FOERFARANDE FOER ALSTRING AV ELEKTRISK ENERGI OCH AONGA.
EP1819913B1 (en) Process and installation for producing electric power
US3731485A (en) Open-cycle gas turbine plant
US7814742B2 (en) Integrated coal gasification combined cycle plant
Li et al. Performance and costs of advanced sustainable central power plants with CCS and H2 co-production
US20080202123A1 (en) System and method for oxygen separation in an integrated gasification combined cycle system
JPH02248605A (en) Method for generating power from carboneseoud fuel
JP2012067927A (en) Multipurpose thermal power plant system
JPS61155493A (en) Synthetic composite cycle system
RU2121588C1 (en) Energy production method
US5218815A (en) Method and apparatus for gas turbine operation using solid fuel
JP3787820B2 (en) Gasification combined power generation facility
JPH1082306A (en) Gasification compound power generating installation
Lozza et al. Combined-cycle power stations using “Clean-coal technologies”: Thermodynamic analysis of full gasification versus fluidized bed combustion with partial gasification
CN110218583B (en) Integrated coal gasification fuel cell power generation system and method adopting desulfurization post-conversion process
SE9601898L (en) Methods of generating electricity in gas turbine based on gaseous fuels in cycle with residues carbon dioxide and water respectively
WO1993024703A1 (en) A process for recovering energy from a combustible gas
US20180080374A1 (en) Gas turbine power generation plant and method for operating such a plant
US20100199558A1 (en) System and method for operating power generation systems
JPS61114009A (en) Coal supplying method and apparatus for coal gasification electric power plant
US8535418B2 (en) Gaseous byproduct removal from synthesis gas
JPS63120824A (en) Biomass fuel gasifying generating method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060319

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees