WO2016011848A1 - 应用于耳机的心率检测方法和能检测心率的耳机 - Google Patents

应用于耳机的心率检测方法和能检测心率的耳机 Download PDF

Info

Publication number
WO2016011848A1
WO2016011848A1 PCT/CN2015/080201 CN2015080201W WO2016011848A1 WO 2016011848 A1 WO2016011848 A1 WO 2016011848A1 CN 2015080201 W CN2015080201 W CN 2015080201W WO 2016011848 A1 WO2016011848 A1 WO 2016011848A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
microphone
earphone
heart rate
collected
Prior art date
Application number
PCT/CN2015/080201
Other languages
English (en)
French (fr)
Inventor
刘崧
李波
李娜
楼厦厦
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410354577.2A external-priority patent/CN104185107B/zh
Priority claimed from CN201410422000.0A external-priority patent/CN104244125B/zh
Priority claimed from CN201410422876.5A external-priority patent/CN104244126B/zh
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to EP15810777.1A priority Critical patent/EP3010249B1/en
Priority to JP2015563108A priority patent/JP6082131B2/ja
Priority to US14/901,564 priority patent/US9635458B2/en
Priority to KR1020157036699A priority patent/KR101660670B1/ko
Priority to DK15810777.1T priority patent/DK3010249T3/en
Publication of WO2016011848A1 publication Critical patent/WO2016011848A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • A61B5/6817Ear canal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0204Acoustic sensors

Definitions

  • the present invention relates to the field of earphone and heart rate detection technologies, and in particular to a heart rate detecting method applied to an earphone and an earphone capable of detecting a heart rate.
  • Heart rate detection can detect if there is a problem in our body. Heart rate detection can also reflect people's exercise intensity to a certain extent. In order to get the best exercise effect, people should keep the heart rate within a certain range during exercise, and heart rate test can provide reasonable exercise volume. An indicator.
  • the technology of using headphones to detect heart rate has only appeared in recent years. From October 23 to 25, 2013, in the development of health equipment in Yokohama, Japan, Kaiteki and Bifrostec exhibited a technology that can measure pulse fluctuations with headphones.
  • the technology uses the earphone to closely contact the ear canal to form a closed space. Due to the vibration of the eardrum, a certain pressure is generated in the ear canal, and the pressure changes with the change of the vibration, and the change information of the pressure in the ear canal is collected by the microphone, thereby detecting the heart rate. purpose. However, the earphone cannot occupy the entire ear canal, which will cause leakage of gas in the ear canal, which causes the microphone to detect no change in pressure, and the detection of the heart rate is disturbed by external noise.
  • the present invention has been made in order to provide a heart rate detecting method applied to an earphone and an earphone capable of detecting a heart rate that overcome the above problems or at least partially solve the above problems.
  • the present invention provides a heart rate detecting method applied to an earphone.
  • the method comprises: providing a cavity in the earphone to mount the first microphone in the cavity; the position of the cavity of the cavity and the earphone casing is a position of the earphone casing that is attached to the auricle of the human ear when the earphone is worn Position; the earphone shell of the cavity is fitted with a hole, and when the earphone is worn, the cavity and the auricle that fits the hole form a closed space; when the earphone is worn, the first microphone collects the cavity The signal generated by the pressure change; the signal acquired by the first microphone is used as a heart rate related signal; the heart rate detection is performed according to the heart rate related signal.
  • the method further includes: setting a second microphone in the earphone head of the earphone; collecting, when the earphone is worn, a signal generated by the earphone speaker in the earphone head by the second microphone; and collecting the second microphone
  • the signal is subjected to adaptive filtering processing to obtain a first estimated signal of a signal generated by the earphone speaker in the signal collected by the first microphone; and subtracting the first estimated signal from the signal collected by the first microphone to obtain a heart rate related signal.
  • the method further comprises: further setting a third microphone at a position in the earphone that does not contact the wearer's skin; collecting an external interference signal by the third microphone when the earphone is worn; and collecting the signal collected by the third microphone Performing an adaptive filtering process to obtain a second estimated signal of the external interference signal in the signal collected by the first microphone; and using the signal collected by the first microphone as the heart rate related signal includes: subtracting the signal collected from the first microphone Going to the second estimated signal to obtain a heart rate related signal; then subtracting the first estimated signal from the signal collected by the first microphone, and obtaining the heart rate related signal comprises: subtracting the first estimate from the signal collected by the first microphone The signal and the second estimated signal result in a heart rate related signal.
  • the invention also provides an earphone capable of detecting a heart rate, wherein the earphone comprises: a heart rate detecting unit, and is disposed in the earphone a cavity and a first microphone mounted in the cavity;
  • the position of the cavity of the cavity and the earphone shell is the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the cavity is fitted with a hole, when the earphone is The cavity and the auricle that fits the hole form a confined space when wearing; the first microphone is used for collecting a signal generated by a pressure change in the cavity when the earphone is worn; and the signal collected by the first microphone is used as a heart rate correlation Heart rate detection unit for heart rate detection based on heart rate related signals.
  • the earphone further includes: a first subtracting unit, a first adaptive filtering unit, and a second microphone disposed in the earphone head of the earphone; and a second microphone, configured to collect the earphone speaker when the earphone is worn
  • the generated signal is output to the first adaptive filtering unit, and the first adaptive filtering unit is configured to perform adaptive filtering processing on the signal collected by the second microphone according to the heart rate related signal to obtain the signal collected by the first microphone.
  • the first estimated signal of the signal generated by the earphone speaker is output to the first subtracting unit; the first subtracting unit is configured to subtract the first estimated signal from the signal collected by the first microphone, and obtain a heart rate related signal output to the heart rate a detection unit and a first adaptive filtering unit.
  • the earphone further includes: a second subtracting unit, a second adaptive filtering unit, and a third microphone disposed at a position of the earphone that does not contact the wearer's skin; and a third microphone for when the earphone is worn
  • the external interference signal is collected and output to the second adaptive filtering unit.
  • the second adaptive filtering unit is configured to adaptively filter the signal collected by the third microphone according to the heart rate related signal, and obtain the first microphone to collect
  • the second estimated signal of the external interference signal in the signal is output to the second subtracting unit;
  • the second subtracting unit is configured to subtract the second estimated signal from the signal collected by the first microphone, and output the heart rate related signal to a heart rate detecting unit and a second adaptive filtering unit; or a signal obtained by subtracting the first estimated signal from the signal collected by the first microphone, subtracting the second estimated signal, and obtaining a heart rate related signal, the heart rate is obtained
  • the correlated signal is output to the heart rate detecting unit, the second adaptive filtering unit, and the first adaptive filtering unit.
  • the technical solution in the embodiment of the present invention adopts a closed cavity formed by the inner cavity of the earphone and the earphone casing to dispose the microphone, thereby reducing the interference of external noise and enhancing the signal collected by the microphone.
  • a second microphone is added to the earphone for collecting the signal generated by the earphone speaker, and the adaptive filter is designed to further eliminate the influence of the signal generated by the earphone speaker on the heart rate detection.
  • a third microphone is also added to the earphone for collecting external interference signals, and an adaptive filter is designed to further eliminate the influence of external interference signals on heart rate detection.
  • FIG. 1 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention
  • FIG. 2A is a schematic side view of an earphone 100 provided with a cavity 110 in one embodiment of the present invention
  • 2B is a schematic rear view of the earphone 100 provided with the cavity 110 in one embodiment of the present invention
  • 2C is a side cross-sectional view of the earphone 100 provided with the cavity 110 in one embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • FIG. 4 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention
  • Figure 6 is a schematic view showing a position where a second microphone is placed in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • Figure 8 is a schematic diagram showing the general structure of an adaptive filter
  • FIG. 9 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention.
  • Figure 11 is a schematic view showing a position where a third microphone is placed in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • FIG. 13 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention.
  • the earphone 100 capable of detecting heart rate includes: a heart rate detecting unit 140, a cavity 110 disposed in the earphone, and a microphone 120 installed in the cavity 110;
  • the position of the mouth of the cavity 110 and the earphone shell are the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the cavity 110 is fitted with a hole, when The cavity and the auricle that fits the hole form a confined space when the earphone is worn;
  • a microphone 120 for collecting a signal generated by a pressure change in the cavity 110 when the earphone is worn;
  • the heart rate detecting unit 140 is configured to perform heart rate detection according to the signal collected by the microphone 120.
  • a small cavity 110 is disposed in the earphone 100 to house the microphone 120, and a confined space can be formed with the auricle, thereby reducing external noise interference and strengthening the microphone 120.
  • the collected signal information is not limited to the earphone 100.
  • the heart rate detecting unit 140 is configured to detect a period of a signal collected by the filtered microphone, and obtain a heart rate from a reciprocal of a period of the detected signal.
  • the microphone In the existing technology for detecting heart rate of the earphone, usually the microphone is directly placed in the earphone in the position of the ear canal for collecting the pressure change information in the ear cavity generated by the eardrum vibration, but on the one hand, the space formed by the earphone and the ear canal is relatively small. Large, it will cause leakage of gas in the ear canal, so that the pressure change information collected by the microphone is very weak. On the other hand, the earphone often cannot occupy the entire ear canal, and the microphone is directly placed in the earphone, which is disturbed by external noise. Therefore, another type of microphone is installed in the earphone of FIG. 1 of the present invention. For details, refer to FIG. 2A-2C.
  • 2A is a side elevational view of an earphone 100 provided with a cavity 110 in accordance with one embodiment of the present invention.
  • 2B is a schematic rear view of the earphone 100 provided with the cavity 110 in one embodiment of the present invention.
  • 2C is a side cross-sectional view of the earphone 100 provided with the cavity 110 in one embodiment of the present invention.
  • the present invention contemplates a small cavity for placing a microphone. Referring to Figures 2A and 2B, the range indicated by the dashed line in the figure is an illustration of the position of the cavity 110 formed inside the earphone. Referring to the opening of the cavity 110 of Fig. 2C, the earphone casing is attached.
  • the cavity 110 is located at a portion of the earphone edge close to the auricle, and the earphone has an opening 111 at a portion where the earphone is fitted, and the opening 111 and the auricle are worn when the earphone is worn. It fits snugly so that the cavity 110 and the abutting auricle portion form a closed space.
  • the microphone is installed in the cavity 110, and the contraction vibration of the auricle wall causes a change in the pressure in the cavity 110, and the microphone collects information on the change of the pressure in the cavity 110, which reflects the heart to some extent. The beat frequency, so heart rate detection can be performed accordingly.
  • the pressure is inversely proportional to the volume, that is, the smaller the volume, the greater the pressure, and the greater the pressure acting on a certain area.
  • a closed space is formed in the ear canal.
  • the blood pressure of the blood vessel fluctuates, the ear wall shrinks, and a certain pressure change occurs in the cavity, and the pressure change signal will be It was detected by the microphone.
  • the pulse pressure fluctuation of the blood vessel is very weak, and the larger the sealed space is, the smaller the pressure change detected by the microphone is.
  • the microphone device is arranged in a closed small cavity in this embodiment.
  • the small cavity is closely attached to the ear canal, and the ear wall generates contraction vibration due to the fluctuation of the pulse pressure of the blood vessel, and the vibration causes the microphone in the small cavity to detect the pressure change. And the design of the small cavity will reduce the influence of external interference signals.
  • FIG. 3 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • the earphone 300 capable of detecting heart rate includes: a filtering unit 330, a heart rate detecting unit 340, a cavity 310 disposed in the earphone, and a microphone 320 installed in the cavity 310;
  • the position of the mouth of the cavity 310 and the earphone shell are the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the cavity 310 is fitted with a hole, when The cavity and the auricle that fits the hole form a confined space when the earphone is worn;
  • the microphone 320 is configured to collect a signal generated by a pressure change in the cavity 310 when the earphone is worn, and output a corresponding signal to the filtering unit 130.
  • the filtering unit 330 is configured to filter the signal collected by the microphone 320, and obtain the filtered signal and output the signal to the heart rate detecting unit 340.
  • the filtering unit filters the signal collected by the microphone 320 to eliminate the influence of the interference noise on the heart rate detection.
  • the heart rate detecting unit 340 is configured to perform heart rate detection according to the filtered signal.
  • the heart rate detecting unit 340 is configured to detect a period of the heart rate related signal, and obtain a heart rate from a reciprocal of the period of the detected signal.
  • the heart rate detecting unit 340 can detect the period of the heart rate related signal using an autocorrelation method, a threshold method, or the like.
  • the filtering unit 330 shown in FIG. 3 includes a low-pass filter for performing low-pass filtering processing on the signal collected by the microphone 320 to filter out the high-frequency interference signal.
  • a low-pass filter for performing low-pass filtering processing on the signal collected by the microphone 320 to filter out the high-frequency interference signal.
  • the frequency of pulse vibration is low (about 0.3 Hz - 3 Hz), and the external noise frequency is high.
  • the influence of external high frequency noise can be eliminated by the low pass filter.
  • the low pass filter can select an FIR filter having a cutoff frequency of 5 Hz or the like.
  • a low-pass filter is used to perform low-pass filtering on the signal collected by the microphone.
  • the pressure signal in the cavity is first collected by the microphone in the small cavity; then the low-pass filter is used to low-pass filter the signal collected by the microphone; finally, after the heart rate signal is obtained, the heart rate can be detected.
  • the beat of the heart has a certain periodicity, then the heart rate signal is a signal with a certain periodicity, and the period corresponding to the signal can be obtained according to the autocorrelation method, and the reciprocal of the period is the heart rate.
  • x(n) y(n)+d(n); where y(n) represents the interference signal, d(n) represents the pressure change signal due to blood flow, and n represents Sampling time point
  • dL(n) After dL(n) is obtained, according to the periodic characteristics of the signal, the period can be detected by an autocorrelation method, a threshold method, or the like, and the reciprocal of the period is the heart rate.
  • the earphone in the embodiment shown in FIG. 1 or FIG. 3 can obtain the heart rate of people in various situations (quiet, exercise, etc.) in order to obtain the health information of the human body, or based on the situation, one can The amount of exercise is controlled within a suitable range.
  • the heart rate detecting method applied to the earphone in the present invention is given based on the above embodiment.
  • FIG. 4 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step S410 a cavity is disposed in the earphone, and the microphone is installed in the cavity; the position of the cavity and the earphone casing is the position of the earphone casing that is attached to the ear of the human ear when the earphone is worn;
  • the earphone shell of the body mouth is provided with a hole, and when the earphone is worn, the cavity and the auricle that fits the hole form a closed space.
  • Step S420 when the earphone is worn, the signal generated by the pressure change in the cavity is collected by the microphone.
  • Step S430 performing heart rate detection according to the signal collected by the microphone.
  • the heartbeat-related signal is used as a heart rate-related signal, and heart rate detection is performed based on the heart rate-related signal.
  • the method shown in FIG. 4 further includes, before step 430, performing filtering processing on the signal collected by the microphone to obtain a filtered signal. Then, performing heart rate detection according to the signal collected by the microphone in step S430 includes: performing heart rate detection according to the filtered signal.
  • the filtering process of the signal collected by the microphone in the method shown in FIG. 4 includes: performing low-pass filtering processing on the signal collected by the microphone to filter out the high-frequency interference signal.
  • performing heart rate detection according to the filtered signal comprises: detecting a period of the filtered signal, and obtaining a heart rate from a reciprocal of a period of the detected signal.
  • the beneficial effects of the technical solutions in the above embodiments of the present invention include: (1) using a small volume of a closed cavity to place a microphone, reducing external noise interference, and enhancing the detection of the microphone. Signal information. (2) According to the characteristics of pulse vibration frequency, a low-pass filter is designed to further reduce the influence of external high-frequency noise.
  • FIG. 5 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention.
  • the earphone 500 capable of detecting heart rate includes: a subtracting unit 550, a heart rate detecting unit 560, an adaptive filtering unit 540, a cavity 510 disposed in the earphone, and a first microphone 520 installed in the cavity 510. And a second microphone 530 disposed in the earphone head of the earphone;
  • the position of the mouth of the cavity 510 and the earphone shell is the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the mouth of the cavity 510 is provided with an opening.
  • the cavity and the auricle that fits the opening form a confined space when the earphone is worn.
  • the first microphone 520 is configured to collect a signal generated by the pressure change in the cavity 510 and output it to the subtraction unit 550 when the earphone 500 is worn.
  • the second microphone 530 is configured to collect a signal generated by the earphone speaker and output it to the adaptive filtering unit 540 when the earphone is worn.
  • the adaptive filtering unit 540 is configured to perform adaptive filtering processing on the signal collected by the second microphone 530 according to the heart rate related signal, to obtain a first estimated signal of the signal generated by the earphone speaker in the signal collected by the first microphone 520. It is output to the subtraction unit 550.
  • the subtraction unit 550 is configured to subtract the first estimated signal output by the adaptive filtering unit 540 from the signal collected by the first microphone 520, and output the heart rate related signal to the heart rate detecting unit 560 and the adaptive filtering unit 540.
  • the heart rate detecting unit 560 is configured to perform heart rate detection according to a heart rate related signal.
  • the first microphone 520 collects a signal generated by the earphone horn while collecting a signal generated by the pressure change in the cavity 510. Therefore, the signal detected by the second microphone 530 is adaptively filtered in FIG. 5, so that the earphone horn generated by the first microphone 520 can be accurately estimated according to the signal generated by the earphone horn collected by the second microphone 530.
  • the purpose of the signal is to eliminate the effect of the signal produced by the headphone speaker on heart rate detection.
  • Both the first microphone 520 and the second microphone 530 detect the signal generated by the earphone speaker. Although the two signal periods are the same, the amplitudes are different. Therefore, an adaptive filter is needed to eliminate the difference, so that the earphone speaker can be generated.
  • the signal is removed from the signal acquired by the first microphone 520 to obtain valid heart rate information.
  • a cavity 510 is disposed in the earphone 500 to dispose the first microphone 520, thereby reducing interference of external noise and enhancing signal information collected by the first microphone 520.
  • the first microphone 520 inevitably collects a signal generated by the earphone speaker.
  • the second microphone 530 is added to the earphone 500 capable of detecting the heart rate to collect the signal generated by the earphone speaker, and the signal collected by the second microphone 530.
  • the adaptive filtering is performed, and the adaptively filtered second microphone signal is subtracted from the signal collected by the first microphone 520, and then the heart rate detection is performed, thereby further eliminating the influence of the signal generated by the earphone speaker on the heart rate detection.
  • the earphone shown in FIG. 5 further includes a low pass filter for performing low pass filtering on the signal collected by the first microphone 520 to obtain a low pass filtered signal and then outputting to the subtraction unit. 550. That is, the subtraction unit 550 is configured to subtract the first estimated signal output by the adaptive filtering unit 540 from the low-pass filtered signal, and output a heart rate-related signal to the heart rate detecting unit 560. This is because the frequency of pulse vibration is low (about 0.3 Hz - 3 Hz), and the external noise frequency is high. According to this feature, the influence of external high frequency noise can be eliminated by the low pass filter.
  • the low pass filter can select an FIR filter having a cutoff frequency of 5 Hz or the like.
  • the specific structure of the cavity 510 disposed within the earphone and the first microphone 520 mounted within the cavity 510 is similar to that shown in Figures 2A-2C and will not be repeated herein.
  • Figure 6 is a schematic illustration of the placement position of a second microphone in one embodiment of the present invention.
  • the second microphone 530 is disposed in the headphone head of the earphone.
  • the second microphone 530 can be disposed at the position of the earphone 500 as shown in FIG. 6, when the earphone speaker and the earphone casing cooperate with each other to form a cavity in front of the earphone speaker, and the second microphone 530 can be disposed in the In the cavity.
  • the second microphone 530 is disposed in front of the diaphragm of the earphone horn and has a gap between the second microphone 530 and the diaphragm such that the second microphone is located on the path of sound wave propagation when the earphone horn sounds, and the second microphone Does not affect the headphone speaker.
  • the present invention adds a second microphone to the earphone, and the second microphone device is in the earphone head, such as the earphone position shown in FIG. .
  • the second microphone is used to collect the signal generated by the earphone speaker.
  • the signal generated by the earphone speaker collected by the first microphone and the signal generated by the earphone speaker collected by the second microphone have a strong correlation, and based on this, a certain filter can be used to eliminate the influence of the signal generated by the earphone speaker.
  • the signal generated by the earphone speaker can be filtered out from the signal detected by the first microphone, the signal generated by the contraction of the ear canal itself due to blood flow can be obtained, which is related to the frequency of the heart beat.
  • the signal gets heart rate information.
  • the signal generated by the earphone speaker collected by the second microphone has a strong correlation with the signal generated by the earphone speaker collected by the first microphone, but the two are not completely equivalent, and the signal cannot be directly collected from the first microphone.
  • the signal is removed, so the present embodiment filters the interference caused by the boundary noise by an adaptive filtering method.
  • the first microphone is disposed by using a small-sized closed cavity, which reduces external noise interference, and strengthens the signal information detected by the first microphone.
  • a second microphone is added to the earphone for collecting the signal generated by the earphone speaker, and the adaptive filter is designed to eliminate the influence of the signal generated by the earphone speaker on the heart rate detection.
  • a low-pass filter is designed to further reduce the influence of external noise. The following is further illustrated by taking FIG. 7 as an example.
  • FIG. 7 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • the earphone 700 capable of detecting heart rate includes: a subtracting unit 750, a heart rate detecting unit 760, a low pass filter 770, a second microphone 730 disposed in the headphone head of the earphone, an adaptive filtering unit 740, A cavity 710 disposed within the earphone and a first microphone 720 mounted within the cavity 710 are disposed.
  • the adaptive filtering unit 740 includes a parameter tunable filter 741 and a parameter adaptive adjusting unit 742.
  • the position of the mouth of the cavity 710 and the earphone shell is the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the cavity 710 is attached with an opening.
  • the cavity and the auricle that fits the opening form a confined space when the earphone is worn.
  • a first microphone 720 for collecting a signal generated by a pressure change in the cavity 710 when the earphone 700 is worn and Output to low pass filter 770.
  • the first microphone 720 collects a signal generated by the earphone horn while collecting a signal generated by the pressure change in the cavity 710.
  • the low pass filter 770 is configured to perform low pass filtering on the signal collected by the first microphone 720 to obtain a low pass filtered signal, and then output the signal to the subtraction unit 750.
  • the second microphone 730 is configured to collect a signal generated by the earphone speaker and output it to the parameter tunable filter 741 and the parameter adaptive adjustment unit 742 in the adaptive filtering unit 740 when the earphone is worn.
  • the parameter adaptive adjustment unit 742 is configured to adjust the filter parameter of the parameter tunable filter 741 according to the signal collected by the second microphone 730, the heart rate related signal, and a preset adaptive algorithm.
  • the parameter tunable filter 741 is configured to adaptively filter the signal collected by the second microphone 730 by using the filter parameter, and output a first estimated signal of the signal generated by the earphone speaker in the signal collected by the first microphone 720 to the subtraction unit 750.
  • the subtraction unit 750 is configured to subtract the first estimated signal output by the parameter tunable filter 741 from the signal outputted by the low pass filter, and obtain a heart rate related signal output to the heart rate detecting unit 760; the subtracting unit 750 is further configured to The heart rate related signal is output to the parameter adaptive adjustment unit 742.
  • the parameter adaptive adjustment unit 742 calculates the filter parameter of the parameter tunable filter 741 using an adaptive algorithm according to the input signal of the second microphone 730 and the heart rate related signal fed back by the subtraction unit 750.
  • the heart rate detecting unit 760 is configured to perform heart rate detection according to a heart rate related signal.
  • the heart rate detecting unit 760 is configured to detect a period of the heart rate related signal, and obtain a heart rate from a reciprocal of the period of the detected signal.
  • the heart rate detecting unit 760 can detect the period of the heart rate related signal using an existing autocorrelation method, a threshold method, or the like.
  • Fig. 8 is a schematic diagram showing the general structure of an adaptive filter.
  • the adaptive filter is mainly composed of a parameter tunable filter and a parameter adaptive adjustment unit that adjusts the filter coefficients.
  • the adaptive filter is designed without prior knowledge of the statistical properties of the signal. It can gradually “understand” or estimate the required statistical characteristics in its own work, and automatically adjust its parameters based on this. To achieve the best filtering effect.
  • Ex(n) is the desired signal
  • In(n) is the input signal
  • Out(n) is the output signal
  • e(n) is the estimation error
  • e(n) Ex(n)-Out(n) .
  • the filter coefficient of the adaptive filter is controlled by the error signal, and e(n) adjusts the adaptive coefficient by a predetermined adaptive algorithm, and finally the mean square error of e(n) is minimized, and the output signal is closest to the desired signal.
  • an adaptive filter is used to filter the signal collected by the second microphone to accurately estimate the signal generated by the earphone speaker collected by the first microphone.
  • y1(n) is the signal collected by the second microphone 730, that is, the input signal in the adaptive filtering unit 740
  • y2(n) is the output signal of the adaptive filtering unit 440
  • xL(n). ) indicates the corresponding expected signal, Corresponding to the error signal (mainly including the heart rate signal).
  • yL(n) and y1(n) have a certain correlation, and y1(n) can be approximated by yL(n) through the filter output signal y2(n) by designing a suitable transfer function.
  • the output signal y2(n) can be used to effectively estimate yL(n), and then the signal generated by the earphone speaker can be interfered with the heart rate detection.
  • the first microphone is subjected to a low-pass filtered signal minus the adaptively filtered signal of the second microphone to obtain heart rate-related signal information. Based on this, the heart rate is detected.
  • the beating of the heart has a certain periodicity, then It is a signal with a certain periodicity.
  • the autocorrelation method the period corresponding to the signal can be obtained, and the reciprocal of the period is the heart rate.
  • y(n) represents the signal generated by the earphone horn collected by the first microphone
  • d(n) represents the pressure change signal generated by the blood flow
  • y1(n) represents the signal generated by the earphone horn collected by the second microphone.
  • n represents the sampling time point.
  • Both y1(n) and y(n) are signals generated by the earphone speaker, y1(n) corresponds to the signal generated by the earphone speaker collected by the second microphone, and y(n) corresponds to the earphone speaker generated by the first microphone.
  • the signal although the magnitude of the two is different, has the same vibration frequency.
  • an adaptive filter impact response h(n)
  • the adaptive parameters of the filter are obtained by using an adaptive algorithm.
  • the method with the least square error can be used, that is, The filter coefficient obtained when taking the minimum value.
  • the period can be detected by an autocorrelation method, a threshold method, or the like, and the reciprocal of the period is the heart rate.
  • the heart rate of the person can be obtained by the earphone in the embodiment shown in FIG. 5 or FIG. 7, so as to obtain the health information of the person, or based on this, one can control the amount of exercise of the person within a suitable range according to the specific situation.
  • the heart rate detecting method applied to the earphone in the present invention is given based on the above embodiment.
  • FIG. 9 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention. As shown in FIG. 9, the method includes:
  • Step S910 a cavity is disposed in the earphone, and the first microphone is installed in the cavity; the position of the cavity and the earphone casing is the position of the earphone casing that is attached to the ear of the human ear when the earphone is worn.
  • the earphone shell of the cavity is provided with an opening, and when the earphone is worn, the cavity and the auricle that fits the opening form a closed space; and a second microphone is also disposed in the earphone head of the earphone. For example, a second microphone is placed in the head of the earphone near the horn sound hole, see FIG.
  • Step S920 when the earphone is worn, the signal generated by the pressure change in the cavity is collected by the microphone, and the signal generated by the earphone speaker in the earphone head is collected by the second microphone.
  • Step S930 performing adaptive filtering processing on the signal collected by the second microphone to obtain a first estimated signal of the signal generated by the earphone speaker in the signal collected by the first microphone.
  • Step S940 subtracting the first estimated signal from the signal collected by the first microphone to obtain a heart rate related signal.
  • heart rate detection is performed according to the heart rate related signal.
  • the method shown in FIG. 9 subtracts the first estimated signal from the signal collected from the first microphone to obtain the heart rate related signal, and further includes: performing the signal collected by the first microphone. Low pass filtering process to obtain a low pass filtered signal. Then, subtracting the first estimated signal from the signal collected from the first microphone in step S940, and obtaining the heart rate related signal specifically includes: subtracting the first estimated signal from the low pass filtered signal to obtain a heart rate related signal.
  • step S930 adaptively filtering the signal collected by the second microphone to obtain a first estimated signal of the signal generated by the earphone speaker in the signal collected by the first microphone includes: The signal collected by the second microphone, the heart rate related signal, and the preset adaptive algorithm calculate the adaptive filtering parameter; the first estimated signal is obtained by adaptively filtering the signal collected by the second microphone according to the adaptive filtering parameter.
  • performing heart rate detection according to the heart rate related signal in step S950 includes: detecting a period of the heart rate related signal, and obtaining a heart rate from a reciprocal of the period of the detected signal.
  • the second microphone is further disposed in the head of the earphone in the earphone.
  • the second microphone may be disposed in front of the diaphragm of the earphone speaker and has a gap between the second microphone and the diaphragm. So that the second microphone is located on the path of sound wave propagation when the earphone speaker sounds, and the second microphone and the earphone speaker do not affect each other.
  • the beneficial effects of the technical solutions of the foregoing embodiments of the present invention include: (1) using a small-sized closed cavity to place the first microphone, reducing external noise interference, and strengthening the first microphone detection. Signal information to. (2) A second microphone is added to the earphone for collecting signals generated by the earphone speaker, and an adaptive filter is designed to further eliminate the influence of the signal generated by the earphone speaker on heart rate detection. (3) According to the characteristics of pulse vibration frequency, a low-pass filter is designed to further reduce the influence of external high-frequency noise.
  • the present invention also provides the following solutions.
  • FIG. 10 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention.
  • the earphone 1000 capable of detecting heart rate includes: a subtracting unit 1050, a heart rate detecting unit 1060, an adaptive filtering unit 1040, a cavity 1010 disposed in the earphone, and a first microphone 1020 installed in the cavity 1010. And a third microphone 1030 disposed at a position in the earphone that does not contact the wearer's skin;
  • the position of the mouth of the cavity 1010 and the earphone shell is the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the mouth of the cavity 1010 is provided with an opening.
  • the cavity and the auricle that fits the opening form a confined space when the earphone is worn.
  • the first microphone 1020 is configured to collect a signal generated by the pressure change in the cavity 1010 and output it to the subtraction unit 1050 when the earphone 1000 is worn.
  • the third microphone 1030 is configured to collect an external interference signal and output it to the adaptive filtering unit 1040 when the earphone is worn.
  • the adaptive filtering unit 1040 is configured to perform adaptive filtering processing on the signal collected by the third microphone 1030 according to the heart rate related signal, and obtain a second estimated signal of the external interference signal in the signal collected by the first microphone 1020, and then output the signal to the second estimated signal of the external interference signal in the signal collected by the first microphone 1020.
  • Subtraction unit 1050 is configured to perform adaptive filtering processing on the signal collected by the third microphone 1030 according to the heart rate related signal, and obtain a second estimated signal of the external interference signal in the signal collected by the first microphone 1020, and then output the signal to the second estimated signal of the external interference signal in the signal collected by the first microphone 1020.
  • the subtraction unit 1050 is configured to subtract the second estimated signal output by the adaptive filtering unit 1040 from the signal collected by the microphone, and output the heart rate related signal to the heart rate detecting unit 1060 and the adaptive filtering unit 1040.
  • the heart rate detecting unit 1060 is configured to perform heart rate detection according to a heart rate related signal.
  • the first microphone 1020 collects an external interference signal while collecting a signal generated by the pressure change in the cavity 1010. Therefore, the signal detected by the third microphone 1030 is adaptively filtered in FIG. 10, so that the external interference signal collected by the first microphone 1020 can be accurately estimated according to the external interference signal collected by the third microphone 1030. Its purpose is to eliminate the influence of external interference signals on heart rate detection. Both the first microphone 1020 and the third microphone 1030 detect an external interference signal. Although the two signal periods are the same, the amplitudes are different. Therefore, an adaptive filter is needed to eliminate the difference, so that the external interference signal can be A signal collected by a microphone 1020 is eliminated to obtain valid heart rate information.
  • a cavity 1010 is disposed in the earphone 1000 to dispose the first microphone 1020, thereby reducing interference of external noise and enhancing signal information collected by the first microphone 1020.
  • external interference still exists.
  • the third microphone 1030 is added to the earphone 1000 capable of detecting the heart rate to collect an external interference signal, and the signal collected by the third microphone 1030 is adaptively filtered, and the signal collected from the first microphone 1020.
  • the third microphone signal after adaptive filtering is subtracted, and heart rate detection is performed, thereby further eliminating the influence of external interference signals on heart rate detection.
  • the earphone shown in FIG. 10 further includes a low pass filter for performing low pass filtering on the signal collected by the first microphone 1020 to obtain a low pass filtered signal and then outputting to the subtraction unit. 1050. That is, the subtraction unit 1050 is configured to subtract the second estimated signal output by the adaptive filtering unit 1040 from the low-pass filtered signal, and obtain a heart rate-related signal output to the heart rate detecting unit 1060. This is because the frequency of pulse vibration is low (about 0.3 Hz - 3 Hz), and the external noise frequency is high. According to this feature, the influence of external high frequency noise can be eliminated by the low pass filter.
  • the low pass filter can select an FIR filter having a cutoff frequency of 5 Hz or the like.
  • the specific structure of the cavity 1010 disposed within the earphone and the first microphone 1020 mounted within the cavity 1010 is similar to that of FIGS. 2A-2C and will not be repeated herein.
  • FIG 11 is a schematic illustration of the placement position of a third microphone in one embodiment of the present invention.
  • the movement of the human body causes the skin of the human body to vibrate accordingly.
  • the third microphone 1030 is not in contact with the skin in the earphone 1000, thereby preventing the skin vibration from affecting the signal collected by the third microphone, and improving the third microphone.
  • the accuracy of the acquired signal may be disposed in the earphone handle of the earphone connected to the headphone head and the headphone cord, as shown by the dashed box in Fig. 11 to indicate any part of the earphone.
  • the present invention adds a third microphone to the earphone, and the third microphone device does not contact the skin in the earphone, such as the dotted line shown in FIG. The headphone position shown in the box.
  • the third microphone is used to collect the external interference signal.
  • the external interference signal collected by the first microphone and the external interference signal collected by the third microphone have a strong correlation, and based on this, a certain filter can be used to eliminate the influence of the external interference signal.
  • the interference signal can be filtered out from the signal detected by the first microphone, the signal generated by the contraction of the ear canal itself due to blood flow can be obtained, and the signal is related to the frequency of the heart beat, based on the signal. Heart rate information.
  • the external interference signal collected by the third microphone has a strong correlation with the external interference signal collected by the first microphone, but the two are not completely equivalent, and the signal cannot be directly removed from the signal collected by the first microphone. Therefore, the present embodiment filters the interference generated by the boundary noise by the method of adaptive filtering.
  • the first microphone is disposed by using a small-sized closed cavity, which reduces external noise interference, and strengthens the signal information detected by the first microphone.
  • a third microphone is added to the earphone for collecting external interference signals, and an adaptive filter is designed to further eliminate the influence of human external interference on heart rate detection.
  • a low-pass filter is designed to further reduce the influence of external noise. The following is further illustrated by taking FIG. 4 as an example.
  • FIG. 12 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • the earphone 1200 capable of detecting heart rate includes: a subtraction unit 1250, a heart rate detection unit 1260, a low-pass filter 1270, a third microphone 1230 disposed at a position of the earphone that does not contact the wearer's skin, and The adaptive filtering unit 1240, the cavity 1210 disposed in the earphone, and the first microphone 1220 installed in the cavity 1210.
  • the adaptive filtering unit 1240 includes a parameter tunable filter 1241 and a parameter adaptive adjusting unit 1242.
  • the position of the mouth of the cavity 1210 and the earphone shell is the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the mouth of the cavity 1210 is provided with an opening.
  • the cavity and the auricle that fits the opening form a confined space when the earphone is worn.
  • the first microphone 1220 is configured to acquire a signal generated by the pressure change in the cavity 1210 and output it to the low pass filter 1270 when the earphone 1200 is worn.
  • the first microphone 1220 collects an external disturbance signal while collecting a signal generated by the pressure change in the cavity 1210.
  • the low-pass filter 1270 is configured to perform low-pass filtering on the signal collected by the first microphone 1220 to obtain a low-pass filtered signal, and then output the signal to the subtracting unit 1250.
  • the third microphone 1230 is configured to collect an external interference signal and output it to the parameter tunable filter 1241 and the parameter adaptive adjustment unit 1242 in the adaptive filtering unit 1240 when the earphone is worn.
  • the parameter adaptive adjustment unit 1242 is configured to adjust the filter parameters of the parameter tunable filter 1241 according to the signal collected by the third microphone 1230, the heart rate related signal, and a preset adaptive algorithm.
  • the parameter tunable filter 1241 is configured to adaptively filter the signal collected by the third microphone 1230 by using the filter parameter, and output a second estimated signal of the external interference signal in the signal collected by the first microphone 1220 to the subtraction unit 1250.
  • the subtraction unit 1250 is configured to subtract the second estimated signal output by the parameter tunable filter 1241 from the signal output by the low pass filter, and obtain a heart rate related signal output to the heart rate detecting unit 1260; the subtracting unit 1250 is further configured to The heart rate related signal is output to the parameter adaptive adjustment unit 1242.
  • the parameter adaptive adjustment unit 1242 calculates the filter parameter of the parameter tunable filter 1241 using an adaptive algorithm according to the input signal of the third microphone 1230 and the heart rate related signal fed back by the subtraction unit 1250.
  • the heart rate detecting unit 1260 is configured to perform heart rate detection according to a heart rate related signal.
  • the heart rate detecting unit 1260 is configured to detect a period of the heart rate related signal, and obtain a heart rate from a reciprocal of the period of the detected signal.
  • the heart rate detecting unit 1260 can utilize an existing autocorrelator
  • the period of the heart rate-related signal is detected by a method, a threshold method, or the like.
  • the general structure of the adaptive filter is shown in Figure 8.
  • an adaptive filter is used to filter the signal collected by the third microphone to accurately estimate the external interference signal collected by the first microphone.
  • y1(n) is the signal collected by the third microphone 1230, that is, the input signal in the adaptive filtering unit 1240
  • y2(n) is the output signal of the adaptive filtering unit 1240
  • xL(n) ) indicates the corresponding expected signal
  • yL(n) and y1(n) have a certain correlation, and y1(n) can be approximated by yL(n) through the filter output signal y2(n) by designing a suitable transfer function.
  • the output signal y2(n) can effectively estimate yL(n), and then the interference of the external interference noise to the heart rate detection can be from the first microphone.
  • the collected signal is removed, and the influence of the external interference signal is removed again.
  • the first microphone is subjected to a low-pass filtered signal minus the adaptively filtered signal of the third microphone to obtain heart rate-related signal information. Based on this, the heart rate is detected.
  • the beating of the heart has a certain periodicity, then It is a signal with a certain periodicity.
  • the autocorrelation method the period corresponding to the signal can be obtained, and the reciprocal of the period is the heart rate.
  • y(n) represents the external interference signal collected by the first microphone
  • d(n) represents the pressure change signal generated by the blood flow
  • y1(n) represents the external interference signal collected by the third microphone
  • n represents the sampling. Time point.
  • Both y1(n) and y(n) are external interference signals, y1(n) corresponds to the external interference signal collected by the third microphone, and y(n) corresponds to the external interference signal collected by the first microphone, although the two correspond to The amplitude is different, but with the same vibration frequency.
  • an adaptive filter impact response h(n)
  • the adaptive parameters of the filter are obtained by using an adaptive algorithm.
  • the method with the least square error can be used, that is, The filter coefficient obtained when taking the minimum value.
  • the period can be detected by an autocorrelation method, a threshold method, or the like, and the reciprocal of the period is the heart rate.
  • the heart rate of the person can be obtained by the earphone in the embodiment shown in FIG. 10 or FIG. 12, in order to obtain the health information of the person, or based on this, one can control the amount of exercise of the person within a suitable range according to the specific situation.
  • the heart rate detecting method applied to the earphone in the present invention is given based on the above embodiment.
  • FIG. 13 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention. As shown in Figure 13, it includes:
  • Step S1310 a cavity is disposed in the earphone, and the first microphone is installed in the cavity; the position of the cavity of the cavity and the earphone casing is the position of the earphone casing that is attached to the auricle of the human ear when the earphone is worn.
  • the mouth of the cavity is fitted with an opening at the earphone shell.
  • the cavity and the auricle that fits the opening constitute a confined space; and the position in the earphone that does not contact the wearer's skin is also set.
  • the third microphone For example, a third microphone is placed in the earphone head of the earphone that connects the headphone head and the headphone cord, see FIG.
  • step S1320 when the earphone is worn, the signal generated by the pressure change in the cavity is collected by the microphone, and the external interference signal is collected by the third microphone.
  • step S1330 Perform adaptive filtering processing on the signal collected by the third microphone to obtain a second estimated signal of the external interference signal in the signal collected by the first microphone.
  • Step S1340 subtracting the second estimated signal from the signal collected by the first microphone to obtain a heart rate related signal; and in step S1350, performing heart rate detection according to the heart rate related signal.
  • the method illustrated in Figure 13 subtracts the second estimate from the signal acquired from the first microphone.
  • the signal before obtaining the heart rate related signal, further comprises: performing low-pass filtering processing on the signal collected by the first microphone to obtain a low-pass filtered signal.
  • subtracting the second estimated signal from the signal collected by the first microphone in step S1340 to obtain the heart rate related signal specifically includes: subtracting the second estimated signal from the low pass filtered signal to obtain a heart rate related signal.
  • the signal collected by the third microphone is adaptively filtered in step S1330, and the second estimated signal of the external interference signal in the signal collected by the first microphone is obtained: according to the third microphone
  • the collected signal, the heart rate related signal, and the preset adaptive algorithm calculate the adaptive filtering parameter; and adaptively filtering the signal collected by the third microphone according to the adaptive filtering parameter to obtain the second estimated signal.
  • performing heart rate detection according to the heart rate related signal in step S1350 includes: detecting a period of the heart rate related signal, and obtaining a heart rate from a reciprocal of the period of the detected signal.
  • the beneficial effects of the technical solution of the present invention include: (1) using a small-sized closed cavity to dispose the first microphone, reducing external noise interference, and enhancing the signal information detected by the first microphone. (2) A third microphone is added to the earphone for collecting external interference signals, and an adaptive filter is designed to further eliminate the influence of external interference signals on heart rate detection. (3) According to the characteristics of pulse vibration frequency, a low-pass filter is designed to further reduce the influence of external high-frequency noise.
  • the first microphone, the second microphone, and the third microphone are simultaneously disposed in the earphone to eliminate the influence of the signal generated by the earphone speaker on the heart rate detection and the influence of the external interference signal on the heart rate detection, wherein
  • the three microphones refer to the relevant content of the above embodiment.
  • FIG. 14 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • the earphone 1400 capable of detecting the heart rate includes: a cavity 1410 disposed in the earphone, and a first microphone 1420, a second microphone 1430, a first adaptive filtering unit 1440, and a subtraction unit installed in the cavity 1410. 1450, heart rate detecting unit 1460, third microphone 1470, and second adaptive filtering unit 1480.
  • the subtraction unit 1450 is configured to subtract the first estimated signal (obtained by adaptively filtering the signal collected by the second microphone) and the second estimated signal (the signal collected by the third microphone is adaptively filtered) from the signal collected by the first microphone. ).
  • the subtraction unit 1450 can also be understood to be equivalent to the cascade of the subtraction unit 550 and the subtraction unit 1050. That is, in FIG.
  • the subtraction unit 1450 may be replaced with the cascaded first subtraction unit and the second subtraction unit, at this time: the output of the first microphone 1420 and the output of the first adaptive filtering unit 1440 and the first subtraction unit Input connection; the output of the second adaptive filtering unit 1480 and the output of the first subtraction unit are connected to the input of the second subtraction unit; the second subtraction unit is used for outputting signals from the first subtraction unit (ie, collected by the first microphone) Subtracting the signal after the first estimated signal from the received signal, subtracting the output signal of the second adaptive filtering unit 1480 (ie, the second estimated signal), obtaining a heart rate related signal output to the heart rate detecting unit, and feeding back The second adaptive filtering unit 1480 and the first adaptive filtering unit 1440.
  • the influence of the signal generated by the earphone speaker on the heart rate detection can be eliminated, and the influence of the external interference signal on the heart rate detection can also be eliminated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Acoustics & Sound (AREA)
  • Otolaryngology (AREA)
  • Signal Processing (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Headphones And Earphones (AREA)

Abstract

本发明公开了一种应用于耳机的心率检测方法和能检测心率的耳机。该方法包括:在耳机内设置一个腔体,将麦克风安装在该腔体内,该腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时该腔体和与孔贴合的耳廓构成密闭空间;当耳机被佩戴时,由麦克风采集该腔体内的由压力变化所产生的信号;根据麦克风采集到的信号进行心率检测。本发明的技术方案采用由耳机内的腔体和耳机壳体构成的密闭腔体来安置麦克风,减小了外界噪声的干扰,并强化了麦克风采集到的信号信息。

Description

应用于耳机的心率检测方法和能检测心率的耳机 技术领域
本发明涉及耳机及心率检测技术领域,特别涉及应用于耳机的心率检测方法和能检测心率的耳机。
背景技术
随着社会经济的不断发展,人们的物质生活水平日渐提高,人们也越来越关注自己的健康。而心率检测将给人们提供关于健康的非常重要的信息。任何不同于正常心率的显示都表明健康出现了问题,通过心率检测可以及时发现我们的身体是否出现了问题。心率检测还可以在一定程度上反映人们的运动强度是否合适,为了能够得到最佳的锻炼效果,人们在锻炼的过程中应该将心率保持在一定的范围内,而心率检测可以为合理的运动量提供一个指标。
另外,很多人在运动的过程中,喜欢带着耳机听音乐,为了能够测得运动过程中的心率,又不需要随身携带其他设备,人们开始研究如何利用耳机来检测心率的相关技术。检测心率的技术,除了心率带之外,现在又新兴一种利用耳机来检测心率的技术,达到便捷准确的目的。
利用耳机来检测心率的技术是近几年才出现的。2013年10月23日至25日,日本横滨健康器械发展上,Kaiteki公司和Bifrostec公司展出了一种可以用耳机测定脉搏波动的技术。该技术利用耳机紧贴耳道形成封闭空间,由于耳膜的振动,耳道内会产生一定的压力,并且压力随着振动的改变而改变,利用麦克风采集耳道内压力的变化信息,从而达到检测心率的目的。但是耳机不能占据整个耳道,会造成耳道内气体的泄露,从而导致麦克风检测不到压力的变化,并且心率的检测会受到外界噪声的干扰。
发明内容
鉴于上述问题,提出了本发明以便提供克服上述问题或者至少部分地解决上述问题的应用于耳机的心率检测方法和能检测心率的耳机。
本发明的提供了一种应用于耳机的心率检测方法。该方法包括:在耳机内设置一个腔体,将第一麦克风安装在腔体内;腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时腔体和与孔贴合的耳廓构成密闭空间;当耳机被佩戴时,由第一麦克风采集腔体内的由压力变化所产生的信号;将第一麦克风采集的信号作为心率相关的信号;根据心率相关的信号进行心率检测。
可选地,该方法进一步包括:在耳机的耳机头部内还设置第二麦克风;当耳机被佩戴时,由第二麦克风采集耳机头部内耳机喇叭产生的信号;对第二麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的耳机喇叭产生的信号的第一估计信号;从第一麦克风采集到的信号中减去第一估计信号,得到心率相关的信号。
可选地,该方法进一步包括:在耳机中的不接触佩戴者皮肤的位置处还设置第三麦克风;当耳机被佩戴时,由第三麦克风采集外界干扰信号;对第三麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的外界干扰信号的第二估计信号;则将第一麦克风采集的信号作为心率相关的信号包括:从第一麦克风采集到的信号中减去第二估计信号,得到心率相关的信号;则从第一麦克风采集到的信号中减去第一估计信号,得到心率相关的信号包括:从第一麦克风采集到的信号中减去第一估计信号和第二估计信号,得到心率相关的信号。
本发明还提供了一种能检测心率的耳机,其中,该耳机包括:心率检测单元、设置在耳机内 的腔体和安装在腔体内的第一麦克风;
其中,腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时腔体和与孔贴合的耳廓构成密闭空间;第一麦克风,用于当耳机被佩戴时,采集腔体内的由压力变化所产生的信号;将第一麦克风采集的信号作为心率相关的信号;心率检测单元,用于根据心率相关的信号进行心率检测。
可选地,该耳机还包括:第一减法单元、第一自适应滤波单元,以及设置在耳机的耳机头部内的第二麦克风;第二麦克风,用于当耳机被佩戴时,采集耳机喇叭产生的信号并输出给第一自适应滤波单元;第一自适应滤波单元,用于根据心率相关的信号对第二麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的耳机喇叭产生的信号的第一估计信号后输出给第一减法单元;第一减法单元,用于从第一麦克风采集到的信号中减去第一估计信号,得到心率相关的信号输出给心率检测单元以及第一自适应滤波单元。
可选地,该耳机还包括:第二减法单元、第二自适应滤波单元,以及设置在耳机中的不接触佩戴者皮肤的位置处的第三麦克风;第三麦克风,用于当耳机被佩戴时,采集外界干扰信号并输出给第二自适应滤波单元;第二自适应滤波单元,用于根据心率相关的信号对第三麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的外界干扰信号的第二估计信号后输出给第二减法单元;第二减法单元,用于从第一麦克风采集到的信号中减去第二估计信号,得到心率相关的信号输出给心率检测单元以及第二自适应滤波单元;或者用于从由第一麦克风采集到的信号中减去第一估计信号后的信号,减去第二估计信号,得到心率相关的信号,将该心率相关的信号输出给心率检测单元、第二自适应滤波单元以及第一自适应滤波单元。
由上述可见,本发明实施例中的这种技术方案,采用了由耳机内腔体和耳机壳构成的密闭腔体来安置麦克风,减小了外界噪声的干扰,并强化了麦克风采集到的信号信息。在耳机中加入了第二麦克风,用于采集耳机喇叭产生的信号,并通过设计自适应滤波器来进一步消除耳机喇叭产生的信号对心率检测的影响。还在耳机中加入了第三麦克风,用于采集外界干扰信号,并通过设计自适应滤波器来进一步消除外界干扰信号对心率检测的影响。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
图1为本发明实施例中的一种能检测心率的耳机的结构示意图;
图2A是本发明一个实施例中的设置有腔体110的耳机100的侧面示意图;
图2B是本发明一个实施例中的设置有腔体110的耳机100背面示意图;
图2C是本发明一个实施例中的设置有腔体110的耳机100的侧面剖视图;
图3为本发明又一个实施例中的一种能检测心率的耳机的结构示意图;
图4为本发明实施例中一种应用于耳机的心率检测方法的流程图;
图5为本发明实施例中的一种能检测心率的耳机的结构示意图;
图6是本发明一个实施例中的第二麦克风的安放位置的示意图;
图7为本发明又一个实施例中的一种能检测心率的耳机的结构示意图;
图8是自适应滤波器的一般结构示意图;
图9为本发明实施例中一种应用于耳机的心率检测方法的流程图;
图10为本发明实施例中的一种能检测心率的耳机的结构示意图;
图11是本发明一个实施例中的第三麦克风的安放位置的示意图;
图12为本发明又一个实施例中的一种能检测心率的耳机的结构示意图;
图13为本发明实施例中一种应用于耳机的心率检测方法的流程图;
图14为本发明又一个实施例中的一种能检测心率的耳机的结构示意图。
具体实施例
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整地传达给本领域的技术人员。
图1为本发明一个实施例中的一种能检测心率的耳机的结构示意图。如图1所示,该能检测心率的耳机100包括:心率检测单元140、设置在耳机内的腔体110和安装在腔体110内的麦克风120;
其中,腔体110的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体110的口所贴合的耳机壳处有孔,当耳机被佩戴时腔体和与孔贴合的耳廓构成密闭空间;
麦克风120,用于当耳机被佩戴时,采集腔体110内的由压力变化所产生的信号;
心率检测单元140,用于根据麦克风120采集的信号进行心率检测。
图1所示的能检测心率的耳机100中,在耳机100内设置小腔体110来安置麦克风120,并能与耳廓形成密闭空间,从而减小了外界噪声的干扰,并强化了麦克风120采集到的信号信息。
在本发明的一个实施例中,心率检测单元140,用于对滤波后的麦克风采集的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
在现有的耳机检测心率的技术中,通常麦克风直接放置在耳机中正对耳道的位置,用于采集耳膜振动产生的耳腔内压力变化信息,但一方面由于耳机和耳道形成的空间较大,会造成耳道内气体的泄露,使得麦克风采集的压力变化信息很微弱,另一方面耳机往往不能占据整个耳道,直接将麦克风放在耳机中,会受到外界噪声的干扰。因此本发明的图1所示耳机中设计了另外一种麦克风的安装方式,具体可以参见图2A-2C。
图2A是本发明一个实施例中的设置有腔体110的耳机100的侧面示意图。图2B是本发明一个实施例中的设置有腔体110的耳机100背面示意图。图2C是本发明一个实施例中的设置有腔体110的耳机100的侧面剖视图。为了更好地采集和心跳相关的有用信号,本发明设计了一种小腔体用于放置麦克风。参见图2A和图2B,图中虚线所示的范围是形成在耳机内部的腔体110的位置的示意。参见图2C腔体110的开口和耳机壳贴合。可以看出,在该实施例中,腔体110位于耳机边缘贴近耳廓的部位,耳机在其和腔体贴合的部位有个开孔111,在耳机被佩戴时,这个开孔111和耳廓紧密贴合,这样,腔体110和贴紧的耳廓部分构成一个密闭的空间。将麦克风安装在该腔体110中,耳廓壁的收缩振动会引起腔体110内压力的变化,那么麦克风就会采集到腔体110内压力的变化信息,该信息在一定程度上反映了心脏的跳动频率,因此可以据此进行心率检测。
在物理学中,对于密闭的空间(不考虑温度),压强和体积成反比,也就是说体积越小压强越大,那么作用在一定面积上的压力也越大。当用户带上耳机后,耳道内形成一个密闭的空间,由于血管的脉压波动导致耳壁收缩,那么在腔体内会产生一定的压力变化,该压力变化信号就会 被麦克风检测到。一般来说血管的脉压波动非常微弱,密闭的空间越大,那么麦克风检测到的压力变化越小,为了增加麦克风检测到的压力变化强度,本实施例将麦克风装置在一个密闭的小腔体内,将小腔体紧贴耳道,由于血管的脉压波动导致耳壁产生收缩振动,此振动使得小腔体内的麦克风检测到压力的变化。并且小腔体的设计会减小外界干扰信号的影响。
图3为本发明又一个实施例中的一种能检测心率的耳机的结构示意图。如图3所示,该能检测心率的耳机300包括:滤波单元330、心率检测单元340、设置在耳机内的腔体310和安装在腔体310内的麦克风320;
其中,腔体310的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体310的口所贴合的耳机壳处有孔,当耳机被佩戴时腔体和与孔贴合的耳廓构成密闭空间;
麦克风320,用于当耳机被佩戴时,采集腔体310内的由压力变化所产生的信号,并输出相应信号给滤波单元130。滤波单元330,用于对麦克风采320集到的信号进行滤波处理,得到滤波后的信号输出给所述心率检测单元340。这里滤波单元对对麦克风320采集的信号进行滤波,以消除干扰噪声对心率检测的影响。心率检测单元340,用于根据滤波后的信号进行心率检测。
在本发明的一个实施例中,心率检测单元340,用于对心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。例如,心率检测单元340,可以利用自相关方法、阈值方法等检测出心率相关的信号的周期。
在本发明的一个实施例中,图3所示的滤波单元330包括:低通滤波器,用于对麦克风320采集到的信号进行低通滤波处理,以滤除高频干扰信号。这是因为脉搏振动的频率较低(0.3Hz-3Hz左右),而外界噪声频率较高,根据这一特点,通过低通滤波器可以消除外界高频噪声的影响。例如,低通滤波器可以选择截止频率为5Hz的FIR滤波器等。
在图3所示的耳机中,采用了低通滤波器对麦克风采集的信号进行低通滤波处理。如图3所示,先用小腔体内的麦克风采集腔体内的压力信号;然后用低通滤波器对麦克风采集的信号进行低通滤波;最后,得到心率信号后,可进行心率的检测。心脏的跳动具有一定的周期性,那么心率信号是具有一定周期性的信号,根据自相关方法可以获得该信号对应的周期,周期的倒数即为心率。
具体过程如下:
假定麦克风检测到的信号为:x(n)=y(n)+d(n);其中,y(n)表示干扰信号,d(n)表示由于血液流动所产生的压力变化信号,n表示采样时间点;
x(n)经过低通滤波后信号变为:xL(n)=dL(n),通过低通滤波后会滤除麦克采集到的外界噪声信号。得到dL(n)后,根据该信号的周期性特点,可以利用自相关方法、阈值法等来对其周期进行检测,其周期的倒数就是心率。
通过图1或图3所示的实施例中的耳机能够获得人们在各种情况(安静,运动等)下的心率,以便获取人体的健康状况信息,或者以此为依据人们可以根据具体情况将自己的运动量控制在一个合适的范围内。
基于上述实施例给出本发明中的应用于耳机的心率检测方法。
图4为本发明实施例中一种应用于耳机的心率检测方法的流程图。如图4所示,该方法包括:
步骤S410,在耳机内设置一个腔体,将麦克风安装在腔体内;腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时腔体和与孔贴合的耳廓构成密闭空间。
步骤S420,当耳机被佩戴时,由麦克风采集腔体内的由压力变化所产生的信号。
步骤S430,根据麦克风采集的信号进行心率检测。即将麦克风采集的信号作为心率相关的信号,根据心率相关的信号进行心率检测。
在本发明的一个实施例中,图4所示的方法在步骤430之前进一步包括:对麦克风采集到的信号进行滤波处理,得到滤波后的信号。则步骤S430中的根据麦克风采集的信号进行心率检测包括:根据滤波后的信号进行心率检测。
在本发明的一个实施例中,图4所示的方法中对麦克风采集到的信号进行滤波处理包括:对麦克风采集到的信号进行低通滤波处理,以滤除高频干扰信号。
在本发明的一个实施例中,根据滤波后的信号进行心率检测包括:对滤波后的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
综上所述,本发明的上述实施例中的技术方案的有益效果包括:(1)采用了体积较小的密闭腔体来安置麦克风,减小了外界噪声干扰,并强化了麦克风检测到的信号信息。(2)根据脉搏振动频率的特点,设计了一种低通滤波器,进一步减小了外界高频噪声的影响。
此外,利用耳机检测心率还存在一个重要的问题,就是不可避免地受到耳机喇叭产生的信号(比如音乐或语音等)的影响,这会大大影响心率的检测。对此,给出了如下解决方案。
图5为本发明实施例中的一种能检测心率的耳机的结构示意图。如图5所示,该能检测心率的耳机500包括:减法单元550、心率检测单元560、自适应滤波单元540、设置在耳机内的腔体510和安装在腔体510内的第一麦克风520,以及设置在耳机的耳机头部内的第二麦克风530;
其中,腔体510的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体510的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴合的耳廓构成密闭空间。
第一麦克风520,用于当耳机500被佩戴时,采集腔体510内的由压力变化产生的信号并输出给减法单元550。第二麦克风530,用于当耳机被佩戴时,采集耳机喇叭产生的信号并输出给自适应滤波单元540。自适应滤波单元540,用于根据心率相关的信号对第二麦克风530采集到的信号进行自适应滤波处理,得到第一麦克风520采集到的信号中的耳机喇叭产生的信号的第一估计信号后输出给减法单元550。减法单元550,用于从第一麦克风520采集到的信号中减去自适应滤波单元540输出的第一估计信号,得到心率相关的信号输出给心率检测单元560以及自适应滤波单元540。心率检测单元560,用于根据心率相关的信号进行心率检测。
第一麦克风520在采集腔体510内的由压力变化产生的信号的同时会采集到耳机喇叭产生的信号。因此图5中对第二麦克风530检测到的信号进行自适应滤波处理,使得能根据第二麦克风530采集到的耳机喇叭产生的信号准确地估计出第一麦克风520采集到信号中的耳机喇叭产生的信号,其目的是消除耳机喇叭产生的信号对心率检测的影响。第一麦克风520和第二麦克风530都会检测到耳机喇叭产生的信号,虽然这两种信号周期一致,但幅度会有差异,因此需要采用自适应滤波器消除这种差异,使得能够将耳机喇叭产生的信号从第一麦克风520采集到的信号中消除,以获得有效的心率信息。
图5所示的能检测心率的耳机500中,在耳机500内设置腔体510来安置第一麦克风520,从而减小了外界噪声的干扰,并强化了第一麦克风520采集到的信号信息。但第一麦克风520不可避免地会采集到耳机喇叭产生的信号,对此,该能检测心率的耳机500中加入了第二麦克风530来采集耳机喇叭产生的信号,对第二麦克风530采集的信号进行自适应滤波,从第一麦克风520采集的信号中减去自适应滤波后的第二麦克风信号,再进行心率检测,从而进一步消除了耳机喇叭产生的信号对心率检测的影响。
在本发明的一个实施例中,图5所示的耳机进一步包括低通滤波器,用于对第一麦克风520采集到的信号进行低通滤波处理,得到低通滤波信号后再输出给减法单元550。即减法单元550,用于从低通滤波信号中减去自适应滤波单元540输出的第一估计信号,得到心率相关的信号输出给心率检测单元560。这是因为脉搏振动的频率较低(0.3Hz-3Hz左右),而外界噪声频率较高,根据这一特点,通过低通滤波器可以消除外界高频噪声的影响。例如,低通滤波器可以选择截止频率为5Hz的FIR滤波器等。设置在耳机内的腔体510和安装在腔体510内的第一麦克风520的具体结构与图2A-2C中所示结构类似,这里不再复述。
图6是本发明一个实施例中的第二麦克风的安放位置的示意图。本实施例中第二麦克风530装置在耳机的耳机头部内。参见图6,第二麦克风530可以设置在耳机500的如图6所示的位置,这时耳机喇叭和耳机外壳相互配合,在耳机喇叭的前方形成一个空腔,第二麦克风530可以设置在该空腔中。较佳地,第二麦克风530设置在耳机喇叭的振膜的前方且第二麦克风530与振膜之间具有间隙,以使第二麦克风位于耳机喇叭发声时声波传播的路径上,且第二麦克风与耳机喇叭互不影响。
在实际当中,即使耳机能够占据整个耳道,形成完全封闭的腔体,但耳机喇叭产生的信号对心率检测的影响也是不可避免的,因为耳机喇叭包含在耳机头部内。因此这种耳机喇叭产生的信号不可避免地会被第一麦克风检测到。那么,第一麦克风采集到的数据不仅包括了由于血管的脉压波动产生的压力变化信息,同时包括了耳机喇叭产生的信号。为了消除该被第一麦克风采集到的耳机喇叭产生的信号对心率检测的影响,本发明在耳机中加入第二麦克风,第二麦克风装置在耳机头部内,比如图6中所示的耳机位置。利用第二麦克风采集耳机喇叭产生的信号。第一麦克风采集到的耳机喇叭产生的信号和第二麦克风采集到的耳机喇叭产生的信号具有很强的相关性,以此为基础可以采用一定的滤波器消除耳机喇叭产生的信号的影响。
根据前面的分析,如果能从第一麦克风检测到的信号中滤除耳机喇叭产生的信号,那么就可以得到由于血液流动造成耳道自身收缩产生的信号,此信号和心脏跳动频率有关,基于此信号得到心率信息。第二麦克风采集到的耳机喇叭产生的信号和第一麦克风采集到的耳机喇叭产生的信号具有很强的相关性,但二者并不完全等同,不能直接将该信号从第一麦克风采集到的信号中去掉,因此本实施例通过自适应滤波的方法来滤除外界噪声所产生的干扰。
综上所述,本发明实施例中:首先,采用体积较小的密闭腔体来安置第一麦克风,减小了外界噪声干扰,并强化了第一麦克风检测到的信号信息。其次,在耳机中加入了第二麦克风,用于采集耳机喇叭产生的信号,并通过设计自适应滤波器来消除耳机喇叭产生的信号对心率检测的影响。再者,根据脉搏振动频率的特点,设计了低通滤波器,进一步减小了外界噪声的影响。下面以图7为例进行进一步的说明。
图7为本发明又一个实施例中的一种能检测心率的耳机的结构示意图。如图7所示,该能检测心率的耳机700包括:减法单元750、心率检测单元760、低通滤波器770、设置在耳机的耳机头部内的第二麦克风730、自适应滤波单元740、设置在耳机内的腔体710和安装在腔体710内的第一麦克风720。其中,自适应滤波单元740包括:参数可调滤波器741和参数自适应调整单元742。
其中,腔体710的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体710的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴合的耳廓构成密闭空间。
第一麦克风720,用于当耳机700被佩戴时,采集腔体710内的由压力变化所产生的信号并 输出给低通滤波器770。第一麦克风720在采集腔体710内的由压力变化产生的信号的同时会采集到耳机喇叭产生的信号。低通滤波器770,用于对第一麦克风720采集到的信号进行低通滤波处理,得到低通滤波信号后再输出给减法单元750。第二麦克风730,用于当耳机被佩戴时,采集耳机喇叭产生的信号并输出给自适应滤波单元740中的参数可调滤波器741和参数自适应调整单元742。参数自适应调整单元742,用于根据第二麦克风730采集到的信号、心率相关的信号以及预设的自适应算法去调整参数可调滤波器741的滤波参数。参数可调滤波器741,用于利用滤波参数对第二麦克风730采集的信号进行自适应滤波,输出第一麦克风720采集到的信号中的耳机喇叭产生的信号的第一估计信号给减法单元750。减法单元750,用于从低通滤波器输出的信号中减去参数可调滤波器741输出的第一估计信号,得到心率相关的信号输出给心率检测单元760;减法单元750,还用于将心率相关的信号输出给参数自适应调整单元742。这里参数自适应调整单元742根据输入的第二麦克风730采集的信号以及减法单元750反馈的心率相关的信号,采用自适应算法计算出参数可调滤波器741的滤波参数。心率检测单元760,用于根据心率相关的信号进行心率检测。
在本发明的一个实施例中,心率检测单元760,用于对心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。例如,心率检测单元760,可以利用现有的自相关方法、阈值方法等检测出心率相关的信号的周期。
图8是自适应滤波器的一般结构示意图。如图8所示,自适应滤波器主要由参数可调滤波器和调整滤波器系数的参数自适应调整单元两部分构成。自适应滤波器在设计时不需要事先知道有关信号的统计特性的知识,它能够在自己的工作过程中逐渐“了解”或估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。图8中,Ex(n)是期望信号,In(n)是输入信号,Out(n)是输出信号,e(n)为估计误差,e(n)=Ex(n)-Out(n)。自适应滤波器的滤波系数受误差信号控制,e(n)通过预定自适应算法对自适应系数进行调整,最终使得e(n)的均方误差最小,此时输出信号最逼近期望信号。
在图7所示的耳机中,采用了自适应滤波器对第二麦克风采集到的信号进行滤波处理,以准确估计出第一麦克风采集到的耳机喇叭产生的信号。如图7所示,y1(n)是第二麦克风730采集到的信号,即为应自适应滤波单元740中的输入信号,y2(n)为自适应滤波单元440的输出信号,xL(n)表示对应的期望信号,
Figure PCTCN2015080201-appb-000001
对应误差信号(主要包括心率信号)。yL(n)和y1(n)具有一定的相关性,可以通过设计合适的传递函数,来使得y1(n)经过滤波器后的输出信号y2(n)逼近yL(n)。比如可以根据最小均方误差准则,当误差信号均方的期望值最小时,输出信号y2(n)可以用来有效估计yL(n),那么之后就可以将耳机喇叭产生的信号对心率检测的干扰从第一麦克风采集到的信号中去除。第一麦克风经过低通滤波后的信号减去第二麦克风经过自适应滤波后的信号,得到和心率相关的信号信息
Figure PCTCN2015080201-appb-000002
以此为基础进行心率的检测。心脏的跳动具有一定的周期性,那么
Figure PCTCN2015080201-appb-000003
是具有一定周期性的信号,根据自相关方法可以获得该信号对应的周期,周期的倒数即为心率。
具体过程如下:假定第一麦克风检测到的信号为:x(n)=y(n)+d(n),第二麦克风检测到的信号为y1(n)。其中,y(n)表示第一麦克风采集到的耳机喇叭产生的信号,d(n)表示由于血液流动所产生的压力变化信号;y1(n)表示第二麦克风采集到的耳机喇叭产生的信号,n表示采样时间点。
x(n)经过低通滤波后信号变为:xL(n)=yL(n)+dL(n)。
y1(n)和y(n)都是耳机喇叭产生的信号,y1(n)对应的是第二麦克风采集的耳机喇叭产生的信号,y(n)对应的第一麦克风采集的耳机喇叭产生的信号,虽然两者对应的幅度不同,但具有相同 的振动频率。为了将y(n)从x(n)中消除,选择自适应滤波器(冲击响应为h(n))对y1(n)进行滤波,得到y2(n)=y1(n)*h(n),使y2(n)尽可能地接近x(n)经过低通滤波后的耳机喇叭产生的信号yL(n)。这样由于耳道收缩产生的信号可以表示为:
Figure PCTCN2015080201-appb-000004
滤波器的自适应参数利用自适应算法来获得,实现自适应算法的方法很多,比如可以采用均方误差最小的方法,即使得
Figure PCTCN2015080201-appb-000005
取最小值时得到的滤波器系数。求得
Figure PCTCN2015080201-appb-000006
后,根据该信号的周期性特点,可以利用自相关方法、阈值法等来对其周期进行检测,其周期的倒数就是心率。
通过图5或图7所示实施例中的耳机能够获得人的心率,以便获取人的健康状况信息,或者以此为依据人们可以根据具体情况将自己的运动量控制在一个合适的范围内。
基于上述实施例给出本发明中的应用于耳机的心率检测方法,本发明方法实施例中各步骤的具体内容可以参见本发明产品实施例的相关描述。
图9为本发明实施例中一种应用于耳机的心率检测方法的流程图。如图9所示,该方法包括:
步骤S910,在耳机内设置一个腔体,将第一麦克风安装在腔体内;腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴合的耳廓构成密闭空间;在耳机的耳机头部内还设置第二麦克风。例如,将第二麦克风设置在耳机头部内的靠近喇叭放声孔的位置,参见图3。
步骤S920,当耳机被佩戴时,由麦克风采集腔体内的由压力变化产生的信号,由第二麦克风采集耳机头部内耳机喇叭产生的信号。步骤S930,对第二麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的耳机喇叭产生的信号的第一估计信号。步骤S940,从第一麦克风采集到的信号中减去该第一估计信号,得到心率相关的信号。步骤S950,根据心率相关的信号进行心率检测。
在本发明的一个实施例中,图9所示的方法在从第一麦克风采集到的信号中减去第一估计信号,得到心率相关的信号之前进一步包括:对第一麦克风采集到的信号进行低通滤波处理,得到低通滤波信号。则步骤S940中的从第一麦克风采集到的信号中减去该第一估计信号,得到心率相关的信号具体包括:从低通滤波信号中减去该第一估计信号,得到心率相关的信号。
在本发明的一个实施例中,步骤S930中对第二麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的耳机喇叭产生的信号的第一估计信号包括:根据第二麦克风采集到的信号、心率相关的信号以及预设的自适应算法计算自适应滤波参数;根据自适应滤波参数对第二麦克风采集到的信号进行自适应滤波得到该第一估计信号。
在本发明的一个实施例中,步骤S950中根据心率相关的信号进行心率检测包括:对心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
在本发明的一个实施例中,在耳机中的耳机头部内还设置第二麦克风具体可以为:将第二麦克风设置在耳机喇叭的振膜的前方且第二麦克风与振膜之间具有间隙,以使第二麦克风位于耳机喇叭发声时声波传播的路径上,且第二麦克风与耳机喇叭互不影响。
综上所述,本发明上述实施例的技术方案的有益效果包括:(1)采用了体积较小的密闭腔体来安置第一麦克风,减小了外界噪声干扰,并强化了第一麦克风检测到的信号信息。(2)在耳机中加入了第二麦克风,用于采集耳机喇叭产生的信号,并通过设计自适应滤波器来进一步消除耳机喇叭产生的信号对心率检测的影响。(3)根据脉搏振动频率的特点,设计了一种低通滤波器,进一步减小了外界高频噪声的影响。
此外,利用耳机检测心率还存在一个重要的问题,就是容易受到外界干扰信号的影响,这也会影响心率的检测。对此,本发明还给出了如下解决方案。
图10为本发明实施例中的一种能检测心率的耳机的结构示意图。如图10所示,该能检测心率的耳机1000包括:减法单元1050、心率检测单元1060、自适应滤波单元1040、设置在耳机内的腔体1010和安装在腔体1010内的第一麦克风1020,以及设置在耳机中的不接触佩戴者皮肤的位置处的第三麦克风1030;
其中,腔体1010的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体1010的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴合的耳廓构成密闭空间。
第一麦克风1020,用于当耳机1000被佩戴时,采集腔体1010内的由压力变化产生的信号并输出给减法单元1050。第三麦克风1030,用于当耳机被佩戴时,采集外界干扰信号并输出给自适应滤波单元1040。自适应滤波单元1040,用于根据心率相关的信号对第三麦克风1030采集到的信号进行自适应滤波处理,得到第一麦克风1020采集到的信号中的外界干扰信号的第二估计信号后输出给减法单元1050。减法单元1050,用于从麦克风采集到的信号中减去自适应滤波单元1040输出的第二估计信号,得到心率相关的信号输出给心率检测单元1060以及自适应滤波单元1040。心率检测单元1060,用于根据心率相关的信号进行心率检测。
第一麦克风1020在采集腔体1010内的由压力变化产生的信号的同时会采集到外界干扰信号。因此,图10中对第三麦克风1030检测到的信号进行自适应滤波处理,使得能根据第三麦克风1030采集到的外界干扰信号准确地估计出第一麦克风1020采集到信号中的外界干扰信号,其目的是消除外界干扰信号对心率检测的影响。第一麦克风1020和第三麦克风1030都会检测到外界干扰信号,虽然这两种信号周期一致,但幅度会有差异,因此需要采用自适应滤波器消除这种差异,使得能够将外界干扰信号从第一麦克风1020采集到的信号中消除,以获得有效的心率信息。
图10所示的能检测心率的耳机1000中,在耳机1000内设置腔体1010来安置第一麦克风1020,从而减小了外界噪声的干扰,并强化了第一麦克风1020采集到的信号信息。但外界干扰仍然存在,对此,该能检测心率的耳机1000中加入了第三麦克风1030来采集外界干扰信号,对第三麦克风1030采集的信号进行自适应滤波,从第一麦克风1020采集的信号中减去自适应滤波后的第三麦克风信号,再进行心率检测,从而进一步消除了外界干扰信号对心率检测的影响。
在本发明的一个实施例中,图10所示的耳机进一步包括低通滤波器,用于对第一麦克风1020采集到的信号进行低通滤波处理,得到低通滤波信号后再输出给减法单元1050。即减法单元1050,用于从低通滤波信号中减去自适应滤波单元1040输出的第二估计信号,得到心率相关的信号输出给心率检测单元1060。这是因为脉搏振动的频率较低(0.3Hz-3Hz左右),而外界噪声频率较高,根据这一特点,通过低通滤波器可以消除外界高频噪声的影响。例如,低通滤波器可以选择截止频率为5Hz的FIR滤波器等。设置在耳机内的腔体1010和安装在腔体1010内的第一麦克风1020的具体结构与图2A-2C中结构类似,这里不再复述。
图11是本发明一个实施例中的第三麦克风的安放位置的示意图。由于人体的运动会使人体的皮肤随之发生振动,本实施例中第三麦克风1030装置在耳机1000中不接触皮肤的部位,从而避免皮肤振动对第三麦克风采集的信号造成影响,提高第三麦克风采集信号的准确度。参见图11,第三麦克风1030可以设置在耳机的连接耳机头部和耳机线的耳机柄中,如图11所示虚线框示意出的耳机的任何一个部位。
在实际当中,即使耳机能够占据整个耳道,形成完全封闭的腔体,外界广泛存在的次声波对心率检测的影响也是不可避免的,因为次声波具有身强的穿透力。因此这种外界干扰信号会被 第一麦克风检测到。那么,第一麦克风采集到的数据不仅包括了由于血管的脉压波动产生的压力变化信息,同时包括了外界干扰信号。为了消除该被第一麦克风采集到的外界干扰信号对心率检测的影响,本发明在耳机中加入第三麦克风,第三麦克风装置在耳机中不接触皮肤的部位,比如图11中所示的虚线框所示的耳机位置。利用第三麦克风采集外界干扰信号。第一麦克风采集到的外界干扰信号和第三麦克风采集到的外界干扰信号具有很强的相关性,以此为基础可以采用一定的滤波器消除外界干扰信号的影响。
根据前面的分析,如果能从第一麦克风检测到的信号中滤除外界干扰信号,那么就可以得到由于血液流动造成耳道自身收缩产生的信号,此信号和心脏跳动频率有关,基于此信号得到心率信息。第三麦克风采集到的外界干扰信号和第一麦克风采集到的外界干扰信号具有很强的相关性,但二者并不完全等同,不能直接将该信号从第一麦克风采集到的信号中去掉,因此本实施例通过自适应滤波的方法来滤除外界噪声所产生的干扰。
综上所述,本发明实施例中:首先,采用体积较小的密闭腔体来安置第一麦克风,减小了外界噪声干扰,并强化了第一麦克风检测到的信号信息。其次,在耳机中加入了第三麦克风,用于采集外界干扰信号,并通过设计自适应滤波器来进一步消除人外界干扰对心率检测的影响。再者,根据脉搏振动频率的特点,设计了低通滤波器,进一步减小了外界噪声的影响。下面以图4为例进行进一步的说明。
图12为本发明又一个实施例中的一种能检测心率的耳机的结构示意图。如图12所示,该能检测心率的耳机1200包括:减法单元1250、心率检测单元1260、低通滤波器1270、设置在耳机中的不接触佩戴者皮肤的位置处的第三麦克风1230、自适应滤波单元1240、设置在耳机内的腔体1210和安装在腔体1210内的第一麦克风1220。其中,自适应滤波单元1240包括:参数可调滤波器1241和参数自适应调整单元1242。
其中,腔体1210的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体1210的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴合的耳廓构成密闭空间。
第一麦克风1220,用于当耳机1200被佩戴时,采集腔体1210内的由压力变化所产生的信号并输出给低通滤波器1270。第一麦克风1220在采集腔体1210内的由压力变化产生的信号的同时会采集到外界干扰信号。低通滤波器1270,用于对第一麦克风1220采集到的信号进行低通滤波处理,得到低通滤波信号后再输出给减法单元1250。第三麦克风1230,用于当耳机被佩戴时,采集外界干扰信号并输出给自适应滤波单元1240中的参数可调滤波器1241和参数自适应调整单元1242。参数自适应调整单元1242,用于根据第三麦克风1230采集到的信号、心率相关的信号以及预设的自适应算法去调整参数可调滤波器1241的滤波参数。参数可调滤波器1241,用于利用滤波参数对第三麦克风1230采集的信号进行自适应滤波,输出第一麦克风1220采集到的信号中的外界干扰信号的第二估计信号给减法单元1250。减法单元1250,用于从低通滤波器输出的信号中减去参数可调滤波器1241输出的第二估计信号,得到心率相关的信号输出给心率检测单元1260;减法单元1250,还用于将心率相关的信号输出给参数自适应调整单元1242。这里参数自适应调整单元1242根据输入的第三麦克风1230采集的信号以及减法单元1250反馈的心率相关的信号,采用自适应算法计算出参数可调滤波器1241的滤波参数。心率检测单元1260,用于根据心率相关的信号进行心率检测。
在本发明的一个实施例中,心率检测单元1260,用于对心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。例如,心率检测单元1260,可以利用现有的自相关方 法、阈值方法等检测出心率相关的信号的周期。自适应滤波器的一般结构如图8所示。
在图12所示的耳机中,采用了自适应滤波器对第三麦克风采集到的信号进行滤波处理,以准确估计出第一麦克风采集到的外界干扰信号。如图12所示,y1(n)是第三麦克风1230采集到的信号,即为应自适应滤波单元1240中的输入信号,y2(n)为自适应滤波单元1240的输出信号,xL(n)表示对应的期望信号,
Figure PCTCN2015080201-appb-000007
对应误差信号(主要包括心率信号)。yL(n)和y1(n)具有一定的相关性,可以通过设计合适的传递函数,来使得y1(n)经过滤波器后的输出信号y2(n)逼近yL(n)。比如可以根据最小均方误差准则,当误差信号均方的期望值最小时,输出信号y2(n)可以有效估计yL(n),那么之后就可以将外界干扰噪声对心率检测的干扰从第一麦克风采集到的信号中去除,再次去除外界干扰信号的影响。第一麦克风经过低通滤波后的信号减去第三麦克风经过自适应滤波后的信号,得到和心率相关的信号信息
Figure PCTCN2015080201-appb-000008
以此为基础进行心率的检测。心脏的跳动具有一定的周期性,那么
Figure PCTCN2015080201-appb-000009
是具有一定周期性的信号,根据自相关方法可以获得该信号对应的周期,周期的倒数即为心率。
具体过程如下:假定第一麦克风检测到的信号为:x(n)=y(n)+d(n),第三麦克风检测到的信号为y1(n)。其中,y(n)表示第一麦克风采集到的外界干扰信号,d(n)表示由于血液流动所产生的压力变化信号;y1(n)表示第三麦克风采集到的外界干扰信号,n表示采样时间点。
x(n)经过低通滤波后信号变为:xL(n)=yL(n)+dL(n)。
y1(n)和y(n)都是外界干扰信号,y1(n)对应的是第三麦克风采集的外界干扰信号,y(n)对应的第一麦克风采集的外界干扰信号,虽然两者对应的幅度不同,但具有相同的振动频率。为了将y(n)从x(n)中消除,选择自适应滤波器(冲击响应为h(n))对y1(n)进行滤波,得到y2(n)=y1(n)*h(n),使y2(n)尽可能地接近x(n)经过低通滤波后的外界干扰信号yL(n)。
这样由于耳道收缩产生的信号可以表示为:
Figure PCTCN2015080201-appb-000010
滤波器的自适应参数利用自适应算法来获得,实现自适应算法的方法很多,比如可以采用均方误差最小的方法,即使得
Figure PCTCN2015080201-appb-000011
取最小值时得到的滤波器系数。求得
Figure PCTCN2015080201-appb-000012
后,根据该信号的周期性特点,可以利用自相关方法、阈值法等来对其周期进行检测,其周期的倒数就是心率。
通过图10或图12所示实施例中的耳机能够获得人的心率,以便获取人的健康状况信息,或者以此为依据人们可以根据具体情况将自己的运动量控制在一个合适的范围内。
基于上述实施例给出本发明中的应用于耳机的心率检测方法,本发明方法实施例中各步骤的具体内容可以参见本发明产品实施例的相关描述。
图13为本发明实施例中一种应用于耳机的心率检测方法的流程图。如图13所示,包括:
步骤S1310,在耳机内设置一个腔体,将第一麦克风安装在腔体内;腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴合的耳廓构成密闭空间;在耳机中的不接触佩戴者皮肤的位置处还设置第三麦克风。例如,将第三麦克风设置在耳机的连接耳机头部和耳机线的耳机柄中,参见图3。
步骤S1320,当耳机被佩戴时,由麦克风采集腔体内的由压力变化产生的信号,由第三麦克风采集外界干扰信号。步骤S1330,对第三麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的外界干扰信号的第二估计信号。步骤S1340,从第一麦克风采集到的信号中减去该第二估计信号,得到心率相关的信号;步骤S1350,根据心率相关的信号进行心率检测。
在本发明的一个实施例中,图13所示的方法在从第一麦克风采集到的信号中减去第二估计 信号,得到心率相关的信号之前进一步包括:对第一麦克风采集到的信号进行低通滤波处理,得到低通滤波信号。则步骤S1340中的从第一麦克风采集到的信号中减去该第二估计信号,得到心率相关的信号具体包括:从低通滤波信号中减去该第二估计信号,得到心率相关的信号。
在本发明的一个实施例中,步骤S1330中对第三麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的外界干扰信号的第二估计信号包括:根据第三麦克风采集到的信号、心率相关的信号以及预设的自适应算法计算自适应滤波参数;根据自适应滤波参数对第三麦克风采集到的信号进行自适应滤波得到该第二估计信号。
在本发明的一个实施例中,步骤S1350中根据心率相关的信号进行心率检测包括:对心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
综上所述本发明技术方案的有益效果包括:(1)采用了体积较小的密闭腔体来安置第一麦克风,减小了外界噪声干扰,并强化了第一麦克风检测到的信号信息。(2)在耳机中加入了第三麦克风,用于采集外界干扰信号,并通过设计自适应滤波器来进一步消除外界干扰信号对心率检测的影响。(3)根据脉搏振动频率的特点,设计了一种低通滤波器,进一步减小了外界高频噪声的影响。
在本发明的一个实施例中,在耳机中同时设置第一麦克风、第二麦克风和第三麦克风,以消除耳机喇叭产生的信号对心率检测的影响以及外界干扰信号对心率检测的影响,其中,三个麦克风的具体设置方式参见上述实施例的相关内容。
图14为本发明又一个实施例中的一种能检测心率的耳机的结构示意图。如图14所示,能够检测心率的耳机1400包括:设置在耳机内的腔体1410和安装在腔体1410内的第一麦克风1420、第二麦克风1430、第一自适应滤波单元1440、减法单元1450、心率检测单元1460、第三麦克风1470和第二自适应滤波单元1480。
可以看出图14所示的实施例是结合了图5和图10所示实施例中的方案,各功能单元的实现功能对应相同。这里需要对减法单元进行说明。减法单元1450用于从第一麦克风采集的信号减去第一估计信号(对第二麦克风采集的信号进行自适应滤波得到)和第二估计信号(对第三麦克风采集的信号进行自适应滤波得到)。减法单元1450也可以理解为等效于减法单元550和减法单元1050的级联。即在图14中,可将减法单元1450替换为级联的第一减法单元和第二减法单元,此时:第一麦克风1420的输出和第一自适应滤波单元1440的输出与第一减法单元的输入连接;第二自适应滤波单元1480的输出和第一减法单元的输出与第二减法单元的输入连接;第二减法单元用于从第一减法单元的输出信号(即由第一麦克风采集到的信号中减去第一估计信号后的信号),减去第二自适应滤波单元1480的输出信号(即第二估计信号),得到心率相关的信号输出给心率检测单元、以及反馈给第二自适应滤波单元1480以及第一自适应滤波单元1440。
图14所示的耳机中,既能够消除耳机喇叭产生的信号对心率检测的影响,也能够消除外界干扰信号对心率检测的影响。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (15)

  1. 一种应用于耳机的心率检测方法,其中,所述方法包括:
    在耳机内设置一个腔体,将第一麦克风安装在所述腔体内;所述腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;所述腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时所述腔体和与所述孔贴合的耳廓构成密闭空间;
    当耳机被佩戴时,由第一麦克风采集所述腔体内的由压力变化所产生的信号;
    将第一麦克风采集的信号作为心率相关的信号;
    根据心率相关的信号进行心率检测。
  2. 如权利要求1所述的方法,其中,该方法进一步包括:
    对所述第一麦克风采集到的信号进行低通滤波处理,以滤除高频干扰信号;
    将低通滤波处理后的信号作为所述心率相关的信号;
    所述根据心率相关的信号进行心率检测包括:对所述心率相关的信号的周期进行检测;由检测出的信号的周期的倒数得到心率。
  3. 如权利要求1所述的方法,其中,该方法进一步包括:
    在耳机的耳机头部内还设置第二麦克风;
    当耳机被佩戴时,由所述第二麦克风采集耳机头部内耳机喇叭产生的信号;
    对所述第二麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的耳机喇叭产生的信号的第一估计信号;
    从第一麦克风采集到的信号中减去所述第一估计信号,得到心率相关的信号。
  4. 如权利要求3所述的方法,其中,所述对所述第二麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的耳机喇叭产生的信号的第一估计信号包括:
    根据第二麦克风采集到的信号、心率相关的信号以及预设的自适应算法计算自适应滤波参数;
    根据所述自适应滤波参数对第二麦克风采集到的信号进行自适应滤波得到所述第一估计信号。
  5. 如权利要求1或3所述的方法,其中,该方法进一步包括:
    在耳机中的不接触佩戴者皮肤的位置处还设置第三麦克风;
    当耳机被佩戴时,由所述第三麦克风采集外界干扰信号;
    对所述第三麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的外界干扰信号的第二估计信号;
    所述将第一麦克风采集的信号作为心率相关的信号包括:从第一麦克风采集到的信号中减去所述第二估计信号,得到心率相关的信号;
    所述从第一麦克风采集到的信号中减去所述第一估计信号,得到心率相关的信号包括:从第一麦克风采集到的信号中减去所述第一估计信号和所述第二估计信号,得到心率相关的信号。
  6. 如权利要求5所述的方法,其中,所述对所述第三麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的外界干扰信号的第二估计信号包括:
    根据第三麦克风采集到的信号、心率相关的信号以及预设的自适应算法计算自适应滤波参数;
    根据所述自适应滤波参数对第三麦克风采集到的信号进行自适应滤波得到所述第二估计信 号。
  7. 一种能检测心率的耳机,其中,该耳机包括:心率检测单元、设置在耳机内的腔体和安装在所述腔体内的第一麦克风;
    其中,所述腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;所述腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时所述腔体和与所述孔贴合的耳廓构成密闭空间;
    所述第一麦克风,用于当耳机被佩戴时,采集所述腔体内的由压力变化所产生的信号;将第一麦克风采集的信号作为心率相关的信号;
    所述心率检测单元,用于根据心率相关的信号进行心率检测。
  8. 如权利要求7所述的耳机,其中,该耳机进一步包括:
    低通滤波器,用于对所述第一麦克风采集到的信号进行低通滤波处理,以滤除高频干扰信号;
    则将低通滤波处理后的信号作为所述心率相关的信号。
  9. 如权利要求7所述的耳机,其中,
    所述心率检测单元,用于对所述心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
  10. 如权利要求7所述的耳机,其中,该耳机还包括:第一减法单元、第一自适应滤波单元,以及设置在耳机的耳机头部内的第二麦克风;
    所述第二麦克风,用于当耳机被佩戴时,采集耳机喇叭产生的信号并输出给所述第一自适应滤波单元;
    所述第一自适应滤波单元,用于根据心率相关的信号对所述第二麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的耳机喇叭产生的信号的第一估计信号后输出给所述第一减法单元;
    所述第一减法单元,用于从第一麦克风采集到的信号中减去所述第一估计信号,得到心率相关的信号输出给所述心率检测单元以及所述第一自适应滤波单元。
  11. 如权利要求10所述的耳机,其中,
    所述第二麦克风设置在耳机喇叭的振膜的前方且第二麦克风与振膜之间具有间隙,以使第二麦克风位于耳机喇叭发声时声波传播的路径上,且第二麦克风与耳机喇叭互不影响。
  12. 如权利要求10所述的耳机,其中,所述第一自适应滤波单元包括:第一参数可调滤波器和第一参数自适应调整单元;
    所述第二麦克风,用于将采集到的信号输出给所述第一参数可调滤波器和所述第一参数自适应调整单元;
    所述第一减法单元,用于将所述心率相关的信号输出给所述第一参数自适应调整单元;
    所述第一参数自适应调整单元,用于根据第二麦克风采集到的信号、心率相关的信号以及预设的自适应算法去调整所述第一参数可调滤波器的滤波参数;
    所述第一参数可调滤波器,用于利用滤波参数对第二麦克风采集的信号进行自适应滤波,输出第一麦克风采集到的信号中的耳机喇叭产生的信号的第一估计信号给所述第一减法单元。
  13. 如权利要求7或10所述的耳机,其中,该耳机还包括:第二减法单元、第二自适应滤波单元,以及设置在耳机中的不接触佩戴者皮肤的位置处的第三麦克风;
    所述第三麦克风,用于当耳机被佩戴时,采集外界干扰信号并输出给所述第二自适应滤波单 元;
    所述第二自适应滤波单元,用于根据心率相关的信号对所述第三麦克风采集到的信号进行自适应滤波处理,得到第一麦克风采集到的信号中的外界干扰信号的第二估计信号后输出给所述第二减法单元;
    所述第二减法单元,用于从第一麦克风采集到的信号中减去所述第二估计信号,得到心率相关的信号输出给所述心率检测单元以及所述第二自适应滤波单元;或者用于从由第一麦克风采集到的信号中减去所述第一估计信号后的信号,减去所述第二估计信号,得到心率相关的信号,将该心率相关的信号输出给所述心率检测单元、所述第二自适应滤波单元以及所述第一自适应滤波单元。
  14. 如权利要求13所述的耳机,其中,
    所述第三麦克风设置在耳机的连接耳机头部和耳机线的耳机柄中。
  15. 如权利要求13所述的耳机,其中,所述第二自适应滤波单元包括:第二参数可调滤波器和第二参数自适应调整单元;
    所述第三麦克风,用于将采集到的信号输出给所述第二参数可调滤波器和所述第二参数自适应调整单元;
    所述第二减法单元,用于将所述心率相关的信号输出给所述第二参数自适应调整单元;
    所述第二参数自适应调整单元,用于根据第三麦克风采集到的信号、心率相关的信号以及预设的自适应算法去调整所述第二参数可调滤波器的滤波参数;
    所述第二参数可调滤波器,用于利用滤波参数对第三麦克风采集的信号进行自适应滤波,输出第一麦克风采集到的信号中的外界干扰信号的第二估计信号给所述第二减法单元。
PCT/CN2015/080201 2014-07-24 2015-05-29 应用于耳机的心率检测方法和能检测心率的耳机 WO2016011848A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15810777.1A EP3010249B1 (en) 2014-07-24 2015-05-29 Heartrate detection method applicable in headphone and headphone capable of detecting heartrate
JP2015563108A JP6082131B2 (ja) 2014-07-24 2015-05-29 イヤホンに適用される心拍数検出方法及び心拍数を検出可能なイヤホン
US14/901,564 US9635458B2 (en) 2014-07-24 2015-05-29 Heart rate detection method used in earphone and earphone capable of detecting heart rate
KR1020157036699A KR101660670B1 (ko) 2014-07-24 2015-05-29 이어폰에 적용되는 심박수 검출 방법 및 심박수 검출이 가능한 이어폰
DK15810777.1T DK3010249T3 (en) 2014-07-24 2015-05-29 METHOD OF DETECTING HEART RATE IN HEADPHONE AND HEADPHONE THAT CAN DETECT HEART RATE

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410354577.2A CN104185107B (zh) 2014-07-24 2014-07-24 一种应用于耳机的心率检测方法和能检测心率的耳机
CN201410354577.2 2014-07-24
CN201410422000.0A CN104244125B (zh) 2014-08-25 2014-08-25 一种应用于耳机的心率检测方法和能检测心率的耳机
CN201410422000.0 2014-08-25
CN201410422876.5A CN104244126B (zh) 2014-08-25 2014-08-25 一种应用于耳机的心率检测方法和能检测心率的耳机
CN201410422876.5 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016011848A1 true WO2016011848A1 (zh) 2016-01-28

Family

ID=55162490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080201 WO2016011848A1 (zh) 2014-07-24 2015-05-29 应用于耳机的心率检测方法和能检测心率的耳机

Country Status (6)

Country Link
US (1) US9635458B2 (zh)
EP (1) EP3010249B1 (zh)
JP (1) JP6082131B2 (zh)
KR (1) KR101660670B1 (zh)
DK (1) DK3010249T3 (zh)
WO (1) WO2016011848A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040821A1 (zh) * 2022-08-22 2024-02-29 深圳市韶音科技有限公司 一种声学输出装置、入耳式耳机及可穿戴设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3009070T3 (en) * 2014-07-24 2017-10-09 Goertek Inc METHOD OF DETECTING HEART RATE IN HEADPHONE AND HEADPHONE THAT CAN DETECT HEART RATE
US10349167B2 (en) 2015-05-18 2019-07-09 Apple Inc. Audio speaker with back volume containing adsorptive material
WO2018205013A1 (en) * 2017-05-10 2018-11-15 Ecole De Technologie Superieure System and method for determining cardiac rhythm and/or respiratory rate
CN107371107B (zh) * 2017-07-28 2021-10-08 苹果公司 扬声器模组以及电子设备
US20190247010A1 (en) * 2018-02-13 2019-08-15 Anna Barnacka Infrasound biosensor system and method
CN108540917B (zh) * 2018-06-12 2020-11-24 歌尔股份有限公司 耳机磁力检测装置
EP3998950A4 (en) * 2019-07-19 2023-07-19 Barnacka, Anna SYSTEM AND METHOD FOR DETECTING AND REPORTING THE HEART RHYTHM
WO2021030811A1 (en) * 2019-08-15 2021-02-18 Barnacka Anna Earbud for detecting biosignals from and presenting audio signals at an inner ear canal and method therefor
CN111601200A (zh) * 2020-04-28 2020-08-28 深圳奥尼电子股份有限公司 智能健康检测耳机及基于耳机的健康检测方法
US20210401311A1 (en) * 2020-06-25 2021-12-30 Anna Barnacka System and Method for Leak Correction and Normalization of In-Ear Pressure Measurement for Hemodynamic Monitoring
CN111657906B (zh) * 2020-06-29 2023-05-09 深圳数联天下智能科技有限公司 心率的计算方法、装置、计算设备及心率的检测装置
US11802843B1 (en) * 2022-07-15 2023-10-31 Know Labs, Inc. Systems and methods for analyte sensing with reduced signal inaccuracy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097689A1 (en) * 2007-10-16 2009-04-16 Christopher Prest Sports Monitoring System for Headphones, Earbuds and/or Headsets
CN102215740A (zh) * 2008-11-17 2011-10-12 索尼爱立信移动通讯有限公司 用于从生理声信号检测生理测量结果的设备、方法和计算机程序
CN104185107A (zh) * 2014-07-24 2014-12-03 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN104244126A (zh) * 2014-08-25 2014-12-24 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN104244125A (zh) * 2014-08-25 2014-12-24 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN104244127A (zh) * 2014-08-25 2014-12-24 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN204069257U (zh) * 2014-07-15 2014-12-31 常州市武进区半导体照明应用技术研究院 一种多功能挂耳式无线通信装置
CN204145698U (zh) * 2014-08-25 2015-02-04 歌尔声学股份有限公司 一种能检测心率的耳机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147049A2 (en) * 2006-06-14 2007-12-21 Think-A-Move, Ltd. Ear sensor assembly for speech processing
JP2008136556A (ja) 2006-11-30 2008-06-19 Ibox:Kk イヤホン装置
JP2009153822A (ja) * 2007-12-27 2009-07-16 Fujitsu Component Ltd 生体センサ
US8199956B2 (en) * 2009-01-23 2012-06-12 Sony Ericsson Mobile Communications Acoustic in-ear detection for earpiece
KR20110052783A (ko) * 2009-11-13 2011-05-19 삼성전자주식회사 생체 정보 획득 방법 및 장치
KR101295046B1 (ko) 2012-03-05 2013-08-09 주식회사 경희스포츠패나틱 헤드셋 모듈
JP6374378B2 (ja) * 2012-05-11 2018-08-15 ハーマン インターナショナル インダストリーズ インコーポレイテッド 生理学的センサ付きのイヤホン及び小型イヤホン
JP6107045B2 (ja) * 2012-10-19 2017-04-05 富士通株式会社 携帯情報端末

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097689A1 (en) * 2007-10-16 2009-04-16 Christopher Prest Sports Monitoring System for Headphones, Earbuds and/or Headsets
CN102215740A (zh) * 2008-11-17 2011-10-12 索尼爱立信移动通讯有限公司 用于从生理声信号检测生理测量结果的设备、方法和计算机程序
CN204069257U (zh) * 2014-07-15 2014-12-31 常州市武进区半导体照明应用技术研究院 一种多功能挂耳式无线通信装置
CN104185107A (zh) * 2014-07-24 2014-12-03 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN104244126A (zh) * 2014-08-25 2014-12-24 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN104244125A (zh) * 2014-08-25 2014-12-24 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN104244127A (zh) * 2014-08-25 2014-12-24 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN204145698U (zh) * 2014-08-25 2015-02-04 歌尔声学股份有限公司 一种能检测心率的耳机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3010249A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024040821A1 (zh) * 2022-08-22 2024-02-29 深圳市韶音科技有限公司 一种声学输出装置、入耳式耳机及可穿戴设备

Also Published As

Publication number Publication date
JP6082131B2 (ja) 2017-02-15
EP3010249A4 (en) 2016-04-20
KR20160016905A (ko) 2016-02-15
JP2016536022A (ja) 2016-11-24
US20160212530A1 (en) 2016-07-21
KR101660670B1 (ko) 2016-09-27
EP3010249A1 (en) 2016-04-20
US9635458B2 (en) 2017-04-25
DK3010249T3 (en) 2017-10-02
EP3010249B1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
WO2016011848A1 (zh) 应用于耳机的心率检测方法和能检测心率的耳机
WO2016011843A1 (zh) 应用于耳机的心率检测方法和能检测心率的耳机
CN111133770B (zh) 用于评估耳机的拟合质量的系统、音频可佩戴设备和方法
CN104244127B (zh) 一种应用于耳机的心率检测方法和能检测心率的耳机
EP2661910B1 (en) Seal-quality estimation for a seal for an ear canal
TW201820313A (zh) 耳機離耳偵測
CN104244125B (zh) 一种应用于耳机的心率检测方法和能检测心率的耳机
CN204145698U (zh) 一种能检测心率的耳机
TW202032540A (zh) 耳機脫離耳朵偵測
CN104185107B (zh) 一种应用于耳机的心率检测方法和能检测心率的耳机
CN106851459A (zh) 入耳式耳机
JP7164794B2 (ja) 自己音声推定付き聴覚保護システムと関連する方法
CN104244126B (zh) 一种应用于耳机的心率检测方法和能检测心率的耳机
WO2022036761A1 (zh) 融合入耳麦克风和耳外麦克风的深度学习降噪方法及设备
CN207369229U (zh) 一种耳机
CN107172516B (zh) 一种耳机及心率检测方法
JP6018025B2 (ja) 検体情報処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015563108

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157036699

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14901564

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015810777

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810777

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE