WO2016013133A1 - トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両 - Google Patents

トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両 Download PDF

Info

Publication number
WO2016013133A1
WO2016013133A1 PCT/JP2014/082022 JP2014082022W WO2016013133A1 WO 2016013133 A1 WO2016013133 A1 WO 2016013133A1 JP 2014082022 W JP2014082022 W JP 2014082022W WO 2016013133 A1 WO2016013133 A1 WO 2016013133A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel lining
slit laser
lining surface
installation
vehicle
Prior art date
Application number
PCT/JP2014/082022
Other languages
English (en)
French (fr)
Inventor
行雄 明石
橋本 和明
詳悟 林
Original Assignee
西日本高速道路エンジニアリング四国株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西日本高速道路エンジニアリング四国株式会社 filed Critical 西日本高速道路エンジニアリング四国株式会社
Priority to SG11201600838SA priority Critical patent/SG11201600838SA/en
Priority to US14/904,740 priority patent/US9810642B2/en
Priority to KR1020157020724A priority patent/KR102164374B1/ko
Publication of WO2016013133A1 publication Critical patent/WO2016013133A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores
    • G01N2021/9548Scanning the interior of a cylinder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0216Vehicle borne
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing

Definitions

  • the present invention relates to a tunnel lining surface inspection system and a vehicle used in the tunnel lining surface inspection system, and in particular, obtains an image showing a three-dimensional shape including the height information of the tunnel lining surface and determines the soundness (degradation degree) of the tunnel.
  • the present invention relates to a system and a vehicle for investigation.
  • Patent Document 1 the present applicant has already applied the surface of the traveling road surface by a light cutting method using photographing means and slit laser light projecting means mounted on the vehicle while the vehicle is running.
  • a traveling road surface survey system that measures three-dimensional shapes (crossing direction, longitudinal direction, height) is proposed.
  • Patent Document 1 JP 2014-95627 A
  • the tunnel lining surface determines whether it is a crack that may lead to flaking, even if a crack is photographed in the visualization image only with two-dimensional information without height information. I can't.
  • the present invention has been made in view of such circumstances, and a tunnel lining surface is obtained by a light cutting method using a photographing unit and a slit laser beam projecting unit mounted on the vehicle while the vehicle is traveling in the tunnel. It is an object of the present invention to provide a tunnel lining surface inspection system that can measure the three-dimensional shape of the surface of the slab and accurately determine whether it is a crack that may lead to flaking, and a vehicle that uses it.
  • the first invention is While the vehicle is traveling in the tunnel, the tunnel lining surface is measured by measuring the three-dimensional shape of the surface of the tunnel lining surface by the light cutting method using the photographing means and the slit laser beam projection means mounted on the vehicle.
  • a tunnel lining surface inspection system that processes images to be investigated for investigation, An arcuate or substantially arcuate installation surface corresponding to one side surface of both sides of the tunnel lining surface, and a photographing means / slit laser light projecting means installation means mounted on the vehicle, A plurality of slit laser beam projecting means for projecting long slit laser beams respectively along the circumferential direction of the tunnel lining surface, toward each area along the circumferential direction of one side surface of the both sides of the tunnel lining surface, Arranged along the circumferential direction of the arc-shaped or substantially arc-shaped installation surface, A plurality of imaging means for imaging each area along the circumferential direction of one side surface of both sides of the tunnel lining surface from a direction different from the projection direction of the plurality
  • Photographing means / slit laser light projection means installation means The photographing means / slit laser light projecting means setting means is fixed to a first measurement position capable of measuring the three-dimensional shape of one side surface of both sides of the tunnel lining surface, and the photographing means / slit laser Fixing / reversing means for reversing the light projecting means installation means by 180 degrees around the vertical center axis and fixing the three-dimensional shape of the other side surface of the both sides of the tunnel lining surface to a second measuring position capable of measuring
  • the photographing means / slit laser beam projecting means installation means fixed at the first measurement position the three-dimensional shape measurement result of one side surface of the measured tunnel lining surface, and the photographing means /
  • the tunnel lining surface is investigated using the three-dimensional shape measurement result on the other side surface of the measured tunnel lining surface. It is a tunnel lining surface inspection system provided with the image processing means processed into
  • the second invention is the first invention, While the vehicle is traveling in the tunnel, the tunnel lining surface is measured by measuring the three-dimensional shape of the surface of the tunnel lining surface by the light cutting method using the photographing means and the slit laser beam projection means mounted on the vehicle.
  • a vehicle used in a tunnel lining surface inspection system that processes an image to be investigated for investigation An arcuate or substantially arcuate installation surface corresponding to one side surface of both sides of the tunnel lining surface, and a photographing means / slit laser light projecting means installation means mounted on the vehicle, A plurality of slit laser beam projecting means for projecting long slit laser beams respectively along the circumferential direction of the tunnel lining surface, toward each area along the circumferential direction of one side surface of the both sides of the tunnel lining surface, Arranged along the circumferential direction of the arc-shaped or substantially arc-shaped installation surface, A plurality of imaging means for imaging each area along the circumferential direction of one side surface of both sides of the tunnel lining surface from a direction different from the projection direction of the plurality of slit laser beams, Corresponding to each of the light means, it is arranged at a predetermined distance in the vehicle traveling direction from the installation position of the slit laser light projecting means along the circumferential direction of the arc
  • Photographing means / slit laser light projection means installation means The photographing means / slit laser light projecting means setting means is fixed to a first measurement position capable of measuring the three-dimensional shape of one side surface of both sides of the tunnel lining surface, and the photographing means / slit laser Fixing / reversing means for reversing the light projecting means installation means by 180 degrees around the vertical center axis and fixing the three-dimensional shape of the other side surface of the both sides of the tunnel lining surface to a second measuring position capable of measuring It is a vehicle used for the tunnel lining surface inspection system provided with.
  • the third invention is the first invention,
  • the plurality of slit laser light projecting means and the plurality of photographing means are arranged in a zigzag pattern along the circumferential direction of the arcuate or substantially arcuate installation surface.
  • the fourth invention is the second invention,
  • the plurality of slit laser light projecting means and the plurality of photographing means are arranged in a zigzag pattern along the circumferential direction of the arcuate or substantially arcuate installation surface.
  • the surface 3 of the tunnel lining surface including the height information is obtained by the light cutting method using the photographing means and the slit laser light projecting means mounted on the vehicle.
  • FIG. 1 is a left side view of a vehicle used in a tunnel lining surface inspection system according to the present invention.
  • FIG. 2 is a cross-sectional view showing a state in which the vehicle is traveling on the left lane in the tunnel, and the tunnel covering is performed by a light cutting method using an imaging unit and a slit laser beam projection unit mounted on the vehicle. It is a figure which shows a mode that the three-dimensional shape of the surface of a construction surface is measured.
  • FIG. 3 is a perspective view showing the photographing means / slit laser light projecting means installation means.
  • FIG. 4 is a diagram showing the relationship between the light projecting direction of the slit laser light projected from the slit laser light projecting means and the photographing direction (collimation line) of the photographing means, and FIG. FIG. 4 is a view as seen from the direction of arrow A in FIG. 3, that is, from the right side of the vehicle, and FIG. 4B is a perspective view.
  • FIG. 5 is a cross-sectional view showing a state in which the vehicle is traveling on the right traveling lane in the tunnel.
  • FIG. 6 is a diagram illustrating a procedure of processing performed in the tunnel lining surface inspection system according to the embodiment.
  • FIG. 7 (a) is a diagram showing cracks formed at the joints of the tunnel lining surface and cracks formed other than the joints, and FIG.
  • FIG. 7 (b) is a crack formed at the joints of the tunnel lining surface.
  • FIG. 7C is an enlarged view of a crack formed on the tunnel lining surface other than the joint line.
  • FIG. 8 is a diagram illustrating an example of image processing performed in a personal computer.
  • Imaging means 10 (a to 10f) Imaging means 20 (20a to 20f) Slit laser light projecting means 30 Imaging means / slit laser light projecting means installation means 31 Arc surface or substantially arc surface installation surface 40 fixed / reversed Means 41 Drive shaft 100 Tunnel lining surface 100A to 100L each area
  • FIG. 1 shows a left side surface of a vehicle 1 used in a tunnel lining surface inspection system according to the present invention.
  • the vehicle 1 is a work vehicle based on a work truck used for road maintenance work, for example.
  • the loading platform portion of the vehicle 1 has a container shape, and a door on one side surface (left side surface in FIG. 1) of the container and a ceiling door of the container can be opened and closed.
  • FIG. 1 shows a state in which the door is opened.
  • the photographing means 10 (10a, 10b, 10c, 10d, 10f) and the laser light projecting means 20 (20a, 20b, 20c, 20d, 20e, 20f) are used when the tunnel of the vehicle 1 is opened. It is provided on the loading platform of the vehicle 1 so that the lining surface can be photographed and illuminated.
  • the photographing means 10 and the laser light projecting means 20 are installed in the photographing means / slit laser light projecting means installing means 30.
  • the photographing means / slit laser beam projecting means installation means 30 includes an installation surface 31 having an arcuate surface shape or a substantially arcuate surface shape.
  • a plurality (six) of slit laser beam projecting means 20a, 20b, 20c, 20d, 20e, 20f and a plurality (six) of imaging means 10a, 10b, 10c, 10d, 10f are arcuate or substantially arcuate surfaces.
  • a zigzag pattern is arranged along the circumferential direction of the installation surface 31.
  • the image processing unit 50 receives the image data captured by the imaging unit 10 and performs image processing for generating a three-dimensional image of the tunnel lining surface.
  • FIG. 2 is a cross-sectional view showing a state in which the vehicle 1 is traveling on the left lane 150L in the tunnel, and light cutting using the photographing means 10 and the slit laser light projecting means 20 mounted on the vehicle 1 is shown.
  • This shows how the three-dimensional shape of the surface of the tunnel lining surface 100 is measured by the method.
  • the road surface on the left side of the tunnel center line TC in the drawing is referred to as a left traveling lane 150L
  • the road surface on the right side of the tunnel center line TC in the drawing is referred to as a right overtaking lane 150R.
  • the left side of the tunnel lining surface 100 delimited by the tunnel center line TC is a left side surface 101L
  • the right side of the tunnel lining surface 100 delimited by the tunnel center line TC is a right side surface 101R.
  • the illuminating means 20 is arranged around the tunnel lining surface 100 toward the respective areas 100A, 100B, 100C, 100D, 100E, and 100F along the circumferential direction of the left side surface 101L that is one side surface of the both sides of the tunnel lining surface 100.
  • a plurality of (six in the embodiment) slit laser light projecting means 20a, 20b, 20c, 20d, 20e, and 20f that project the long slit laser light L along the direction are configured.
  • the six slit laser light projecting means 20a to 20f are represented, they will be referred to as slit laser light projecting means 20.
  • the imaging means 10 (not shown in FIG. 2, refer to FIG. 1) is an area camera, and each area 100A, 100B along the circumferential direction of the left side surface 101L which is one side surface of the both sides of the tunnel lining surface 100. , 100C, 100D, 100E, and 100F, each of which includes a plurality of (six in the embodiment) imaging means 10a, 10b, 10c, 10d, 10e, and 10f that take images from a direction different from the direction in which the slit laser light L is projected. It consists of In the following, when the six photographing units 10a to 10f are represented, they are referred to as the photographing unit 10.
  • the slit laser beam projecting unit 20 and the imaging unit 10 are an imaging unit / slit laser beam having an arcuate or substantially arcuate installation surface 31 corresponding to one side surface of both side surfaces 101L and 101R of the tunnel lining surface 100. It is installed in the light projecting means setting means 30.
  • FIG. 3 is a perspective view showing the photographing means / slit laser light projecting means installation means 30.
  • the six photographing means 10a to 10f correspond to the six slit laser light projecting means 20a to 20f, respectively, and are slit lasers along the circumferential direction of the arcuate or substantially arcuate installation surface 31.
  • the light projecting unit 20 is disposed away from the installation location by a predetermined distance d in the vehicle traveling direction.
  • the photographing means / slit laser beam projecting means setting means 30 includes a member 32 in which a cross section parallel to the circumferential direction of the tunnel lining surface 100, that is, a cross section perpendicular to the traveling direction of the vehicle 1 is formed in a fan shape.
  • the pair of slit laser light projecting means 20 and the photographing means 10 are arranged on the installation surface 31 corresponding to the arc surface or the substantially arc surface of the fan-shaped member 32 at equal intervals or substantially equal intervals along the circumferential direction. Is arranged.
  • a plurality (six) of slit laser beam projecting means 20a, 20b, 20c, 20d, 20e, 20f and a plurality (six) of the imaging means 10a, 10b, 10c, 10d, 10f are arcuate or Arranged in a staggered manner along the circumferential direction of the substantially arcuate surface 31.
  • the slit laser beams L projected from the respective slit laser beam projecting means 20a, 20b, 20c, 20d, 20e, and 20f and irradiated to the respective areas 100A, 100B, 100C, 100D, 100E, and 100F are adjacent to each other. It can be avoided that objects overlap each other (see FIG. 2). For this reason, it is not necessary to consider the interference of the slit laser beam L when setting the device, and the device can be easily set.
  • the fixing / reversing means 40 includes a drive shaft 41 that is a vertical center axis C of the photographing means / slit laser beam projecting means installation means 30 and a stage 42.
  • the stage 42 is fixed to the frame of the vehicle 1.
  • the photographing means / slit laser light projecting means installation means 30 is fixed at a first measurement position capable of measuring the three-dimensional shape of the left side surface 101L which is one of the side surfaces 101L and 101R of the tunnel lining surface 100.
  • the drive shaft 41 is driven to rotate relative to the stage 42 by a motor or the like, and the photographing means / slit laser light projecting means installation means 30 is inverted 180 degrees around the vertical center axis C, and tunneling is performed.
  • the three-dimensional shape of the right side surface 101R which is the other one side surface of the both side surfaces 101L and 101R of the lining surface 100 is fixed to a second measurement position where measurement is possible.
  • FIGS. 2 and 3 show a state in which the photographing means / slit laser light projecting means setting means 30 is fixed at the first measurement position.
  • FIG. 4 is a diagram showing the relationship between the light projecting direction of the slit laser light L projected from the slit laser light projecting means 20 and the photographing direction of the photographing means 10 (collimation line 11a).
  • FIG. 4A is a view as seen from the direction of arrow A in FIG. 3, that is, from the right side of the vehicle 1.
  • FIG. 4B is a perspective view.
  • the slit laser beam L is projected in a direction perpendicular to the surface of the tunnel lining surface 100, and the circumferential direction of the tunnel lining surface 100, that is, the traveling direction of the vehicle 1.
  • a long slit laser beam L is irradiated along a perpendicular direction.
  • the imaging means 10 images the slit laser light L irradiated to the surface of the tunnel lining surface 100 from an oblique direction with a collimation line 11 a inclined with respect to the surface of the tunnel lining surface 100.
  • the slit laser light L applied to the surface is photographed as a straight line.
  • the slit laser light L irradiated on the surface is photographed with distortion.
  • FIG. 5 is a cross-sectional view showing a state in which the vehicle 1 is traveling on the right traveling lane 150R in the tunnel.
  • the imaging means / slit laser beam projecting means installation means 30 is inverted 180 degrees around the vertical center axis C from the first imaging position and fixed at the second measurement position by the fixing / reversing means 40. Is shown.
  • the slit laser beam projecting means 20f, 20e, 20d, 20c, 20b, and 20a are the areas 100G, 100H, and 100I along the circumferential direction of the right side surface 101R that is the other side surface of the both sides of the tunnel covering surface 100.
  • 100J, 100K, and 100L, long slit laser beams L are projected along the circumferential direction of the tunnel lining surface 100, respectively.
  • the photographing means 10f, 10e, 10d, 10c, 10b, and 10a are areas along the circumferential direction of the right side surface 101R that is the other side surface of the both sides of the tunnel lining surface 100.
  • 100G, 100H, 100I, 100J, 100K, and 100L are photographed from directions different from the direction in which the slit laser light L is projected.
  • a plurality (six) of slit laser beam projecting means 20a, 20b, 20c, 20d, 20e, 20f and a plurality (six) of imaging means 10a, 10b, 10c, 10d, 10f are These are arranged in a zigzag pattern along the circumferential direction of the arcuate or substantially arcuate installation surface 31 (see FIG. 3).
  • the slit laser beams L projected from the respective slit laser beam projecting means 20f, 20e, 20d, 20c, 20b, and 20a and irradiated to the respective areas 100G, 100H, 100I, 100J, 100K, and 100L are adjacent to each other. It can be avoided that things overlap each other.
  • FIG. 6 shows a procedure of processing performed in the tunnel lining surface inspection system of the embodiment.
  • the vehicle 1 travels along the left travel lane 150L. While the vehicle 1 is running, the six photographing units 10a to 10f and the slit laser beam projecting units 20a to 20f are operated. As a result, the slit laser beams L irradiated to the respective areas 100A, 100B, 100C, 100D, 100E, and 100F of the left side surface 101L of the tunnel lining surface 100 are each of the six photographing units 10a, 10b, 10c, 10d, 10e, Images are sequentially taken as the vehicle 1 advances by 10f. The image data of the areas 100A to 100F on the left side surface 101L of the tunnel lining surface 100 photographed by the photographing means 10a to 10f is taken into the image processing unit 50 (see FIG. 2; step 201).
  • the photographing means / slit laser light projecting means installation means 30 is inverted 180 degrees around the vertical center axis C by the fixing / reversing means 40, and the photographing means 10a to 10f and the slit laser light projecting means 20a to 20f are turned on.
  • the position is fixed at the second measurement position (step 202).
  • the vehicle 1 With the photographing means 10a to 10f and the slit laser light projecting means 20a to 20f fixed at the second measurement position, the vehicle 1 is caused to travel along the overtaking lane 150R on the right side.
  • the six photographing units 10a to 10f and the slit laser beam projecting units 20a to 20f are operated.
  • the slit laser beams irradiated to the respective areas 100G, 100H, 100I, 100J, 100K, and 100L of the right side surface 101R of the tunnel lining surface 100 are respectively provided with six photographing units 10f, 10e, 10d, 10c, 10b, and 10a.
  • the images are sequentially taken as the vehicle 1 travels.
  • the image data of each area 100L to 100G of the right side surface 101R of the tunnel lining surface 100 photographed by each photographing means 10f to 10a is taken into the image processing unit 50 (see FIG. 5; step 203).
  • the image data of the areas 100A to 100F of the left side surface 101L of the tunnel lining surface 100 and the image data of the areas 100G to 100L of the right side surface 101R taken into the image processing unit 50 are, for example, external for image processing. It is taken into the personal computer (step 204).
  • FIG. 7A shows a portion of a crack 301 formed at the joint of the tunnel lining surface 100 and a portion of a crack 302 formed other than the joint.
  • FIG. 7B is an enlarged view of the crack 301 formed at the joint of the tunnel lining surface 100
  • FIG. 7C is an enlarged view of the crack 302 formed at a portion other than the joint of the tunnel lining surface 100. is there. In either case, it can be seen that the cracks 301 and 302 have a lift of about 1 mm on the surface.
  • the seam is a weak portion in strength and is likely to crack. It is impossible to determine whether a crack formed on the tunnel lining surface 100 is accompanied by a lift of 1 mm or more, which leads to flaking, with only a visible image.
  • FIG. 8 shows an example of image processing performed in a personal computer.
  • reference numeral 111 denotes a joint that divides each span of the tunnel lining surface 100.
  • the three-dimensional image 120 is a height image showing the height of the tunnel lining surface 100 for each two-dimensional position in the circumferential direction of the tunnel lining surface 100 and the traveling direction of the vehicle 1. For example, the higher the part, the lighter the color changes, and the lower the part, the darker the color.
  • the crack 303 shown in the three-dimensional image 120 is displayed lightly and the crack 304 is displayed darkly, it can be determined that the crack 304 has a higher lift and a higher risk of flaking.
  • the technology of this infrared thermal image analysis apparatus is to remove information on the temperature gradient superimposed on the infrared image and display an image in which the difference between the healthy part and the damaged part becomes clearer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 トンネル内を車両が走行中に、当該車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、トンネル覆工面の表面の3次元形状を計測して、はく落につながるおそれのあるひび割れかどうかを正確に判断することができるトンネル覆工面調査システムおよびそれにン用いる車両を提供する。撮影手段/スリットレーザ光投光手段設置手段が第1の計測位置に固定された状態で、計測されたトンネル覆工面のうち一方の片側側面の3次元形状計測結果と、撮影手段/スリットレーザ光投光手段設置手段が第2の計測位置に固定された状態で、計測されたトンネル覆工面のうち他方の片側側面の3次元形状計測結果とを用いて、トンネル覆工面を調査するための調査対象画像に加工する。

Description

トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両
 本発明は、トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両に関し、特に、トンネル覆工面の高さ情報を含む3次元形状を示す画像を得て、トンネルの健全度(劣化度)を調査するためのシステムおよび車両に関する。
 本出願人は、すでに、特許文献1に示されるように、車両が走行中に、当該車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、走行路面の表面の3次元形状(横断方向、縦断方向、高さ)を計測する走行路面調査システムを提案している。
 この特許文献1で提案された発明によれば、1台の車両を走行させながら走行路面の3次元形状を示す画像を取得することができ、その画像を用いて、走行路面に生じたわだちなどの凹凸を正確に確認することができ、もって走行路面の健全度(劣化度)を調査することができる。
特許文献1:特開2014-95627号
 トンネル覆工面は、高さ情報のない2次元的な情報のみの可視化画像だけでは、たとえ、そこに、ひび割れが撮影されていたとしても、それがはく落につながるおそれのあるひび割れかどうかを判断することができない。
 本発明は、こうした実情に鑑みてなされたものであり、トンネル内を車両が走行中に、当該車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、トンネル覆工面の表面の3次元形状を計測して、はく落につながるおそれのあるひび割れかどうかを正確に判断することができるトンネル覆工面調査システムおよびそれにン用いる車両を提供することを解決課題とする。
 第1発明は、
トンネル内を車両が走行中に、当該車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、トンネル覆工面の表面の3次元形状を計測して、トンネル覆工面を調査するための調査対象画像に加工するトンネル覆工面調査システムであって、
トンネル覆工面の両側面のうち片側側面に対応する円弧面状あるいは略円弧面状の設置面を有し、前記車両に搭載される撮影手段/スリットレーザ光投光手段設置手段であって、
トンネル覆工面の両側面のうち片側側面の周方向に沿った各エリアに向けて、トンネル覆工面の周方向に沿って長いスリットレーザ光をそれぞれ投光する複数のスリットレーザ光投光手段が、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、配置されるとともに、
トンネル覆工面の両側面のうち片側側面の周方向に沿った各エリアを、前記複数のスリットレーザ光の投光方向とは異なる方向からそれぞれ撮影する複数の撮影手段が、複数のスリットレーザ光投光手段にそれぞれに対応して、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、スリットレーザ光投光手段の設置箇所から、車両進行方向に所定距離離間して配置された撮影手段/スリットレーザ光投光手段設置手段と、
前記撮影手段/スリットレーザ光投光手段設置手段を、トンネル覆工面の両側面のうち一方の片側側面の3次元形状を計測可能な第1の計測位置に固定させるとともに、前記撮影手段/スリットレーザ光投光手段設置手段を鉛直中心軸回りに180度反転させて、トンネル覆工面の両側面のうち他方の片側側面の3次元形状を計測可能な第2の計測位置に固定させる固定・反転手段と、
前記撮影手段/スリットレーザ光投光手段設置手段が前記第1の計測位置に固定された状態で、計測されたトンネル覆工面のうち一方の片側側面の3次元形状計測結果と、前記撮影手段/スリットレーザ光投光手段設置手段が前記第2の計測位置に固定された状態で、計測されたトンネル覆工面のうち他方の片側側面の3次元形状計測結果とを用いて、トンネル覆工面を調査するための調査対象画像に加工する画像加工手段と
を備えたトンネル覆工面調査システムであることを特徴とする。
第2発明は、第1発明において、
トンネル内を車両が走行中に、当該車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、トンネル覆工面の表面の3次元形状を計測して、トンネル覆工面を調査するための調査対象画像に加工するトンネル覆工面調査システムに用いる車両であって、
トンネル覆工面の両側面のうち片側側面に対応する円弧面状あるいは略円弧面状の設置面を有し、前記車両に搭載される撮影手段/スリットレーザ光投光手段設置手段であって、
トンネル覆工面の両側面のうち片側側面の周方向に沿った各エリアに向けて、トンネル覆工面の周方向に沿って長いスリットレーザ光をそれぞれ投光する複数のスリットレーザ光投光手段が、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、配置されるとともに、
トンネル覆工面の両側面のうち片側側面の周方向に沿った各エリアを、前記複数のスリットレーザ光の投光方向とは異なる方向からそれぞれ撮影する複数の撮影手段が、複数のスリットレーザ光投光手段にそれぞれに対応して、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、スリットレーザ光投光手段の設置箇所から、車両進行方向に所定距離離間して配置された撮影手段/スリットレーザ光投光手段設置手段と、
前記撮影手段/スリットレーザ光投光手段設置手段を、トンネル覆工面の両側面のうち一方の片側側面の3次元形状を計測可能な第1の計測位置に固定させるとともに、前記撮影手段/スリットレーザ光投光手段設置手段を鉛直中心軸回りに180度反転させて、トンネル覆工面の両側面のうち他方の片側側面の3次元形状を計測可能な第2の計測位置に固定させる固定・反転手段と
を備えたトンネル覆工面調査システムに用いる車両であることを特徴とする。
第3発明は、第1発明において、
複数のスリットレーザ光投光手段と複数の撮影手段は、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、千鳥状に配置されることを特徴とする。
第4発明は、第2発明において、
複数のスリットレーザ光投光手段と複数の撮影手段は、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、千鳥状に配置されることを特徴とする。
 本発明によれば、トンネル内を車両が走行中に、当該車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、高さ情報を含むトンネル覆工面の表面の3次元形状を計測して、はく落につながるおそれのあるひび割れかどうかを正確に判断することができる。
図1は、本発明に係るトンネル覆工面調査システムに用いる車両の左側面を示すである。 図2は、車両がトンネル内の左側の走行車線を走行している状態を示す断面図であり、車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、トンネル覆工面の表面の3次元形状を計測している様子を示す図である。 図3は、撮影手段/スリットレーザ光投光手段設置手段を斜視図にて示す図である。 図4は、スリットレーザ光投光手段から投光されるスリットレーザ光の投光方向と、撮影手段の撮影方向(視準線)との関係を示す図であり、図4(a)は、図3の矢視A方向、つまり車両の右側面からみた図であり、図4(b)は、斜視図にて示したものである。 図5は、車両がトンネル内の右側の走行車線を走行している状態を示す断面図である。 図6は、実施例のトンネル覆工面調査システムで行われる処理の手順を示す図である。 図7(a)は、トンネル覆工面の打ち継ぎ目に形成されたひび割れと打ち継ぎ目以外に形成されたひび割れを示す図で、図7(b)は、トンネル覆工面の打ち継ぎ目に形成されたひび割れの拡大図で、図7(c)は、トンネル覆工面の打ち継ぎ目以外に形成されたひび割れの拡大図である。 図8は、パーソナルコンピュータでは行われる画像加工処理例を示す図である。
1 車両 10(10a~10f) 撮影手段 20(20a~20f) スリットレーザ光投光手段 30 撮影手段/スリットレーザ光投光手段設置手段 31 円弧面状あるいは略円弧面状の設置面 40 固定・反転手段 41 駆動軸 100 トンネル覆工面 100A~100L 各エリア
 以下、図面を参照して、本発明に係るトンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両の実施形態について説明する。
図1は、本発明に係るトンネル覆工面調査システムに用いる車両1の左側面を示す。
車両1は、たとえば道路維持作業に用いられる作業用トラックをベースとする作業車両である。
車両1の荷台部分は、コンテナ状になっており、コンテナの一方の側面(図1では左側面)の扉と、コンテナの天井の扉が開閉自在となっている。図1では、扉が開いた状態を示している。
撮影手段10(10a、10b、10c、10d、10f)およびレーザ光投光手段20(20a、20b、20c、20d、20e、20f)は、車両1の上記扉が開かれたときに、トンネルの覆工面を撮影でき、照明できるように、車両1の荷台に設けられている。撮影手段10およびレーザ光投光手段20は、撮影手段/スリットレーザ光投光手段設置手段30に設置されている。撮影手段/スリットレーザ光投光手段設置手段30は、円弧面状あるいは略円弧面状の設置面31を備えている。複数(6台)のスリットレーザ光投光手段20a、20b、20c、20d、20e、20fと複数(6台)の撮影手段10a、10b、10c、10d、10fは、円弧面状あるいは略円弧面状の設置面31の周方向に沿って、千鳥状に配置されている。画像処理部50は、撮影手段10で撮影された画像データを受け取り、トンネル覆工面の3次元画像を生成する画像処理を行う。
図2は、車両1がトンネル内の左側の走行車線150Lを走行している状態を示す断面図であり、車両1に搭載した撮影手段10およびスリットレーザ光投光手段20とを用いた光切断法によって、トンネル覆工面100の表面の3次元形状を計測している様子を示している。なお、説明の便宜上、トンネルのセンターラインTCの図中左側の路面を左側の走行車線150Lとし、トンネルのセンターラインTCの図中右側の路面を右側の追い越し車線150Rと称する。また、トンネルの覆工面100のうちトンネルのセンターラインTCで区切られた左側を、左側側面101Lとし、トンネルの覆工面100のうちトンネルのセンターラインTCで区切られた右側を、右側側面101Rとする。
照明手段20は、トンネル覆工面100の両側面のうち片側側面である左側側面101Lの周方向に沿った各エリア100A、100B、100C、100D、100E、100Fに向けて、トンネル覆工面100の周方向に沿って長いスリットレーザ光Lをそれぞれ投光する複数(実施例では6台)のスリットレーザ光投光手段20a、20b、20c、20d、20e、20fを含んで構成されている。なお、6台のスリットレーザ光投光手段20a~20fを代表させるときは、スリットレーザ光投光手段20と呼ぶことにする。
撮影手段10(図2では、図示せず、図1参照)は、エリアカメラであり、トンネル覆工面100の両側面のうち片側側面である左側側面101Lの周方向に沿った各エリア100A、100B、100C、100D、100E、100Fを、スリットレーザ光Lの投光方向とは異なる方向からそれぞれ撮影する複数(実施例では6台)の撮影手段10a、10b、10c、10d、10e、10fを含んで構成されている。なお、以下では、6台の撮影手段10a~10fを代表させるときは、撮影手段10と呼ぶことにする。
スリットレーザ光投光手段20および撮影手段10は、トンネル覆工面100の両側面101L、101Rのうち片側側面に対応する円弧面状あるいは略円弧面状の設置面31を有する撮影手段/スリットレーザ光投光手段設置手段30に設置されている。
図3は、撮影手段/スリットレーザ光投光手段設置手段30を斜視図にて示している。
6台の撮影手段10a~10fは、6台のスリットレーザ光投光手段20a~20fにそれぞれに対応して、円弧面状あるいは略円弧面状の設置面31の周方向に沿って、スリットレーザ光投光手段20の設置箇所から、車両進行方向に所定距離dだけ離間して配置されている。
すなわち、撮影手段/スリットレーザ光投光手段設置手段30は、トンネル覆工面100の周方向に平行な断面、つまり車両1の進行方向に垂直な断面が扇状に形成された部材32を含んで構成されており、扇状部材32の円弧面あるいは略円弧面に相当する設置面31に、1対のスリットレーザ光投光手段20および撮影手段10が、周方向に沿って等間隔にあるいは略等間隔に配列されている。
ここで、複数(6台)のスリットレーザ光投光手段20a、20b、20c、20d、20e、20fと複数(6台)の撮影手段10a、10b、10c、10d、10fは、円弧面状あるいは略円弧面状の設置面31の周方向に沿って、千鳥状に配置されている。
よって、各スリットレーザ光投光手段20a、20b、20c、20d、20e、20fから投光され各エリア100A、100B、100C、100D、100E、100Fに照射されるスリットレーザ光Lがそれぞれ、隣り合うもの同士で互いに重なってしまうことを回避できる(図2参照)。このため機器をセッティングするに際してスリットレーザ光Lの干渉を考慮する必要がなくなり、機器のセッティングを容易に行うことができる。
固定・反転手段40は、撮影手段/スリットレーザ光投光手段設置手段30の鉛直中心の軸Cである駆動軸41と、ステージ42を含んで構成されている。ステージ42は、車両1のフレームに固定されている。撮影手段/スリットレーザ光投光手段設置手段30を、トンネル覆工面100の両側面101L、101Rのうち一方の片側側面である左側側面101Lの3次元形状を計測可能な第1の計測位置に固定させるとともに、駆動軸41をモータなどによって、ステージ42に対して相対的に回転駆動させて、撮影手段/スリットレーザ光投光手段設置手段30を鉛直中心軸C回りに180度反転させて、トンネル覆工面100の両側面101L、101Rのうち他方の片側側面である右側側面101Rの3次元形状を計測可能な第2の計測位置に固定させる。
図2、図3は、撮影手段/スリットレーザ光投光手段設置手段30が、第1の計測位置に固定された状態を示している。
図4は、スリットレーザ光投光手段20から投光されるスリットレーザ光Lの投光方向と、撮影手段10の撮影方向(視準線11a)との関係を示す図であり、図4(a)は、図3の矢視A方向、つまり車両1の右側面からみた図であり、図4(b)は、斜視図にて示したものである。
スリットレーザ光投光手段20からは、トンネル覆工面100の表面に対して垂直な方向に向けてスリットレーザ光Lが投光され、トンネル覆工面100の周方向、つまり車両1の進行方向に対して垂直な方向に沿って長いスリットレーザ光Lが照射される。撮影手段10は、トンネル覆工面100の表面に対して傾斜された視準線11aをもって、トンネル覆工面100の表面に照射されたスリットレーザ光Lを斜め方向から撮影する。
トンネル覆工面100の表面が平面の場合には、当該表面に照射されたスリットレーザ光Lが直線として撮影される。しかし、トンネル覆工面100の表面に凹凸などの歪みがある場合には、当該表面に照射されたスリットレーザ光Lが歪んで撮影される。この歪みをプロファイル化することにより、分解能が0.5mm以下で、トンネル覆工面100の表面の形状変化を計測することができる。
図5は、車両1がトンネル内の右側の走行車線150Rを走行している状態を示す断面図である。固定・反転手段40によって、撮影手段/スリットレーザ光投光手段設置手段30が、第1の撮影位置から、鉛直中心軸C回りに180度反転されて、第2の計測位置に固定された状態を示している。
スリットレーザ光投光手段20f、20e、20d、20c、20b、20aは、トンネル覆工面100の両側面のうち他方の片側側面である右側側面101Rの周方向に沿った各エリア100G、100H、100I、100J、100K、100Lに向けて、トンネル覆工面100の周方向に沿って長いスリットレーザ光Lをそれぞれ投光する。
撮影手段10f、10e、10d、10c、10b、10a(図2では、図示せず)は、トンネル覆工面100の両側面のうち他方の片側側面である右側側面101Rの周方向に沿った各エリア100G、100H、100I、100J、100K、100Lを、スリットレーザ光Lの投光方向とは異なる方向からそれぞれ撮影する。
ここで、前述したように、複数(6台)のスリットレーザ光投光手段20a、20b、20c、20d、20e、20fと複数(6台)の撮影手段10a、10b、10c、10d、10fは、円弧面状あるいは略円弧面状の設置面31の周方向に沿って、千鳥状に配置されている(図3参照)。
よって、各スリットレーザ光投光手段20f、20e、20d、20c、20b、20aから投光され各エリア100G、100H、100I、100J、100K、100Lに照射されるスリットレーザ光Lがそれぞれ、隣り合うもの同士で互いに重なってしまうことを回避できる。
 図6は、実施例のトンネル覆工面調査システムで行われる処理の手順を示している。
 まず、撮影手段10およびスリットレーザ光投光手段20が第1の計測位置に固定された状態で、車両1を、左側の走行車線150Lに沿って走行させる。車両1を走行させながら、6台の撮影手段10a~10fおよびスリットレーザ光投光手段20a~20fを動作させる。これによりトンネル覆工面100の左側側面101Lの各エリア100A、100B、100C、100D、100E、100Fに照射されたスリットレーザ光Lがそれぞれ、6台の撮影手段10a、10b、10c、10d、10e、10fによって車両1の進行に伴い順次撮影される。各撮影手段10a~10fによって撮影されたトンネル覆工面100の左側側面101Lの各エリア100A~100Fの画像データは、画像処理部50に取り込まれる(図2参照;ステップ201)。
つぎに、固定・反転手段40によって撮影手段/スリットレーザ光投光手段設置手段30を鉛直中心軸C回りに180度反転させて、撮影手段10a~10fおよびスリットレーザ光投光手段20a~20fを第2の計測位置に固定する(ステップ202)。
撮影手段10a~10fおよびスリットレーザ光投光手段20a~20fが第2の計測位置に固定された状態で、車両1を、右側の追い越し車線150Rに沿って走行させる。
車両1を走行させながら、6台の撮影手段10a~10fおよびスリットレーザ光投光手段20a~20fを動作させる。これによりトンネル覆工面100の右側側面101Rの各エリア100G、100H、100I、100J、100K、100Lに照射されたスリットレーザ光がそれぞれ、6台の撮影手段10f、10e、10d、10c、10b、10aによって車両1の進行に伴い順次撮影される。各撮影手段10f~10aによって撮影されたトンネル覆工面100の右側側面101Rの各エリア100L~100Gの画像データは、画像処理部50に取り込まれる(図5参照;ステップ203)。
 画像処理部50に取り込まれたトンネル覆工面100の左側側面101Lの各エリア100A~100Fの画像データおよび右側側面101Rの各エリア100G~100Lの画像データは、画像加工処理のために、たとえば外部のパーソナルコンピュータに取り込まれる(ステップ204)。
 図7(a)は、トンネル覆工面100の打ち継ぎ目に形成されたひび割れ301の部位と打ち継ぎ目以外に形成されたひび割れ302の部位を示している。
 図7(b)は、トンネル覆工面100の打ち継ぎ目に形成されたひび割れ301の拡大図で、図7(c)は、トンネル覆工面100の打ち継ぎ目以外に形成されたひび割れ302の拡大図である。いずれも、ひび割れ301、302は表面に1mm程度の浮き上がりが形成されているのがわかる。
打ち継ぎ目は、強度的に弱い部分であり、ひび割れが生じやすい。トンネル覆工面100に形成されたひび割れは、単なる可視画像だけでは、それがはく落につながる1mm以上の浮き上がりを伴うものであるかどうかを判定することができない。
本実施例では、トンネル覆工面100の3次元形状画像を得て、はく落につながる1mm以上の浮き上がりを伴うひび割れであるかどうかを判別することができる。
図8は、パーソナルコンピュータでは行われる画像加工処理例を示している。
トンネル覆工面100の左側側面101Lの各エリア100A~100Fの画像データおよびトンネル覆工面100の右側側面101Rの各エリア100L~100Gの画像データを、つなぎ合わせることで、トンネル覆工面100の全周(左右両側面101L、101R)について、車両1が進行した区間におけるトンネル覆工面100の3次元画像120が得られる。図8において、111は、トンネル覆工面100の各スパンを区切る目地を示している。
 3次元画像120は、トンネル覆工面100の周方向、車両1の進行方向の各2次元位置ごとに、トンネル覆工面100の高さが示された高さ画像である。たとえば高さが高い部位ほど明色に変化し、高さが低い部位ほど暗色に変化する。
たとえば、3次元画像120に示されるひび割れ303が薄く表示され、ひび割れ304が濃く表示されている場合には、ひび割れ304の方が浮き上がりが大きく、はく落の危険が高いということを判別することができる。ここで、高さ情報を含まない通常の可視画像では、トンネル覆工面100に形成された色ムラや汚れをひび割れと誤判定する可能性を排除できたなかったが、本実施例によれば、トンネル覆工面100の全周にわたり、はく落につながるおそれのあるひび割れかどうかを正確に判断することができる。
トンネル覆工面100の3次元画像120を画像加工処理にするにあたり、本出願人の先願であり既に特許された(特許第5140892号)赤外線熱画像解析装置の技術を適用して、より精度の高い解析を行うようにしてもよい。
この赤外線熱画像解析装置の技術は、赤外線画像に重畳された温度勾配の情報を除去して、健全部と損傷部との相違がより明確となる画像を表示するというものである。
赤外線熱画像解析装置の技術を、トンネル覆工面100の3次元画像120に適用して画像加工処理を行うことにより、トンネル覆工面100において、健全な平坦な部位と、はく落につながるおそれのある1mm以上の浮き上がりのある部位304aとの相違がより明確となる画像が得られる。したがって、一層、トンネル覆工面100の全周にわたり、はく落につながるおそれのあるひび割れかどうかを正確に判断することができる。

Claims (4)

  1.  トンネル内を車両が走行中に、当該車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、トンネル覆工面の表面の3次元形状を計測して、トンネル覆工面を調査するための調査対象画像に加工するトンネル覆工面調査システムであって、
    トンネル覆工面の両側面のうち片側側面に対応する円弧面状あるいは略円弧面状の設置面を有し、前記車両に搭載される撮影手段/スリットレーザ光投光手段設置手段であって、
    トンネル覆工面の両側面のうち片側側面の周方向に沿った各エリアに向けて、トンネル覆工面の周方向に沿って長いスリットレーザ光をそれぞれ投光する複数のスリットレーザ光投光手段が、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、配置されるとともに、
    トンネル覆工面の両側面のうち片側側面の周方向に沿った各エリアを、前記複数のスリットレーザ光の投光方向とは異なる方向からそれぞれ撮影する複数の撮影手段が、複数のスリットレーザ光投光手段にそれぞれに対応して、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、スリットレーザ光投光手段の設置箇所から、車両進行方向に所定距離離間して配置された撮影手段/スリットレーザ光投光手段設置手段と、
    前記撮影手段/スリットレーザ光投光手段設置手段を、トンネル覆工面の両側面のうち一方の片側側面の3次元形状を計測可能な第1の計測位置に固定させるとともに、前記撮影手段/スリットレーザ光投光手段設置手段を鉛直中心軸回りに180度反転させて、トンネル覆工面の両側面のうち他方の片側側面の3次元形状を計測可能な第2の計測位置に固定させる固定・反転手段と、
    前記撮影手段/スリットレーザ光投光手段設置手段が前記第1の計測位置に固定された状態で、計測されたトンネル覆工面のうち一方の片側側面の3次元形状計測結果と、前記撮影手段/スリットレーザ光投光手段設置手段が前記第2の計測位置に固定された状態で、計測されたトンネル覆工面のうち他方の片側側面の3次元形状計測結果とを用いて、トンネル覆工面を調査するための調査対象画像に加工する画像加工手段と
    を備えたトンネル覆工面調査システム。
  2. トンネル内を車両が走行中に、当該車両に搭載した撮影手段およびスリットレーザ光投光手段とを用いた光切断法によって、トンネル覆工面の表面の3次元形状を計測して、トンネル覆工面を調査するための調査対象画像に加工するトンネル覆工面調査システムに用いる車両であって、
    トンネル覆工面の両側面のうち片側側面に対応する円弧面状あるいは略円弧面状の設置面を有し、前記車両に搭載される撮影手段/スリットレーザ光投光手段設置手段であって、
    トンネル覆工面の両側面のうち片側側面の周方向に沿った各エリアに向けて、トンネル覆工面の周方向に沿って長いスリットレーザ光をそれぞれ投光する複数のスリットレーザ光投光手段が、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、配置されるとともに、
    トンネル覆工面の両側面のうち片側側面の周方向に沿った各エリアを、前記複数のスリットレーザ光の投光方向とは異なる方向からそれぞれ撮影する複数の撮影手段が、複数のスリットレーザ光投光手段にそれぞれに対応して、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、スリットレーザ光投光手段の設置箇所から、車両進行方向に所定距離離間して配置された撮影手段/スリットレーザ光投光手段設置手段と、
    前記撮影手段/スリットレーザ光投光手段設置手段を、トンネル覆工面の両側面のうち一方の片側側面の3次元形状を計測可能な第1の計測位置に固定させるとともに、前記撮影手段/スリットレーザ光投光手段設置手段を鉛直中心軸回りに180度反転させて、トンネル覆工面の両側面のうち他方の片側側面の3次元形状を計測可能な第2の計測位置に固定させる固定・反転手段と
    を備えたトンネル覆工面調査システムに用いる車両。
  3. 複数のスリットレーザ光投光手段と複数の撮影手段は、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、千鳥状に配置されることを特徴とする請求項1記載のトンネル覆工面調査システム。
  4. 複数のスリットレーザ光投光手段と複数の撮影手段は、前記円弧面状あるいは略円弧面状の設置面の周方向に沿って、千鳥状に配置されることを特徴とする請求項2記載のトンネル覆工面調査システムに用いる車両。
PCT/JP2014/082022 2014-07-25 2014-12-03 トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両 WO2016013133A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201600838SA SG11201600838SA (en) 2014-07-25 2014-12-03 Tunnel lining surface examination system and vehicle used in tunnel lining surface examination system
US14/904,740 US9810642B2 (en) 2014-07-25 2014-12-03 Tunnel lining surface inspection system and vehicle used in tunnel lining surface inspection system
KR1020157020724A KR102164374B1 (ko) 2014-07-25 2014-12-03 터널 복공면 조사 시스템 및 터널 복공면 조사 시스템에 이용하는 차량

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014152323A JP6373111B2 (ja) 2014-07-25 2014-07-25 トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両
JP2014-152323 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016013133A1 true WO2016013133A1 (ja) 2016-01-28

Family

ID=55162684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082022 WO2016013133A1 (ja) 2014-07-25 2014-12-03 トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両

Country Status (5)

Country Link
US (1) US9810642B2 (ja)
JP (1) JP6373111B2 (ja)
KR (1) KR102164374B1 (ja)
SG (1) SG11201600838SA (ja)
WO (1) WO2016013133A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356211A (zh) * 2017-07-10 2017-11-17 山西省交通科学研究院 一种隧道智能检测车及其检测方法
CN112036425A (zh) * 2020-05-09 2020-12-04 中铁四局集团有限公司 一种隧道空洞状态雷达波谱图像识别模型构建方法及隧道空洞状态雷达波谱图像识别方法
WO2021225084A1 (ja) * 2020-05-07 2021-11-11 富士フイルム株式会社 損傷評価装置、方法及びプログラム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373111B2 (ja) * 2014-07-25 2018-08-15 西日本高速道路エンジニアリング四国株式会社 トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両
JP6844193B2 (ja) * 2016-10-21 2021-03-17 株式会社大林組 覆工コンクリートの調査装置および覆工コンクリートの調査方法
JP6627986B2 (ja) * 2016-11-01 2020-01-08 三菱電機株式会社 移動撮像システム及び撮像方法
CN106524998B (zh) * 2016-11-01 2019-02-12 中国地质大学(武汉) 基于三维激光扫描技术测量隧道线状出露结构面的方法
JP6927694B2 (ja) * 2016-12-15 2021-09-01 西日本高速道路エンジニアリング四国株式会社 トンネル覆工画像作成システム、および、トンネル覆工画像作成方法
JP2018105804A (ja) * 2016-12-28 2018-07-05 首都高Etcメンテナンス株式会社 計測情報取得方法および電界強度測定用作業車
CN108318490A (zh) * 2017-01-17 2018-07-24 南京熊猫信息产业有限公司 一种隧道病害检测装置
JP6772425B2 (ja) * 2017-02-24 2020-10-21 国際航業株式会社 走行型トンネル覆工撮影装置、及び走行型トンネル覆工撮影方法
CN107655898B (zh) * 2017-10-10 2023-11-03 山西省智慧交通研究院有限公司 一种用于公路隧道检测的立体扫描机器人及其实施方法
US10657666B2 (en) * 2017-12-22 2020-05-19 Symbol Technologies, Llc Systems and methods for determining commercial trailer fullness
JP2019207172A (ja) * 2018-05-30 2019-12-05 東日本旅客鉄道株式会社 トンネル覆工表面検査装置および検査用車両
CN109696160B (zh) * 2018-12-13 2022-04-12 中交二公局东萌工程有限公司 一种隧道加工的激光定位方法
JP7279438B2 (ja) * 2019-03-19 2023-05-23 株式会社リコー 撮像装置、車両及び撮像方法
EP4043693A4 (en) * 2019-10-08 2023-10-11 Shanghai Oriental Maritime Engineering Technology Co., Ltd. IMAGE CAPTURE DEVICE FOR TUNNEL TESTING, TUNNEL TESTING SYSTEM AND TUNNEL TESTING METHOD
CN111692979B (zh) * 2020-06-17 2021-11-05 中交一公局厦门工程有限公司 一种基于热成像检测隧道二衬布料高度的系统及检测方法
CN112268797B (zh) * 2020-10-09 2022-07-19 武汉威思顿环境系统有限公司 一种隧道全方位综合检测仪
CN113280866B (zh) * 2021-06-16 2022-12-09 清华大学 一种用于隧道的自动检修系统及检修方法
CN113960049A (zh) * 2021-10-19 2022-01-21 中南大学 一种隧道表面病害检测装置及检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256633A (ja) * 1991-06-13 1993-10-05 East Japan Railway Co 鉄道トンネル覆工変状撮影方法
JP2011095222A (ja) * 2009-11-02 2011-05-12 Tosetsu Doboku Consultant:Kk トンネルの内壁検査システムおよびトンネルの内壁検査方法
JP2014095627A (ja) * 2012-11-09 2014-05-22 West Nippon Expressway Engineering Shikoku Co Ltd 道路構造物の表面を調査する装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09284749A (ja) * 1996-04-12 1997-10-31 Furukawa Electric Co Ltd:The トンネル内壁面の撮影方法とそれを用いた撮影装置
JP3715588B2 (ja) * 2002-06-03 2005-11-09 アジア航測株式会社 構造物の壁面調査装置
US8958079B2 (en) * 2004-06-30 2015-02-17 Georgetown Rail Equipment Company System and method for inspecting railroad ties
US7243431B2 (en) * 2005-04-11 2007-07-17 Godwin W Lee Trailer hitch alignment device
KR100933329B1 (ko) * 2007-08-23 2009-12-22 (주)가온기술 터널 매핑 자동화 장치 및 방법
EP2241675B1 (en) * 2009-04-11 2016-06-15 Hmoud Sayaf Al Shahrani Security gates device
KR101454103B1 (ko) 2013-01-24 2014-10-23 현대중공업 주식회사 선박평형수 처리장치용 필터
JP6444086B2 (ja) * 2014-07-25 2018-12-26 西日本高速道路エンジニアリング四国株式会社 トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両
JP6373111B2 (ja) * 2014-07-25 2018-08-15 西日本高速道路エンジニアリング四国株式会社 トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両
US9110170B1 (en) * 2014-08-29 2015-08-18 Raytheon Company Terrain aided navigation using multi-channel monopulse radar imaging

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256633A (ja) * 1991-06-13 1993-10-05 East Japan Railway Co 鉄道トンネル覆工変状撮影方法
JP2011095222A (ja) * 2009-11-02 2011-05-12 Tosetsu Doboku Consultant:Kk トンネルの内壁検査システムおよびトンネルの内壁検査方法
JP2014095627A (ja) * 2012-11-09 2014-05-22 West Nippon Expressway Engineering Shikoku Co Ltd 道路構造物の表面を調査する装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356211A (zh) * 2017-07-10 2017-11-17 山西省交通科学研究院 一种隧道智能检测车及其检测方法
CN107356211B (zh) * 2017-07-10 2019-03-12 山西省交通科学研究院 一种隧道智能检测车及其检测方法
WO2021225084A1 (ja) * 2020-05-07 2021-11-11 富士フイルム株式会社 損傷評価装置、方法及びプログラム
JP7429774B2 (ja) 2020-05-07 2024-02-08 富士フイルム株式会社 損傷評価装置、方法及びプログラム
CN112036425A (zh) * 2020-05-09 2020-12-04 中铁四局集团有限公司 一种隧道空洞状态雷达波谱图像识别模型构建方法及隧道空洞状态雷达波谱图像识别方法

Also Published As

Publication number Publication date
SG11201600838SA (en) 2016-03-30
JP2016031249A (ja) 2016-03-07
US9810642B2 (en) 2017-11-07
US20160223471A1 (en) 2016-08-04
KR20170039060A (ko) 2017-04-10
JP6373111B2 (ja) 2018-08-15
KR102164374B1 (ko) 2020-10-12

Similar Documents

Publication Publication Date Title
JP6373111B2 (ja) トンネル覆工面調査システムおよびトンネル覆工面調査システムに用いる車両
JP6068099B2 (ja) 道路構造物の表面を調査する装置
JP4898320B2 (ja) 構造物の欠陥検出方法および装置、ならびに欠陥検出機能を備えた荷役機械
KR101097119B1 (ko) 비전센서 시스템의 터널 내부면 손상검사 방법
US9948841B2 (en) Tire shape testing device and tire shape testing method
JP2011095222A (ja) トンネルの内壁検査システムおよびトンネルの内壁検査方法
US11494888B2 (en) Work terminal, oil leakage detection apparatus, and oil leakage detection method
JP2004347585A (ja) 建築および土木構造物計測・解析システム
JP7010672B2 (ja) 車輪形状測定方法
JP6602625B2 (ja) 構造物検査システム
WO2010084920A1 (ja) パンタグラフ高さ測定装置及びそのキャリブレーション方法
JP2017211314A (ja) 変状部の検出方法及び変状部の検査装置
JP3886875B2 (ja) トンネル覆工の内部欠陥検査装置
KR20040020261A (ko) 영상입력에 의한 구조물의 균열 탐지장치 및 방법
JP6811661B2 (ja) 移動体撮像装置および移動体
WO2019208058A1 (ja) 移動体スキャナ
KR100816826B1 (ko) 레이저 이미지를 이용한 균열측정 장치 및 방법
WO2017057356A1 (ja) 構造物撮像装置、構造物検査装置および構造物検査システム
JP2018159640A (ja) トンネル切羽面の監視システムおよび監視方法
JP2004117193A (ja) トンネル覆工の内部欠陥検出装置
JP2018059835A5 (ja)
JP2017067485A (ja) 構造物撮像装置、構造物検査装置および構造物検査システム
JP2001311709A (ja) 構造物検査装置、及び、構造物検査方法
JP2019207172A (ja) トンネル覆工表面検査装置および検査用車両
JP2003148936A (ja) 光切断法による対象物の三次元計測方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157020724

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14904740

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897925

Country of ref document: EP

Kind code of ref document: A1