WO2024040821A1 - 一种声学输出装置、入耳式耳机及可穿戴设备 - Google Patents

一种声学输出装置、入耳式耳机及可穿戴设备 Download PDF

Info

Publication number
WO2024040821A1
WO2024040821A1 PCT/CN2022/140963 CN2022140963W WO2024040821A1 WO 2024040821 A1 WO2024040821 A1 WO 2024040821A1 CN 2022140963 W CN2022140963 W CN 2022140963W WO 2024040821 A1 WO2024040821 A1 WO 2024040821A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
acoustic output
pressure
flexible
cavity
Prior art date
Application number
PCT/CN2022/140963
Other languages
English (en)
French (fr)
Inventor
袁永帅
邓文俊
黄雨佳
周文兵
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Publication of WO2024040821A1 publication Critical patent/WO2024040821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups

Definitions

  • This description relates to the field of acoustics, and in particular to an acoustic output device, in-ear headphones and wearable devices.
  • wearable devices for example, acoustic output devices
  • the wearing pressure or the wearing pressure with the human body
  • the wearing pressure not only affects the user's wearing comfort, but also affects the transmission efficiency of the vibration signal output by the bone conduction headphones to the human body. It is also a feedback of the wearing position, so it is necessary to improve the acoustic output device. Wear pressure for testing.
  • the contact between the acoustic output device and the human body is often an irregular curved surface, and some acoustic output devices are in contact with the human body, it is even a flexible curved surface.
  • the usual means of detecting the wearing pressure are not suitable for wearing the acoustic output device. Pressure detection.
  • One embodiment of the present specification provides an acoustic output device, including an acoustic output unit and an earhook.
  • the earhook suspends the acoustic output unit near the user's ear.
  • a flexible sealed cavity with deformable volume is provided on the earhook.
  • One embodiment of the present specification also provides an in-ear earphone, including an earphone body.
  • the earphone body When a user wears the earphone, the earphone body is worn at the opening of the user's ear canal, and the earphone body is in contact with the user's ear canal.
  • a flexible sealed cavity with deformable volume is provided at the position for detecting the pressure exerted on the main body of the headset when the user wears it.
  • One embodiment of this specification also provides a wearable device, including a wearable body.
  • a wearable body When a user wears the wearable device, the wearable body is worn on the user's body, and the wearable body is in contact with the user's body.
  • a first flexible sealed cavity with a deformable volume is provided at the wearable device for detecting the user's physiological signal and/or the pressure exerted on the wearable device when the user wears it.
  • Figure 1 is a block diagram of an acoustic output device according to some embodiments of the present specification
  • Figure 2 is a calibration curve diagram according to some embodiments of this specification.
  • Figure 3 is an exemplary structural diagram of a sensing device according to some embodiments of this specification.
  • Figure 4 is an exemplary structural diagram of a sensing device according to some embodiments of this specification.
  • Figure 5 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of this specification.
  • Figure 6 is a cross-sectional view of the earhook shown in Figure 5 at position A;
  • Figure 7 is a schematic structural diagram of an exemplary acoustic output device according to other embodiments of this specification.
  • Figure 8 is a schematic structural diagram of an acoustic output device according to some embodiments of this specification.
  • Figure 9 is a schematic structural diagram of an in-ear headset provided according to some embodiments of this specification.
  • Figure 10A is a schematic structural diagram of an in-ear headphone provided according to other embodiments of this specification.
  • Figure 10B is a schematic structural diagram of an in-ear headphone provided according to other embodiments of this specification.
  • Figure 11A is a schematic structural diagram of an in-ear headphone provided according to some embodiments of this specification.
  • Figure 11B is a schematic structural diagram of an in-ear earphone provided according to some embodiments of this specification.
  • Figure 12 is a block diagram of a wearable device according to some embodiments of this specification.
  • Figure 13 is a schematic structural diagram of a smart bracelet provided according to some embodiments of this specification.
  • FIG. 14 is a schematic structural diagram of an ECG monitor provided according to some embodiments of this specification.
  • Figure 15 is a schematic structural diagram of glasses according to some embodiments of this specification.
  • Figure 16 is a schematic structural diagram of a virtual reality or augmented reality device according to some embodiments of this specification.
  • Figure 17 is a schematic structural diagram of a smart ring according to some embodiments of this specification.
  • Figure 18 is a graph of a heart rate signal according to some embodiments of the present specification.
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • words may be substituted by other expressions if they serve the same purpose.
  • the acoustic output device may include an acoustic output unit and an earhook.
  • the earhook suspends the acoustic output unit near the user's ear, and the sound signal output by the acoustic output unit can be received by the user.
  • a flexible sealing cavity with deformable volume is provided on the earhook.
  • the deformation of the cavity detects the pressure exerted by the user on the earhook when wearing the acoustic output device (hereinafter referred to as the wearing pressure), that is, the pressure the earhook exerts on the human body when worn. Furthermore, it can also be adjusted according to the wearing pressure to improve the user's wearing comfort and at the same time improve the acoustic output effect of the acoustic output unit (for example, a bone conduction acoustic output unit).
  • the wearing pressure the pressure exerted by the user on the earhook when wearing the acoustic output device
  • the wearing position of the acoustic output unit when the user wears the acoustic output device can also be determined based on the wearing pressure, and then the wearing position of the acoustic output unit can be adjusted so that the sound guide hole of the acoustic output unit (for example, an air conduction acoustic output unit) faces the user direction of the ear canal, thereby improving the acoustic output effect of the acoustic output device.
  • the sound guide hole of the acoustic output unit for example, an air conduction acoustic output unit
  • the acoustic output device may also include a sensing device, which is a sensing device capable of generating an electrical signal based on changes in pressure.
  • the sensing device may be disposed in a position of the acoustic output device that is in contact with the user or in a structure that is easily deformed when worn by the user (for example, an earhook, a backhook, or a headband).
  • the flexible seal on the earhook The cavity deforms under the wearing pressure, and accordingly, the pressure of the fluid (eg, gas, liquid, or a mixture of gas and liquid) inside the flexible sealed cavity changes, and the sensing device can generate an electrical signal in response to the pressure change.
  • the wearing pressure can be determined based on the electrical signal.
  • the corresponding relationship curve between the wearing pressure and the electrical signal also known as the calibration curve
  • the preset load applied to the flexible sealing cavity is used to represent the wearing pressure.
  • the corresponding relationship is stored in the form of (a, A), where a is the preset load size and A is the actual measured value when a load is applied.
  • the electrical signal can be fitted with a calibration curve based on multiple corresponding relationships. When detecting the wearing pressure, the wearing pressure can be determined based on the calibration curve and the electrical signal.
  • the acoustic output device uses a flexible sealing cavity and determines the wearing pressure based on the deformation of the flexible sealing cavity under the wearing pressure.
  • the flexible sealing cavity can be applied to various contact surfaces with the human body (such as , irregular curved surfaces, flexible curved surfaces, etc.) or structures that have deformed when worn by the user (for example, ear hooks, back hooks or head beams), it has a wide range of applications.
  • the contact surface between the flexible sealing cavity and the human body is made of flexible material, which does not cause discomfort to the user when detecting the wearing pressure, and can achieve a good balance between functionality and comfort.
  • the sensitivity of the detection can be adjusted by selecting different flexible materials and designing the shape and size of the flexible sealing cavity to measure tiny wearing pressures, so that it can detect small wearing pressures with relatively high performance. Good sensitivity.
  • the sensing device can also identify whether the user has worn the acoustic output device based on the detected pressure, so as to automatically trigger certain instructions for controlling the acoustic output device, such as automatic playback or automatic answering, etc. .
  • the acoustic output device may be various types of acoustic equipment, such as speakers, hearing aids, bone conduction headphones, air conduction headphones, bone air conduction headphones, etc.
  • the acoustic output device may be various headphones, such as hanging headphones (see Figures 5, 6 and related descriptions), back-hung headphones (see Figure 7 and related descriptions), headphones (see Figure 7 and related descriptions), See Figure 7 and related descriptions), in-ear headphones (see Figure 9 and related descriptions), semi-in-ear headphones (see Figures 10A-11B and related descriptions), etc.
  • the sensing device including the flexible sealed cavity can also be applied to various wearable devices to detect the pressure exerted by the human body on the wearable device when the wearable device is worn on the human body.
  • the wearable device may be implemented as a smart watch (see Figure 13 and related descriptions), an ECG monitor (see Figure 14 and related descriptions), glasses (see Figure 15 and related descriptions), virtual reality or At least one of a reality augmented device (see Figure 16 and related descriptions), a smart ring (see Figure 17 and related descriptions), etc.
  • the flexible sealed cavity on the wearable device is in contact with the human body, and the user's physiological activities (such as heartbeat, breathing, pulse beat, etc.) will cause the flexible sealed cavity to deform, and the deformation will cause the inside of the cavity to Pressure changes, the sensing device can generate electrical signals based on continuous changes in pressure, thereby obtaining physiological signals based on the user's physiological activities.
  • the physiological signal includes pulse, heart rate signal, respiratory rate, etc.
  • Figure 1 is a block diagram of an acoustic output device according to some embodiments of the present specification.
  • the acoustic output device 100 may include an acoustic output unit 110 , an earhook 120 and a sensing device 130 .
  • the acoustic output device 100 refers to a device that converts audio signals into sounds.
  • the acoustic output device 100 can be applied to glasses, smart bracelets, headphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the acoustic output device 100 can be applied to functional myopia glasses, reading glasses, cycling glasses or sunglasses, etc., or it can also be intelligent glasses, such as audio glasses with a headphone function.
  • the acoustic output device 100 can also be applied to head-mounted devices such as helmets, augmented reality (Augmented Reality, AR) devices, or virtual reality (Virtual Reality, VR) devices.
  • an augmented reality device or a virtual reality device may include a virtual reality helmet, virtual reality glasses, augmented reality headset, augmented reality glasses, etc., or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • the acoustic output unit 110 may be used to convert signals containing sound information into sound signals.
  • acoustic output unit 110 may include one or more air conduction speakers.
  • acoustic output unit 110 may include one or more bone conduction speakers.
  • the acoustic output unit 110 may include a combination of one or more bone conduction speakers and one or more air conduction speakers simultaneously.
  • the acoustic output unit 110 may be connected to an earhook 120 , which may secure the acoustic output unit 110 to the user's ear or head region of the ear attachment when the user wears the acoustic output device 100 (e.g., The front side of the auricle, the back side of the auricle, the upper side of the auricle or the back side of the auricle, etc.) in order to transmit the emitted sound to the user.
  • the acoustic output unit 110 may be disposed at the end of the earhook 120 or at any other location.
  • the acoustic output unit 110 may be disposed at an end of the earhook 120 while no acoustic output unit 110 is disposed at other positions of the earhook 120 .
  • multiple acoustic output units 110 may be provided at multiple locations on the earhook 120 .
  • at least one acoustic output unit 110 is provided at an end of the earhook 120 or at other positions.
  • the type of the acoustic output unit 110 may include one or more of moving coil type, electrostatic type, piezoelectric type, moving iron type, pneumatic type, electromagnetic type, etc.
  • the earhook 120 is used to suspend the acoustic output unit 110 on the ear or at a head area near the ear.
  • the earhook 120 may be a structure adapted to the user's ears.
  • the earhook 120 may be a curved structure suspended above the auricle.
  • the earhook 120 may have a curved portion (see earhook 520 shown in FIG. 5 ), and the curved portion adapted to the human ear may be used to hang above the user's auricle.
  • the earhook 120 may be made of elastic material, and exemplary elastic materials may include plastic, foam, rubber, latex, silicone, sponge, metal, alloy materials, etc. or any combination thereof. More description about the earhook 120 can be found in other parts of this specification, such as FIG. 5 and its related descriptions.
  • Sensing device 130 may be a sensing device capable of generating an electrical signal based on changes in pressure.
  • the sensing device 130 may be disposed in the earhook 120 .
  • the sensing device 130 may also be disposed at a position where the acoustic output unit 110 is in contact with the human body.
  • the sensing device 130 may be an air pressure sensing device.
  • the air pressure sensing device may deform under the action of external force and generate air pressure changes inside the air pressure sensing device. Further, the air pressure sensing device may respond to This change in air pressure generates an electrical signal.
  • the electrical signal generated by the sensing device 130 may be used to characterize the wearing pressure to which the sensing device 130 is subjected.
  • the sensing device 130 is not limited to a pneumatic pressure sensing device, but may also be a hydraulic sensing device or a pneumatic hydraulic sensing device.
  • the sensing device 130 may include a flexible sealed cavity 131 , a pressure sensing unit 132 and a processor 133 .
  • the flexible sealed cavity 131 can deform and produce pressure changes under the action of external loads.
  • the flexible sealing cavity 131 may form a closed cavity, and the interior of the flexible sealing cavity 131 is filled with fluid.
  • the fluid may include a gas (eg, air, nitrogen, etc.), a liquid (eg, water), or a mixture of gases and liquids.
  • the flexible sealing cavity 131 deforms, causing the volume of the closed cavity to change, thereby causing the pressure in the flexible sealing cavity 131 to change.
  • the flexible sealing cavity 131 may be disposed on the earhook 120 .
  • the flexible sealing cavity 131 may be located on the earhook 120 near the top of the user's ear.
  • the flexible sealing cavity 131 is arranged along the extension direction of the earhook 120.
  • the flexible sealing cavity 131 is disposed on the ear.
  • the change in air pressure of the flexible sealed cavity 131 may be related to the volume change caused by the deformation of the flexible sealed cavity 131 .
  • the principle is as follows: When the gas is in equilibrium, the relationship between the pressure, volume and temperature of the gas can be expressed by formula (1):
  • p represents the pressure (unit is Pa)
  • V represents the gas volume (unit is m 3 )
  • T represents the temperature (unit is K)
  • n represents the amount of gas substance (unit is mol)
  • R represents the molar gas constant ( The unit is J/mol.K).
  • the volume of the flexible sealing cavity 131 is inversely proportional to the air pressure in the flexible sealing cavity 131. Therefore, based on the above description, when the acoustic output device 100 is worn on the human body, the pressure of the human body relative to the earhook 120 and the flexible sealing cavity 131 causes the flexible sealing cavity 131 to deform, changing the volume of the flexible sealing cavity 131. This creates a change in air pressure inside it.
  • the pressure sensing unit 132 may be a sensor for detecting fluid pressure.
  • the pressure sensing unit 132 may be in fluid communication with the flexible sealing cavity 131 , and the pressure sensing unit 132 generates an electrical signal based on pressure changes within the flexible sealing cavity 131 .
  • the pressure sensing unit 132 may be located in a closed cavity formed by the flexible sealing cavity 131 , and the pressure sensing unit 132 responds to changes in fluid pressure within the closed cavity and converts the pressure changes into electrical signals.
  • a membrane structure may be provided at the opening of the pressure sensing unit 132. Pressure changes in the flexible sealed cavity 131 cause the membrane structure to deform, thereby causing pressure changes inside the pressure sensing unit 132.
  • the pressure sensing unit 132 transfers the internal pressure to the pressure sensing unit 132. Pressure changes are converted into electrical signals.
  • the pressure sensing unit 132 may include a sensing component (eg, a MEMS sensor) and a thin film structure. One end of the sensing component may have an opening, and the thin film structure covers the opening. Pressure changes in the flexible sealed cavity 131 can deform the film structure of the pressure sensing unit 132, thereby causing pressure changes inside the sensing component, and the sensing component can convert the pressure changes inside it into electrical signals.
  • a sensing component eg, a MEMS sensor
  • the pressure sensing unit 132 can receive pressure changes in the flexible sealing cavity 131 to generate electrical signals; on the other hand, the flexible sealing cavity 131 can also protect the pressure sensing unit 132 and its internal components (eg, sensing components) to prevent damage to the pressure sensing unit 132 and its internal components.
  • the pressure sensing unit 132 can receive pressure changes in the flexible sealing cavity 131 to generate electrical signals; on the other hand, the flexible sealing cavity 131 can also protect the pressure sensing unit 132 and its internal components (eg, sensing components) to prevent damage to the pressure sensing unit 132 and its internal components.
  • the processor 133 may identify the wearing pressure according to the electrical signal.
  • the wearing pressure causes the flexible sealing cavity 131 to deform.
  • the pressure of the flexible sealing cavity 131 changes, and the pressure sensing unit 132 generates an electrical signal based on the pressure change.
  • the electrical signal corresponds to the wearing pressure. Relationship.
  • the processor 133 may identify the wearing pressure according to a table lookup method.
  • the wearing pressure can be identified according to a preset correspondence table and electrical signals.
  • the correspondence table can reflect the correspondence between the electrical signal and the wearing pressure. Specifically, after the pressure sensing unit 132 generates an electrical signal, the wearing pressure corresponding to the electrical signal can be found in a preset correspondence table according to the size of the electrical signal.
  • the preset correspondence table may be obtained through testing.
  • the corresponding relationship curve between the wearing pressure and the electrical signal also called the calibration curve
  • the calibration curve is interpolated based on the electrical signal of the pressure sensing unit 132 to obtain the corresponding wearing pressure. pressure.
  • An exemplary method of obtaining the calibration curve is as follows: apply preset loads of different sizes to the flexible sealing cavity 131.
  • the preset load represents the wearing pressure, and the corresponding electrical signals are measured respectively.
  • FIG. 2 is a calibration curve diagram according to some embodiments of the present specification.
  • the interior of the flexible sealing cavity 131 is gas and the pressure sensing unit is a gas sensor as an example.
  • the horizontal axis represents the time when the preset load acts on the flexible sealing cavity 131, in units of ms, and the vertical axis represents The air pressure value (ie, electrical signal) of the pressure sensing unit 132 is in kPa.
  • the calibration curve shown in Figure 2 shows three peaks, namely peak 21, peak 22 and peak 23.
  • peak 21 represents the air pressure value of the pressure sensing unit 132 of the flexible sealed cavity 131 under a load of 5g
  • peak 22 represents the air pressure value of the pressure sensing unit 132 of the flexible sealed cavity 131 under a load of 10g
  • peak 23 represents the flexibility.
  • the air pressure value of the pressure sensing unit 132 of the sealed cavity 131 under a load of 15g increases as the load applied to the flexible sealed cavity 131 increases, and the air pressure values corresponding to peak 21, peak 22 and peak 23 increase in sequence. It can be seen from this that the relationship between the preset load and the air pressure value of the pressure sensing unit 132 is approximately linear.
  • the processor 133 may also identify wearing pressure based on a machine learning model.
  • Inputs to machine learning models can be electrical signals.
  • the output of the machine learning model can be wearing pressure.
  • the machine learning model can be obtained by training an initial machine learning model (eg, a neural network model) based on training samples.
  • training samples may include sample electrical signal parameters and training labels.
  • Training tags can be worn with pressure.
  • training labels can be obtained through historical experimental data, or can also be obtained through manual annotation.
  • machine learning models may include deep neural network (DNN) models or convolutional neural network (CNN) models.
  • DNN deep neural network
  • CNN convolutional neural network
  • the processor 133 may be configured to determine the contact force between the acoustic output unit 110 and the skin near the user's ear (eg, the skin on the front, upper, lower or back side of the auricle) according to the magnitude of the wearing pressure. .
  • the contact force between the acoustic output unit 110 and the skin near the user's ears is related to the wearing pressure. Further, the contact force between the acoustic output unit 110 and the skin near the user's ears can be determined by the wearing pressure of the earhook. For example, when the acoustic output device is an earhook headphone (eg, the acoustic output device 500 shown in FIG.
  • the contact force between the acoustic output unit and the skin near the user's ear is positively related to the wearing pressure of the earhook.
  • the acoustic output unit when the acoustic output device is a back-hung earphone (for example, the acoustic output device 700 shown in FIG. 7 ), the acoustic output unit includes a first acoustic output unit and a second acoustic output unit. The first acoustic output unit and the second acoustic output unit are respectively located in the area near the user's left ear and the area near the right ear.
  • the contact force between the first acoustic output unit and the skin near the user's ear is positively related to the wearing pressure of the connected earhook
  • the contact force between the second acoustic output unit and the skin near the user's ear is positively related to the wearing pressure of the connected earhook.
  • the wearing pressure of the earhook when the user wears the acoustic output device 100 can be approximately regarded as the contact force between the acoustic output unit and the user's facial area. For example, when the user wears the acoustic output device 100, the wearing pressure of the earhook is 0.2N, and the contact force between the acoustic output unit and the user's facial area is approximately 0.2N.
  • the contact force between the bone conduction acoustic output unit and the user's face will affect the bone conduction sound transmission efficiency. For example, if the contact force between the bone conduction acoustic output unit and the user's face is too small, the bone conduction The transmission efficiency of sound and the user's facial area is low, which affects the user's listening experience.
  • the factor that causes the contact force between the bone conduction acoustic output unit and the user's face to be too small may be that the bone conduction acoustic output unit is not worn in the correct position when the user wears the acoustic output device.
  • the bone conduction acoustic output unit needs to be in contact with the face in front of the auricle.
  • the bone conduction acoustic output unit is placed in the facial area below or above the auricle when the user wears the acoustic output device.
  • Factors that cause the contact force between the bone conduction acoustic output unit and the user's face to be too small may also be caused by differences in the user's own body, such as the user's younger age, smaller head size, etc.
  • the acoustic output unit is an air conduction acoustic output unit
  • the wearing position of the air conduction acoustic output unit will affect the position between the sound guide hole and the ear canal opening.
  • the acoustic output unit is a bone conduction or air conduction acoustic output unit, and its wearing position will affect the user's listening experience.
  • the contact force between the acoustic output unit and the skin area near the ear will also be different.
  • the corresponding contact force of the acoustic output unit at different wearing positions can be tested experimentally to obtain a database of correspondence between the wearing position, contact force and sound effects or a machine learning model that has completed training, and use the contact force and database or
  • the trained machine learning model determines the wearing position of the acoustic output unit and determines the wearing position of the acoustic output device in the skin area near the ear through contact force.
  • the processor when the processor responds that the contact force is not within the preset contact force range, the processor issues a control instruction to adjust the wearing position of the acoustic output unit so that the contact force is within the preset contact force range, or outputs a notification to the user.
  • a signal (for example, voice information, light signal or buzzer signal, etc.) is used to remind the user to adjust the wearing position of the acoustic output unit in the acoustic output device 100 .
  • the processor 133 outputs a long beep signal to remind the user to adjust the wearing of the acoustic output device 100 to ensure better sound transmission between the acoustic output unit 110 and the user. efficiency and ensure the user’s wearing comfort.
  • the wearing pressure of the earhook is approximately regarded as the contact force between the acoustic output unit and the user's facial area. The contact force between the acoustic output unit and the skin area near the user's ears can be adjusted by adjusting the wearing pressure of the earhook. contact force.
  • the processor 133 may also be configured to identify whether the user is wearing the acoustic output device 100 based on the amount of pressure. In some embodiments, the processor 133 determines the pressure level based on the electrical signal generated by the pressure sensing unit 132 and determines whether the pressure level is greater than a preset pressure threshold to identify whether the user is wearing the acoustic output device 100 . In some embodiments, the processor 133 determines that the user is fully wearing the acoustic output device 100 in response to the pressure being greater than a preset pressure threshold.
  • the processor 133 when the processor 133 determines that the user is fully wearing the acoustic output device 100, it may then respond to other processing processes of the acoustic output device 100, such as answering calls, automatically playing music, etc.
  • the acoustic output device 100 when the acoustic output device 100 is unworn, the flexible sealed cavity 131 does not deform, and the pressure sensing unit 132 does not generate an electrical signal. Therefore, when the processor 133 does not receive an electrical signal, it indicates that the acoustic output is When the device 100 is unworn, it may subsequently respond to other processing processes of the acoustic output device 100, such as hanging up the phone, pausing music, adjusting the volume, etc.
  • the preset pressure threshold is 0.1N.
  • the preset pressure threshold is 0.2N. In some embodiments, the preset pressure threshold may be 0.3N. It should be noted that the preset pressure threshold is not limited to the above-mentioned values, and can also be other values. Specifically, it can be adjusted according to factors such as the listening effect and wearing comfort of the user when wearing the acoustic output device 100 . It is considered that when the user operates the acoustic output device 100 without wearing it, the earhook of the acoustic output device 100 will deform. At this time, the pressure sensing unit 132 will also generate an electrical signal based on the deformation of the earhook.
  • identifying whether the user is wearing the acoustic output device 100 according to the pressure level may include: within a specific time range, determining whether the pressure level is within a preset pressure range. , to identify whether the user is wearing an acoustic output device.
  • the specific time range may be greater than 2s, greater than 3s, or other time ranges.
  • the preset pressure range may be other pressure ranges such as 0.1N-0.8N, 0.2N-0.6N, or 0.3N-0.5N.
  • the acoustic output device 100 may further include an adjustment component 140 , and the processor 133 is further configured to determine whether the pressure is within a preset pressure range, and respond that the pressure is not within the preset pressure range. , the processor 133 controls the adjustment component 140 to adjust the deformation amount of the earhook 120 so that the wearing pressure is within a preset pressure range.
  • the adjustment component 140 may include a piezoelectric element.
  • a piezoelectric element is a device whose voltage is positively correlated with its deformation amount. The piezoelectric element can generate deformation after receiving a driving voltage.
  • the piezoelectric element may be disposed on the earhook 120 and disposed along the extending direction of the earhook 120 .
  • the ear hook 120 may include an elastic metal wire and an elastic coating covering the elastic metal wire
  • the piezoelectric element may be attached to the elastic metal wire and covered by the elastic coating.
  • the piezoelectric element can be attached to the surface of the elastic covering body.
  • the piezoelectric element can be made of a piezoelectric material that generates voltage based on deformation.
  • Exemplary piezoelectric materials can include piezoelectric ceramics, piezoelectric crystals, piezoelectric polymers (eg, polyvinylidene fluoride) etc. or any combination thereof.
  • the piezoelectric element can be in any shape, such as sheet, block, column, ring structure, etc. or any combination thereof.
  • the acoustic output device 100 may include multiple piezoelectric elements to achieve multiple shape adjustments of the earhook 120 .
  • the processor 133 receives the electrical signal generated by the pressure sensing unit 132, determines the wearing pressure, and determines whether the wearing pressure is within a preset pressure range. If the pressure is within the preset pressure range, it means that the pressure between the earhook 120 and the user is appropriate, or the user's wearing method is correct, that is, the acoustic output unit is worn in a suitable position on the skin near the ear, which is suitable for the user or the user. For the user's application scenario, the pressure at this time will not be too loose or too tight. At the same time, the position of the acoustic output unit on the skin near the user's ear is correct.
  • the acoustic output unit can transmit the sound (for example, bone conduction sound or air conduction sound). Sound) is transmitted to the user's auditory nerve with high transmission efficiency. If the pressure is not within the preset pressure range, it means that the pressure at this time is too loose or too tight for the user, or the acoustic output unit is not worn correctly on the skin near the ear. In response to the pressure not being within the preset pressure range, the processor 133 outputs a control signal to act on the piezoelectric element and generates a driving pressure acting on the piezoelectric element to adjust the shape of the earhook 120 so that the shape of the earhook 120 is adjusted.
  • the processor 133 In response to the pressure not being within the preset pressure range, the processor 133 outputs a control signal to act on the piezoelectric element and generates a driving pressure acting on the piezoelectric element to adjust the shape of the earhook 120 so that the shape of the earhook 120 is adjusted.
  • the pressure provided to the user is again within the preset pressure range, which improves the user's comfort in wearing the acoustic output device 100 and allows the acoustic output unit to be worn in a correct position on the skin near the user's ears.
  • the bending angle of the bending part of the earhook 120 can be adjusted to adjust the pressure between the earhook 120 and the user's ear.
  • the earhook 120 bends and deforms, it will also drive the acoustic output unit to move, so that the acoustic output unit
  • the wearing position changes. For example, by adjusting the deformation amount of the earhook 120, the sound guide hole of the air conduction acoustic output unit is directed toward the user's ear canal opening.
  • the bone conduction acoustic output unit is adjusted to the skin near the ear on the front side of the user's auricle by adjusting the deformation amount of the earhook 120 .
  • the preset pressure range may be 0.1N-0.8N. In some embodiments, the preset pressure range may be 0.2N-0.6N. In some embodiments, the preset pressure range may be 0.3N-0.5N.
  • the acoustic output device 100 may include a micromotor, which is used to drive the angle adjustment between the earhook 120 and the acoustic output unit 110 to adjust the pressure between the earhook 120 and the human ear.
  • the micro motor drives the angle between the ear hook 120 and the acoustic output unit 110 to decrease to increase the pressure between the ear hook 120 and the human ear, and conversely, the micro motor drives the ear hook 120 and the acoustic output unit The angle between the ear hooks 110 is increased to reduce the pressure between the ear hooks 120 and the human ear.
  • the earhook 120 and the acoustic output unit 110 may be rotationally connected through an adjustment component 140.
  • the adjustment component 140 may be a gear transmission, a chain transmission, a belt transmission, a worm, a screw, and other components.
  • the micro motor can be disposed on the earhook 120 or on the acoustic output unit 110 .
  • the power output end of the micro motor is connected to the adjustment component 140 .
  • the micro motor drives the adjustment component 140 to move, so as to realize the movement of the ear hook.
  • the angle between the hanger 120 and the acoustic output unit 110 is adjusted.
  • the processor 133 in response to the pressure not being within the preset pressure range, the processor 133 outputs a control signal (eg, a forward rotation signal or a reverse rotation signal) that acts on the micro motor, and the operation of the micro motor drives the adjustment component 140 to move.
  • a control signal eg, a forward rotation signal or a reverse rotation signal
  • the processor 133 in response to the pressure being greater than the preset pressure range, the processor 133 outputs a reversal signal that acts on the micro motor, and the micro motor reversely drives the adjustment component 140 to move, increasing the distance between the earhook 120 and the acoustic output unit 110 . angle to reduce the pressure between the earhook 120 and the human ear, so that the wearing pressure is within the preset pressure range, thereby improving the user's comfort when wearing the acoustic output device 100 .
  • the processor 133 in response to the pressure being less than the preset pressure range, the processor 133 outputs a forward rotation signal to act on the micro motor, and the micro motor drives the adjustment component 140 to move forward to reduce the distance between the earhook 120 and the acoustic output unit 110 . angle to increase the pressure between the earhook 120 and the human ear, so that the wearing pressure is within the preset pressure range, thereby increasing the contact force between the user and the acoustic output unit 110 .
  • a micro motor may not be provided to drive the movement of the adjustment component 140 .
  • the user can manually adjust the angle between the acoustic output unit 110 and the earhook 120, the bending degree of the earhook, etc. to adjust the pressure between the earhook 120 and the user's face when the user wears the acoustic output device.
  • Figure 3 is an exemplary structural diagram of a sensing device according to some embodiments of this specification.
  • the sensing device 330 may include a pressure sensing unit 332 and a flexible sealed cavity 331 in fluid communication with the pressure sensing unit 332 .
  • Fluid communication may mean that pressure changes within the flexible sealing cavity 331 may be received by the pressure sensing unit 332 .
  • the flexible sealed cavity 331 can deform and generate pressure changes within the flexible sealed cavity 331 , and the pressure sensing unit 332 generates an electrical signal in response to the pressure changes within the flexible sealed cavity 331 .
  • the flexible sealing cavity 331 may include a flexible cavity 3311, a communication cavity 3312, and a connecting pipe 3313.
  • the flexible cavity 3311 , the communication cavity 3312 and the connecting pipe 3313 may jointly form a closed cavity of the flexible sealed cavity 331 .
  • the flexible cavity 3311 can deform and produce pressure changes under the action of external loads
  • the connecting cavity 3312 can be used to accommodate the pressure sensing unit 332
  • the connecting pipe 3313 is used to connect the flexible cavity 3311 and the connecting cavity 3312.
  • one end of the connecting pipe 3313 is in fluid communication with the flexible cavity 3311, and the other end of the connecting pipe 3313 is in fluid communication with the connecting cavity 3312.
  • Pressure changes in the flexible cavity 3311 can be transmitted to the connecting cavity 3312 through the connecting pipe 3313. middle.
  • external loads may act on (or mainly act on) the flexible cavity 3311, causing the flexible cavity 3311 to deform, thereby causing pressure changes within the flexible cavity 3311.
  • the pressure change in the flexible cavity 3311 is further transmitted to the communication cavity 3312 through the connecting pipe 3313, so that the pressure sensing unit 332 can generate an electrical signal in response to the pressure change in the flexible cavity 3311.
  • the material of the flexible cavity 3311 in order to ensure that the flexible cavity 3311 can have a good deformation effect under the action of external loads, can be a material with good elasticity (ie, easy to undergo elastic deformation). In some embodiments, the material of the flexible cavity 3311 may be one or more of polymer materials, glue materials, and the like.
  • the polymer material may be polycarbonate (PC), polyamides (PA), acrylonitrile-butadiene-styrene copolymer (Acrylonitrile Butadiene Styrene, ABS), polystyrene (Polystyrene, PS), High Impact Polystyrene (HIPS), Polypropylene (PP), Polyethylene Terephthalate (PET), Polyvinyl Chloride (PVC) ), Polyurethanes (PU), Polyethylene (PE), Phenol Formaldehyde (PF), Urea-Formaldehyde (UF), Melamine-Formaldehyde (MF), Polyarylate (PAR), polyetherimide (PEI), polyimide (PI), polyethylene naphthalate two formic acid glycol ester (PEN), Any one of polyetheretherketone (PEEK), silica gel, etc. or a combination thereof.
  • PC polycarbonate
  • PA polyamides
  • PA acrylonitrile-butad
  • the connecting pipe 3313 is used to connect the flexible cavity 3311 and the connecting cavity 3312.
  • the pressure change in the flexible cavity 3311 can be transmitted to the connecting cavity 3312 through the connecting pipe 3313, so that the pressure sensing unit in the connecting cavity 3312 332 responds to pressure changes to generate electrical signals.
  • the relative position of the flexible cavity 3311 and the pressure sensing unit 332 can be adjusted by setting the connection position of the connecting pipe 3313 and the flexible cavity 3311, so that the distance between the flexible cavity 3311 and the pressure sensing unit 332 is The positional relationship can be flexibly arranged, so that the sensing device 130 can be adapted to different application scenarios.
  • the materials of the flexible cavity 3311 and the connecting pipe 3313 may be the same or different.
  • the external load acts on the flexible sealing cavity 331 and deforms the flexible cavity 3311, it may also deform the connecting pipe 3313.
  • the deformation of the connecting pipe 3313 will also cause a certain degree of (smaller) pressure.
  • the pressure change will also be received by the pressure sensing unit 332 and converted into an electrical signal. Therefore, in order to reduce the influence of the deformation of the connecting pipe 3313 under the external load on the electrical signal, the Young's modulus of the flexible cavity 3311 can be set to be smaller than the Young's modulus of the connecting pipe 3313.
  • the ratio of the Young's modulus of the flexible cavity 3311 to the Young's modulus of the connecting pipe 3313 may be in the range of 1:1 to 1:10. In some embodiments, in order to reduce the impact of the deformation of the connecting pipe 3313 under external load on the electrical signal, the ratio of the Young's modulus of the flexible cavity 3311 to the Young's modulus of the connecting pipe 3313 may be located at 1: Within the range of 3 ⁇ 1:8.
  • the structure of the flexible cavity 3311 and/or the connecting tube 3313 may be a tubular structure and/or a balloon structure.
  • Tubular structures may include, but are not limited to, regular and/or irregular geometric structures such as square tubes, circular tubes, spinal tubes, arc tubes, etc.
  • the size of the flexible cavity 3311 and/or the connecting pipe 3313 (for example, the length of the tubular structure, the diameter of the pipe, etc.) can be based on the actual application of the sensing device 330.
  • the sensing device 330 is used in a wearable device. The location on the device is set appropriately and is not further limited here.
  • the pipe diameter of the flexible cavity 3311 in order to reduce the impact of the deformation of the connecting pipe 3313 on the electrical signal, can be set to be larger than the pipe diameter of the connecting pipe 3313.
  • the end face diameter of the flexible cavity 3311 is larger than the end face diameter of the connecting pipe 3313.
  • the ratio of the diameter of the flexible cavity 3311 to the diameter of the connecting pipe 3313 may be greater than 3.
  • the ratio of the diameter of the flexible cavity 3311 to the diameter of the connecting pipe 3313 may be greater than 3.
  • the pipe diameter (eg, inner diameter) of the connecting pipe 3313 may be one-quarter of the pipe diameter (eg, the inner diameter) of the flexible cavity 3311 . It should be noted that when the flexible cavity 3311 or the connecting pipe 3313 is a round pipe, the cross-sectional area of the flexible cavity 3311 along the direction perpendicular to its extension may be larger than the cross-sectional area of the connecting pipe 3313 along the direction perpendicular to its extension.
  • the communication cavity 3312 is used to accommodate the pressure sensing unit 332.
  • the pressure change in the flexible cavity 3311 needs to be transmitted to the communication cavity 3312 through the connecting pipe 3313, so that the pressure in the communication cavity 3312 changes.
  • the pressure sensing unit 332 generates an electrical signal in response to the pressure change in the communication cavity 3312. It can be seen from this that the relationship between the pressure change in the flexible cavity 3311 and the pressure change in the communication cavity 3312 can affect the sensitivity of the pressure sensing unit 332 .
  • the connecting cavity 3312 (and/or the flexible cavity 3311)
  • the volume of the flexible cavity 3311) may be inversely proportional to the air pressure in the communication cavity 3312 (and/or the flexible cavity 3311). It can be seen from this that the relationship between the volume of the flexible cavity 3311 and the volume of the communication cavity 3312 can affect the sensitivity of the pressure sensing unit 332.
  • the sensitivity of the sensing device 130 can be adjusted (eg, improved) by setting the volumes of the communication cavity 3312 and the flexible cavity 3311 .
  • the volume of the communication cavity 3312 may be smaller than the volume of the flexible cavity 3311.
  • the ratio of the volume of the communication cavity 3312 to the volume of the flexible cavity 3311 may not exceed 0.5. In some embodiments, in order to improve the sensitivity of the sensing device 130, the ratio of the volume of the communication cavity 3312 to the volume of the flexible cavity 3311 may not exceed 0.1.
  • the communication cavity 3312 when the pressure sensing unit 332 is located in the communication cavity 3312, the communication cavity 3312 can also protect the pressure sensing unit 332 and its internal components.
  • the material of the communication cavity 3312 can be selected from materials with greater hardness (for example, metal, alloy, etc.). The material of the communication cavity 3312 can be reasonably set according to the actual situation (for example, the position of the flexible sealing cavity 331 on the wearable device), which is not specifically limited in the embodiments of this specification.
  • the pressure sensing unit 332 may also be located in the flexible cavity 3311.
  • Figure 4 is an exemplary structural diagram of a sensing device according to some embodiments of this specification.
  • the structure of the sensing device 430 shown in FIG. 4 is substantially the same as the structure of the sensing device 330 in FIG. 3 , except that the structure of the flexible sealing cavity 431 is different.
  • the flexible sealed cavity 431 of the sensing device 430 includes a flexible cavity 3311 .
  • Flexible cavity 3311 may be a closed cavity.
  • the pressure sensing unit 332 is located inside the flexible cavity 3311. Under the action of external loads, the flexible cavity 3311 deforms and produces pressure changes, and the pressure sensing unit 332 converts the pressure changes into electrical signals.
  • the pressure sensing unit 332 may be located anywhere in the flexible cavity 3311 (eg, at the end, middle, or other location). In some embodiments, considering that the force-bearing positions of the flexible cavity 3311 are mostly non-end positions, in order to prevent the pressure sensing unit 332 from being squeezed and damaged during use, the pressure sensing unit 332 can be located in the flexible cavity 3311 one end.
  • the structure of the flexible sealed cavity 331 can be simplified, and at the same time, the influence of deformation of other structures (for example, connecting pipes) on the electrical signal can be avoided.
  • the flexible cavity 3311 may have an extension direction.
  • the communication cavity 3312 and the connection pipe 3313 are arranged along the extension direction.
  • the extension direction may be the axis direction of the flexible cavity 3311.
  • the flexible cavity 3311 is coaxially arranged with the communication cavity 3312 and the connecting pipe 3313. The extension direction is parallel to the line connecting the center points of the two end surfaces of the flexible cavity 3311 (for example, end surface a and end surface b shown in FIGS. 3 and 4 ).
  • the flexible cavity 3311 when the flexible cavity 3311 is a non-uniform structure (for example, a spinal canal structure), external loads act on different positions of the flexible cavity 3311, causing the flexible cavity 3311 to deform at different positions, which may cause The pressure changes generated by the flexible cavity 3311 are different, resulting in different electrical signals generated by the pressure sensing unit 332 .
  • the non-uniform structure of the flexible cavity 3311 may mean that the area of the cross-section perpendicular to the extension direction is different at different positions of the flexible cavity 3311.
  • the flexible cavity 3311 when the flexible cavity 3311 is a vertebral canal structure, the area of the cross section of the vertebral canal structure perpendicular to the extension direction gradually increases (or decreases) from one end of the vertebral canal structure to the other end.
  • the flexible cavity 3311 in order to ensure that the pressure sensing unit 332 can generate approximately the same electrical signal when external loads act on different positions of the flexible cavity 3311, the flexible cavity 3311 can be set to a uniform structure, that is, the flexible cavity 3311 is vertical.
  • the area change of the cross-section in the extending direction is within an appropriate range.
  • the area change of the cross section of the flexible cavity 3311 perpendicular to the extension direction is Can be no more than 30%.
  • the area change of the cross-section perpendicular to the extension direction of the flexible cavity 3311 may not exceed 10 %.
  • the flexible cavity 3311 when the flexible cavity 3311 is disposed on the acoustic output device to match the wearing pressure of the earhook with the human ear, due to the large differences in the shape and size of each user's ears, the fit with the earhook is not high.
  • the pressure sensing unit 332 can generate different electrical signals.
  • the location with greater pressure is identified based on the electrical signal, so as to control the adjustment component (eg, piezoelectric element) at the location with greater pressure for adjustment.
  • the earhook has an extension direction.
  • the extension direction of the flexible cavity 3311 is consistent with the extension direction of the earhook, so that the flexible cavity 3311 follows the shape of the earhook. Ear hooks and wearing pressure on the human ear.
  • the extension direction of the earhook may be the axial direction of the earhook.
  • the acoustic output device provided by some embodiments will be described in detail below with reference to Figures 5-8.
  • FIG. 5 is a schematic structural diagram of an exemplary acoustic output device according to some embodiments of this specification.
  • the acoustic output device 500 may include an acoustic output unit 510 and an earhook 520 .
  • the earhook 520 is a curved structure adapted to the shape of the human ear.
  • One end of the earhook 520 is connected to the acoustic output unit 510 .
  • the earhook 520 secures the acoustic output unit 510 near the user's ears.
  • the acoustic output device 500 may also include a sensing device (not shown in FIG.
  • FIG. 5 an adjustment component (not shown in FIG. 5 ).
  • the arrangement of the sensing device and the adjustment component in the acoustic output device can be seen in FIG. 1.
  • the connections described in this specification may include bolted connections, riveting, interference fits, buckles, bonding, injection molding, welding, magnetic attraction, etc. or any combination thereof.
  • the acoustic output unit 510 may be a bone conduction speaker or an air conduction speaker. In some embodiments, the acoustic output unit 510 may be a regular or irregular structure such as a cuboid, a cylinder, a frustum, an ellipsoid, a hemisphere, a terrace, or the like. In some embodiments, the acoustic output unit 510 may include a contact surface that is in contact with the user's facial area or ears. When the user wears the acoustic output device 500, the contact surface of the acoustic output unit 510 fits the user's facial area near the ears.
  • the contact surface of the acoustic output unit 510 that contacts the user's facial area or ears may be a side wall of the acoustic output unit 510 .
  • the contact surface is the bottom surface or side surface of the cylinder.
  • the earhook 520 may be a curved structure adapted to the human ear (eg, auricle), and the curved structure adapted to the human ear may be used to hang above the user's auricle.
  • the ear hook 520 may include an elastic metal wire and an elastic covering covering the elastic metal wire.
  • the material of the elastic metal wire can be, but is not limited to, spring steel, titanium alloy, titanium-nickel alloy, chromium-molybdenum steel, memory alloy, etc.
  • the material of the elastic covering can be, but is not limited to, polycarbonate, polyamide, silicone. , rubber, etc.
  • the earhook 520 may also be provided with an accommodating cavity, and a linear structure and/or wires for outputting electricity or signals to the acoustic output unit 510 are passed through the accommodating cavity.
  • the linear structure is used to define the shape of the earhook 520 and can also make the shape of the earhook 520 adjustable.
  • the linear structure may be an elastic wire. The user can adjust the shape of the earhook 520 with a linear structure so that the earhook 520 can fit the ear and ensure the comfort and stability of the acoustic output device.
  • the piezoelectric element can be disposed on the linear structure, and the processor adjusts the shape of the piezoelectric element to realize the shape adjustment of the linear structure.
  • FIG. 6 is a cross-sectional view of the earhook 520 shown in FIG. 5 at position A.
  • the earhook 520 is provided with an accommodating cavity 521 and a flexible sealing cavity 531 , and the accommodating cavity 521 and the flexible sealing cavity 531 are arranged in parallel.
  • the flexible sealed cavity 531 is similar to the flexible cavity 331 shown in FIG. 3 and the flexible cavity 431 shown in FIG. 4 .
  • the accommodation cavity 521 and the flexible sealing cavity 531 both extend along the extension direction of the earhook 520 .
  • the linear structure (not shown in FIG. 6 ) is connected to the inner wall of the accommodation cavity 521 .
  • the diameters of the linear structures in the accommodation cavity 521 may be different at various places, so as to stabilize the structure and shape of the earhook 520 and improve its durability. For example, the diameter of the linear structure near the top of the auricle of the human ear (position B shown in Figure 5) is larger, and the diameter of the linear structure near the earlobe of the human ear (that is, the end of the earhook 520 away from the acoustic output unit 510) is larger.
  • the point near the top of the auricle as the fulcrum and rotate the end of the earhook 520 away from the acoustic output unit 510 so that the end of the earhook 520 away from the acoustic output unit 510 fits the auricle.
  • the diameter of the linear structure near the top of the auricle of the human ear is larger, and the diameter of the linear structure near the ear canal (that is, the end of the earhook 520 where the acoustic output unit 510 is installed) is smaller.
  • the diameter of the linear structure near the top of the human ear's auricle is set to be larger to avoid serious damage to the linear structure near the top of the human ear's auricle during repeated adjustments to the shape of the earhook 520 .
  • the shape of the receiving cavity 521 is adapted to the linear structure.
  • the cross-sectional shape of the accommodation cavity 521 is not limited to the circle shown in FIG. 6 , but can also be a regular or irregular shape such as a triangle, a trapezoid, a rectangle, a rhombus, etc.
  • the accommodation cavity 521 and the flexible sealing cavity 531 may form an integral structure on the earhook 520 . In some embodiments, the accommodation cavity 521 and the flexible sealing cavity 531 may jointly form a closed cavity, in which the linear structure and the pressure sensing unit are disposed.
  • FIG. 7 is a schematic structural diagram of an exemplary acoustic output device according to other embodiments of this specification.
  • the acoustic output device 700 may further include a back hook 750
  • the ear hooks include a first ear hook 722 and a second ear hook 723
  • the acoustic output unit includes a first acoustic output unit 711 and a second acoustic output unit 712
  • the first acoustic output unit 711 is connected to the end of the back hook 750 through the first ear hook 722
  • the second ear hook 723 is connected to the other end of the back hook 750 through the second acoustic output unit 712
  • the first ear hook 722 The first acoustic output unit 711 is hung near one ear of the user
  • the second earhook 723 hangs the second acoustic output unit 712 near the other ear of the user.
  • the first earhook 722 and the second earhook 723 pass through the rear hook 750 connect.
  • the first earhook 722 and the second earhook 723 are similar to the earhook 520 shown in FIG. 5
  • the first acoustic output unit 711 and the second acoustic output unit 712 are similar to the acoustic output unit 510 shown in FIG. 5 .
  • the back hook 750 has a curved shape.
  • the back hook 750 is suspended and disposed on the back side of the user's head, and the first earhook 722 and the second earhook 723 are respectively disposed on both sides of the user.
  • the first acoustic output unit 711 and the second acoustic output unit 712 are respectively disposed close to the user's ears.
  • the first acoustic output unit 711 and the second acoustic output unit 712 are respectively located on the face in front of the user's auricle. area.
  • the first acoustic output unit 711 and the second acoustic output unit 712 are fixed near the user's ears and at a location that does not block the user's ear canal.
  • the first acoustic output unit 711 and the second acoustic output unit 712 are bone conduction speakers or hearing aids
  • the bone conduction sound waves generated by the bone conduction speakers or hearing aids can be transmitted to the user's auditory nerve through the user's bones, blood, muscles, etc.
  • the first acoustic output unit 711 and the second acoustic output unit 712 are open air conduction speakers, and their sound outlets may be directed toward the user's ear canal.
  • the back hook 750 in order to adapt to the shape of the back of the head of different users or the different requirements of users for wearing tightness in different application scenarios, can be elastic. When different users wear the acoustic output device 700, the back hook 750 can respond accordingly. produce different amounts of deformation.
  • a sensing device can also be provided on the back hook 750 , and the sensing device is arranged on the back hook 750 in a manner similar to the way it is arranged on the ear hook.
  • the flexible sealing cavity included in the sensing device extends along the extension direction of the rear hanger 750.
  • the wearing pressure causes the flexible sealing cavity to deform.
  • the flexible sealing cavity When a pressure change occurs, the pressure sensing unit generates an electrical signal based on the pressure change, and the processor can identify the wearing pressure based on the electrical signal.
  • the flexible sealing cavity may be located only in the middle section of the rear suspension 750 .
  • the flexible sealing cavity can be located on the back hanger 750 close to the back of the user's head.
  • the back hanger 750 has a large pressure at this position and only detects the position at this position. pressure, the goal can be achieved.
  • the flexible sealing cavity can include multiple flexible sealing cavities, and the multiple flexible sealing cavities can respectively detect the pressure at different locations, and different preset pressure ranges can be set correspondingly to the pressures at different locations to achieve different Precise adjustment of position pressure.
  • the flexible sealing cavity may include a first flexible sealing cavity and a second flexible sealing cavity. The first flexible sealing cavity may be located near the center point of the rear hanger 750 , and the second flexible sealing cavity may be located near the rear hanger 750 . Located close to the mastoid process of the user's temporal bone.
  • an adjustment component may also be provided on the back hook 750.
  • the adjustment component may be arranged on the rear hook 750 in a manner similar to the way it is arranged on the ear hook.
  • a piezoelectric element may be arranged on the rear hook 750, and
  • the rear hook 750 is rotatably connected to the ear hook through an adjustment assembly.
  • the first acoustic output unit 711 and/or the second acoustic output unit 712 may also be provided with a sensing device, and the sensing device is disposed on the acoustic output unit in the same manner as it is on the ear. Hanging is set up in a similar way.
  • the acoustic output device 700 When the user wears the acoustic output device 700, the wearing pressure causes the flexible sealing cavity to deform. Correspondingly, the pressure of the flexible sealing cavity changes.
  • the pressure sensing unit generates an electrical signal based on the pressure change, and the processor can identify the wearing pressure based on the electrical signal.
  • the flexible sealing cavity can be disposed on the side of the acoustic output unit close to the human face, so that the flexible sealing cavity can accurately sense the pressure between the acoustic output unit and the human face.
  • the flexible sealing cavity may be located on the acoustic output unit at a position in front of the user's tragus, where the pressure of the acoustic output unit is greater.
  • FIG 8 is a schematic structural diagram of an acoustic output device according to further embodiments of this specification.
  • the acoustic output device 800 may include an acoustic output unit 810 and a head beam 850.
  • the head beam 850 may be a head hanging structure adapted to the area on the top of the user's head.
  • the two ends of the head beam 850 are respectively connected to the acoustic output units 810.
  • a sensing device including a flexible sealing cavity 831 is provided on the head beam 850 .
  • the headband 850 When the user wears the acoustic output device 800, the headband 850 is suspended and disposed at the top of the user's head, and the acoustic output unit 810 is disposed to cover the user's ears under the action of the headband 850.
  • the number of flexible sealing cavities 831 may be one or more.
  • the flexible sealing chamber 831 may be located at the center point of the head beam 850, where the pressure is relatively high.
  • the number of flexible sealing cavities 831 may be located on the head beam 850 at a position close to the ears on both sides, where the pressure is greater.
  • the number of flexible sealing cavities 831 may also include three or more, and the specific arrangement thereof may refer to FIG. 7 and its related description.
  • one or more sensing devices may also be provided on the acoustic output unit 810.
  • the flexible sealed cavity 831 of the sensing device can be distributed along the bottom surface or side edge area of the cylindrical structure that is in contact with the user.
  • the flexible sealed cavity 831 of the sensing device may be located on the bottom surface of the cylindrical structure that is in contact with the user.
  • an elastic pad is disposed on the side of the acoustic output unit 810 close to the human ear. The elastic pad is in direct contact with the user's face.
  • the flexible sealing cavity 831 can be disposed on the elastic pad to detect the pressure between the elastic pad and the user. .
  • the in-ear headphones provided in this specification will be exemplarily described below with reference to FIGS. 9-11B.
  • Figure 9 is a schematic structural diagram of an in-ear earphone provided according to some embodiments of this specification.
  • the earphone 900 may include an earphone body 910 , an earphone stem 920 and a sensing device.
  • the earphone stem 920 is connected to the earphone body 910 , and the earphone body 910 is worn at the user's ear canal opening.
  • the sensing device can be integrated inside the earphone 900.
  • the sensing device includes a flexible sealed cavity 931, a pressure sensing unit and a processor.
  • the flexible sealed cavity 931 is disposed at the position where the earphone body 910 contacts the user's ear canal for detection.
  • the processor can also identify whether the user is wearing the headset 900 based on the pressure exerted on the headset body 910 when the user wears it, and then respond to other processing processes of the acoustic output device, such as answering calls and automatically playing music. wait. More description of the sensing device can be found in Figures 1, 3 and 4 and their related descriptions.
  • the front end of the headphone body 910 is provided with an elastic ring 940 (such as a silicone ring).
  • the elastic ring 940 wraps the sound outlet of the headphone 900 main unit.
  • the elastic ring 940 is Since it extends into the user's ear canal, the sound signal output by the earphone 900 host enters the ear canal through the elastic ring 940, which is beneficial to reducing the sound leakage of the earphone 900.
  • the elastic ring 940 is elastic and can adapt to the ear canal size of a wide range of users, and can Improve the comfort of wearing headphones 900.
  • the flexible sealing cavity 931 can be disposed in the elastic ring 940, and when the user wears the earphone 900, the pressure exerted by the human body on the elastic ring 940 can be detected.
  • the flexible sealing cavity 931 may be an integrally formed structure with the elastic ring 940. That is to say, the elastic ring 940 is provided with a sealing cavity on its structure.
  • the flexible sealing cavity 931 may also be an independent structure relative to the elastic ring 940 .
  • the flexible sealing cavity 913 is attached to the outer ring side or the inner ring side of the elastic ring 940 .
  • the flexible sealing cavity 931 may be an annular structure disposed along the circumferential direction of the elastic ring 940 .
  • the flexible sealing cavity 931 can also be a cuboid structure, a spherical structure, a columnar structure, etc., and the flexible sealing cavity 931 is located in a local area of the elastic ring 940 .
  • the flexible sealing cavity 931 can be disposed close to the front end of the elastic ring 940 (the end that extends into the ear canal opening). The front end of the elastic ring 940 extends into the user's ear canal opening, and its elastic deformation is relatively large.
  • the shape of the flexible sealing cavity 931 also changes greatly, thereby improving the sensitivity of the sensing device.
  • the flexible sealing cavity 931 on the elastic ring 940 contacts the ear canal wall and deforms.
  • the pressure sensing unit generates an electrical signal in response to the deformation.
  • the processor determines based on the electrical signal that the ear canal is applied to the elastic ring 940. the amount of pressure.
  • the pressure is too small, the earphone 900 is easy to fall off, and the sound leakage reduction effect is not good.
  • the elastic ring 940 extends too much into the ear canal, which is detrimental to the user's hearing system. Therefore, providing a sensing device on the earphone 900 is helpful to determine the wearing pressure of the earphone 900 relative to the human body, so as to adjust the wearing pressure to an appropriate range.
  • FIG. 10A is a schematic structural diagram of an in-ear earphone provided according to other embodiments of this specification.
  • FIG. 10B is a schematic structural diagram of an in-ear earphone provided according to other embodiments of this specification.
  • the earphone 1000 may include an earphone body 1010 , an earphone stem 1020 and a sensing device.
  • the earphone stem 1020 is connected to the earphone body 1010 .
  • the earphone body 1010 is formed into an oblate structure and is worn at the concha cavity of the user.
  • the first side 1011 of the earphone body 1010 covers and blocks the user's ear canal opening, the first side 1011 is in contact with the area near the ear canal opening, and the second side 1012 of the earphone body 1010 is in contact with the user's ear canal opening.
  • the sensing device may be integrated on the earphone 1000, and the sensing device may be located on the first side 1011 and/or the second side 1012 of the earphone body 1010.
  • the sensing device includes one or more flexible sealed cavities.
  • the flexible sealing chamber may be located at the first side 1011 or the second side 1012 of the earphone body 1010 .
  • the flexible sealing cavities may include a first flexible sealing cavity 1031 and a second flexible sealing cavity 1034.
  • the second flexible sealing cavity 1034 is provided at the first side 1011 of the headphone body 1010 for covering and blocking the user's ear canal opening.
  • the second flexible sealing cavity 1034 is provided at the second side 1012 of the headphone body 1010 that is in contact with the user's tragus. .
  • Flexible sealing cavities are provided on both the first side 1011 and the second side 1012 of the earphone body 1010 to detect the wearing pressure between the earphone 1000 and the human ear, which can effectively prevent accidental contact and mis-detection.
  • multiple first flexible sealing structures 1031 may be provided on the first side 1011
  • multiple second flexible sealing structures 1034 may be provided on the second side 1012 .
  • the earphone body 1010 may include a shell, and the flexible sealing chambers (the first flexible sealing chamber 1031 and the second flexible sealing chamber 1034) are formed of closed flexible structures.
  • the flexible sealing chambers may It is formed of a closed silicone airbag, and the flexible structure is located on the outer surface of the shell.
  • the flexible structure is embedded on the outside of the housing.
  • the flexible structure protrudes from the surface of the housing.
  • the portion of the flexible structure is a portion of the surface area of the earphone 1000 .
  • the flexible structure may also be integrated or seamlessly connected with other areas on the surface of the earphone 1000 .
  • a groove is provided on the outer surface of the housing, and a flexible structure (such as a silicone layer) is provided at the groove.
  • the flexible structure covers the groove and forms a flexible sealed cavity with the groove (first Flexible sealed cavity and second flexible sealed cavity 1034).
  • the peripheral side of the flexible structure may be connected to the peripheral side of the groove to close the groove to form a flexible sealed cavity.
  • the inner side of the flexible structure can be connected to the notch, and the peripheral side of the flexible structure is connected to the outer surface of the housing, so that the outer surface of the housing forms a completely closed surface on the basis of forming a flexible sealed cavity.
  • FIG. 11A is a schematic structural diagram of an in-ear earphone provided according to further embodiments of this specification.
  • FIG. 11B is a schematic structural diagram of an in-ear earphone provided according to further embodiments of this specification.
  • the earphone 1100 may include an earphone body 1110 , an earphone stem 1120 and a sensing device.
  • the earphone stem 1120 is connected to the earphone body 1110 .
  • the earphone body 1110 is a horn-shaped structure and is worn at the user's concha cavity.
  • the sensing device can be integrated inside the earphone.
  • the sensing device includes a flexible sealed cavity 1131.
  • the flexible sealed cavity 1131 can be an annular structure that surrounds the sound outlet along the circumference of the bell mouth side of the earphone body 1110.
  • 1111 is set to detect the pressure between the sound outlet 1111 side and the concha cavity, which is beneficial to timely adjustment of the pressure and also prevents sound signals from leaking from the gap between the sound outlet 1111 side and the concha cavity.
  • the flexible sealing cavity 1131 can also be in other shapes, such as a spherical, columnar, ellipsoid, etc. structure.
  • the number of the flexible sealing cavities 1131 can be multiple, and the multiple flexible sealing cavities 1131 can be along the earphone.
  • the edges of the bell mouth peripheral side of the main body 1110 are spaced apart.
  • the flexible sealing cavity 1131 can also be located on the side wall of the earphone body 1110, that is, the side wall of the horn-shaped structure.
  • the flexible sealing structure 1131 can be in contact with the user's tragus.
  • the sensing device please refer to Figures 1, 3, 4, 9-10B and their related descriptions.
  • the sensing devices shown in the above various embodiments can also be applied to various wearable devices.
  • the wearable device When the wearable device is worn on the human body, it detects the pressure exerted by the human body on the wearable device, and/or detects the user's physiological signals.
  • the application of the sensing device on the wearable device will be exemplified below with reference to Figures 12-18.
  • Figure 12 is a block diagram of a wearable device according to some embodiments of the present specification.
  • the wearable device 1200 may include a wearable body 1210 and a sensing device 1220 .
  • Wearable device 1200 refers to a device that can be worn by a user.
  • the wearable device 1200 can be worn on the user's head, hands, and other body parts.
  • the wearable device 1200 may include glasses, smart bracelets, finger rings, headphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the wearable device 1200 may be functional myopia glasses, reading glasses, cycling glasses, sunglasses, etc., or it may be intelligent glasses, such as audio glasses with a headphone function.
  • the wearable device 1200 may also be a head-mounted device such as a helmet, an augmented reality (Augmented Reality, AR) device, or a virtual reality (Virtual Reality, VR) device.
  • an augmented reality device or a virtual reality device may include a virtual reality helmet, virtual reality glasses, augmented reality headset, augmented reality glasses, etc., or any combination thereof.
  • virtual reality devices and/or augmented reality devices may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • the wearable body 1210 is used to be worn on the user.
  • the wearing body 1210 may be a top (such as a T-shirt, vest, vest, jacket, etc.) that is worn on the user's upper body.
  • the wearable body 1210 can be a bracelet, a watch, a finger ring, an armband, a strap, etc., and is worn on the user's limbs.
  • the wearing body 1210 may also be a leg loop or a belt, corresponding to being worn on the user's legs or waist respectively.
  • the wearing body 1210 can also be a frame, a headband, etc., and is worn on the user's head.
  • the wearable body 1210 may be an object that is attached to the user's body surface (eg, clothing, a suction cup of an ECG monitor, etc.).
  • the sensing device 1220 includes a first flexible sealed cavity 1221, a pressure sensing unit 1222 and a processor 1223. In some embodiments, the sensing device 1220 is integrated on the wearable body 1210 .
  • the sensing device 1220 may be used to detect wearing pressure between the wearable device 1200 and the user's body.
  • the first flexible sealed cavity 1221 is disposed at a position where the wearable body 1210 is in contact with the user's body.
  • the wearing pressure between the wearable device 1200 and the user's body causes the first flexible sealing cavity 1221 to be in contact with the user's body.
  • the sealed cavity 1221 deforms, and accordingly, the pressure of the first flexible sealed cavity 1221 changes.
  • the pressure sensing unit 1222 generates an electrical signal based on the pressure change, and the processor 1223 receives the electrical signal to determine the size of the wearing pressure.
  • the first flexible sealed cavity 1221 is similar to the flexible sealed cavity.
  • the principle and structure of the sensing device 1220 for detecting the wearing pressure between the wearable device 1200 and the user's body are the same as that of the sensing device 1220 for detecting the wearing pressure between the wearable device 1200 and the user's body.
  • the principle and structure of detecting the wearing pressure between the acoustic output device and the user's face are similar.
  • the sensing device 1220 please refer to Figures 1 to 11B and related descriptions.
  • the flexible sealing structure of the sensing device 1220 may be used to detect physiological signals of the user.
  • physiological signals may include, but are not limited to, pulse, heart rate, respiratory rate, etc.
  • the first flexible sealed cavity 1221 is disposed in a specific area where the wearable body 1210 is in contact with the user's body (for example, an area capable of sensing physiological signals).
  • the first flexible sealed cavity When the user wears the wearable device 1200, the first flexible sealed cavity When the body 1221 is in contact with the user's body, the user's heart beating, pulse beat or breathing will cause pressure changes inside the first flexible sealed cavity 1221, causing the pressure sensing unit 1222 to generate an electrical signal, and the processor 1223 can identify the physiological function from the electrical signal. Signal. Specifically, the processor 1223 records the period (time) of the electrical signal, and the period (time) generated by the electrical signal can reflect the user's heart rate, pulse, and respiratory rate, thus enabling detection of the user's heart rate, pulse, or respiratory rate.
  • the sensing device 1220 with the first flexible sealing cavity 1221 can also be used to detect the wearing pressure between the wearable device 1200 and the user's body.
  • the number of sensing devices may be multiple, wherein at least one first flexible sealing structure 1221 is used to detect the wearing pressure between the wearable device 1200 and the user's body.
  • the sensing device 1220 also It may include a second flexible sealed cavity. The second flexible sealed cavity is disposed in a specific area where the wearable body 1210 is in contact with the user's body.
  • the second flexible sealed cavity is in contact with the user's body, and the user's heart Beating, pulse pulsation or breathing will cause pressure changes inside the second flexible sealed cavity, causing the pressure sensing unit 1222 to generate an electrical signal.
  • the processor 1223 records the intermittent time of the electrical signal generation to realize the user's heart rate, pulse or respiratory rate.
  • a sensing device 1220 can be used to detect the wearing pressure between the wearable device 1200 and the user's body and to detect the user's physiological signals at the same time.
  • the sensing device 1220 includes a first flexible sealing cavity 1221 and a second flexible sealing cavity
  • pressure sensing units 1222 are respectively provided in the first flexible sealing cavity 1221 and the second flexible sealing cavity.
  • the electrical signals of the pressure sensing unit 1222 of the body 1221 and the pressure sensing unit 1222 of the second flexible sealed cavity may be sent to the same processor (eg, processor 1223) or to different processors for processing.
  • the sensing device 1220 shown in Figure 12 can be applied to various types of wearable devices 1200.
  • the application of the sensing device 1220 in the exemplary wearable device 1200 will be described below with reference to FIGS. 13-18 .
  • the sensing device 1220 is arranged in the wearable device 1200 (not shown in the figure) (for example, a strap) in a manner similar to the arrangement shown in FIGS. 13 to 18 .
  • Figures 13 to 18 all show the position of the first flexible sealed cavity 1221 included in the sensing device 1220, and the pressure sensing unit 1222 and the processor 1223 are integrated inside the wearable body 1210.
  • Figure 13 is a schematic structural diagram of a smart bracelet provided according to some embodiments of this specification.
  • the smart bracelet 1300 may include a belt-shaped structure 1311 and a smart bracelet body 1312 .
  • the sensing device may be integrated inside the smart bracelet 1300.
  • the part forming the first flexible sealing cavity and/or the second flexible sealing cavity is a part of the surface area of the smart bracelet 1300.
  • this part is The area is defined as flexible area 1321.
  • the flexible area 1321 can be seamlessly connected with other areas on the surface of the smart bracelet 1300.
  • the flexible area 1321 may be slightly protruded from other areas on the surface of the smart bracelet 1300 .
  • the flexible area 1321 may also be integrated with other areas on the surface of the smart bracelet 1300.
  • the flexible area 1321 of the smart bracelet 1300 may be located on the side of the belt-shaped structure 1311 in contact with the user's body, for detecting the wearing pressure of the belt-shaped structure 1311 and the user's hand or for monitoring the user's hand. Physiological signals. In some embodiments, the flexible area 1321 of the smart bracelet 1300 may be located on the side of the smart bracelet body 1312 that contacts the user's body. In some embodiments, flexible areas 1321 are provided on the sides of the belt-like structure 1311 and the smart bracelet body 1312 close to the user's body. One of the flexible areas 1321 is used to detect the wearing pressure between the belt-like structure 1311 and the user's hand. Another flexible area 1321 is used to monitor the user's physiological signals. In some embodiments, in order to allow the flexible region 1321 to sense the pressure of the belt-shaped structure 1311 and the user's hand in a wider range, the flexible region 1321 may be arranged along the extension direction of the belt-shaped structure 1311 .
  • the processor in response to the wearing pressure being lower than a preset contact force threshold, the processor outputs a notification signal (eg, a light signal or a buzzer signal, etc.) to the user to remind the user to adjust the wearing of the smart bracelet 1300 .
  • the belt-like structure 1311 can be a length-adjustable structure (for example, a buckle structure, a hole structure, etc.). When the wearing pressure is lower than the preset contact force threshold, the length of the belt-like structure 1311 can be shortened. length to increase the wearing pressure between the smart bracelet 1300 and the user.
  • FIG. 14 is a schematic structural diagram of an ECG monitor provided according to some embodiments of this specification.
  • the ECG monitor 1400 may include a suction cup 1412 .
  • the setting method of the sensing device on the ECG monitor 1400 is similar to the setting method of the sensing device on the smart bracelet 1300 .
  • the flexible area 1421 of the ECG monitor 1400 may be disposed on the side of the suction cup 1412 close to the user's body.
  • the ECG monitor 1400 can detect the wearing pressure between the suction cup and the user's body through the flexible area 1421 on the suction cup, and/or monitor the user's physiological signals.
  • the ECG monitor 1400 may include a belt-shaped structure 1411 that fixes the ECG monitor 1400 near the user's chest, and the flexible region 1421 may be disposed along the extending direction of the belt-shaped structure 1411 .
  • FIG 15 is a schematic structural diagram of glasses according to some embodiments of this specification.
  • glasses 1500 include temples 1511 and lenses 1512.
  • the lenses 1512 are connected to the ends of the temples 1511.
  • the sensing device is arranged on the glasses 1500 in a manner similar to the sensing device on the smart bracelet 1300.
  • the flexible area 1521 of the glasses 1500 can be disposed on the side of the temple 1511 away from the lens 1512.
  • the side of the temple 1511 away from the lens 1512 contacts the user's head and hangs on the user's head. on the auricle.
  • the glasses 1500 can detect the wearing pressure between the temples 1511 and the user's head through the flexible areas 1521 on the temples 1511, and/or monitor the user's physiological signals.
  • the flexible region 1521 when the number of flexible regions 1521 is one, the flexible region 1521 may be located on a single temple 1511 . In some embodiments, when the number of flexible areas 1521 is two, the two flexible areas 1521 can be located on the two temple legs 1511 respectively.
  • the flexible areas 1521 are used to detect the wearing pressure between the temple legs 1511 and the user's head. It can also be used to monitor the user's physiological signals (for example, heart rate signals). In some embodiments, in order to allow the flexible area 1521 to feel the pressure between the temples 1511 and the user's head over a wider range, the flexible areas 1521 may be arranged along the extension direction of the temples 1511 .
  • the glasses 1500 may be glasses 1500 with audio functions, and speakers or hearing aids may be provided on the temples 1511 .
  • the lens 1512 is located on the user's face
  • the temples 1511 are attached from one side of the lenses 1512 to the user's ears, and are supported on the user's ears, and the speakers or hearing aids provided on the temples 1511 are close to the user's ears. ear settings.
  • recessed structures are respectively provided on the temples 1511 on both sides, and the speakers or hearing aids are disposed at the recessed structures.
  • Figure 16 is a schematic structural diagram of a virtual reality or augmented reality device according to some embodiments of this specification.
  • the virtual reality or augmented reality device 1600 includes a back hook 1611 and a device body 1612. Both ends of the back hook 1611 are connected to the device body 1612.
  • the device body 1612 can be a virtual reality device fixed on the end of the back hook 1611. and/or augmented reality devices, etc.
  • the back hook 1611 fixes the device body 1612 at the user's eyes, and when the user wears the wearable device, the back hook 1611 is fixed around the user's head.
  • the sensing device is configured on the virtual reality or augmented reality device 1600 in a manner similar to the sensing device on the smart bracelet 1300 .
  • the flexible area 1621 of the virtual reality or augmented reality device 1600 may be disposed on the rear hanger 1611 .
  • the rear hanger 1611 deforms, and at the same time drives the flexible area 1621 to deform, so that the sensing device inside the flexible area 1621 can detect when the user wears the virtual reality or augmented reality device 1600.
  • the flexible area 1621 may be located on the back hanger 1611 near the back of the user's head, where the deformation amount of the back hanger 1611 is larger.
  • the flexible area 1621 may also be located on the device body 1612 in contact with the user's facial area.
  • the number of flexible areas 1621 may be one or more, and the location of the flexible areas 1621 on the rear suspension 1611 may refer to FIG. 7 and its related description.
  • the virtual reality or augmented reality device 1600 may have an audio function, and a speaker or hearing aid may be provided on the rear hook 1611 .
  • the speakers or hearing aids provided on the back hook 1611 are placed close to the user's ears.
  • a recessed structure is provided on the rear hanger 1611 close to the ear, and the speaker or hearing aid is disposed on the recessed structure.
  • FIG 17 is a schematic structural diagram of a smart ring according to some embodiments of this specification.
  • the smart ring 1700 includes a ring body 1720 and a circuit structure 1710.
  • the ring body 1720 is a ring structure
  • the circuit structure 1710 is located at the outer ring side wall of the ring body 1720.
  • the arrangement of the sensing device on the smart ring 1700 is similar to the arrangement of the sensing device on the smart bracelet 1300 .
  • the flexible area 1721 of the smart ring 1700 can be disposed at the side wall of the inner ring of the smart ring 1700.
  • the smart ring 1700 can detect the wearing pressure between the smart ring 1700 and the user's finger through the flexible area 1721 on the inner ring.
  • the circuit structure 1710 can be used to provide power to the sensor, receive and process the wearing pressure collected by the sensing device, and/or monitor the user's physiological signals.
  • the circuit structure 1710 may also include a communication module, which may wirelessly transmit information such as wearing pressure and/or monitoring the user's physiological signals to a user terminal (for example, a mobile phone, a computer, a smart watch). wait).
  • a user terminal for example, a mobile phone, a computer, a smart watch. wait.
  • the flexible area 1721 in order to more accurately sense the overall wearing pressure of the smart ring 1700 and the user's finger, the flexible area 1721 may be an annular structure, and the annular structure may be disposed along the circumference of the inner ring side wall of the smart ring 1700 .
  • the smart ring 1700 can monitor the user's physiological signals through the flexible area 1721 on the inner ring.
  • Figure 18 is a graph of a heart rate signal according to some embodiments of the present specification. Figure 18 shows the heart rate signal measured by the sensing device at the inner ring side wall of the smart ring 1700 when the second flexible cavity is disposed.
  • the human heartbeat frequency is approximately 71 Hz.
  • Figures 1 to 18 are only used for illustrative description and do not constitute a limitation thereof.
  • various changes and modifications may be made based on the guidance of this application.
  • Different embodiments may produce different beneficial effects.
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. .
  • certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” indicates that a number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical fields and parameters used to confirm the breadth of the ranges in some embodiments of the present application are approximations, in specific embodiments, such numerical values are set as accurately as feasible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Human Computer Interaction (AREA)
  • Dentistry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种声学输出装置(100),包括声学输出单元(110)和耳挂(120),耳挂(120)将声学输出单元(110)悬挂在用户耳朵附近。耳挂(120)上设置体积可变形的柔性密封腔体(131),用于检测用户佩戴时施加在耳挂(120)上的力。一种入耳式耳机(900),包括耳机主体(910),当用户佩戴耳机(900)时,耳机主体(910)佩戴于用户的耳道口处,耳机主体(910)与用户耳道接触的位置处设置有体积可变形的柔性密封腔体(931),用于检测用户佩戴时施加在耳机主体(910)上的力。一种可穿戴设备(1200),包括穿戴本体(1210),穿戴本体(1210)与用户身体接触的位置处设置有体积可变形的第一柔性密封腔体(1221),用于检测用户的生理信号和/或用户佩戴时对可穿戴设备(1200)施加的压力。

Description

一种声学输出装置、入耳式耳机及可穿戴设备
交叉引用
本申请要求于2022年8月22日提交的申请号为202211006787.3的中国申请的优先权,其全部内容通过引用并入本文。
技术领域
本说明书涉及声学领域,特别涉及一种声学输出装置、入耳式耳机及可穿戴设备。
背景技术
为了保证用户佩戴的体验感,与人体相接触的可穿戴设备(例如,声学输出装置)通常会将佩戴压力(或与人体之间的佩戴压力)保持在人体部位相匹配的佩戴压力范围。以骨传导耳机为例,佩戴压力不仅影响用户的佩戴舒适性,还会影响骨传导耳机输出的振动信号向人体的传递效率,同时也是佩戴位置的一种反馈,因此有必要对声学输出装置的佩戴压力进行检测。但由于声学输出装置与人体相接触的往往是不规则的曲面,有的声学输出装置与人体相接触的甚至是柔性的曲面,导致通常的检测佩戴压力的手段并不适用于声学输出装置的佩戴压力检测。
因此,希望提供一种能够检测佩戴压力的声学输出装置。
发明内容
本说明书实施例之一提供一种声学输出装置,包括声学输出单元和耳挂,所述耳挂将所述声学输出单元悬挂在用户耳朵附近,所述耳挂上设置体积可变形的柔性密封腔体,用于检测所述用户佩戴时施加在所述耳挂上的压力。
本说明书实施例之一还提供一种入耳式耳机,包括耳机主体,当用户佩戴所述耳机时,所述耳机主体佩戴于用户的耳道口处,所述耳机主体与所述用户耳道接触的位置处设置有体积可变形的柔性密封腔体,用于检测所述用户佩戴时施加在所述耳机主体上的压力。
本说明书实施例之一还提供一种可穿戴设备,包括穿戴本体,当用户佩戴所述可穿戴设备时,所述穿戴主体佩戴于用户身体上,所述穿戴本体与所述用户身体接触的位置处设置有体积可变形的第一柔性密封腔体,用于检测所述用户的生理信号和/或所述用户佩戴时对所述可穿戴设备施加的压力。
附图说明
图1是根据本说明书一些实施例所示的声学输出装置的框图;
图2是根据本说明书一些实施例所示的标定曲线图;
图3是根据本说明书一些实施例所示的传感装置的示例性结构图;
图4是根据本说明书一些实施例所示的传感装置的示例性结构图;
图5是根据本说明书一些实施例所示的示例性声学输出装置的结构示意图;
图6是图5所示的耳挂的位置A处截面图;
图7是根据本说明书另一些实施例所示的示例性声学输出装置的结构示意图;
图8是根据本说明书又一些实施例所示的声学输出装置的结构示意图;
图9是根据本说明书一些实施例提供的入耳式耳机的结构示意图;
图10A是根据本说明书另一些实施例提供的入耳式耳机的结构示意图;
图10B是根据本说明书另一些实施例提供的入耳式耳机的结构示意图;
图11A是根据本说明书又一些实施例提供的入耳式耳机的结构示意图;
图11B是根据本说明书又一些实施例提供的入耳式耳机的结构示意图;
图12是根据本说明书一些实施例所示的可穿戴设备的框图;
图13是根据本说明书一些实施例提供的智能手环的结构示意图;
图14是根据本说明书一些实施例提供的心电监测仪的结构示意图;
图15是根据本说明书一些实施例所示的眼镜的结构示意图;
图16是根据本说明书一些实施例所示的虚拟现实或增强现实设备的结构示意图;
图17是根据本说明书一些实施例所示的智能戒指的结构示意图;以及
图18是根据本说明书一些实施例所示的心率信号的曲线图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书实施例描述了一种声学输出装置。在一些实施例中,声学输出装置可以包括声学输出单元和耳挂,耳挂将声学输出单元悬挂在用户耳朵附近,声学输出单元输出的声音信号能够被用户接收。其中,耳挂上设置体积可变形的柔性密封腔体,当用户佩戴声学输出装置时,耳挂上的柔性密封腔体与人体接触,并受人体接触作用的压力而发生形变,可以基于柔性密封腔体的形变,检测佩戴声学输出装置时用户对耳挂施加的压力(以下简称佩戴压力),即佩戴时耳挂作用于人体的压力。进一步地,还可以根据佩戴压力进行调控,在提升用户佩戴的舒适度的同时,提高声学输出单元(例如,骨导声学输出单元)的声学输出效果。此外,还可以根据佩戴压力判断用户佩戴声学输出装置时,声学输出单元的佩戴位置,进而调整声学输出单元的佩戴位置,使声学输出单元(例如,气导声学输出单元)的导声孔朝向用户的耳道的方向,从而提高声学输出装置的声学输出效果。
在一些实施例中,声学输出装置还可以包括传感装置,传感装置是能够基于压强变化产生电信号的传感设备。在一些实施例中,传感装置可以设置于声学输出装置中与用户接触的位置或用户佩戴时易发生变形的结构(例如,耳挂、后挂或者头梁)中,耳挂上的柔性密封腔体在佩戴压力下发生形变,相应地,柔性密封腔体内部流体(例如,气体、液体或气体和液体的混合)的压强发生变化,传感装置可以响应于该压强变化而产生电信号。在一些实施例中,传感装置产生的电信号与佩戴压力之间存在对应关系,可以根据电信号确定佩戴压力,例如,事先获取佩戴压力与电信号之间的对应关系曲线(又称标定曲线),获取过程中用施加在柔性密封腔体上的预设载荷表征佩戴压力,对应关系以(a,A)的形式存储,其中,a为预设载荷大小,A为施加a载荷时实测的电信号,基于多个对应关系可以拟合出标定曲线,检测佩戴压力时,便可以基于标定曲线根据电信号来确定佩戴压力。本说明书实施例提供的声学输出装置通过采用柔性密封腔体,并基于柔性密封腔体在佩戴压力下的形变,来确定佩戴压力,柔性密封腔体可以应用于各种与人体的接触面(例如,不规则曲面、柔性曲面等)或者用户佩戴时已发生形变的结构(例如,耳挂、后挂或者头梁)上,适用范围较广。在一些实施例中,柔性密封腔体与人体的接触面为柔性材料,检测佩戴压力时并不会给用户带来不适感,能够很好地兼顾功能性和舒适度。在一些实施例中,可以通过选择不同柔性材料和设计柔性密封腔体形状及尺寸,来调节检测的灵敏度,以测量微小的佩戴压力,使其在面对微小的佩戴压力检测时也能具有较好的灵敏度。在一些实施例中,传感装置还可以基于检测到的压力的大小,识别用户是否已佩戴声学输出装置,以自动触发用于控制声学输出装置的某些指令,例如,自动播放或自动接听等。
在一些实施例中,声学输出装置可以是各类声学设备,例如,扬声器、助听器、骨导耳机、气导耳机或骨气导耳机等。在一些实施例中,声学输出装置可以是各种耳机,例如,悬挂式耳机(参见图5、图6及相关描述)、后挂式耳机(参见图7及相关描述)、头戴式耳机(参见图7及相关描述)、入耳式耳机(参见图9及相关描述)、半入耳式耳机(参见图10A-图11B及相关描述)等。
在一些实施例中,包括柔性密封腔体的传感装置还可以应用于各种可穿戴设备上,以检测可穿戴设备穿戴于人体时人体对可穿戴设备施加的压力。在一些实施例中,可穿戴设备可以被实施为智能手表(参见图13及相关描述)、心电监测仪(参见图14及相关描述)、眼镜(参见图15及相关描述)、虚拟现实或现实增强设备(参见图16及相关描述)、智能戒指(参见图17及相关描 述)等中的至少一种。在一些实施例中,可穿戴设备上的柔性密封腔体与人体相接触,用户的生理活动(例如,心跳、呼吸及脉搏跳动等)会引起柔性密封腔体发生形变,形变引起腔体内部的压强变化,传感装置可以基于压强的连续变化产生电信号,从而获取基于用户生理活动的生理信号。在一些实施例中,生理信号包括脉搏、心率信号或呼吸频率等。
下面将结合附图对本说明书实施例提供的声学输出装置、入耳式耳机及可穿戴设备进行示例性说明。
图1是根据本说明书一些实施例所示的声学输出装置的框图。
如图1所示,声学输出装置100可以包括声学输出单元110、耳挂120和传感装置130。
声学输出装置100是指将音频信号转换为声音的设备。在一些实施例中,声学输出装置100可以应用于眼镜、智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。例如,声学输出装置100可以应用于功能型的近视眼镜、老花镜、骑行眼镜或太阳镜等,也可以是智能化的眼镜,例如具有耳机功能的音频眼镜。在一些实施例中,声学输出装置100还可以应用于头盔、增强现实(Augmented Reality,AR)设备或虚拟现实(Virtual Reality,VR)设备等头戴式设备。在一些实施例中,增强现实设备或虚拟现实设备可以包括虚拟现实头盔、虚拟现实眼镜、增强现实头盔、增强现实眼镜等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
声学输出单元110可以用于将含有声音信息的信号转化为声音信号。在一些实施例中,声学输出单元110可以包括一个或多个气传导扬声器。在一些实施例中,声学输出单元110可以包括一个或多个骨传导扬声器。在一些实施例中,声学输出单元110可以同时包括一个或多个骨传导扬声器与一个或多个气传导扬声器的组合。在一些实施例中,声学输出单元110可以与耳挂120连接,当用户佩戴声学输出装置100时,耳挂120可以将声学输出单元110固定在用户耳朵上或耳朵附件的头部区域(例如,耳廓前侧、耳廓后侧、耳廓上侧或耳廓后侧等)以便于将发出的声音传递给用户。在一些实施例中,声学输出单元110可以设置在耳挂120的端部或者其他任意位置。例如,声学输出单元110可以设置在耳挂120的端部,而耳挂120的其他位置未设置声学输出单元110。在一些实施例中,可以在耳挂120的多个位置设置多个声学输出单元110。例如,在耳挂120的端部或其他位置均设置至少一个声学输出单元110。在一些实施例中,声学输出单元110的种类可以包括动圈式、静电式、压电式、动铁式、气动式、电磁式等中的一种或多种。
耳挂120用于将声学输出单元110悬挂在耳朵上或耳朵附近的头部区域处。在一些实施例中,耳挂120可以为与用户耳朵相适配的结构,例如,耳挂120可以为悬挂于耳廓上方的弯曲结构。在一些实施例中,耳挂120可以具有弯曲部(可以参见图5所示的耳挂520),适配人耳的弯曲部可以用于悬挂在用户的耳廓上方。在一些实施例中,耳挂120可以由弹性材料制成,示例性的弹性材料可以包括塑料、泡棉、橡胶、乳胶、硅胶、海绵、金属、合金材料等或其任意组合。关于耳挂120的更多说明可以参见本说明书的其它部分,例如图5及其相关描述。
传感装置130可以是能够基于压强变化产生电信号的传感设备。在一些实施例中,传感装置130可以设置于耳挂120中。在一些实施例中,传感装置130还可以设置于声学输出单元110与人体接触的位置。在一些实施例中,传感装置130可以是气压传感装置,气压传感装置在外力作用下可以发生变形并在气压传感装置的内部产生气压变化,进一步地,气压传感装置可以响应于该气压变化而产生电信号。在一些实施例中,传感装置130产生的电信号可以用于表征传感装置130所受的佩戴压力。例如,传感装置130产生的电信号与佩戴压力之间可以具有对应关系,比如,电信号越强,佩戴压力越大。需要注意的是,传感装置130不限于气压传感装置,还可以为液压传感装置或者气液压传感装置。
在一些实施例中,传感装置130可以包括柔性密封腔体131、压力传感单元132和处理器133。
柔性密封腔体131可以在外界载荷的作用下发生变形并产生压强变化。在一些实施例中,柔性密封腔体131可以形成封闭腔体,柔性密封腔体131内部填充有流体。在一些实施例中,流体可以包括气体(例如,空气、氮气等)、液体(例如,水)或气体和液体的混合物。在外界载荷作用下,柔性密封腔体131发生变形使得封闭腔体的体积发生变化,从而引起柔性密封腔体131内的压强发生变化。在一些实施例中,柔性密封腔体131可以设置于耳挂120上。例如,柔性密封腔体131可以位于耳挂120上靠近用户耳朵顶部的位置。当耳挂120悬挂于用户耳朵时,由弹性材料制成的耳挂120在佩戴状态下发生弹性形变,柔性密封腔体131沿耳挂120的延伸方向上进行设置,柔性密封腔体131在耳挂120发生弹性形变的同时也会发生形变,使得柔性密封腔体131的体积发 生变化,进而柔性密封腔体131内的压强发生变化。
以柔性密封腔体131内部为空气时作为示例,柔性密封腔体131发生变形并产生气压变化时,柔性密封腔体131的气压变化可以与柔性密封腔体131变形导致的体积变化有关。原理如下:气体在处于平衡状态时,气体的压强、体积和温度之间的关系可以用公式(1)来表示:
pV=nRT,  (1)
其中,p表示压强(单位为Pa),V表示气体体积(单位为m 3),T表示温度(单位为K),n表示气体的物质的量(单位为mol),R表示摩尔气体常数(单位为J/mol.K)。
根据公式(1)可知,在气体物质的量为常数,且温度一定的情况下,气体的压强和体积之间的关系可以进一步表示为公式(2):
p 1V 1=p 2V 2。  (2)
根据公式(2)可知,对于柔性密封腔体131内的气体来说,柔性密封腔体131的体积反比于柔性密封腔体131内的气压。因此,结合上文中的描述,声学输出装置100佩戴于人体时,人体相对于耳挂120及柔性密封腔体131的压力使得柔性密封腔体131发生变形,改变了柔性密封腔体131的体积,从而在其内部产生气压变化。
压力传感单元132可以是用于检测流体压强的传感器。在一些实施例中,压力传感单元132可以与柔性密封腔体131流体连通,压力传感单元132基于柔性密封腔体131内的压强变化产生电信号。在一些实施例中,压力传感单元132可以位于柔性密封腔体131形成的封闭腔体中,压力传感单元132响应于封闭腔体内的流体压强变化并将压强变化转换为电信号。例如,压力传感单元132的开口处可以设置薄膜结构,柔性密封腔体131内的压强变化使得薄膜结构变形,从而引起压力传感单元132内部的压强变化,压力传感单元132将其内部的压强变化转换为电信号。在一些实施例中,压力传感单元132可以包括传感组件(例如,MEMS传感器)和薄膜结构。传感组件的一端可以具有开口,薄膜结构覆盖在开口处。柔性密封腔体131内的压强变化可以使得压力传感单元132的薄膜结构变形,从而引起传感组件内部的压强变化,传感组件能够将其内部的压强变化转换为电信号。通过将压力传感单元132设置在柔性密封腔体131内,一方面,可以使得压力传感单元132能够接收柔性密封腔体131内的压强变化以产生电信号;另一方面,柔性密封腔体131还能对压力传感单元132及其内部组件(例如,传感组件)起到保护的作用,防止压力传感单元132及其内部组件损坏。
处理器133可以根据电信号识别佩戴压力。佩戴压力使柔性密封腔体131发生形变,相应地,柔性密封腔体131发生压强变化,压力传感单元132又基于压强变化产生电信号,在一些实施例中,电信号与佩戴压力是存在对应关系的。
在一些实施例中,处理器133可以根据查表方式识别佩戴压力。在一些实施例中,可以根据预设的对应关系表以及电信号,识别佩戴压力。对应关系表可以反映电信号与佩戴压力之间的对应关系。具体地,压力传感单元132产生电信号后,可以根据该电信号的大小,在预设的对应关系表中找到该电信号对应的佩戴压力。在一些实施例中,预设的对应关系表可以是通过测试方式获得的。在一些实施例中,可以事先获取佩戴压力与电信号之间的对应关系曲线(又称标定曲线),后基于压力传感单元132的电信号,对标定曲线进行插值,即可获得对应的佩戴压力。示例性的获取标定曲线的方法如下:给柔性密封腔体131施加不同大小的预设载荷,预设载荷表征佩戴压力,分别测得对应的电信号,基于多组预设载荷-电信号,拟合获得标定曲线。
图2是根据本说明书一些实施例所示的标定曲线图。这里以柔性密封腔体131内部为气体,压力传感单元为气体传感器作为示例,如图2所示,横轴表示预设载荷作用于柔性密封腔体131的时间,单位为ms,纵轴表示压力传感单元132的气压值(即电信号),单位为kPa。图2所示的标定曲线示出了3个峰,分别为峰21、峰22和峰23。其中,峰21表示柔性密封腔体131在5g载荷下的压力传感单元132的气压值,峰22表示柔性密封腔体131在10g载荷下的压力传感单元132的气压值,峰23表示柔性密封腔体131在15g载荷下的压力传感单元132的气压值,随着施加在柔性密封腔体131的载荷增大,峰21、峰22和峰23对应的气压值依次增大。由此可知,预设载荷与压力传感单元132的气压值之间近似为线性关系。预设载荷越大,压力传感单元132的气压值越大;预设载荷越小,压力传感单元132的气压值越小。也就是说佩戴压力与压力传感单元132的气压值之间近似为正向线性关系。
在一些实施例中,处理器133还可以基于机器学习模型识别佩戴压力。机器学习模型的输入可以是电信号。机器学习模型的输出可以是佩戴压力。机器学习模型可以基于训练样本通过训练初始机器学习模型(例如,神经网络模型)获得。在一些实施例中,训练样本可以包括样本电信号 参数以及训练标签。训练标签可以是佩戴压力。在一些实施例中,训练标签可以通过历史实验数据获得,或者,也可以通过人工标注获得。在一些实施例中,机器学习模型可以包括深度神经网络(DNN)模型或卷积神经网络(CNN)模型。
在一些实施例中,处理器133可以被配置为根据佩戴压力的大小,确定声学输出单元110与用户耳朵附近皮肤(例如,耳廓前侧、上侧、下侧或后侧皮肤)的接触力。在一些实施例中,声学输出单元110与用户耳朵附近皮肤的接触力与佩戴压力相关,进一步地,可以通过耳挂的佩戴压力确定声学输出单元110与用户耳朵附近皮肤的接触力。例如,当声学输出装置为耳挂式耳机(例如,图5所示的声学输出装置500)时,声学输出单元与用户耳朵附近皮肤的接触力与耳挂的佩戴压力正相关。又例如,当声学输出装置为后挂式耳机时(例如,图7所示的声学输出装置700),声学输出单元包括第一声学输出单元和第二声学输出单元,第一声学输出单元和第二声学输出单元分别位于用户的左耳附近区域和右耳附近区域。其中,第一声学输出单元与用户耳朵附近皮肤的接触力与其连接的耳挂的佩戴压力正相关,第二声学输出单元与用户耳朵附近皮肤的接触力与其连接的耳挂的佩戴压力正相关。在一些实施例中,为了便于计算声学输出单元110与用户面部的接触力,可以将用户佩戴声学输出装置100时耳挂的佩戴压力近似视为声学输出单元与用户面部区域的接触力。示例性地,当用户佩戴声学输出装置100时,耳挂的佩戴压力为0.2N,声学输出单元与用户面部区域的接触力近似为0.2N。
当声学输出单元为骨导声学输出单元时,骨导声学输出单元与用户面部的接触力会影响骨导声音的传递效率,例如,骨导声学输出单元与用户面部的接触力过小,骨导声音与用户面部区域的传递效率较低,影响用户的听音体验。导致骨导声学输出单元与用户面部的接触力过小的因素可能是用户佩戴声学输出装置时骨导声学输出单元的佩戴位置不正确,比如,骨导声学输出单元需要与耳廓前侧的面部区域相贴合,用户佩戴声学输出装置时将骨导声学输出单元放置在耳廓下方或上方的面部区域。导致骨导声学输出单元与用户面部的接触力过小的因素还可能是用户自身身体的差异性引起的,例如,用户年龄较小、头部尺寸较小等。当声学输出单元为气导声学输出单元时,气导声学输出单元的佩戴位置会影响导声孔与耳道口之间的位置,当导声孔偏离或背向耳道口时,用户接收到的声音音量会相对较小。由此可见,声学输出单元为骨导或气导声学输出单元,其佩戴位置均会影响用户的听音体验。相对应地,在同一用户佩戴特定的声学输出装置时,声学输出单元的佩戴位置不同,声学输出单元与耳朵附近皮肤区域的接触力也会有所差异。在一些实施例中,可以通过实验测试声学输出单元在不同佩戴位置时对应的接触力,得到佩戴位置、接触力以及音效对应关系的数据库或完成训练的机器学习模型,并通过接触力和数据库或完成训练的机器学习模型判断声学输出单元的佩戴位置,并通过接触力确定声学输出装置在耳朵附近皮肤区域的佩戴位置。在一些实施例中,处理器响应于接触力不在预设接触力范围时,处理器发出控制指令对声学输出单元的佩戴位置进行调整使得接触力在预设接触力范围内,或向用户输出通知信号(例如,语音信息、光信号或蜂鸣信号等),以提醒用户调整声学输出装置100中声学输出单元的佩戴位置。仅作为示例,当接触力不在预设接触力范围内时,处理器133输出长鸣信号,以提醒用户调整声学输出装置100的佩戴,保证声学输出单元110与用户之间具有较好的声音传递效率以及保证用户的佩戴舒适度。需要注意的是,用户佩戴声学输出装置100时耳挂的佩戴压力近似视为声学输出单元与用户面部区域的接触力,可以通过调整耳挂的佩戴压力调整声学输出单元与用户耳朵附近皮肤区域的接触力。
在一些实施例中,处理器133还可以被配置为根据压力大小,识别用户是否佩戴声学输出装置100。在一些实施例中,处理器133基于压力传感单元132生成的电信号,确定压力大小,并判断压力大小是否大于预设压力阈值,以识别用户是否佩戴声学输出装置100。在一些实施例中,处理器133响应于压力大于预设压力阈值,确定用户完整佩戴声学输出装置100。在一些实施例中,处理器133确定用户完整佩戴声学输出装置100时,可以随之响应声学输出装置100的其它处理进程,例如,接听电话、自动播放音乐等。在一些实施例中,声学输出装置100被解除佩戴时,柔性密封腔体131无形变产生,则压力传感单元132没有电信号生成,故当处理器133没有接收到电信号时,说明声学输出装置100解除佩戴,可以随之响应声学输出装置100的其它处理进程,例如,挂断电话、暂停音乐、音量调节等。在一些实施例中,预设压力阈值为0.1N。在一些实施例中,预设压力阈值为0.2N。在一些实施例中,预设压力阈值可以为0.3N。需要注意的是,预设压力阈值不限于上述的数值,还可以为其它数值,具体可以根据用户佩戴声学输出装置100时的听音效果、佩戴舒适度情况等因素进行调整。考虑到用户未佩戴声学输出装置100而对其进行操作时,声学输出装置100的耳挂会发生形变,此时压力传感单元132也会基于耳挂的形变产生电信号。为了提高用户是否佩戴声学输出装置100的判断精准度,在一些实施例中,根据压力大小,识别用户是否佩 戴声学输出装置可以包括:在特定时间范围内,判断压力大小是否在预设压力范围内,以识别用户是否佩戴声学输出装置。当用户佩戴声学输出装置时,声学输出装置与用户身体保持相对固定的状态,在此过程中,佩戴压力的波动较小,通过判断特定时间范围内对压力大小进行分析判断,可以避免用户误触声学输出装置100而造成的判断结果异常的问题。示例性地,特定时间范围可以为大于2s、大于3s或者其他时间范围。示例性地,预设压力范围可以为0.1N-0.8N、0.2N-0.6N或者0.3N-0.5N等其它压力范围。
继续参见图1,在一些实施例中,声学输出装置100还可以包括调整组件140,处理器133还被配置为判断压力大小是否在预设压力范围,并响应于压力未在预设压力范围内,处理器133控制调整组件140调整耳挂120的形变量,使佩戴压力在预设压力范围内。
在一些实施例中,调整组件140可以包括压电元件,压电元件为电压与其形变量呈正相关的器件,压电元件可以接收驱动电压后产生形变。在一些实施例中,压电元件可以设置在耳挂120上,并沿耳挂120的延伸方向设置。例如,耳挂120可以包括弹性金属丝和包覆弹性金属丝的弹性包覆体时,压电元件可以与贴附在弹性金属丝处,并被弹性包覆体进行包覆。又例如,压电元件可以贴附在弹性包覆体的表面。
在一些实施例中,压电元件可以由基于形变产生电压的压电材料制成,示例性的压电材料可以包括压电陶瓷、压电晶体、压电聚合物(例如,偏聚氟乙烯)等或其任意组合。在一些实施例中,压电元件可以为任意形状,例如片状、块状、柱状、环状结构等或其任意组合。在一些实施例中,声学输出装置100可以包括多个压电元件,以实现耳挂120的多处形状的调整。
在一些实施例中,用户佩戴声学输出装置100后,处理器133接收压力传感单元132产生的电信号,确定佩戴压力,并佩戴压力是否在预设压力范围内。若压力在预设压力范围内,则说明耳挂120与用户之间的压力是适宜的,或者用户的佩戴方式正确,也就是说,声学输出单元在耳朵附近皮肤的佩戴位置合适,对于用户或用户所处的应用场景来说,此时的压力不会过松或过紧,同时声学输出单元在用户的耳朵附近皮肤的位置正确,声学输出单元可以将声音(例如,骨导声音或气导声音)以较高的传递效率传递至用户的听觉神经。若压力不在预设压力范围内,则说明此时的压力对用户来说过松或过紧,或者声学输出单元在耳朵附近皮肤的佩戴位置不正确。处理器133响应于压力未在预设压力范围内,输出控制信号作用于压电元件,并产生作用于压电元件的驱动压力,以调整耳挂120的形状,使得调整形状后的耳挂120为用户提供的压力重新在预设压力范围内,在提升用户佩戴声学输出装置100的舒适度的同时,使得声学输出单元在用户耳朵附近皮肤的佩戴位置正确。例如,可以通过调整耳挂120弯曲部的弯曲角度,以调整耳挂120与用户耳朵之间的压力,在耳挂120弯曲发生形变的同时,也会带动声学输出单元移动,使得声学输出单元的佩戴位置发生改变。例如,通过调整耳挂120的形变量将气导声学输出单元的导声孔朝向用户的耳道口。又例如,通过调整耳挂120的形变量将骨导声学输出单元调整至用户耳廓前侧的耳朵附近皮肤。在一些实施例中,预设压力范围可以为0.1N-0.8N。在一些实施例中,预设压力范围为可以在0.2N-0.6N。在一些实施例中,预设压力范围可以为0.3N-0.5N。
在一些实施例中,声学输出装置100可以包括微型电机,微型电机用于驱动耳挂120与声学输出单元110之间的角度调整,以调整耳挂120与人耳之间的压力。仅作为示例地,微型电机驱动耳挂120与声学输出单元110之间的角度减小,以增大耳挂120与人耳之间的压力,相反地,微型电机驱动耳挂120与声学输出单元110之间的角度增大,以减小耳挂120与人耳之间的压力。在一些实施例中,耳挂120与声学输出单元110可以通过调整组件140转动连接,例如,调整组件140可以为齿轮传动件、链传动件、带传动件、蜗杆、螺旋等组件。在一些实施例中,微型电机可以设置在耳挂120上,也可以设置在声学输出单元110上,微型电机的动力输出端与调整组件140连接,微型电机通过驱动调整组件140运动,以实现耳挂120与声学输出单元110之间的角度调整。
在一些实施例中,处理器133响应于压力未在预设压力范围内,输出控制信号(例如,正转信号或反转信号)作用于微型电机,微型电机运行驱动调整组件140运动。在一些实施例中,处理器133响应于压力大于预设压力范围,输出反转信号作用于微型电机,微型电机反转驱动调整组件140运动,增大耳挂120与声学输出单元110之间的角度,以减小耳挂120与人耳之间的压力,使佩戴压力在预设压力范围内,从而提升用户佩戴声学输出装置100的舒适度。在一些实施例中,处理器133响应于压力小于预设压力范围,输出正转信号作用于微型电机,微型电机正转驱动调整组件140运动,减小耳挂120与声学输出单元110之间的角度,以增大耳挂120与人耳之间的压力,使佩戴压力在预设压力范围内,从而提升用户与声学输出单元110的接触力。在一些实施例中,也可以不设置微型电机来驱动调整组件140的运动。示例性地,用户可以手动调整声学输出单元110 与耳挂120之间的角度、耳挂的弯曲程度等方式来调整用户佩戴声学输出装置时耳挂120与用户面部之间的压力。
关于传感装置130的更多描述可以参见本说明书图3和图4,及其相关描述。
图3是根据本说明书一些实施例所示的传感装置的示例性结构图。如图3所示,传感装置330可以包括压力传感单元332、与压力传感单元332流体连通的柔性密封腔体331。流体连通可以是指柔性密封腔体331内的压强变化可以被压力传感单元332接收。在一些实施例中,柔性密封腔体331可以变形并在其内部产生压强变化,压力传感单元332响应于柔性密封腔体331内的压强变化而产生电信号。
在一些实施例中,柔性密封腔体331可以包括柔性腔体3311、连通腔3312和连接管道3313。柔性腔体3311、连通腔3312和连接管道3313可以共同形成柔性密封腔体331的封闭腔体。其中,柔性腔体3311可以在外界载荷的作用下发生变形并产生压强变化,连通腔3312可以用于容纳压力传感单元332,连接管道3313用于连接柔性腔体3311和连通腔3312。在一些实施例中,连接管道3313的一端与柔性腔体3311流体连通,连接管道3313的另一端与连通腔3312流体连通,柔性腔体3311内的压强变化可以通过连接管道3313传递至连通腔3312中。在一些实施例中,外界载荷可以作用于(或主要作用于)柔性腔体3311,使得柔性腔体3311发生变形,从而导致柔性腔体3311内的压强变化。柔性腔体3311内的压强变化进一步通过连接管道3313传递至连通腔3312中,以使压力传感单元332能够响应于柔性腔体3311内的压强变化而产生电信号。
在一些实施例中,为了保证在外界载荷的作用下,柔性腔体3311可以具有良好的形变效果,柔性腔体3311的材料可以为具有良好弹性(即易发生弹性形变)的材料。在一些实施例中,柔性腔体3311的材质可以是高分子材料、胶类材料等中的一种或多种。在一些实施例中,高分子材料可以为聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile Butadiene Styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High Impact Polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚乙烯(Polyethylene,PE)、酚醛树脂(Phenol Formaldehyde,PF)、尿素-甲醛树脂(Urea-Formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine-Formaldehyde,MF)、聚芳酯(Polyarylate,PAR)、聚醚酰亚胺(Polyetherimide,PEI)、聚酰亚胺(Polyimide,PI)、聚萘二甲酸乙二醇酯(Polyethylene Naphthalate two formic acid glycol ester,PEN)、聚醚醚酮(Polyetheretherketone,PEEK)、硅胶等中的任意一种或其组合。
在一些实施例中,连接管道3313用于连接柔性腔体3311和连通腔3312,柔性腔体3311内的压强变化可以通过连接管道3313传递至连通腔3312,使得连通腔3312内的压力传感单元332响应于压强变化以产生电信号。在一些实施例中,可以通过设置连接管道3313与柔性腔体3311的连接位置来调整柔性腔体3311与压力传感单元332的相对位置,使得柔性腔体3311和压力传感单元332之间的位置关系可以灵活布置,从而使传感装置130能够适应于不同的应用场景。
在一些实施例中,柔性腔体3311和连接管道3313的材料可以相同或不同。在一些实施例中,外界载荷作用于柔性密封腔体331使得柔性腔体3311变形的同时,可能也会使连接管道3313发生变形,连接管道3313的变形也会导致一定程度(较小)的压强变化,该压强变化也会被压力传感单元332接收并将其转化为电信号。因此,为了减小连接管道3313在外界载荷作用下产生的变形对电信号的影响,可以设置柔性腔体3311的杨氏模量小于连接管道3313的杨氏模量。在一些实施例中,柔性腔体3311的杨氏模量与连接管道3313的杨氏模量之比可以位于1:1~1:10的范围内。在一些实施例中,为了减小连接管道3313在外界载荷作用下产生的变形对电信号的影响,柔性腔体3311的杨氏模量与连接管道3313的杨氏模量之比可以位于1:3~1:8的范围内。
在一些实施例中,柔性腔体3311和/或连接管道3313的结构可以是管状结构和/或气囊结构。管状结构可以包括但不限于方管、圆管、椎管、弧形管等规则和/或不规则几何结构。在一些实施例中,柔性腔体3311和/或连接管道3313的尺寸(例如,管状结构的长度、管径等)可以根据传感装置330的实际应用情况,例如,传感装置330在可穿戴设备上的位置进行合理设置,在此不做进一步限定。
在一些实施例中,为了减小连接管道3313的变形对电信号的影响,可以设置柔性腔体3311的管径大于连接管道3313的管径。例如,柔性腔体3311和连接管道3313均为圆管时,柔性腔体3311的端面直径大于连接管道3313的端面直径。在一些实施例中,柔性腔体3311的管径与连接管道3313的管径的比值可以大于3。在一些实施例中,为了减小连接管道3313的变形对电信号的影响,柔性腔体3311的管径与连接管道3313的管径的比值可以大于3。仅作为示例,连接管道3313 的管径(例如,内径)可以是柔性腔体3311的管径(例如,内径)的四分之一。需要注意的是,当柔性腔体3311或连接管道3313部位圆管时,柔性腔体3311沿垂直其延伸方向上的截面积可以大于连接管道3313沿垂直其延伸方向上的截面积。
在一些实施例中,连通腔3312用于容纳压力传感单元332。柔性腔体3311内的压强变化需要通过连接管道3313传递至连通腔3312,使得连通腔3312中的压强变化,压力传感单元332响应于连通腔3312内的压强变化产生电信号。由此可知,柔性腔体3311内的压强变化与连通腔3312内的压强变化之间的关系可以影响压力传感单元332的灵敏度。以流体为气体时作为示例进行说明,由上文公式(1)和公式(2)可知,对于连通腔3312(和/或柔性腔体3311)内的气体来说,连通腔3312(和/或柔性腔体3311)的体积可以反比于连通腔3312(和/或柔性腔体3311)内的气压。由此可知,柔性腔体3311的体积与连通腔3312的体积之间的关系可以影响压力传感单元332的灵敏度。具体地,连通腔3312的体积相对于柔性腔体3311的体积越小,柔性腔体3311内的气压变化越容易引起连通腔3312内的气压变化,压力传感单元332的灵敏度越高。因此,可以通过设置连通腔3312以及柔性腔体3311的体积来调节(例如,提高)传感装置130的灵敏度。在一些实施例中,为了提高传感装置130的灵敏度,连通腔3312的体积可以小于柔性腔体3311的体积。在一些实施例中,为了提高传感装置130的灵敏度,连通腔3312的体积与柔性腔体3311的体积的比值可以不超过0.5。在一些实施例中,为了提高传感装置130的灵敏度,连通腔3312的体积与柔性腔体3311的体积的比值可以不超过0.1。
在一些实施例中,压力传感单元332位于连通腔3312内时,连通腔3312还能对压力传感单元332及其内部组件进行保护。为了使连通腔3312能够起到支撑作用以对压力传感单元332进行保护,连通腔3312的材料可以选用硬度较大的材料(例如,金属、合金等)。连通腔3312的材料可以根据实际情况(例如,柔性密封腔体331在可穿戴设备上的位置)进行合理设置,本说明书实施例对此不做具体限定。
在一些实施例中,压力传感单元332也可以位于柔性腔体3311中。图4是根据本说明书一些实施例所示的传感装置的示例性结构图。图4中所示的传感装置430的结构与图3中的传感装置330的结构大致相同,区别之处在于,柔性密封腔体431的结构不同。参见图4,传感装置430的柔性密封腔体431包括柔性腔体3311。柔性腔体3311可以是封闭腔体。压力传感单元332位于柔性腔体3311的内部。在外界载荷的作用下,柔性腔体3311变形并产生压强变化,压力传感单元332将压强变化转换为电信号。在一些实施例中,压力传感单元332可以位于柔性腔体3311中的任意位置(例如,端部、中部或其他位置处)。在一些实施例中,考虑到柔性腔体3311的受力位置大多是非端部位置,为了防止压力传感单元332在使用过程中受到挤压而损坏,压力传感单元332可以位于柔性腔体3311的一端。
通过将压力传感单元332设置在柔性腔体3311的内部,可以简化柔性密封腔体331的结构,同时还能避免其他结构(例如,连接管道)的变形对电信号的影响。
继续参见图3和图4,在一些实施例中,柔性腔体3311可以具有延伸方向。在一些实施例中,连通腔3312和连接管道3313沿延伸方向设置。在一些实施例中,延伸方向可以是柔性腔体3311的轴线方向。在一些实施例中,柔性腔体3311与连通腔3312、连接管道3313同轴设置。延伸方向平行于柔性腔体3311的两个端面(例如,图3和图4中所示的端面a和端面b)的中心点的连线。在一些实施例中,当柔性腔体3311是非均匀结构(例如,椎管状结构)时,外界载荷作用于柔性腔体3311的不同位置而使得不同位置的柔性腔体3311发生变形,可能会导致柔性腔体3311产生的压强变化不同,从而导致压力传感单元332产生的电信号不同。柔性腔体3311是非均匀结构可以是指柔性腔体3311的不同位置处垂直于延伸方向的截面的面积不同。例如,柔性腔体3311为椎管状结构时,从椎管状结构的一端至另一端,椎管状结构垂直于延伸方向的截面的面积逐渐增大(或减小)。在一些实施例中,为了保证外界载荷作用于柔性腔体3311的不同位置时,压力传感单元332能够产生大致相同的电信号,可以设置柔性腔体3311为均匀结构,即柔性腔体3311垂直于延伸方向的截面的面积变化量在合适范围内。在一些实施例中,为了保证外界载荷作用于柔性腔体3311的不同位置时,压力传感单元332能够产生相同或近似相同的电信号,柔性腔体3311垂直于延伸方向的截面的面积变化量可以不超过30%。例如,为了保证外界载荷作用于柔性腔体3311的不同位置时,压力传感单元332能够产生相同或近似相同的电信号,柔性腔体3311垂直于延伸方向的截面的面积变化量可以不超过10%。在一些实施例中,将柔性腔体3311设置在声学输出装置上以耳挂与人耳的佩戴压力时,由于每位用户的耳朵形状、大小差异较大,与耳挂的吻合度不高。这种情况下,通过将柔性腔体3311设置成非均匀结构,使得耳挂佩戴于人耳时佩戴压力作用于柔性 腔体3311的不同位置时,压力传感单元332能够产生不同的电信号,从而根据电信号来识别压力较大的位置,以便于控制压力较大位置上的调整组件(例如,压电元件)进行调整。
在一些实施例中,耳挂具有延伸方向,柔性腔体3311设置于耳挂内部时,柔性腔体3311的延伸方向与耳挂的延伸方向一致,以使柔性腔体3311随耳挂的形状感知耳挂与人耳的佩戴压力。在一些实施例中,耳挂的延伸方向可以是耳挂的轴线方向。
以下将结合图5-图8对一些实施例提供的声学输出装置进行详细说明。
图5是根据本说明书一些实施例所示的示例性声学输出装置的结构示意图。如图5所示,声学输出装置500可以包括声学输出单元510和耳挂520,耳挂520为适应人耳形状的弯曲结构,耳挂520的一端与声学输出单元510连接。当用户佩戴声学输出装置500时,耳挂520将声学输出单元510固定在用户耳朵附近。在一些实施例中,声学输出装置500还可以包括传感装置(图5未示出)及调整组件(图5未示出),传感装置及调整组件在声学输出装置的设置方式可以参见图1、图3及图4及其相关描述。本说明书中所述连接可以包括螺栓连接、铆接、过盈配合、卡扣、粘接、注塑、焊接、磁吸等或其任意组合的连接方式。
在一些实施例中,声学输出单元510可以为骨传导扬声器或气传导扬声器。在一些实施例中,声学输出单元510可以为长方体、圆柱体、圆台状、椭球状、半球体状、梯台状等规则或不规则的结构体。在一些实施例中,声学输出单元510可以包括与用户面部区域或耳朵相接触的接触面,当用户佩戴声学输出装置500时,声学输出单元510的接触面与用户耳朵附近的面部区域相贴合、位于用户耳朵上或者接触面的局部伸入耳甲腔中,以使用户可以接收到声学输出单元510输出的声音信息。在一些实施例中,声学输出单元510中与用户面部区域或耳朵相接触的接触面可以是声学输出单元510的一个侧壁。例如,声学输出单元510为圆柱体时,接触面为圆柱体的底面或侧面。
在一些实施例中,耳挂520可以为与人体耳朵(例如,耳廓)相适配的弯曲结构,适配人耳的弯曲结构可以用于悬挂在用户的耳廓上方。在一些实施例中,耳挂520可以包括弹性金属丝和包覆弹性金属丝的弹性包覆体。进一步地,弹性金属丝的材质可以是但不限于弹簧钢、钛合金、钛镍合金、铬钼钢、记忆合金等,弹性包覆体的材质可以是但不限于聚碳酸酯、聚酰胺、硅胶、橡胶等。
在一些实施例中,耳挂520上还可以设置有容置腔,容置腔内穿设有线状结构和/或向声学输出单元510输出电量或信号的导线。线状结构用于限定耳挂520的形状,也可以使耳挂520的形状可调。在一些实施例中,线状结构可以为弹性金属丝。用户可以通过调整具有线状结构的耳挂520的形状,以使耳挂520能够贴合耳朵,保证声学输出装置佩戴的舒适度及稳定性。在一些实施例中,压电元件可以设置在线状结构上,通过处理器调整压电元件的形状,来实现线状结构的形状调整。
图6是图5所示的耳挂520的位置A处的截面图。参见图6,耳挂520上设置有容置腔521及柔性密封腔体531,容置腔521与柔性密封腔体531并行设置。柔性密封腔体531与图3所示的柔性腔体331、图4所示的柔性腔体431类似。
在一些实施例中,容置腔521及柔性密封腔体531均沿耳挂520的延伸方向延伸设置。在一些实施例中,线状结构(图6未示出)与容置腔521内壁连接。在一些实施例中,容置腔521内的线状结构上各处直径可以不相同,以使耳挂520的结构、形状稳定,提升其耐用性。例如,线状结构靠近人耳耳廓顶部处(图5所示B处)的直径较大,线状结构靠近人耳耳垂处(即耳挂520上远离声学输出单元510的一端)的直径较小,调整耳挂520形状时,可以以靠近耳廓顶部处为支点,转动耳挂520上远离声学输出单元510的一端,使耳挂520上远离声学输出单元510的一端贴合耳廓。又例如,线状结构靠近人耳耳廓顶部处的直径较大,线状结构靠近耳道处(即耳挂520上设置声学输出单元510的一端)的直径较小,调整耳挂520形状时,可以以靠近耳廓顶部处为支点,转动耳挂520上靠近声学输出单元510的一端,使声学输出单元510靠近耳道。在一些实施例中,设置线状结构靠近人耳耳廓顶部处的直径较大,避免在反复调整耳挂520形状的过程中靠近人耳耳廓顶部处的线状结构受损严重。在一些实施例中,容置腔521的形状与线状结构相适应。需要知道的是,容置腔521的截面形状并不限于图6所示的圆形,还可以为三角形、梯形、矩形、菱形等规则或不规则形状。
在一些实施例中,容置腔521、柔性密封腔体531可以在耳挂520上形成一体成型的结构。在一些实施例中,容置腔521和柔性密封腔体531可以共同形成一个封闭腔体,线状结构和压力传感单元均设置于该封闭腔体内。
图7是根据本说明书另一些实施例所示的示例性声学输出装置的结构示意图。如图7所示,声学输出装置700还可以包括后挂750,耳挂包括第一耳挂722和第二耳挂723,声学输出单元包 括第一声学输出单元711和第二声学输出单元712,第一声学输出单元711通过第一耳挂722与后挂750的端部连接,第二耳挂723通过第二声学输出单元712与后挂750的另一端部连接,第一耳挂722将第一声学输出单元711悬挂在用户一耳朵附近,第二耳挂723将第二声学输出单元712悬挂在用户另一耳朵附近,第一耳挂722与第二耳挂723通过后挂750连接。其中,第一耳挂722和第二耳挂723与图5所示的耳挂520类似,第一声学输出单元711和第二声学输出单元712与图5所示的声学输出单元510类似。
在一些实施例中,后挂750为弯曲形状,用户佩戴声学输出装置700时,后挂750悬挂设置于用户头部后侧,第一耳挂722和第二耳挂723分别设置于用户的双耳上,第一声学输出单元711和第二声学输出单元712分别靠近用户的双耳设置,例如,第一声学输出单元711和第二声学输出单元712分别位于用户耳廓前侧的面部区域。在一些实施例中,第一声学输出单元711和第二声学输出单元712固定在用户耳朵附近且不堵塞用户耳道的位置。例如,第一声学输出单元711和第二声学输出单元712为骨传导扬声器或助听器时,骨传导扬声器或助听器产生的骨传导声波可以通过用户的骨骼、血液、肌肉等传递至用户的听觉神经。再例如,第一声学输出单元711和第二声学输出单元712为开放式气导扬声器,其出声孔可以朝向用户耳道方向。在一些实施例中,为适应于不同用户的头部后侧形状或不同应用场景下用户对佩戴松紧的不同要求,后挂750可以具有弹性,不同用户佩戴声学输出装置700时后挂750可以相应产生不同量的形变。
在一些实施例中,后挂750上也可以设置传感装置,传感装置在后挂750上的设置方式与其在耳挂上的设置方式类似。在一些实施例中,传感装置包括的柔性密封腔体沿后挂750的延伸方向延伸设置,用户佩戴声学输出装置700时,佩戴压力使柔性密封腔体发生形变,相应地,柔性密封腔体发生压强变化,压力传感单元基于压强变化产生电信号,处理器可以根据电信号识别佩戴压力。在一些实施例中,柔性密封腔体可以仅位于后挂750的中段。当用户佩戴图7所示的声学输出装置700时,柔性密封腔体可以位于后挂750上靠近用户头部后侧的位置,后挂750在该位置处的压力较大,只检测该位置处的压力,便能实现目的。在一些实施例中,柔性密封腔体可以包括多个柔性密封腔体,多个柔性密封腔体可以分别检测不同位置的压力,不同位置的压力可以对应设置不同的预设压力范围,以实现不同位置压力的精准调节。例如,柔性密封腔体可以包括第一柔性密封腔体和第二柔性密封腔体,第一柔性密封腔体可以位于靠近后挂750的中心点位置,第二柔性密封腔体可以位于后挂750中靠近用户的颞骨乳突位置。
在一些实施例中,后挂750上也可以设置调整组件,调整组件在后挂750上的设置方式与其在耳挂上的设置方式类似,例如,压电元件可以设置在后挂750上,又例如,后挂750通过调整组件与耳挂转动连接。
在一些实施例中,第一声学输出单元711和/或第二声学输出单元712(以下简称声学输出单元)也可以设置传感装置,传感装置在声学输出单元上的设置方式与其在耳挂上的设置方式类似。用户佩戴声学输出装置700时,佩戴压力使柔性密封腔体发生形变,相应地,柔性密封腔体发生压强变化,压力传感单元基于压强变化产生电信号,处理器可以根据电信号识别佩戴压力。在一些实施例中,柔性密封腔体可以位于声学输出单元上靠近人体面部的一侧设置,以使柔性密封腔体能准确感知声学输出单元与人体面部之间的压力。在一些实施例中,柔性密封腔体可以位于声学输出单元上位于用户耳屏前侧的位置,声学输出单元在该位置处的压力较大。
图8是根据本说明书又一些实施例所示的声学输出装置的结构示意图。如图8所示,声学输出装置800可以包括声学输出单元810和头梁850,头梁850可以为适应于用户头顶区域设置的头挂结构,头梁850的两端分别连接有声学输出单元810,头梁850上设置有包括柔性密封腔体831的传感装置。用户佩戴声学输出装置800时,头梁850悬挂设置于用户头顶处,声学输出单元810在头梁850的作用下覆盖用户耳朵设置。
在一些实施例中,柔性密封腔体831的数量可以为一个或多个。例如,当柔性密封腔体831的数量为一个时,柔性密封腔体831可以位于头梁850的中心点位置处,该位置处的压力较大。例如,当柔性密封腔体831的数量为两个时,柔性密封腔体831可以位于头梁850上靠近两侧耳朵的位置,该位置处的压力较大。在一些实施例中,柔性密封腔体831的数量还可以包括三个甚至更多个,其具体设置方式可以参考图7及其相关描述。
在一些实施例中,声学输出单元810上也可以设置一个或多个传感装置。例如,声学输出单元810为圆柱体结构时,传感装置的柔性密封腔体831可以沿圆柱体结构中与用户接触的底面或侧面边缘区域分布。又例如,传感装置的柔性密封腔体831可以位于圆柱体结构中与用户接触的底面。关于传感装置的具体设置方式可以参考图7及其相关描述。在一些实施例中,声学输出单元810 靠近人耳的一侧设置有弹性垫,弹性垫与用户面部直接接触,柔性密封腔体831可以设置在弹性垫上,以检测弹性垫与用户之间的压力。
以下将结合图9-图11B对本说明书提供的入耳式耳机进行示例性说明。
图9是根据本说明书一些实施例提供的入耳式耳机的结构示意图。如图9所示,耳机900可以包括耳机主体910、耳机柄920和传感装置,耳机柄920与耳机主体910连接,耳机主体910佩戴于用户的耳道口处。传感装置可以集成于耳机900内部,传感装置包括柔性密封腔体931、压力传感单元和处理器,柔性密封腔体931设置在耳机主体910与用户耳道接触的位置处,用于检测用户佩戴时施加在耳机主体910上的压力,处理器还可以根据检测到的压力大小,识别用户是否佩戴耳机900,并随之响应声学输出装置的其它处理进程,例如,接听电话、自动播放音乐等。传感装置的更多说明可以参见图1、图3及图4及其相关描述。
在一些实施例中,耳机主体910的前端,即耳机主体910靠近用户耳道的一端,设置有弹性圈940(例如硅胶圈),弹性圈940包裹耳机900主机的出音口,弹性圈940用于伸入用户耳道内,耳机900主机输出的声音信号经过弹性圈940进入耳道,有利于降低耳机900的漏音,弹性圈940具备弹性,可以适配大范围用户的耳道大小,且能提升佩戴耳机900的舒适度。在一些实施例中,柔性密封腔体931可以设置于弹性圈940中,用户佩戴耳机900时可以检测人体施加在弹性圈940上的压力。在一些实施例中,柔性密封腔体931可以与弹性圈940为一体成型结构,也就是说,弹性圈940的结构上开设有密封腔体。在一些实施例中,柔性密封腔体931也可以是相对于弹性圈940独立的结构,例如,柔性密封腔体913贴附在弹性圈940的外圈侧或内圈侧。在一些实施例中,柔性密封腔体931可以为环形结构,沿弹性圈940的周侧方向设置。在一些实施例中,柔性密封腔体931还可以为长方体结构、球状结构、柱状结构等,柔性密封腔体931位于弹性圈940的局部区域。在一些实施例中,柔性密封腔体931可以靠近弹性圈940的前端(伸入耳道口的一端)设置,弹性圈940的前端伸入用户耳道口中,其发生的弹性形变较大,相应地,柔性密封腔体931的形状也发生较大变化,从而提高传感装置的灵敏度。当用户佩戴耳机900时,弹性圈940上的柔性密封腔体931与耳道壁接触,发生形变,压力传感单元响应形变产生电信号,处理器基于电信号确定耳道施加在弹性圈940上的压力大小。当压力太小时,耳机900容易脱落,且降漏音效果不佳,当压力太大时,弹性圈940伸入耳道过多,对用户的听力系统不利。故在耳机900上设置传感装置,有利于确定耳机900相对于人体的佩戴压力,以便于调整佩戴压力至适宜范围。
图10A是根据本说明书另一些实施例提供的入耳式耳机的结构示意图。图10B是根据本说明书另一些实施例提供的入耳式耳机的结构示意图。如图10A及10B所示,耳机1000可以包括耳机主体1010、耳机柄1020和传感装置,耳机柄1020与耳机主体1010连接,耳机主体1010形成为扁圆结构,佩戴于用户的耳甲腔处,例如,当用户佩戴耳机1000时,耳机主体1010的第一侧面1011覆盖并堵塞用户的耳道口,第一侧面1011与耳道口附近的区域相接触,耳机主体1010的第二侧面1012与用户的耳屏处相接触。在一些实施例中,传感装置可以集成于耳机1000上,传感装置可以位于耳机主体1010的第一侧面1011和/或第二侧面1012处。在一些实施例中,传感装置包括一个或多个柔性密封腔体。当柔性密封腔体的数量为一个时,柔性密封腔体可以位于耳机主体1010的第一侧面1011或第二侧面1012处。以柔性密封腔体的数量为多个进行示例性说明,柔性密封腔体可以包括第一柔性密封腔体1031及第二柔性密封腔体1034,如图10A所示,第一柔性密封腔体1031设置在耳机主体1010用于覆盖并堵塞用户耳道口的第一侧面1011处,如图10B所示,第二柔性密封腔体1034设置在耳机主体1010与用户耳屏相接触的第二侧面1012处。通过耳机主体1010的第一侧面1011和第二侧面1012处均设置柔性密封腔体来检测耳机1000与人耳的佩戴压力,能够有效防止勿碰、误测的情况发生。需要注意的时,第一侧面1011处可以设置多个第一柔性密封结构1031,第二侧面1012上处可以设置多个第二柔性密封结构1034。关于传感装置的更多说明可以参见图1、图3、图4、图9及其相关描述。
在一些实施例中,耳机主体1010可以包括壳体,柔性密封腔体(第一柔性密封腔体1031及第二柔性密封腔体1034)为封闭的柔性结构体形成,例如,柔性密封腔体可以有封闭的硅胶气囊形成,柔性结构体位于壳体的外表面。在一些实施例中,柔性结构体嵌设于壳体外侧。在一些实施例中,柔性结构体凸出于壳体表面设置。在一些实施例中,柔性结构体的部分为耳机1000的表面区域中的部分区域。在一些实施例中,柔性结构体也可以与耳机1000表面的其它区域一体化或无缝衔接。
在一些实施例中,壳体的外表面开设有凹槽,凹槽的槽口处设置有柔性结构(例如硅胶层),柔性结构覆盖槽口,并与凹槽形成柔性密封腔体(第一柔性密封腔体及第二柔性密封腔体1034)。 在一些实施例中,柔性结构的周侧可以与槽口周侧连接,以将凹槽封闭形成柔性密封腔体。在一些实施例中,柔性结构的内侧可以与槽口连接,柔性结构的周侧与壳体的外表面衔接,在形成柔性密封腔体的基础上使壳体外表面形成完整封闭的表面。
图11A是根据本说明书又一些实施例提供的入耳式耳机的结构示意图。图11B是根据本说明书又一些实施例提供的入耳式耳机的结构示意图。如图11A及图11B所示,耳机1100可以包括耳机主体1110、耳机柄1120和传感装置,耳机柄1120与耳机主体1110连接,耳机主体1110为喇叭状结构,佩戴于用户的耳甲腔处,呈喇叭状的耳机主体1110的喇叭口侧设置有出音口1111,当用户佩戴耳机1100时,耳机主体1119的喇叭口侧覆盖并堵塞用户的耳道口,出音口1111朝向用户耳道。传感装置可以集成于耳机内部,传感装置包括柔性密封腔体1131,在一些实施例中,柔性密封腔体1131可以为环形结构,沿耳机主体1110的喇叭口侧的周向上环绕出音口1111设置,以检测出音口1111一侧与耳甲腔之间的压力,有利于及时调整压力,同时也避免声音信号从出音口1111一侧与耳甲腔之间的缝隙泄露。在一些实施例中,柔性密封腔体1131也可以为其它形状,例如,球状、柱状、椭球状等结构,柔性密封腔体1131的数量可以为多个,多个柔性密封腔体1131可以沿耳机主体1110的喇叭口周侧的边缘间隔分布。在一些实施例中,柔性密封腔体1131还可以位于耳机主体1110的侧壁,即喇叭状结构的侧壁,当用户佩戴耳机1100时,柔性密封结构1131可以与用户的耳屏相接触。关于传感装置的更多说明可以参见图1、图3、图4、图9-图10B及其相关描述。
上述各种实施例所示的传感装置还可以应用于各种可穿戴设备上,可穿戴设备穿戴于人体时,检测人体对可穿戴设备施加的压力,和/或,检测用户的生理信号。以下将结合图12-图18示例性说明传感装置在可穿戴设备上的应用。
图12是根据本说明书一些实施例所示的可穿戴设备的框图。
如图12所示,可穿戴设备1200可以包括穿戴本体1210和传感装置1220。
可穿戴设备1200是指可以被用户穿戴的设备。在一些实施例中,可穿戴设备1200可以被穿戴于用户的头部、手部等身体部位。在一些实施例中,可穿戴设备1200可以包括眼镜、智能手环、指环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。例如,可穿戴设备1200可以是功能型的近视眼镜、老花镜、骑行眼镜或太阳镜等,也可以是智能化的眼镜,例如具有耳机功能的音频眼镜。在一些实施例中,可穿戴设备1200还可以是头盔、增强现实(Augmented Reality,AR)设备或虚拟现实(Virtual Reality,VR)设备等头戴式设备。在一些实施例中,增强现实设备或虚拟现实设备可以包括虚拟现实头盔、虚拟现实眼镜、增强现实头盔、增强现实眼镜等或其任何组合。例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
穿戴本体1210用于穿戴于用户身上。在一些实施例中,穿戴本体1210可以为上衣(例如T恤、马甲、背心、外套等),穿戴于用户的上半身。在一些实施例中,穿戴本体1210可以为手环、手表、指环、臂环、绑带等,穿戴于用户的肢体上。在一些实施例中,穿戴本体1210也可以为腿环或腰带,分别对应穿戴于用户的腿部或腰部。在一些实施例中,穿戴本体1210也可以为镜架、头箍等,穿戴于用户的头部。在一些实施例中,穿戴本体1210可以为用于贴附在用户体表处的物体(例如,衣物、心电监护仪的吸盘等)。
传感装置1220包括第一柔性密封腔体1221、压力传感单元1222和处理器1223。在一些实施例中,传感装置1220集成于穿戴本体1210上。
在一些实施例中,传感装置1220可以用于检测可穿戴设备1200与用户身体之间的佩戴压力。在一些实施例中,第一柔性密封腔体1221设置于穿戴本体1210与用户身体接触的位置处,用户穿戴可穿戴设备1200时,可穿戴设备1200与用户身体之间的佩戴压力使第一柔性密封腔体1221发生形变,相应地,第一柔性密封腔体1221发生压强变化,压力传感单元1222基于压强变化产生电信号,处理器1223接收电信号确定佩戴压力的大小。需要说明的是,第一柔性密封腔体1221与柔性密封腔体类似,传感装置1220用于检测可穿戴设备1200与用户身体之间的佩戴压力的原理及结构,与传感装置1220用于检测声学输出装置与用户面部之间的佩戴压力的原理及结构类似,关于传感装置1220的更多说明可以参见图1-图11B及相关描述。
在一些实施例中,传感装置1220的柔性密封结构(例如,第一柔性密封结构1221)可以用于检测用户的生理信号。在一些实施例中,生理信号可以包括但不限于脉搏、心率以及呼吸频率等。在一些实施例中,第一柔性密封腔体1221设置于穿戴本体1210与用户身体接触的特定区域(例如,能够到感知生理信号的区域),用户穿戴可穿戴设备1200时,第一柔性密封腔体1221与用户 身体接触,用户的心脏跳动、脉搏搏动或呼吸会引起第一柔性密封腔体1221内部的压强变化,使得压力传感单元1222生成电信号,处理器1223可以从电信号中识别生理信号。具体地,处理器1223记录电信号的周期(时间),电信号生成的周期(时间)可以反映用户的心率、脉搏以及呼吸频率,如此实现用户的心率、脉搏或呼吸频率的检测。
在一些实施例中,具有第一柔性密封腔体1221的传感装置1220也可以用于检测可穿戴设备1200与用户身体之间的佩戴压力。在一些实施例中,传感装置的数量可以为多个,其中,至少一个第一柔性密封结构1221用于检测可穿戴设备1200与用户身体之间的佩戴压力,进一步地,传感装置1220还可以包括第二柔性密封腔体,第二柔性密封腔体设置于穿戴本体1210与用户身体接触的特定区域,用户穿戴可穿戴设备1200时,第二柔性密封腔体与用户身体接触,用户的心脏跳动、脉搏搏动或呼吸会引起第二柔性密封腔体内部的压强变化,使得压力传感单元1222生成电信号,处理器1223记录电信号生成的间歇时间,实现用户的心率、脉搏或呼吸频率的检测,这样的传感装置1220可以同时用于检测可穿戴设备1200与用户身体之间的佩戴压力及用于检测用户的生理信号。当传感装置1220包括第一柔性密封腔体1221和第二柔性密封腔体时,第一柔性密封腔体1221和第二柔性密封腔体内分别设置有压力传感单元1222,第一柔性密封腔体1221的压力传感单元1222和第二柔性密封腔体的压力传感单元1222的电信号可以发送至同一处理器(例如,处理器1223)或不同处理器进行处理。
图12所示的传感装置1220可以应用于各类可穿戴设备1200中。以下将结合图13-图18对传感装置1220在示例性可穿戴设备1200中的应用进行说明。传感装置1220在图中未示出的可穿戴设备1200中(例如绑带)的设置方式与图13-图18所示的设置方式类似。需要知道的是,图13-图18均示出的是传感装置1220包括的第一柔性密封腔体1221的位置,压力传感单元1222和处理器1223均集成于穿戴本体1210内部。
图13是根据本说明书一些实施例提供的智能手环的结构示意图。如图13所示,智能手环1300可以包括带状结构1311和智能手环主体1312。传感装置可以集成于智能手环1300内部,形成第一柔性密封腔体和/或第二柔性密封腔体的部分为智能手环1300的表面区域中的部分区域,为便于说明,将该部分区域定义为柔性区域1321。在一些实施例中,柔性区域1321可以与智能手环1300表面的其它区域无缝衔接。在一些实施例中,柔性区域1321可以稍微凸出于智能手环1300表面的其它区域设置。在一些实施例中,柔性区域1321也可以与智能手环1300表面的其它区域一体化。
在一些实施例中,智能手环1300的柔性区域1321可以位于带状结构1311与用户身体相接触的一侧上,用于检测带状结构1311与用户手部的佩戴压力或用于监测用户的生理信号。在一些实施例中,智能手环1300的柔性区域1321可以位于智能手环主体1312与用户身体相接触的一侧上。在一些实施例中,带状结构1311及智能手环主体1312靠近用户身体的一侧上均设置有柔性区域1321,其一柔性区域1321用于检测带状结构1311与用户手部的佩戴压力,另一柔性区域1321用于监测用户的生理信号。在一些实施例中,为使柔性区域1321可以较大范围地感知带状结构1311与用户手部的压力,柔性区域1321可以沿带状结构1311的延伸方向布置。
由于智能手环1300与用户身体之间的佩戴压力过小,会影响智能手环1300对用户生理信号的采集。在一些实施例中,处理器响应于佩戴压力低于预设接触力阈值,向用户输出通知信号(例如,光信号或蜂鸣信号等),以提醒用户调整智能手环1300的佩戴。在一些实施例中,带状结构1311可以为长度可调结构(例如,卡扣结构、卡孔结构等),佩戴压力低于预设接触力阈值时,可以通过将调短带状结构1311的长度,来增大智能手环1300与用户之间的佩戴压力。
图14是根据本说明书一些实施例提供的心电监测仪的结构示意图。如图14所示,心电监测仪1400可以包括吸盘1412。传感装置在心电监测仪1400上的设置方式与传感装置在智能手环1300的设置方式类似。在一些实施例中,心电监测仪1400的柔性区域1421可以设置在吸盘1412靠近用户身体的一侧。心电监测仪1400可以通过吸盘上的柔性区域1421检测吸盘与用户身体的佩戴压力,和/或,监测用户的生理信号。在一些实施例中,心电监测仪1400可以包括带状结构1411,带状结构1411将心电监测仪1400固定在用户的胸部附近,柔性区域1421可以沿带状结构1411的延伸方向设置。
图15是根据本说明书一些实施例所示的眼镜的结构示意图。如图15所示,眼镜1500包括镜腿1511和镜片1512,镜片1512与镜腿1511端部连接,传感装置在眼镜1500上的设置方式与传感装置在智能手环1300的设置方式类似。在一些实施例中,眼镜1500的柔性区域1521可以设置在镜腿1511远离镜片1512的一侧,当用户佩戴眼镜1500时,镜腿1511远离镜片1512的一侧 与用户头部接触并悬挂在用户耳廓上。眼镜1500可以通过镜腿1511上的柔性区域1521检测镜腿1511与用户头部的佩戴压力,和/或,监测用户的生理信号。
在一些实施例中,当柔性区域1521的数量为一个时,柔性区域1521可以位于单个镜腿1511上。在一些实施例中,当柔性区域1521的数量为两个时,两个柔性区域1521可以分别位于两个镜腿1511上,柔性区域1521用于检测镜腿1511与用户头部的佩戴压力,同时也可以用于监测用户的生理信号(例如,心率信号)。在一些实施例中,为使柔性区域1521可以较大范围上地感受镜腿1511与用户头部的压力,柔性区域1521可以沿镜腿1511的延伸方向布置。
在一些实施例中,眼镜1500可以为带音频功能的眼镜1500,镜腿1511上可以设置扬声器或助听器等。具体地,用户佩戴眼镜1500时,镜片1512位于用户面部,镜腿1511从镜片1512的一侧向其耳部附着,并支撑于用户耳部,镜腿1511上设置的扬声器或助听器靠近用户的双耳设置。在一些实施例中,为了便于安装扬声器或者助听器,两侧的镜腿1511上分别设置有的凹陷结构,扬声器或助听器设置于凹陷结构处。
图16是根据本说明书一些实施例所示的虚拟现实或增强现实设备的结构示意图。如图16所示,虚拟现实或增强现实设备1600包括后挂1611和设备主体1612,后挂1611的两端与设备主体1612连接,设备主体1612可以为固定在后挂1611端部的虚拟现实装置和/或增强现实装置等。在一些实施例中,后挂1611将设备主体1612固定在用户眼睛处,当用户佩戴可穿戴设备时,后挂1611围绕固定在用户的头部。传感装置在虚拟现实或增强现实设备1600上的设置方式与传感装置在智能手环1300的设置方式类似。在一些实施例中,虚拟现实或增强现实设备1600的柔性区域1621可以设置在后挂1611上。当用户佩戴虚拟现实或增强现实设备1600时,后挂1611发生形变,同时带动柔性区域1621发生形变,使得柔性区域1621内部的传感装置可以检测出用户佩戴虚拟现实或增强现实设备1600时,作用在后挂1611上的压力大小。当用户佩戴图16所示的虚拟现实或增强现实设备1600时,柔性区域1621可以位于后挂1611上靠近用户头部后侧的位置,后挂1611在该位置处的形变量较大。在一些实施例中,柔性区域1621还可以位于设备主体1612上与用户面部区域相接触的位置。在一些实施例中,柔性区域1621的数量可以一个或多个,柔性区域1621在后挂1611上的设置位置可以参考图7及其相关描述。
在一些实施例中,虚拟现实或增强现实设备1600可以带音频功能,后挂1611上可以设置扬声器或助听器等。在一些实施例中,后挂1611上设置的扬声器或助听器靠近用户的耳部设置。在一些实施例中,为了便于安装扬声器或者助听器,后挂1611上靠近耳部设置有凹陷结构,扬声器或助听器设置于凹陷结构上。
图17是根据本说明书一些实施例所示的智能戒指的结构示意图。如图17所示,智能戒指1700包括戒指主体1720和电路结构1710,戒指主体1720为环状结构,电路结构1710位于戒指主体1720的外圈侧壁处。传感装置在智能戒指1700上的设置方式与传感装置在智能手环1300的设置方式类似。在一些实施例中,智能戒指1700的柔性区域1721可以设置在智能戒指1700的内圈侧壁处,智能戒指1700可以通过内圈上的柔性区域1721,检测智能戒指1700与用户手指的佩戴压力,和/或,监测用户的生理信号。在一些实施例中,电路结构1710可以用于为传感器提供电源,并接收并处理传感装置采集的佩戴压力,和/或,监测用户的生理信号。在一些实施例中,电路结构1710还可以包括通信模块,通信模块可以将佩戴压力,和/或,监测用户的生理信号等信息通过无线的方式传递至用户终端(例如,手机、电脑、智能手表等)。在一些实施例中,为了更准确地感知智能戒指1700与用户手指的整体佩戴压力,柔性区域1721可以为环形结构,环形结构可以沿智能戒指1700的内圈侧壁的周向设置。
在一些实施例中,智能戒指1700可以通过内圈上的柔性区域1721监测用户的生理信号。图18是根据本说明书一些实施例所示的心率信号的曲线图。图18示出了第二柔性腔体设置于智能戒指1700的内圈侧壁处传感装置测得的心率信号,其中,人体心跳频率约为71Hz。
需要知道的是,图1-图18仅用于示例性描述,并不对其构成限制。对于本领域的普通技术人员来说,根据本申请的指导可以做出多种变化和修改。不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本申请处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (23)

  1. 一种声学输出装置,包括声学输出单元和耳挂,所述耳挂将所述声学输出单元悬挂在用户耳朵附近,所述耳挂上设置体积可变形的柔性密封腔体,用于检测所述用户佩戴时施加在所述耳挂上的压力。
  2. 根据权利要求1所述的声学输出装置,其中,所述柔性密封腔体沿着所述耳挂的延伸方向延伸,所述耳挂上设有与柔性密封腔体并列的容置腔,所述容置腔内穿设有线状结构。
  3. 根据权利要求2所述的声学输出装置,所述柔性密封腔体与所述容置腔由一体成型的结构产生。
  4. 根据权利要求1所述的声学输出装置,所述耳机还包括压力传感单元和处理器,其中,
    所述柔性密封腔体与所述压力传感单元流体连通,所述压力传感单元基于所述柔性密封腔体内的压强变化产生电信号;
    所述处理器根据所述电信号,确定所述用户佩戴时施加在所述耳挂上的压力大小。
  5. 根据权利要求4所述的声学输出装置,所述处理器根据所述电信号,确定所述用户佩戴时施加在所述耳挂上的压力大小,包括:
    获得标定曲线,所述标定曲线根据对所述柔性密封腔体施加不同的预设载荷后所产生的电信号拟合获得;
    根据所述标定曲线确定压力大小。
  6. 根据权利要求4所述的声学输出装置,所述处理器还被配置为根据所述压力大小,识别所述用户是否佩戴所述声学输出装置。
  7. 根据权利要求4所述的声学输出装置,所述处理器被配置为根据所述压力大小,确定所述声学输出单元与所述用户耳朵附近皮肤的接触力。
  8. 根据权利要求4所述的声学输出装置,所述声学输出装置还包括调整组件,所述处理器还被配置为判断所述压力大小是否在预设压力范围,所述处理器控制所述调整组件调整所述耳挂的形变量,使所述耳挂的压力在预设压力范围内。
  9. 根据权利要求8所述的声学输出装置,所述调整组件包括压电元件,所述压电元件沿所述耳挂的延伸方向设置,所述处理器控制所述压电元件发生形变,使所述耳挂的压力在预设压力范围内。
  10. 根据权利要求8所述的声学输出装置,所述声学输出装置还包括微型电机,所述耳挂与所述声学输出单元通过调整组件转动连接,所述微型电机的输出端与所述调整组件连接。
  11. 根据权利要求1-10任一项所述的声学输出装置,所述声学输出装置还包括后挂,所述耳挂包括第一耳挂和第二耳挂,所述声学输出单元包括第一声学输出单元和第二声学输出单元,所述第一耳挂与所述第一声学输出单元和所述后挂连接,所述第二耳挂与所述第二声学输出单元和所述后挂连接,所述第一耳挂将所述第一声学输出单元悬挂在用户一耳朵附近,所述第二耳挂将所述第二声学输出单元悬挂在用户另一耳朵附近,所述第一耳挂与所述第二耳挂通过所述后挂连接。
  12. 一种入耳式耳机,包括耳机主体,当用户佩戴所述耳机时,所述耳机主体佩戴于用户的耳道口处,所述耳机主体与所述用户耳道接触的位置处设置有体积可变形的柔性密封腔体,用于检测所述 用户佩戴时施加在所述耳机主体上的压力。
  13. 根据权利要求12所述的入耳式耳机,所述耳机包括壳体,所述柔性密封腔体为封闭的柔性结构体形成,所述柔性密封结构体位于所述壳体的外表面或嵌设于所述壳体外侧。
  14. 根据权利要求12所述的入耳式耳机,其中,所述耳机包括壳体,所述壳体的外表面开设有凹槽,所述凹槽的槽口处设置有柔性结构,所述柔性结构覆盖所述槽口,并与所述凹槽形成所述柔性密封腔体。
  15. 根据权利要求12所述的入耳式耳机,还包括压力传感单元和处理器,其中,
    所述柔性密封腔体与所述压力传感单元流体连通,所述压力传感单元基于所述柔性密封腔体内的压强变化产生电信号;
    所述处理器根据所述电信号,确定所述用户佩戴时施加在所述耳机主体上的压力大小。
  16. 根据权利要求15所述的入耳式耳机,所述处理器根据所述电信号,确定所述用户佩戴时施加在所述壳体主体上的压力大小,包括:
    获得标定曲线,所述标定曲线根据对所述柔性密封腔体施加不同的预设载荷后所产生的电信号拟合获得;
    根据所述标定曲线确定压力大小。
  17. 根据权利要求15所述的入耳式耳机,所述处理器还被配置为根据所述压力大小,识别所述用户是否佩戴所述入耳式耳机。
  18. 一种可穿戴设备,包括穿戴本体,当用户佩戴所述可穿戴设备时,所述穿戴主体佩戴于用户身体上,所述穿戴本体与所述用户身体接触的位置处设置有体积可变形的第一柔性密封腔体,用于检测所述用户的生理信号和/或所述用户佩戴时对所述可穿戴设备施加的压力。
  19. 根据权利要求18所述的可穿戴设备,还包括压力传感单元和处理器,其中,
    所述第一柔性密封腔体与所述压力传感单元流体连通,所述压力传感单元基于所述第一柔性密封腔体内的压强变化产生电信号;
    所述处理器根据所述电信号提取所述用户的生理信号。
  20. 根据权利要求18或19所述的可穿戴设备,所述生理信号包括脉搏、心率信号或呼吸频率。
  21. 根据权利要求18-20任一项所述的可穿戴设备,所述可穿戴设备包括带状结构,用于将所述穿戴本体固定在所述用户的身体上,所述带状结构上设置体积可变形的第二柔性密封腔体,用于检测所述用户佩戴时施加在所述带状结构的压力,所述第二柔性腔体沿所述带状结构的延伸方向设置。
  22. 根据权利要求21所述的可穿戴设备,所述穿戴主体包括智能手环主体、虚拟现实设备主体、现实增强设备主体或心电监测仪。
  23. 根据权利要求18-20任一项所述的可穿戴设备,所述穿戴主体包括智能戒指,所述柔性密封腔体位于所述智能戒指的内圈侧壁处。
PCT/CN2022/140963 2022-08-22 2022-12-22 一种声学输出装置、入耳式耳机及可穿戴设备 WO2024040821A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211006787.3 2022-08-22
CN202211006787 2022-08-22

Publications (1)

Publication Number Publication Date
WO2024040821A1 true WO2024040821A1 (zh) 2024-02-29

Family

ID=89942987

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/140050 WO2024040813A1 (zh) 2022-08-22 2022-12-19 一种传感装置及用于捕捉手部动作的手套
PCT/CN2022/140963 WO2024040821A1 (zh) 2022-08-22 2022-12-22 一种声学输出装置、入耳式耳机及可穿戴设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140050 WO2024040813A1 (zh) 2022-08-22 2022-12-19 一种传感装置及用于捕捉手部动作的手套

Country Status (2)

Country Link
CN (2) CN117608391A (zh)
WO (2) WO2024040813A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083933A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Pressure sensing earbuds and systems and methods for the use thereof
WO2016011848A1 (zh) * 2014-07-24 2016-01-28 歌尔声学股份有限公司 应用于耳机的心率检测方法和能检测心率的耳机
CN108702567A (zh) * 2017-11-27 2018-10-23 深圳市汇顶科技股份有限公司 耳机、检测耳机的佩戴状态的方法和电子设备
WO2020113375A1 (zh) * 2018-12-03 2020-06-11 安克创新科技股份有限公司 耳机套和包括该耳机套的耳机组件
CN211128122U (zh) * 2019-12-09 2020-07-28 科大讯飞股份有限公司 耳机
CN113259808A (zh) * 2021-06-10 2021-08-13 东莞市云仕电子有限公司 一种智能蓝牙耳机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5573007A (en) * 1994-08-08 1996-11-12 Innerspace, Inc. Gas column pressure monitoring catheters
CN106648116B (zh) * 2017-01-22 2023-06-20 隋文涛 一种基于动作捕捉的虚拟现实综合系统
US10481689B1 (en) * 2018-01-10 2019-11-19 Electronic Arts Inc. Motion capture glove
CN109407836A (zh) * 2018-10-09 2019-03-01 成都柔电云科科技有限公司 一种手部动作捕捉系统及交互系统
US11262797B1 (en) * 2019-01-16 2022-03-01 Apple Inc. Computer systems with wearable force sensing devices
CN109925166B (zh) * 2019-03-14 2020-10-02 清华大学 一种外骨骼康复系统及康复方法
CN112230769B (zh) * 2020-10-10 2023-03-31 哈尔滨工业大学(威海) 基于柔性电容传感器的数据手套的关节运动角度测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130083933A1 (en) * 2011-09-30 2013-04-04 Apple Inc. Pressure sensing earbuds and systems and methods for the use thereof
WO2016011848A1 (zh) * 2014-07-24 2016-01-28 歌尔声学股份有限公司 应用于耳机的心率检测方法和能检测心率的耳机
CN108702567A (zh) * 2017-11-27 2018-10-23 深圳市汇顶科技股份有限公司 耳机、检测耳机的佩戴状态的方法和电子设备
WO2020113375A1 (zh) * 2018-12-03 2020-06-11 安克创新科技股份有限公司 耳机套和包括该耳机套的耳机组件
CN211128122U (zh) * 2019-12-09 2020-07-28 科大讯飞股份有限公司 耳机
CN113259808A (zh) * 2021-06-10 2021-08-13 东莞市云仕电子有限公司 一种智能蓝牙耳机

Also Published As

Publication number Publication date
WO2024040813A1 (zh) 2024-02-29
CN117608391A (zh) 2024-02-27
CN117615277A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
US20080205679A1 (en) In-Ear Auditory Device and Methods of Using Same
US9211069B2 (en) Personal protective equipment with integrated physiological monitoring
EP3754461A1 (en) Gesture control and pulse measurement through embedded films
KR20230013070A (ko) 이어폰
WO2010133066A1 (zh) 耳塞式耳机
US11599186B2 (en) Respiration monitoring devices, systems and processes for making the same
CN110447241B (zh) 可穿戴设备
CN210868165U (zh) 骨传导扬声器及骨传导耳机
WO2018165716A1 (en) Headphones
WO2024040821A1 (zh) 一种声学输出装置、入耳式耳机及可穿戴设备
US11181751B2 (en) Spectacles with bio-sensors
US20190346934A1 (en) Headset with adjustable sensor
JP6963250B2 (ja) 生体信号検出装置、および、脳波測定方法
JP2012147077A (ja) 骨伝導型音声伝達装置
CN109769186A (zh) 一种入耳式骨导助听装置
CN214122601U (zh) 一种带耳机的骨传导tws眼镜
CN212519393U (zh) 一种耳机
WO2023206531A1 (zh) 一种声学输出装置及可穿戴设备
JP2023543562A (ja) 完全なインイヤーモニター用超小型ダイナミック型スピーカー
JP2024511098A (ja) 音響入出力装置
TW202344070A (zh) 一種可穿戴設備
TW202344069A (zh) 一種聲學輸出裝置
CN213213805U (zh) 高速运动防脱落可测试人体健康指数的后挂式蓝牙耳机
CN216057425U (zh) 一种可切换佩戴方式的耳机
RU2807021C1 (ru) Наушники

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956354

Country of ref document: EP

Kind code of ref document: A1