WO2016011726A1 - 阵列基板及其制备方法、显示装置 - Google Patents

阵列基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2016011726A1
WO2016011726A1 PCT/CN2014/090618 CN2014090618W WO2016011726A1 WO 2016011726 A1 WO2016011726 A1 WO 2016011726A1 CN 2014090618 W CN2014090618 W CN 2014090618W WO 2016011726 A1 WO2016011726 A1 WO 2016011726A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
insulating layer
color filter
array substrate
transparent electrode
Prior art date
Application number
PCT/CN2014/090618
Other languages
English (en)
French (fr)
Inventor
姚琪
张锋
曹占锋
舒适
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/770,579 priority Critical patent/US10437094B2/en
Publication of WO2016011726A1 publication Critical patent/WO2016011726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate

Definitions

  • Embodiments of the present invention relate to an array substrate, a method of fabricating the same, and a display device.
  • liquid crystal display devices have replaced cathode ray tube display devices as mainstream display devices in the field of daily display.
  • Resolution is defined as the number of pixel cells per inch of area in a liquid crystal display device. The higher the resolution, the greater the number of pixel units per inch of area, resulting in smaller and smaller pixel units in each liquid crystal display device, thereby enabling pixel electrodes in adjacent two pixel units. The spacing between them is getting smaller and smaller. As shown in FIG. 1, when a certain operating voltage is applied to the pixel electrode 10, the electric field between the adjacent two pixel electrodes 10 is disturbed (as indicated by an arrow in the figure), thereby affecting the quality of the display screen.
  • liquid crystal molecules 12 corresponding to the pixel unit b near the edge of the pixel unit a are deflected, thereby causing a phenomenon such as color mixing, light leakage, and the like in adjacent pixel units in the liquid crystal display device, thereby affecting the display effect of the liquid crystal display device.
  • an array substrate includes: a plurality of pixel units arranged in an array, each of the pixel units including a first transparent electrode and a color filter unit stacked on a base substrate, wherein ,
  • a first insulating layer is disposed between the first transparent electrode and the color filter unit, adjacent A protrusion is disposed between the first transparent electrodes, and an apex of the protrusion is higher than an upper surface of the first transparent electrode.
  • the edges of adjacent color filter units are overlapped to form an overlap region.
  • the protrusions include at least a portion of the first insulating layer corresponding to the overlapping region.
  • the protrusion is a portion of the first insulating layer corresponding to the overlapping region.
  • the protrusion includes a first raised portion and a second raised portion above the first raised portion
  • the first raised portion is formed by an overlapping region of adjacent color filter units, and the second raised portion is a portion of the first insulating layer corresponding to the overlapping region.
  • the array substrate further includes: a plurality of gate lines and a plurality of data lines disposed on the base substrate; the protrusions corresponding to at least one of the gate lines, and/or the protrusions Corresponding to at least one of the data lines, the gate line and the data line are disposed between the color filter unit and the base substrate.
  • the protrusion has a height higher than an upper surface of the first transparent electrode of 1 ⁇ m to 2 ⁇ m, a width of the protrusion is larger than a width of the gate line, and a width of the protrusion is different from the The difference in width of the gate lines is 3 ⁇ m to 6 ⁇ m, the width of the bumps is larger than the width of the data lines, and the difference between the width of the bumps and the width of the data lines is 3 ⁇ m to 6 ⁇ m.
  • the array substrate further includes a black matrix located between adjacent ones of the pixel units and corresponding to the protrusions.
  • each of the pixel units further includes: a second transparent electrode above the first transparent electrode, and a second insulating layer disposed between the second transparent electrode and the first transparent electrode ;
  • the protrusion further includes a portion of the second insulating layer corresponding to the overlapping region, and a vertex of the protrusion is higher than an upper surface of the second transparent electrode.
  • the first transparent electrode is a pixel electrode
  • the second transparent electrode is a common electrode
  • the first transparent electrode is a common electrode
  • the second transparent electrode is a pixel electrode
  • the protrusion includes: a first raised portion, a second raised portion above the first raised portion, and a third raised portion above the second raised portion; ,
  • the first raised portion is formed by an overlapping region of the adjacent color filter units; the second raised portion is a portion of the first insulating layer corresponding to the overlapping region; The three raised portions are portions of the second insulating layer corresponding to the overlapping regions.
  • a display device comprising the array substrate according to any of the above.
  • a method for preparing an array substrate includes:
  • the color filter layer comprising a plurality of color filter units arranged in an array, the color of the adjacent color filter units being different, and the edges of the adjacent color filter units Overlapping settings to form an overlap region;
  • first insulating layer and a protrusion on the color filter layer Forming a first insulating layer and a protrusion on the color filter layer, the protrusion including at least a portion of the first insulating layer corresponding to the overlapping region;
  • each of the first transparent electrodes corresponding to one of the color filter units; the protrusions being located adjacent to each other Between the first transparent electrodes, and the apex of the protrusion is higher than the upper surface of the first transparent electrode.
  • the step of forming a first insulating layer and a protrusion on the color filter layer, wherein the method for preparing the protrusion specifically includes:
  • a first insulating layer and a protrusion of the first insulating layer corresponding to the overlapping region are formed by a patterning process.
  • the step of forming a first insulating layer and a protrusion on the color filter layer wherein the method of preparing the protrusion comprises: overlapping edges of adjacent color filter units to form a first Raised portion
  • a second raised portion is naturally formed on the first raised portion when the first insulating layer is formed.
  • the method for preparing the array substrate further includes:
  • the protrusion Forming a plurality of second transparent electrodes on the second insulating layer, wherein the protrusion further includes a portion of the second insulating layer corresponding to the overlapping region, the apex of the protrusion being higher than the The upper surface of the second transparent electrode.
  • protrusions are disposed between adjacent first transparent electrodes. Therefore, when a certain working voltage is applied to the first transparent electrode, the isolation effect of the protrusions is utilized.
  • the electric field interference phenomenon between the adjacent first transparent electrodes is obviously reduced, so that the influence of the interference electric field on the liquid crystal molecules located between the adjacent first transparent electrodes can be alleviated, thereby reducing the relationship between adjacent pixel units.
  • the color mixing and light leakage phenomenon improves the display effect of the display device.
  • FIG. 1 is a schematic structural view of an array substrate in the prior art
  • FIG. 2 is a schematic diagram showing the results of light leakage test of the array substrate in the prior art
  • FIG. 3 is a schematic structural view 1 of an array substrate according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a light leakage test result of an array substrate according to an embodiment of the present invention.
  • FIG. 5 is a second schematic structural diagram of an array substrate according to an embodiment of the present invention.
  • FIG. 6 is a schematic plan view of an array substrate according to an embodiment of the present invention.
  • FIG. 7 is a schematic plan view 2 of an array substrate according to an embodiment of the present invention.
  • FIG. 8 is a schematic plan view 3 of an array substrate according to an embodiment of the present invention.
  • FIG. 9 is a schematic plan view 4 of an array substrate according to an embodiment of the present invention.
  • FIG. 10 is a schematic plan view 5 of an array substrate according to an embodiment of the present invention.
  • FIG. 11 is a plan view 6 of an array substrate according to an embodiment of the present invention.
  • FIG. 12 is a plan view 7 of an array substrate according to an embodiment of the present invention.
  • FIG. 13 is a schematic plan view of an array substrate according to an embodiment of the present invention.
  • an embodiment of the present invention provides an array substrate, including: arranged in an array. a plurality of pixel units each including a first transparent electrode 1 and a color filter unit 3 disposed opposite each other. As shown in FIG. 3, the first transparent electrode 1 and the color filter unit 3 are stacked.
  • the edges of adjacent color filter units 3 are overlapped to form an overlap region.
  • a first insulating layer 2 is disposed between the first transparent electrode 1 and the color filter unit 3, and a bump 4 is disposed between the adjacent first transparent electrodes 1.
  • the bump 4 includes at least a portion of the first insulating layer 2 corresponding to the overlapping region, and the apex of the bump 4 is higher than the upper surface of the first transparent electrode 1.
  • the protrusions 4 can alleviate the electric field interference phenomenon between the adjacent first transparent electrodes 1. Therefore, the influence of the electric field interference phenomenon on the liquid crystal molecules 12 located between the adjacent first transparent electrodes 1 can be alleviated, thereby reducing the color mixing and light leakage between adjacent pixel units, and improving the display effect of the display device.
  • the liquid crystal molecules 12 in the pixel unit a can be deflected by the electric field formed by the corresponding first transparent electrode 1. Due to the isolation of the protrusions 4, the first transparent electrode 1 can be lightened. The electric field of the other first transparent electrode 1 in the adjacent pixel unit b interferes, so that the liquid crystal molecules 12 located between the adjacent first transparent electrodes 1 and the liquid crystal corresponding to the edge of the pixel unit b close to the pixel unit a can be alleviated. The molecules 12 are deflected, thereby reducing the color mixing and light leakage between adjacent two pixel units in the display device, thereby improving the display effect.
  • the protrusion 4 includes a first raised portion 41 and a second raised portion 42 above the first raised portion 41.
  • the first raised portion 41 is constituted by an overlapping region of adjacent color filter units 3, and the second raised portion 42 is a portion of the first insulating layer 2 corresponding to the overlapping region.
  • a main body of the color filter unit 3 is formed in an overlapping region of the adjacent color filter units 3, and the first protrusion portion as shown in FIG.
  • the colors of the adjacent color filter units 3 constituting the first convex portion 41 are different; since the overlapping regions of the adjacent color filter units 3 are formed with the first convex portions 41, when in color When the first insulating layer 2 is formed on the filter unit 3, the second convex portion 42 is naturally formed on the first insulating layer 2, and the second convex portion 42 is covered on the first convex portion 41 as shown in FIG. .
  • the protrusion 4 includes a first boss portion 41 and a second boss portion 42.
  • the first convex portion 41 is formed by overlapping adjacent color filter units 3, but is not limited thereto, for example, when the overlapping regions of adjacent color filter units 3 are not formed higher than the main body of the color filter unit 3
  • a support pad may be disposed in an overlapping region of the adjacent color filter units 3, and when the first insulating layer 2 is formed, A second raised portion 42 is naturally formed on the support pad, at which time the projection 4 includes a support pad and a second raised portion 42 overlying the support pad.
  • the first raised portion 42 is not limited to being formed in the first insulating layer 2, and may be formed of an additional material alone.
  • the overlapping region of the adjacent color filter units 3 does not form the first convex portion 41 which is higher than the main body of the color filter unit 3, an insulating film layer is formed on the color filter unit 3, and one time of patterning is utilized.
  • the process forms a first insulating layer 2 and bumps 4 on the insulating film layer.
  • the bumps 4 are portions of the first insulating layer 2 corresponding to the overlapping regions.
  • each pixel unit further includes: a second transparent electrode 9 located above the first transparent electrode 1 , and a second electrode 9 disposed between the second transparent electrode 9 and the first transparent electrode 1 . a second insulating layer 8; the protrusion 4 further includes a portion of the second insulating layer 8 corresponding to the overlapping region, the apex of the protrusion 4 being higher than the upper surface of the second transparent electrode 9; wherein the first transparent electrode 1 is a pixel electrode
  • the second transparent electrode 9 is a common electrode, or the first transparent electrode 1 is a common electrode, and the second transparent electrode 9 is a pixel electrode.
  • the first insulating layer 2 and the second insulating layer 8 may be made of an insulating material such as silicon oxide, silicon nitride, hafnium oxide or resin; and the strip electrodes may be strip electrodes or plates.
  • the common electrode may be a strip electrode or a plate electrode.
  • the apex of the projection 4 is required to be higher than the upper surface of the second transparent electrode 9.
  • the height difference between the apex of the bump 4 and the upper surface of the second transparent electrode 9 is 1 ⁇ m to 2 ⁇ m.
  • the protrusion 4 includes a first boss portion 41, a second boss portion 42 located above the first boss portion 41, and a third boss portion 43 above the second boss portion 42.
  • the first raised portion 41 is formed by an overlapping region of the adjacent color filter units 3; the second raised portion 42 is a portion of the first insulating layer 2 corresponding to the overlapping region, covering the first raised portion 41
  • the third raised portion 43 is a portion of the second insulating layer 8 corresponding to the overlapping region, covering the second raised portion 42.
  • the specific formation process is substantially the same as the formation process of the protrusions 4 in FIG. 3 described above, and therefore will not be described again.
  • the array substrate further includes: a substrate substrate 5, a plurality of gate lines (not shown) disposed on the substrate substrate 5, and a plurality of data lines 6; the protrusions 4 and At least one gate line corresponds to, and/or, the bump 4 corresponds to at least one data line 6. Since the gate line and the data line 6 can define the pixel unit, and the first transparent electrode 1 is located in the pixel unit, substantially filling the pixel unit; meanwhile, the protrusion 4 is located between the adjacent first transparent electrodes 1, and it can be seen that the protrusion 4 corresponds to Gate lines and/or data lines 6 are provided. For example, the first transparent electrode 1 and the color filter unit 3 are laminated on the base substrate 5.
  • each pixel unit has a rectangular structure, including a long side and a short side, and since the display device is in operation, the potentials of the first transparent electrodes 1 of each pixel unit are not equal. Therefore, the pixel units do not contact each other.
  • the long side and the long side of the pixel unit are adjacent, the short side and the short side are adjacent, and the long side and the short side are perpendicular.
  • the first transparent electrode 1 generally fills the pixel unit, that is, the long side and the long side of the adjacent first transparent electrode 1 are adjacent, the short side and the short side are adjacent, and there is a gap between the adjacent first transparent electrodes 1
  • the bumps 4 may be located at the gap between the adjacent first transparent electrodes 1.
  • the protrusions 4 are disposed between the long sides of the adjacent first transparent electrodes 1, that is, the protrusions 4 are disposed between the adjacent two columns of the first transparent electrodes 1, and along the first transparent electrodes.
  • the longitudinal direction projections 4 of 1 are spaced apart.
  • the protrusions 4 are disposed between the short sides of the adjacent first transparent electrodes 1, that is, the protrusions 4 are correspondingly disposed between the two rows of pixel units, and along the short side direction of the first transparent electrode 1.
  • the projections 4 are spaced apart. As shown in FIG.
  • the protrusions 4 are disposed between the long sides of the adjacent first transparent electrodes 1, and are also disposed between the short sides of the adjacent first transparent electrodes 1, that is, adjacent pixels of the two rows of pixels.
  • a bump 4 is disposed between the adjacent two adjacent columns of pixel units, and the bumps 4 are spaced apart along the longitudinal direction and the short side direction of the first transparent electrode 1.
  • the adjacent two rows of the first transparent electrodes 1 are a group, and the protrusions 4 are disposed between the short sides of the first transparent electrodes 1 in the adjacent two groups, that is, corresponding settings between the two groups of pixel units.
  • the protrusions 4 are disposed between the long sides of the adjacent first transparent electrodes 1, that is, the protrusions 4 are disposed between the adjacent two columns of the first transparent electrodes 1, and along the first transparent electrodes.
  • the longitudinal direction projections 4 of 1 are continuously arranged.
  • the protrusions 4 are disposed between the short sides of the adjacent first transparent electrodes 1, that is, the protrusions 4 are disposed between the adjacent two rows of the first transparent electrodes 1, and along the first transparent electrodes.
  • the short side direction projections 1 of 1 are continuously arranged. As shown in FIG.
  • the adjacent two columns of the first transparent electrodes 1 are a group, and the protrusions 4 are disposed between the long sides of the first transparent electrodes 1 in the adjacent two groups, that is, corresponding settings between the two groups of pixel units.
  • the protrusions 4 are disposed between the long sides of the adjacent first transparent electrodes 1, and are also disposed between the short sides of the adjacent first transparent electrodes 1, that is, adjacent two rows of pixel units.
  • a bump 4 is disposed between the adjacent two adjacent columns of pixel units, and the bumps 4 are continuously arranged along the longitudinal direction and the short side direction of the first transparent electrode 1.
  • the height of the protrusion 4 above the upper surface of the first transparent electrode 1 is 1 ⁇ m to 2 ⁇ m, and the width of the protrusion 4 is larger than the width of the gate line.
  • the difference between the width of the ridge 4 and the width of the gate line is 3 ⁇ m to 6 ⁇ m, the width of the bump 4 is larger than the width of the data line 6, and the difference between the width of the bump 4 and the width of the data line 6 is 3 ⁇ m to 6 ⁇ m.
  • the array substrate further includes a black matrix 7 between the adjacent pixel units and the protrusions 4 corresponds.
  • the black matrix 7 may be disposed under the overlapping region portion of the adjacent color filter unit, or may be disposed on the overlapping region portion of the adjacent color filter unit, or may be disposed on the first insulating layer. Due to the existence of the black matrix, the height between the protrusions of the adjacent pixel units is further increased with respect to the upper surface of the first transparent electrode, thereby further reducing the electric field interference and the light mixing phenomenon between adjacent pixel units, thereby improving The aperture ratio further enhances the display. Further, the black matrix 7 corresponds to each of the gate lines and the respective data lines 6.
  • the array substrate since the color filter unit is provided on the array substrate, the array substrate is also referred to as a COA (Color Filter On Array) array substrate.
  • the array substrate can be specifically applied to a Twisted Nematic (TN) mode display device, or can be applied to an Advanced Super Dimension Switch (ADS) mode display device. It can be applied to a display device in a Wide Plane Switching mode.
  • TN Twisted Nematic
  • ADS Advanced Super Dimension Switch
  • the embodiment of the present invention further provides a display device including the above array substrate, and the display device may be: a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, etc. Any product or part that has a display function.
  • the display device may be: a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, etc. Any product or part that has a display function.
  • protrusions are provided between adjacent first transparent electrodes, and the protrusions can alleviate the electric field interference phenomenon between the adjacent first transparent electrodes, thereby reducing the electric field interference phenomenon.
  • the influence of the liquid crystal molecules located between the adjacent first transparent electrodes reduces the color mixing and light leakage between adjacent pixel units, thereby improving the display effect of the display device.
  • an embodiment of the present invention provides a method for preparing an array substrate, which comprises:
  • the color filter layer includes a plurality of color filter units 3 arranged in an array, and colors of adjacent color filter units 3 are different, and adjacent color filter units 3 The edges are overlapped to form an overlapping area;
  • first insulating layer 2 and a protrusion 4 on the color filter layer, and the protrusion 4 includes at least a first a portion of the insulating layer 2 corresponding to the overlapping region;
  • first transparent electrodes 1 Form a plurality of first transparent electrodes 1 arranged in an array on the first insulating layer 2, each of the first transparent electrodes 1 corresponding to one color filter unit 3; the protrusions 4 are located adjacent to the first transparent electrodes Between 1 and the apex of the protrusion 4 is higher than the upper surface of the first transparent electrode 1.
  • the protrusions 4 of the first insulating layer 2 and the first insulating layer 2 corresponding to the overlapping regions are formed by a halftone mask patterning process.
  • an insulating film layer is first formed on the color filter layer by coating or coating, and the insulating film layer may be made of a transparent resin material; then, the overlap is partially removed by a process such as film formation, exposure, development, and the like.
  • the transparent resin material outside the region retains the transparent resin material corresponding to the overlap region, thereby forming the desired first insulating layer 2 and the bumps 4.
  • the step of forming the first insulating layer 2 and the bumps 4 on the color filter layer, wherein the method of preparing the bumps 4 can also be formed by the following method:
  • the edges of the adjacent color filter units 3 are overlapped to form a first boss portion 41, and the second boss portion 42 is naturally formed on the first boss portion 41 when the first insulating layer 2 is formed.
  • a main body of the color filter unit 3 is formed in an overlapping region of the adjacent color filter units 3, as shown in FIG.
  • the starting portion 41 is formed with the first convex portion 41 due to the overlapping region of the adjacent color filter units 3. Therefore, the first insulating layer 2 is formed on the color filter layer by coating or laying.
  • the second boss portion 42 is naturally formed on the first insulating layer 2, and the second boss portion 42 is covered on the first boss portion 41 as shown in FIG.
  • the above-mentioned protrusions 4 can also be prepared by the following method: in the color filter unit After the first insulating layer 2 is formed on the third, the desired bumps 4 are formed by one patterning process, and at this time, the bumps 4 include portions of the first insulating layer 2 corresponding to the above-mentioned overlapping regions.
  • the method for preparing the array substrate further includes:
  • a plurality of second transparent electrodes 9 are formed on the second insulating layer 8, wherein the protrusions 4 further include a portion of the second insulating layer 8 corresponding to the overlapping region, and the apex of the protrusions 4 is higher than the second transparent electrode The upper surface of 9.
  • the second insulating layer 8 is formed on the first transparent electrode 1 by coating or laying. At this time, since the second boss portion 42 is formed on the first insulating layer 2, the third boss portion 43 is naturally formed on the second insulating layer 8.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

一种阵列基板及其制备方法、显示装置。阵列基板包括:呈阵列状排列的多个像素单元(a),每个像素单元(a)包括相对设置的第一透明电极(1)和彩色滤光单元(3)。第一透明电极(1)和彩色滤光单元(3)之间设置有第一绝缘层(2),相邻的第一透明电极(1)之间设有凸起(4),且凸起(4)的顶点高于第一透明电极(1)的上表面。

Description

阵列基板及其制备方法、显示装置 技术领域
本发明的实施例涉及一种阵列基板及其制备方法、显示装置。
背景技术
随着薄膜晶体管液晶显示(TFT-LCD Display)技术的发展和进步,液晶显示器装置已经取代了阴极射线管显示装置成为了日常显示领域的主流显示装置。
目前,为了不断提高液晶显示装置显示图像的质量,其分辨率在不断地提高,力求为消费者提供更为清晰逼真的显示画面。分辨率的定义为液晶显示装置中每英寸面积内的像素单元的数量。分辨率越高,则每英寸面积内的像素单元的数量就越多,致使每个液晶显示装置中像素单元的尺寸也就越来越小,进而使得相邻的两个像素单元中的像素电极之间的间距也越来越小。如图1所示,当给像素电极10通入一定的工作电压时,导致相邻的两个像素电极10之间的电场发生干扰(如图中箭头所示),从而影响显示画面的质量。
例如,如图2所示,当仅要求某一像素单元(标记为a)对应的液晶分子12偏转而与该像素单元相邻的另一个像素单元(标记为b)对应液晶分子12不发生偏转时,由于像素单元a与像素单元b之间的间隔很小,使得相邻的两个像素电极10之间的电场发生干扰,导致相邻的像素单元a与像素单元b之间的液晶分子12、以及像素单元b靠近像素单元a的边缘处对应的液晶分子12发生偏转,从而使液晶显示装置中相邻的像素单元产生混色、漏光等现象,影响了液晶显示装置的显示的效果。
发明内容
根据本发明的一个实施例提供一种阵列基板,包括:呈阵列状排列的多个像素单元,每个所述像素单元包括层叠在衬底基板上的第一透明电极和彩色滤光单元,其中,
所述第一透明电极和所述彩色滤光单元之间设置有第一绝缘层,相邻的 所述第一透明电极之间设有凸起,且所述凸起的顶点高于所述第一透明电极的上表面。
在一个示例中,相邻的所述彩色滤光单元的边缘交叠设置,形成交叠区域。
在一个示例中,所述凸起至少包括所述第一绝缘层中对应所述交叠区域的部分。
在一个示例中,所述凸起为所述第一绝缘层中对应所述交叠区域的部分。
在一个示例中,所述凸起包括第一凸起部和位于所述第一凸起部上方的第二凸起部;
所述第一凸起部由相邻的所述彩色滤光单元的交叠区域构成,所述第二凸起部为所述第一绝缘层中对应所述交叠区域的部分。
在一个示例中,阵列基板还包括:设于所述衬底基板上的多条栅线和多条数据线;所述凸起与至少一条所述栅线对应,和/或,所述凸起与至少一条所述数据线对应,所述栅线和数据线设置在所述彩色滤光单元与所述衬底基板之间。
在一个示例中,所述凸起高出所述第一透明电极的上表面的高度为1μm~2μm,所述凸起的宽度大于所述栅线的宽度,所述凸起的宽度与所述栅线的宽度之差为3μm~6μm,所述凸起的宽度大于所述数据线的宽度,所述凸起的宽度与所述数据线的宽度之差为3μm~6μm。
在一个示例中,阵列基板还包括黑矩阵,所述黑矩阵位于相邻的所述像素单元之间,并与所述凸起对应。
在一个示例中,每个所述像素单元还包括:位于所述第一透明电极上方的第二透明电极,设于所述第二透明电极和所述第一透明电极之间的第二绝缘层;
所述凸起还包括第二绝缘层中对应所述交叠区的部分,所述凸起的顶点高于所述第二透明电极的上表面。
在一个示例中,所述第一透明电极为像素电极,所述第二透明电极为公共电极,或,所述第一透明电极为公共电极,所述第二透明电极为像素电极。
在一个示例中,所述凸起包括:第一凸起部,位于所述第一凸起部上方的第二凸起部,位于所述第二凸起部上方的第三凸起部;其中,
所述第一凸起部由相邻的所述彩色滤光单元的交叠区域构成;所述第二凸起部为所述第一绝缘层中对应所述交叠区域的部分;所述第三凸起部为所述第二绝缘层中对应所述交叠区域的部分。
根据本发明的另一个实施例提供一种显示装置,包括根据上述任一项的阵列基板。
根据本发明的再一个实施例一种阵列基板的制备方法,包括:
形成彩色滤光层,所述彩色滤光层包括呈阵列状排列的多个彩色滤光单元,相邻的所述彩色滤光单元的颜色不同,且相邻的所述彩色滤光单元的边缘交叠设置,形成交叠区域;
在所述彩色滤光层上形成第一绝缘层和凸起,所述凸起至少包括所述第一绝缘层中对应所述交叠区域的部分;
在所述第一绝缘层上形成呈阵列状排列的多个所述第一透明电极,每个所述第一透明电极与一个所述彩色滤光单元对应;所述凸起位于相邻的所述第一透明电极之间,且所述凸起的顶点高于所述第一透明电极的上表面。
在一个示例中,在所述彩色滤光层上形成第一绝缘层和凸起的步骤,其中所述凸起的制备方法具体包括:
在所述彩色滤光层上形成绝缘膜层;
通过构图工艺形成第一绝缘层和所述第一绝缘层对应所述交叠区域的凸起。
在一个示例中,在所述彩色滤光层上形成第一绝缘层和凸起的步骤,其中所述凸起的制备方法包括:相邻的所述彩色滤光单元的边缘交叠形成第一凸起部;
形成所述第一绝缘层时在所述第一凸起部上自然形成第二凸起部。
在一个示例中,阵列基板的制备方法还包括:
在所述多个第一透明电极上形成第二绝缘层;
在所述第二绝缘层上形成多个第二透明电极,其中,所述凸起还包括所述第二绝缘层中对应所述交叠区的部分,所述凸起的顶点高于所述第二透明电极的上表面。
在本发明的实施例提供的阵列基板中,相邻的第一透明电极之间设有凸起,因此,当给第一透明电极通入一定的工作电压时,利用凸起的隔离作用, 会明显减轻相邻的第一透明电极之间的电场干扰现象,从而可以减轻该干扰电场对位于相邻的第一透明电极之间的液晶分子的影响,进而降低相邻的像素单元之间的混色和漏光现象,提高了显示装置的显示效果。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为现有技术中的阵列基板的结构示意图;
图2为现有技术中的阵列基板漏光性测试结果示意图;
图3为本发明实施例中的阵列基板的结构示意图一;
图4为本发明实施例中的阵列基板漏光性测试结果示意图;
图5为本发明实施例中的阵列基板的结构示意图二;
图6为本发明实施例中的阵列基板的平面示意图一;
图7为本发明实施例中的阵列基板的平面示意图二;
图8为本发明实施例中的阵列基板的平面示意图三;
图9为本发明实施例中的阵列基板的平面示意图四;
图10为本发明实施例中的阵列基板的平面示意图五;
图11为本发明实施例中的阵列基板的平面示意图六;
图12为本发明实施例中的阵列基板的平面示意图七;
图13为本发明实施例中的阵列基板的平面示意图八。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
请参阅图3,本发明实施例提供了一种阵列基板,包括:呈阵列状排列 的多个像素单元,每个像素单元包括相对设置的第一透明电极1和彩色滤光单元3。如图3所示,第一透明电极1和彩色滤光单元3层叠设置。
相邻的彩色滤光单元3的边缘交叠设置,形成交叠区域。
第一透明电极1和彩色滤光单元3之间设置有第一绝缘层2,相邻的第一透明电极1之间设有凸起4。凸起4至少包括第一绝缘层2中对应交叠区域的部分,且凸起4的顶点高于第一透明电极1的上表面。
当上述阵列基板应用于显示装置中时,因在相邻的第一透明电极1之间设有凸起4,该凸起4可以减轻相邻的第一透明电极1之间的电场干扰现象,从而可以减轻电场干扰现象对位于相邻的第一透明电极1之间的液晶分子12的影响,进而降低了相邻的像素单元之间的混色和漏光现象,提高了显示装置的显示效果。
请参阅图4,像素单元a中的液晶分子12可在所对应的第一透明电极1形成的电场作用下发生偏转,由于凸起4的隔离作用,可以减轻该第一透明电极1对与其相邻的像素单元b内的另一个第一透明电极1的电场干扰,从而可以减轻位于相邻的第一透明电极1之间的液晶分子12以及像素单元b靠近像素单元a的边缘所对应的液晶分子12发生偏转,进而可以减轻显示装置中的相邻的两个像素单元之间的混色和漏光现象,提高了显示效果。
请继续参阅图3,凸起4包括第一凸起部41和位于第一凸起部41上方的第二凸起部42。第一凸起部41由相邻的彩色滤光单元3的交叠区域构成,第二凸起部42为第一绝缘层2中对应交叠区域的部分。当相邻的彩色滤光单元3的边缘交叠设置时,在相邻的彩色滤光单元3的交叠区域形成高出彩色滤光单元3主体、如图3所示的第一凸起部41,且构成第一凸起部41的相邻的彩色滤光单元3的颜色不同;因相邻的彩色滤光单元3的交叠区域形成有第一凸起部41,因此,当在彩色滤光单元3上形成第一绝缘层2时,会在第一绝缘层2上自然形成第二凸起部42,第二凸起部42如图3所示覆盖在第一凸起部41上。
上述凸起4包括第一凸起部41和第二凸起部42。第一凸起部41是由相邻的彩色滤光单元3交叠形成,但不限于此,例如,当相邻的彩色滤光单元3的交叠区域没有形成高出彩色滤光单元3主体的第一凸起部41时,可以在相邻的彩色滤光单元3的交叠区域设置支撑垫,在形成第一绝缘层2时也会 在该支撑垫上自然形成第二凸起部42,此时,凸起4包括支撑垫和覆盖在支撑垫上的第二凸起部42。当然,第一凸起部42也不限于形成在第一绝缘层2中,也可以由额外的材料单独形成。又如,当相邻的彩色滤光单元3的交叠区域没有形成高出彩色滤光单元3主体的第一凸起部41时,在彩色滤光单元3上形成绝缘膜层,利用一次构图工艺在该绝缘膜层上形成第一绝缘层2和凸起4,此时,凸起4为第一绝缘层2中对应上述交叠区域的部分。
请参阅图5,在一种实施方式中,每个像素单元还包括:位于第一透明电极1上方的第二透明电极9,设于第二透明电极9和第一透明电极1之间的第二绝缘层8;凸起4还包括第二绝缘层8中对应交叠区的部分,凸起4的顶点高于第二透明电极9的上表面;其中,第一透明电极1为像素电极,第二透明电极9为公共电极,或,第一透明电极1为公共电极,第二透明电极9为像素电极。需要说明的是,上述阵列基板中,第一绝缘层2和第二绝缘层8可采用氧化硅、氮化硅、氧化铪或树脂等绝缘材料制成;像素电极可选用条状电极或板状电极,公共电极可选用条状电极或板状电极。
为了达到隔离效果,要求凸起4的顶点高出第二透明电极9的上表面。为了达到较佳地电场干扰隔离效果,凸起4的顶点与第二透明电极9的上表面之间的高度差为1μm~2μm。此时,凸起4包括:第一凸起部41,位于第一凸起部41上方的第二凸起部42,位于第二凸起部42上方的第三凸起部43。第一凸起部41由相邻的彩色滤光单元3的交叠区域构成;第二凸起部42为第一绝缘层2对应交叠区域的部分,覆盖在第一凸起部41上;第三凸起部43为第二绝缘层8对应交叠区域的部分,覆盖在第二凸起部42。具体形成过程与上述图3中凸起4的形成过程基本相同,因此不再赘述。
请继续参阅图3和图5,上述阵列基板还包括:衬底基板5,设于衬底基板5上的多条栅线(图中未示出)和多条数据线6;凸起4与至少一条栅线对应,和/或,凸起4与至少一条数据线6对应。由于栅线和数据线6可以界定像素单元,并且第一透明电极1位于像素单元内,基本充满像素单元;同时,凸起4位于相邻的第一透明电极1之间,可知凸起4对应栅线和/或数据线6设置。例如,第一透明电极1和彩色滤光单元3层叠在衬底基板5上。
在上述阵列基板中,通常各像素单元分别为矩形结构,包括长边和短边,并且由于显示装置在工作时,每一像素单元的第一透明电极1的电势不相等, 因此,像素单元相互不接触,在像素单元排布于阵列基板上时,像素单元的长边和长边相邻,短边和短边相邻,长边和短边相垂直。由于第一透明电极1通常占满像素单元,即相邻的第一透明电极1的长边和长边相邻、短边和短边相邻,相邻的第一透明电极1之间有间隙,凸起4可位于相邻的第一透明电极1之间的间隙处。下面通过描述凸起4的排布方式来进一步说明本发明实施例提供的阵列基板的结构。
如图6所示,凸起4设置在相邻的第一透明电极1的长边之间,即相邻的两列第一透明电极1之间设有凸起4,且沿第一透明电极1的长边方向凸起4是间隔排布的。如图7所示,凸起4设置在相邻的第一透明电极1的短边之间,即两行像素单元之间对应设置有凸起4,且沿第一透明电极1的短边方向凸起4是间隔排布的。如图8所示,凸起4设置在相邻的第一透明电极1的长边之间,也设置在相邻的第一透明电极1的短边之间,即相邻两行像素单元之间和相邻的两列像素单元之间设置有凸起4,且凸起4沿第一透明电极1的长边方向和短边方向是间隔排布的。如图9所示,相邻的两行第一透明电极1为一组,凸起4设置在相邻两组中第一透明电极1的短边之间,即两组像素单元之间对应设置有凸起4,且沿第一透明电极1的短边方向凸起4是间隔排布的。
如图10所示,凸起4设置在相邻的第一透明电极1的长边之间,即相邻的两列第一透明电极1之间设有凸起4,且沿第一透明电极1的长边方向凸起4是连续排布的。如图11所示,凸起4设置在相邻的第一透明电极1的短边之间,即相邻的两行第一透明电极1之间设有凸起4,且沿第一透明电极1的短边方向凸起4是连续排布的。如图12所示,相邻的两列第一透明电极1为一组,凸起4设置在相邻两组中第一透明电极1的长边之间,即两组像素单元之间对应设置有凸起4,且沿第一透明电极1的长边方向凸起4是连续排布的。如图13所示,凸起4设置在相邻的第一透明电极1的长边之间,也设置在相邻的第一透明电极1的短边之间,即相邻两行像素单元之间和相邻的两列像素单元之间设置有凸起4,且凸起4沿第一透明电极1的长边方向和短边方向是连续排布的。
请继续参阅图3和图5,为了达到较佳地隔离效果,凸起4高出第一透明电极1的上表面的高度为1μm~2μm,凸起4的宽度大于栅线的宽度,凸 起4的宽度与所述栅线的宽度之差为3μm~6μm,凸起4的宽度大于数据线6的宽度,凸起4的宽度与数据线6的宽度之差为3μm~6μm。
请继续参阅图3,为了进一步减少相邻像素单元之间的漏光,在本发明一个实施例中,阵列基板还包括黑矩阵7,黑矩阵7位于相邻的像素单元之间,并与凸起4对应。黑矩阵7可以设置在相邻彩色滤光单元的交叠区域部分下面,或者可以设置在相邻彩色滤光单元的交叠区域部分上面,或者还可以设置于第一绝缘层上面。由于黑矩阵的存在,相邻像素单元之间的凸起相对于第一透明电极上表面的高度进一步升高,因此,可进一步减轻相邻的像素单元之间的电场干扰和混光现象,提高了开口率进而提升了显示效果。此外,黑矩阵7与各条栅线和各条数据线6对应。
在上述阵列基板中,因彩色滤光单元设置在阵列基板上,因此,上述阵列基板也称为COA(Color Filter On Array)阵列基板。所述阵列基板可具体应用在扭曲向列型(Twisted Nematic,简称TN)模式的显示装置中,也可以应用在高级超维场转换(Advanced Super Dimension Switch,简称ADS)模式的显示装置中,还可以应用在宽视角平面转换(In Plane Switching)模式的显示装置中。
本发明实施例还提供了一种包括上述的阵列基板的显示装置,所述显示装置可以为:液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。因显示装置所采用的阵列基板中,相邻的第一透明电极之间设有凸起,该凸起可以减轻相邻的第一透明电极之间的电场干扰现象,从而可以减轻电场干扰现象对位于相邻的第一透明电极之间的液晶分子的影响,降低了相邻的像素单元之间的混色和漏光现象,进而提高了显示装置的显示效果。
实施例二
请参阅图3,本发明实施例提供一种阵列基板的制备方法,该制备方法包括:
101、形成彩色滤光层,所述彩色滤光层包括呈阵列状排列的多个彩色滤光单元3,相邻的彩色滤光单元3的颜色不同,且相邻的彩色滤光单元3的边缘交叠设置,形成交叠区域;
102、在彩色滤光层上形成第一绝缘层2和凸起4,凸起4至少包括第一 绝缘层2中对应交叠区域的部分;
103、在第一绝缘层2上形成呈阵列状排列的多个第一透明电极1,每个第一透明电极1与一个彩色滤光单元3对应;凸起4位于相邻的第一透明电极1之间,且凸起4的顶点高于第一透明电极1的上表面。
在上述阵列基板的制备过程中,在彩色滤光层上形成第一绝缘层2和凸起4的步骤,其中所述凸起的制备方法具体包括:在彩色滤光层上形成绝缘膜层,通过半色调掩膜构图工艺形成第一绝缘层2和第一绝缘层2对应交叠区域的凸起4。例如,首先通过涂布或涂覆的方式在彩色滤光层上形成一层绝缘膜层,该绝缘膜层可由透明树脂材料制成;然后,通过成膜、曝光、显影等工艺部分去除交叠区域以外的透明树脂材料,保留对应交叠区域的透明树脂材料,从而形成所需的第一绝缘层2和凸起4。
在彩色滤光层上形成第一绝缘层2和凸起4的步骤,其中凸起4的制备方法还可以通过如下方法形成:
相邻的彩色滤光单元3的边缘交叠形成第一凸起部41,形成第一绝缘层2时在第一凸起部41上自然形成第二凸起部42。例如,当相邻的彩色滤光单元3的边缘交叠设置时,在相邻的彩色滤光单元3的交叠区域形成高出彩色滤光单元3主体、如图3所示的第一凸起部41,因相邻的彩色滤光单元3的交叠区域形成有第一凸起部41,因此,当通过涂布的方式或铺设的方式在彩色滤光层上形成第一绝缘层2时,会在第一绝缘层2上自然形成第二凸起部42,第二凸起部42如图3所示覆盖在第一凸起部41上。
当然,当相邻的彩色滤光单元3的交叠区域没有形成高出彩色滤光单元3主体的第一凸起部41时,上述凸起4还可以通过如下方法制备:在彩色滤光单元3上形成第一绝缘层2后,利用一次构图工艺形成所需的凸起4,此时,凸起4包括第一绝缘层2中对应上述交叠区域的部分。
请参阅图5,进一步地,上述阵列基板的制备方法还包括:
104、在多个第一透明电极1上形成第二绝缘层8;
105、在第二绝缘层8上形成多个第二透明电极9,其中,凸起4还包括第二绝缘层8中对应交叠区的部分,凸起4的顶点高于第二透明电极9的上表面。
当通过涂布的方式或铺设的方式在第一透明电极1上形成第二绝缘层8 时,因第一绝缘层2上形成有第二凸起部42,因此,会在第二绝缘层8上自然形成第三凸起部43。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年7月24日递交的中国专利申请第201410355555.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (16)

  1. 一种阵列基板,包括:呈阵列状排列的多个像素单元,每个所述像素单元包括层叠在衬底基板上的彩色滤光单元和第一透明电极,其中,
    所述第一透明电极和所述彩色滤光单元之间设置有第一绝缘层,相邻的所述第一透明电极之间设有凸起,且所述凸起的顶点高于所述第一透明电极的上表面。
  2. 根据权利要求1所述的阵列基板,其中,
    相邻的所述彩色滤光单元的边缘交叠设置,形成交叠区域。
  3. 根据权利要求2所述的阵列基板,其中,
    所述凸起至少包括所述第一绝缘层中对应所述交叠区域的部分。
  4. 根据权利要求2所述的阵列基板,其中,
    所述凸起为所述第一绝缘层中对应所述交叠区域的部分。
  5. 根据权利要求2所述的阵列基板,其中,
    所述凸起包括第一凸起部和位于所述第一凸起部上方的第二凸起部;
    所述第一凸起部由相邻的所述彩色滤光单元的交叠区域构成,所述第二凸起部为所述第一绝缘层中对应所述交叠区域的部分。
  6. 根据权利要求1-5任一项所述的阵列基板,还包括:设于所述衬底基板上的多条栅线和多条数据线;所述凸起与至少一条所述栅线对应,和/或,所述凸起与至少一条所述数据线对应,所述栅线和数据线设置在所述彩色滤光单元与所述衬底基板之间。
  7. 根据权利要求6所述的阵列基板,其中,所述凸起高出所述第一透明电极的上表面的高度为1μm~2μm,所述凸起的宽度大于所述栅线的宽度,所述凸起的宽度与所述栅线的宽度之差为3μm~6μm,所述凸起的宽度大于所述数据线的宽度,所述凸起的宽度与所述数据线的宽度之差为3μm~6μm。
  8. 根据权利要求1-7任一项所述的阵列基板,还包括黑矩阵,所述黑矩阵位于相邻的所述像素单元之间,并与所述凸起对应。
  9. 根据权利要求2所述的阵列基板,其中,每个所述像素单元还包括:位于所述第一透明电极上方的第二透明电极,设于所述第二透明电极和所述第一透明电极之间的第二绝缘层;
    所述凸起还包括第二绝缘层中对应所述交叠区的部分,所述凸起的顶点高于所述第二透明电极的上表面。
  10. 根据权利要求9所述的阵列基板,其中,所述第一透明电极为像素电极,所述第二透明电极为公共电极,或,所述第一透明电极为公共电极,所述第二透明电极为像素电极。
  11. 根据权利要求9所述的阵列基板,其中,所述凸起包括:第一凸起部,位于所述第一凸起部上方的第二凸起部,位于所述第二凸起部上方的第三凸起部;其中,
    所述第一凸起部由相邻的所述彩色滤光单元的交叠区域构成;所述第二凸起部为所述第一绝缘层中对应所述交叠区域的部分;所述第三凸起部为所述第二绝缘层中对应所述交叠区域的部分。
  12. 一种显示装置,包括如权利要求1-11任一项所述的阵列基板。
  13. 一种阵列基板的制备方法,包括:
    形成彩色滤光层,所述彩色滤光层包括呈阵列状排列的多个彩色滤光单元,相邻的所述彩色滤光单元的颜色不同,且相邻的所述彩色滤光单元的边缘交叠设置,形成交叠区域;
    在所述彩色滤光层上形成第一绝缘层和凸起,所述凸起至少包括所述第一绝缘层中对应所述交叠区域的部分;
    在所述第一绝缘层上形成呈阵列状排列的多个所述第一透明电极,每个所述第一透明电极与一个所述彩色滤光单元对应;所述凸起位于相邻的所述第一透明电极之间,且所述凸起的顶点高于所述第一透明电极的上表面。
  14. 根据权利要求13所述的阵列基板的制备方法,其中,在所述彩色滤光层上形成第一绝缘层和凸起的步骤,其中所述凸起的制备方法具体包括:
    在所述彩色滤光层上形成绝缘膜层;
    通过构图工艺形成第一绝缘层和所述第一绝缘层对应所述交叠区域的凸起。
  15. 根据权利要求13所述的阵列基板的制备方法,其中,在所述彩色滤光层上形成第一绝缘层和凸起的步骤,其中所述凸起的制备方法包括:相邻的所述彩色滤光单元的边缘交叠形成第一凸起部;
    形成所述第一绝缘层时在所述第一凸起部上自然形成第二凸起部。
  16. 根据权利要求13-15任一项所述的阵列基板的制备方法,还包括:
    在所述多个第一透明电极上形成第二绝缘层;
    在所述第二绝缘层上形成多个第二透明电极,其中,所述凸起还包括所述第二绝缘层中对应所述交叠区的部分,所述凸起的顶点高于所述第二透明电极的上表面。
PCT/CN2014/090618 2014-07-24 2014-11-07 阵列基板及其制备方法、显示装置 WO2016011726A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/770,579 US10437094B2 (en) 2014-07-24 2014-11-07 Array substrate and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410355555.8 2014-07-24
CN201410355555.8A CN104166280A (zh) 2014-07-24 2014-07-24 一种阵列基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2016011726A1 true WO2016011726A1 (zh) 2016-01-28

Family

ID=51910165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090618 WO2016011726A1 (zh) 2014-07-24 2014-11-07 阵列基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US10437094B2 (zh)
CN (1) CN104166280A (zh)
WO (1) WO2016011726A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104516148B (zh) * 2015-01-12 2017-06-09 京东方科技集团股份有限公司 显示基板及其制备方法和显示装置
JP6683198B2 (ja) * 2015-04-10 2020-04-15 ソニー株式会社 表示装置の製造方法
CN104765191B (zh) 2015-04-30 2018-07-06 京东方科技集团股份有限公司 阵列基板及其制作方法和显示装置
KR102589859B1 (ko) * 2016-03-22 2023-10-16 삼성디스플레이 주식회사 색필터 표시판 및 이를 포함하는 표시 장치
CN106019748B (zh) * 2016-07-29 2019-11-26 上海中航光电子有限公司 一种阵列基板及包含其的显示面板
CN107024812A (zh) 2017-06-08 2017-08-08 深圳市华星光电技术有限公司 具有彩色滤光层的阵列基板及其制备方法、液晶显示装置
CN107290909B (zh) * 2017-06-30 2020-09-29 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN109541861A (zh) * 2017-09-22 2019-03-29 京东方科技集团股份有限公司 像素结构、阵列基板及显示装置
TWI638451B (zh) * 2017-12-20 2018-10-11 友達光電股份有限公司 畫素陣列基板
TWI664474B (zh) * 2018-04-18 2019-07-01 友達光電股份有限公司 主動元件陣列基板
CN108919549A (zh) 2018-07-17 2018-11-30 惠科股份有限公司 显示面板、其制作方法及显示装置
CN109143700B (zh) * 2018-08-20 2020-12-04 武汉华星光电半导体显示技术有限公司 Tft阵列基板及其制作方法
CN111045262B (zh) * 2019-12-09 2021-07-06 深圳市华星光电半导体显示技术有限公司 Coa基板及显示面板
US11061265B2 (en) 2019-12-09 2021-07-13 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. COA substrate and display panel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802659A (zh) * 2007-09-10 2010-08-11 富士胶片株式会社 滤色器及其制造方法以及液晶显示装置
US20110122351A1 (en) * 2008-07-15 2011-05-26 Sharp Kabushiki Kaisha Liquid crystal display device
CN103337497A (zh) * 2013-06-28 2013-10-02 北京京东方光电科技有限公司 一种阵列基板及其制造方法、显示装置
CN103645589A (zh) * 2013-12-10 2014-03-19 京东方科技集团股份有限公司 显示装置、阵列基板及其制作方法
CN103901659A (zh) * 2012-12-27 2014-07-02 上海仪电显示材料有限公司 用于ips模式液晶显示面板的滤光板、液晶显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935670B1 (ko) 2003-04-04 2010-01-07 삼성전자주식회사 액정표시장치, 박막 트랜지스터 표시판 및 그의 제조 방법
KR101016740B1 (ko) * 2003-12-30 2011-02-25 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR101348605B1 (ko) 2006-12-21 2014-01-07 삼성디스플레이 주식회사 컬러 필터 기판 및 이를 포함하는 액정표시패널
KR101490478B1 (ko) * 2008-07-10 2015-02-11 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 이를 포함하는 액정 표시 장치
JP5596330B2 (ja) * 2009-11-16 2014-09-24 パナソニック液晶ディスプレイ株式会社 液晶表示装置及びその製造方法
KR101254561B1 (ko) * 2010-05-04 2013-04-19 엘지디스플레이 주식회사 횡전계형 액정표시장치용 어레이기판
KR20130032743A (ko) * 2011-09-23 2013-04-02 삼성디스플레이 주식회사 액정 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802659A (zh) * 2007-09-10 2010-08-11 富士胶片株式会社 滤色器及其制造方法以及液晶显示装置
US20110122351A1 (en) * 2008-07-15 2011-05-26 Sharp Kabushiki Kaisha Liquid crystal display device
CN103901659A (zh) * 2012-12-27 2014-07-02 上海仪电显示材料有限公司 用于ips模式液晶显示面板的滤光板、液晶显示装置
CN103337497A (zh) * 2013-06-28 2013-10-02 北京京东方光电科技有限公司 一种阵列基板及其制造方法、显示装置
CN103645589A (zh) * 2013-12-10 2014-03-19 京东方科技集团股份有限公司 显示装置、阵列基板及其制作方法

Also Published As

Publication number Publication date
US20160370648A1 (en) 2016-12-22
CN104166280A (zh) 2014-11-26
US10437094B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2016011726A1 (zh) 阵列基板及其制备方法、显示装置
TWI609219B (zh) 畫素單元、畫素陣列結構與顯示面板
WO2017124810A1 (zh) 阵列基板、液晶显示面板及显示装置
CN110082969B (zh) 液晶显示面板及其制作方法和显示装置
KR20130021160A (ko) 표시 장치 및 표시 장치 제조 방법
WO2016201874A1 (zh) 阵列基板及其制作方法以及显示装置
WO2017076158A1 (zh) 像素结构及其制作方法、阵列基板和显示面板
US8314914B2 (en) Liquid crystal display and exposure mask for manufacturing liquid crystal display
CN106886108B (zh) 一种显示面板及其制作方法、显示装置
CN105789223B (zh) 一种阵列基板及其制作方法、显示面板、显示装置
WO2017004948A1 (zh) 阵列基板及其制作方法和显示装置
WO2015085690A1 (zh) 显示装置、阵列基板及其制作方法
WO2016065798A1 (zh) 阵列基板及其制造方法、显示装置
KR20130015734A (ko) 액정표시장치
WO2016201833A1 (zh) 显示基板及其制备方法、显示面板和显示装置
JP6881981B2 (ja) アレイ基板、表示装置及びアレイ基板の製造方法
WO2015081675A1 (zh) 基板及其制作方法、显示装置
JP2007232839A (ja) 液晶装置
WO2023000971A1 (zh) 阵列基板及其制备方法、显示组件及显示装置
WO2014161258A1 (zh) 阵列基板、显示装置及阵列基板的制造方法
WO2016011716A1 (zh) 阵列基板和显示装置
WO2015180302A1 (zh) 阵列基板及其制备方法、显示装置
KR20130030975A (ko) 액정표시장치
WO2019062320A1 (zh) 阵列基板及其制备方法、显示装置
WO2017124790A1 (zh) 像素结构、显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14770579

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14898246

Country of ref document: EP

Kind code of ref document: A1