WO2016011843A1 - 应用于耳机的心率检测方法和能检测心率的耳机 - Google Patents

应用于耳机的心率检测方法和能检测心率的耳机 Download PDF

Info

Publication number
WO2016011843A1
WO2016011843A1 PCT/CN2015/079680 CN2015079680W WO2016011843A1 WO 2016011843 A1 WO2016011843 A1 WO 2016011843A1 CN 2015079680 W CN2015079680 W CN 2015079680W WO 2016011843 A1 WO2016011843 A1 WO 2016011843A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
earphone
heart rate
microphone
cavity
Prior art date
Application number
PCT/CN2015/079680
Other languages
English (en)
French (fr)
Inventor
刘崧
李波
李娜
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410354577.2A external-priority patent/CN104185107B/zh
Priority claimed from CN201410422936.3A external-priority patent/CN104244127B/zh
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to KR1020157036700A priority Critical patent/KR101660671B1/ko
Priority to EP15810778.9A priority patent/EP3009070B1/en
Priority to JP2015563115A priority patent/JP6174169B2/ja
Priority to US14/901,581 priority patent/US9579029B2/en
Priority to DK15810778.9T priority patent/DK3009070T3/en
Publication of WO2016011843A1 publication Critical patent/WO2016011843A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1091Details not provided for in groups H04R1/1008 - H04R1/1083
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to the field of earphone and heart rate detection technologies, and in particular to a heart rate detecting method applied to an earphone and an earphone capable of detecting a heart rate.
  • Heart rate detection can detect if there is a problem in our body. Heart rate detection can also reflect people's exercise intensity to a certain extent. In order to get the best exercise effect, people should keep the heart rate within a certain range during exercise, and heart rate test can provide reasonable exercise volume. An indicator.
  • the technology for detecting heart rate is now a new technology that uses headphones to detect heart rate, which is convenient and accurate.
  • the technology of using headphones to detect heart rate has only appeared in recent years. From October 23 to 25, 2013, in the development of health equipment in Yokohama, Japan, Kaiteki and Bifrostec exhibited a technology that can measure pulse fluctuations with headphones.
  • the technology uses the earphone to closely contact the ear canal to form a closed space. Due to the vibration of the eardrum, a certain pressure is generated in the ear canal, and the pressure changes with the change of the vibration, and the change information of the pressure in the ear canal is collected by the microphone, thereby detecting the heart rate. purpose. However, the earphone cannot occupy the entire ear canal, which will cause leakage of gas in the ear canal, which causes the microphone to detect no change in pressure, and the detection of the heart rate is disturbed by external noise.
  • the present invention has been made in order to provide a heart rate detecting method applied to an earphone and an earphone capable of detecting a heart rate that overcome the above problems or at least partially solve the above problems.
  • the present invention provides a heart rate detecting method applied to an earphone, wherein the method includes:
  • a cavity is disposed in the earphone, and the microphone is installed in the cavity;
  • the position of the cavity of the cavity and the earphone casing is a position of the earphone casing that is attached to the auricle of the human ear when the earphone is worn;
  • the earphone shell of the mouth of the cavity is provided with a hole, and when the earphone is worn, the cavity and the auricle that fits the hole form a closed space between;
  • Heart rate detection is performed based on heart rate related signals.
  • the method includes: setting an acceleration sensor in the earphone;
  • the estimated signal is subtracted from the signal acquired by the microphone to obtain a heart rate related signal.
  • the present invention also provides an earphone capable of detecting a heart rate, wherein the earphone comprises: a heart rate detecting unit, a cavity disposed in the earphone, and a microphone installed in the cavity;
  • the position of the cavity of the cavity is matched with the earphone casing; the position of the earphone casing that is attached to the auricle of the human ear when the earphone is worn; the earphone casing of the cavity is fitted with a hole at the earphone casing The cavity and the auricle that fits the hole form a confined space when the earphone is worn;
  • the microphone is configured to collect a signal generated by a pressure change in the cavity when the earphone is worn; and use a signal collected by the microphone as a heart rate related signal;
  • the heart rate detecting unit is configured to perform heart rate detection according to a heart rate related signal.
  • the earphone further includes: an acceleration sensor, an adaptive filtering unit, and a subtracting unit;
  • the acceleration sensor is configured to collect a signal generated by a body movement of the wearer when the earphone is worn and output the signal to the adaptive filtering unit;
  • the adaptive filtering unit is configured to perform adaptive filtering processing on the signal collected by the acceleration sensor according to a heart rate related signal, and obtain an estimated signal of a signal generated by the body motion of the wearer in the signal collected by the microphone. And output to the subtraction unit;
  • the subtracting unit is configured to subtract the estimated signal from the signal collected by the microphone, and output a heart rate related signal to the heart rate detecting unit and the adaptive filtering unit.
  • the technical solution in the embodiment of the present invention adopts a closed cavity formed by the inner cavity of the earphone and the earphone casing to dispose the microphone, thereby reducing the interference of external noise and enhancing the signal collected by the microphone. information. Further, an acceleration sensor is added to the earphone for collecting signals generated by human body motion, and an adaptive filter is designed to eliminate the influence of human body motion on heart rate detection.
  • FIG. 1 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention
  • FIG. 2A is a schematic side view of an earphone 100 provided with a cavity 110 in one embodiment of the present invention
  • 2B is a schematic rear view of the earphone 100 provided with the cavity 110 in one embodiment of the present invention
  • 2C is a side cross-sectional view of the earphone 100 provided with the cavity 110 in one embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • FIG. 4 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention
  • Figure 6 is a schematic view showing a position where an acceleration sensor is placed in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • Figure 8 is a schematic diagram showing the general structure of an adaptive filter
  • FIG. 9 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention.
  • the earphone 100 capable of detecting heart rate includes: a heart rate detecting unit 140, a cavity 110 disposed in the earphone, and a microphone 120 installed in the cavity 110;
  • the position of the mouth of the cavity 110 and the earphone shell are the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the cavity 110 is fitted with a hole, when The cavity and the auricle that fits the hole form a confined space when the earphone is worn;
  • a microphone 120 for collecting a signal generated by a pressure change in the cavity 110 when the earphone is worn;
  • the heart rate detecting unit 140 is configured to perform heart rate detection according to the signal collected by the microphone 120.
  • a small cavity 110 is disposed in the earphone 100 to house the microphone 120, and a confined space can be formed with the auricle, thereby reducing external noise interference and strengthening the microphone. 120 sets of signal information.
  • the heart rate detecting unit 140 is configured to detect a period of a signal collected by the filtered microphone, and obtain a heart rate from a reciprocal of a period of the detected signal.
  • the microphone In the existing technology for detecting heart rate of the earphone, usually the microphone is directly placed in the earphone in the position of the ear canal for collecting the pressure change information in the ear cavity generated by the eardrum vibration, but on the one hand, the space formed by the earphone and the ear canal is relatively small. Large, it will cause leakage of gas in the ear canal, so that the pressure change information collected by the microphone is very weak. On the other hand, the earphone often cannot occupy the entire ear canal, and the microphone is directly placed in the earphone, which is disturbed by external noise. Therefore, another type of microphone is installed in the earphone of FIG. 1 of the present invention. For details, refer to FIG. 2A-2C.
  • 2A is a side elevational view of an earphone 100 provided with a cavity 110 in accordance with one embodiment of the present invention.
  • 2B is a schematic view of the back side of the earphone 100 provided with the cavity 110 in one embodiment of the present invention.
  • 2C is a side cross-sectional view of the earphone 100 provided with the cavity 110 in one embodiment of the present invention.
  • the present invention contemplates a small cavity for placing a microphone.
  • the range indicated by the dashed line in the figure is an illustration of the position of the cavity 110 formed inside the earphone. Referring to the opening of the cavity 110 of Fig. 2C, the earphone casing is attached.
  • the cavity 110 is located at a portion of the earphone edge close to the auricle, and the earphone has an opening 111 at a portion where the earphone is fitted, and the opening 111 and the auricle are worn when the earphone is worn. It fits snugly so that the cavity 110 and the abutting auricle portion form a closed space.
  • the microphone is installed in the cavity 110, and the contraction vibration of the auricle wall causes a change in the pressure in the cavity 110, and the microphone collects information on the change of the pressure in the cavity 110, which reflects the heart to some extent. The beat frequency, so heart rate detection can be performed accordingly.
  • the pressure is inversely proportional to the volume, that is, the smaller the volume, the greater the pressure, and the greater the pressure acting on a certain area.
  • a closed space is formed in the ear canal.
  • the blood pressure of the blood vessel fluctuates, the ear wall shrinks, and a certain pressure change occurs in the cavity, and the pressure change signal is detected by the microphone.
  • the pulse pressure fluctuation of the blood vessel is very weak, and the larger the sealed space is, the smaller the pressure change detected by the microphone is.
  • the microphone device is arranged in a closed small cavity in this embodiment.
  • the small cavity is closely attached to the ear canal, and the ear wall generates contraction vibration due to the fluctuation of the pulse pressure of the blood vessel, and the vibration causes the microphone in the small cavity to detect the pressure change. And the design of the small cavity will reduce the influence of external interference signals.
  • FIG. 3 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • the earphone 300 capable of detecting heart rate includes: a filtering unit 330, a heart rate detecting unit 340, a cavity 310 disposed in the earphone, and a microphone 320 installed in the cavity 310;
  • the position of the mouth of the cavity 310 and the earphone shell are the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the cavity 310 is fitted with a hole, when The cavity and the auricle that fits the hole form a confined space when the earphone is worn;
  • the microphone 320 is configured to: when the earphone is worn, collect a signal generated by the pressure change in the cavity 310, and output a corresponding signal to the filtering unit 130;
  • the filtering unit 330 is configured to filter the signal collected by the microphone 320, and obtain the filtered signal and output the signal to the heart rate detecting unit 340.
  • the filtering unit filters the signal collected by the microphone 320 to eliminate the influence of the interference noise on the heart rate detection.
  • the heart rate detecting unit 340 is configured to perform heart rate detection according to the filtered signal.
  • the heart rate detecting unit 340 is configured to detect a period of the heart rate related signal, and obtain a heart rate from a reciprocal of the period of the detected signal.
  • the heart rate detecting unit 340 can detect the period of the heart rate related signal using an existing autocorrelation method, a threshold method, or the like.
  • the filtering unit 330 shown in FIG. 3 includes a low-pass filter for performing low-pass filtering processing on the signal collected by the microphone 320 to filter out the high-frequency interference signal.
  • a low-pass filter for performing low-pass filtering processing on the signal collected by the microphone 320 to filter out the high-frequency interference signal.
  • the frequency of pulse vibration is low (about 0.3 Hz - 3 Hz), and the external noise frequency is high.
  • the influence of external high frequency noise can be eliminated by the low pass filter.
  • the low pass filter can select an FIR filter having a cutoff frequency of 5 Hz or the like.
  • a low-pass filter is used to perform low-pass filtering on the signal collected by the microphone.
  • the pressure signal in the cavity is first collected by the microphone in the small cavity; then the low-pass filter is used to low-pass filter the signal collected by the microphone; finally, after the heart rate signal is obtained, the heart rate can be detected.
  • the beat of the heart has a certain periodicity, then the heart rate signal is a signal with a certain periodicity, and the period corresponding to the signal can be obtained according to the autocorrelation method, and the reciprocal of the period is the heart rate.
  • y(n) represents an interference signal
  • d(n) represents a pressure change signal due to blood flow
  • n represents a sampling time point
  • the period can be detected by an autocorrelation method, a threshold method, or the like, and the reciprocal of the period is the heart rate.
  • the earphone in the embodiment shown in FIG. 1 or FIG. 3 can obtain the heart rate of people in various situations (quiet, exercise, etc.) in order to obtain the health information of the human body, or based on the situation, one can The amount of exercise is controlled within a suitable range.
  • the heart rate detecting method applied to the earphone in the present invention is given based on the above embodiment.
  • FIG. 4 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step S410 a cavity is disposed in the earphone, and the microphone is installed in the cavity;
  • the position of the cavity and the earphone casing is the position of the earphone casing that is attached to the ear of the human ear when the earphone is worn;
  • the earphone shell of the body mouth is provided with a hole, and when the earphone is worn, the cavity and the auricle that fits the hole form a closed space;
  • Step S420 when the earphone is worn, the signal generated by the pressure change in the cavity is collected by the microphone;
  • Step S430 performing heart rate detection according to the signal collected by the microphone.
  • the heartbeat-related signal is used as a heart rate-related signal, and heart rate detection is performed based on the heart rate-related signal.
  • the method shown in FIG. 4 further includes, before step 430, performing filtering processing on the signal collected by the microphone to obtain a filtered signal. Then, performing heart rate detection according to the signal collected by the microphone in step S430 includes: performing heart rate detection according to the filtered signal.
  • the filtering process of the signal collected by the microphone in the method shown in FIG. 4 includes: performing low-pass filtering processing on the signal collected by the microphone to filter out the high-frequency interference signal.
  • performing heart rate detection according to the filtered signal comprises: detecting a period of the filtered signal, and obtaining a heart rate from a reciprocal of a period of the detected signal.
  • a small-sized closed cavity is used to place the microphone, which reduces external noise interference and enhances the signal information detected by the microphone.
  • a low-pass filter is designed to further reduce the influence of external high-frequency noise.
  • FIG. 5 is a schematic structural diagram of an earphone capable of detecting a heart rate according to an embodiment of the present invention.
  • the earphone 500 capable of detecting heart rate includes: a subtracting unit 550, a heart rate detecting unit 560, an acceleration sensor 530, an adaptive filtering unit 540, a cavity 510 disposed in the earphone, and a cavity 510 installed in the cavity 510.
  • the position of the mouth of the cavity 510 and the earphone shell is the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the mouth of the cavity 510 is provided with an opening.
  • the cavity and The auricle that fits the opening constitutes a confined space.
  • the microphone 520 is configured to collect a signal generated by the pressure change in the cavity 510 and output it to the subtraction unit 550 when the earphone 500 is worn.
  • the acceleration sensor 530 is configured to collect a signal generated by the body motion of the wearer when the earphone is worn and output the signal to the adaptive filtering unit 540.
  • the adaptive filtering unit 540 is configured to perform adaptive filtering processing on the signal collected by the acceleration sensor 530 according to the heart rate correlation signal, and obtain an estimated signal of the signal generated by the body motion of the wearer in the signal collected by the microphone 520, and then output the signal.
  • the subtraction unit 550 is given.
  • the subtraction unit 550 is configured to subtract the estimated signal output by the adaptive filtering unit 540 from the signal collected by the microphone, and output the heart rate related signal to the heart rate detecting unit 560 and the adaptive filtering unit 540.
  • the heart rate detecting unit 560 is configured to perform heart rate detection according to a heart rate related signal.
  • the adaptive filtering process is performed on the signal detected by the acceleration sensor 530 in FIG. 5, so that the human body motion signal collected from the acceleration sensor 530 can accurately estimate the human body motion signal collected by the microphone 520, and the purpose is to eliminate the human body.
  • Both the microphone 520 and the acceleration sensor 530 detect a vibration signal generated by the movement of the human body. Although the two signal periods are identical, the amplitudes are different, so it is necessary to use a filter to eliminate the difference, so that the motion of the human body can be generated.
  • the acceleration signal is removed from the signal collected by the microphone to obtain valid heart rate information.
  • a cavity 510 is provided in the earphone 500 to house the microphone 520, thereby reducing interference of external noise and enhancing signal information collected by the microphone 520.
  • the earphone 500 capable of detecting the heart rate incorporates an acceleration sensor 530 to collect a signal generated by the body motion of the wearer, adaptively filters the signal collected by the acceleration sensor 530, and subtracts the adaptive filter from the signal collected by the microphone. After the acceleration sensor signal, heart rate detection is performed, thereby eliminating the influence of the wearer's body motion on heart rate detection.
  • the earphone shown in FIG. 5 further includes a low-pass filter for performing low-pass filtering processing on the signal collected by the microphone to obtain a low-pass filtered signal, and then outputting to the subtraction unit 550.
  • the subtraction unit 550 is configured to subtract the estimated signal output by the adaptive filtering unit 540 from the low-pass filtered signal, and obtain a heart rate-related signal output to the heart rate detecting unit. This is because the frequency of pulse vibration is low (about 0.3 Hz - 3 Hz), and the external noise frequency is high. According to this feature, the influence of external high frequency noise can be eliminated by the low pass filter.
  • the low pass filter can select an FIR filter having a cutoff frequency of 5 Hz or the like.
  • the specific mounting manner of the cavity 510 disposed in the earphone 500 and the microphone 520 installed in the cavity 510 is the same as that shown in FIGS. 2A-2C, and will not be repeated herein.
  • Fig. 6 is a schematic view showing a position at which an acceleration sensor is placed in an embodiment of the present invention. Since the movement of the human body causes the skin of the human body to vibrate, the acceleration sensor device does not touch in the earphone in this embodiment. The part of the skin, so as to avoid skin vibration, affecting the signal collected by the acceleration sensor, and improving the accuracy of the acceleration sensor to collect signals.
  • the acceleration sensor 530 can be placed at any portion of the earphone 500 illustrated by the dashed box shown in Fig. 6.
  • the present invention incorporates an acceleration sensor in the earphone, the acceleration sensor device not touching the skin in the earphone, such as the earphone position shown by the dashed box shown in FIG.
  • An acceleration sensor is used to collect acceleration information generated by a person's body motion.
  • the change information of the pressure in the ear canal caused by the movement of the human body has the same vibration frequency, and based on this, a certain filter can be used to eliminate the interference generated by the human body motion.
  • the signal generated by the body motion of the human body can be filtered out from the signal detected by the microphone, a signal generated by the contraction of the ear canal itself due to blood flow can be obtained, which is related to the frequency of the heart beat. Heart rate information is obtained based on this signal.
  • the microphone collects information on changes in the ear canal pressure caused by the body movement of the person, and the acceleration sensor collects acceleration information corresponding to the body motion of the person.
  • the two signals have the same vibration frequency, that is, the periodicity is the same, the amplitudes are different, and the signal cannot be directly removed from the signal collected by the microphone. Therefore, the present embodiment filters out the human due to the adaptive filtering method. Interference caused by body movements.
  • a small volume of the closed cavity is used to place the microphone, which reduces external noise interference and enhances the signal information detected by the microphone.
  • an acceleration sensor is added to the earphone for collecting signals generated by human body motion, and an adaptive filter is designed to eliminate the influence of human body motion on heart rate detection.
  • a low-pass filter is designed to further reduce the influence of external noise. The following is further illustrated by taking FIG. 7 as an example.
  • FIG. 7 is a schematic structural diagram of an earphone capable of detecting a heart rate according to still another embodiment of the present invention.
  • the heart rate capable earphone 700 includes a subtraction unit 750, a heart rate detection unit 760, a low pass filter 770, an acceleration sensor 730, an adaptive filtering unit 740, a cavity 710 disposed in the earphone, and an installation.
  • the adaptive filtering unit 740 includes a parameter tunable filter 741 and a parameter adaptive adjusting unit 742.
  • the position of the mouth of the cavity 710 and the earphone shell is the position of the earphone shell that is attached to the auricle of the human ear when the earphone is worn; the earphone shell of the cavity 710 is attached with an opening.
  • the cavity and the auricle that fits the opening form a confined space when the earphone is worn.
  • a microphone 720 for generating a pressure change in the collection cavity 710 when the earphone 700 is worn
  • the signal is output to the low pass filter 770.
  • the low pass filter 770 is configured to perform low pass filtering on the signal collected by the microphone 720 to obtain a low pass filtered signal, and then output the signal to the subtraction unit 750.
  • the acceleration sensor 730 is configured to collect a signal generated by the wearer's body motion and output it to the parameter tunable filter 741 and the parameter adaptive adjustment unit 742 in the adaptive filtering unit 740 when the earphone is worn.
  • the parameter adaptive adjustment unit 742 is configured to adjust the filter parameter of the parameter tunable filter 741 according to the signal collected by the acceleration sensor 730, the heart rate related signal, and a preset adaptive algorithm.
  • the parameter tunable filter 741 is configured to adaptively filter the signal collected by the acceleration sensor 730 by using the filter parameter, and output an estimated signal of the signal generated by the body motion of the wearer in the 720 set signal to the subtraction unit. 750.
  • the subtraction unit 750 is configured to subtract the estimated signal output by the parameter tunable filter 741 from the signal outputted by the low-pass filter to obtain a heart rate-related signal output to the heart rate detecting unit 760; the subtracting unit 750 is further configured to correlate the heart rate The signal is output to the parameter adaptive adjustment unit 742.
  • the parameter adaptive adjustment unit 742 calculates the filter parameter of the parameter tunable filter 741 using an adaptive algorithm according to the signal acquired by the input acceleration sensor 730 and the heart rate related signal fed back by the subtraction unit 750.
  • the heart rate detecting unit 760 is configured to perform heart rate detection according to a heart rate related signal.
  • the heart rate detecting unit 760 is configured to detect a period of the heart rate related signal, and obtain a heart rate from a reciprocal of the period of the detected signal.
  • the heart rate detecting unit 760 can detect the period of the heart rate related signal using an existing autocorrelation method, a threshold method, or the like.
  • Fig. 8 is a schematic diagram showing the general structure of an adaptive filter.
  • the adaptive filter is mainly composed of a parameter tunable filter and a parameter adaptive adjustment unit that adjusts the filter coefficients.
  • the adaptive filter is designed without prior knowledge of the statistical properties of the signal. It can gradually “understand” or estimate the required statistical characteristics in its own work, and automatically adjust its parameters based on this. To achieve the best filtering effect.
  • Ex(n) is the desired signal
  • In(n) is the input signal
  • Out(n) is the output signal
  • e(n) is the estimation error
  • e(n) Ex(n)-Out(n) .
  • the filter coefficient of the adaptive filter is controlled by the error signal, and e(n) adjusts the adaptive coefficient by a predetermined adaptive algorithm, and finally the mean square error of e(n) is minimized, and the output signal is closest to the desired signal.
  • an adaptive filter is used to filter the signal collected by the acceleration sensor to accurately estimate the signal generated by the microphone due to human motion.
  • y1(n) is the signal acquired by the acceleration sensor 730, that is, corresponding to the input signal in the adaptive filtering unit 740
  • y2(n) is the output signal of the adaptive filtering unit 740
  • xL(n) is represented.
  • Corresponding expected signal Corresponding to the error signal (mainly including the heart rate signal).
  • yL(n) and y1(n) have a certain correlation, and y1(n) can be approximated by yL(n) through the filter output signal y2(n) by designing a suitable transfer function.
  • the output signal y2(n) can be used to effectively estimate yL(n), and then the interference of the human motion to the heart rate detection can be collected from the microphone.
  • the signal is removed and the effect of the interference signal is removed again.
  • the low-pass filtered signal of the microphone is subtracted from the adaptively filtered signal of the acceleration sensor to obtain heart rate-related signal information. Based on this, the heart rate is detected.
  • the beating of the heart has a certain periodicity, then It is a signal with a certain periodicity.
  • the autocorrelation method the period corresponding to the signal can be obtained, and the reciprocal of the period is the heart rate.
  • n represents the sampling time point.
  • Both y1(n) and y(n) are signals generated by the same motion, y1(n) corresponds to acceleration information, and y(n) corresponds to pressure information, although the magnitudes of the two are different, but have the same Vibration frequency.
  • an adaptive filter impact response h(n)
  • the adaptive parameters of the filter are obtained by using an adaptive algorithm.
  • the adaptive algorithm There are many ways to implement the adaptive algorithm. For example, the method with the least square error can be used, that is, The filter coefficient obtained when taking the minimum value.
  • the period can be detected by an autocorrelation method, a threshold method, or the like, and the reciprocal of the period is the heart rate.
  • the earphones in various situations can be obtained by the earphones in the embodiment shown in FIG. 5 or FIG. 7, so as to obtain information on the health status of the person, or based on the fact that one can set himself according to the specific situation.
  • the amount of exercise is controlled within a suitable range.
  • a heart rate detecting method applied to an earphone according to the present invention is given based on the above embodiment, and the method of the present invention is implemented
  • the steps in the examples refer to the related description of the product embodiments of the present invention.
  • FIG. 9 is a flowchart of a heart rate detecting method applied to an earphone according to an embodiment of the present invention. As shown in FIG. 9, the method includes:
  • Step S910 a cavity is disposed in the earphone, and the microphone is installed in the cavity; the position of the cavity and the earphone casing is the position of the earphone casing that is attached to the ear of the human ear when the earphone is worn;
  • the earphone shell of the body mouth is provided with an opening, and when the earphone is worn, the cavity and the auricle that fits the opening constitute a confined space; an acceleration sensor is also disposed in the earphone.
  • the acceleration sensor is placed in a position in the earphone that does not contact the wearer's skin.
  • Step S920 when the earphone is worn, the signal generated by the pressure change in the cavity is collected by the microphone, and the signal generated by the body movement of the wearer is collected by the acceleration sensor;
  • Step S930 performing adaptive filtering processing on the signal collected by the acceleration sensor to obtain an estimated signal of a signal generated by the body motion of the wearer in the signal collected by the microphone.
  • Step S940 subtracting the estimated signal from the signal collected by the microphone to obtain a heart rate related signal
  • step S950 heart rate detection is performed according to the heart rate related signal.
  • the method shown in FIG. 9 subtracts the estimated signal from the signal collected from the microphone to obtain a heart rate related signal, and further includes: performing low-pass filtering processing on the signal collected by the microphone to obtain Low pass filtered signal. Then, the estimated signal is subtracted from the signal collected by the microphone in step S940, and the heart rate related signal is obtained. Specifically, the estimated signal is subtracted from the low pass filtered signal to obtain a heart rate related signal.
  • the adaptive filtering process is performed on the signal collected by the acceleration sensor in step S930, and the estimated signal of the signal generated by the body motion of the wearer in the signal collected by the microphone is obtained:
  • the estimated signal is obtained by adaptively filtering the signal collected by the acceleration sensor according to the adaptive filtering parameter.
  • performing heart rate detection according to the heart rate related signal in step S950 includes: detecting a period of the heart rate related signal, and obtaining a heart rate from a reciprocal of the period of the detected signal.
  • a small-sized closed cavity is used to place the microphone, which reduces external noise interference and enhances the signal information detected by the microphone.
  • An acceleration sensor is added to the earphone for collecting signals generated by human body motion, and an adaptive filter is designed to eliminate the influence of human body motion on heart rate detection.
  • a low-pass filter is designed to further reduce the outside world. The effect of high frequency noise.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Acoustics & Sound (AREA)
  • Psychiatry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Power Engineering (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Otolaryngology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Headphones And Earphones (AREA)

Abstract

一种应用于耳机(100, 300, 500, 700)的心率检测方法和能检测心率的耳机(100, 300, 500, 700)。该方法包括:(910)在耳机(100, 300, 500, 700)内设置一个腔体(110, 310, 510, 710),将麦克风(120, 320, 520, 720)安装在该腔体(110, 310, 510, 710)内;在耳机(100, 300, 500, 700)中还设置加速度传感器(530, 730);(920)当耳机(100, 300, 500, 700)被佩戴时,由麦克风(120, 320, 520, 720)采集腔体(110, 310, 510, 710)内的由压力变化产生的信号,由加速度传感器(530, 730)采集由于佩戴者的身体运动所产生的信号;(930)对加速度传感器(530, 730)采集到的信号进行自适应滤波处理,得到麦克风(120, 320, 520, 720)采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号;(940)从麦克风(120, 320, 520, 720)采集到的信号中减去该估计信号,得到心率相关的信号;(950)根据心率相关的信号进行心率检测。该技术方案,采用密闭腔来安置麦克风(120, 320, 520, 720),减小了外界噪声的干扰,强化了麦克风(120, 320, 520, 720)采集到的信号信息,并对加速度传感器(530, 730)采集的信号进行自适应滤波得到估计信号,从麦克风采集的信号中减去该估计信号,再进行心率检测,从而消除了佩戴者的身体运动对心率检测的影响。

Description

应用于耳机的心率检测方法和能检测心率的耳机 技术领域
本发明涉及耳机及心率检测技术领域,特别涉及应用于耳机的心率检测方法和能检测心率的耳机。
背景技术
随着社会经济的不断发展,人们的物质生活水平日渐提高,人们也越来越关注自己的健康。而心率检测将给人们提供关于健康的非常重要的信息。任何不同于正常心率的显示都表明健康出现了问题,通过心率检测可以及时发现我们的身体是否出现了问题。心率检测还可以在一定程度上反映人们的运动强度是否合适,为了能够得到最佳的锻炼效果,人们在锻炼的过程中应该将心率保持在一定的范围内,而心率检测可以为合理的运动量提供一个指标。
另外,很多人在运动的过程中,喜欢带着耳机听音乐,为了能够测得运动过程中的心率,又不需要随身携带其他设备,人们开始研究如何利用耳机来检测心率的相关技术。
检测心率的技术,除了心率带之外,现在又新兴一种利用耳机来检测心率的技术,达到便捷准确的目的。
利用耳机来检测心率的技术是近几年才出现的。2013年10月23日至25日,日本横滨健康器械发展上,Kaiteki公司和Bifrostec公司展出了一种可以用耳机测定脉搏波动的技术。该技术利用耳机紧贴耳道形成封闭空间,由于耳膜的振动,耳道内会产生一定的压力,并且压力随着振动的改变而改变,利用麦克风采集耳道内压力的变化信息,从而达到检测心率的目的。但是耳机不能占据整个耳道,会造成耳道内气体的泄露,从而导致麦克风检测不到压力的变化,并且心率的检测会受到外界噪声的干扰。
发明内容
鉴于上述问题,提出了本发明以便提供克服上述问题或者至少部分地解决上述问题的应用于耳机的心率检测方法和能检测心率的耳机。
本发明的提供了一种应用于耳机的心率检测方法,其中,所述方法包括:
在耳机内设置一个腔体,将麦克风安装在所述腔体内;所述腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;所述腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时所述腔体和与所述孔贴合的耳廓构成密闭空 间;
当耳机被佩戴时,由所述麦克风采集所述腔体内的由压力变化所产生的信号;
将麦克风采集的信号作为心率相关的信号;
根据心率相关的信号进行心率检测。
可选地,所述方法包括:在耳机中还设置加速度传感器;
当耳机被佩戴时,由所述加速度传感器采集由于佩戴者的身体运动所产生的信号;
对所述加速度传感器采集到的信号进行自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号;
从麦克风采集到的信号中减去所述估计信号,得到心率相关的信号。
本发明还提供了一种能检测心率的耳机,其中,该耳机包括:心率检测单元、设置在耳机内的腔体和安装在所述腔体内的麦克风;
其中,所述腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;所述腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时所述腔体和与所述孔贴合的耳廓构成密闭空间;
所述麦克风,用于当耳机被佩戴时,采集所述腔体内的由压力变化所产生的信号;将麦克风采集的信号作为心率相关的信号;
所述心率检测单元,用于根据心率相关的信号进行心率检测。
可选地,该耳机还包括:加速度传感器、自适应滤波单元和减法单元;
所述加速度传感器,用于当耳机被佩戴时,采集由于佩戴者的身体运动所产生的信号并输出给所述自适应滤波单元;
所述自适应滤波单元,用于根据心率相关的信号对所述加速度传感器采集到的信号进行自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号后输出给所述减法单元;
所述减法单元,用于从麦克风采集到的信号中减去所述估计信号,得到心率相关的信号输出给所述心率检测单元以及所述自适应滤波单元。
由上述可见,本发明实施例中的这种技术方案,采用了由耳机内腔体和耳机壳构成的密闭腔体来安置麦克风,减小了外界噪声的干扰,并强化了麦克风采集到的信号信息。进一步在耳机中加入了加速度传感器,用于采集由于人的身体运动产生的信号,并通过设计自适应滤波器来消除人的身体运动对心率检测的影响。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
图1为本发明实施例中的一种能检测心率的耳机的结构示意图;
图2A是本发明一个实施例中的设置有腔体110的耳机100的侧面示意图;
如2B是本发明一个实施例中的设置有腔体110的耳机100背面示意图;
图2C是本发明一个实施例中的设置有腔体110的耳机100的侧面剖视图;
图3为本发明又一个实施例中的一种能检测心率的耳机的结构示意图;
图4为本发明实施例中一种应用于耳机的心率检测方法的流程图;
图5为本发明实施例中的一种能检测心率的耳机的结构示意图;
图6是本发明一个实施例中的加速度传感器的安放位置的示意图;
图7为本发明又一个实施例中的一种能检测心率的耳机的结构示意图;
图8是自适应滤波器的一般结构示意图;
图9为本发明实施例中一种应用于耳机的心率检测方法的流程图。
具体实施例
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整地传达给本领域的技术人员。
图1为本发明一个实施例中的一种能检测心率的耳机的结构示意图。如图1所示,该能检测心率的耳机100包括:心率检测单元140、设置在耳机内的腔体110和安装在腔体110内的麦克风120;
其中,腔体110的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体110的口所贴合的耳机壳处有孔,当耳机被佩戴时腔体和与孔贴合的耳廓构成密闭空间;
麦克风120,用于当耳机被佩戴时,采集腔体110内的由压力变化所产生的信号;
心率检测单元140,用于根据麦克风120采集的信号进行心率检测。
图1所示的能检测心率的耳机100中,在耳机100内设置小腔体110来安置麦克风120,并能与耳廓形成密闭空间,从而减小了外界噪声的干扰,并强化了麦克风采120集到的信号信息。
在本发明的一个实施例中,心率检测单元140,用于对滤波后的麦克风采集的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
在现有的耳机检测心率的技术中,通常麦克风直接放置在耳机中正对耳道的位置,用于采集耳膜振动产生的耳腔内压力变化信息,但一方面由于耳机和耳道形成的空间较大,会造成耳道内气体的泄露,使得麦克风采集的压力变化信息很微弱,另一方面耳机往往不能占据整个耳道,直接将麦克风放在耳机中,会受到外界噪声的干扰。因此本发明的图1所示耳机中设计了另外一种麦克风的安装方式,具体可以参见图2A-2C。
图2A是本发明一个实施例中的设置有腔体110的耳机100的侧面示意图。如2B是本发明一个实施例中的设置有腔体110的耳机100背面示意图。图2C是本发明一个实施例中的设置有腔体110的耳机100的侧面剖视图。为了更好地采集和心跳相关的有用信号,本发明设计了一种小腔体用于放置麦克风。参见图2A和图2B,图中虚线所示的范围是形成在耳机内部的腔体110的位置的示意。参见图2C腔体110的开口和耳机壳贴合。可以看出,在该实施例中,腔体110位于耳机边缘贴近耳廓的部位,耳机在其和腔体贴合的部位有个开孔111,在耳机被佩戴时,这个开孔111和耳廓紧密贴合,这样,腔体110和贴紧的耳廓部分构成一个密闭的空间。将麦克风安装在该腔体110中,耳廓壁的收缩振动会引起腔体110内压力的变化,那么麦克风就会采集到腔体110内压力的变化信息,该信息在一定程度上反映了心脏的跳动频率,因此可以据此进行心率检测。
在物理学中,对于密闭的空间(不考虑温度),压强和体积成反比,也就是说体积越小压强越大,那么作用在一定面积上的压力也越大。当用户带上耳机后,耳道内形成一个密闭的空间,由于血管的脉压波动导致耳壁收缩,那么在腔体内会产生一定的压力变化,该压力变化信号就会被麦克风检测到。一般来说血管的脉压波动非常微弱,密闭的空间越大,那么麦克风检测到的压力变化越小,为了增加麦克风检测到的压力变化强度,本实施例将麦克风装置在一个密闭的小腔体内,将小腔体紧贴耳道,由于血管的脉压波动导致耳壁产生收缩振动,此振动使得小腔体内的麦克风检测到压力的变化。并且小腔体的设计会减小外界干扰信号的影响。
图3为本发明又一个实施例中的一种能检测心率的耳机的结构示意图。如图3所示,该能检测心率的耳机300包括:滤波单元330、心率检测单元340、设置在耳机内的腔体310和安装在腔体310内的麦克风320;
其中,腔体310的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体310的口所贴合的耳机壳处有孔,当耳机被佩戴时腔体和与孔贴合的耳廓构成密闭空间;
麦克风320,用于当耳机被佩戴时,采集腔体310内的由压力变化所产生的信号,并输出相应信号给滤波单元130;
滤波单元330,用于对麦克风采320集到的信号进行滤波处理,得到滤波后的信号输出给所述心率检测单元340。这里滤波单元对对麦克风320采集的信号进行滤波,以消除干扰噪声对心率检测的影响。
心率检测单元340,用于根据滤波后的信号进行心率检测。
在本发明的一个实施例中,心率检测单元340,用于对心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。例如,心率检测单元340,可以利用现有的自相关方法、阈值方法等检测出心率相关的信号的周期。
在本发明的一个实施例中,图3所示的滤波单元330包括:低通滤波器,用于对麦克风320采集到的信号进行低通滤波处理,以滤除高频干扰信号。这是因为脉搏振动的频率较低(0.3Hz-3Hz左右),而外界噪声频率较高,根据这一特点,通过低通滤波器可以消除外界高频噪声的影响。例如,低通滤波器可以选择截止频率为5Hz的FIR滤波器等。
在图3所示的耳机中,采用了低通滤波器对麦克风采集的信号进行低通滤波处理。如图3所示,先用小腔体内的麦克风采集腔体内的压力信号;然后用低通滤波器对麦克风采集的信号进行低通滤波;最后,得到心率信号后,可进行心率的检测。心脏的跳动具有一定的周期性,那么心率信号是具有一定周期性的信号,根据自相关方法可以获得该信号对应的周期,周期的倒数即为心率。
具体过程如下:
假定麦克风检测到的信号为:x(n)=y(n)+d(n);
其中,y(n)表示干扰信号,d(n)表示由于血液流动所产生的压力变化信号,n表示采样时间点;
x(n)经过低通滤波后信号变为:xL(n)=dL(n),通过低通滤波后会滤除麦克采集到的外界噪声信号。
得到dL(n)后,根据该信号的周期性特点,可以利用自相关方法、阈值法等来对其周期进行检测,其周期的倒数就是心率。
通过图1或图3所示的实施例中的耳机能够获得人们在各种情况(安静,运动等)下的心率,以便获取人体的健康状况信息,或者以此为依据人们可以根据具体情况将自己的运动量控制在一个合适的范围内。
基于上述实施例给出本发明中的应用于耳机的心率检测方法。
图4为本发明实施例中一种应用于耳机的心率检测方法的流程图。如图4所示,该方法包括:
步骤S410,在耳机内设置一个腔体,将麦克风安装在腔体内;腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时腔体和与孔贴合的耳廓构成密闭空间;
步骤S420,当耳机被佩戴时,由麦克风采集腔体内的由压力变化所产生的信号;
步骤S430,根据麦克风采集的信号进行心率检测。即将麦克风采集的信号作为心率相关的信号,根据心率相关的信号进行心率检测。
在本发明的一个实施例中,图4所示的方法在步骤430之前进一步包括:对麦克风采集到的信号进行滤波处理,得到滤波后的信号。则步骤S430中的根据麦克风采集的信号进行心率检测包括:根据滤波后的信号进行心率检测。
在本发明的一个实施例中,图4所示的方法中对麦克风采集到的信号进行滤波处理包括:对麦克风采集到的信号进行低通滤波处理,以滤除高频干扰信号。
在本发明的一个实施例中,根据滤波后的信号进行心率检测包括:对滤波后的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
综上所述,本发明的上述实施例中的技术方案的有益效果包括:
(1)采用了体积较小的密闭腔体来安置麦克风,减小了外界噪声干扰,并强化了麦克风检测到的信号信息。
(2)根据脉搏振动频率的特点,设计了一种低通滤波器,进一步减小了外界高频噪声的影响。
利用耳机检测心率,还有一个重要因素,影响着对心率的准确检测,即人的身体运动。由于人的身体运动必然会引起耳壁的振动,这种振动同样会造成耳道内压力的变化,这种压力变化同时会被麦克风采集到,从而干扰了对心率信号的分析。为此,本发明中还给出了如下的解决方案。
图5为本发明实施例中的一种能检测心率的耳机的结构示意图。如图5所示,该能检测心率的耳机500包括:减法单元550、心率检测单元560、加速度传感器530、自适应滤波单元540、设置在耳机内的腔体510和安装在腔体510内的麦克风520;
其中,腔体510的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体510的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和 与开孔贴合的耳廓构成密闭空间。
麦克风520,用于当耳机500被佩戴时,采集腔体510内的由压力变化产生的信号并输出给减法单元550。
加速度传感器530,用于当耳机被佩戴时,采集由于佩戴者的身体运动所产生的信号并输出给自适应滤波单元540。
自适应滤波单元540,用于根据心率相关信号对加速度传感器530采集到的信号进行自适应滤波处理,得到麦克风520采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号后输出给减法单元550。
减法单元550,用于从麦克风采集到的信号中减去自适应滤波单元540输出的估计信号,得到心率相关的信号输出给心率检测单元560以及自适应滤波单元540。
心率检测单元560,用于根据心率相关的信号进行心率检测。
图5中对加速度传感器530检测到的信号进行自适应滤波处理,使得能从加速度传感器530采集到的人体运动信号准确地估计出麦克风520采集到的人体运动信号,其目的是消除由于人的身体运动对心率检测的影响。麦克风520和加速度传感器530都会检测到由于人的身体运动所产生的振动信号,虽然两种信号周期一致,但幅度会有差异,因此需要采用滤波器消除这种差异,使得能够将人体运动产生的加速度信号从麦克风采集到的信号中消除,以获得有效的心率信息。
图5所示的能检测心率的耳机500中,在耳机500内设置腔体510来安置麦克风520,从而减小了外界噪声的干扰,并强化了麦克风520采集到的信号信息。此外,该能检测心率的耳机500中加入了加速度传感器530来采集由佩戴者的身体运动产生的信号,对加速度传感器530采集的信号进行自适应滤波,从麦克风采集的信号中减去自适应滤波后的加速度传感器信号,再进行心率检测,从而消除了佩戴者的身体运动对心率检测的影响。
在本发明的一个实施例中,图5所示的耳机进一步包括低通滤波器,用于对麦克风采集到的信号进行低通滤波处理,得到低通滤波信号后再输出给减法单元550。即减法单元550,用于从低通滤波信号中减去自适应滤波单元540输出的估计信号,得到心率相关的信号输出给心率检测单元。这是因为脉搏振动的频率较低(0.3Hz-3Hz左右),而外界噪声频率较高,根据这一特点,通过低通滤波器可以消除外界高频噪声的影响。例如,低通滤波器可以选择截止频率为5Hz的FIR滤波器等。
在本发明的实施例中,设置在耳机500内的腔体510和安装在腔体510内的麦克风520的具体安装方式与图2A-2C所示的方案相同,这里不再复述。
图6是本发明一个实施例中的加速度传感器的安放位置的示意图。由于人体的运动会使人体的皮肤随之发生振动,本实施例中加速度传感器装置在耳机中不接触 皮肤的部位,从而避免皮肤振动对加速度传感器采集的信号造成影响,提高加速度传感器采集信号的准确度。参见图6,加速度传感器530可以放置在图6所示虚线框示意出的耳机500的任何一个部位。
在实际情况中,即使耳机能够占据整个耳道,形成完全封闭的腔体,人的身体运动对心率检测的影响也是不可避免的。因为,人的身体运动必然会导致耳壁的振动,而这种振动产生的腔体内的压力变化同样会被麦克风检测到。那么,麦克风采集到的数据不仅包括了由于血管的脉压波动产生的压力变化信息,同时包括了人的身体运动在耳道内产生的压力变化信息。为了消除人的身体运动对心率检测的影响,本发明在耳机中加入加速度传感器,加速度传感器装置在耳机中不接触皮肤的部位,比如图6中所示的虚线框所示的耳机位置。利用加速度传感器采集人的身体运动所产生的加速度信息。人的身体运动所产生的耳道内压力的变化信息和加速度具有相同的振动频率,以此为基础可以采用一定的滤波器消除人的身体运动所产生的干扰。
根据前面的分析,如果能从麦克风检测到的信号中滤除由于人的身体运动所产生的信号,那么就可以得到由于血液流动造成耳道自身收缩产生的信号,此信号和心脏跳动频率有关,基于此信号得到心率信息。
麦克风采集到包括人的身体运动所引起的耳道压力变化信息,加速度传感器采集到的是人的身体运动对应的加速度信息。虽然两种信号具有一样的振动频率,即周期性相同,但是幅度会不同,不能直接将该信号从麦克风采集到的信号中去掉,因此本实施例通过自适应滤波的方法来滤除由于人的身体运动所产生的干扰。
综上所述,本实施例中:首先,采用体积较小的密闭腔体来安置麦克风,减小了外界噪声干扰,并强化了麦克风检测到的信号信息。其次,在耳机中加入了加速度传感器,用于采集由于人的身体运动产生的信号,并通过设计自适应滤波器来消除人的身体运动对心率检测的影响。再者,根据脉搏振动频率的特点,设计了低通滤波器,进一步减小了外界噪声的影响。下面以图7为例进行进一步的说明。
图7为本发明又一个实施例中的一种能检测心率的耳机的结构示意图。如图7所示,该能检测心率的耳机700包括:减法单元750、心率检测单元760、低通滤波器770、加速度传感器730、自适应滤波单元740、设置在耳机内的腔体710和安装在腔体710内的麦克风720。其中,自适应滤波单元740包括:参数可调滤波器741和参数自适应调整单元742。
其中,腔体710的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体710的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴合的耳廓构成密闭空间。
麦克风720,用于当耳机700被佩戴时,采集腔体710内的由压力变化所产生 的信号并输出给低通滤波器770。
低通滤波器770,用于对麦克风720采集到的信号进行低通滤波处理,得到低通滤波信号后再输出给减法单元750。
加速度传感器730,用于当耳机被佩戴时,采集由于佩戴者的身体运动所产生的信号并输出给自适应滤波单元740中的参数可调滤波器741和参数自适应调整单元742。
参数自适应调整单元742,用于根据加速度传感器730采集到的信号、心率相关信号以及预设的自适应算法去调整参数可调滤波器741的滤波参数。
参数可调滤波器741,用于利用滤波参数对加速度传感器730采集的信号进行自适应滤波,输出麦克风采720集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号给减法单元750。
减法单元750,用于从低通滤波器输出的信号中减去参数可调滤波器741输出的估计信号,得到心率相关的信号输出给心率检测单元760;减法单元750,还用于将心率相关信号输出给参数自适应调整单元742。
这里参数自适应调整单元742根据输入的加速度传感器730采集的信号以及减法单元750反馈的心率相关信号,采用自适应算法计算出参数可调滤波器741的滤波参数。
心率检测单元760,用于根据心率相关的信号进行心率检测。
在本发明的一个实施例中,心率检测单元760,用于对心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。例如,心率检测单元760,可以利用现有的自相关方法、阈值方法等检测出心率相关的信号的周期。
图8是自适应滤波器的一般结构示意图。如图8所示,自适应滤波器主要由参数可调滤波器和调整滤波器系数的参数自适应调整单元两部分构成。自适应滤波器在设计时不需要事先知道有关信号的统计特性的知识,它能够在自己的工作过程中逐渐“了解”或估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳滤波效果。图8中,Ex(n)是期望信号,In(n)是输入信号,Out(n)是输出信号,e(n)为估计误差,e(n)=Ex(n)-Out(n)。自适应滤波器的滤波系数受误差信号控制,e(n)通过预定自适应算法对自适应系数进行调整,最终使得e(n)的均方误差最小,此时输出信号最逼近期望信号。
在图7所示的耳机中,采用了自适应滤波器对加速度传感器采集到的信号进行滤波处理,以准确估计出麦克风采集到的由于人体运动产生的信号。如图7所示,y1(n)是加速度传感器730采集到的信号,即对应自适应滤波单元740中的输入信号,y2(n)为自适应滤波单元740的输出信号,xL(n)表示对应的期望信号,
Figure PCTCN2015079680-appb-000001
对 应误差信号(主要包括心率信号)。yL(n)和y1(n)具有一定的相关性,可以通过设计合适的传递函数,来使得y1(n)经过滤波器后的输出信号y2(n)逼近yL(n)。比如可以根据最小均方误差准则,当误差信号均方的期望值最小时,输出信号y2(n)可以用来有效估计yL(n),那么之后就可以将人体运动对心率检测的干扰从麦克风采集到的信号中去除,再次去除干扰信号的影响。麦克风经过低通滤波后的信号减去加速度传感器经过自适应滤波后的信号,得到和心率相关的信号信息
Figure PCTCN2015079680-appb-000002
以此为基础进行心率的检测。心脏的跳动具有一定的周期性,那么
Figure PCTCN2015079680-appb-000003
是具有一定周期性的信号,根据自相关方法可以获得该信号对应的周期,周期的倒数即为心率。
具体过程如下:
假定麦克风检测到的信号为:x(n)=y(n)+d(n),加速度传感器检测到的信号为y1(n)。
其中,y(n)表示由于人的身体运动所产生的压力变化信号,d(n)表示由于血液流动所产生的压力变化信号;y1(n)表示由于人的身体运动所产生的加速度信号,n表示采样时间点。
x(n)经过低通滤波后信号变为:xL(n)=yL(n)+dL(n)。
y1(n)和y(n)都是同样的运动产生的信号,y1(n)对应的是加速度信息,y(n)对应的是压力信息,虽然两者对应的幅度不同,但具有相同的振动频率。为了将y(n)从x(n)中消除,选择自适应滤波器(冲击响应为h(n))对y1(n)进行滤波,得到y2(n)=y1(n)*h(n),使y2(n)尽可能地接近x(n)经过低通滤波后的由于人的身体运动所产生的压力变化信号yL(n)。
这样由于耳道收缩产生的信号可以表示为:
Figure PCTCN2015079680-appb-000004
滤波器的自适应参数利用自适应算法来获得,实现自适应算法的方法很多,比如可以采用均方误差最小的方法,即使得
Figure PCTCN2015079680-appb-000005
取最小值时得到的滤波器系数。
求得
Figure PCTCN2015079680-appb-000006
后,根据该信号的周期性特点,可以利用自相关方法、阈值法等来对其周期进行检测,其周期的倒数就是心率。
通过图5或图7所示实施例中的耳机能够获得人们在各种情况(安静,运动等)下的心率,以便获取人的健康状况信息,或者以此为依据人们可以根据具体情况将自己的运动量控制在一个合适的范围内。
基于上述实施例给出本发明中的应用于耳机的心率检测方法,本发明方法实施 例中各步骤的具体内容可以参见本发明产品实施例的相关描述。
图9为本发明实施例中一种应用于耳机的心率检测方法的流程图。如图9所示,该方法包括:
步骤S910,在耳机内设置一个腔体,将麦克风安装在腔体内;腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;腔体的口所贴合的耳机壳处有开孔,当耳机被佩戴时腔体和与开孔贴合的耳廓构成密闭空间;在耳机中还设置加速度传感器。例如,将加速度传感器设置在耳机中的不接触佩戴者皮肤的位置。
步骤S920,当耳机被佩戴时,由麦克风采集腔体内的由压力变化产生的信号,由加速度传感器采集由于佩戴者的身体运动所产生的信号;
步骤S930,对加速度传感器采集到的信号进行自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号。
步骤S940,从麦克风采集到的信号中减去该估计信号,得到心率相关的信号;
步骤S950,根据心率相关的信号进行心率检测。
在本发明的一个实施例中,图9所示的方法在从麦克风采集到的信号中减去估计信号,得到心率相关的信号之前进一步包括:对麦克风采集到的信号进行低通滤波处理,得到低通滤波信号。则步骤S940中的从麦克风采集到的信号中减去该估计信号,得到心率相关的信号具体包括:从低通滤波信号中减去该估计信号,得到心率相关的信号。
在本发明的一个实施例中,步骤S930中对加速度传感器采集到的信号进行自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号包括:
根据加速度传感器采集到的信号、心率相关信号以及预设的自适应算法计算自适应滤波参数;
根据自适应滤波参数对加速度传感器采集到的信号进行自适应滤波得到该估计信号。
在本发明的一个实施例中,步骤S950中根据心率相关的信号进行心率检测包括:对心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
综上所述,本发明的图5-9所示实施例中的技术方案的有益效果包括:
(1)采用了体积较小的密闭腔体来安置麦克风,减小了外界噪声干扰,并强化了麦克风检测到的信号信息。
(2)在耳机中加入了加速度传感器,用于采集由于人的身体运动产生的信号,并通过设计自适应滤波器来消除人的身体运动对心率检测的影响。
(3)根据脉搏振动频率的特点,设计了一种低通滤波器,进一步减小了外界 高频噪声的影响。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (14)

  1. 一种应用于耳机的心率检测方法,其中,所述方法包括:
    在耳机内设置一个腔体,将麦克风安装在所述腔体内;所述腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;所述腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时所述腔体和与所述孔贴合的耳廓构成密闭空间;
    当耳机被佩戴时,由所述麦克风采集所述腔体内的由压力变化所产生的信号;
    将麦克风采集的信号作为心率相关的信号;
    根据心率相关的信号进行心率检测。
  2. 如权利要求1所述的方法,其中,该方法进一步包括:对所述麦克风采集到的信号进行滤波处理,得到滤波后的信号;
    所述根据所述麦克风采集的信号进行心率检测包括:根据所述滤波后的信号进行心率检测。
  3. 如权利要求1所述的方法,其中,所述方法包括:
    在耳机中还设置加速度传感器;
    当耳机被佩戴时,由所述加速度传感器采集由于佩戴者的身体运动所产生的信号;
    对所述加速度传感器采集到的信号进行自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号;
    从麦克风采集到的信号中减去所述估计信号,得到心率相关的信号。
  4. 如权利要求3所述的方法,其中,
    在从麦克风采集到的信号中减去所述估计信号,得到心率相关的信号之前,该方法进一步包括:对所述麦克风采集到的信号进行低通滤波处理,得到低通滤波信号;
    所述从麦克风采集到的信号中减去所述估计信号,得到心率相关的信号具体包括:从所述低通滤波信号中减去所述估计信号,得到心率相关的信号。
  5. 如权利要求3所述的方法,其中,所述对所述加速度传感器采集到的信号进行自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号包括:
    根据加速度传感器采集到的信号、心率相关的信号以及预设的自适应算法计算自适应滤波参数;
    根据所述自适应滤波参数对加速度传感器采集到的信号进行自适应滤波得到 所述估计信号。
  6. 如权利要求3所述的方法,其中,所述根据心率相关的信号进行心率检测包括:
    对所述心率相关的信号的周期进行检测;
    由检测出的信号的周期的倒数得到心率。
  7. 如权利要求3所述的方法,其中,所述在耳机中还设置加速度传感器包括:
    将加速度传感器设置在耳机中的不接触佩戴者皮肤的位置。
  8. 一种能检测心率的耳机,其中,该耳机包括:心率检测单元、设置在耳机内的腔体和安装在所述腔体内的麦克风;
    其中,所述腔体的口与耳机壳贴合的位置是,耳机被佩戴时与人耳的耳廓贴合的耳机壳的位置;所述腔体的口所贴合的耳机壳处有孔,当耳机被佩戴时所述腔体和与所述孔贴合的耳廓构成密闭空间;
    所述麦克风,用于当耳机被佩戴时,采集所述腔体内的由压力变化所产生的信号;将麦克风采集的信号作为心率相关的信号;
    所述心率检测单元,用于根据心率相关的信号进行心率检测。
  9. 如权利要求8所述的耳机,其中,该耳机进一步包括:
    滤波单元,用于对所述麦克风采集到的信号进行滤波处理,得到滤波后的信号输出给所述心率检测单元;
  10. 如权利要求8所述的耳机,其中,该耳机还包括:加速度传感器、自适应滤波单元和减法单元;
    所述加速度传感器,用于当耳机被佩戴时,采集由于佩戴者的身体运动所产生的信号并输出给所述自适应滤波单元;
    所述自适应滤波单元,用于根据心率相关的信号对所述加速度传感器采集到的信号进行自适应滤波处理,得到麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号后输出给所述减法单元;
    所述减法单元,用于从麦克风采集到的信号中减去所述估计信号,得到心率相关的信号输出给所述心率检测单元以及所述自适应滤波单元。
  11. 如权利要求10所述的耳机,其中,该耳机进一步包括:低通滤波器,用于对所述麦克风采集到的信号进行低通滤波处理,得到低通滤波信号并输出给所述减法单元;
    所述减法单元,用于从所述低通滤波信号中减去所述估计信号,得到心率相关的信号输出给所述心率检测单元。
  12. 如权利要求10所述的耳机,其中,所述自适应滤波单元包括:参数可调滤波器和参数自适应调整单元;
    所述加速度传感器,用于将采集到的信号输出给所述参数可调滤波器和所述参数自适应调整单元;
    所述减法单元,用于将所述心率相关的信号输出给所述参数自适应调整单元;
    所述参数自适应调整单元,用于根据加速度传感器采集到的信号、心率相关的信号以及预设的自适应算法去调整所述参数可调滤波器的滤波参数;
    所述参数可调滤波器,用于利用滤波参数对加速度传感器采集的信号进行自适应滤波,输出麦克风采集到的信号中的由于佩戴者的身体运动所产生的信号的估计信号给所述减法单元。
  13. 如权利要求10所述的耳机,其中,
    所述心率检测单元,用于对所述心率相关的信号的周期进行检测,由检测出的信号的周期的倒数得到心率。
  14. 如权利要求10所述的耳机,其中,
    所述加速度传感器设置在耳机中的不接触佩戴者皮肤的位置。
PCT/CN2015/079680 2014-07-24 2015-05-25 应用于耳机的心率检测方法和能检测心率的耳机 WO2016011843A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157036700A KR101660671B1 (ko) 2014-07-24 2015-05-25 이어폰에 적용되는 심박수 검출 방법 및 심박수 검출이 가능한 이어폰
EP15810778.9A EP3009070B1 (en) 2014-07-24 2015-05-25 Heartrate detection method applicable in headphone and headphone capable of detecting heartrate
JP2015563115A JP6174169B2 (ja) 2014-07-24 2015-05-25 イヤホンに適用される心拍数検出方法及び心拍数を検出可能なイヤホン
US14/901,581 US9579029B2 (en) 2014-07-24 2015-05-25 Heart rate detection method used in earphone and earphone capable of detecting heart rate
DK15810778.9T DK3009070T3 (en) 2014-07-24 2015-05-25 METHOD OF DETECTING HEART RATE IN HEADPHONE AND HEADPHONE THAT CAN DETECT HEART RATE

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410354577.2A CN104185107B (zh) 2014-07-24 2014-07-24 一种应用于耳机的心率检测方法和能检测心率的耳机
CN201410354577.2 2014-07-24
CN201410422936.3 2014-08-25
CN201410422936.3A CN104244127B (zh) 2014-08-25 2014-08-25 一种应用于耳机的心率检测方法和能检测心率的耳机

Publications (1)

Publication Number Publication Date
WO2016011843A1 true WO2016011843A1 (zh) 2016-01-28

Family

ID=55162488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079680 WO2016011843A1 (zh) 2014-07-24 2015-05-25 应用于耳机的心率检测方法和能检测心率的耳机

Country Status (6)

Country Link
US (1) US9579029B2 (zh)
EP (1) EP3009070B1 (zh)
JP (1) JP6174169B2 (zh)
KR (1) KR101660671B1 (zh)
DK (1) DK3009070T3 (zh)
WO (1) WO2016011843A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD774489S1 (en) * 2014-09-03 2016-12-20 Sennheiser Electronic Gmbh & Co. Kg Pair of earphones
US20160242731A1 (en) * 2014-12-17 2016-08-25 Albrik Levick Gharibian Smart blood pressure measuring system (SBPMS)
USD847795S1 (en) * 2016-11-23 2019-05-07 Lg Electronics Inc. Earphone
JP2020010803A (ja) * 2018-07-17 2020-01-23 ソニー株式会社 生体情報処理装置、及び情報処理方法
USD888009S1 (en) * 2019-01-03 2020-06-23 Ningbo Gecen Promotion & Gift Co., Ltd. Ear phone
USD889436S1 (en) * 2019-01-07 2020-07-07 Yiliang Zhang Wireless earphone
USD877722S1 (en) * 2019-04-30 2020-03-10 Shenzhen Ginto E-commerce Co., Limited Wireless earbud
USD872711S1 (en) * 2019-09-27 2020-01-14 Shenzhen Qianhai Patuoxun Network And Technology Co., Ltd Headphone
US20230026002A1 (en) * 2019-12-23 2023-01-26 Audio Zoom Pte Ltd Non-acoustic sensor for active noise cancellation
USD896206S1 (en) * 2020-03-21 2020-09-15 Yuting Xu Earphone
USD938399S1 (en) * 2020-04-01 2021-12-14 Target Brands, Inc. Earphone
USD1021864S1 (en) * 2021-07-19 2024-04-09 Zound Industries International Ab Earbud
USD1020703S1 (en) * 2021-07-19 2024-04-02 Zound Industries International Ab Earbud
DE102021213300A1 (de) * 2021-11-25 2023-05-25 Sivantos Pte. Ltd. Verfahren zum Betrieb eines Hörinstrumentes

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419946A (en) * 2004-11-04 2006-05-10 Nec Technologies Mobile phone headset with microphone for measuring cardiac function of user
CN2824836Y (zh) * 2005-01-19 2006-10-11 捷飞科研有限公司 头戴式生理参数测量仪
US20080187163A1 (en) * 2007-02-01 2008-08-07 Personics Holdings Inc. Method and device for audio recording
US20090105548A1 (en) * 2007-10-23 2009-04-23 Bart Gary F In-Ear Biometrics
US20100262025A1 (en) * 2009-04-09 2010-10-14 Chung Yuan Christian University Apparatus for measurement of heart rate variability
CN101878635A (zh) * 2007-07-02 2010-11-03 索尼爱立信移动通讯股份有限公司 便携式移动通信设备的耳机组件
CN102006528A (zh) * 2009-08-31 2011-04-06 幻音科技(深圳)有限公司 耳机装置
CN102215740A (zh) * 2008-11-17 2011-10-12 索尼爱立信移动通讯有限公司 用于从生理声信号检测生理测量结果的设备、方法和计算机程序
CN104185107A (zh) * 2014-07-24 2014-12-03 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN104244127A (zh) * 2014-08-25 2014-12-24 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN204145698U (zh) * 2014-08-25 2015-02-04 歌尔声学股份有限公司 一种能检测心率的耳机

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200003U (zh) * 1985-06-05 1986-12-15
US4991587A (en) * 1985-08-09 1991-02-12 Picker International, Inc. Adaptive filtering of physiological signals in physiologically gated magnetic resonance imaging
US4890619A (en) * 1986-04-15 1990-01-02 Hatschek Rudolf A System for the measurement of the content of a gas in blood, in particular the oxygen saturation of blood
US4751931A (en) * 1986-09-22 1988-06-21 Allegheny-Singer Research Institute Method and apparatus for determining his-purkinje activity
JPS6384520A (ja) * 1986-09-30 1988-04-15 株式会社東芝 反射型脈拍計
JPH07112471B2 (ja) * 1986-12-19 1995-12-06 ソニー株式会社 圧力センサ
US4793361A (en) * 1987-03-13 1988-12-27 Cardiac Pacemakers, Inc. Dual channel P-wave detection in surface electrocardiographs
US5549652A (en) * 1993-11-15 1996-08-27 Pacesetter, Inc. Cardiac wall motion-based automatic capture verification system and method
US5832093A (en) * 1995-10-30 1998-11-03 Bernstein; Leslie H. Universal stethoscope amplifier with graphic equalization and teaching and learning ports
US6647368B2 (en) * 2001-03-30 2003-11-11 Think-A-Move, Ltd. Sensor pair for detecting changes within a human ear and producing a signal corresponding to thought, movement, biological function and/or speech
US8790272B2 (en) * 2002-03-26 2014-07-29 Adidas Ag Method and system for extracting cardiac parameters from plethysmographic signals
AU2003225066A1 (en) * 2002-04-19 2003-11-03 Colin Medical Technology Corporation Headset for measuring physiological parameters
TW200425763A (en) * 2003-01-30 2004-11-16 Aliphcom Inc Acoustic vibration sensor
EP1622512B1 (en) * 2003-04-10 2013-02-27 Adidas AG Systems and methods for respiratory event detection
EP2508124A3 (en) * 2003-11-18 2014-01-01 Adidas AG System for processing data from ambulatory physiological monitoring
JP2005156641A (ja) * 2003-11-20 2005-06-16 Sony Corp 再生態様制御装置及び再生態様制御方法
US7314451B2 (en) * 2005-04-25 2008-01-01 Earlysense Ltd. Techniques for prediction and monitoring of clinical episodes
US8340309B2 (en) * 2004-08-06 2012-12-25 Aliphcom, Inc. Noise suppressing multi-microphone headset
US7450730B2 (en) * 2004-12-23 2008-11-11 Phonak Ag Personal monitoring system for a user and method for monitoring a user
US8378811B2 (en) * 2005-03-11 2013-02-19 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
US20070127757A2 (en) * 2005-07-18 2007-06-07 Soundquest, Inc. Behind-The-Ear-Auditory Device
WO2007147049A2 (en) * 2006-06-14 2007-12-21 Think-A-Move, Ltd. Ear sensor assembly for speech processing
JP2008136556A (ja) 2006-11-30 2008-06-19 Ibox:Kk イヤホン装置
GB0705033D0 (en) * 2007-03-15 2007-04-25 Imp Innovations Ltd Heart rate measurement
US8419649B2 (en) * 2007-06-12 2013-04-16 Sotera Wireless, Inc. Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms
JP5185265B2 (ja) * 2007-06-27 2013-04-17 パイオニア株式会社 聴取装置
JP5307365B2 (ja) * 2007-07-24 2013-10-02 株式会社saieco 脈診システム、脈診装置、作動方法及び脈診プログラム
US9386929B2 (en) * 2007-11-27 2016-07-12 Koninklijke Philips N.V. Aural heart monitoring apparatus and method
US20090281435A1 (en) * 2008-05-07 2009-11-12 Motorola, Inc. Method and apparatus for robust heart rate sensing
US9253560B2 (en) * 2008-09-16 2016-02-02 Personics Holdings, Llc Sound library and method
US8200339B2 (en) * 2008-10-13 2012-06-12 Cochlear Limited Implantable microphone for an implantable hearing prothesis
EP2347601A4 (en) * 2008-10-14 2014-05-14 Cochlear Ltd IMPLANTABLE MICROPHONE SYSTEM AND CALIBRATION PROCESS
US8705784B2 (en) * 2009-01-23 2014-04-22 Sony Corporation Acoustic in-ear detection for earpiece
EP3127476A1 (en) * 2009-02-25 2017-02-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8545417B2 (en) * 2009-09-14 2013-10-01 Sotera Wireless, Inc. Body-worn monitor for measuring respiration rate
US20110066042A1 (en) * 2009-09-15 2011-03-17 Texas Instruments Incorporated Estimation of blood flow and hemodynamic parameters from a single chest-worn sensor, and other circuits, devices and processes
KR20110052783A (ko) * 2009-11-13 2011-05-19 삼성전자주식회사 생체 정보 획득 방법 및 장치
US8888701B2 (en) * 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
JP5926511B2 (ja) * 2011-08-11 2016-05-25 株式会社アドバンス 美容・健康モニタリングシステム
JP2013103040A (ja) * 2011-11-16 2013-05-30 Sony Corp 電子機器
CN104203088B (zh) * 2012-01-16 2017-09-22 瓦伦赛尔公司 利用惯性频率减少生理指标误差
KR101295046B1 (ko) 2012-03-05 2013-08-09 주식회사 경희스포츠패나틱 헤드셋 모듈
JP5998563B2 (ja) * 2012-03-27 2016-09-28 セイコーエプソン株式会社 拍動検出装置、電子機器及びプログラム
CN104507384A (zh) * 2012-07-30 2015-04-08 三菱化学控股株式会社 检体信息检测单元、检体信息处理装置、电动牙刷装置、电动剃须刀装置、检体信息检测装置、老龄化度评价方法及老龄化度评价装置
US20140051939A1 (en) * 2012-08-17 2014-02-20 Rare Light, Inc. Obtaining physiological measurements using ear-located sensors
JP6107045B2 (ja) * 2012-10-19 2017-04-05 富士通株式会社 携帯情報端末
US20140128754A1 (en) * 2012-11-08 2014-05-08 Aliphcom Multimodal physiological sensing for wearable devices or mobile devices
US20140128753A1 (en) * 2012-11-08 2014-05-08 Aliphcom Piezoelectric heart rate sensing for wearable devices or mobile devices
US20140288441A1 (en) * 2013-03-14 2014-09-25 Aliphcom Sensing physiological characteristics in association with ear-related devices or implements
US20140276227A1 (en) * 2013-03-14 2014-09-18 Aliphcom Sleep management implementing a wearable data-capable device for snoring-related conditions and other sleep disturbances
DK3010249T3 (en) * 2014-07-24 2017-10-02 Goertek Inc METHOD OF DETECTING HEART RATE IN HEADPHONE AND HEADPHONE THAT CAN DETECT HEART RATE

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2419946A (en) * 2004-11-04 2006-05-10 Nec Technologies Mobile phone headset with microphone for measuring cardiac function of user
CN2824836Y (zh) * 2005-01-19 2006-10-11 捷飞科研有限公司 头戴式生理参数测量仪
US20080187163A1 (en) * 2007-02-01 2008-08-07 Personics Holdings Inc. Method and device for audio recording
CN101878635A (zh) * 2007-07-02 2010-11-03 索尼爱立信移动通讯股份有限公司 便携式移动通信设备的耳机组件
US20090105548A1 (en) * 2007-10-23 2009-04-23 Bart Gary F In-Ear Biometrics
CN102215740A (zh) * 2008-11-17 2011-10-12 索尼爱立信移动通讯有限公司 用于从生理声信号检测生理测量结果的设备、方法和计算机程序
US20100262025A1 (en) * 2009-04-09 2010-10-14 Chung Yuan Christian University Apparatus for measurement of heart rate variability
CN102006528A (zh) * 2009-08-31 2011-04-06 幻音科技(深圳)有限公司 耳机装置
CN104185107A (zh) * 2014-07-24 2014-12-03 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN104244127A (zh) * 2014-08-25 2014-12-24 歌尔声学股份有限公司 一种应用于耳机的心率检测方法和能检测心率的耳机
CN204145698U (zh) * 2014-08-25 2015-02-04 歌尔声学股份有限公司 一种能检测心率的耳机

Also Published As

Publication number Publication date
EP3009070A1 (en) 2016-04-20
US20160206222A1 (en) 2016-07-21
JP2016534762A (ja) 2016-11-10
JP6174169B2 (ja) 2017-08-02
KR101660671B1 (ko) 2016-09-27
US9579029B2 (en) 2017-02-28
EP3009070B1 (en) 2017-08-30
KR20160016906A (ko) 2016-02-15
DK3009070T3 (en) 2017-10-09
EP3009070A4 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2016011843A1 (zh) 应用于耳机的心率检测方法和能检测心率的耳机
WO2016011848A1 (zh) 应用于耳机的心率检测方法和能检测心率的耳机
CN104244127B (zh) 一种应用于耳机的心率检测方法和能检测心率的耳机
AU2018292422B2 (en) System, device and method for assessing a fit quality of an earpiece
JP5965920B2 (ja) 外耳道の封鎖の封鎖性能の推定
CN204145698U (zh) 一种能检测心率的耳机
CN104244125B (zh) 一种应用于耳机的心率检测方法和能检测心率的耳机
EP3157483B1 (en) Method for continuous in -ear hearing health monitoring on a human being
US8834386B2 (en) Noise reduction of breathing signals
CN104185107B (zh) 一种应用于耳机的心率检测方法和能检测心率的耳机
CN111698940A (zh) 利用耳内式加速度计测量呼吸
JP2005520211A (ja) ノイズ抑制システムと共に用いるための発声活動検出(vad)デバイスおよび方法
CN106851459A (zh) 入耳式耳机
WO2016067942A1 (ja) 検体情報処理装置、情報処理方法、情報処理プログラム、及び同プログラムを記録したコンピュータ読み取り可能な記録媒体
CN104244126B (zh) 一种应用于耳机的心率检测方法和能检测心率的耳机
WO2022036761A1 (zh) 融合入耳麦克风和耳外麦克风的深度学习降噪方法及设备
JP2011188334A (ja) 補聴器
CN107172516B (zh) 一种耳机及心率检测方法
CN207369229U (zh) 一种耳机
JP6018025B2 (ja) 検体情報処理装置
WO2023240512A1 (zh) 跌倒检测方法、装置、耳机及存储介质

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015563115

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157036700

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14901581

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015810778

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810778

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE