JP7416654B2 - Modified coal manufacturing method and manufacturing equipment - Google Patents

Modified coal manufacturing method and manufacturing equipment Download PDF

Info

Publication number
JP7416654B2
JP7416654B2 JP2020060976A JP2020060976A JP7416654B2 JP 7416654 B2 JP7416654 B2 JP 7416654B2 JP 2020060976 A JP2020060976 A JP 2020060976A JP 2020060976 A JP2020060976 A JP 2020060976A JP 7416654 B2 JP7416654 B2 JP 7416654B2
Authority
JP
Japan
Prior art keywords
coal
inner cylinder
heating chamber
temperature
stirring member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020060976A
Other languages
Japanese (ja)
Other versions
JP2021161144A (en
Inventor
広行 小水流
亘 谷奥
玲 兼井
克志 小菅
淳志 小林
渡 白水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2020060976A priority Critical patent/JP7416654B2/en
Priority to AU2021247761A priority patent/AU2021247761B2/en
Priority to CN202180025266.XA priority patent/CN115349007B/en
Priority to PCT/JP2021/012113 priority patent/WO2021200425A1/en
Publication of JP2021161144A publication Critical patent/JP2021161144A/en
Application granted granted Critical
Publication of JP7416654B2 publication Critical patent/JP7416654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • F23K1/04Heating fuel prior to delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Description

本発明は、改質石炭の製造方法および製造設備に関する。 The present invention relates to a method and equipment for producing modified coal.

従来から、石炭を乾留して改質石炭を製造する改質石炭の製造方法として、下記特許文献1に記載の方法が知られている。この製造方法では、乾留ガスを乾留の熱源として使用することで、熱効率を高めている。
ところで、この種の改質石炭の製造方法において、乾留ガスには高沸点成分のタールが含まれていることから、例えば、このタールが配管に付着して配管を閉塞する等し、乾留設備の稼働率が低下するおそれがある。
そこで、下記特許文献1に記載の製造方法では、低温加熱ガスおよび廃熱ガスを乾留ガスに混合することで、タールの配管などへの付着を抑制している。
BACKGROUND ART Conventionally, as a method for producing reformed coal by carbonizing coal, a method described in Patent Document 1 below has been known. In this manufacturing method, thermal efficiency is increased by using carbonization gas as a heat source for carbonization.
By the way, in this type of method for producing reformed coal, the carbonization gas contains tar, which is a high boiling point component, so for example, this tar may adhere to the pipes and block them, causing problems in the carbonization equipment. There is a risk that the operating rate will decrease.
Therefore, in the manufacturing method described in Patent Document 1 listed below, adhesion of tar to piping and the like is suppressed by mixing low-temperature heating gas and waste heat gas with carbonization gas.

特開2013-173831号公報Japanese Patent Application Publication No. 2013-173831

しかしながら、前記従来の改質石炭の製造方法では、石炭を乾留させる乾留装置の装置構成が複雑となり、運転が煩雑となるといった課題がある。 However, in the conventional method for producing reformed coal, the structure of the carbonization apparatus for carbonizing the coal is complicated, and the operation becomes complicated.

本発明は、前述した事情に鑑みてなされたものであって、改質石炭の製造設備における乾留装置の装置構成を簡素化し、運転も容易にすることを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to simplify the device configuration of a carbonization device in a reformed coal manufacturing facility and to facilitate operation.

前記課題を解決するために、本発明は以下の手段を提案している。
[1]軸線の回りに回転する内筒と、内筒を、内筒の径方向の外側から覆う加熱室と、内筒に、軸線方向に複数配置され、内筒を径方向に貫通して加熱室内に開口する排気管と、を有する乾留装置を備え、内筒において、軸線方向に沿った上流側に位置する端部から石炭が供給され、軸線方向に沿った下流側に位置する端部から改質石炭が排出される改質石炭の製造設備であって、加熱室内に酸素含有ガスを供給して加熱室内の温度を制御する温度制御部と、加熱室内のガスを排出する煙道と、を更に備え、煙道は、加熱室において上流側に位置する端部にのみ接続されている、改質石炭の製造設備。
[2]温度制御部は、煙道内の温度が600℃以上を維持し、かつ加熱室内の温度を600℃以上となるように制御する、[1]に記載の改質石炭の製造設備。
[3]温度制御部は、加熱室内を軸線方向に複数に区画してなる制御ゾーンごとに温度を制御し、煙道は、複数の制御ゾーンのうち、最も上流側の制御ゾーンに接続されている、[1]または[2]に記載の改質石炭の製造設備。
[4]内筒の内周面から軸線に向かって突出し、石炭を撹拌する撹拌部材をさらに備える、[1]から[3]のいずれか1項に記載の改質石炭の製造設備。
[5]内筒の内部で下流側の熱分解ゾーンに配置される撹拌部材は、上流側の水分蒸発ゾーンに配置される撹拌部材よりも、軸線に対する傾斜角が大きい、[4]に記載の改質石炭の製造設備。
[6]水分蒸発ゾーンに配置される撹拌部材の軸線に対する傾斜角が0である、[5]に記載の改質石炭の製造設備。
[7]撹拌部材は、軸線方向について、水分蒸発ゾーンおよび熱分解ゾーンからなる加熱領域の90%を超える範囲に配置される、[5]または[6]に記載の改質石炭の製造設備。
[8]撹拌部材と内筒の内周面との間に隙間が形成されている、[4]から[7]のいずれか1項に記載の改質石炭の製造設備。
[9]隙間の大きさは、内筒の径方向における撹拌部材の寸法の10%~25%である、[8]に記載の改質石炭の製造設備。
[10]撹拌部材は、内筒の径方向に対して傾斜する折り曲げ部を有する、[4]から[8]のいずれか1項に記載の改質石炭の製造設備。
[11]折り曲げ部は、撹拌部材の軸線側で内筒の内周面を基準にした撹拌部材の高さの30%以上~70%以下の範囲に形成され、
折り曲げ部の内筒の径方向に対する傾斜角は10°以上45°以下である、[10]に記載の改質石炭の製造設備。
[12]軸線の回りに回転する内筒と、内筒を、内筒の径方向の外側から覆う加熱室と、内筒に、軸線方向に複数配置され、内筒を径方向に貫通して加熱室内に開口する排気管と、を有する乾留装置を用いて、内筒において軸線方向に沿った上流側に位置する端部から石炭を供給し、軸線方向に沿った下流側に位置する端部から改質石炭を排出する改質石炭の製造方法であって、加熱室内に酸素含有ガスを供給して加熱室内の温度を制御する温度制御工程と、加熱室内のガスを排出するガス排出工程と、を含み、ガス排出工程では、加熱室において上流側に位置する端部からのみガスを排出する、改質石炭の製造方法。
[13]温度制御工程は、加熱室内の温度を600℃以上となるように制御する、[12]に記載の改質石炭の製造方法。
[14]温度制御工程は、加熱室内を軸線方向に複数に区画してなる制御ゾーンごとに温度を制御し、
ガス排出工程は、複数の制御ゾーンのうち、最も上流側の制御ゾーンからガスを排出する、[12]または[13]に記載の改質石炭の製造方法。
[15]内筒の内周面から軸線に向かって突出する撹拌部材を用いて石炭を撹拌する、[12]から[14]のいずれか1項に記載の改質石炭の製造方法。
[16]少なくとも内筒の内部で下流側の熱分解ゾーンに配置される撹拌部材が軸線に対する傾斜角を有し、石炭を上流側に押し戻すように撹拌する、[15]に記載の改質石炭の製造方法。
[17]撹拌部材と内筒の内周面との間に隙間が形成され、撹拌部材によって撹拌された石炭を隙間から落下させる、[15]または[16]に記載の改質石炭の製造方法。
[18]撹拌部材は内筒の径方向に対して傾斜する折り曲げ部を有し、撹拌部材によって撹拌された石炭を折り曲げ部から落下させる、[15]から[17]のいずれか1項に記載の改質石炭の製造方法。
In order to solve the above problems, the present invention proposes the following means.
[1] An inner cylinder that rotates around an axis; a heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder; An exhaust pipe that opens into a heating chamber; and a carbonization device having an exhaust pipe that opens into a heating chamber, and coal is supplied from an end located on the upstream side along the axial direction of the inner cylinder, and an end located on the downstream side along the axial direction. A reformed coal manufacturing facility in which reformed coal is discharged from a heating chamber, the equipment comprising: a temperature control unit that supplies oxygen-containing gas into a heating chamber to control the temperature within the heating chamber; and a flue that discharges the gas within the heating chamber. , wherein the flue is connected only to an end located on the upstream side of the heating chamber.
[2] The modified coal manufacturing equipment according to [1], wherein the temperature control unit maintains the temperature in the flue at 600°C or higher and controls the temperature in the heating chamber to be 600°C or higher.
[3] The temperature control unit controls the temperature in each control zone formed by dividing the heating chamber into a plurality of zones in the axial direction, and the flue is connected to the most upstream control zone among the plurality of control zones. The modified coal manufacturing equipment according to [1] or [2].
[4] The modified coal manufacturing equipment according to any one of [1] to [3], further comprising a stirring member that protrudes from the inner circumferential surface of the inner cylinder toward the axis and stirs the coal.
[5] The stirring member disposed in the downstream pyrolysis zone inside the inner cylinder has a larger inclination angle with respect to the axis than the stirring member disposed in the upstream moisture evaporation zone. Modified coal manufacturing equipment.
[6] The modified coal manufacturing equipment according to [5], wherein the stirring member disposed in the water evaporation zone has an inclination angle of 0 with respect to the axis.
[7] The reformed coal manufacturing equipment according to [5] or [6], wherein the stirring member is disposed in an axial direction within more than 90% of the heating region consisting of the water evaporation zone and the thermal decomposition zone.
[8] The modified coal manufacturing equipment according to any one of [4] to [7], wherein a gap is formed between the stirring member and the inner peripheral surface of the inner cylinder.
[9] The modified coal manufacturing equipment according to [8], wherein the size of the gap is 10% to 25% of the size of the stirring member in the radial direction of the inner cylinder.
[10] The reformed coal manufacturing equipment according to any one of [4] to [8], wherein the stirring member has a bent portion that is inclined with respect to the radial direction of the inner cylinder.
[11] The bent portion is formed on the axis side of the stirring member in a range of 30% or more and 70% or less of the height of the stirring member based on the inner peripheral surface of the inner cylinder,
The modified coal manufacturing equipment according to [10], wherein the angle of inclination of the bent portion with respect to the radial direction of the inner cylinder is 10° or more and 45° or less.
[12] An inner cylinder that rotates around an axis; a heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder; Using a carbonization apparatus having an exhaust pipe that opens into a heating chamber, coal is supplied from an end located on the upstream side along the axial direction of the inner cylinder, and the end located on the downstream side along the axial direction. A method for producing reformed coal in which reformed coal is discharged from the heating chamber, the method comprising: a temperature control step in which the temperature in the heating chamber is controlled by supplying oxygen-containing gas into the heating chamber; and a gas discharge step in which the gas in the heating chamber is discharged. , and in the gas discharge step, gas is discharged only from the end located on the upstream side in the heating chamber.
[13] The method for producing modified coal according to [12], wherein the temperature control step controls the temperature in the heating chamber to be 600° C. or higher.
[14] The temperature control step controls the temperature in each control zone formed by dividing the heating chamber into a plurality of zones in the axial direction,
The method for producing reformed coal according to [12] or [13], wherein the gas discharge step discharges gas from the most upstream control zone among the plurality of control zones.
[15] The method for producing modified coal according to any one of [12] to [14], wherein the coal is stirred using a stirring member that protrudes from the inner circumferential surface of the inner cylinder toward the axis.
[16] The modified coal according to [15], wherein the stirring member disposed in the pyrolysis zone on the downstream side at least inside the inner cylinder has an inclination angle with respect to the axis and stirs the coal so as to push it back to the upstream side. manufacturing method.
[17] The method for producing modified coal according to [15] or [16], wherein a gap is formed between the stirring member and the inner peripheral surface of the inner cylinder, and the coal stirred by the stirring member falls through the gap. .
[18] The stirring member has a bent portion that is inclined with respect to the radial direction of the inner cylinder, and the coal stirred by the stirring member falls from the bent portion, according to any one of [15] to [17]. A method for producing modified coal.

上記の構成によれば、改質石炭の製造設備における乾留装置の稼働率を確保しつつ、改質石炭の製造設備における乾留装置の装置構成を簡素化し、運転も容易にすることができる。 According to the above configuration, the device configuration of the carbonization device in the reformed coal production facility can be simplified and the operation can be facilitated while ensuring the availability of the carbonization device in the reformed coal production facility.

本発明の第1の実施形態に係る改質石炭の製造設備のブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a modified coal production facility according to a first embodiment of the present invention. 図1に示す改質石炭の製造設備を構成する乾留装置の模式図である。FIG. 2 is a schematic diagram of a carbonization apparatus that constitutes the reformed coal production facility shown in FIG. 1. FIG. 本発明の第2の実施形態に係る乾留装置の内筒の展開内面図である。FIG. 7 is an exploded inner view of an inner cylinder of a carbonization apparatus according to a second embodiment of the present invention. 図3に示す内筒の非展開状態のA-A線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line AA of the inner cylinder shown in FIG. 3 in a non-deployed state. 図3に示す内筒の非展開状態のB-B線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line BB of the inner cylinder shown in FIG. 3 in a non-deployed state. 図3に示す例における撹拌板の正面図である。4 is a front view of the stirring plate in the example shown in FIG. 3. FIG. 図3に示す例における撹拌板の側面図である。4 is a side view of the stirring plate in the example shown in FIG. 3. FIG. 本発明の第2の実施形態の変形例に係る乾留装置の内筒の断面図である。It is a sectional view of the inner cylinder of the carbonization apparatus concerning the modification of the 2nd embodiment of the present invention. 本発明の第2の実施形態の変形例による撹拌板の正面図である。It is a front view of the stirring plate by the modification of the 2nd embodiment of this invention. 本発明の第2の実施形態の変形例による撹拌板の側面図である。It is a side view of the stirring plate by the modification of the 2nd embodiment of this invention. 検証試験における石炭の昇温速度と温度と揮発分との関係を示すグラフである。It is a graph showing the relationship between the heating rate of coal, temperature, and volatile content in a verification test. 検証試験における総括伝熱係数の測定結果を示すグラフである。It is a graph showing the measurement results of the overall heat transfer coefficient in the verification test. 検証試験における隙間の大きさと飛散率および総括伝熱係数との関係を示すグラフである。It is a graph showing the relationship between the size of the gap, the scattering rate, and the overall heat transfer coefficient in a verification test.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that, in this specification and the drawings, constituent elements having substantially the same functional configuration are designated by the same reference numerals and redundant explanation will be omitted.

(第1の実施形態)
以下、図面を参照し、本発明の第1の実施形態に係る改質石炭の製造設備を説明する。
図1に示すように、改質石炭の製造設備10は、乾燥装置11と、乾留装置12と、冷却装置13と、排ガスシステム14と、を備えている。この製造設備10は、例えば、褐炭や亜瀝青炭のような水分含有量の多い低品位炭を改質するのに好適に用いることができる。
(First embodiment)
Hereinafter, with reference to the drawings, a modified coal production facility according to a first embodiment of the present invention will be described.
As shown in FIG. 1, the reformed coal production facility 10 includes a drying device 11, a carbonization device 12, a cooling device 13, and an exhaust gas system 14. This production equipment 10 can be suitably used, for example, to reform low-grade coal with a high moisture content, such as lignite or sub-bituminous coal.

乾燥装置11は、石炭を乾燥する。乾燥装置11は、例えば石炭の水分含有量が15重量%以下、好ましくは、10重量%以下になるまで、石炭を乾燥させる。乾留装置12は、乾燥された石炭を乾留する。乾留装置12は、例えば石炭の温度が500℃以上、具体的には550℃~800℃になるまで、石炭を乾留し、改質石炭にする。冷却装置13は、乾留された改質石炭を冷却する。冷却装置13は、例えば石炭の温度が70℃以下、好ましくは60℃以下になるまで、石炭を冷却させる。 Drying device 11 dries coal. The drying device 11 dries the coal until, for example, the water content of the coal becomes 15% by weight or less, preferably 10% by weight or less. The carbonization device 12 carbonizes the dried coal. The carbonization device 12 carbonizes the coal until the temperature of the coal reaches, for example, 500°C or higher, specifically 550°C to 800°C, to convert it into reformed coal. The cooling device 13 cools the carbonized reformed coal. The cooling device 13 cools the coal until, for example, the temperature of the coal becomes 70°C or lower, preferably 60°C or lower.

排ガスシステム14は、乾留装置12から排出される水蒸気および部分燃焼(酸化)により一次燃焼された乾留ガスおよび同ガスに少量同伴される微粉炭を完全燃焼後に排ガスとして大気に放出する。排ガスシステム14は、二次燃焼装置15と、蒸気発生装置16と、除塵装置17と、吸引ファン18と、排ガス処理装置19と、を備えている。 The exhaust gas system 14 completely burns water vapor discharged from the carbonization device 12, carbonization gas that has been primarily burned through partial combustion (oxidation), and pulverized coal that is entrained in a small amount of the gas, and then releases it into the atmosphere as exhaust gas. The exhaust gas system 14 includes a secondary combustion device 15, a steam generator 16, a dust removal device 17, a suction fan 18, and an exhaust gas treatment device 19.

二次燃焼装置15は、一次燃焼された乾留ガスを二次燃焼させて完全燃焼させる。完全燃焼の段階でNOが環境基準を上回るまで発生する場合には、後段に脱NO装置を設置することが好ましい。
蒸気発生装置16は、水蒸気および完全燃焼された乾留ガスからの廃熱回収により蒸気を発生させる。蒸気発生装置16は、回収した蒸気の一部もしくは全部を乾燥装置11に石炭の乾燥用熱源として供給する。除塵装置17は、蒸気発生装置16を通過したガスに同伴する微粉灰などを除去する。吸引ファン18は、除塵装置17からのガスを乾留装置12の加熱室内の圧力が一定となるように吸引し、排ガス処理装置19に送出する。排ガス処理装置19は、ガスからSO等を除去することで排ガスを精製し、この排ガスを大気に放出する。
The secondary combustion device 15 performs secondary combustion of the primarily combusted carbonized gas to completely combust it. If NO x is generated to the extent that it exceeds environmental standards at the stage of complete combustion, it is preferable to install a NO x removal device in the latter stage.
The steam generator 16 generates steam by recovering waste heat from steam and completely combusted carbonized gas. The steam generator 16 supplies part or all of the recovered steam to the drying device 11 as a heat source for drying coal. The dust removal device 17 removes pulverized ash and the like accompanying the gas that has passed through the steam generator 16 . The suction fan 18 sucks the gas from the dust removal device 17 so that the pressure inside the heating chamber of the carbonization device 12 is constant, and sends it to the exhaust gas treatment device 19. The exhaust gas treatment device 19 refines the exhaust gas by removing SO x and the like from the gas, and releases the exhaust gas into the atmosphere.

ところで乾留装置12は、いわゆる外熱式ロータリーキルンである。図2に示すように、乾留装置12は、内筒21と、加熱室22と、温度制御部23と、を備えている。 By the way, the carbonization apparatus 12 is a so-called external heating rotary kiln. As shown in FIG. 2, the carbonization apparatus 12 includes an inner cylinder 21, a heating chamber 22, and a temperature control section 23.

乾留装置12において、石炭は、内筒21の内部を、内筒21の軸線O方向に通過する。内筒21において、軸線O方向に沿った上流側D1に位置する端部から石炭が定量で供給され、下流側D2に位置する端部から改質石炭が排出される。内筒21の上流側D1の端部は、乾燥装置11に接続され、内筒21の下流側D2の端部は、冷却装置13に接続されている。 In the carbonization apparatus 12, coal passes through the interior of the inner cylinder 21 in the direction of the axis O of the inner cylinder 21. In the inner cylinder 21, a fixed amount of coal is supplied from the end located on the upstream side D1 along the axis O direction, and reformed coal is discharged from the end located on the downstream side D2. An upstream D1 end of the inner cylinder 21 is connected to the drying device 11, and a downstream D2 end of the inner cylinder 21 is connected to the cooling device 13.

内筒21の軸線Oは、水平方向に傾斜して延びている。具体的には、内筒21の軸線Oには、軸線O方向に沿った上流側D1から下流側D2に向かう下り緩勾配がつけられている。内筒21は、軸線O回りに回転可能に形成されている。内筒21の上流側D1の端部から供給された石炭は、内筒21が下流に向けて傾斜していること、軸線O回りに回転することで、内筒21の内周面を伝って所定の滞留時間をかけて徐々に下流側D2に向けて移動する。 The axis O of the inner cylinder 21 extends obliquely in the horizontal direction. Specifically, the axis O of the inner cylinder 21 has a gentle downward slope from the upstream side D1 to the downstream side D2 along the axis O direction. The inner cylinder 21 is formed to be rotatable around the axis O. The coal supplied from the upstream end D1 of the inner cylinder 21 is transmitted along the inner circumferential surface of the inner cylinder 21 because the inner cylinder 21 is inclined toward the downstream and rotates around the axis O. It gradually moves toward the downstream side D2 over a predetermined residence time.

加熱室22は、内筒21を、内筒21の径方向(以下、「径方向」という)の外側から覆っている。加熱室22には、内筒21が、軸線O方向に挿通されていて、内筒21の軸線O方向の両端部は、加熱室22から軸線O方向に突出している。 The heating chamber 22 covers the inner tube 21 from the outside in the radial direction (hereinafter referred to as "radial direction") of the inner tube 21. The inner cylinder 21 is inserted into the heating chamber 22 in the direction of the axis O, and both ends of the inner cylinder 21 in the direction of the axis O protrude from the heating chamber 22 in the direction of the axis O.

ここで内筒21には、排気管24が設けられていて、乾留装置12として、いわゆる角(つの)付きキルンが採用されている。
排気管24は、内筒21に、軸線O方向に複数配置されている。排気管24は、内筒21を径方向に貫通して加熱室22内に開口している。排気管24は、内筒21において、加熱室22内に位置する部分である加熱室内部分の21aに設けられている。図示された例において、排気管24は、加熱室内部分21aにおける軸線O方向の全長にわたって設けられている。排気管24は、軸線O方向に同等の間隔をあけて複数配置されている。排気管24は、内筒21の内部で石炭から発生したガスである水蒸気や高沸点成分のタールを含む乾留ガスを、加熱室22内に排出する。
Here, the inner cylinder 21 is provided with an exhaust pipe 24, and a so-called horned kiln is employed as the carbonization device 12.
A plurality of exhaust pipes 24 are arranged in the inner cylinder 21 in the direction of the axis O. The exhaust pipe 24 penetrates the inner tube 21 in the radial direction and opens into the heating chamber 22 . The exhaust pipe 24 is provided in the heating chamber portion 21 a of the inner cylinder 21 , which is a portion located within the heating chamber 22 . In the illustrated example, the exhaust pipe 24 is provided over the entire length of the heating chamber portion 21a in the direction of the axis O. A plurality of exhaust pipes 24 are arranged at equal intervals in the direction of the axis O. The exhaust pipe 24 discharges into the heating chamber 22 carbonized gas containing water vapor, which is a gas generated from coal inside the inner cylinder 21, and tar, which is a high boiling point component.

温度制御部23は、加熱室22内に空気を供給して加熱室22内の温度を制御する。温度制御部23は、排気管24から加熱室22内に排出された高沸点成分のタールを含む乾留ガスを、空気により部分燃焼(酸化)させることで、加熱室22内を加熱する。なお空気と同様に、空気とは異なる酸素含有ガスを加熱室22内に供給することも可能である。ここで酸素含有ガスとは、酸素を含有し、乾留ガスを燃焼(酸化)させることができるガスを意味する。酸素含有ガスとしては、空気の他に、例えば酸素を含有する排ガス、酸素富化空気などが使用できる。さらに本実施形態では、温度制御部23は、加熱室22内を、加熱室22外の熱源すなわち燃料ガスにより加熱可能に形成されている。また、燃料ガスは、天然ガスやLPGガス等を使用することができ、立ち上げ時の系の予熱にも使用される。 The temperature control unit 23 controls the temperature within the heating chamber 22 by supplying air into the heating chamber 22 . The temperature control unit 23 heats the inside of the heating chamber 22 by partially combusting (oxidizing) the carbonized gas containing tar as a high boiling point component discharged into the heating chamber 22 from the exhaust pipe 24 with air. Note that, similarly to air, it is also possible to supply an oxygen-containing gas different from air into the heating chamber 22. Here, the oxygen-containing gas means a gas that contains oxygen and can combust (oxidize) carbonized gas. As the oxygen-containing gas, in addition to air, for example, exhaust gas containing oxygen, oxygen-enriched air, etc. can be used. Furthermore, in this embodiment, the temperature control unit 23 is configured to be able to heat the inside of the heating chamber 22 using a heat source outside the heating chamber 22, that is, fuel gas. Moreover, natural gas, LPG gas, etc. can be used as the fuel gas, and is also used for preheating the system at startup.

温度制御部23は、制御ゾーンZ1~Z3ごとに温度を制御する。制御ゾーンZ1~Z3は、加熱室22内が軸線O方向に複数に区画されてなる。図示の例では、制御ゾーンZ1~Z3は、3つに区画されており、上流側D1から下流側D2に向けて、第1制御ゾーンZ1、第2制御ゾーンZ2、第3制御ゾーンZ3の順に区画されている。 The temperature control section 23 controls the temperature for each control zone Z1 to Z3. The control zones Z1 to Z3 are formed by dividing the inside of the heating chamber 22 into a plurality of zones in the direction of the axis O. In the illustrated example, the control zones Z1 to Z3 are divided into three, and from the upstream side D1 to the downstream side D2, the first control zone Z1, the second control zone Z2, and the third control zone Z3, in this order. It is sectioned.

温度制御部23には、複数の制御ゾーンZ1~Z3にそれぞれに対応する複数の制御系25が備えられている。各制御系25は、空気供給部26と、加熱部27と、温度検出部29と、制御本体部30と、を少なくとも備えている。図示の例では、上記に加え、制御ゾーンZ1~Z3に蒸気供給部28も備えた例を示す。なお空気供給部26は、空気以外の酸素含有ガスを供給する場合も含めると、酸素含有ガス供給部と言い換えることができる。 The temperature control section 23 is equipped with a plurality of control systems 25 corresponding to the plurality of control zones Z1 to Z3, respectively. Each control system 25 includes at least an air supply section 26, a heating section 27, a temperature detection section 29, and a control main body section 30. In the illustrated example, in addition to the above, a steam supply section 28 is also provided in the control zones Z1 to Z3. Note that the air supply section 26 can also be referred to as an oxygen-containing gas supply section, including the case where an oxygen-containing gas other than air is supplied.

空気供給部26は、加熱室22内に空気を供給する。空気供給部26は、加熱室22に空気を供給する打ち込み空気ファン31と、打ち込み空気ファン31を加熱室22内に接続する第1配管32と、第1配管32に介装された第1制御弁33と、を備えている。第1配管32は、加熱室22の上壁および下壁部分に、上壁側および下壁側の配管が対向方向となるように、かつ上壁と下壁の配管を複数に分岐した後に接続されている。なお第1制御弁33に代わり、打ち込み空気ファン31のモーターをインバーターを用いて回転数変更する供給空気量制御方式も適用可能である。 The air supply unit 26 supplies air into the heating chamber 22 . The air supply unit 26 includes a built-in air fan 31 that supplies air to the heating chamber 22 , a first pipe 32 that connects the built-in air fan 31 to the inside of the heating chamber 22 , and a first control unit installed in the first pipe 32 . A valve 33 is provided. The first pipe 32 is connected to the upper wall and lower wall portions of the heating chamber 22 so that the pipes on the upper wall side and the lower wall side are in opposite directions, and after the pipes on the upper wall and the lower wall are branched into multiple parts. has been done. Note that instead of the first control valve 33, a supply air amount control method in which the rotational speed of the motor of the driven air fan 31 is changed using an inverter can also be applied.

加熱部27は、加熱室22内を、加熱室22外の燃料ガス(熱源)により加熱する。加熱部27は、加熱室22を加熱するバーナー34と、バーナー34に空気を供給するバーナーファン36と、バーナーファン36をバーナー34に接続する第2配管37と、第2配管37に介装された第2制御弁38と、バーナー34に燃料ガスを供給する第3配管39と、第3配管39に介装された第3制御弁40と、を備えている。バーナー34は、供給部から供給された空気と燃料ガスとを混合して燃料ガスを燃焼させる。バーナー34は、加熱室22の下壁部分に設けられ、第1配管32の下壁部分設置配管と同じ方向に設けられている。 The heating unit 27 heats the inside of the heating chamber 22 using fuel gas (heat source) outside the heating chamber 22 . The heating unit 27 is interposed in a burner 34 that heats the heating chamber 22, a burner fan 36 that supplies air to the burner 34, a second pipe 37 that connects the burner fan 36 to the burner 34, and a second pipe 37. The third control valve 38 includes a second control valve 38 , a third pipe 39 that supplies fuel gas to the burner 34 , and a third control valve 40 interposed in the third pipe 39 . The burner 34 mixes air and fuel gas supplied from the supply section and burns the fuel gas. The burner 34 is provided on the lower wall portion of the heating chamber 22, and is provided in the same direction as the lower wall portion of the first pipe 32.

蒸気供給部28は、加熱室22内に蒸気を供給し、加熱室22内を冷却する。蒸気供給部28は、例えば150℃程度の蒸気を加熱室22内に供給する。蒸気供給部28は、加熱室22内に蒸気を供給する第4配管41と、第4配管41に介装された第4制御弁42と、を備えている。第4配管41は、加熱室22の下壁に第1配管32の下壁部分設置配管と同じ方向に接続されている。 The steam supply unit 28 supplies steam into the heating chamber 22 to cool the inside of the heating chamber 22 . The steam supply unit 28 supplies steam at about 150° C. into the heating chamber 22, for example. The steam supply unit 28 includes a fourth pipe 41 that supplies steam into the heating chamber 22, and a fourth control valve 42 interposed in the fourth pipe 41. The fourth pipe 41 is connected to the lower wall of the heating chamber 22 in the same direction as the pipe installed on the lower wall of the first pipe 32.

温度検出部29は、加熱室22内の温度を検出する。温度検出部29は、例えば温度センサにより構成することができる。
制御本体部30は、温度検出部29の検出結果に基づいて、空気供給部26、加熱部27および蒸気供給部28を制御する。図示の例では、制御本体部30は、第1~第4制御弁33、38、40、42を制御することで、空気供給部26、加熱部27および蒸気供給部28を制御する。制御本体部30は、例えばPLC(Programmable Logic Controller)などの制御装置により構成され、分散制御システム(DCS:Distributed Control System)として実装されてもよい。
The temperature detection unit 29 detects the temperature inside the heating chamber 22. The temperature detection section 29 can be configured by, for example, a temperature sensor.
The control main body section 30 controls the air supply section 26 , the heating section 27 , and the steam supply section 28 based on the detection result of the temperature detection section 29 . In the illustrated example, the control main body section 30 controls the air supply section 26, the heating section 27, and the steam supply section 28 by controlling the first to fourth control valves 33, 38, 40, and 42. The control main unit 30 is configured by a control device such as a PLC (Programmable Logic Controller), and may be implemented as a distributed control system (DCS).

ここで加熱室22には、加熱室22からガスを排出する煙道43が設けられている。煙道43は、加熱室22に接続され、加熱室22内と二次燃焼装置15とを接続する。このとき、煙道43は、加熱室22における上流側D1に位置する端部にのみ接続されている。これにより、加熱室22内のガスは、加熱室22において上流側D1に位置する端部からのみ排出される。煙道43は、複数の制御ゾーンZ1~Z3のうち、最も上流側D1に位置する第1制御ゾーンZ1に接続されている。 Here, the heating chamber 22 is provided with a flue 43 for discharging gas from the heating chamber 22. The flue 43 is connected to the heating chamber 22 and connects the inside of the heating chamber 22 and the secondary combustion device 15. At this time, the flue 43 is connected only to the end of the heating chamber 22 located on the upstream side D1. Thereby, the gas in the heating chamber 22 is discharged only from the end portion of the heating chamber 22 located on the upstream side D1. The flue 43 is connected to the first control zone Z1 located at the most upstream side D1 among the plurality of control zones Z1 to Z3.

次に、改質石炭の製造設備10および乾留装置12の作用について説明する。
改質石炭の製造設備10を用いた改質石炭の製造方法は、石炭を乾燥する乾燥工程と、乾燥した石炭を乾留する乾留工程と、乾留した石炭を冷却する冷却工程と、を備えている。乾燥工程は乾燥装置11により実施され、乾留工程は乾留装置12により実施され、冷却工程は冷却装置13により実施される。
Next, the functions of the reformed coal manufacturing equipment 10 and the carbonization apparatus 12 will be explained.
The method for manufacturing modified coal using the modified coal manufacturing equipment 10 includes a drying step of drying coal, a carbonization step of carbonizing the dried coal, and a cooling step of cooling the carbonized coal. . The drying step is carried out by the drying device 11, the carbonization step is carried out by the carbonization device 12, and the cooling step is carried out by the cooling device 13.

ここで乾留工程では、まず、加熱室22を予熱する予熱工程を実施する。このとき、温度制御部23の加熱部27により、加熱室22内を加熱する。
また、内筒21の上流側D1の端部から石炭を供給し、下流側D2の端部から改質石炭を排出する。このとき、内筒21の内部を通過する石炭から高沸点成分のタールを含む乾留ガスが発生すると、この乾留ガスが、内筒21の内部から排気管24を通して加熱室22内に排出される。
In the carbonization step, first, a preheating step of preheating the heating chamber 22 is performed. At this time, the heating section 27 of the temperature control section 23 heats the inside of the heating chamber 22 .
Further, coal is supplied from the upstream end D1 of the inner cylinder 21, and reformed coal is discharged from the downstream end D2. At this time, when carbonized gas containing tar as a high boiling point component is generated from the coal passing through the inner cylinder 21, this carbonized gas is discharged from the inside of the inner cylinder 21 through the exhaust pipe 24 into the heating chamber 22.

そこで、加熱室22内に空気を供給して加熱室22内の温度を制御する温度制御を実施する(温度制御工程)。このとき、空気により乾留ガスを加熱室22内で部分燃焼(酸化)させることで、加熱室22内の温度を高め、内筒21の内部を通過する石炭を、内筒21を介して加熱することができる。また加熱室22内の温度を、加熱室22の壁面や煙道43の壁面にタールが付着しない程度に高めることができる。 Therefore, temperature control is performed in which air is supplied into the heating chamber 22 to control the temperature inside the heating chamber 22 (temperature control step). At this time, by partially burning (oxidizing) the carbonized gas in the heating chamber 22 with air, the temperature in the heating chamber 22 is increased, and the coal passing through the inner cylinder 21 is heated via the inner cylinder 21. be able to. Furthermore, the temperature within the heating chamber 22 can be raised to such an extent that tar does not adhere to the wall surface of the heating chamber 22 or the wall surface of the flue 43.

本実施形態では、加熱室22の温度制御の際には、加熱室22内の全体の温度を600℃以上に制御する。このとき温度制御部23は、複数の制御ゾーンZ1~Z3のいずれの温度も600℃以上に制御する。温度制御部23は、加熱室22内の温度を過度に高めることなく、乾留装置12が操業可能な範囲で加熱室22内の温度を制御する。なお温度制御部23は、空気供給部26からの空気の供給量のみを制御することで、加熱室22の温度を制御することができる。また温度制御部23は、空気供給部26のみならず、加熱部27や蒸気供給部28を制御することで、加熱室22の温度を制御することも可能である。さらに、温度制御部23は、煙道43内の温度が600℃以上を維持するように温度制御を実施してもよい。 In this embodiment, when controlling the temperature of the heating chamber 22, the entire temperature inside the heating chamber 22 is controlled to be 600° C. or higher. At this time, the temperature control unit 23 controls the temperature of any of the plurality of control zones Z1 to Z3 to 600° C. or higher. The temperature control unit 23 controls the temperature inside the heating chamber 22 within a range in which the carbonization apparatus 12 can operate without increasing the temperature inside the heating chamber 22 excessively. Note that the temperature control section 23 can control the temperature of the heating chamber 22 by controlling only the amount of air supplied from the air supply section 26. Furthermore, the temperature control section 23 can also control the temperature of the heating chamber 22 by controlling not only the air supply section 26 but also the heating section 27 and the steam supply section 28 . Furthermore, the temperature control unit 23 may perform temperature control so that the temperature within the flue 43 is maintained at 600° C. or higher.

ここで、加熱室22内の温度は、例えば製造される改質石炭の用途などに応じて適宜変更することができる。加熱室22内の温度は、例えば、内筒21から排出される改質石炭の目標温度である改質石炭目標温度に基づいて設定することができる。具体的には、加熱室22内の温度を、改質石炭目標温度に対して100℃~150℃高い範囲で設定することが可能である。なお、改質石炭目標温度に対して、100℃~150℃高い範囲であることは、必須条件ではなく、改質石炭目標温度以上の温度であれば適用可能である。 Here, the temperature in the heating chamber 22 can be changed as appropriate depending on, for example, the use of the reformed coal to be produced. The temperature in the heating chamber 22 can be set, for example, based on a reformed coal target temperature that is a target temperature of the reformed coal discharged from the inner cylinder 21. Specifically, the temperature in the heating chamber 22 can be set in a range 100° C. to 150° C. higher than the target temperature of the reformed coal. Note that it is not an essential condition that the temperature is in a range of 100° C. to 150° C. higher than the target temperature of the reformed coal, and any temperature higher than the target temperature of the reformed coal is applicable.

なお、例えば改質石炭目標温度を650℃~850℃とすることで、石炭の揮発分(VM)を5~15質量%にして、改質石炭を無煙炭相当炭または半無煙炭相当炭とすることができる。さらに例えば、改質石炭目標温度を550℃~750℃とすることで、石炭の揮発分(VM)を10~30質量%にして、改質石炭を一般炭相当炭として好適に用いることができる。 For example, by setting the target temperature of the reformed coal to 650°C to 850°C, the volatile matter (VM) of the coal can be set to 5 to 15% by mass, and the reformed coal can be made into anthracite-equivalent coal or semi-anthracite-equivalent coal. I can do it. Furthermore, for example, by setting the target temperature of the reformed coal to 550°C to 750°C, the volatile matter (VM) of the coal can be set to 10 to 30% by mass, and the reformed coal can be suitably used as coal equivalent to steam coal. .

ところで、加熱室22の温度制御の際、内筒21に上流側D1の端部から供給される石炭が150℃程度まで加熱される段階で石炭中の水分が蒸発する。その結果、内筒21において、上流側D1に位置する部分では、水分の蒸発に必要な熱量が加わるために石炭の加熱に必要な熱量が大きくなり、下流側D2に位置する部分では水分の蒸発がなくなるので石炭の加熱に必要な熱量が小さくなる。したがって、内筒21の内部では、上流側D1に位置する部分では石炭および雰囲気の温度が上昇し難い。また、内筒21の上流側D1に位置する部分では石炭中の水分の蒸発により水蒸気が多く発生し、下流側D2に向かうに連れて、乾留ガスの発生量が多くなる。その結果、排気管24から加熱室22内に排出される乾留ガスは、上流側D1において下流側D2より少なくなる。従って、加熱室22内についても、上流側D1に位置する部分では雰囲気ガスのカロリーが低いために温度が上昇し難い。 By the way, when controlling the temperature of the heating chamber 22, the moisture in the coal evaporates at the stage when the coal supplied to the inner cylinder 21 from the end on the upstream side D1 is heated to about 150°C. As a result, in the part of the inner cylinder 21 located on the upstream side D1, the amount of heat required for heating the coal increases because the amount of heat required for evaporation of water is added, and in the part located on the downstream side D2, the amount of heat required for heating the coal increases. , the amount of heat required to heat the coal becomes smaller. Therefore, inside the inner cylinder 21, the temperature of the coal and the atmosphere is difficult to rise in the portion located on the upstream side D1. Further, in the portion located on the upstream side D1 of the inner cylinder 21, a large amount of water vapor is generated due to evaporation of water in the coal, and the amount of carbonized gas generated increases toward the downstream side D2. As a result, the amount of carbonized gas discharged from the exhaust pipe 24 into the heating chamber 22 is smaller on the upstream side D1 than on the downstream side D2. Therefore, also in the heating chamber 22, the temperature does not easily rise in the portion located on the upstream side D1 because the calorie of the atmospheric gas is low.

そこで、本実施形態では、加熱室22において上流側D1に位置する端部からのみガスを排出するようにガス排出を実施する(ガス排出工程)。つまり、加熱室22内のガスを上流側D1に位置する端部に設置した煙道43からのみ排出する。これにより、加熱室22内の下流側D2に位置する部分において多量に発生する乾留ガスが、加熱室22から排出される過程で、加熱室22内において上流側D1に位置する部分を通過する。このとき、乾留ガスに空気を供給して乾留ガスを部分燃焼(酸化)させることで、加熱室22内において上流側D1に位置する部分の温度を確実に上昇させることができる。 Therefore, in this embodiment, gas is discharged so that the gas is discharged only from the end located on the upstream side D1 in the heating chamber 22 (gas discharge step). That is, the gas in the heating chamber 22 is exhausted only from the flue 43 installed at the end located on the upstream side D1. As a result, the carbonized gas generated in large quantities in the portion located on the downstream side D2 within the heating chamber 22 passes through the portion located on the upstream side D1 within the heating chamber 22 in the process of being discharged from the heating chamber 22. At this time, by partially combusting (oxidizing) the carbonized gas by supplying air to the carbonized gas, the temperature of the portion located on the upstream side D1 in the heating chamber 22 can be reliably raised.

以上説明したように、本実施形態に係る改質石炭の製造設備10、乾留装置12、改質石炭の製造方法および乾留方法によれば、乾留ガスを加熱室22内で部分燃焼(酸化)させることで、加熱室22内の温度を高めることができる。したがって、加熱室22内の温度を、加熱室22の壁面や煙道43の壁面にタールが付着しない程度に高めることで、改質石炭の製造設備10における乾留装置12の稼働率を確保しつつ、改質石炭の製造設備10における乾留装置12の装置構成を簡素化し、運転も容易にすることができる。 As explained above, according to the reformed coal production equipment 10, the carbonization apparatus 12, the reformed coal production method, and the carbonization method according to the present embodiment, the carbonization gas is partially combusted (oxidized) in the heating chamber 22. By doing so, the temperature inside the heating chamber 22 can be increased. Therefore, by increasing the temperature in the heating chamber 22 to such an extent that tar does not adhere to the wall surface of the heating chamber 22 or the wall surface of the flue 43, the operating rate of the carbonization device 12 in the reformed coal manufacturing facility 10 can be ensured. , the device configuration of the carbonization device 12 in the reformed coal manufacturing facility 10 can be simplified and the operation can be made easier.

また温度制御部23が、煙道43内の温度が600℃以上を維持し、かつ加熱室22内の温度を600℃以上になるように制御するので、加熱室22の壁面や煙道43の壁面にタールが付着するのを確実に抑えることができる。これにより、改質石炭の製造設備10における乾留装置12の稼働率を確実に確保することができる。 Furthermore, since the temperature control unit 23 maintains the temperature inside the flue 43 at 600°C or higher and controls the temperature inside the heating chamber 22 to be 600°C or higher, the temperature on the wall surface of the heating chamber 22 and the flue 43 It is possible to reliably prevent tar from adhering to the wall surface. Thereby, the operating rate of the carbonization device 12 in the reformed coal manufacturing facility 10 can be ensured.

さらに温度制御部23が、制御ゾーンZ1~Z3ごとに温度を制御するので、加熱室22内の温度を、加熱室22の壁面や煙道43の壁面にタールが付着しない程度に確実に高めることができる。例えば、複数の制御ゾーンZ1~Z3のうち、温度が上昇し易い下流側D2の第3制御ゾーンZ3において、乾留ガスが過剰に部分燃焼(酸化)するのを抑えて、未燃ガスを上流側へと移動させ、温度が上昇し難い上流側D1の第1制御ゾーンZ1において、下流側からの未燃ガスを含んだ乾留ガスを積極的に部分燃焼(酸化)させることができる。これにより、改質石炭の製造設備10における乾留装置12の稼働率を確実に確保することができる。 Furthermore, since the temperature control unit 23 controls the temperature for each of the control zones Z1 to Z3, the temperature inside the heating chamber 22 can be reliably raised to the extent that tar does not adhere to the wall surface of the heating chamber 22 or the wall surface of the flue 43. I can do it. For example, in the third control zone Z3 on the downstream side D2 where the temperature tends to rise among the plurality of control zones Z1 to Z3, excessive partial combustion (oxidation) of carbonized gas is suppressed and unburnt gas is transferred to the upstream side. In the first control zone Z1 on the upstream side D1 where the temperature does not easily rise, the carbonized gas containing unburned gas from the downstream side can be actively partially combusted (oxidized). Thereby, the operating rate of the carbonization device 12 in the reformed coal manufacturing facility 10 can be ensured.

なお、本実施形態については、以下に例示するように種々の変更を加えることが可能である。 Note that various changes can be made to this embodiment as exemplified below.

例えば、上述した例では蒸気発生装置16が回収した蒸気を乾燥装置11に熱源として供給するが、蒸気発生装置16とは異なる装置から乾燥装置11に熱源が供給されてもよい。また、例えば、上述した例では温度制御部23が制御ゾーンZ1~Z3ごとに温度を制御しているが、温度制御部23が加熱室22内の温度を一体に制御してもよい。さらに、例えば、上述した例では加熱室22内に空気を供給するが、空気と同様に、空気とは異なる酸素含有ガスを加熱室22内に供給してもよい。ここで酸素含有ガスとは、酸素を含有し、乾留ガスを燃焼(酸化)させることができるガスを意味する。酸素含有ガスとしては、空気の他に、例えば酸素を含有する排ガス、酸素富化空気などが使用できる。その他、本発明の趣旨に逸脱しない範囲で、上述した例における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、変形例を適宜組み合わせてもよい。 For example, in the example described above, the steam recovered by the steam generator 16 is supplied to the dryer 11 as a heat source, but the heat source may be supplied to the dryer 11 from a device different from the steam generator 16. Further, for example, in the above-described example, the temperature control section 23 controls the temperature in each of the control zones Z1 to Z3, but the temperature control section 23 may control the temperature inside the heating chamber 22 integrally. Furthermore, for example, although air is supplied into the heating chamber 22 in the above-mentioned example, an oxygen-containing gas different from air may be supplied into the heating chamber 22 similarly to the air. Here, the oxygen-containing gas means a gas that contains oxygen and can combust (oxidize) carbonized gas. As the oxygen-containing gas, in addition to air, for example, exhaust gas containing oxygen, oxygen-enriched air, etc. can be used. In addition, without departing from the spirit of the present invention, the components in the above-described example can be replaced with well-known components, and modifications may be combined as appropriate.

次に、上記の第1の実施形態の作用効果を検証する第1~第3の検証試験を実施した。なお以下の第1~第3の検証試験では、加熱室22内に、酸素含有ガスとしての空気を供給した。 Next, first to third verification tests were conducted to verify the effects of the first embodiment described above. Note that in the following first to third verification tests, air as an oxygen-containing gas was supplied into the heating chamber 22.

(第1の検証試験)
第1の検証試験では、煙道43の軸線O方向の位置の違いに基づく加熱室22内の温度について検証した。第1の検証試験では、試験例A1および試験例B1として2種類の乾留装置12を用いた。これらの2つの乾留装置12はいずれも、内筒21の直径は500mmとし、内筒21の加熱室内部分21aの軸線O方向の大きさは3000mmとし、内筒21の軸線Oの水平方向に対する傾斜角度は1.0度とし、内筒21の回転速度は3.1rpmとした。また、内筒21に供給される石炭の水分を11.8重量%とし、内筒21に供給される石炭の供給速度を、280kg/h~290kg/hとした。さらに、第2制御ゾーンZ2の温度に基づいて、各制御系25から制御ゾーンZ1~Z3それぞれに供給される空気量の供給速度を設定した。このとき、各制御ゾーンZ1~Z3に供給する空気量の供給速度を同等とし、3ゾーン合計の空気量の供給速度は280Nm/h~285Nm/hとした。
(First verification test)
In the first verification test, the temperature inside the heating chamber 22 was verified based on the difference in the position of the flue 43 in the direction of the axis O. In the first verification test, two types of carbonization apparatuses 12 were used as Test Example A1 and Test Example B1. In both of these two carbonization apparatuses 12, the diameter of the inner cylinder 21 is 500 mm, the size of the heating chamber portion 21a of the inner cylinder 21 in the direction of the axis O is 3000 mm, and the inclination of the axis O of the inner cylinder 21 with respect to the horizontal direction is 3000 mm. The angle was 1.0 degrees, and the rotation speed of the inner cylinder 21 was 3.1 rpm. Further, the moisture content of the coal supplied to the inner cylinder 21 was set to 11.8% by weight, and the supply rate of the coal supplied to the inner cylinder 21 was set to 280 kg/h to 290 kg/h. Furthermore, the supply speed of the amount of air supplied from each control system 25 to each of the control zones Z1 to Z3 was set based on the temperature of the second control zone Z2. At this time, the supply speed of the air amount supplied to each control zone Z1 to Z3 was made equal, and the total air amount supply speed of the three zones was set to be 280 Nm 3 /h to 285 Nm 3 /h.

ここで、試験例A1と試験例B1とでは、煙道43の軸線O方向の位置を異ならせた。試験例A1では、上記の実施形態と同様に、煙道43を、加熱室22の上流側D1の端部の制御ゾーンZ1のみに接続した。試験例B1では、煙道43を、加熱室22の下流側D2の端部の制御ゾーンZ3のみに接続した。
この第1の検証試験では、第1~第3制御ゾーンZ3それぞれの温度と、内筒21から排出される石炭の温度である排出石炭温度と、を測定した。結果を以下表1に示す。
Here, the position of the flue 43 in the axis O direction was different between Test Example A1 and Test Example B1. In test example A1, the flue 43 was connected only to the control zone Z1 at the end of the upstream side D1 of the heating chamber 22, as in the above embodiment. In Test Example B1, the flue 43 was connected only to the control zone Z3 at the downstream end D2 of the heating chamber 22.
In this first verification test, the temperature of each of the first to third control zones Z3 and the discharged coal temperature, which is the temperature of the coal discharged from the inner cylinder 21, were measured. The results are shown in Table 1 below.

Figure 0007416654000001
Figure 0007416654000001

この結果から、試験例A1では、試験例B1よりも加熱室22内の温度にばらつきが生じ難くなっていて、排出石炭温度も高められていることが確認された。 From this result, it was confirmed that in Test Example A1, the temperature within the heating chamber 22 was less likely to vary than in Test Example B1, and the temperature of the discharged coal was also increased.

(第2の検証試験)
第2の検証試験では、加熱室22内の温度の違いに基づくタールの付着について検証した。第2の検証試験では、試験例A2および試験例B2として2種類の乾留装置12を用いた。これらの2つの乾留装置12はいずれも、内筒21の直径は500mmとし、内筒21の加熱室内部分21aの軸線O方向の大きさは3000mmとし、内筒21の軸線Oの水平方向に対する傾斜角度は1.0度とし、内筒21の回転速度は3.1rpmとした。また、内筒21に供給される石炭の水分を12.3重量%とし、内筒21に供給される石炭の供給速度を、275kg/h~280kg/hとした。さらに、煙道43を、加熱室22の上流側D1の端部の制御ゾーンZ1のみに接続した。
(Second verification test)
In the second verification test, tar adhesion based on differences in temperature within the heating chamber 22 was verified. In the second verification test, two types of carbonization apparatuses 12 were used as Test Example A2 and Test Example B2. In both of these two carbonization apparatuses 12, the diameter of the inner cylinder 21 is 500 mm, the size of the heating chamber portion 21a of the inner cylinder 21 in the direction of the axis O is 3000 mm, and the inclination of the axis O of the inner cylinder 21 with respect to the horizontal direction is 3000 mm. The angle was 1.0 degrees, and the rotation speed of the inner cylinder 21 was 3.1 rpm. Further, the moisture content of the coal supplied to the inner cylinder 21 was set to 12.3% by weight, and the supply rate of the coal supplied to the inner cylinder 21 was set to 275 kg/h to 280 kg/h. Further, the flue 43 was connected only to the control zone Z1 at the upstream D1 end of the heating chamber 22.

試験例A2と試験例B2とでは、加熱室22の運転温度によるタール付着の影響を比較するために、第2制御ゾーンZ2の目標温度を異ならせた。試験例A2では第2制御ゾーンZ2の温度が630℃程度とし、試験例B2では第2制御ゾーンZ2の温度が550℃程度とした。試験例A2および試験例B2では、それぞれの第2制御ゾーンZ2の目標温度に基づいて、各制御系25から制御ゾーンZ1~Z3それぞれに供給される空気量の供給速度を設定した。このとき、試験例A2および試験例B2それぞれにおいて、各制御ゾーンZ1~Z3に供給する空気量の供給速度を同等とした。具体的には、試験例A2では各制御ゾーンZ1~Z3の空気量の供給速度の合計を215Nm/hとし、試験例B2では各制御ゾーンZ1~Z3の空気量の供給速度の合計を163Nm/hとした。なお、この場合における第1~第3制御ゾーンZ3それぞれの温度および排出石炭温度を、以下表2に示す。 In Test Example A2 and Test Example B2, in order to compare the influence of the operating temperature of the heating chamber 22 on tar adhesion, the target temperature of the second control zone Z2 was made different. In Test Example A2, the temperature of the second control zone Z2 was approximately 630°C, and in Test Example B2, the temperature of the second control zone Z2 was approximately 550°C. In Test Example A2 and Test Example B2, the supply rate of the amount of air supplied from each control system 25 to each of the control zones Z1 to Z3 was set based on the target temperature of each second control zone Z2. At this time, in each of Test Example A2 and Test Example B2, the supply speed of the amount of air supplied to each control zone Z1 to Z3 was made the same. Specifically, in Test Example A2, the total air supply rate for each control zone Z1 to Z3 was 215 Nm 3 /h, and in Test Example B2, the total air supply rate for each control zone Z1 to Z3 was 163 Nm 3 /h. 3 /h. The temperatures of each of the first to third control zones Z3 and the discharged coal temperature in this case are shown in Table 2 below.

Figure 0007416654000002
Figure 0007416654000002

この第2の検証試験では、試験例A2および試験例B2それぞれについて、5日間連続して操業し、1日目における内筒21から二次燃焼装置15までの間の圧力損失と、5日目における内筒21から二次燃焼装置15までの間の圧力損失とを測定した。ここで、内筒21から二次燃焼装置15までの間の圧力損失は、内筒21の下流側D2の端部と二次燃焼装置15側の端部との間のガスの圧力差によって測定する。 In this second verification test, each of Test Example A2 and Test Example B2 was operated for 5 consecutive days, and the pressure loss between the inner cylinder 21 and the secondary combustion device 15 on the first day and the pressure loss on the fifth day were evaluated. The pressure loss between the inner cylinder 21 and the secondary combustion device 15 was measured. Here, the pressure loss from the inner cylinder 21 to the secondary combustion device 15 is measured by the gas pressure difference between the end of the inner cylinder 21 on the downstream side D2 and the end on the secondary combustion device 15 side. do.

試験例A2および試験例B2とも、1日目の運転開始直後における煙道43の圧力損失は、0.02kPaであった。試験例A2では、5日目における煙道43の圧力損失は、0.03kPaであるのに対して、試験例B2では、5日目における煙道43の圧力損失は、1.45kPaであった。
この結果から、試験例A2では、試験例B1よりも煙道43の圧力損失が小さく、タールの付着が抑えられていることが確認された。
In both Test Example A2 and Test Example B2, the pressure loss in the flue 43 immediately after the start of operation on the first day was 0.02 kPa. In Test Example A2, the pressure loss in the flue 43 on the fifth day was 0.03 kPa, whereas in Test Example B2, the pressure loss in the flue 43 on the fifth day was 1.45 kPa. .
From this result, it was confirmed that in Test Example A2, the pressure loss in the flue 43 was smaller than in Test Example B1, and tar adhesion was suppressed.

(第3の検証試験)
第3の検証試験では、制御ゾーンZ1~Z3ごとに温度を制御することによる石炭の揮発分の違いについて検証した。第3の検証試験では、試験例A3および試験例B3として2種類の乾留装置12を用いた。これらの2つの乾留装置12はいずれも、内筒21の直径は500mmとし、内筒21の加熱室内部分21aの軸線O方向の大きさは3000mmとし、内筒21の軸線Oの水平方向に対する傾斜角度は1.0度とし、内筒21の回転速度は3.1rpmとした。また、内筒21に供給される石炭の水分を12.1重量%とし、内筒21に供給される石炭の供給速度を、220kg/h~225kg/hとした。さらに、煙道43を、加熱室22の上流側D1の端部の制御ゾーンZ1のみに接続した。そして、排出改質石炭温度に基づいて、各制御系25から制御ゾーンZ1~Z3それぞれに供給される空気の供給速度を設定した。このとき、排出石炭温度が655℃前後となるように、各制御系25を制御した。
(Third verification test)
In the third verification test, differences in the volatile content of coal were verified by controlling the temperature in each control zone Z1 to Z3. In the third verification test, two types of carbonization apparatuses 12 were used as Test Example A3 and Test Example B3. In both of these two carbonization apparatuses 12, the diameter of the inner cylinder 21 is 500 mm, the size of the heating chamber portion 21a of the inner cylinder 21 in the direction of the axis O is 3000 mm, and the inclination of the axis O of the inner cylinder 21 with respect to the horizontal direction is 3000 mm. The angle was 1.0 degrees, and the rotation speed of the inner cylinder 21 was 3.1 rpm. Further, the moisture content of the coal supplied to the inner cylinder 21 was set to 12.1% by weight, and the supply rate of the coal supplied to the inner cylinder 21 was set to 220 kg/h to 225 kg/h. Further, the flue 43 was connected only to the control zone Z1 at the upstream D1 end of the heating chamber 22. Then, the supply speed of air supplied from each control system 25 to each of the control zones Z1 to Z3 was set based on the temperature of the discharged reformed coal. At this time, each control system 25 was controlled so that the temperature of the discharged coal was around 655°C.

試験例A3と試験例B3とでは、加熱室22内における温度の分布を異ならせた。
すなわち、試験例A3では、温度制御部23により、各制御ゾーンZ1~Z3の温度がほぼ同等になるように、加熱室22の温度を制御した(表3参照)。このとき試験例A3では、各制御系25からの空気量の供給速度を異ならせて、第1制御ゾーンZ1には120Nm/hで空気を供給し、第2制御ゾーンZ2には70Nm/hで空気を供給し、第3制御ゾーンZ3には35Nm/hで空気を供給した。
一方、試験例B3では、各制御系25からの空気の供給速度を同等にして、各制御ゾーンZ1~Z3に各々75Nm/hで空気量の供給速度で空気を供給した。その結果、各制御ゾーンZ1~Z3の温度は、表3に示すように各ゾーンの温度がばらついた。
In Test Example A3 and Test Example B3, the temperature distribution within the heating chamber 22 was made different.
That is, in Test Example A3, the temperature of the heating chamber 22 was controlled by the temperature control unit 23 so that the temperatures of each control zone Z1 to Z3 were approximately equal (see Table 3). At this time, in Test Example A3, the supply speed of the amount of air from each control system 25 was varied, and air was supplied to the first control zone Z1 at a rate of 120 Nm 3 /h, and to the second control zone Z2 at a rate of 70 Nm 3 /h. Air was supplied at a rate of 35 Nm 3 /h to the third control zone Z3.
On the other hand, in Test Example B3, the air supply speed from each control system 25 was made the same, and air was supplied to each control zone Z1 to Z3 at an air amount supply speed of 75 Nm 3 /h. As a result, the temperature of each control zone Z1 to Z3 varied as shown in Table 3.

Figure 0007416654000003
Figure 0007416654000003

この第3の検証試験では、試験例A3および試験例B3それぞれについて、内筒21から排出される改質石炭の揮発分を測定した。試験例A3では揮発分が6.2重量%であるのに対し、試験例B3では揮発分が9.2重量%であった。
この結果から、試験例A3では、排出石炭温度が試験例B3と同等であるにも関わらず試験例B3よりも揮発度が小さく、効果的に乾留されていることが確認された。
In this third verification test, the volatile content of the reformed coal discharged from the inner cylinder 21 was measured for each of Test Example A3 and Test Example B3. In Test Example A3, the volatile content was 6.2% by weight, whereas in Test Example B3, the volatile content was 9.2% by weight.
From this result, it was confirmed that Test Example A3 had lower volatility than Test Example B3 and was carbonized effectively, even though the discharged coal temperature was the same as Test Example B3.

(第2の実施形態)
次に、本発明の第2の実施形態について説明する。本実施形態でも上記の第1の実施形態と同様の外熱式ロータリーキルンの乾留装置を含む製造設備を用いて改質石炭が製造される。本実施形態では、以下で説明するように乾留装置の内筒の中で石炭を撹拌するための撹拌部材が設けられる。なお、それ以外の点については上記の第1の実施形態の例に限らず一般的な外熱式ロータリーキルンの構成を採用することが可能であり、例えば加熱室において煙道は必ずしも上流側の端部にのみ接続されなくてもよい。
(Second embodiment)
Next, a second embodiment of the present invention will be described. In this embodiment as well, reformed coal is produced using production equipment that includes the same external heating rotary kiln carbonization apparatus as in the first embodiment. In this embodiment, a stirring member for stirring the coal in the inner cylinder of the carbonization apparatus is provided as described below. Regarding other points, it is possible to adopt the configuration of a general external heating rotary kiln without being limited to the example of the first embodiment described above. For example, in the heating chamber, the flue is not necessarily located at the upstream end. It does not have to be connected only to the section.

図3は、本発明の第2の実施形態に係る乾留装置における内筒の内周面の展開図である。図示された例において、内筒21の内部は上流側から下流側に向けて送り領域211と加熱領域212に区分され、加熱領域212は水分蒸発ゾーン212Aおよび熱分解ゾーン212Bにさらに区分される。また、熱分解ゾーン212Bの下流側は出口領域213である。本実施形態では、石炭を撹拌するための撹拌板51,52が、それぞれ水分蒸発ゾーン212Aおよび熱分解ゾーン212Bで内筒21の内周面21cから軸線O(図2参照)に向かって突出して設けられる。送り領域211には石炭を加熱領域212に送り込むための送りリフター211Lが設けられ、出口領域213には撹拌板およびリフターは設けられない。 FIG. 3 is a developed view of the inner peripheral surface of the inner cylinder in the carbonization apparatus according to the second embodiment of the present invention. In the illustrated example, the inside of the inner cylinder 21 is divided into a feeding region 211 and a heating region 212 from the upstream side to the downstream side, and the heating region 212 is further divided into a moisture evaporation zone 212A and a pyrolysis zone 212B. Further, downstream of the pyrolysis zone 212B is an outlet region 213. In this embodiment, stirring plates 51 and 52 for stirring the coal protrude from the inner circumferential surface 21c of the inner cylinder 21 toward the axis O (see FIG. 2) in the water evaporation zone 212A and the thermal decomposition zone 212B, respectively. provided. The feed region 211 is provided with a feed lifter 211L for feeding coal into the heating region 212, and the exit region 213 is not provided with a stirring plate or a lifter.

撹拌板51,52は、内筒21の周方向について90°間隔で方向を変えて配列された排気管24とは別に、内筒21の周方向について所定間隔(図示された例では45°間隔)で配列される。水分蒸発ゾーン212Aでは、周方向に配列される複数の撹拌板51のそれぞれが軸線Oに対して平行に延びている。つまり、水分蒸発ゾーン212Aの撹拌板51の軸線Oに対する傾斜角は0である。図4Aは図3のA-A線に沿った断面図、すなわち展開されていない状態の内筒21の水分蒸発ゾーン212Aにおける断面図であり、各撹拌板51が内筒21の内周面21cから軸線Oに向かって突出し、かつ内筒21の周方向に等間隔に配列される例が示されている。撹拌板51は、軸線Oとは反対側の端部でブラケット53を介して内周面21cに取り付けられている。軸線Oの方向で隣接する撹拌板51は内筒21の周方向について間隔の1/2(図示された例では22.5°)だけ互いにずれて配列されている。本実施形態において、水分蒸発ゾーン212Aの撹拌板51は軸線Oの方向に例えば4列配列されている。 The stirring plates 51 and 52 are arranged at predetermined intervals (in the illustrated example, at 45° intervals) in the circumferential direction of the inner cylinder 21, in addition to the exhaust pipes 24, which are arranged at 90° intervals in the circumferential direction of the inner cylinder 21. ). In the moisture evaporation zone 212A, each of the plurality of stirring plates 51 arranged in the circumferential direction extends parallel to the axis O. That is, the angle of inclination of the stirring plate 51 of the water evaporation zone 212A with respect to the axis O is 0. FIG. 4A is a cross-sectional view taken along the line AA in FIG. An example is shown in which they protrude from the center toward the axis O and are arranged at equal intervals in the circumferential direction of the inner cylinder 21. The stirring plate 51 is attached to the inner circumferential surface 21c via a bracket 53 at an end opposite to the axis O. The stirring plates 51 adjacent in the direction of the axis O are arranged offset from each other by 1/2 of the interval (22.5° in the illustrated example) in the circumferential direction of the inner cylinder 21. In this embodiment, the stirring plates 51 of the moisture evaporation zone 212A are arranged in, for example, four rows in the direction of the axis O.

一方、熱分解ゾーン212Bでは、水分蒸発ゾーン212Aにおける撹拌板51の配列と同様な周方向の間隔(図では45°間隔)および長さ方向の間隔で、複数の撹拌板52が配列されている。熱分解ゾーン212Bでは、周方向に配列される複数の撹拌板52のそれぞれが軸線Oに対して傾斜角β(図3参照)を有する。傾斜角βの大きさは、例えば4.3°~4.5°程度である。熱分解ゾーン212Bでは、撹拌板52が傾斜角βを有することによって、内筒21を所定の向きに回転させた場合に通過する石炭を上流側に押し戻すように撹拌することができる。その一方で、水分蒸発ゾーン212Aでは傾斜角を有さない撹拌板51によって石炭が熱分解ゾーン212B側に送り出されるため、熱分解ゾーン212B内での石炭の充填率がより均一になり、滞留時間を長く設定することができる。図4Bは図3のB-B線に沿った断面図、すなわち展開されていない状態の内筒21の熱分解ゾーン212Bにおける断面図であり、各撹拌板52が内筒21の内周面21cから軸線Oに向かって突出し、かつ内筒21の周方向に等間隔に配列され、かつ軸線Oに対して傾斜角βを有するために端面だけではなく板面が見えている例が示されている。本実施形態において、熱分解ゾーン212Bの撹拌板52は軸線Oの方向に例えば8列配列されている。 On the other hand, in the pyrolysis zone 212B, a plurality of stirring plates 52 are arranged at the same circumferential intervals (45° intervals in the figure) and longitudinal intervals as the arrangement of the stirring plates 51 in the water evaporation zone 212A. . In the thermal decomposition zone 212B, each of the plurality of stirring plates 52 arranged in the circumferential direction has an inclination angle β (see FIG. 3) with respect to the axis O. The magnitude of the inclination angle β is, for example, about 4.3° to 4.5°. In the thermal decomposition zone 212B, since the stirring plate 52 has the inclination angle β, it is possible to stir the coal passing through the inner cylinder 21 when it is rotated in a predetermined direction so as to push it back to the upstream side. On the other hand, in the moisture evaporation zone 212A, the coal is sent to the pyrolysis zone 212B side by the stirring plate 51 having no inclination angle, so that the coal filling rate in the pyrolysis zone 212B becomes more uniform, and the residence time increases. can be set for a long time. FIG. 4B is a cross-sectional view taken along line BB in FIG. An example is shown in which not only the end surfaces but also the plate surfaces are visible because they protrude from the inner cylinder 21 toward the axis O, are arranged at equal intervals in the circumferential direction of the inner cylinder 21, and have an inclination angle β with respect to the axis O. There is. In this embodiment, the stirring plates 52 of the pyrolysis zone 212B are arranged in eight rows in the direction of the axis O, for example.

加えて、熱分解ゾーン212Bにおける撹拌板52は、図5Aおよび図5Bに示すようにブラケット53を介して内周面21cに取り付けられ、撹拌板52と内筒21の内周面21cとの間には隙間54が形成されている。このような隙間54が形成されることで、内筒21の回転時に撹拌板52によって撹拌された石炭の一部を隙間54から内周面21cに沿って落下させることができ、石炭の粒子が軸線O側に飛散して排気管24に吸い込まれるのを防止しつつ、内筒21の内部での石炭の混合を促進させることができる。 In addition, the stirring plate 52 in the pyrolysis zone 212B is attached to the inner peripheral surface 21c via a bracket 53, as shown in FIGS. 5A and 5B, and the stirring plate 52 is attached to the inner peripheral surface 21c of the inner cylinder 21. A gap 54 is formed therein. By forming such a gap 54, a part of the coal stirred by the stirring plate 52 when the inner cylinder 21 rotates can fall from the gap 54 along the inner circumferential surface 21c, and coal particles are Mixing of the coal inside the inner cylinder 21 can be promoted while preventing the coal from scattering toward the axis O side and being sucked into the exhaust pipe 24.

本実施形態において、上記のような撹拌板51,52は、軸線Oの方向について、水分蒸発ゾーン212Aおよび熱分解ゾーン212Bからなる加熱領域212の全体に配置されている。石炭の飛散を防止しながら均一に撹拌混合するためには、撹拌板51,52を加熱領域212の90%を超える範囲に設置することが好ましい。 In this embodiment, the stirring plates 51 and 52 as described above are arranged in the direction of the axis O throughout the heating region 212 consisting of the water evaporation zone 212A and the thermal decomposition zone 212B. In order to uniformly stir and mix the coal while preventing scattering of the coal, it is preferable to install the stirring plates 51 and 52 in a range exceeding 90% of the heating area 212.

次に、上記の第1の実施形態で説明した図1もあわせて参照して、本実施形態における乾留装置を用いた改質石炭の製造方法について説明する。まず、図示しない駆動部を駆動させることで内筒21を軸線O回りに回転させるとともに、加熱部27によって加熱室22内を加熱する。そして、内筒21の内部が所定の高温になると石炭を内筒21の内部に投入し、加熱室22内の高熱によって乾留させる。 Next, with reference also to FIG. 1 described in the first embodiment, a method for producing reformed coal using the carbonization apparatus in this embodiment will be described. First, the inner tube 21 is rotated around the axis O by driving a drive section (not shown), and the inside of the heating chamber 22 is heated by the heating section 27 . When the inside of the inner cylinder 21 reaches a predetermined high temperature, coal is put into the inner cylinder 21 and carbonized by the high heat in the heating chamber 22.

回転する内筒21の内部に石炭を投入すると、送り領域211の送りリフター211Lによって加熱領域212の水分蒸発ゾーン212Aに搬送され、石炭に含まれる水分が蒸発させられる。水分蒸発ゾーン212Aにおいて、撹拌板51は内筒21の軸線Oと平行に配列されているため、石炭の粒子は撹拌板51によって撹拌されながら内筒21の内周面21cに沿って搬送され、熱分解ゾーン212Bに搬送される。 When coal is introduced into the rotating inner cylinder 21, it is conveyed to the moisture evaporation zone 212A of the heating area 212 by the feed lifter 211L of the feed area 211, and the moisture contained in the coal is evaporated. In the water evaporation zone 212A, since the stirring plate 51 is arranged parallel to the axis O of the inner cylinder 21, the coal particles are conveyed along the inner circumferential surface 21c of the inner cylinder 21 while being stirred by the stirring plate 51. It is transported to the pyrolysis zone 212B.

熱分解ゾーン212Bでは、内筒21の回転によって撹拌板52が回転させられ、内筒21の内部で石炭が撹拌板52によって撹拌混合される。その際、一部の石炭は撹拌板52によって持ち上げられ、他の一部の石炭は撹拌板52で持ち上げられずに隙間54から落下して内周面21c上を流動する。撹拌板52上の石炭の全体が軸線O側に落下するのではないことによって、撹拌に伴う飛散量を抑制できる。 In the thermal decomposition zone 212B, the stirring plate 52 is rotated by the rotation of the inner cylinder 21, and the coal is stirred and mixed inside the inner cylinder 21 by the stirring plate 52. At this time, some of the coal is lifted by the stirring plate 52, and other part of the coal is not lifted by the stirring plate 52, falls from the gap 54, and flows on the inner circumferential surface 21c. Since the entire coal on the stirring plate 52 does not fall toward the axis O side, the amount of scattering caused by stirring can be suppressed.

ここで、図4Bに示すように、熱分解ゾーン212Bに配置される撹拌板52は、撹拌板52の高さha(内周面21cを基準にした、内筒21の径方向における寸法)が石炭の充填高さhmに対して60%~90%となるように設計されることが好ましい。石炭の充填高さhmが撹拌板52の高さhaに対して小さすぎると撹拌効果が小さく、逆に大きすぎると石炭の飛散が増大する。内筒21への石炭の投入量を、撹拌板52の高さhaが石炭の充填高さhmに対して上記の範囲になるように調節してもよい。また、図5Aに示されるように、内周面21cと撹拌板52の延長面との交点(ブラケット53が内周面21cに接合される位置)から撹拌板52の軸線O側の端部までの距離を高さhaとし、隙間54の高さ、すなわち内周面21cと撹拌板52の延長面との交点から撹拌板52の内周面21c側の端部までの距離を高さhbとした場合、隙間54の高さhbは撹拌板52の高さhaの10%~25%の範囲、より好ましくは10%~20%の範囲にあることが好ましい。 Here, as shown in FIG. 4B, the stirring plate 52 disposed in the pyrolysis zone 212B has a height ha (the dimension in the radial direction of the inner cylinder 21 based on the inner circumferential surface 21c). It is preferable to design it so that it is 60% to 90% of the coal filling height hm. If the coal filling height hm is too small relative to the height ha of the stirring plate 52, the stirring effect will be small, and if it is too large, the scattering of coal will increase. The amount of coal charged into the inner cylinder 21 may be adjusted so that the height ha of the stirring plate 52 falls within the above range with respect to the coal filling height hm. Further, as shown in FIG. 5A, from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 (the position where the bracket 53 is joined to the inner peripheral surface 21c) to the end of the stirring plate 52 on the axis O side The height of the gap 54, that is, the distance from the intersection of the inner circumferential surface 21c and the extension surface of the stirring plate 52 to the end of the stirring plate 52 on the inner circumferential surface 21c side is defined as the height hb. In this case, the height hb of the gap 54 is preferably in the range of 10% to 25% of the height ha of the stirring plate 52, more preferably in the range of 10% to 20%.

このように、本実施形態では、内筒21の熱分解ゾーン212Bで石炭を乾留するにあたり、撹拌板52による撹拌によって、石炭の融着や塊状化を防止できる。これによって、内筒21の内部に堆積した石炭の温度偏差が小さくなり、加熱室22からの熱が効率的に伝達される。また、隙間54を設けることによって撹拌時における石炭の飛散を抑え、不揮発成分である炭化物の粒子が排気管24から排出されるのを抑制できる。 In this way, in this embodiment, when coal is carbonized in the thermal decomposition zone 212B of the inner cylinder 21, the stirring by the stirring plate 52 can prevent the coal from coalescing and clumping. This reduces the temperature deviation of the coal deposited inside the inner cylinder 21, and the heat from the heating chamber 22 is efficiently transferred. Further, by providing the gap 54, scattering of coal during stirring can be suppressed, and particles of carbide, which is a non-volatile component, can be suppressed from being discharged from the exhaust pipe 24.

また、上述のように内筒21の軸線Oには下り緩勾配がつけられているため、内筒21の全体を通じて石炭は下流側に向かって移動するが、熱分解ゾーン212Bの撹拌板52が傾斜角βを有することによって、撹拌板52で撹拌された石炭の下流側への移動はある程度妨げられ、一部が上流側に押し戻される。その一方で、水分蒸発ゾーン212Aでは石炭が傾斜角を有さない撹拌板51によって下流側に送り出されるため、熱分解ゾーン212B内の石炭の充填率がより均一になり、滞留時間が長くなる。例えば、熱分解ゾーン212Bにおける温度を650℃とし、本実施形態とは異なり熱分解ゾーン212Bでも傾斜角を有さない撹拌板を設けた場合、内筒21に投入された石炭が熱分解ゾーン212Bに滞留する時間は例えば50分間程度である。他の条件は同様にして、本実施形態のように熱分解ゾーン212Bに傾斜角βを有する撹拌板52を設けた場合、石炭が熱分解ゾーン212Bに滞留する時間は約20%延長されて60分程度になり、これによって石炭の受熱面積が約8%向上する。つまり、上記の例では、撹拌板52が傾斜角βを有することによって乾留装置における石炭への伝熱効率が約8%向上する。 Further, as mentioned above, since the axis O of the inner cylinder 21 has a gentle downward slope, the coal moves toward the downstream side through the entire inner cylinder 21, but the stirring plate 52 of the pyrolysis zone 212B By having the inclination angle β, movement of the coal stirred by the stirring plate 52 to the downstream side is prevented to some extent, and a part of it is pushed back to the upstream side. On the other hand, in the moisture evaporation zone 212A, the coal is sent downstream by the stirring plate 51 having no inclination angle, so that the coal filling rate in the pyrolysis zone 212B becomes more uniform and the residence time becomes longer. For example, if the temperature in the pyrolysis zone 212B is set to 650° C. and a stirring plate having no inclination angle is provided in the pyrolysis zone 212B unlike this embodiment, the coal charged into the inner cylinder 21 will be transferred to the pyrolysis zone 212B. The residence time is, for example, about 50 minutes. With other conditions being the same, when the stirring plate 52 having the inclination angle β is provided in the pyrolysis zone 212B as in this embodiment, the time the coal stays in the pyrolysis zone 212B is extended by about 20% to 60%. This increases the heat receiving area of the coal by about 8%. That is, in the above example, the heat transfer efficiency to the coal in the carbonization apparatus is improved by about 8% due to the stirring plate 52 having the inclination angle β.

なお、本実施形態については、上記の第1の実施形態との組み合わせが可能である他、以下に例示するように種々の変更を加えることが可能である。また、上記で説明した撹拌板52が傾斜角βをもって配置される構成と、撹拌板52と内筒21の内周面21cとの間に隙間54を設ける構成とは、それぞれ別個に効果を奏するため、いずれか一方のみが採用されてもよい。 Note that this embodiment can be combined with the first embodiment described above, and various changes can be made as exemplified below. Further, the above-described configuration in which the stirring plate 52 is arranged with an inclination angle β and the configuration in which the gap 54 is provided between the stirring plate 52 and the inner circumferential surface 21c of the inner cylinder 21 each have separate effects. Therefore, only one of them may be adopted.

例えば、上述した例では、水分蒸発ゾーン212Aの撹拌板51を軸線Oに対して平行に設置したが、水分蒸発ゾーン212Aにおける撹拌板51も軸線Oに対して傾斜角をもって配置してもよい。この場合、軸線Oに対する撹拌板51の傾斜角は、撹拌板52の傾斜角βより小さく設定することが好ましい。 For example, in the above example, the stirring plate 51 in the moisture evaporation zone 212A is installed parallel to the axis O, but the stirring plate 51 in the moisture evaporation zone 212A may also be arranged at an angle of inclination to the axis O. In this case, it is preferable that the angle of inclination of the stirring plate 51 with respect to the axis O is set smaller than the angle of inclination β of the stirring plate 52.

また、内筒21の周方向に配列される撹拌板52の設置間隔は、等間隔であることが好ましいが、不等間隔であってもよい。撹拌板52は、内筒21の内径に応じて4枚~12枚、より好ましくは6枚~10枚の範囲で設置できる。内周面21cの周方向に設置する撹拌板52の数は、石炭の混合撹拌効果を向上できる範囲で適宜設定できるが、撹拌板52の設置数を増やし過ぎると石炭の粒子が撹拌板52間で細かく区画されてしまい、混合割合が低下するので好ましくない。 Furthermore, the stirring plates 52 arranged in the circumferential direction of the inner cylinder 21 are preferably arranged at equal intervals, but may be arranged at irregular intervals. The number of stirring plates 52 can be set in a range of 4 to 12, more preferably 6 to 10, depending on the inner diameter of the inner cylinder 21. The number of stirring plates 52 installed in the circumferential direction of the inner circumferential surface 21c can be set as appropriate within a range that can improve the coal mixing and stirring effect, but if the number of installed stirring plates 52 is increased too much, coal particles will be scattered between the stirring plates 52. This is not preferable because the mixture becomes finely divided and the mixing ratio decreases.

次に、図6、図7Aおよび図7Bを参照して、本発明の第2の実施形態の変形例について説明する。本変形例では、撹拌板52に、内筒21の径方向に対して傾斜する折り曲げ部52bが形成される。具体的には、図7Aに示されるように、内周面21cと撹拌板52の延長面との交点(ブラケット53が内周面21cに接合される位置)から撹拌板52の軸線O側の端部までの距離を高さhaとし、隙間54の高さ、すなわち内周面21cと撹拌板52の延長面との交点から撹拌板52の内周面21c側の端部までの距離を高さhbとし、撹拌板52の軸線O側に形成される折り曲げ部52bとそれ以外の部分との境界の内周面21cからの距離を高さhcとした場合、高さhcは高さhaの30%~70%の範囲であることが好ましい。つまり、折り曲げ部52bは、撹拌板52の軸線O側で内筒21の内周面21cを基準にした撹拌板52の高さの30%以上~70%以下の範囲に形成されることが好ましい。また、折り曲げ部52bの内筒21の径方向に対する傾斜角γは10°以上45°以下であることが好ましい。上記の例では、撹拌板52によって撹拌された石炭のうち、折り曲げ部52b上にあるものが先行して落下することで、例えば折り曲げ部が形成されない撹拌板52の端部から石炭が(内筒21の回転によって撹拌板52の角度が水平を超えた時点で)一度に落下する場合に比べて石炭の飛散を抑制できる。 Next, a modification of the second embodiment of the present invention will be described with reference to FIGS. 6, 7A, and 7B. In this modification, the stirring plate 52 is formed with a bent portion 52b that is inclined with respect to the radial direction of the inner cylinder 21. Specifically, as shown in FIG. 7A, from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 (the position where the bracket 53 is joined to the inner peripheral surface 21c) to the axis O side of the stirring plate 52. The distance to the end is defined as height ha, and the height of the gap 54, that is, the distance from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 to the end of the stirring plate 52 on the inner peripheral surface 21c side is defined as height. hb, and the distance from the inner circumferential surface 21c of the boundary between the bent portion 52b formed on the axis O side of the stirring plate 52 and other parts is the height hc, then the height hc is equal to the height ha. It is preferably in the range of 30% to 70%. In other words, the bent portion 52b is preferably formed in a range of 30% or more and 70% or less of the height of the stirring plate 52 on the axis O side of the stirring plate 52 based on the inner peripheral surface 21c of the inner cylinder 21. . Further, the inclination angle γ of the bent portion 52b with respect to the radial direction of the inner cylinder 21 is preferably 10° or more and 45° or less. In the above example, among the coal stirred by the stirring plate 52, the coal on the bent portion 52b falls first, so that, for example, the coal (inner cylinder) falls from the end of the stirring plate 52 where the bent portion is not formed. When the angle of the stirring plate 52 exceeds the horizontal due to the rotation of the stirring plate 21), the scattering of coal can be suppressed compared to the case where the coal falls all at once.

(第4の検証試験)
次に、本発明の第2の実施形態に係る検証試験の結果について説明する。第4の検証試験では、試験例A4および試験例A5として、揮発分が50wt%程度の褐炭を5mm以下に粉砕して乾燥させたものを原料炭として用いて熱分解試験を実施した。原料炭の加熱温度と生成された改質石炭のVM値(揮発分)との関係を図8のグラフに示す。試験例A4では石炭の昇温速度を7℃/分とし、試験例A5では25℃/分とした、それぞれ1分間保持した。試験例A4,A5のそれぞれで石炭温度が550℃、650℃、750℃の時にVM値を測定すると、昇温速度が低い試験例A4の場合の方が試験例A5と比較してVM値が低いという結果が得られた。この結果から、石炭の最終到達温度が同じであっても、昇温速度を比較的低く設定して熱分解ゾーンでの加熱(滞留)時間を長く維持することによって石炭のVM値を低減し、乾留炭の揮発を促進できることがわかる。
(Fourth verification test)
Next, the results of the verification test according to the second embodiment of the present invention will be explained. In the fourth verification test, as Test Example A4 and Test Example A5, a thermal decomposition test was conducted using lignite with a volatile content of about 50 wt% crushed to 5 mm or less and dried as raw coal. The graph of FIG. 8 shows the relationship between the heating temperature of raw coal and the VM value (volatile content) of the produced reformed coal. In Test Example A4, the heating rate of the coal was 7° C./min, and in Test Example A5, it was 25° C./min, each of which was maintained for 1 minute. When measuring the VM value in Test Examples A4 and A5 when the coal temperature was 550°C, 650°C, and 750°C, it was found that the VM value was higher in Test Example A4, which had a lower heating rate, than in Test Example A5. The result was that it was low. From this result, even if the final temperature of the coal is the same, the VM value of the coal can be reduced by setting the heating rate relatively low and maintaining the heating (residence) time in the pyrolysis zone for a long time. It can be seen that the volatilization of carbonized coal can be promoted.

(第5の検証試験)
第5の検証試験では、内筒の内径φ500mm×加熱長L=3000mm(水分蒸発ゾーンおよび熱分解ゾーンを合わせた加熱領域の長さ)の外熱式ロータリーキルンを用いて石炭の乾留を行った。加熱領域の全長にわたって内筒の内周面周方向について4枚の撹拌板を配置し、撹拌板の傾斜角が0.0°(試験例B4)、4.0°(試験例A6)、6.0°(試験例A7)の3通りについて実験を行った。実験では、石炭投入量280kg/h、内筒の回転数を3.1rpm、内筒の下り勾配角度1.0°、撹拌板の高さha=90mmとし、試験例B4および試験例A6,A7について、実測滞留時間(min)および総括伝熱係数(kcal/mh℃)とを測定した。結果を表4に示す。
(Fifth verification test)
In the fifth verification test, coal was carbonized using an externally heated rotary kiln with an inner cylinder inner diameter φ500 mm x heating length L = 3000 mm (length of the heating region including the water evaporation zone and the thermal decomposition zone). Four stirring plates were arranged in the circumferential direction of the inner peripheral surface of the inner cylinder over the entire length of the heating region, and the inclination angle of the stirring plates was 0.0° (Test Example B4), 4.0° (Test Example A6), 6 .0° (Test Example A7). In the experiment, the coal input amount was 280 kg/h, the rotation speed of the inner cylinder was 3.1 rpm, the downward slope angle of the inner cylinder was 1.0°, and the height of the stirring plate was ha = 90 mm, and Test Example B4 and Test Examples A6 and A7 were used. The actual residence time (min) and overall heat transfer coefficient (kcal/m 2 h°C) were measured. The results are shown in Table 4.

Figure 0007416654000004
Figure 0007416654000004

表4に示す試験結果から、内筒の加熱領域に配置される撹拌板に傾斜角をもたせた試験例A6,A7において、傾斜角がない試験例B4と比較して実測滞留時間が長くなり、総括伝熱係数が大きくなることを確認できた。 From the test results shown in Table 4, in Test Examples A6 and A7 in which the stirring plate disposed in the heating area of the inner cylinder had an inclination angle, the actual retention time was longer than in Test Example B4 without an inclination angle. It was confirmed that the overall heat transfer coefficient increased.

(第6の検証試験)
第6の検証試験では、内筒の内径φ500mm、加熱長L=3000mm、内筒の下り勾配角度1.0°の外熱式ロータリーキルンを用いて石炭の乾留を行った。試験例B5では加熱領域の全長に渡って軸線に対して傾斜角をもたない撹拌板を設置し、試験例A8では加熱領域のうち内筒の上流側の端部から600mmの範囲までは傾斜角のない撹拌板を設置し、それ以降は傾斜角4°の撹拌板を設置した。試験例A9では加熱領域のうち内筒の上流側の端部から600mmの範囲までは傾斜角のない撹拌板を設置し、それ以降は傾斜角6°の撹拌板を設置した。実験では、石炭投入量280kg/h、内筒の回転数を3.1rpm、撹拌板の高さha=90mm、内筒の下流側の端部における炭化物の目標温度を640℃とし、試験例B5および試験例A8,A9について、実測滞留時間(min)、総括伝熱係数(kcal/mh℃)および乾留後の石炭揮発分(%)を測定した。結果を表5に示す。
(Sixth verification test)
In the sixth verification test, coal was carbonized using an externally heated rotary kiln in which the inner diameter of the inner cylinder was 500 mm, the heating length L was 3000 mm, and the downward slope angle of the inner cylinder was 1.0°. In Test Example B5, a stirring plate with no inclination angle to the axis was installed over the entire length of the heating area, and in Test Example A8, the stirring plate was installed at an angle of inclination of 600 mm from the upstream end of the inner cylinder in the heating area. A stirring plate without corners was installed, and thereafter a stirring plate with an inclination angle of 4° was installed. In Test Example A9, a stirring plate with no inclination angle was installed within a range of 600 mm from the upstream end of the inner cylinder in the heating region, and a stirring plate with an inclination angle of 6° was installed thereafter. In the experiment, the coal input amount was 280 kg/h, the rotation speed of the inner cylinder was 3.1 rpm, the height of the stirring plate was ha = 90 mm, the target temperature of the carbide at the downstream end of the inner cylinder was 640 ° C., and Test Example B5 For Test Examples A8 and A9, the actual residence time (min), overall heat transfer coefficient (kcal/m 2 h°C), and coal volatile content (%) after carbonization were measured. The results are shown in Table 5.

Figure 0007416654000005
Figure 0007416654000005

表5に示す試験結果から、水分蒸発ゾーンには傾斜角のない撹拌板を、熱分解ゾーンには傾斜角をもった撹拌板をそれぞれ設置した試験例A8,A9では、加熱領域の全長に傾斜角をもった撹拌板を設置した上記の試験例A6,A7に比べて主に水分蒸発ゾーンで実測滞留時間が若干短くなる。ただし、水分蒸発ゾーンでは石炭に含まれる水分が蒸発しきっていないために内筒の内外での温度差が大きく、滞留時間が長くなっても総括伝熱係数の増加にはつながらない。従って、熱分解ゾーンでの滞留時間が同程度である試験例A6,A7と試験例A8,A9の間で総括伝熱係数はほとんど変わらなかった。また、内筒の下流側の端部における炭化物の目標温度が同じである場合、実測滞留時間の長い試験例A6,A7の方がより揮発分の低い改質石炭が得られた。 From the test results shown in Table 5, in Test Examples A8 and A9, in which a stirring plate without an inclined angle was installed in the moisture evaporation zone and a stirring plate with an inclined angle in the pyrolysis zone, the heating area was tilted over the entire length of the heating area. Compared to the above test examples A6 and A7 in which a stirring plate with corners was installed, the actual retention time was slightly shorter mainly in the water evaporation zone. However, in the moisture evaporation zone, the moisture contained in the coal has not completely evaporated, so there is a large temperature difference between the inside and outside of the inner cylinder, so even if the residence time becomes longer, the overall heat transfer coefficient does not increase. Therefore, there was almost no difference in the overall heat transfer coefficient between Test Examples A6 and A7 and Test Examples A8 and A9, which had similar residence times in the thermal decomposition zone. Further, when the target temperature of the carbide at the downstream end of the inner cylinder was the same, modified coal with a lower volatile content was obtained in Test Examples A6 and A7, which had a longer actually measured residence time.

(第7の検証試験)
第7の検証試験では、内筒の内径φ500mm、加熱長L=3000mm、内筒の下り勾配角度1.0°の外熱式ロータリーキルンを用いて石炭の乾留を行い、撹拌板の有無と設置数の違いによる内筒の内部の総括伝熱係数の測定値について試験した。石炭投入量190kg/h~280kg/h、内筒の回転数を2.2rpm~3.0rpm、加熱室の燃焼温度を790℃~840℃、内筒の内部における石炭の充填高さhmを100mm~140mmの範囲に設定した。試験例B6では撹拌板を設けず、試験例A10では撹拌板を周方向に2枚(180°間隔)で配置し、試験例A11では撹拌板を周方向に4枚(90°間隔)で配置し、試験例A12では撹拌板を周方向に8枚(45°間隔)で配置した。撹拌板の高さhaはいずれも75mmとした。各試験例について、撹拌板の配置長さを変更し、撹拌板の周方向の枚数×撹拌板の全長を加熱長Lで除した値Kを変化させながら石炭の乾留を行い、内筒の全内周面の面積を基準とする総括伝熱係数U(kcal/mh℃)を測定した。
(Seventh verification test)
In the seventh verification test, coal was carbonized using an externally heated rotary kiln with an inner cylinder inner diameter of 500 mm, heating length L = 3000 mm, and an inner cylinder downward slope angle of 1.0°. A test was conducted on the measured value of the overall heat transfer coefficient inside the inner cylinder due to the difference in . Coal input amount: 190 kg/h to 280 kg/h, rotation speed of the inner cylinder: 2.2 rpm to 3.0 rpm, combustion temperature of the heating chamber: 790°C to 840°C, coal filling height hm inside the inner cylinder: 100 mm It was set in the range of ~140 mm. In Test Example B6, no stirring plate was provided, in Test Example A10, two stirring plates were arranged in the circumferential direction (180° intervals), and in Test Example A11, stirring plates were arranged in four pieces in the circumferential direction (90° intervals). However, in Test Example A12, eight stirring plates were arranged in the circumferential direction (at 45° intervals). The height ha of the stirring plate was 75 mm in all cases. For each test example, the arrangement length of the stirring plate was changed and coal was carbonized while changing the value K obtained by dividing the number of stirring plates in the circumferential direction x the total length of the stirring plate by the heating length L. The overall heat transfer coefficient U (kcal/m 2 h°C) based on the area of the inner peripheral surface was measured.

図9は、第7の検証試験に係る総括伝熱係数の測定結果を示すグラフである。グラフに示されるように、撹拌板を設置することによって、また撹拌板の周方向の枚数および総面積が増大するに従って総括伝熱係数が大きくなることを確認できた。この結果は、撹拌板を設置し、周方向の枚数および総面積を増大させることで、内筒の内部における石炭の撹拌混合が促進されることを示している。 FIG. 9 is a graph showing the measurement results of the overall heat transfer coefficient according to the seventh verification test. As shown in the graph, it was confirmed that by installing the stirring plate, and as the number of stirring plates in the circumferential direction and the total area increased, the overall heat transfer coefficient increased. This result shows that by installing stirring plates and increasing the number of plates in the circumferential direction and the total area, stirring and mixing of coal inside the inner cylinder is promoted.

(第8の検証試験)
第8の検証試験では、内筒の内径φ2700mm、加熱長L=3000mmの外熱式ロータリーキルンにおける撹拌板の折り曲げ部の有無による石炭の飛散位置の違いをDEM(Discrete Element Method)による計算で求めた。内筒の回転数は2.7rpm、内筒の内部における石炭模擬粒子の充填高さhmは690mmとした。撹拌板は試験例B7、試験例A13ともに周方向に60°間隔で6枚配置した。試験例B7の撹拌板は内筒の径方向に延びる平板形状であり、試験例A13の撹拌板は図6に示すように撹拌板の上部に折り曲げ部を有する形状である。試験例B7、試験例A13とも、撹拌板と内筒の内周面との間には隙間が形成されない。試験例B7、試験例A13のそれぞれで、内筒が3回転する間に撹拌板によって撹拌された石炭の粒子が飛散する量を、内筒の中心軸線から内周面までの距離の関数として演算した。その結果を表6に示す。
(Eighth verification test)
In the eighth verification test, the difference in the scattering position of coal depending on the presence or absence of a bent part of the stirring plate in an externally heated rotary kiln with an inner cylinder inner diameter of 2700 mm and a heating length L = 3000 mm was calculated using DEM (Discrete Element Method). . The rotation speed of the inner cylinder was 2.7 rpm, and the filling height hm of the coal simulated particles inside the inner cylinder was 690 mm. Six stirring plates were arranged at 60° intervals in the circumferential direction in both Test Example B7 and Test Example A13. The stirring plate of Test Example B7 had a flat plate shape extending in the radial direction of the inner cylinder, and the stirring plate of Test Example A13 had a shape with a bent portion at the top of the stirring plate as shown in FIG. In both Test Example B7 and Test Example A13, no gap was formed between the stirring plate and the inner peripheral surface of the inner cylinder. In each of Test Example B7 and Test Example A13, the amount of scattering of coal particles stirred by the stirring plate during three rotations of the inner cylinder was calculated as a function of the distance from the central axis of the inner cylinder to the inner peripheral surface. did. The results are shown in Table 6.

Figure 0007416654000006
Figure 0007416654000006

表6に示す結果から、試験例B7に比べて試験例A13では、石炭の粒子が飛散する範囲が軸線付近から内周面付近に移動していることがわかる。この結果は、撹拌板に折り曲げ部を設けることによって、内筒の軸線付近に飛散して排気管から排出される石炭の粒子を減少させられることを示している。 From the results shown in Table 6, it can be seen that in Test Example A13, compared to Test Example B7, the range in which coal particles are scattered has moved from near the axis to near the inner peripheral surface. This result shows that by providing the stirring plate with a bent portion, it is possible to reduce the number of coal particles that are scattered near the axis of the inner cylinder and discharged from the exhaust pipe.

(第9の検証試験)
第9の検証試験では、内筒の内径φ500mm、加熱長L=3000mmの外熱式ロータリーキルンを用いて石炭の乾留を行い、撹拌板と内筒の内周面との間の隙間の有無による石炭の飛散状況を試験した。それぞれの例において撹拌板は内筒の内周面から上端までの高さhaが90mmであり、上部に折り曲げ部を有する形状である。撹拌板と内周面との間の隙間の大きさは、試験例B8では0(隙間なし)、試験例A14では15mm、試験例B9では高さ35mmとした。内筒に投入される石炭の含有水分を12.50%とし、内筒の回転数を3.1rpmとした。試験では、石炭の投入量および加熱後の温度から既知の収率関数を用いて、乾留後の改質石炭の排出量の予測値を計算した。この予測値と、内筒から排出された改質石炭の排出量の実測値との差分を、内筒の内部で飛散して排気管から排出された石炭粒子の量であるとみなして飛散率を算出した。結果を表7に示す。
(Ninth verification test)
In the ninth verification test, coal was carbonized using an externally heated rotary kiln with an inner cylinder inner diameter φ500 mm and a heating length L = 3000 mm. The scattering situation was tested. In each example, the stirring plate has a height ha of 90 mm from the inner circumferential surface of the inner cylinder to the upper end, and has a bent portion at the upper part. The size of the gap between the stirring plate and the inner peripheral surface was 0 (no gap) in Test Example B8, 15 mm in Test Example A14, and 35 mm in height in Test Example B9. The moisture content of the coal charged into the inner cylinder was 12.50%, and the rotation speed of the inner cylinder was 3.1 rpm. In the test, a known yield function was used to calculate the predicted amount of reformed coal output after carbonization based on the input amount of coal and the temperature after heating. The difference between this predicted value and the measured value of the amount of reformed coal discharged from the inner cylinder is considered to be the amount of coal particles scattered inside the inner cylinder and discharged from the exhaust pipe, and the scattering rate is calculated. was calculated. The results are shown in Table 7.

Figure 0007416654000007
Figure 0007416654000007

表7に示す結果から、撹拌板と内筒の内周面との間の隙間を大きくすることによって石炭の飛散量を低下させられることがわかる。ただし、以下の検証試験で示すように、隙間が大きすぎると石炭への伝熱係数が減少する場合があるため、隙間の大きさは適切な範囲で設定することが望ましい。 The results shown in Table 7 show that the amount of coal scattering can be reduced by increasing the gap between the stirring plate and the inner peripheral surface of the inner cylinder. However, as shown in the verification test below, if the gap is too large, the heat transfer coefficient to the coal may decrease, so it is desirable to set the gap size within an appropriate range.

(第10の検証試験)
第10の検証試験では、内筒の内径φ500mm、加熱長L=3000mmの外熱式ロータリーキルンを用いて石炭の乾留を行い、撹拌板と内筒の内周面との間に隙間がある場合とない場合とにおける総括伝熱係数を実測した。それぞれの例において撹拌板は内筒の内周面から上端までの高さhaが90mmであり、撹拌板と内周面との間の隙間の大きさは、試験例B10では0(隙間なし)、試験例A15では15mm、試験例B11では35mmである。内筒の回転数は2.7rpm、石炭投入量は280kg/h、内筒の内部における石炭の充填高さhmは150mmとした。それぞれの例における総括伝熱係数の算出結果を表8に示す。
(10th verification test)
In the 10th verification test, coal was carbonized using an externally heated rotary kiln with an inner cylinder inner diameter of φ500 mm and a heating length L = 3000 mm. The overall heat transfer coefficient was actually measured in the case where there was no heat transfer coefficient. In each example, the height ha of the stirring plate from the inner peripheral surface of the inner cylinder to the upper end is 90 mm, and the size of the gap between the stirring plate and the inner peripheral surface is 0 (no gap) in Test Example B10. , 15 mm in Test Example A15, and 35 mm in Test Example B11. The rotation speed of the inner cylinder was 2.7 rpm, the amount of coal input was 280 kg/h, and the height hm of coal filling inside the inner cylinder was 150 mm. Table 8 shows the calculation results of the overall heat transfer coefficient in each example.

Figure 0007416654000008
Figure 0007416654000008

表8に示す結果から、隙間の大きさを15mmとした試験例A15では隙間のない試験例B10に比べて総括伝熱係数が上昇するものの、隙間の大きさを35mmとした試験例B11ではかえって隙間のない試験例B10よりも総括伝熱係数が低下した。この結果から、撹拌板と内筒の内周面との間に適切な大きさの隙間を設けることによって石炭の撹拌の効率が向上するが、隙間が大きすぎると撹拌の効率が低下することがわかる。 From the results shown in Table 8, the overall heat transfer coefficient increases in Test Example A15 with a gap size of 15 mm compared to Test Example B10 with no gap, but on the contrary, in Test Example B11 with a gap size of 35 mm. The overall heat transfer coefficient was lower than that of Test Example B10, which had no gaps. From this result, the efficiency of coal stirring can be improved by providing an appropriately sized gap between the stirring plate and the inner peripheral surface of the inner cylinder, but if the gap is too large, the efficiency of stirring will decrease. Recognize.

図10は、上記の第9および第10の検証試験の結果について、内筒の内周面と撹拌板との間の隙間の大きさと石炭の飛散率および総括伝熱係数との関係を示すグラフである。グラフに示されるように、石炭粒子の飛散率は隙間が大きいほど少なくなる一方で、伝熱係数は隙間が所定の値(この例では15mm)の場合に最大になり、隙間が大きくなりすぎると低下する。例えば、グラフにおいて総括伝熱係数が10kcal/mh℃を上回る範囲を適切な範囲とすると、隙間の大きさについては9mm~23mm、すなわち撹拌板の高さhaの10%~25%の範囲が好ましく、高さhaの10%~20%の範囲がより好ましいといえる。 FIG. 10 is a graph showing the relationship between the size of the gap between the inner circumferential surface of the inner cylinder and the stirring plate, the scattering rate of coal, and the overall heat transfer coefficient for the results of the ninth and tenth verification tests described above. It is. As shown in the graph, the scattering rate of coal particles decreases as the gap becomes larger, while the heat transfer coefficient reaches its maximum when the gap is a predetermined value (15 mm in this example), and increases when the gap becomes too large. descend. For example, if the appropriate range in the graph is that the overall heat transfer coefficient exceeds 10 kcal/m 2 h°C, then the gap size should be 9 mm to 23 mm, that is, 10% to 25% of the height ha of the stirring plate. is preferable, and a range of 10% to 20% of the height ha is more preferable.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although preferred embodiments of the present invention have been described above in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person with ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea stated in the claims. It is understood that these also naturally fall within the technical scope of the present invention.

10…製造設備、11…乾燥装置、12…乾留装置、13…冷却装置、14…排ガスシステム、15…二次燃焼装置、16…蒸気発生装置、17…除塵装置、18…吸引ファン、19…排ガス処理装置、21…内筒、21a…加熱室内部分、21c…内周面、211…送り領域、211L…送りリフター、212…加熱領域、212A…水分蒸発ゾーン、212B…熱分解ゾーン、213…出口領域、22…加熱室、23…温度制御部、24…排気管、25…制御系、26…空気供給部、27…加熱部、28…蒸気供給部、29…温度検出部、30…制御本体部、31…打ち込み空気ファン、32…第1配管、33…第1制御弁、34…バーナー、36…バーナーファン、37…第2配管、38…第2制御弁、39…第3配管、40…第3制御弁、41…第4配管、42…第4制御弁、43…煙道、51…撹拌板、52…撹拌板、52b…折り曲げ部、53…ブラケット、54…隙間、D1…上流側、D2…下流側、O…軸線、Z1…第1制御ゾーン、Z2…第2制御ゾーン、Z3…第3制御ゾーン。 10... Manufacturing equipment, 11... Drying device, 12... Carbonization device, 13... Cooling device, 14... Exhaust gas system, 15... Secondary combustion device, 16... Steam generator, 17... Dust removal device, 18... Suction fan, 19... Exhaust gas treatment device, 21... Inner cylinder, 21a... Heating chamber portion, 21c... Inner peripheral surface, 211... Feeding area, 211L... Feeding lifter, 212... Heating area, 212A... Moisture evaporation zone, 212B... Pyrolysis zone, 213... Exit area, 22... Heating chamber, 23... Temperature control section, 24... Exhaust pipe, 25... Control system, 26... Air supply section, 27... Heating section, 28... Steam supply section, 29... Temperature detection section, 30... Control Main body, 31... Drive-in air fan, 32... First piping, 33... First control valve, 34... Burner, 36... Burner fan, 37... Second piping, 38... Second control valve, 39... Third piping, 40... Third control valve, 41... Fourth piping, 42... Fourth control valve, 43... Flue, 51... Stirring plate, 52... Stirring plate, 52b... Bending portion, 53... Bracket, 54... Gap, D1... Upstream side, D2...downstream side, O...axis, Z1...first control zone, Z2...second control zone, Z3...third control zone.

Claims (16)

軸線の回りに回転する内筒と、
前記内筒を、前記内筒の径方向の外側から覆う加熱室と、
前記内筒に、前記軸線方向に複数配置され、前記内筒を前記径方向に貫通して前記加熱室内に開口する排気管と、を有する乾留装置を備え、
前記内筒において、前記軸線方向に沿った上流側に位置する端部から石炭が供給され、前記軸線方向に沿った下流側に位置する端部から改質石炭が排出される改質石炭の製造設備であって、
前記加熱室内に酸素含有ガスを供給して前記加熱室内の温度を制御する温度制御部と、
前記加熱室内のガスを排出する煙道と、を更に備え、
前記温度制御部は、前記加熱室内を前記軸線方向に複数に区画してなる制御ゾーンごとに温度を制御し、
前記煙道は、複数の前記制御ゾーンのうち、最も前記上流側の制御ゾーンに接続されている、改質石炭の製造設備。
an inner cylinder that rotates around its axis;
a heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder;
A carbonization device having a plurality of exhaust pipes arranged in the inner cylinder in the axial direction, penetrating the inner cylinder in the radial direction and opening into the heating chamber,
In the inner cylinder, coal is supplied from an end located on the upstream side along the axial direction, and modified coal is discharged from an end located on the downstream side along the axial direction. Equipment,
a temperature control unit that controls the temperature within the heating chamber by supplying oxygen-containing gas into the heating chamber;
Further comprising a flue for discharging gas in the heating chamber,
The temperature control unit controls the temperature for each control zone formed by dividing the heating chamber into a plurality of zones in the axial direction,
The flue is connected to the most upstream control zone among the plurality of control zones in the reformed coal production facility.
前記温度制御部は、前記煙道内の温度が600℃以上を維持し、かつ前記加熱室内の温度を600℃以上となるように制御する、請求項1に記載の改質石炭の製造設備。 The reformed coal manufacturing equipment according to claim 1, wherein the temperature control unit maintains a temperature in the flue at 600°C or higher and controls a temperature in the heating chamber to 600°C or higher. 前記内筒の内周面から前記軸線に向かって突出し、前記石炭を撹拌する撹拌部材をさらに備える、請求項1または請求項2に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to claim 1 or 2 , further comprising a stirring member that protrudes from the inner circumferential surface of the inner cylinder toward the axis and stirs the coal. 前記内筒の内部で前記下流側の熱分解ゾーンに配置される前記撹拌部材は、前記上流側の水分蒸発ゾーンに配置される前記撹拌部材よりも、前記軸線に対する傾斜角が大きい、請求項に記載の改質石炭の製造設備。 3. The stirring member disposed in the downstream pyrolysis zone inside the inner cylinder has a larger inclination angle with respect to the axis than the stirring member disposed in the upstream moisture evaporation zone . Equipment for producing modified coal as described in . 前記水分蒸発ゾーンに配置される前記撹拌部材の前記軸線に対する傾斜角が0である、請求項に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to claim 4 , wherein the stirring member disposed in the water evaporation zone has an inclination angle of 0 with respect to the axis. 前記撹拌部材は、前記軸線方向について、前記水分蒸発ゾーンおよび前記熱分解ゾーンからなる加熱領域の90%を超える範囲に配置される、請求項または請求項に記載の改質石炭の製造設備。 The reformed coal manufacturing equipment according to claim 4 or 5 , wherein the stirring member is arranged in a range exceeding 90% of a heating region consisting of the moisture evaporation zone and the thermal decomposition zone in the axial direction. . 前記撹拌部材と前記内筒の内周面との間に隙間が形成されている、請求項から請求項のいずれか1項に記載の改質石炭の製造設備。 The reformed coal manufacturing equipment according to any one of claims 3 to 6 , wherein a gap is formed between the stirring member and the inner circumferential surface of the inner cylinder. 前記隙間の大きさは、前記内筒の径方向における前記撹拌部材の寸法の10%~25%である、請求項に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to claim 7 , wherein the size of the gap is 10% to 25% of the dimension of the stirring member in the radial direction of the inner cylinder. 前記撹拌部材は、前記内筒の径方向に対して傾斜する折り曲げ部を有する、請求項から請求項のいずれか1項に記載の改質石炭の製造設備。 The reformed coal manufacturing equipment according to any one of claims 3 to 7 , wherein the stirring member has a bent portion that is inclined with respect to the radial direction of the inner cylinder. 前記折り曲げ部は、前記撹拌部材の前記軸線側で前記内筒の内周面を基準にした前記撹拌部材の高さの30%以上~70%以下の範囲に形成され、
前記折り曲げ部の前記内筒の径方向に対する傾斜角は10°以上45°以下である、請求項に記載の改質石炭の製造設備。
The bent portion is formed on the axis side of the stirring member in a range of 30% or more and 70% or less of the height of the stirring member based on the inner circumferential surface of the inner cylinder,
The modified coal manufacturing equipment according to claim 9 , wherein the angle of inclination of the bent portion with respect to the radial direction of the inner cylinder is 10° or more and 45° or less.
軸線の回りに回転する内筒と、前記内筒を、前記内筒の径方向の外側から覆う加熱室と、前記内筒に、前記軸線方向に複数配置され、前記内筒を前記径方向に貫通して前記加熱室内に開口する排気管と、を有する乾留装置を用いて、前記内筒において前記軸線方向に沿った上流側に位置する端部から石炭を供給し、前記軸線方向に沿った下流側に位置する端部から改質石炭を排出する改質石炭の製造方法であって、
前記加熱室内に酸素含有ガスを供給して前記加熱室内の温度を制御する温度制御工程と、
前記加熱室内のガスを排出するガス排出工程と、を含み、
前記温度制御工程は、前記加熱室内を前記軸線方向に複数に区画してなる制御ゾーンごとに温度を制御し、
前記ガス排出工程は、複数の前記制御ゾーンのうち、最も前記上流側の制御ゾーンからガスを排出する、改質石炭の製造方法。
an inner cylinder that rotates around an axis; a heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder; and a plurality of heating chambers arranged in the axial direction in the inner cylinder, Using a carbonization apparatus having an exhaust pipe that penetrates and opens into the heating chamber, coal is supplied from an end located on the upstream side along the axial direction in the inner cylinder, and A method for producing modified coal, the method comprising discharging the modified coal from an end located on the downstream side,
a temperature control step of supplying oxygen-containing gas into the heating chamber to control the temperature inside the heating chamber;
a gas exhaust step of exhausting the gas in the heating chamber,
In the temperature control step, the temperature is controlled for each control zone formed by dividing the heating chamber into a plurality of zones in the axial direction,
In the method for producing reformed coal , the gas discharge step discharges gas from the most upstream control zone among the plurality of control zones .
前記温度制御工程は、前記加熱室内の温度を600℃以上となるように制御する、請求項11に記載の改質石炭の製造方法。 The method for producing modified coal according to claim 11 , wherein in the temperature control step, the temperature in the heating chamber is controlled to be 600°C or higher. 前記内筒の内周面から前記軸線に向かって突出する撹拌部材を用いて前記石炭を撹拌する、請求項11または請求項12に記載の改質石炭の製造方法。 The method for producing modified coal according to claim 11 or 12 , wherein the coal is stirred using a stirring member protruding from the inner circumferential surface of the inner cylinder toward the axis. 少なくとも前記内筒の内部で前記下流側の熱分解ゾーンに配置される前記撹拌部材が前記軸線に対する傾斜角を有し、前記石炭を前記上流側に押し戻すように撹拌する、前記請求項13に記載の改質石炭の製造方法。 14. The stirring member disposed in the downstream pyrolysis zone at least inside the inner cylinder has an inclination angle with respect to the axis, and stirs the coal so as to push the coal back toward the upstream side. A method for producing modified coal. 前記撹拌部材と前記内筒の内周面との間に隙間が形成され、前記撹拌部材によって撹拌された石炭を前記隙間から落下させる、請求項13または請求項14に記載の改質石炭の製造方法。 The production of modified coal according to claim 13 or 14 , wherein a gap is formed between the stirring member and the inner circumferential surface of the inner cylinder, and the coal stirred by the stirring member falls through the gap. Method. 前記撹拌部材は前記内筒の径方向に対して傾斜する折り曲げ部を有し、前記撹拌部材によって撹拌された石炭を前記折り曲げ部から落下させる、請求項13から請求項15のいずれか1項に記載の改質石炭の製造方法。 The stirring member has a bent portion inclined with respect to the radial direction of the inner cylinder, and the coal stirred by the stirring member falls from the bent portion, according to any one of claims 13 to 15 . The method for producing the modified coal described.
JP2020060976A 2020-03-30 2020-03-30 Modified coal manufacturing method and manufacturing equipment Active JP7416654B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020060976A JP7416654B2 (en) 2020-03-30 2020-03-30 Modified coal manufacturing method and manufacturing equipment
AU2021247761A AU2021247761B2 (en) 2020-03-30 2021-03-24 Method and facility for manufacturing reformed coal
CN202180025266.XA CN115349007B (en) 2020-03-30 2021-03-24 Method and apparatus for producing modified coal
PCT/JP2021/012113 WO2021200425A1 (en) 2020-03-30 2021-03-24 Method and facility for manufacturing reformed coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060976A JP7416654B2 (en) 2020-03-30 2020-03-30 Modified coal manufacturing method and manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2021161144A JP2021161144A (en) 2021-10-11
JP7416654B2 true JP7416654B2 (en) 2024-01-17

Family

ID=77928661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060976A Active JP7416654B2 (en) 2020-03-30 2020-03-30 Modified coal manufacturing method and manufacturing equipment

Country Status (4)

Country Link
JP (1) JP7416654B2 (en)
CN (1) CN115349007B (en)
AU (1) AU2021247761B2 (en)
WO (1) WO2021200425A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071275A (en) 2000-08-30 2002-03-08 Takasago Ind Co Ltd Control method of external heat type rotary kiln
JP2011521191A (en) 2008-04-03 2011-07-21 ノース・キャロライナ・ステイト・ユニヴァーシティ Self-heating movable roaster
JP2016023280A (en) 2014-07-23 2016-02-08 新日鉄住金エンジニアリング株式会社 Method for producing modified coal and modified coal production device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2562687B2 (en) * 1989-04-12 1996-12-11 高砂工業株式会社 Rotary kiln
JPH0827137B2 (en) * 1991-12-11 1996-03-21 川崎重工業株式会社 Dryer
JPH1077479A (en) * 1996-08-30 1998-03-24 Nkk Corp Thermal decomposition reactor, reactor for partial oxidation and dry distillation, and apparatus for producing solid fuel and gaseous fuel
JPH11310785A (en) * 1998-04-30 1999-11-09 Mitsubishi Heavy Ind Ltd Method and apparatus for coal improvement
JP4373263B2 (en) * 2004-04-08 2009-11-25 日本下水道事業団 Carbonization method for sludge containing organic matter
JP2007119524A (en) * 2005-10-25 2007-05-17 Kyokuto Kaihatsu Kogyo Co Ltd Carbonizing furnace
CA2878479A1 (en) * 2011-07-07 2013-01-10 Torrefuels Incorporated System and process for conversion of organic matter into torrefied product
CN102358840B (en) * 2011-09-13 2013-05-01 山东天力干燥股份有限公司 Single-stage fine coal multi-pipe rotary low-temperature destructive distillation technology and system
JP5506841B2 (en) * 2012-03-12 2014-05-28 三菱重工業株式会社 Coal carbonization equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071275A (en) 2000-08-30 2002-03-08 Takasago Ind Co Ltd Control method of external heat type rotary kiln
JP2011521191A (en) 2008-04-03 2011-07-21 ノース・キャロライナ・ステイト・ユニヴァーシティ Self-heating movable roaster
JP2016023280A (en) 2014-07-23 2016-02-08 新日鉄住金エンジニアリング株式会社 Method for producing modified coal and modified coal production device

Also Published As

Publication number Publication date
AU2021247761A1 (en) 2022-10-13
WO2021200425A1 (en) 2021-10-07
CN115349007B (en) 2024-06-07
AU2021247761B2 (en) 2023-11-23
JP2021161144A (en) 2021-10-11
CN115349007A (en) 2022-11-15

Similar Documents

Publication Publication Date Title
KR101890873B1 (en) Waste gasification and melting furnace
JP4721601B2 (en) Method and apparatus for incineration of combustible waste during the manufacture of cement clinker
JPS582358B2 (en) Sonoplant Sochi
JP6083864B2 (en) Organic waste drying system
US5101740A (en) Methods, apparatuses and rotary furnaces for continuously manufacturing caerbon-rich charcoal
PT2078911E (en) Method for continuous drying of bulk material, in particular of wood fibres and/or wood chippings
JP4958855B2 (en) Organic waste disposal methods
JPS5935850B2 (en) Calcination method for powdered raw materials and its plant equipment
JP7416654B2 (en) Modified coal manufacturing method and manufacturing equipment
JP6198572B2 (en) Hot-air generator with solid fuel as the main fuel
JP3781339B2 (en) Waste carbonization pyrolysis reactor and carbonization pyrolysis method
JP2005097063A (en) Method for treating organic waste
JP2006241354A (en) Waste gasification unit
JP6587349B2 (en) Wood chip dryer for biomass power generation and drying method
JP2002539415A (en) Method and apparatus for reducing feedstock in a rotary hearth furnace
JP2006220365A (en) Waste gasifying device
JP4470520B2 (en) Carbonization equipment for sludge containing organic matter
JP7402730B2 (en) Coal ash reforming method and reforming device
JP4687873B2 (en) Carbonization equipment
JP6432934B2 (en) Wood chip dryer for biomass power generation
JP3867258B2 (en) Product ignition prevention mechanism and product ignition prevention method in drying equipment
JP4393977B2 (en) Burner structure for burning flame retardant carbon powder and its combustion method
JPS6026261Y2 (en) Constant heat drying incinerator
WO2024047614A1 (en) Method and apparatus for incineration of combustible waste during the manufacture of cement clinker
JP2004340448A (en) External heat type rotary kiln and its operating method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210322

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240104

R150 Certificate of patent or registration of utility model

Ref document number: 7416654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150