WO2016009909A1 - 表示装置およびその駆動方法 - Google Patents
表示装置およびその駆動方法 Download PDFInfo
- Publication number
- WO2016009909A1 WO2016009909A1 PCT/JP2015/069597 JP2015069597W WO2016009909A1 WO 2016009909 A1 WO2016009909 A1 WO 2016009909A1 JP 2015069597 W JP2015069597 W JP 2015069597W WO 2016009909 A1 WO2016009909 A1 WO 2016009909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- display
- mode
- pixel circuits
- image
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 25
- 239000003086 colorant Substances 0.000 claims abstract description 36
- 238000005401 electroluminescence Methods 0.000 claims description 187
- 239000004065 semiconductor Substances 0.000 claims description 30
- 239000003990 capacitor Substances 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 18
- 239000010409 thin film Substances 0.000 claims description 7
- 239000000725 suspension Substances 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 2
- 230000007547 defect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 43
- 230000004048 modification Effects 0.000 description 28
- 238000012986 modification Methods 0.000 description 28
- 230000002093 peripheral effect Effects 0.000 description 16
- 229910007541 Zn O Inorganic materials 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 230000007704 transition Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 102100032757 Cysteine-rich protein 2 Human genes 0.000 description 4
- 101000942088 Homo sapiens Cysteine-rich protein 2 Proteins 0.000 description 4
- 101000851593 Homo sapiens Separin Proteins 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000004904 shortening Methods 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 2
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910020923 Sn-O Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910003077 Ti−O Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 101150037603 cst-1 gene Proteins 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3258—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3266—Details of drivers for scan electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/3413—Details of control of colour illumination sources
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1222—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
- H01L27/1225—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0814—Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
- G09G2300/0861—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/08—Details of timing specific for flat panels, other than clock recovery
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0242—Compensation of deficiencies in the appearance of colours
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2340/00—Aspects of display data processing
- G09G2340/04—Changes in size, position or resolution of an image
- G09G2340/0407—Resolution change, inclusive of the use of different resolutions for different screen areas
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/35—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
- H10K59/351—Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
Definitions
- the present invention relates to a display device, and more particularly to a display device including a self-luminous display element driven by a current, such as an organic EL display device, and a driving method thereof.
- an electro-optical element whose luminance is controlled by an applied voltage and an electro-optical element whose luminance is controlled by a flowing current.
- a typical example of an electro-optical element whose luminance is controlled by an applied voltage is a liquid crystal display element.
- an electro-optical element whose luminance is controlled by a flowing current is an organic EL (Electro-Luminescence) element.
- the organic EL element is also called OLED (Organic Light-Emitting Light Diode).
- Organic EL display devices that use organic EL elements, which are self-luminous electro-optic elements, can be easily reduced in thickness, power consumption, brightness, etc., compared to liquid crystal display devices that require backlights and color filters. Can be achieved. Accordingly, in recent years, organic EL display devices have been actively developed.
- an organic EL display device As a driving method of an organic EL display device, a passive matrix method (also called a simple matrix method) and an active matrix method are known.
- An organic EL display device adopting a passive matrix system has a simple structure but is difficult to increase in size and definition.
- an organic EL display device adopting an active matrix method hereinafter referred to as an “active matrix type organic EL display device” is larger and has higher definition than an organic EL display device employing a passive matrix method. Can be easily realized.
- a pixel circuit of an active matrix organic EL display device typically includes an input transistor that selects a pixel and a drive transistor that controls the supply of current to the organic EL element.
- the current flowing from the drive transistor to the organic EL element may be referred to as “drive current”.
- FIG. 48 is a circuit diagram showing a configuration of a conventional general pixel circuit 91 that constitutes one sub-pixel.
- the pixel circuit 91 is provided corresponding to each intersection of the plurality of data lines DL and the plurality of scanning signal lines SL provided in the display unit.
- the pixel circuit 91 includes two transistors T1 and T2, one capacitor Cst, and one organic EL element OLED.
- the transistor T1 is a drive transistor
- the transistor T2 is an input transistor.
- the transistors T1 and T2 are n-channel thin film transistors (TFTs).
- the transistor T1 is provided in series with the organic EL element OLED. With respect to the transistor T1, the gate terminal is connected to the drain terminal of the transistor T2, and the drain terminal is a power supply line for supplying a high level power supply voltage ELVDD (hereinafter referred to as “high level power supply line”). The source terminal is connected to the anode terminal of the organic EL element OLED.
- the transistor T2 is provided between the data line DL and the gate terminal of the transistor T1. Regarding the transistor T2, the gate terminal is connected to the scanning signal line SL, the drain terminal is connected to the gate terminal of the transistor T1, and the source terminal is connected to the data line DL.
- the capacitor Cst has one end connected to the gate terminal of the transistor T1 and the other end connected to the source terminal of the transistor T1.
- the cathode terminal of the organic EL element OLED is connected to a power supply line that supplies a low-level power supply voltage ELVSS (hereinafter referred to as “low-level power supply line” and denoted by the same symbol ELVSS as the low-level power supply voltage).
- ELVSS low-level power supply line
- a connection point between the gate terminal of the transistor T1, one end of the capacitor Cst, and the drain terminal of the transistor T2 is referred to as a “gate node” for convenience.
- a sign VG is attached to the potential of the gate node.
- the higher of the drain and the source is called the drain, but in the description of this specification, one is defined as the drain and the other is defined as the source. Therefore, the source potential is higher than the drain potential. May be higher.
- FIG. 49 is a timing chart for explaining the operation of the pixel circuit 91 shown in FIG.
- the scanning signal line SL Prior to time t91, the scanning signal line SL is in a non-selected state. Therefore, before the time t91, the transistor T2 is in an off state, and the potential VG of the gate node maintains an initial level (for example, a level corresponding to writing in the previous frame).
- the scanning signal line SL is selected, and the transistor T2 is turned on.
- the data voltage Vdata corresponding to the luminance of the pixel (subpixel) formed by the pixel circuit 91 is supplied to the gate node via the data line DL and the transistor T2.
- the potential VG of the gate node changes according to the data voltage Vdata.
- the capacitor Cst is charged to a gate-source voltage Vgs which is the difference between the gate node potential VG and the source potential of the transistor T1.
- the scanning signal line SL is in a non-selected state.
- the transistor T2 is turned off, and the gate-source voltage Vgs held by the capacitor Cst is determined.
- the transistor T1 supplies a drive current to the organic EL element OLED according to the gate-source voltage Vgs held by the capacitor Cst.
- the organic EL element OLED emits light with a luminance corresponding to the drive current.
- the pixel circuit 91 shown in FIG. 48 is a circuit corresponding to one sub-pixel. Therefore, the configuration of the pixel circuit 910 corresponding to one pixel composed of three sub-pixels is as shown in FIG.
- a pixel circuit 910 constituting one pixel includes a pixel circuit 91 (R) for an R subpixel, a pixel circuit 91 (G) for a G subpixel, and a pixel circuit for a B subpixel. 91 (B).
- R pixel circuit 91
- G pixel circuit 91
- B pixel circuit for a B subpixel.
- Japanese Patent Application Laid-Open No. 2005-148749 discloses a pixel circuit 920 having a configuration in which the number of transistors and capacitors required for one pixel is smaller than that of the conventional one, as shown in FIG. Yes.
- the pixel circuit 920 includes a driving unit 921, a sequential control unit 922, and three organic EL elements OLED (R), OLED (G), and OLED (B).
- the driving unit 921 is configured by a driving transistor T11, an input transistor T12, and a capacitor Cst1.
- the sequential control means 922 includes a transistor T13 (R) for controlling light emission of the red organic EL element OLED (R) and a transistor T13 (for controlling light emission of the green organic EL element OLED (G).
- Emission lines EM1, EM2, and EM3 are provided so as to pass through the pixel circuit 920 as wiring for controlling on / off of the transistors T13 (R), T13 (G), and T13 (B). .
- one frame period is divided into three subframes. Specifically, one frame period is divided into a first sub-frame for emitting red light, a second sub-frame for emitting green light, and a third sub-frame for emitting blue light. . Then, in the sequential control means 922, only the transistor T13 (R) is turned on in the first subframe, only the transistor T13 (G) is turned on in the second subframe, and in the third subframe, Only the transistor T13 (B) is turned on. Thus, the organic EL element OLED (R), the organic EL element OLED (G), and the organic EL element OLED (B) emit light sequentially over one frame period, and a desired color image is displayed. Thus, in the organic EL display device disclosed in Japanese Patent Laid-Open No. 2005-148749, so-called “time-division driving” is performed.
- Japanese Patent Application Laid-Open No. 2005-148750 discloses an invention of an organic EL display device that performs time-division driving using a pixel circuit 930 having the configuration shown in FIG.
- the light emission period is a period for emitting light of any one of the three colors.
- a source driver a circuit for driving a data line
- a gate driver a circuit for driving a scanning signal line
- an emission driver for driving the emission line
- the length of the light emission period is extremely longer than the length of the blanking period, but in each light emission period, from the organic EL element included in the first row to the organic EL element included in the last row is one frame period in general driving.
- the driving frequency (driving speed) is about three times as compared with the case where general driving is adopted.
- the power consumption P of the peripheral driver is expressed by the following equation (1), where C is the parasitic capacitance, V is the voltage amplitude, and f is the drive frequency.
- the power consumption P of the peripheral driver is proportional to the drive frequency f. Therefore, as shown in FIG. 54, the power consumption of each peripheral driver when the time-division driving is adopted is three times the power consumption when the general driving is adopted. In this regard, even when displaying a still image such as a standby screen in a mobile phone, for example, the peripheral driver needs to be operated at a high frequency, so that power consumption increases.
- the peripheral driver in this specification means a driver circuit provided in a peripheral region of the display portion in order to operate the pixel circuit. 54, the first to third emission drivers are circuits for driving the emission lines EM1 to EM3 in FIG. 51, respectively.
- the length of the light emission period of each organic EL element is one third of that when general driving is employed. For this reason, in order to obtain a panel brightness comparable to that in the case of employing general driving, it is necessary to triple the light emission brightness of each organic EL element. Therefore, the instantaneous luminance of each organic EL element is increased. Since the lifetime of the organic EL element is considered to be inversely proportional to 1.8 to the square of the instantaneous luminance, the lifetime of the organic EL element is shortened in an organic EL display device employing time-division driving.
- the present invention provides a display device having a self-luminous display element driven by current and employing time-division driving. It aims at reducing.
- a first aspect of the present invention is a plurality of pixel circuits arranged in a matrix so as to constitute a plurality of rows and a plurality of columns, and a plurality of pixels provided so as to correspond to the plurality of rows on a one-to-one basis.
- a display unit including a scanning signal line and a plurality of data lines provided in one-to-one correspondence with the plurality of columns,
- the plurality of pixel circuits have a plurality of intervals between the plurality of electro-optical elements that emit light in each unit frame when display is performed in a low resolution mode in which an image with a relatively low resolution is displayed on the display unit.
- the scanning signal lines are configured to be equally spaced in the extending direction.
- Each pixel circuit includes j electro-optic elements (j is an integer of 2 or more) having different emission colors
- the display mode can be switched between the low resolution mode and the high resolution mode for displaying a relatively high resolution image on the display unit,
- the display mode is the high-resolution mode
- a unit frame which is a period during which an image for one screen is displayed, is divided into j sub-frames, and each pixel circuit has an electric color with a different emission color for each sub-frame.
- an image is displayed on the display unit.
- the display mode is the low resolution mode
- j pixel circuits arranged continuously in a direction in which the plurality of scanning signal lines extend are grouped, and the j pixel circuits in each pixel circuit in a unit frame.
- the display unit is configured such that one of the electro-optical elements is in a light-emitting state and the electro-optical elements having different emission colors in the j pixel circuits included in each group in the unit frame are in a light-emitting state.
- An image is displayed on the screen.
- a refresh period for writing image data to the plurality of pixel circuits and a pause period for putting image data to the plurality of pixel circuits in a pause state are repeated.
- a still image is displayed on the display unit at a lower refresh rate than when the display mode is the high-resolution mode, In the pause period, driving of the plurality of scanning signal lines and the plurality of data lines is stopped.
- Each pixel circuit J light-emission control transistors provided to correspond to the j electro-optic elements on a one-to-one basis;
- a drive current control unit for controlling a drive current for bringing the j electro-optic elements into a light emitting state;
- the display unit includes a plurality of light emission control lines provided j for each row, In each pixel circuit, The control terminals of the j light emission control transistors are connected to different light emission control lines, The first conduction terminals of the j light emission control transistors are connected to the drive current control unit, The second conduction terminals of the j light emission control transistors are respectively connected to the corresponding electro-optic elements,
- each of the noticed j light emission control lines includes j pixels of interest.
- the display mode is the high resolution mode
- the j emission control lines for each row are sequentially selected for each subframe
- the display mode is the low resolution mode
- only one of the j light emission control lines is selected for each row in a unit frame.
- the light emission control lines selected when the display mode is the low resolution mode are appropriately changed.
- a sixth aspect of the present invention is the fifth aspect of the present invention, Each time the display mode is switched from the high resolution mode to the low resolution mode, the light emission control line that is selected when the display mode is the low resolution mode is changed.
- the drive current controller is A drive transistor for controlling the drive current, provided in series with each of the j emission control transistors between the first power line and the second power line; Provided between the corresponding data line and the control terminal of the driving transistor, and when the corresponding scanning signal line is selected by the scanning signal line driving circuit, the corresponding data line and the control terminal of the driving transistor An input transistor for electrically connecting A capacitor provided between a control terminal of the drive transistor and one conduction terminal of the drive transistor;
- a still image is displayed on the display unit at a lower refresh rate than when the display mode is the high-resolution mode, During the refresh period, The light emission control line driving circuit selects only one of the j light emission control lines for each row, The scanning signal line driving circuit sequentially selects the plurality of scanning signal lines, The data line driving circuit applies the data voltage corresponding to a still image to be displayed on the display unit when a display mode is the low resolution mode according to each scanning signal line being selected.
- the light emission control line driving circuit maintains the light emission control line selected in the refresh period in the selected state and maintains the other light emission control lines in the non-selected state,
- the scanning signal line driving circuit and the data line driving circuit are in a dormant state.
- the light emission control line drive circuit does not select all of the j light emission control lines corresponding to each row in a period immediately before writing of image data to the pixel circuit constituting each row. It is characterized by being in a state.
- the drive transistor, the input transistor, and the j light emission control transistors are thin film transistors in which a channel layer is formed of an oxide semiconductor.
- the main component of the oxide semiconductor is composed of indium (In), gallium (Ga), zinc (Zn), and oxygen (O).
- An eleventh aspect of the present invention is the second aspect of the present invention,
- the display mode is the low resolution mode, one pixel is formed by j pixel circuits included in one group, and when the display mode is the high resolution mode, an image displayed on the display unit is displayed. An image having a resolution of 1 / j is displayed on the display unit.
- a twelfth aspect of the present invention is the second aspect of the present invention,
- the display mode is the low resolution mode
- one pixel is formed by k ⁇ j pixel circuits included in k groups corresponding to consecutive k rows (k is an integer of 2 or more)
- the display mode In the high resolution mode, an image having a resolution of 1 / (k ⁇ j) of the image displayed on the display unit is displayed on the display unit.
- a thirteenth aspect of the present invention is the twelfth aspect of the present invention,
- the value of k is determined so that each pixel has a square shape when the display mode is the low resolution mode.
- a fourteenth aspect of the present invention is the second aspect of the present invention.
- the j electro-optic elements included in each pixel circuit are three organic electroluminescence elements having a red emission color, a green emission color, and a blue emission color.
- the j electro-optic elements included in each pixel circuit are four organic electroluminescence elements having a red emission color, a green emission color, a blue emission color, and a white emission color. To do.
- the second aspect of the present invention When attention is paid to an electro-optic element arranged at the p-th (p is an arbitrary integer of 1 to j) in the extending direction of the plurality of scanning signal lines in each of the j pixel circuits included in each group,
- the j electro-optical elements focused on in each group are electro-optical elements having different emission colors.
- Each pixel circuit includes j electro-optic elements (j is an integer of 2 or more) having different emission colors, Arbitrary pixel circuits and pixel circuits arranged adjacent to one of the arbitrary pixel circuits in the direction in which the plurality of scanning signal lines extend differ in the arrangement of emission colors for the j electro-optical elements.
- Arbitrary pixel circuits and the pixel circuits arranged next to the arbitrary pixel circuits in the direction in which the plurality of scanning signal lines extend have the same arrangement of emission colors for the j electro-optical elements. It is characterized by being.
- a plurality of electro-optic elements that are arranged in a matrix so as to form a plurality of rows and a plurality of columns and each include j electro-optical elements (j is an integer of 2 or more) of different emission colors.
- a plurality of scanning signal lines provided in one-to-one correspondence with the plurality of rows, and a plurality of data lines provided in one-to-one correspondence with the plurality of columns.
- a driving method of a display device including a display unit including: A high-resolution display step of displaying a relatively high resolution image on the display unit; A low-resolution display step of displaying a relatively low-resolution image on the display unit,
- the high-resolution display step a unit frame that is a period during which an image for one screen is displayed is divided into j sub-frames, and each pixel circuit emits an electro-optical element having a different emission color for each sub-frame.
- the low-resolution display step j pixel circuits arranged continuously in a direction in which the plurality of scanning signal lines extend are grouped, and the j electro-optical elements in each pixel circuit in a unit frame.
- the plurality of pixel circuits are configured such that when the display mode is the low-resolution mode, the intervals between the plurality of electro-optical elements that emit light in each unit frame are equal in the direction in which the plurality of scanning signal lines extend. It is characterized by being configured.
- the intervals between the plurality of electro-optical elements that are in the light emitting state in each unit frame in the low resolution mode are equal. For this reason, the occurrence of display unevenness (color unevenness) and vertical stripes is prevented, and an image that does not feel uncomfortable for the viewer is displayed.
- j pixel circuits are grouped into one group, In the j pixel circuits included in the group, electro-optical elements having different emission colors are brought into a light emission state. Therefore, it is possible to display a color image having a resolution of 1 / j or less when time-division driving is performed by one vertical scanning. Thus, in a display device that employs time-division driving, it is possible to display a low-resolution image while reducing the driving frequency.
- a low resolution image is displayed by a high resolution mode in which a high resolution image is displayed by time division driving and a driving method having a lower driving frequency than time division driving.
- the power consumption is reduced compared to the case where image display is always performed by time-division driving.
- the low resolution mode it is not necessary to increase the instantaneous luminance of the electro-optical element as in the case of time-division driving, so that the life of the electro-optical element is shortened.
- time-division driving it is possible to reduce power consumption as compared with the related art while suppressing a reduction in the lifetime of the element without causing display defects.
- the display mode is the low resolution mode
- pause driving is performed that repeats a refresh period in which image data is written and a pause period in which image data is paused.
- the power consumption of the peripheral driver is greatly reduced as compared with the case where image display is always performed by time-division driving.
- a very remarkable effect can be obtained with respect to reduction of power consumption.
- j pixel circuits included in each group have different light emission colors.
- the electro-optical element can be in a light emitting state. For this reason, the power consumption by driving the light emission control line during the low resolution mode becomes extremely small.
- the fifth aspect of the present invention it is possible to prevent the occurrence of bias in the degree of transistor degradation and electro-optic element degradation in the pixel circuit.
- the sixth aspect of the present invention as in the fifth aspect of the present invention, it is possible to prevent the occurrence of bias in the degree of transistor degradation and electro-optic element degradation in the pixel circuit.
- the drive current control unit that controls the drive current for bringing the electro-optic element into the light emitting state is configured by the drive transistor, the input transistor, and the capacitor
- the scanning signal line driving circuit and the data line driving circuit are in a quiescent state, and the light emission control line driving circuit consumes only electric power due to a direct current.
- the power consumption of the display device that is time-division driven can be reliably reduced as compared with the conventional display device.
- the electro-optical element included in the pixel circuit is temporarily turned off. For this reason, it is suppressed that the display in each frame period is influenced by the display in the previous frame period. Thereby, the display quality of the image displayed in the low resolution mode is improved.
- the off-leakage current in the transistor in the pixel circuit becomes extremely small. For this reason, the voltage corresponding to the display image can be held in the capacitor in the pixel circuit for a longer time than before. Therefore, the power consumption can be significantly reduced by increasing the length of the pause period and reducing the refresh rate.
- the effect of the ninth aspect of the present invention can be reliably achieved by using indium gallium zinc oxide as the oxide semiconductor forming the channel layer.
- the eleventh aspect of the present invention it is possible to obtain the same effect as that of the first aspect of the present invention while minimizing a decrease in resolution when the display mode is switched from the high resolution mode to the low resolution mode. It becomes possible.
- the same image data may be written in consecutive k rows for each column. For this reason, power consumption by writing image data in the low resolution mode is reduced.
- a more natural image is displayed on the display unit when the display mode is the low resolution mode.
- a fourteenth aspect of the present invention in a display device using three organic electroluminescent elements having red light emission color, green light emission color, and blue light emission color as electro-optical elements, The same effect as in the first aspect can be obtained.
- the fifteenth aspect of the present invention in a display device using four organic electroluminescence elements having red emission color, green emission color, blue emission color, and white emission color as electro-optical elements.
- the same effect as the first aspect of the present invention can be obtained.
- display unevenness (color unevenness) and vertical stripes are reliably prevented.
- occurrence of display unevenness (color unevenness) and vertical stripes in the low resolution mode is suppressed while enabling time-division driving.
- the same effect as in the first aspect of the present invention can be achieved in the display device driving method.
- FIG. 1 is a schematic diagram illustrating an arrangement of pixels in an active matrix organic EL display device according to a first embodiment of the present invention.
- it is a block diagram which shows the whole structure of an organic electroluminescent display apparatus.
- it is a figure for demonstrating the structure of a display part.
- FIG. 3 is a block diagram illustrating a configuration example of a source driver in the first embodiment.
- FIG. 3 is a block diagram illustrating a configuration example of a gate driver in the first embodiment.
- 5 is a timing chart for explaining an operation of a gate driver in the first embodiment.
- FIG. 3 is a block diagram illustrating a configuration example of a first emission driver in the first embodiment.
- FIG. 6 is a timing chart for explaining the operation of the first emission driver in the first embodiment. It is a schematic diagram which shows the arrangement
- FIG. 6 is a diagram for describing a configuration of a sub-pixel group that forms one group in the first embodiment.
- FIG. 3 is a circuit diagram illustrating a configuration of three pixel circuits included in one group in the first embodiment.
- FIG. 6 is a diagram for explaining the arrangement of sub-pixels in the first embodiment.
- FIG. 6 is a diagram for explaining the arrangement of sub-pixels in the first embodiment.
- FIG. 6 is a diagram for explaining the arrangement of sub-pixels in the first embodiment.
- FIG. 6 is a diagram for explaining the arrangement of sub-pixels in the first embodiment. It is a figure for demonstrating the outline
- summary of the drive method in the said 1st Embodiment. 6 is a timing chart showing waveforms of a scanning signal and a light emission control signal when the display mode is a high resolution mode in the first embodiment.
- it is a figure which shows transition of the light emission state of the organic EL element in three pixel circuits contained in one group when a display mode is high resolution mode.
- it is a schematic diagram which shows the light emission state of a 1st sub-frame.
- FIG. 6 is a diagram for comparing one pixel in a high resolution mode and one pixel in a low resolution mode in the first embodiment.
- 6 is a timing chart for explaining the emission line driving in the low resolution mode in the first embodiment.
- it is a figure for demonstrating the light emission state of the organic EL element in the case of low resolution mode.
- 6 is a timing chart for explaining the emission line driving in the low resolution mode in the first embodiment.
- it is a figure for demonstrating the light emission state of the organic EL element in the case of low resolution mode.
- it is a figure for demonstrating the light emission state of the organic EL element in the case of low resolution mode.
- It is a schematic diagram which shows the light emission state at the time of making the arrangement
- FIG. 10 is a diagram for describing a case where one pixel is formed by six pixel circuits included in two rows that are continuous in a direction in which a data line extends in the first modification of the first embodiment.
- FIG. 11 is a diagram for describing a case where one pixel is formed by nine pixel circuits included in three rows that are continuous in a direction in which a data line extends in the first modification of the first embodiment.
- FIG. 6 is a timing chart for explaining a data line driving method in a first modification of the first embodiment; It is a schematic diagram which shows the arrangement
- FIG. 10 is a diagram for describing a configuration of a sub-pixel group that forms one group in the second modification example of the first embodiment.
- FIG. 6 is a circuit diagram showing a configuration of one pixel circuit in a second modification of the first embodiment.
- the said 2nd Embodiment it is a timing chart which shows the waveform of the scanning signal when the display mode is a low resolution mode, and the light emission control signal.
- FIG. 3 is a circuit diagram showing a configuration of a pixel circuit corresponding to one pixel in an example disclosed in Japanese Patent Application Laid-Open No. 2005-148749.
- FIG. 3 is a circuit diagram showing a configuration of a pixel circuit corresponding to one pixel in an example disclosed in Japanese Patent Application Laid-Open No. 2005-148749.
- FIG. 3 is a circuit diagram showing a configuration of a pixel circuit corresponding to one pixel in an example disclosed in Japanese Patent Application Laid-Open No. 2005-148750. It is a figure for demonstrating the time division drive in the conventional organic electroluminescence display. In the conventional example, it is a figure for demonstrating the difference in the power consumption of each peripheral driver when a general drive is employ
- n are integers of 2 or more.
- the gate terminal corresponds to the control terminal
- the drain terminal corresponds to the first conduction terminal
- the source terminal corresponds to the second conduction terminal.
- FIG. 2 is a block diagram showing the overall configuration of the active matrix organic EL display device 1 according to the first embodiment of the present invention.
- the organic EL display device 1 includes a display control circuit 100, a source driver (data line driving circuit) 200, a gate driver (scanning signal line driving circuit) 300, first to third emission drivers (first to third light emission control lines).
- the first to third emission drivers 401 to 403 are collectively referred to simply as “emission driver”.
- the emission driver is a drive circuit for wiring (emission line described later) for controlling light emission of the organic EL element provided in the display unit 500.
- the gate driver 300 and the first to third emission drivers 401 to 403 are formed in the organic EL panel 7 including the display unit 500. That is, the gate driver 300 and the emission driver are monolithic.
- the organic EL display device 1 is also provided with a logic power source 600, an organic EL high level power source 610, and an organic EL low level power source 620 as components for supplying various power supply voltages to the organic EL panel 7. It has been.
- a display mode a high resolution mode for displaying an image with a relatively high resolution on the display unit 500 and a low resolution for displaying an image with a relatively low resolution on the display unit 500.
- Modes are available.
- time-division driving that divides one frame period (a unit frame in which an image for one screen is displayed) into j sub-frames (j is an integer of 2 or more). Is done.
- three color sub-pixels an R sub-pixel that displays red, a G sub-pixel that displays green, and a B sub-pixel that displays blue
- Time division driving for dividing the frame period into three subframes is performed.
- the high level power supply voltage VDD and the low level power supply voltage VSS required for the operation of the gate driver 300 and the first to third emission drivers 401 to 403 are supplied from the logic power supply 600 to the organic EL panel 7.
- a high level power supply voltage ELVDD, which is a constant voltage, is supplied from the organic EL high level power supply 610 to the organic EL panel 7.
- a low level power supply voltage ELVSS which is a constant voltage is supplied from the organic EL low level power supply 620 to the organic EL panel 7.
- FIG. 3 is a diagram for explaining the configuration of the display unit 500 in the present embodiment.
- m data lines DL (1) to DL (m) and n scanning signal lines SL (1) to SL (n) cross each other. It is arranged.
- a pixel circuit 40 is provided corresponding to each intersection of the data lines DL (1) to DL (m) and the scanning signal lines SL (1) to SL (n). That is, in the display unit 500, a plurality of pixel circuits 40 are arranged in a matrix so as to configure a plurality of rows (n rows) and a plurality of columns (m columns).
- the display unit 500 includes n first emission lines EM1 (1) to EM1 (n) and n first lines corresponding to the n scanning signal lines SL (1) to SL (n). Two emission lines EM2 (1) to EM2 (n) and n third emission lines EM3 (1) to EM3 (n) are arranged. Further, the display unit 500 is provided with a high level power line ELVDD and a low level power line ELVSS. In the present embodiment, the first power supply line is realized by the high level power supply line ELVDD, and the second power supply line is realized by the low level power supply line ELVSS. A detailed configuration of the pixel circuit 40 will be described later.
- the data lines are simply represented by the symbol DL.
- the scanning signal line, the first emission line, the second emission line, and the third emission line are simply represented by symbols SL, EM1, EM2, and EM3, respectively.
- the first to third emission lines EM1 to EM3 are collectively referred to simply as “emission lines”, and the emission lines are denoted by the symbol EM.
- a light emission control line is realized by the emission line EM.
- the display control circuit 100 includes a display mode switching control circuit 110, a resolution switching control circuit 120, a source control circuit 130, and a gate control circuit 140.
- the display mode switching control circuit 110 generates a display mode switching signal Sm for switching the display mode of the organic EL display device 1 between the high resolution mode and the low resolution mode, a resolution switching control circuit 120, a source control circuit 130, And to the gate control circuit 140.
- the resolution switching control circuit 120 provides a resolution switching signal Sr for switching the resolution of the display image between the high resolution mode and the low resolution mode to the source control circuit 130 and controls whether or not each emission line EM can be selected.
- An emission line selection signal Se is supplied to the gate control circuit 140.
- the source control circuit 130 controls the display data DA, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe for controlling the operation of the source driver 200.
- the signal LS is output.
- the gate control circuit 140 outputs a gate start pulse signal GSP and a gate clock signal GCK for controlling the operation of the gate driver 300 based on the display mode switching signal Sm.
- the gate control circuit 140 also includes first to third emission driver control signals for controlling the operation of the first to third emission drivers 401 to 403 based on the display mode switching signal Sm and the emission line selection signal Se. Outputs EMCTL1 to EMCTL3.
- the display control circuit 100 supplies the organic EL high level power source 610 and the organic EL low level power source 620 with a control signal S1 and a control signal S2 for controlling on / off of the power source, respectively.
- the source driver 200 receives the display data DA, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS sent from the display control circuit 100, and drives video to the data lines DL (1) to DL (m). Apply a signal.
- FIG. 4 is a block diagram illustrating a configuration example of the source driver 200.
- the source driver 200 includes an m-bit shift register 21, a register 22, a latch circuit 23, and m D / A converters (DACs) 24.
- the shift register 21 has m registers (not shown) connected in cascade. Based on the source clock signal SCK, the shift register 21 sequentially transfers pulses of the source start pulse signal SSP supplied to the first-stage register from the input end to the output end. A timing pulse DLP corresponding to each data line DL is output from the shift register 21 in accordance with the transfer of this pulse. Based on the timing pulse DLP, the register 22 stores display data DA.
- the latch circuit 23 fetches and holds the display data DA for one row stored in the register 22 according to the latch strobe signal LS.
- the D / A converter 24 is provided so as to correspond to each data line DL.
- the D / A converter 24 converts the display data DA held in the latch circuit 23 into an analog voltage.
- the converted analog voltage is applied simultaneously to all the data lines DL (1) to DL (m) as a drive video signal.
- the gate driver 300 sequentially applies active scanning signals to the n scanning signal lines SL (1) to SL (n) based on the gate start pulse signal GSP and the gate clock signal GCK sent from the display control circuit 100. To do. Note that a state where an active scanning signal is applied to the scanning signal line SL is referred to as a “selected state”. The same applies to the emission line EM. When the scanning signal line SL is in a selected state, image data is written in the pixel circuit 40 provided corresponding to the scanning signal line SL.
- FIG. 5 is a block diagram showing a configuration example of the gate driver 300 in the present embodiment.
- the gate driver 300 includes a shift register 310 including n flip-flop circuits 31 (1) to 31 (n).
- the gate start pulse signal GSP is supplied to the first-stage flip-flop circuit 31 (1)
- the gate clock signal GCK is common to all the flip-flop circuits 31 (1) to 31 (n). It is configured to be given to.
- Output signals output from the flip-flop circuits 31 (1) to 31 (n) are applied to the scanning signal lines SL (1) to SL (n) as scanning signals.
- the gate start pulse signal GSP when a pulse of the gate start pulse signal GSP is given to the first-stage flip-flop circuit 31 (1) of the shift register 310, it is included in the gate start pulse signal GSP based on the gate clock signal GCK.
- the scanning signals output from the n flip-flop circuits 31 (1) to 31 (n) are sequentially activated.
- the n scanning signal lines SL (1) to SL (n) are sequentially selected for a predetermined period.
- the first emission driver 401 applies the first emission control signal to the n first emission lines EM1 (1) to EM1 (n) based on the first emission driver control signal EMCTL1 sent from the display control circuit 100.
- the first emission driver control signal EMCTL1 includes a first emission start pulse signal ESP1 and a first emission clock signal ECK1.
- FIG. 7 is a block diagram illustrating a configuration example of the first emission driver 401 in the present embodiment.
- the first emission driver 401 includes a shift register 410 including n flip-flop circuits 41 (1) to 41 (n). As can be understood from FIGS. 5 and 7, the first emission driver 401 is configured in the same manner as the gate driver 300. Output signals output from the flip-flop circuits 41 (1) to 41 (n) are applied to the first emission lines EM1 (1) to EM1 (n) as the first light emission control signals.
- the first emission is based on the first emission clock signal ECK1.
- the pulses included in the start pulse signal ESP1 are sequentially transferred from the first-stage flip-flop circuit 41 (1) to the n-th flip-flop circuit 41 (n).
- the first light emission control signals output from the n flip-flop circuits 41 (1) to 41 (n) are sequentially activated.
- the n first emission lines EM1 (1) to EM1 (n) are sequentially selected.
- the pulse width for the gate start pulse signal GSP is made relatively short, and the pulse width for the first emission start pulse signal ESP1 is made relatively long. Accordingly, a plurality of lines are not simultaneously selected for the scanning signal line SL, but a plurality of lines may be simultaneously selected for the first emission line EM1 (see FIGS. 6 and 8). reference).
- the driving video signal is applied to the m data lines DL (1) to DL (m), and the scanning signal is applied to the n scanning signal lines SL (1) to SL (n).
- the first emission control signal is applied to the n first emission lines EM1 (1) to EM1 (n)
- the second emission control signal is applied to the n second emission lines EM2 (1) to EM2 (n).
- the third light emission control signal is applied to the n third emission lines EM3 (1) to EM3 (n)
- an image is displayed on the display unit 500.
- the first to third light emission control signals are collectively referred to simply as “light emission control signals”.
- FIG. 1 is a schematic diagram showing the arrangement of pixels in the present embodiment.
- FIG. 9 is a schematic diagram showing an arrangement of pixels in a conventional example. 1 and 9, “R” represents an R sub-pixel that displays red, “G” represents a G sub-pixel that displays green, and “B” represents a B sub-pixel that displays blue. Represents a pixel.
- the sub-pixels arranged in the order of “R sub-pixel, G sub-pixel, B sub-pixel” are repeatedly provided in the direction in which the scanning signal line SL extends.
- Sub-pixels arranged in the order of “R sub-pixel” are repeatedly provided in the direction in which the scanning signal line SL extends.
- one pixel includes three sub-pixels, and one pixel corresponds to one pixel circuit 40.
- sub-pixels for the same color are repeatedly provided in both the conventional configuration and the present embodiment.
- the arrangement of the sub-pixels in the direction in which the scanning signal line SL extends is different from the conventional configuration.
- three pixels (9 sub-pixels) arranged side by side in the extending direction of the scanning signal line SL are made into one group. That is, three pixel circuits 40 are made into one group. Since the number of columns is m, (m / 3) groups are formed for each row.
- the display mode is the low resolution mode
- one pixel is formed by the three pixel circuits 40 included in each group.
- one pixel circuit 40 forms one pixel.
- the configuration of the sub-pixel group forming one group is as shown in FIG.
- the present invention is not limited to this.
- the configuration of the sub-pixel group forming one group may be as shown in FIG. More specifically, when sub-pixels forming one group are labeled as shown in FIG. 12, "sub-pixel A1, sub-pixel B1, sub-pixel C1" and “R-sub-pixel, G-sub-pixel, “B sub-pixel” is associated with one-to-one (in no particular order), and “sub-pixel A2, sub-pixel B2, sub-pixel C2” and “R sub-pixel, G sub-pixel, B sub-pixel” are a pair.
- subpixel A3, sub pixel B3, sub pixel C3” and “R sub pixel, G sub pixel, B sub pixel” are in one-to-one correspondence (in no particular order). It should be. However, “subpixels A1 to A3”, “subpixels B1 to B3”, and “subpixels C1 to C3” all constitute subpixels of three colors.
- FIG. 13 is a circuit diagram showing a configuration of three pixel circuits 40 (1) to 40 (3) included in one group. Each of these three pixel circuits 40 (1) to 40 (3) forms one pixel when the display mode is the high resolution mode.
- the pixel circuit 40 (1) is configured such that the sub-pixels are arranged in the order of “B sub-pixel, R sub-pixel, G sub-pixel” (see FIG. 14) in the direction in which the scanning signal line SL extends.
- the pixel circuit 40 (2) is configured such that the sub-pixels are arranged in the order of “R sub-pixel, G sub-pixel, B sub-pixel” (see FIG. 15) in the direction in which the scanning signal line SL extends.
- the pixel circuit 40 (3) is configured such that the sub-pixels are arranged in the order of “G sub-pixel, B sub-pixel, R sub-pixel” (see FIG. 16) in the direction in which the scanning signal line SL extends.
- each of the pixel circuits 40 (1) to 40 (3) includes five transistors T1 to T5, one capacitor Cst, three organic EL elements OLED (R), OLED ( G) and OLED (B).
- the transistor T1 is a drive transistor
- the transistor T2 is an input transistor.
- the transistors T3, T4, and T5 function as light emission control transistors that control light emission by controlling the supply of drive current to the organic EL elements OLED (R), OLED (G), and OLED (B), respectively.
- the organic EL element OLED (R) functions as an electro-optical element that emits red light.
- the organic EL element OLED (G) functions as an electro-optical element that emits green light.
- the organic EL element OLED (B) functions as an electro-optical element that emits blue light.
- OLED (R), OLED (G), and OLED (B) are collectively referred to as “organic EL elements OLED”.
- the drive current control unit 45 that controls the drive current for bringing the organic EL element OLED into the light emitting state is realized by the transistor T1, the transistor T2, and the capacitor Cst.
- the transistor T1 is provided in series with each of the transistors T3 to T5 and in series with each of the organic EL elements OLED (R), OLED (G), and OLED (B). .
- the transistor T1 and the organic EL element OLED (R) are connected in series via the transistor T3, and the transistor T1 and the organic EL element OLED (G) are connected in series via the transistor T4.
- the organic EL element OLED (B) are connected in series via a transistor T5.
- the gate terminal is connected to the drain terminal of the transistor T2
- the drain terminal is connected to the high-level power supply line ELVDD
- the source terminal is connected to the drain terminals of the transistors T3 to T5.
- the transistor T2 is provided between the data line DL and the gate terminal of the transistor T1.
- the gate terminal is connected to the scanning signal line SL
- the drain terminal is connected to the gate terminal of the transistor T1
- the source terminal is connected to the data line DL.
- the capacitor Cst has one end connected to the gate terminal of the transistor T1 and the other end connected to the source terminal of the transistor T1.
- the drain terminal is connected to the source terminal of the transistor T1, and the source terminal is connected to the anode terminal of the organic EL element OLED (R).
- the drain terminal is connected to the source terminal of the transistor T1, and the source terminal is connected to the anode terminal of the organic EL element OLED (G).
- the drain terminal is connected to the source terminal of the transistor T1, and the source terminal is connected to the anode terminal of the organic EL element OLED (B).
- the gate terminals of the transistors T3 to T5 are connected to any of the first to third emission lines EM1 to EM3, respectively. However, the detailed connection relationship between the first to third emission lines EM1 to EM3 and the gate terminals of the transistors T3 to T5 will be described later.
- the cathode terminals of the organic EL elements OLED (R), OLED (G), and OLED (B) are connected to the organic EL low-level power line ELVSS.
- the first emission line EM1 is connected to the gate terminal of the transistor T3 in the pixel circuit 40 (1), the gate terminal of the transistor T4 in the pixel circuit 40 (2), and the gate terminal of the transistor T5 in the pixel circuit 40 (3). It is connected.
- the second emission line EM2 is connected to the gate terminal of the transistor T4 in the pixel circuit 40 (1), the gate terminal of the transistor T5 in the pixel circuit 40 (2), and the gate terminal of the transistor T3 in the pixel circuit 40 (3). It is connected.
- the third emission line EM3 is connected to the gate terminal of the transistor T5 in the pixel circuit 40 (1), the gate terminal of the transistor T3 in the pixel circuit 40 (2), and the gate terminal of the transistor T4 in the pixel circuit 40 (3). It is connected. As described above, each of the first to third emission lines EM1 to EM3 is connected to the gate terminal of the transistor corresponding to the organic EL element OLED having different emission color in the three pixel circuits 40 (1) to 40 (3). Has been.
- the transistors T1 to T5 in the pixel circuit 40 are all n-channel type.
- oxide TFTs thin film transistors using an oxide semiconductor as a channel layer
- the oxide semiconductor layer is, for example, an In—Ga—Zn—O-based semiconductor layer.
- the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor.
- An In—Ga—Zn—O-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc).
- a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (mobility more than 20 times that of an amorphous silicon TFT) and low leakage current (leakage less than 1/100 that of an amorphous silicon TFT). Therefore, it is suitably used as a driving TFT (the transistor T1) and a switching TFT (the transistor T2) in the pixel circuit 40.
- a driving TFT the transistor T1
- the transistor T2 the transistor T2
- the In—Ga—Zn—O-based semiconductor may be amorphous, may include a crystalline portion, and may have crystallinity.
- a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
- Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed, for example, in Japanese Unexamined Patent Publication No. 2012-134475.
- the oxide semiconductor layer may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
- Zn—O based semiconductor ZnO
- In—Zn—O based semiconductor IZO (registered trademark)
- Zn—Ti—O based semiconductor ZTO
- Cd—Ge—O based semiconductor Cd—Pb—O based
- CdO cadmium oxide
- Mg—Zn—O based semiconductors In—Sn—Zn—O based semiconductors (eg, In 2 O 3 —SnO 2 —ZnO), In—Ga—Sn—O based semiconductors, etc. You may go out.
- FIG. 17 is a diagram for explaining the outline of the driving method in the present embodiment.
- the display mode is switched between the high resolution mode and the low resolution mode.
- time-division driving for dividing one frame period into three sub-frames SF1 to SF3 is performed.
- the display mode is the low resolution mode, general driving is performed in which one vertical scan is performed over one frame period.
- image display is normally performed in the high resolution mode.
- the display mode is switched from the high-resolution mode to the low-resolution mode.
- the display mode is switched from the low resolution mode to the high resolution mode.
- the high resolution display step is realized by the operation in the high resolution mode
- the low resolution display step is realized by the operation in the low resolution mode.
- FIG. 18 is a timing chart showing the waveforms of the scanning signal and the light emission control signal when the display mode is the high resolution mode.
- the emission driver selects the first emission line EM1 (1), and the second emission line EM2 (1) and the third emission line EM3 (1 ) Is kept unselected.
- the transistor T3 is turned on and the transistors T4 and T5 are turned off.
- the transistor T4 is turned on and the transistors T3 and T5 are turned off.
- the gate driver 300 sets the scanning signal line SL (1) to the selected state. Thereby, in each pixel circuit 40 in the first row, the transistor T2 is turned on. As a result, in each pixel circuit 40 in the first row, the capacitor Cst is charged based on the data voltage applied to the data line DL.
- the gate driver 300 deselects the scanning signal line SL (1), the transistor T2 is turned off in each pixel circuit 40 in the first row. As a result, the gate-source voltage Vgs held by the capacitor Cst is determined.
- a drive current corresponding to the magnitude of the gate-source voltage Vgs flows between the drain and source of the transistor T1.
- the first emission line EM1 (1) is connected to the gate terminal of the transistor T3 in the pixel circuit 40 (1), the gate terminal of the transistor T4 in the pixel circuit 40 (2), and the pixel circuit 40 ( 3) It is connected to the gate terminal of the transistor T5.
- a driving current is supplied to the organic EL element OLED (R) via the transistor T3
- a driving current is supplied to the organic EL element OLED (G) via the transistor T4.
- a drive current is supplied to the organic EL element OLED (B) via the transistor T5.
- the organic EL element OLED (R) emits light in the pixel circuit 40 (1)
- the organic EL element OLED (G) emits light in the pixel circuit 40 (2)
- the organic EL element OLED in the pixel circuit 40 (3) emits light.
- the emission driver maintains the first emission line EM1 (1) in the selected state for a period corresponding to approximately one subframe.
- the above operations are sequentially performed in the 2nd to nth rows. Further, in the second subframe SF2 and the third subframe SF3, the same operation as that of the first subframe SF1 is performed. However, in the second subframe SF2, the emission driver sequentially selects the n second emission lines EM2 (1) to EM2 (n), and in the third subframe SF3, the emission driver n The third emission lines EM3 (1) to EM3 (n) are sequentially selected.
- the transition of the light emission state of the organic EL elements OLED in the three pixel circuits 40 (1) to 40 (3) included in one group is as follows (see FIG. 19).
- the pixel circuit 40 (1) only the red organic EL element OLED (R) emits light in the first subframe SF1, and only the green organic EL element OLED (G) exists in the second subframe SF2.
- the third subframe SF3 only the blue organic EL element OLED (B) is in the light emission state.
- the pixel circuit 40 (2) only the green organic EL element OLED (G) is in a light emitting state in the first subframe SF1, and only the blue organic EL element OLED (B) is in the second subframe SF2.
- the red organic EL element OLED (R) is in the light emission state.
- the blue organic EL element OLED (B) is in a light emitting state in the first subframe SF1
- only the red organic EL element OLED (R) is in the second subframe SF2.
- only the green organic EL element OLED (G) is in the light emission state.
- the first subframe SF1 has a light emission state as shown in FIG. 20
- the second subframe SF2 has a light emission state as shown in FIG.
- a light emission state as shown in FIG. 22 is obtained.
- subpixels corresponding to the organic EL element OLED that is in the light emitting state are represented by R, G, or B
- subpixels corresponding to the organic EL element OLED that is in the light-off state are represented by blanks. (The same applies to FIGS. 27 and 29 to 32).
- the transition of the light emission state as described above is repeated. At that time, switching of the three patterns of light emission states shown in FIGS. 20 to 22 is performed in a very short time for human eyes. Accordingly, a color image in which one pixel is formed by one pixel circuit 40 (three subpixels) is displayed on the display unit 500.
- the pixel arrangement (subpixel arrangement) in this embodiment is different from the pixel arrangement in the conventional example (see FIG. 9), if the resolution is 400 ppi or more, it is It is considered that the display image does not give a sense of incongruity.
- the emission driver puts all the emission lines EM corresponding to the row in which the writing is performed into a non-selected state. For example, focusing on the first row, when the image data for the first subframe SF1 is written in the period from the time point t1 to the time point t2 in FIG. 18, the first emission line EM1 is passed through the period from the time point t1 to the time point t3. (1) is maintained in the selected state.
- the second emission line EM2 (1) is maintained in the selected state throughout the period from the time point t4 to the time point t6. Yes.
- all the emission lines EM1 (1), EM2 (1), and EM3 (1) corresponding to the first row are in a non-selected state. Accordingly, during the period from the time point t3 to the time point t4, all the organic EL elements OLED included in the pixel circuit 40 in the first row are turned off. In this manner, when image data is written in each pixel circuit 40, the organic EL element OLED included in the pixel circuit 40 is temporarily turned off. As described above, the display in each subframe is suppressed from being affected by the display in the previous subframe.
- FIG. 23 is a timing chart showing waveforms of the scanning signal and the light emission control signal when the display mode is the low resolution mode. Note that any one of the first emission line EM1, the second emission line EM2, and the third emission line EM3 is selected in each frame period, but in FIG. 23, the first emission line EM1 is selected. An example is shown.
- the emission driver selects the first emission line EM1 (1), and sets the second emission line EM2 (1) and the third emission line EM3 (1). Keep unselected.
- the transistor T3 is turned on and the transistors T4 and T5 are turned off.
- the transistor T4 is turned on and the transistors T3 and T5 are turned off.
- the transistor T5 is turned on and the transistors T3 and T4 are turned off (see FIG. 13).
- the gate driver 300 sets the scanning signal line SL (1) to the selected state.
- each pixel circuit 40 in the first row the capacitor Cst is charged based on the data voltage applied to the data line DL.
- the gate driver 300 deselects the scanning signal line SL (1), the transistor T2 is turned off in each pixel circuit 40 in the first row.
- the gate-source voltage Vgs held by the capacitor Cst is determined.
- a drive current corresponding to the magnitude of the gate-source voltage Vgs flows between the drain and source of the transistor T1.
- the organic EL element OLED (R) emits light in the pixel circuit 40 (1)
- the organic EL element OLED (G) emits light in the pixel circuit 40 (2)
- (B) emits light.
- the emission driver maintains the first emission line EM1 (1) in the selected state for approximately one frame period. The above operation is sequentially performed in the 2nd to nth rows.
- the transition of the light emission state of the organic EL elements OLED in the three pixel circuits 40 (1) to 40 (3) included in one group is as follows (see FIG. 24).
- the pixel circuit 40 (1) only the red organic EL element OLED (R) emits light.
- the pixel circuit 40 (2) only the green organic EL element OLED (G) is in a light emitting state.
- the pixel circuit 40 (3) only the blue organic EL element OLED (B) is in a light emitting state. That is, when the display mode is the low resolution mode, unlike in the case where the display mode is the high resolution mode, the organic EL elements OLED for a plurality of colors do not emit light sequentially in each pixel circuit 40.
- one pixel in the high resolution mode corresponds to one sub-pixel in the low resolution mode
- one pixel in the low resolution mode corresponds to three pixels in the high resolution mode.
- an image having one-third resolution of the image displayed in the high resolution mode is displayed on the display unit 500.
- the transistor circuit in the pixel circuit 40 is the same. There may be a bias in the degree of deterioration and deterioration of the organic EL element. Therefore, in the present embodiment, a configuration is adopted in which the emission line EM that is selected in the low resolution mode is changed at regular intervals as shown in FIG. As can be seen from FIG. 26, the first emission line EM1 is selected during the period from the time point t11 to the time point t12, and the second emission line EM2 is selected during the period from the time point t12 to the time point t13. The third emission line EM3 is selected during the period of time t14.
- the scanning signal line SL and the emission line EM are driven as shown in FIG.
- the organic EL element OLED (R) is in the emission state in the pixel circuit 40 (1).
- the organic EL element OLED (G) is in a light emitting state
- the organic EL element OLED (B) is in a light emitting state.
- the light emission state as shown in FIG. 27 is obtained during the period from the time point t11 to the time point t12.
- the scanning signal line SL and the emission line EM are driven as shown in FIG.
- the second emission line EM2 is selected among the first to third emission lines EM1 to EM3
- the organic EL element OLED (G) is in the light emitting state in the pixel circuit 40 (1).
- the organic EL element OLED (B) is in a light emitting state
- the organic EL element OLED (R) is in a light emitting state. Therefore, during the period from time t12 to time t13, the light emission state is as shown in FIG.
- the third emission line EM3 is selected among the first to third emission lines EM1 to EM3 in each frame period from the time point t13 to the time point t14 in FIG. Such a light emitting state is obtained.
- the light emission state as shown in FIG. 27, the light emission state as shown in FIG. 29, and the light emission state as shown in FIG. This prevents the occurrence of bias in the degree of deterioration of the transistors and organic EL elements in the pixel circuit 40.
- (1) to 40 (3) are configured. For this reason, it is possible to display a color image having a resolution of one third of that when time-division driving is performed by one vertical scanning. More specifically, a color image having a resolution of 1/3 when time-division driving is performed can be displayed at a driving frequency that is 1/3 when time-division driving is performed. It becomes.
- a color image having a resolution of 1/3 when time-division driving is performed can be displayed at a driving frequency that is 1/3 when time-division driving is performed. It becomes.
- in an organic EL display device that employs time-division driving it is possible to display a low-resolution color image while reducing the driving frequency. Therefore, by switching between high-resolution mode image display and low-resolution mode image display according to the degree of demand for the fineness of the display image, power consumption is always higher than when image display is always performed in time-division driving. Reduced.
- the low resolution mode since it is not necessary to increase the instantaneous luminance of the organic
- the pixel arrangement is the arrangement in the conventional configuration as shown in FIG. 9, the light emission state as shown in FIG. 31 is obtained in the low resolution mode.
- the interval W13 between B and R is narrower than the interval W11 between R and G and the interval W12 between G and B. Since the intervals between the lighting sub-pixels are not constant in this way, display unevenness and vertical stripes (in the example of FIG. 31, green and purple stripes) may be visually recognized.
- the light emission state as shown in FIG. 32 is obtained in the low resolution mode.
- the interval W21 between R and G, the interval W22 between G and B, and the interval W23 between B and R are equal. That is, in this embodiment, the interval between the lighting sub-pixels in the direction in which the scanning signal line SL extends is constant. For this reason, the occurrence of display unevenness (color unevenness) and vertical stripes is prevented, and a color image that does not feel uncomfortable for the viewer is displayed.
- the organic EL display device adopting time-division driving, it is possible to reduce the power consumption than before while suppressing the shortening of the element life without causing display defects. It becomes possible.
- the emission line EM that is selected in the low resolution mode is changed at regular intervals as shown in FIG. Therefore, in each pixel circuit 40, the transistor that is turned on and the organic EL element that is turned on are switched at regular intervals. This prevents the occurrence of bias in the degree of deterioration of the transistors and organic EL elements in the pixel circuit 40.
- one group is formed by the three pixel circuits 40 arranged side by side in the extending direction of the scanning signal line SL, and is included in each group in the low resolution mode.
- the description has been made on the assumption that one pixel is formed by one pixel circuit 40.
- the present invention is not limited to this.
- one pixel is formed by k ⁇ 3 pixel circuits 40 corresponding to k rows continuous in the direction in which the data line DL extends. Also good. This will be described below.
- one pixel in the low resolution mode is formed by three pixel circuits 40 in one row as indicated by reference numeral 71 in FIG.
- one pixel in the low resolution mode may be formed as follows.
- one pixel may be formed by six pixel circuits 40 included in two consecutive rows in the direction in which the data line DL extends.
- one pixel in the low resolution mode corresponds to six pixels in the high resolution mode.
- an image having a resolution of 1/6 of the image displayed in the high resolution mode is displayed on the display unit 500.
- one pixel may be formed by nine pixel circuits 40 included in three consecutive rows in the direction in which the data line DL extends.
- one pixel in the low resolution mode corresponds to nine pixels in the high resolution mode.
- an image having a resolution of 1/9 of the image displayed in the high resolution mode is displayed on the display unit 500.
- the shape of the pixel is a square.
- the source driver 200 does not need to change the data voltage applied to each data line DL.
- the source driver 200 has two scanning signal lines as shown in FIG. What is necessary is just to change the magnitude
- each pixel circuit 40 includes three organic EL elements OLED (R), OLED (G), and OLED (B) (that is, 1 in the high resolution mode).
- the pixels are formed by three sub-pixels), but the present invention is not limited to this.
- Each pixel circuit 40 may include four or more organic EL elements for emitting light of different colors.
- an example in which each pixel circuit 40 includes four organic EL elements will be described.
- FIG. 37 is a schematic diagram showing the arrangement of pixels in this modification.
- “W sub-pixel, B sub-pixel, R sub-pixel, G sub-pixel, B sub-pixel, R sub-pixel, G sub-pixel, W sub-pixel, G sub-pixel, Sub-pixels arranged in the order of “W sub-pixel, B sub-pixel, R sub-pixel, R sub-pixel, G sub-pixel, W sub-pixel, B sub-pixel” are repeatedly provided in the direction in which the scanning signal line SL extends.
- the W sub-pixel is a sub-pixel that displays white. In the direction in which the data line DL extends, as in the first embodiment, sub-pixels for the same color are repeatedly provided.
- the four pixels (16 sub-pixels) arranged side by side in the extending direction of the scanning signal line SL form one group. That is, the four pixel circuits 40 are made into one group.
- the display mode is the low resolution mode
- one pixel is formed by the four pixel circuits 40 included in each group
- the display mode is the high resolution mode
- one pixel circuit 40 Pixels are formed.
- the configuration of the sub-pixel group forming one group is as shown in FIG.
- the configuration is not limited to that shown in FIG.
- the sub-pixels forming one group are labeled as shown in FIG. 39
- the sub-pixels A1, B1, C1, and D1 are associated with sub-pixels for different colors
- the sub-pixels A2, B2, C2, and D2 are associated with sub-pixels for different colors
- sub-pixels A3, B3, C3, and D3 are associated with sub-pixels for different colors
- sub-pixels A4, B4, C4, and D4 may be associated with different color sub-pixels.
- “subpixels A1 to A4”, “subpixels B1 to B4”, “subpixels C1 to C4”, and “subpixels D1 to D4” all constitute subpixels of four colors. To do.
- each pixel circuit 40 includes four organic EL elements OLED, first to fourth emission lines EM1 to EM4 are arranged in the display unit 500 as emission lines EM. Yes. Accordingly, first to fourth emission drivers are provided as emission drivers.
- FIG. 40 is a circuit diagram showing a configuration of one pixel circuit 40 in the present modification.
- FIG. 41 shows the gate terminals of the transistors T3 to T6 and the first to fourth emission lines EM1 to EM4 included in the four pixel circuits 40 (1) to 40 (4) included in one group. It is a figure for demonstrating the connection relationship with. 40 shows the configuration of the pixel circuit 40 (1) in FIG.
- Each pixel circuit 40 includes four organic EL elements OLED (R), OLED (G), OLED (B), and OLED (W).
- the organic EL element OLED (W) functions as an electro-optical element that emits white light.
- each pixel circuit 40 is provided with a transistor T6 as a light emission control transistor for controlling the light emission by controlling the supply of the drive current to the organic EL element OLED (W). .
- each emission line EM corresponds to the four pixel circuits 40 (1) to 40 (4).
- each pixel is switched by switching between the image display in the high resolution mode and the image display in the low resolution mode according to the degree of request for the fineness of the display image in the same manner as in the first embodiment.
- the circuit 40 includes four organic EL elements OLED (R), OLED (G), OLED (B), and OLED (W), while shortening the lifetime of the elements is suppressed. It becomes possible to reduce power consumption more than before.
- one pixel is formed by k ⁇ 4 pixel circuits 40 corresponding to k rows continuous in the direction in which the data line DL extends in the low resolution mode.
- one pixel is formed by k ⁇ j (j is an integer of 3 or more) pixel circuits 40 included in k groups corresponding to consecutive k rows (k is an integer of 2 or more). You may make it.
- the display mode is the high-resolution mode
- an image having a resolution of (k ⁇ j) of the image displayed on the display unit 500 is displayed on the display unit 500.
- the configuration of the sub-pixel group forming one group can be generalized as follows.
- the sub-pixel group may be configured such that the j organic EL elements OLED focused on in each group become organic EL elements OLED having different emission colors.
- each pixel circuit 40 includes j organic EL elements OLED having different emission colors.
- the emission line EM that is selected in the low resolution mode is selected in order to prevent the occurrence of bias in the degree of deterioration of the transistors and organic EL elements in the pixel circuit 40. It changed every fixed period.
- the present invention is not limited to this. For example, each time the display mode is switched from the high resolution mode to the low resolution mode, the emission line EM to be selected in the low resolution mode may be changed. Further, for example, each time the apparatus is turned on, the emission line EM to be selected in the low resolution mode may be changed.
- FIG. 42 is a diagram for explaining the outline of the driving method in the present embodiment. Also in the organic EL display device 1 according to the present embodiment, the display mode is switched between the high resolution mode and the low resolution mode. In the present embodiment, when the display mode is the high resolution mode, time-division driving is performed as in the first embodiment, but when the display mode is the low resolution mode, the above-described pause driving is performed.
- the normal display mode is set to the high resolution mode.
- moving image display or still image display is performed by performing time-division driving that divides one frame period into three sub-frames SF1 to SF3. If the content of the image has not changed over a certain period when operating in time-division driving, the display mode is switched from the high-resolution mode to the low-resolution mode (ie, from time-division driving). Can be switched to rest drive).
- a refresh period in which image data is written to the pixel circuit 40 and a pause period in which image data is written to the pixel circuit 40 are paused.
- a refresh period having a length corresponding to one frame period one frame period is 16.67 ms
- a length corresponding to 59 frame periods in a general display device having a refresh rate (drive frequency) of 60 Hz.
- the rest periods appear alternately.
- a still image is displayed on the display unit 500 at a lower refresh rate than in the high resolution mode (time division driving) based on the writing of image data in the refresh period. Done.
- FIG. 43 is a timing chart showing waveforms of the scanning signal and the light emission control signal when the display mode is the low resolution mode in the present embodiment. Since the operation when the display mode is the high resolution mode is the same as that in the first embodiment, description thereof is omitted. As shown in FIG. 43, in the low resolution mode, the refresh period and the pause period are repeated.
- the emission driver When the refresh period starts, the emission driver first deselects all emission lines EM corresponding to the first row. Thereby, all the organic EL elements OLED included in the pixel circuit 40 in the first row are turned off. Thereafter, with respect to the first row, the emission driver sets the first emission line EM1 (1) to the selected state, and maintains the second emission line EM2 (1) and the third emission line EM3 (1) in the non-selected state. . Further, the gate driver 300 sets the scanning signal line SL (1) to a selected state. Thereby, in each pixel circuit 40 in the first row, the capacitor Cst is charged based on the data voltage applied to the data line DL.
- the gate driver 300 deselects the scanning signal line SL (1)
- the transistor T2 is turned off in each pixel circuit 40 in the first row.
- a drive current corresponding to the magnitude of the gate-source voltage Vgs flows between the drain and source of the transistor T1.
- the organic EL element OLED (R) emits light in the pixel circuit 40 (1)
- the organic EL element OLED (G) emits light in the pixel circuit 40 (2).
- the organic EL element OLED (B) emits light.
- the emission driver maintains the first emission line EM1 (1) in the selected state.
- the above operation is sequentially performed in the 2nd to nth rows. As a result, an image is displayed on the display unit 500.
- the emission driver maintains all the first emission lines EM1 (1) to EM1 (n) in a selected state, and all the second emission lines EM2 (1) to EM2 (n) and all the second emission lines.
- the three emission lines EM3 (1) to EM3 (n) are maintained in a non-selected state. Accordingly, in the pixel circuit 40 (1), the transistor T3 is maintained in the on state, in the pixel circuit 40 (2), the transistor T4 is maintained in the on state, and in the pixel circuit 40 (3), the transistor T5 is maintained in the on state. The For this reason, the organic EL element OLED in each pixel circuit 40 maintains the light emission state similar to the refresh period.
- the organic EL element OLED (R) emits light in the pixel circuit 40 (1)
- the organic EL element OLED (G) emits light in the pixel circuit 40 (2)
- the pixel circuit 40 (3) emits light.
- the organic EL element OLED (B) emits light.
- the image displayed in the refresh period is continuously displayed in the pause period.
- the transition of the light emission state of the organic EL elements OLED in the three pixel circuits 40 (1) to 40 (3) included in one group is as follows (see FIG. 44).
- the pixel circuit 40 (1) after all the organic EL elements OLED for color are temporarily turned off, only the red organic EL element OLED (R) is in the light emitting state through the refresh period and the rest period.
- the pixel circuit 40 (2) after all the organic EL elements OLED for color are temporarily turned off, only the green organic EL element OLED (G) is in the light emitting state through the refresh period and the rest period. Become.
- the organic EL elements OLED for colors are temporarily turned off, only the blue organic EL elements OLED (B) are in the light emitting state through the refresh period and the rest period. Become. The above state is repeated during the period when the display mode is the low resolution mode. That is, when the display mode is the low resolution mode, unlike in the case where the display mode is the high resolution mode, the organic EL elements OLED for a plurality of colors do not emit light sequentially in each pixel circuit 40.
- the present invention is not limited to this.
- Only the second emission line EM2 may be selected during the refresh period and the pause period, or only the third emission line EM3 may be selected during the refresh period and the pause period.
- by adopting a configuration in which the emission line EM to be selected is changed at regular intervals, it is possible to prevent the occurrence of bias in the degree of deterioration of the transistors and organic EL elements in the pixel circuit 40. .
- the organic EL display device that employs time-division driving, it consumes more than before while suppressing the shortening of the element lifetime without causing display defects. It becomes possible to reduce electric power.
- the pause driving is performed in the low resolution mode, a very remarkable effect can be obtained with respect to the reduction of power consumption. This will be described below.
- the state of each component in the refresh period and the pause period is as shown in FIG.
- the operation of the source driver 200, the scanning operation of the gate driver 300 (operation for sequentially selecting the scanning signal lines SL one by one), and the scanning operation of the emission driver (Operation for sequentially selecting emission lines EM one by one) is in an on state.
- the driving frequency in the refresh period is one third of the driving frequency during time-division driving.
- the operation of the source driver 200, the scanning operation of the gate driver 300, and the scanning operation of the emission driver are in an off state. From the above, as shown in FIG.
- FIG. 47 is a diagram illustrating the driving frequency and power consumption of the peripheral driver during time-division driving, and the driving frequency and power consumption of the peripheral driver during the pause period during pause driving.
- power consumption is three times that of when general driving is used, but it can be understood from FIG. 47 that the power consumption of peripheral drivers can be greatly reduced by adopting pause driving. .
- the power consumption can be greatly reduced in the organic EL display device that employs time-division driving as compared with the conventional case.
- an oxide TFT (a thin film transistor using an oxide semiconductor for a channel layer) such as an In—Ga—Zn—O-TFT is adopted as a transistor in the pixel circuit 40.
- An oxide TFT has an extremely small off-leakage current (current flowing in an off state) as compared with a thin film transistor using low-temperature polysilicon, amorphous silicon, or the like as a channel layer.
- the off-leakage current in an In—Ga—Zn—O-TFT is 1/1000 or less of the off-leakage current in an LTPS-TFT (thin film transistor using low-temperature polysilicon as a channel layer).
- the gate-source voltage Vgs of the driving transistor (the transistor T1 in FIG. It is possible to hold. Therefore, the power consumption can be greatly reduced by increasing the length of the pause period during the pause drive to lower the refresh rate.
- each pixel circuit 40 may include four or more organic EL elements OLED for emitting different colors.
- the present invention is not limited to the above-described embodiments and modifications, and various modifications can be made without departing from the spirit of the present invention.
- the organic EL display device has been described as an example.
- the display device includes a self-luminous display element driven by current.
- the present invention can also be applied to these display devices.
- an n-channel transistor is used as the transistor in the pixel circuit 40.
- a p-channel transistor may be used.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Control Of El Displays (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
時分割駆動を採用する表示装置において、表示不良を引き起こすことなく、素子の短寿命化を抑制しつつ従来よりも消費電力を低減する。 表示モードが高解像度モードである時には、時分割駆動によって画像表示が行われる。表示モードが低解像度モードである時には、走査信号線が延びる方向に連続して配置されているj個の画素回路を1つのグループとし、フレーム期間中に各画素回路において1つの有機EL素子のみを発光状態にし、かつ、フレーム期間中に各グループに含まれるj個の画素回路において互いに異なる発光色の有機EL素子を発光状態にすることによって、画像表示が行われる。ここで、表示部内の複数の画素回路は、低解像度モードの際にフレーム期間中に発光状態となる複数の有機EL素子の間隔が走査信号線が延びる方向に関して等間隔になるように構成される。
Description
本発明は、表示装置に関し、より詳しくは、有機EL表示装置などの電流で駆動される自発光型表示素子を備えた表示装置およびその駆動方法に関する。
従来より、表示装置が備える表示素子としては、印加される電圧によって輝度が制御される電気光学素子と流れる電流によって輝度が制御される電気光学素子とがある。印加される電圧によって輝度が制御される電気光学素子の代表例としては液晶表示素子が挙げられる。一方、流れる電流によって輝度が制御される電気光学素子の代表例としては有機EL(Electro Luminescence)素子が挙げられる。有機EL素子は、OLED(Organic Light-Emitting Diode)とも呼ばれている。自発光型の電気光学素子である有機EL素子を使用した有機EL表示装置は、バックライトおよびカラーフィルタなどを要する液晶表示装置に比べて、容易に薄型化・低消費電力化・高輝度化などを図ることができる。従って、近年、積極的に有機EL表示装置の開発が進められている。
有機EL表示装置の駆動方式として、パッシブマトリクス方式(単純マトリクス方式とも呼ばれる。)とアクティブマトリクス方式とが知られている。パッシブマトリクス方式を採用した有機EL表示装置は、構造は単純であるものの、大型化および高精細化が困難である。これに対して、アクティブマトリクス方式を採用した有機EL表示装置(以下「アクティブマトリクス型の有機EL表示装置」という。)は、パッシブマトリクス方式を採用した有機EL表示装置に比べて大型化および高精細化を容易に実現できる。
アクティブマトリクス型の有機EL表示装置には、複数の画素回路がマトリクス状に形成されている。アクティブマトリクス型の有機EL表示装置の画素回路は、典型的には、画素を選択する入力トランジスタと、有機EL素子への電流の供給を制御する駆動トランジスタとを含んでいる。なお、以下においては、駆動トランジスタから有機EL素子に流れる電流のことを「駆動電流」という場合がある。
ところで、アクティブマトリクス型の一般的な有機EL表示装置においては、1個の画素は3個のサブ画素(赤色を表示するRサブ画素,緑色を表示するGサブ画素,および青色を表示するBサブ画素)で構成されている。図48は、1個のサブ画素を構成する従来の一般的な画素回路91の構成を示す回路図である。この画素回路91は、表示部に配設されている複数のデータ線DLと複数の走査信号線SLとの各交差点に対応して設けられている。図48に示すように、この画素回路91は、2個のトランジスタT1,T2と、1個のコンデンサCstと、1個の有機EL素子OLEDとを備えている。トランジスタT1は駆動トランジスタであり、トランジスタT2は入力トランジスタである。なお、図48に示す例では、トランジスタT1,T2は、nチャネル型の薄膜トランジスタ(TFT)である。
トランジスタT1は、有機EL素子OLEDと直列に設けられている。そのトランジスタT1に関し、ゲート端子はトランジスタT2のドレイン端子に接続され、ドレイン端子はハイレベル電源電圧ELVDDを供給する電源線(以下「ハイレベル電源線」といい、ハイレベル電源電圧と同じ符号ELVDDを付す。)に接続され、ソース端子は有機EL素子OLEDのアノード端子に接続されている。トランジスタT2は、データ線DLとトランジスタT1のゲート端子との間に設けられている。そのトランジスタT2に関し、ゲート端子は走査信号線SLに接続され、ドレイン端子はトランジスタT1のゲート端子に接続され、ソース端子はデータ線DLに接続されている。コンデンサCstについては、トランジスタT1のゲート端子に一端が接続され、トランジスタT1のソース端子に他端が接続されている。有機EL素子OLEDのカソード端子は、ローレベル電源電圧ELVSSを供給する電源線(以下「ローレベル電源線」といい、ローレベル電源電圧と同じ符号ELVSSを付す。)に接続されている。以下、トランジスタT1のゲート端子と、コンデンサCstの一端と、トランジスタT2のドレイン端子との接続点のことを便宜上「ゲートノード」という。ゲートノードの電位には符合VGを付す。なお、一般的には、ドレインとソースのうち電位の高い方がドレインと呼ばれているが、本明細書の説明では、一方をドレイン,他方をソースと定義するので、ドレイン電位よりもソース電位の方が高くなることもある。
図49は、図48に示す画素回路91の動作を説明するためのタイミングチャートである。時刻t91以前には、走査信号線SLは非選択状態となっている。従って、時刻t91以前には、トランジスタT2がオフ状態になっており、ゲートノードの電位VGは初期レベル(例えば、1つ前のフレームでの書き込みに応じたレベル)を維持している。時刻t91になると、走査信号線SLが選択状態となり、トランジスタT2がターンオンする。これにより、データ線DLおよびトランジスタT2を介して、この画素回路91が形成する画素(サブ画素)の輝度に対応するデータ電圧Vdataがゲートノードに供給される。その後、時刻t92までの期間に、ゲートノードの電位VGがデータ電圧Vdataに応じて変化する。このとき、コンデンサCstは、ゲートノードの電位VGとトランジスタT1のソース電位との差であるゲート-ソース間電圧Vgsに充電される。時刻t92になると、走査信号線SLが非選択状態となる。これにより、トランジスタT2がターンオフし、コンデンサCstが保持するゲート-ソース間電圧Vgsが確定する。トランジスタT1は、コンデンサCstが保持するゲート-ソース間電圧Vgsに応じて有機EL素子OLEDに駆動電流を供給する。その結果、駆動電流に応じた輝度で有機EL素子OLEDが発光する。
ところで、図48に示す画素回路91は、1個のサブ画素に対応する回路である。従って、3個のサブ画素からなる1個の画素に対応する画素回路910の構成は、図50に示すようなものとなる。図50に示すように、1個の画素を構成する画素回路910は、Rサブ画素用の画素回路91(R)とGサブ画素用の画素回路91(G)とBサブ画素用の画素回路91(B)とによって構成されている。図50に示す構成によれば、画素回路内に多くの回路素子が必要とされるので、高精細化が困難である。
そこで、日本の特開2005-148749号公報には、図51に示すように、1個の画素に必要とされるトランジスタおよびコンデンサの数を従来よりも少なくした構成の画素回路920が開示されている。この画素回路920は、駆動手段921と、順次制御手段922と、3個の有機EL素子OLED(R),OLED(G),およびOLED(B)とによって構成されている。駆動手段921は、駆動トランジスタT11と、入力トランジスタT12と、コンデンサCst1とによって構成されている。順次制御手段922は、赤色用の有機EL素子OLED(R)の発光を制御するためのトランジスタT13(R)と、緑色用の有機EL素子OLED(G)の発光を制御するためのトランジスタT13(G)と、青色用の有機EL素子OLED(B)の発光を制御するためのトランジスタT13(B)とによって構成されている。また、トランジスタT13(R),T13(G),およびT13(B)のオン/オフを制御するための配線としてエミッション線EM1,EM2,およびEM3が画素回路920を通過するように設けられている。
以上のような構成において、1フレーム期間が3つのサブフレームに分割される。具体的には、1フレーム期間は、赤色の発光を行うための第1サブフレームと緑色の発光を行うための第2サブフレームと青色の発光を行うための第3サブフレームとに分割される。そして、順次制御手段922において、第1サブフレームにはトランジスタT13(R)のみがオン状態とされ、第2サブフレームにはトランジスタT13(G)のみがオン状態とされ、第3サブフレームにはトランジスタT13(B)のみがオン状態とされる。これにより、1フレーム期間をかけて有機EL素子OLED(R),有機EL素子OLED(G),および有機EL素子OLED(B)が順次に発光し、所望のカラー画像が表示される。このように、日本の特開2005-148749号公報に開示された有機EL表示装置では、いわゆる「時分割駆動」が行われている。
なお、日本の特開2005-148750号公報には、図52に示す構成の画素回路930を用いて時分割駆動を行う有機EL表示装置の発明が開示されている。
ところが、有機EL表示装置において上述したような時分割駆動を採用した場合、時分割駆動ではない従来の一般的な駆動方法(ここでは「一般的駆動」という。)を採用している場合に比べて消費電力が増大する。これについて、図53および図54を参照しつつ以下に説明する。
時分割駆動においては、発光期間と帰線期間とが交互に繰り返される。発光期間は3色のうちのいずれか1色の発光を行うための期間である。発光期間には、有機EL素子を所望の輝度で発光させるために、ソースドライバ(データ線を駆動する回路),ゲートドライバ(走査信号線を駆動する回路),およびエミッションドライバ(エミッション線を駆動する回路)の動作がオン状態となる(図53参照)。発光期間の長さは帰線期間の長さよりも極めて長いが、各発光期間には、先頭行に含まれる有機EL素子から最終行に含まれる有機EL素子までを一般的駆動における1フレーム期間のほぼ3分の1の長さの期間で順次に発光させなければならない。このため、時分割駆動を採用した場合、一般的駆動を採用している場合に比べて駆動周波数(駆動速度)が約3倍になる。周辺ドライバの消費電力Pは、寄生容量をCとし,電圧振幅をVとし,駆動周波数をfとすると、次式(1)で表される。
上式(1)より、周辺ドライバの消費電力Pは駆動周波数fに比例することが把握される。従って、図54に示すように、時分割駆動を採用した場合における各周辺ドライバの消費電力は、一般的駆動を採用している場合の消費電力の3倍になる。これに関し、例えば携帯電話における待ち受け画面のような静止画像を表示する場合にも、周辺ドライバを高周波数で動作させる必要があるので、消費電力は大きくなる。なお、本明細書における周辺ドライバとは、画素回路を動作させるために表示部の周辺領域に設けられている駆動回路のことを意味する。また、図54に関し、第1~第3エミッションドライバはそれぞれ図51におけるエミッション線EM1~EM3を駆動するための回路である。
また、時分割駆動を採用した場合、各有機EL素子の発光期間の長さは、一般的駆動を採用している場合に比べて3分の1となる。このため、一般的駆動を採用している場合と同程度のパネル輝度を得るためには、各有機EL素子の発光輝度を3倍にする必要がある。従って、各有機EL素子の瞬時輝度が高められる。有機EL素子の寿命は瞬時輝度の1.8~2乗に反比例すると考えられているので、時分割駆動を採用している有機EL表示装置においては有機EL素子の寿命が短くなる。
ところで、消費電力を低減するための手法として、高精細表示が必要とされない画像が表示される際に駆動周波数を低くして解像度を低下させることが考えられる。しかしながら、時分割駆動を行うことを前提とした構成の画素回路を有する有機EL表示装置で表示画像の解像度を低くした場合、画素の配列(サブ画素の並び方)に起因して表示ムラ(色ムラ)や縦すじが現れることが懸念される。
そこで、本発明は、電流で駆動される自発光型表示素子を有し時分割駆動を採用する表示装置において、表示不良を引き起こすことなく、素子の短寿命化を抑制しつつ従来よりも消費電力を低減することを目的とする。
本発明の第1の局面は、複数の行および複数の列を構成するようにマトリクス状に配置された複数の画素回路と、前記複数の行と1対1で対応するように設けられた複数の走査信号線と、前記複数の列と1対1で対応するように設けられた複数のデータ線とを含む表示部を備えた表示装置であって、
前記複数の画素回路は、比較的低い解像度の画像を前記表示部に表示する低解像度モードによる表示が行われているときに各単位フレームにおいて発光状態となる複数の電気光学素子の間隔が前記複数の走査信号線が延びる方向に関して等間隔になるように、構成されていることを特徴とする。
前記複数の画素回路は、比較的低い解像度の画像を前記表示部に表示する低解像度モードによる表示が行われているときに各単位フレームにおいて発光状態となる複数の電気光学素子の間隔が前記複数の走査信号線が延びる方向に関して等間隔になるように、構成されていることを特徴とする。
本発明の第2の局面は、本発明の第1の局面において、
各画素回路は、互いに異なる発光色のj個(jは2以上の整数)の電気光学素子を含み、
前記低解像度モードと比較的高い解像度の画像を前記表示部に表示する高解像度モードとの間で、表示モードが切り替え可能に構成され、
表示モードが前記高解像度モードであるときには、1画面分の画像の表示が行われる期間である単位フレームをj個のサブフレームに分割して、各画素回路においてサブフレーム毎に異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
表示モードが前記低解像度モードであるときには、前記複数の走査信号線が延びる方向に連続して配置されているj個の画素回路を1つのグループとし、単位フレーム中に各画素回路において前記j個の電気光学素子のうちの1つを発光状態にし、かつ、単位フレーム中に各グループに含まれるj個の画素回路において互いに異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われることを特徴とする。
各画素回路は、互いに異なる発光色のj個(jは2以上の整数)の電気光学素子を含み、
前記低解像度モードと比較的高い解像度の画像を前記表示部に表示する高解像度モードとの間で、表示モードが切り替え可能に構成され、
表示モードが前記高解像度モードであるときには、1画面分の画像の表示が行われる期間である単位フレームをj個のサブフレームに分割して、各画素回路においてサブフレーム毎に異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
表示モードが前記低解像度モードであるときには、前記複数の走査信号線が延びる方向に連続して配置されているj個の画素回路を1つのグループとし、単位フレーム中に各画素回路において前記j個の電気光学素子のうちの1つを発光状態にし、かつ、単位フレーム中に各グループに含まれるj個の画素回路において互いに異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われることを特徴とする。
本発明の第3の局面は、本発明の第2の局面において、
表示モードが前記低解像度モードであるときには、前記複数の画素回路への画像データの書き込みを行うリフレッシュ期間と前記複数の画素回路への画像データの書き込みを休止状態にする休止期間とを繰り返すことによって、表示モードが前記高解像度モードであるときよりも低いリフレッシュレートで前記表示部への静止画像の表示が行われ、
前記休止期間には、前記複数の走査信号線および前記複数のデータ線の駆動が停止されることを特徴とする。
表示モードが前記低解像度モードであるときには、前記複数の画素回路への画像データの書き込みを行うリフレッシュ期間と前記複数の画素回路への画像データの書き込みを休止状態にする休止期間とを繰り返すことによって、表示モードが前記高解像度モードであるときよりも低いリフレッシュレートで前記表示部への静止画像の表示が行われ、
前記休止期間には、前記複数の走査信号線および前記複数のデータ線の駆動が停止されることを特徴とする。
本発明の第4の局面は、本発明の第2の局面において、
各画素回路は、
前記j個の電気光学素子と1対1で対応するように設けられたj個の発光制御トランジスタと、
前記j個の電気光学素子を発光状態にするための駆動電流を制御する駆動電流制御部と
を更に含み、
前記表示部は、各行につきj本ずつ設けられた複数の発光制御線を含み、
各画素回路において、
前記j個の発光制御トランジスタの制御端子は、互いに異なる発光制御線に接続され、
前記j個の発光制御トランジスタの第1導通端子は、前記駆動電流制御部に接続され、
前記j個の発光制御トランジスタの第2導通端子は、それぞれ対応する電気光学素子に接続され、
各グループに含まれるj個の画素回路と当該j個の画素回路に対応するj本の発光制御線とに着目したとき、着目したj本の発光制御線の各々は、着目したj個の画素回路において互いに異なる発光色の電気光学素子に対応する発光制御トランジスタの制御端子に接続され、
表示モードが前記高解像度モードであるときには、各行について前記j本の発光制御線がサブフレーム毎に順次に選択状態とされ、
表示モードが前記低解像度モードであるときには、単位フレーム中に各行について前記j本の発光制御線のうちの1本のみが選択状態とされることを特徴とする。
各画素回路は、
前記j個の電気光学素子と1対1で対応するように設けられたj個の発光制御トランジスタと、
前記j個の電気光学素子を発光状態にするための駆動電流を制御する駆動電流制御部と
を更に含み、
前記表示部は、各行につきj本ずつ設けられた複数の発光制御線を含み、
各画素回路において、
前記j個の発光制御トランジスタの制御端子は、互いに異なる発光制御線に接続され、
前記j個の発光制御トランジスタの第1導通端子は、前記駆動電流制御部に接続され、
前記j個の発光制御トランジスタの第2導通端子は、それぞれ対応する電気光学素子に接続され、
各グループに含まれるj個の画素回路と当該j個の画素回路に対応するj本の発光制御線とに着目したとき、着目したj本の発光制御線の各々は、着目したj個の画素回路において互いに異なる発光色の電気光学素子に対応する発光制御トランジスタの制御端子に接続され、
表示モードが前記高解像度モードであるときには、各行について前記j本の発光制御線がサブフレーム毎に順次に選択状態とされ、
表示モードが前記低解像度モードであるときには、単位フレーム中に各行について前記j本の発光制御線のうちの1本のみが選択状態とされることを特徴とする。
本発明の第5の局面は、本発明の第4の局面において、
各行に対応するj本の発光制御線に着目したとき、表示モードが前記低解像度モードであるときに選択状態とされる発光制御線が適宜変更されることを特徴とする。
各行に対応するj本の発光制御線に着目したとき、表示モードが前記低解像度モードであるときに選択状態とされる発光制御線が適宜変更されることを特徴とする。
本発明の第6の局面は、本発明の第5の局面において、
表示モードが前記高解像度モードから前記低解像度モードに切り替わる毎に、表示モードが前記低解像度モードであるときに選択状態とされる発光制御線が変更されることを特徴とする。
表示モードが前記高解像度モードから前記低解像度モードに切り替わる毎に、表示モードが前記低解像度モードであるときに選択状態とされる発光制御線が変更されることを特徴とする。
本発明の第7の局面は、本発明の第4の局面において、
前記複数の画素回路にハイレベルの定電圧を供給する、前記表示部に配設された第1電源線と、
前記複数の画素回路にローレベルの定電圧を供給する、前記表示部に配設された第2電源線と、
前記複数の走査信号線を駆動する走査信号線駆動回路と、
前記複数のデータ線を駆動するデータ線駆動回路と、
前記複数の発光制御線を駆動する発光制御線駆動回路と
を更に備え、
前記駆動電流制御部は、
前記第1電源線と前記第2電源線との間に前記j個の発光制御トランジスタの各々と直列になるように設けられ、前記駆動電流を制御するための駆動トランジスタと、
対応するデータ線と前記駆動トランジスタの制御端子との間に設けられ、対応する走査信号線が前記走査信号線駆動回路によって選択状態にされたときに、対応するデータ線と前記駆動トランジスタの制御端子とを電気的に接続する入力トランジスタと、
前記駆動トランジスタの制御端子と前記駆動トランジスタの一方の導通端子との間に設けられたコンデンサと
を含み、
表示モードが前記低解像度モードであるときには、前記複数の画素回路への画像データの書き込みを行うリフレッシュ期間と前記複数の画素回路への画像データの書き込みを休止状態にする休止期間とを繰り返すことによって、表示モードが前記高解像度モードであるときよりも低いリフレッシュレートで前記表示部への静止画像の表示が行われ、
前記リフレッシュ期間には、
前記発光制御線駆動回路は、各行について前記j本の発光制御線のうちの1本のみを選択状態とし、
前記走査信号線駆動回路は、前記複数の走査信号線を順次に選択状態とし、
前記データ線駆動回路は、各走査信号線が選択状態になるのに応じて、表示モードが前記低解像度モードであるときに前記表示部に表示されるべき静止画像に応じたデータ電圧を前記複数のデータ線に印加し、
前記休止期間には、
前記発光制御線駆動回路は、前記リフレッシュ期間に選択状態にした発光制御線を選択状態で維持するとともにそれ以外の発光制御線を非選択状態で維持し、
前記走査信号線駆動回路および前記データ線駆動回路は、休止状態となることを特徴とする。
前記複数の画素回路にハイレベルの定電圧を供給する、前記表示部に配設された第1電源線と、
前記複数の画素回路にローレベルの定電圧を供給する、前記表示部に配設された第2電源線と、
前記複数の走査信号線を駆動する走査信号線駆動回路と、
前記複数のデータ線を駆動するデータ線駆動回路と、
前記複数の発光制御線を駆動する発光制御線駆動回路と
を更に備え、
前記駆動電流制御部は、
前記第1電源線と前記第2電源線との間に前記j個の発光制御トランジスタの各々と直列になるように設けられ、前記駆動電流を制御するための駆動トランジスタと、
対応するデータ線と前記駆動トランジスタの制御端子との間に設けられ、対応する走査信号線が前記走査信号線駆動回路によって選択状態にされたときに、対応するデータ線と前記駆動トランジスタの制御端子とを電気的に接続する入力トランジスタと、
前記駆動トランジスタの制御端子と前記駆動トランジスタの一方の導通端子との間に設けられたコンデンサと
を含み、
表示モードが前記低解像度モードであるときには、前記複数の画素回路への画像データの書き込みを行うリフレッシュ期間と前記複数の画素回路への画像データの書き込みを休止状態にする休止期間とを繰り返すことによって、表示モードが前記高解像度モードであるときよりも低いリフレッシュレートで前記表示部への静止画像の表示が行われ、
前記リフレッシュ期間には、
前記発光制御線駆動回路は、各行について前記j本の発光制御線のうちの1本のみを選択状態とし、
前記走査信号線駆動回路は、前記複数の走査信号線を順次に選択状態とし、
前記データ線駆動回路は、各走査信号線が選択状態になるのに応じて、表示モードが前記低解像度モードであるときに前記表示部に表示されるべき静止画像に応じたデータ電圧を前記複数のデータ線に印加し、
前記休止期間には、
前記発光制御線駆動回路は、前記リフレッシュ期間に選択状態にした発光制御線を選択状態で維持するとともにそれ以外の発光制御線を非選択状態で維持し、
前記走査信号線駆動回路および前記データ線駆動回路は、休止状態となることを特徴とする。
本発明の第8の局面は、本発明の第7の局面において、
前記発光制御線駆動回路は、前記リフレッシュ期間には、各行を構成する画素回路への画像データの書き込みが行われる直前の期間に、当該各行に対応するj本の発光制御線の全てを非選択状態にすることを特徴とする。
前記発光制御線駆動回路は、前記リフレッシュ期間には、各行を構成する画素回路への画像データの書き込みが行われる直前の期間に、当該各行に対応するj本の発光制御線の全てを非選択状態にすることを特徴とする。
本発明の第9の局面は、本発明の第7の局面において、
前記駆動トランジスタ,前記入力トランジスタ,および前記j個の発光制御トランジスタは、酸化物半導体によりチャネル層が形成された薄膜トランジスタであることを特徴とする。
前記駆動トランジスタ,前記入力トランジスタ,および前記j個の発光制御トランジスタは、酸化物半導体によりチャネル層が形成された薄膜トランジスタであることを特徴とする。
本発明の第10の局面は、本発明の第9の局面において、
前記酸化物半導体の主成分は、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(О)から成ることを特徴とする。
前記酸化物半導体の主成分は、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(О)から成ることを特徴とする。
本発明の第11の局面は、本発明の第2の局面において、
表示モードが前記低解像度モードであるときには、1つのグループに含まれるj個の画素回路によって1つの画素が形成され、表示モードが前記高解像度モードであるときに前記表示部に表示される画像のj分の1の解像度の画像が前記表示部に表示されることを特徴とする。
表示モードが前記低解像度モードであるときには、1つのグループに含まれるj個の画素回路によって1つの画素が形成され、表示モードが前記高解像度モードであるときに前記表示部に表示される画像のj分の1の解像度の画像が前記表示部に表示されることを特徴とする。
本発明の第12の局面は、本発明の第2の局面において、
表示モードが前記低解像度モードであるときには、連続するk行(kは2以上の整数)に対応するk個のグループに含まれるk×j個の画素回路によって1つの画素が形成され、表示モードが前記高解像度モードであるときに前記表示部に表示される画像の(k×j)分の1の解像度の画像が前記表示部に表示されることを特徴とする。
表示モードが前記低解像度モードであるときには、連続するk行(kは2以上の整数)に対応するk個のグループに含まれるk×j個の画素回路によって1つの画素が形成され、表示モードが前記高解像度モードであるときに前記表示部に表示される画像の(k×j)分の1の解像度の画像が前記表示部に表示されることを特徴とする。
本発明の第13の局面は、本発明の第12の局面において、
前記kの値は、表示モードが前記低解像度モードであるときの各画素の形状が正方形となるように定められていることを特徴とする。
前記kの値は、表示モードが前記低解像度モードであるときの各画素の形状が正方形となるように定められていることを特徴とする。
本発明の第14の局面は、本発明の第2の局面において、
各画素回路に含まれる前記j個の電気光学素子は、赤色の発光色,緑色の発光色,および青色の発光色を有する3個の有機エレクトロルミネッセンス素子であることを特徴とする。
各画素回路に含まれる前記j個の電気光学素子は、赤色の発光色,緑色の発光色,および青色の発光色を有する3個の有機エレクトロルミネッセンス素子であることを特徴とする。
本発明の第15の局面は、本発明の第2の局面において、
各画素回路に含まれる前記j個の電気光学素子は、赤色の発光色,緑色の発光色,青色の発光色,および白色の発光色を有する4個の有機エレクトロルミネッセンス素子であることを特徴とする。
各画素回路に含まれる前記j個の電気光学素子は、赤色の発光色,緑色の発光色,青色の発光色,および白色の発光色を有する4個の有機エレクトロルミネッセンス素子であることを特徴とする。
本発明の第16の局面は、本発明の第2の局面において、
各グループに含まれるj個の画素回路のそれぞれにおいて前記複数の走査信号線が延びる方向についてp番目(pは1以上j以下の任意の整数)に配置されている電気光学素子に着目したとき、各グループにおいて着目したj個の電気光学素子は互いに異なる発光色の電気光学素子であることを特徴とする。
各グループに含まれるj個の画素回路のそれぞれにおいて前記複数の走査信号線が延びる方向についてp番目(pは1以上j以下の任意の整数)に配置されている電気光学素子に着目したとき、各グループにおいて着目したj個の電気光学素子は互いに異なる発光色の電気光学素子であることを特徴とする。
本発明の第17の局面は、本発明の第1の局面において、
各画素回路は、互いに異なる発光色のj個(jは2以上の整数)の電気光学素子を含み、
任意の画素回路と、前記複数の走査信号線が延びる方向に前記任意の画素回路の1個隣に配置されている画素回路とでは、前記j個の電気光学素子についての発光色の並びが異なり、
任意の画素回路と、前記複数の走査信号線が延びる方向に前記任意の画素回路のj個隣に配置されている画素回路とでは、前記j個の電気光学素子についての発光色の並びが同じであることを特徴とする。
各画素回路は、互いに異なる発光色のj個(jは2以上の整数)の電気光学素子を含み、
任意の画素回路と、前記複数の走査信号線が延びる方向に前記任意の画素回路の1個隣に配置されている画素回路とでは、前記j個の電気光学素子についての発光色の並びが異なり、
任意の画素回路と、前記複数の走査信号線が延びる方向に前記任意の画素回路のj個隣に配置されている画素回路とでは、前記j個の電気光学素子についての発光色の並びが同じであることを特徴とする。
本発明の第18の局面は、複数の行および複数の列を構成するようにマトリクス状に配置され互いに異なる発光色のj個(jは2以上の整数)の電気光学素子をそれぞれが含む複数の画素回路と、前記複数の行と1対1で対応するように設けられた複数の走査信号線と、前記複数の列と1対1で対応するように設けられた複数のデータ線とを含む表示部を備えた表示装置の駆動方法であって、
比較的高い解像度の画像を前記表示部に表示する高解像度表示ステップと、
比較的低い解像度の画像を前記表示部に表示する低解像度表示ステップと
を含み、
前記高解像度表示ステップでは、1画面分の画像の表示が行われる期間である単位フレームをj個のサブフレームに分割して、各画素回路においてサブフレーム毎に異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
前記低解像度表示ステップでは、前記複数の走査信号線が延びる方向に連続して配置されているj個の画素回路を1つのグループとし、単位フレーム中に各画素回路において前記j個の電気光学素子のうちの1つを発光状態にし、かつ、単位フレーム中に各グループに含まれるj個の画素回路において互いに異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
前記複数の画素回路は、表示モードが前記低解像度モードであるときに各単位フレームにおいて発光状態となる複数の電気光学素子の間隔が前記複数の走査信号線が延びる方向に関して等間隔になるように、構成されていることを特徴とする。
比較的高い解像度の画像を前記表示部に表示する高解像度表示ステップと、
比較的低い解像度の画像を前記表示部に表示する低解像度表示ステップと
を含み、
前記高解像度表示ステップでは、1画面分の画像の表示が行われる期間である単位フレームをj個のサブフレームに分割して、各画素回路においてサブフレーム毎に異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
前記低解像度表示ステップでは、前記複数の走査信号線が延びる方向に連続して配置されているj個の画素回路を1つのグループとし、単位フレーム中に各画素回路において前記j個の電気光学素子のうちの1つを発光状態にし、かつ、単位フレーム中に各グループに含まれるj個の画素回路において互いに異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
前記複数の画素回路は、表示モードが前記低解像度モードであるときに各単位フレームにおいて発光状態となる複数の電気光学素子の間隔が前記複数の走査信号線が延びる方向に関して等間隔になるように、構成されていることを特徴とする。
本発明の第1の局面によれば、走査信号線が延びる方向に関し、低解像度モードの際に各単位フレームにおいて発光状態となる複数の電気光学素子の間隔は等間隔となる。このため、表示ムラ(色ムラ)や縦すじの発生が防止され、視聴者にとって違和感のない画像が表示される。
本発明の第2の局面によれば、時分割駆動で高解像度の画像を表示する表示装置において、低解像度の画像を表示する際には、j個の画素回路が1つのグループとされ、各グループに含まれるj個の画素回路において互いに異なる発光色の電気光学素子が発光状態にされる。このため、1回の垂直走査によって、時分割駆動が行われている時のj分の1以下の解像度のカラー画像を表示することができる。このように、時分割駆動を採用している表示装置において、駆動周波数を低下させつつ低解像度の画像を表示することが可能となる。従って、例えば表示画像の精細さについての要求度合に応じて、時分割駆動で高解像度の画像を表示する高解像度モードと時分割駆動よりも低い駆動周波数の駆動方法で低解像度の画像を表示する低解像度モードとの間で表示モードを切り替えることによって、常に時分割駆動で画像表示が行われる場合と比べて消費電力が低減される。また、低解像度モードの際には電気光学素子の瞬時輝度を時分割駆動が行われている時のように高くする必要がないので、電気光学素子の短寿命化が抑制される。以上のように、時分割駆動を採用している表示装置において、表示不良を引き起こすことなく、素子の短寿命化を抑制しつつ従来よりも消費電力を低減することが可能となる。
本発明の第3の局面によれば、表示モードが低解像度モードである時には、画像データの書き込みを行うリフレッシュ期間と画像データの書き込みを休止する休止期間とを繰り返す休止駆動が行われる。このため、常に時分割駆動で画像表示が行われる場合と比べて、周辺ドライバ(画素回路を動作させるために表示部の周辺領域に設けられている駆動回路)の消費電力が大きく低減される。このように、消費電力の低減に関して極めて顕著な効果が得られる。
本発明の第4の局面によれば、各行に対応しているj本の発光制御線のうちの1本を選択するだけで、各グループに含まれるj個の画素回路において互いに異なる発光色の電気光学素子を発光状態にすることができる。このため、低解像度モード中における発光制御線の駆動による消費電力が極めて小さくなる。
本発明の第5の局面によれば、画素回路内でトランジスタの劣化や電気光学素子の劣化の程度に偏りが生じることが防止される。
本発明の第6の局面によれば、本発明の第5の局面と同様、画素回路内でトランジスタの劣化や電気光学素子の劣化の程度に偏りが生じることが防止される。
本発明の第7の局面によれば、電気光学素子を発光状態にするための駆動電流を制御する駆動電流制御部が駆動トランジスタと入力トランジスタとコンデンサとによって構成されている表示装置において、休止期間には、走査信号線駆動回路およびデータ線駆動回路は休止状態となり、発光制御線駆動回路では直流電流による電力のみが消費される。これにより、時分割駆動が行われている表示装置に関し、確実に従来よりも消費電力を低減することが可能となる。
本発明の第8の局面によれば、各画素回路において、画像データの書き込みが行われる際に、当該画素回路に含まれる電気光学素子が一時的に消灯状態となる。このため、各フレーム期間における表示が1つ前のフレーム期間における表示の影響を受けることが抑制される。これにより、低解像度モードの際に表示される画像の表示品位が高められる。
本発明の第9の局面によれば、画素回路内のトランジスタでのオフリーク電流が極めて小さくなる。このため、表示画像に応じた電圧を画素回路内のコンデンサに従来よりも長時間保持することが可能となる。従って、休止期間の長さを長くしてリフレッシュレートを低くすることにより、消費電力を従来よりも大幅に低減することが可能となる。
本発明の第10の局面によれば、チャネル層を形成する酸化物半導体として酸化インジウムガリウム亜鉛を用いることにより、本発明の第9の局面の効果を確実に達成することができる。
本発明の第11の局面によれば、表示モードが高解像度モードから低解像度モードに切り替わったときの解像度の低下をできるだけ小さくしつつ、本発明の第1の局面と同様の効果を得ることが可能となる。
本発明の第12の局面によれば、表示モードが低解像度モードである時には、各列について連続するk行で同じ画像データの書き込みが行われれば良い。このため、低解像度モード中の画像データの書き込みによる消費電力が低減される。
本発明の第13の局面によれば、表示モードが低解像度モードである時に、より自然な画像が表示部に表示される。
本発明の第14の局面によれば、赤色の発光色,緑色の発光色,および青色の発光色を有する3個の有機エレクトロルミネッセンス素子を電気光学素子として用いた表示装置において、本発明の第1の局面と同様の効果が得られる。
本発明の第15の局面によれば、赤色の発光色,緑色の発光色,青色の発光色,および白色の発光色を有する4個の有機エレクトロルミネッセンス素子を電気光学素子として用いた表示装置において、本発明の第1の局面と同様の効果が得られる。
本発明の第16の局面によれば、表示ムラ(色ムラ)や縦すじの発生が確実に防止される。
本発明の第17の局面によれば、時分割駆動を可能にしつつ、低解像度モードの際の表示ムラ(色ムラ)や縦すじの発生が抑制される。
本発明の第18の局面によれば、本発明の第1の局面と同様の効果を表示装置の駆動方法において奏することができる。
以下、添付図面を参照しつつ、本発明の実施形態について説明する。なお、以下においては、mおよびnは2以上の整数であると仮定する。また、各トランジスタに関し、ゲート端子は制御端子に相当し、ドレイン端子は第1導通端子に相当し、ソース端子は第2導通端子に相当する。
<1.第1の実施形態>
<1.1 全体構成および動作概要>
図2は、本発明の第1の実施形態に係るアクティブマトリクス型の有機EL表示装置1の全体構成を示すブロック図である。この有機EL表示装置1は、表示制御回路100,ソースドライバ(データ線駆動回路)200,ゲートドライバ(走査信号線駆動回路)300,第1~第3エミッションドライバ(第1~第3発光制御線駆動回路)401~403,および表示部500を備えている。以下、第1~第3エミッションドライバ401~403を総称して単に「エミッションドライバ」ともいう。エミッションドライバは、表示部500内に設けられている有機EL素子の発光を制御するための配線(後述するエミッション線)用の駆動回路である。なお、本実施形態においては、表示部500を含む有機ELパネル7内にゲートドライバ300および第1~第3エミッションドライバ401~403が形成されている。すなわち、ゲートドライバ300およびエミッションドライバはモノリシック化されている。また、この有機EL表示装置1には、有機ELパネル7に各種電源電圧を供給するための構成要素として、ロジック電源600,有機EL用ハイレベル電源610,および有機EL用ローレベル電源620が設けられている。
<1.1 全体構成および動作概要>
図2は、本発明の第1の実施形態に係るアクティブマトリクス型の有機EL表示装置1の全体構成を示すブロック図である。この有機EL表示装置1は、表示制御回路100,ソースドライバ(データ線駆動回路)200,ゲートドライバ(走査信号線駆動回路)300,第1~第3エミッションドライバ(第1~第3発光制御線駆動回路)401~403,および表示部500を備えている。以下、第1~第3エミッションドライバ401~403を総称して単に「エミッションドライバ」ともいう。エミッションドライバは、表示部500内に設けられている有機EL素子の発光を制御するための配線(後述するエミッション線)用の駆動回路である。なお、本実施形態においては、表示部500を含む有機ELパネル7内にゲートドライバ300および第1~第3エミッションドライバ401~403が形成されている。すなわち、ゲートドライバ300およびエミッションドライバはモノリシック化されている。また、この有機EL表示装置1には、有機ELパネル7に各種電源電圧を供給するための構成要素として、ロジック電源600,有機EL用ハイレベル電源610,および有機EL用ローレベル電源620が設けられている。
ところで、本実施形態における有機EL表示装置1には、表示モードとして、比較的高い解像度の画像を表示部500に表示する高解像度モードと比較的低い解像度の画像を表示部500に表示する低解像度モードとが用意されている。表示モードが高解像度モードである時には、1フレーム期間(1画面分の画像の表示が行われる期間である単位フレーム)をj個(jは2以上の整数)のサブフレームに分割する時分割駆動が行われる。本実施形態においては、後述するように3つの色のサブ画素(赤色を表示するRサブ画素,緑色を表示するGサブ画素,および青色を表示するBサブ画素)が設けられているので、1フレーム期間を3個のサブフレームに分割する時分割駆動が行われる。
ロジック電源600から有機ELパネル7には、ゲートドライバ300および第1~第3エミッションドライバ401~403の動作に必要とされるハイレベル電源電圧VDDおよびローレベル電源電圧VSSが供給される。有機EL用ハイレベル電源610から有機ELパネル7には、定電圧であるハイレベル電源電圧ELVDDが供給される。有機EL用ローレベル電源620から有機ELパネル7には、定電圧であるローレベル電源電圧ELVSSが供給される。
図3は、本実施形態における表示部500の構成について説明するための図である。表示部500には、図3に示すように、m本のデータ線DL(1)~DL(m)とn本の走査信号線SL(1)~SL(n)とが互いに交差するように配設されている。データ線DL(1)~DL(m)と走査信号線SL(1)~SL(n)との各交差点に対応して画素回路40が設けられている。すなわち、表示部500には、複数の行(n行)および複数の列(m列)を構成するように複数の画素回路40がマトリクス状に配置されている。また、表示部500には、n本の走査信号線SL(1)~SL(n)と対応するように、n本の第1エミッション線EM1(1)~EM1(n),n本の第2エミッション線EM2(1)~EM2(n),およびn本の第3エミッション線EM3(1)~EM3(n)が配設されている。さらに、表示部500には、ハイレベル電源線ELVDDおよびローレベル電源線ELVSSが配設されている。本実施形態においては、ハイレベル電源線ELVDDによって第1電源線が実現され、ローレベル電源線ELVSSによって第2電源線が実現されている。画素回路40の詳しい構成については後述する。
なお、以下においては、m本のデータ線DL(1)~DL(m)を互いに区別する必要がない場合にはデータ線を単に符号DLで表す。同様に、走査信号線,第1エミッション線,第2エミッション線,および第3エミッション線を、それぞれ単に符号SL,EM1,EM2,およびEM3で表す。また、第1~第3エミッション線EM1~EM3を総称して単に「エミッション線」ともいい、エミッション線には符号EMを付す。本実施形態においては、このエミッション線EMによって発光制御線が実現されている。
図2に示すように、表示制御回路100には、表示モード切替制御回路110,解像度切替制御回路120,ソース制御回路130,およびゲート制御回路140が含まれている。表示モード切替制御回路110は、この有機EL表示装置1の表示モードを高解像度モードと低解像度モードとの間で切り替えるための表示モード切替信号Smを、解像度切替制御回路120,ソース制御回路130,およびゲート制御回路140に与える。解像度切替制御回路120は、高解像度モードと低解像度モードとで表示画像の解像度を切り替えるための解像度切替信号Srをソース制御回路130に与えるとともに、各エミッション線EMの選択の可否を制御するためのエミッション線選択信号Seをゲート制御回路140に与える。ソース制御回路130は、表示モード切替信号Smと解像度切替信号Srとに基づいて、表示データDAと、ソースドライバ200の動作を制御するためのソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSとを出力する。ゲート制御回路140は、表示モード切替信号Smに基づいて、ゲートドライバ300の動作を制御するためのゲートスタートパルス信号GSPおよびゲートクロック信号GCKを出力する。ゲート制御回路140は、また、表示モード切替信号Smとエミッション線選択信号Seとに基づいて、第1~第3エミッションドライバ401~403の動作を制御するための第1~第3エミッションドライバ制御信号EMCTL1~EMCTL3を出力する。また、表示制御回路100から有機EL用ハイレベル電源610および有機EL用ローレベル電源620には、電源のオン/オフを制御する制御信号S1および制御信号S2がそれぞれ与えられる。
ソースドライバ200は、表示制御回路100から送られる表示データDA,ソーススタートパルス信号SSP,ソースクロック信号SCK,およびラッチストローブ信号LSを受け取り、データ線DL(1)~DL(m)に駆動用映像信号を印加する。
図4は、ソースドライバ200の一構成例を示すブロック図である。ソースドライバ200は、mビットのシフトレジスタ21,レジスタ22,ラッチ回路23,およびm個のD/A変換器(DAC)24を含んでいる。シフトレジスタ21は、縦続接続されたm個のレジスタ(不図示)を有している。シフトレジスタ21は、ソースクロック信号SCKに基づき、初段のレジスタに供給されるソーススタートパルス信号SSPのパルスを入力端から出力端へと順次に転送する。このパルスの転送に応じてシフトレジスタ21から各データ線DLに対応するタイミングパルスDLPが出力される。そのタイミングパルスDLPに基づいて、レジスタ22は、表示データDAを記憶する。ラッチ回路23は、レジスタ22に記憶された1行分の表示データDAをラッチストローブ信号LSに応じて取り込んで保持する。D/A変換器24は、各データ線DLに対応するように設けられている。D/A変換器24は、ラッチ回路23に保持された表示データDAをアナログ電圧に変換する。その変換されたアナログ電圧は、駆動用映像信号として全てのデータ線DL(1)~DL(m)に一斉に印加される。
ゲートドライバ300は、表示制御回路100から送られるゲートスタートパルス信号GSPおよびゲートクロック信号GCKに基づいて、n本の走査信号線SL(1)~SL(n)に順次にアクティブな走査信号を印加する。なお、走査信号線SLに関し、アクティブな走査信号が印加されている状態のことを「選択状態」という。これについては、エミッション線EMについても同様である。走査信号線SLが選択状態になっている時に、当該走査信号線SLに対応して設けられている画素回路40で画像データの書き込みが行われる。
図5は、本実施形態におけるゲートドライバ300の一構成例を示すブロック図である。このゲートドライバ300は、n個のフリップフロップ回路31(1)~31(n)からなるシフトレジスタ310によって構成されている。このシフトレジスタ310については、ゲートスタートパルス信号GSPは1段目のフリップフロップ回路31(1)に与えられ、ゲートクロック信号GCKは全てのフリップフロップ回路31(1)~31(n)に共通的に与えられるように構成されている。各フリップフロップ回路31(1)~31(n)から出力される出力信号は、走査信号として走査信号線SL(1)~SL(n)に与えられる。
以上のような構成において、シフトレジスタ310の1段目のフリップフロップ回路31(1)にゲートスタートパルス信号GSPのパルスが与えられると、ゲートクロック信号GCKに基づいて、ゲートスタートパルス信号GSPに含まれるパルスが1段目のフリップフロップ回路31(1)からn段目のフリップフロップ回路31(n)へと順次に転送される。そして、このパルスの転送に応じて、n個のフリップフロップ回路31(1)~31(n)から出力される走査信号が順次にアクティブとなる。これにより、図6に示すように、n本の走査信号線SL(1)~SL(n)が所定期間ずつ順次に選択状態となる。
第1エミッションドライバ401は、表示制御回路100から送られる第1エミッションドライバ制御信号EMCTL1に基づいて、n本の第1エミッション線EM1(1)~EM1(n)に第1発光制御信号を印加する。なお、第1エミッションドライバ制御信号EMCTL1は、第1エミッションスタートパルス信号ESP1および第1エミッションクロック信号ECK1からなる。
図7は、本実施形態における第1エミッションドライバ401の一構成例を示すブロック図である。この第1エミッションドライバ401は、n個のフリップフロップ回路41(1)~41(n)からなるシフトレジスタ410によって構成されている。図5および図7から把握されるように、第1エミッションドライバ401は、ゲートドライバ300と同様に構成されている。各フリップフロップ回路41(1)~41(n)から出力される出力信号は、第1発光制御信号として第1エミッション線EM1(1)~EM1(n)に与えられる。
以上のような構成において、シフトレジスタ410の1段目のフリップフロップ回路41(1)に第1エミッションスタートパルス信号ESP1のパルスが与えられると、第1エミッションクロック信号ECK1に基づいて、第1エミッションスタートパルス信号ESP1に含まれるパルスが1段目のフリップフロップ回路41(1)からn段目のフリップフロップ回路41(n)へと順次に転送される。そして、このパルスの転送に応じて、n個のフリップフロップ回路41(1)~41(n)から出力される第1発光制御信号が順次にアクティブとなる。これにより、図8に示すように、n本の第1エミッション線EM1(1)~EM1(n)が順次に選択状態となる。なお、図6および図8から把握されるように、ゲートスタートパルス信号GSPについてのパルス幅は比較的短くされ、第1エミッションスタートパルス信号ESP1についてのパルス幅は比較的長くされる。従って、走査信号線SLについては、複数のラインが同時に選択状態となることはないが、第1エミッション線EM1については、複数のラインが同時に選択状態となることがある(図6および図8を参照)。
第2エミッションドライバ402および第3エミッションドライバ403の構成および動作については、第1エミッションドライバ401と同様であるので説明を省略する。
以上のようにして、m本のデータ線DL(1)~DL(m)に駆動用映像信号が印加され、n本の走査信号線SL(1)~SL(n)に走査信号が印加され、n本の第1エミッション線EM1(1)~EM1(n)に第1発光制御信号が印加され、n本の第2エミッション線EM2(1)~EM2(n)に第2発光制御信号が印加され、n本の第3エミッション線EM3(1)~EM3(n)に第3発光制御信号が印加されることにより、表示部500への画像表示が行われる。なお、以下においては、第1~第3発光制御信号を総称して単に「発光制御信号」ともいう。
<1.2 画素の配列>
次に、本実施形態における画素の配列(サブ画素の並び方)について、従来の構成における画素の配列と比較しつつ説明する。図1は、本実施形態における画素の配列を示す模式図である。図9は、従来例における画素の配列を示す模式図である。なお、図1および図9において、「R」は、赤色を表示するRサブ画素を表し、「G」は、緑色を表示するGサブ画素を表し、「B」は、青色を表示するBサブ画素を表している。
次に、本実施形態における画素の配列(サブ画素の並び方)について、従来の構成における画素の配列と比較しつつ説明する。図1は、本実施形態における画素の配列を示す模式図である。図9は、従来例における画素の配列を示す模式図である。なお、図1および図9において、「R」は、赤色を表示するRサブ画素を表し、「G」は、緑色を表示するGサブ画素を表し、「B」は、青色を表示するBサブ画素を表している。
図9に示すように、従来の構成においては、「Rサブ画素、Gサブ画素、Bサブ画素」という順序で並べられたサブ画素が、走査信号線SLが延びる方向に繰り返し設けられていた。これに対して、本実施形態においては、図1に示すように、「Bサブ画素、Rサブ画素、Gサブ画素、Rサブ画素、Gサブ画素、Bサブ画素、Gサブ画素、Bサブ画素、Rサブ画素」という順序で並べられたサブ画素が、走査信号線SLが延びる方向に繰り返し設けられている。なお、従来の構成においても本実施形態においても、1個の画素は3個のサブ画素によって構成され、1個の画素は1個の画素回路40に対応している。データ線DLが延びる方向については、従来の構成においても本実施形態においても、同じ色用のサブ画素が繰り返し設けられている。以上のように、本実施形態においては、走査信号線SLが延びる方向についてのサブ画素の並び方が従来の構成とは異なっている。
本実施形態では、以上のような構成において、走査信号線SLが延びる方向に並んで配置されている3個の画素(9個のサブ画素)が1つのグループとされる。すなわち、3個の画素回路40が1つのグループとされる。列の数はmであるので、各行につき(m/3)個のグループが形成される。そして、表示モードが低解像度モードである時には、各グループに含まれる3個の画素回路40によって1個の画素が形成される。表示モードが高解像度モードである時には、1個の画素回路40によって1個の画素が形成される。
図1から把握されるように、本実施形態においては、1つのグループを形成するサブ画素群の構成は図10に示すようなものとなる。但し、本発明は、これに限定されない。例えば、1つのグループを形成するサブ画素群の構成が図11に示すようなものであっても良い。さらに詳しくは、1つのグループを形成する各サブ画素に図12に示すように符号を付したときに、「サブ画素A1、サブ画素B1、サブ画素C1」と「Rサブ画素、Gサブ画素、Bサブ画素」とが1対1(順不同)で対応付けられ、かつ、「サブ画素A2、サブ画素B2、サブ画素C2」と「Rサブ画素、Gサブ画素、Bサブ画素」とが1対1(順不同)で対応付けられ、かつ、「サブ画素A3、サブ画素B3、サブ画素C3」と「Rサブ画素、Gサブ画素、Bサブ画素」とが1対1(順不同)で対応付けられていれば良い。但し、「サブ画素A1~A3」,「サブ画素B1~B3」,および「サブ画素C1~C3」は、いずれも3色のサブ画素を構成しているものとする。
<1.3 画素回路の構成>
図13は、1つのグループに含まれる3個の画素回路40(1)~40(3)の構成を示す回路図である。これら3つの画素回路40(1)~40(3)の各々は、表示モードが高解像度モードである時の1個の画素を形成する。画素回路40(1)については、走査信号線SLが延びる方向に「Bサブ画素、Rサブ画素、Gサブ画素」という順序(図14参照)でサブ画素が配置するように構成されている。画素回路40(2)については、走査信号線SLが延びる方向に「Rサブ画素、Gサブ画素、Bサブ画素」という順序(図15参照)でサブ画素が配置するように構成されている。画素回路40(3)については、走査信号線SLが延びる方向に「Gサブ画素、Bサブ画素、Rサブ画素」という順序(図16参照)でサブ画素が配置するように構成されている。
図13は、1つのグループに含まれる3個の画素回路40(1)~40(3)の構成を示す回路図である。これら3つの画素回路40(1)~40(3)の各々は、表示モードが高解像度モードである時の1個の画素を形成する。画素回路40(1)については、走査信号線SLが延びる方向に「Bサブ画素、Rサブ画素、Gサブ画素」という順序(図14参照)でサブ画素が配置するように構成されている。画素回路40(2)については、走査信号線SLが延びる方向に「Rサブ画素、Gサブ画素、Bサブ画素」という順序(図15参照)でサブ画素が配置するように構成されている。画素回路40(3)については、走査信号線SLが延びる方向に「Gサブ画素、Bサブ画素、Rサブ画素」という順序(図16参照)でサブ画素が配置するように構成されている。
図13に示すように、各画素回路40(1)~40(3)は、5個のトランジスタT1~T5と、1個のコンデンサCstと、3個の有機EL素子OLED(R),OLED(G),およびOLED(B)とを備えている。トランジスタT1は駆動トランジスタであり、トランジスタT2は入力トランジスタである。トランジスタT3,T4,およびT5は、それぞれ有機EL素子OLED(R),OLED(G),およびOLED(B)への駆動電流の供給を制御して発光の制御を行う発光制御トランジスタとして機能する。有機EL素子OLED(R)は、赤色光を発する電気光学素子として機能する。有機EL素子OLED(G)は、緑色光を発する電気光学素子として機能する。有機EL素子OLED(B)は、青色光を発する電気光学素子として機能する。以下においては、3個の有機EL素子OLED(R),OLED(G),およびOLED(B)を総称して単に「有機EL素子OLED」ともいう。
なお、本実施形態においては、トランジスタT1とトランジスタT2とコンデンサCstとによって、有機EL素子OLEDを発光状態にするための駆動電流を制御する駆動電流制御部45が実現されている。
図13に示すように、トランジスタT1は、トランジスタT3~T5の各々と直列に、かつ、有機EL素子OLED(R),OLED(G),およびOLED(B)の各々と直列に設けられている。換言すれば、トランジスタT1と有機EL素子OLED(R)とはトランジスタT3を介して直列に接続され、トランジスタT1と有機EL素子OLED(G)とはトランジスタT4を介して直列に接続され、トランジスタT1と有機EL素子OLED(B)とはトランジスタT5を介して直列に接続されている。トランジスタT1に関し、ゲート端子はトランジスタT2のドレイン端子に接続され、ドレイン端子はハイレベル電源線ELVDDに接続され、ソース端子はトランジスタT3~T5のドレイン端子に接続されている。トランジスタT2は、データ線DLとトランジスタT1のゲート端子との間に設けられている。そのトランジスタT2に関し、ゲート端子は走査信号線SLに接続され、ドレイン端子はトランジスタT1のゲート端子に接続され、ソース端子はデータ線DLに接続されている。コンデンサCstについては、トランジスタT1のゲート端子に一端が接続され、トランジスタT1のソース端子に他端が接続されている。トランジスタT3については、ドレイン端子はトランジスタT1のソース端子に接続され、ソース端子は有機EL素子OLED(R)のアノード端子に接続されている。トランジスタT4については、ドレイン端子はトランジスタT1のソース端子に接続され、ソース端子は有機EL素子OLED(G)のアノード端子に接続されている。トランジスタT5については、ドレイン端子はトランジスタT1のソース端子に接続され、ソース端子は有機EL素子OLED(B)のアノード端子に接続されている。トランジスタT3~T5のゲート端子はそれぞれ第1~第3エミッション線EM1~EM3のいずれかに接続されている。但し、第1~第3エミッション線EM1~EM3とトランジスタT3~T5のゲート端子との詳しい接続関係については後述する。有機EL素子OLED(R),OLED(G),およびOLED(B)のカソード端子は、有機EL用ローレベル電源線ELVSSに接続されている。
ここで、第1~第3エミッション線EM1~EM3と3個の画素回路40(1)~40(3)に含まれるトランジスタT3~T5のゲート端子との接続関係について説明する。第1エミッション線EM1は、画素回路40(1)内のトランジスタT3のゲート端子,画素回路40(2)内のトランジスタT4のゲート端子,および画素回路40(3)内のトランジスタT5のゲート端子に接続されている。第2エミッション線EM2は、画素回路40(1)内のトランジスタT4のゲート端子,画素回路40(2)内のトランジスタT5のゲート端子,および画素回路40(3)内のトランジスタT3のゲート端子に接続されている。第3エミッション線EM3は、画素回路40(1)内のトランジスタT5のゲート端子,画素回路40(2)内のトランジスタT3のゲート端子,および画素回路40(3)内のトランジスタT4のゲート端子に接続されている。このように、第1~第3エミッション線EM1~EM3の各々は、3つの画素回路40(1)~40(3)において互いに異なる発光色の有機EL素子OLEDに対応するトランジスタのゲート端子に接続されている。
ところで、本実施形態においては、画素回路40内のトランジスタT1~T5はすべてnチャネル型である。また、本実施形態においては、トランジスタT1~T5には、酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)が採用されている。
以下、酸化物TFTに含まれる酸化物半導体層について説明する。酸化物半導体層は、例えば、In-Ga-Zn-O系の半導体層である。酸化物半導体層は、例えばIn-Ga-Zn-O系の半導体を含む。In-Ga-Zn-O系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物である。In、GaおよびZnの割合(組成比)は、特に限定されない。例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2などでもよい。
In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(アモルファスシリコンTFTに比べて20倍を超える移動度)と低いリーク電流(アモルファスシリコンTFTに比べて100分の1未満のリーク電流)を有するので、画素回路40内の駆動TFT(上記トランジスタT1)およびスイッチングTFT(上記トランジスタT2)として好適に用いられる。In-Ga-Zn-O系半導体層を有するTFTを用いれば、表示装置の消費電力を大幅に削減することができる。
In-Ga-Zn-O系半導体は、アモルファスでもよく、結晶質部分を含み、結晶性を有していてもよい。結晶質In-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系半導体が好ましい。このようなIn-Ga-Zn-O系半導体の結晶構造は、例えば日本の特開2012-134475号公報に開示されている。
酸化物半導体層は、In-Ga-Zn-O系半導体に代えて、他の酸化物半導体を含んでいてもよい。例えばZn-O系半導体(ZnO)、In-Zn-O系半導体(IZO(登録商標))、Zn-Ti-O系半導体(ZTO)、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドニウム)、Mg-Zn-O系半導体、In―Sn―Zn―O系半導体(例えばIn2O3-SnO2-ZnO)、In-Ga-Sn-O系半導体などを含んでいてもよい。
<1.4 駆動方法>
次に、本実施形態における駆動方法について説明する。
次に、本実施形態における駆動方法について説明する。
<1.4.1 概要>
図17は、本実施形態における駆動方法の概要について説明するための図である。上述したように、本実施形態に係る有機EL表示装置1では、高解像度モードと低解像度モードとの間で表示モードの切り替えが行われる。表示モードが高解像度モードである時には、1フレーム期間を3つのサブフレームSF1~SF3に分割する時分割駆動が行われる。これに対して、表示モードが低解像度モードである時には、1フレーム期間をかけて1回の垂直走査を行う一般的駆動が行われる。
図17は、本実施形態における駆動方法の概要について説明するための図である。上述したように、本実施形態に係る有機EL表示装置1では、高解像度モードと低解像度モードとの間で表示モードの切り替えが行われる。表示モードが高解像度モードである時には、1フレーム期間を3つのサブフレームSF1~SF3に分割する時分割駆動が行われる。これに対して、表示モードが低解像度モードである時には、1フレーム期間をかけて1回の垂直走査を行う一般的駆動が行われる。
表示モードに関しては、例えば、この有機EL表示装置1を採用した携帯電話等において、通常時には高解像度モードで画像表示が行われる。そして、カレンダーや時計を表す画像など高精細表示が必要とされない画像が表示される際に、表示モードが高解像度モードから低解像度モードに切り替えられる。その後、高精細表示が必要とされる画像が表示される際に、表示モードが低解像度モードから高解像度モードに切り替えられる。なお、高解像度モードの際の動作によって高解像度表示ステップが実現され、低解像度モードの際の動作によって低解像度表示ステップが実現されている。
<1.4.2 高解像度モードの際の動作>
図18は、表示モードが高解像度モードである時の走査信号および発光制御信号の波形を示すタイミングチャートである。第1サブフレームSF1には、まず、1行目に関し、エミッションドライバは、第1エミッション線EM1(1)を選択状態にし、かつ、第2エミッション線EM2(1)および第3エミッション線EM3(1)を非選択状態で維持する。これにより、1行目において、画素回路40(1)ではトランジスタT3はオン状態かつトランジスタT4,T5はオフ状態となり、画素回路40(2)ではトランジスタT4はオン状態かつトランジスタT3,T5はオフ状態となり、画素回路40(3)ではトランジスタT5はオン状態かつトランジスタT3,T4はオフ状態となる(図13参照)。以上のような状態において、ゲートドライバ300は、走査信号線SL(1)を選択状態にする。これにより、1行目の各画素回路40において、トランジスタT2がオン状態となる。その結果、1行目の各画素回路40において、データ線DLに印加されているデータ電圧に基づいてコンデンサCstが充電される。ゲートドライバ300が走査信号線SL(1)を非選択状態にすると、1行目の各画素回路40において、トランジスタT2がオフ状態となる。これにより、コンデンサCstが保持するゲート-ソース間電圧Vgsが確定する。1行目の各画素回路40では、このゲート-ソース間電圧Vgsの大きさに応じた駆動電流がトランジスタT1のドレイン-ソース間を流れる。ところで、上述したように、第1エミッション線EM1(1)は、画素回路40(1)内のトランジスタT3のゲート端子,画素回路40(2)内のトランジスタT4のゲート端子,および画素回路40(3)内のトランジスタT5のゲート端子に接続されている。従って、画素回路40(1)ではトランジスタT3を介して有機EL素子OLED(R)に駆動電流が供給され、画素回路40(2)ではトランジスタT4を介して有機EL素子OLED(G)に駆動電流が供給され、画素回路40(3)ではトランジスタT5を介して有機EL素子OLED(B)に駆動電流が供給される。その結果、画素回路40(1)では有機EL素子OLED(R)が発光し、画素回路40(2)では有機EL素子OLED(G)が発光し、画素回路40(3)では有機EL素子OLED(B)が発光する。エミッションドライバは、ほぼ1サブフレームに相当する期間、第1エミッション線EM1(1)を選択状態で維持する。
図18は、表示モードが高解像度モードである時の走査信号および発光制御信号の波形を示すタイミングチャートである。第1サブフレームSF1には、まず、1行目に関し、エミッションドライバは、第1エミッション線EM1(1)を選択状態にし、かつ、第2エミッション線EM2(1)および第3エミッション線EM3(1)を非選択状態で維持する。これにより、1行目において、画素回路40(1)ではトランジスタT3はオン状態かつトランジスタT4,T5はオフ状態となり、画素回路40(2)ではトランジスタT4はオン状態かつトランジスタT3,T5はオフ状態となり、画素回路40(3)ではトランジスタT5はオン状態かつトランジスタT3,T4はオフ状態となる(図13参照)。以上のような状態において、ゲートドライバ300は、走査信号線SL(1)を選択状態にする。これにより、1行目の各画素回路40において、トランジスタT2がオン状態となる。その結果、1行目の各画素回路40において、データ線DLに印加されているデータ電圧に基づいてコンデンサCstが充電される。ゲートドライバ300が走査信号線SL(1)を非選択状態にすると、1行目の各画素回路40において、トランジスタT2がオフ状態となる。これにより、コンデンサCstが保持するゲート-ソース間電圧Vgsが確定する。1行目の各画素回路40では、このゲート-ソース間電圧Vgsの大きさに応じた駆動電流がトランジスタT1のドレイン-ソース間を流れる。ところで、上述したように、第1エミッション線EM1(1)は、画素回路40(1)内のトランジスタT3のゲート端子,画素回路40(2)内のトランジスタT4のゲート端子,および画素回路40(3)内のトランジスタT5のゲート端子に接続されている。従って、画素回路40(1)ではトランジスタT3を介して有機EL素子OLED(R)に駆動電流が供給され、画素回路40(2)ではトランジスタT4を介して有機EL素子OLED(G)に駆動電流が供給され、画素回路40(3)ではトランジスタT5を介して有機EL素子OLED(B)に駆動電流が供給される。その結果、画素回路40(1)では有機EL素子OLED(R)が発光し、画素回路40(2)では有機EL素子OLED(G)が発光し、画素回路40(3)では有機EL素子OLED(B)が発光する。エミッションドライバは、ほぼ1サブフレームに相当する期間、第1エミッション線EM1(1)を選択状態で維持する。
以上のような動作が2~n行目において順次に行われる。更に、第2サブフレームSF2および第3サブフレームSF3においても、第1サブフレームSF1と同様の動作が行われる。但し、第2サブフレームSF2には、エミッションドライバは、n本の第2エミッション線EM2(1)~EM2(n)を順次に選択状態にし、第3サブフレームSF3には、エミッションドライバは、n本の第3エミッション線EM3(1)~EM3(n)を順次に選択状態にする。
以上より、1つのグループに含まれる3個の画素回路40(1)~40(3)内の有機EL素子OLEDについての発光状態の推移は以下のようになる(図19参照)。画素回路40(1)では、第1サブフレームSF1には赤色用の有機EL素子OLED(R)のみが発光状態となり、第2サブフレームSF2には緑色用の有機EL素子OLED(G)のみが発光状態となり、第3サブフレームSF3には青色用の有機EL素子OLED(B)のみが発光状態となる。画素回路40(2)では、第1サブフレームSF1には緑色用の有機EL素子OLED(G)のみが発光状態となり、第2サブフレームSF2には青色用の有機EL素子OLED(B)のみが発光状態となり、第3サブフレームSF3には赤色用の有機EL素子OLED(R)のみが発光状態となる。画素回路40(3)では、第1サブフレームSF1には青色用の有機EL素子OLED(B)のみが発光状態となり、第2サブフレームSF2には赤色用の有機EL素子OLED(R)のみが発光状態となり、第3サブフレームSF3には緑色用の有機EL素子OLED(G)のみが発光状態となる。
その結果、3行×3列の画素回路40に着目すると、第1サブフレームSF1には図20に示すような発光状態となり、第2サブフレームSF2には図21に示すような発光状態となり、第3サブフレームSF3には図22に示すような発光状態となる。なお、図20~図22では、発光状態になる有機EL素子OLEDに対応するサブ画素をR,G,またはBで表し、消灯状態になる有機EL素子OLEDに対応するサブ画素を空白で表している(図27,図29~図32においても同様)。
表示モードが高解像度モードである時には、以上のような発光状態の推移が繰り返される。その際、図20~図22に示す3パターンの発光状態の切り替えは人の目にとっては極めて短時間で行われる。従って、1個の画素が1個の画素回路40(3個のサブ画素)で形成されているという状態のカラー画像が表示部500に表示される。なお、本実施形態における画素の配列(サブ画素の並び方)(図1参照)は従来例における画素の配列(図9参照)とは異なっているが、解像度が400ppi以上であれば、視聴者に表示画像に対する違和感を与えることはないと考えられる。
ところで、各行において画像データの書き込みが行われる直前の期間には、エミッションドライバは、その書き込みが行われる行に対応する全てのエミッション線EMを非選択状態にする。例えば、1行目に着目すると、図18における時点t1~時点t2の期間に第1サブフレームSF1用の画像データの書き込みが行われるところ、時点t1~時点t3までの期間を通じて第1エミッション線EM1(1)が選択状態で維持されている。また、時点t4~時点t5の期間に第2サブフレームSF2用の画像データの書き込みが行われるところ、時点t4~時点t6までの期間を通じて第2エミッション線EM2(1)が選択状態で維持されている。ここで、時点t3~時点t4の期間には、1行目に対応する全てのエミッション線EM1(1),EM2(1),およびEM3(1)が非選択状態となっている。従って、時点t3~時点t4の期間には、1行目の画素回路40に含まれる全ての有機EL素子OLEDが消灯状態となる。このようにして、各画素回路40において、画像データの書き込みが行われる際に、当該画素回路40に含まれる有機EL素子OLEDが一時的に消灯状態となる。以上のようにして、各サブフレームにおける表示が1つ前のサブフレームにおける表示の影響を受けることが抑制されている。
<1.4.3 低解像度モードの際の動作>
図23は、表示モードが低解像度モードである時の走査信号および発光制御信号の波形を示すタイミングチャートである。なお、各フレーム期間において第1エミッション線EM1,第2エミッション線EM2,および第3エミッション線EM3のうちのいずれかが選択状態となるが、図23には第1エミッション線EM1が選択状態となる例を示している。
図23は、表示モードが低解像度モードである時の走査信号および発光制御信号の波形を示すタイミングチャートである。なお、各フレーム期間において第1エミッション線EM1,第2エミッション線EM2,および第3エミッション線EM3のうちのいずれかが選択状態となるが、図23には第1エミッション線EM1が選択状態となる例を示している。
フレーム期間が開始すると、まず、1行目に関し、エミッションドライバは、第1エミッション線EM1(1)を選択状態にし、かつ、第2エミッション線EM2(1)および第3エミッション線EM3(1)を非選択状態で維持する。これにより、1行目において、画素回路40(1)ではトランジスタT3はオン状態かつトランジスタT4,T5はオフ状態となり、画素回路40(2)ではトランジスタT4はオン状態かつトランジスタT3,T5はオフ状態となり、画素回路40(3)ではトランジスタT5はオン状態かつトランジスタT3,T4はオフ状態となる(図13参照)。以上のような状態において、ゲートドライバ300は、走査信号線SL(1)を選択状態にする。これにより、1行目の各画素回路40において、データ線DLに印加されているデータ電圧に基づいてコンデンサCstが充電される。ゲートドライバ300が走査信号線SL(1)を非選択状態にすると、1行目の各画素回路40において、トランジスタT2がオフ状態となる。これにより、コンデンサCstが保持するゲート-ソース間電圧Vgsが確定する。そして、1行目の各画素回路40では、このゲート-ソース間電圧Vgsの大きさに応じた駆動電流がトランジスタT1のドレイン-ソース間を流れる。その結果、画素回路40(1)では有機EL素子OLED(R)が発光し、画素回路40(2)では有機EL素子OLED(G)が発光し、画素回路40(3)では有機EL素子OLED(B)が発光する。エミッションドライバは、ほぼ1フレーム期間、第1エミッション線EM1(1)を選択状態で維持する。以上のような動作が2~n行目において順次に行われる。
以上より、1つのグループに含まれる3個の画素回路40(1)~40(3)内の有機EL素子OLEDについての発光状態の推移は以下のようになる(図24参照)。画素回路40(1)では、赤色用の有機EL素子OLED(R)のみが発光状態となる。画素回路40(2)では、緑色用の有機EL素子OLED(G)のみが発光状態となる。画素回路40(3)では、青色用の有機EL素子OLED(B)のみが発光状態となる。すなわち、表示モードが低解像度モードである時には、表示モードが高解像度モードである時とは異なり、各画素回路40において複数の色用の有機EL素子OLEDが順次に発光することがない。以上より、1個の画素が1つのグループに含まれる3個の画素回路40(1)~40(3)で形成されているという状態の画像すなわち1個の画素が9個のサブ画素(但し、3個のサブ画素のみが点灯)で形成されているという状態の画像が表示部500に表示される。
図25に示すように、高解像度モードにおける1画素は低解像度モードにおける1サブ画素に相当し、低解像度モードにおける1画素は高解像度モードにおける3画素に相当する。このように、低解像度モードの際には、高解像度モードの際に表示される画像の3分の1の解像度の画像が表示部500に表示される。
ところで、仮に第1エミッション線EM1,第2エミッション線EM2,および第3エミッション線EM3のうち低解像度モードの際に選択状態となるエミッション線EMが常に同じであれば、画素回路40内でトランジスタの劣化や有機EL素子の劣化の程度に偏りが生じ得る。そこで、本実施形態においては、低解像度モードの際に選択状態となるエミッション線EMを図26に示すように一定期間毎に変更する構成が採用されている。図26から把握されるように、時点t11~時点t12の期間には第1エミッション線EM1が選択状態となり、時点t12~時点t13の期間には第2エミッション線EM2が選択状態となり、時点t13~時点t14の期間には第3エミッション線EM3が選択状態となる。
図26における時点t11~時点t12の期間の各フレーム期間には、図23に示したように走査信号線SLおよびエミッション線EMが駆動される。このとき、第1~第3エミッション線EM1~EM3のうち第1エミッション線EM1のみが選択状態となるので、各グループにおいて、画素回路40(1)では有機EL素子OLED(R)のみが発光状態となり、画素回路40(2)では有機EL素子OLED(G)のみが発光状態となり、画素回路40(3)では有機EL素子OLED(B)のみが発光状態となる。従って、走査信号線SLが延びる方向に隣接する2つのグループ(すなわち18サブ画素)に着目すると、時点t11~時点t12の期間には図27に示すような発光状態となる。
図26における時点t12~時点t13の期間の各フレーム期間には、図28に示すように走査信号線SLおよびエミッション線EMが駆動される。このとき、第1~第3エミッション線EM1~EM3のうち第2エミッション線EM2のみが選択状態となるので、各グループにおいて、画素回路40(1)では有機EL素子OLED(G)のみが発光状態となり、画素回路40(2)では有機EL素子OLED(B)のみが発光状態となり、画素回路40(3)では有機EL素子OLED(R)のみが発光状態となる。従って、時点t12~時点t13の期間には図29に示すような発光状態となる。同様にして、図26における時点t13~時点t14の期間の各フレーム期間には、第1~第3エミッション線EM1~EM3のうち第3エミッション線EM3のみが選択状態となるので、図30に示すような発光状態となる。
以上より、低解像度モードの際には、図27に示すような発光状態,図29に示すような発光状態,および図30に示すような発光状態が所定期間ずつ順次に現れる。これにより、画素回路40内でトランジスタの劣化や有機EL素子の劣化の程度に偏りが生じることが防止されている。
<1.5.効果>
時分割駆動が行われる従来の構成によれば、1回の垂直走査において、表示部全体でいずれか1つの色用の有機EL素子のみを発光状態にすることが可能となっている。このため、駆動周波数を低下させた場合、視聴者の目に違和感を与えることなく所望のカラー画像を表示することはできない。この点、本実施形態においては、それぞれが赤色用の有機EL素子OLED(R),緑色用の有機EL素子OLED(G),および青色用の有機EL素子OLED(B)を含む3個の画素回路40(1)~40(3)によって1つのグループが形成される。そして、各グループに含まれる3個の画素回路40(1)~40(3)において互いに異なる発光色の有機EL素子OLEDを同時に発光状態にすることが可能なよう、それら3個の画素回路40(1)~40(3)が構成されている。このため、1回の垂直走査によって、時分割駆動が行われている時の3分の1の解像度のカラー画像を表示することができる。より詳しくは、時分割駆動が行われている時の3分の1の解像度のカラー画像であれば、時分割駆動が行われている時の3分の1の駆動周波数で表示することが可能となる。このように、本実施形態によれば、時分割駆動を採用している有機EL表示装置において、駆動周波数を低下させつつ低解像度のカラー画像を表示することが可能となる。従って、表示画像の精細さについての要求度合などに応じて高解像度モードによる画像表示と低解像度モードによる画像表示とを切り替えることによって、常に時分割駆動で画像表示を行う場合と比べて消費電力が低減される。また、低解像度モードの際には有機EL素子の瞬時輝度を時分割駆動が行われている時のように高くする必要がないので、有機EL素子の短寿命化が抑制される。
時分割駆動が行われる従来の構成によれば、1回の垂直走査において、表示部全体でいずれか1つの色用の有機EL素子のみを発光状態にすることが可能となっている。このため、駆動周波数を低下させた場合、視聴者の目に違和感を与えることなく所望のカラー画像を表示することはできない。この点、本実施形態においては、それぞれが赤色用の有機EL素子OLED(R),緑色用の有機EL素子OLED(G),および青色用の有機EL素子OLED(B)を含む3個の画素回路40(1)~40(3)によって1つのグループが形成される。そして、各グループに含まれる3個の画素回路40(1)~40(3)において互いに異なる発光色の有機EL素子OLEDを同時に発光状態にすることが可能なよう、それら3個の画素回路40(1)~40(3)が構成されている。このため、1回の垂直走査によって、時分割駆動が行われている時の3分の1の解像度のカラー画像を表示することができる。より詳しくは、時分割駆動が行われている時の3分の1の解像度のカラー画像であれば、時分割駆動が行われている時の3分の1の駆動周波数で表示することが可能となる。このように、本実施形態によれば、時分割駆動を採用している有機EL表示装置において、駆動周波数を低下させつつ低解像度のカラー画像を表示することが可能となる。従って、表示画像の精細さについての要求度合などに応じて高解像度モードによる画像表示と低解像度モードによる画像表示とを切り替えることによって、常に時分割駆動で画像表示を行う場合と比べて消費電力が低減される。また、低解像度モードの際には有機EL素子の瞬時輝度を時分割駆動が行われている時のように高くする必要がないので、有機EL素子の短寿命化が抑制される。
ここで、仮に画素の配列が図9に示したような従来の構成における配列になっていれば、低解像度モードの際には図31に示すような発光状態となる。この場合、発光状態となる有機EL素子に対応するサブ画素(以下「点灯サブ画素」という。)の間隔(走査信号線SLが延びる方向についての間隔)に着目すると、図31から把握されるように、BとRとの間隔W13は、RとGとの間隔W11やGとBとの間隔W12よりも狭くなっている。このように点灯サブ画素の間隔が一定ではないため、表示ムラや縦すじ(図31の例の場合、緑色と紫色のすじ)が視認されることがある。この点、本実施形態によれば、低解像度モードの際には図32に示すような発光状態となる。図32から把握されるように、RとGとの間隔W21,GとBとの間隔W22,およびBとRとの間隔W23は等しくなっている。すなわち、本実施形態においては、走査信号線SLが延びる方向についての点灯サブ画素の間隔は一定となっている。このため、表示ムラ(色ムラ)や縦すじの発生が防止され、視聴者にとって違和感のないカラー画像が表示される。
以上より、本実施形態によれば、時分割駆動を採用している有機EL表示装置において、表示不良を引き起こすことなく、素子の短寿命化を抑制しつつ従来よりも消費電力を低減することが可能となる。
また、本実施形態においては、低解像度モードの際に選択状態となるエミッション線EMが図26に示すように一定期間毎に変更される。このため、各画素回路40において、オン状態にされるトランジスタおよび発光状態にされる有機EL素子が一定期間毎に切り替えられる。これにより、画素回路40内でトランジスタの劣化や有機EL素子の劣化の程度に偏りが生じることが防止される。
<1.6.変形例>
以下、上記第1の実施形態の変形例について説明する。
以下、上記第1の実施形態の変形例について説明する。
<1.6.1 第1の変形例>
上記第1の実施形態においては、走査信号線SLが延びる方向に並んで配置されている3個の画素回路40によって1つのグループが形成されて低解像度モードの際には各グループに含まれる3個の画素回路40によって1つの画素が形成されることを前提に説明していた。しかしながら、本発明はこれに限定されず、低解像度モードの際にデータ線DLが延びる方向に連続するk行に対応するk×3個の画素回路40によって1つの画素が形成されるようにしても良い。これについて以下に説明する。
上記第1の実施形態においては、走査信号線SLが延びる方向に並んで配置されている3個の画素回路40によって1つのグループが形成されて低解像度モードの際には各グループに含まれる3個の画素回路40によって1つの画素が形成されることを前提に説明していた。しかしながら、本発明はこれに限定されず、低解像度モードの際にデータ線DLが延びる方向に連続するk行に対応するk×3個の画素回路40によって1つの画素が形成されるようにしても良い。これについて以下に説明する。
上記第1の実施形態においては、低解像度モードにおける1つの画素は、図33で符号71で示すように、1つの行の3個の画素回路40によって形成されていた。しかしながら、低解像度モードにおける1つの画素を以下のように形成しても良い。例えば、図33で符号72で示すように、データ線DLが延びる方向に連続する2つの行に含まれる6個の画素回路40によって1つの画素を形成しても良い。この場合、図34に示すように、低解像度モードにおける1画素は高解像度モードにおける6画素に相当する。これにより、低解像度モードのときには、高解像度モードのときに表示される画像の6分の1の解像度の画像が表示部500に表示される。また、例えば、図33で符号73で示すように、データ線DLが延びる方向に連続する3つの行に含まれる9個の画素回路40によって1つの画素を形成しても良い。この場合、図35に示すように、低解像度モードにおける1画素は高解像度モードにおける9画素に相当する。これにより、低解像度モードのときには、高解像度モードのときに表示される画像の9分の1の解像度の画像が表示部500に表示される。なお、図35に示す例では、3つの行に含まれる9個の画素回路40によって1つの画素が形成されるときに、画素の形状が正方形になっている。このように低解像度モードのときの画素の形状を正方形にすることによって、より自然な画像が低解像度モードの際に表示部500に表示される。
ところで、データ線DLが延びる方向に連続するk行に対応するk×3個の画素回路40によって1つの画素を形成した場合、低解像度モードの際の各フレーム期間において、k本の走査信号線SLが順次に選択状態とされる期間中、ソースドライバ200は各データ線DLに印加するデータ電圧を変化させる必要がない。例えば、データ線DLが延びる方向に連続する2つの行に含まれる6個の画素回路40によって1つの画素を形成した場合、ソースドライバ200は、図36に示すように、2本の走査信号線SLが選択される毎に各データ線DLに印加するデータ電圧の大きさを変化させれば良い。これにより、表示モードが低解像度モードである時のソースドライバ200の消費電力を低減することができる。
<1.6.2 第2の変形例>
上記第1の実施形態においては、各画素回路40には3個の有機EL素子OLED(R),OLED(G),およびOLED(B)が含まれていたが(すなわち、高解像度モードにおける1個の画素は3個のサブ画素によって形成されていたが)、本発明はこれに限定されない。それぞれ異なる色の発光を行うための4個以上の有機EL素子が各画素回路40に含まれていても良い。ここでは、各画素回路40に4個の有機EL素子が含まれている例について説明する。
上記第1の実施形態においては、各画素回路40には3個の有機EL素子OLED(R),OLED(G),およびOLED(B)が含まれていたが(すなわち、高解像度モードにおける1個の画素は3個のサブ画素によって形成されていたが)、本発明はこれに限定されない。それぞれ異なる色の発光を行うための4個以上の有機EL素子が各画素回路40に含まれていても良い。ここでは、各画素回路40に4個の有機EL素子が含まれている例について説明する。
図37は、本変形例における画素の配列を示す模式図である。図37に示すように、本変形例においては、「Wサブ画素、Bサブ画素、Rサブ画素、Gサブ画素、Bサブ画素、Rサブ画素、Gサブ画素、Wサブ画素、Gサブ画素、Wサブ画素、Bサブ画素、Rサブ画素、Rサブ画素、Gサブ画素、Wサブ画素、Bサブ画素」という順序で並べられたサブ画素が、走査信号線SLが延びる方向に繰り返し設けられている。なお、Wサブ画素は、白色を表示するサブ画素である。データ線DLが延びる方向については、上記第1の実施形態と同様、同じ色用のサブ画素が繰り返し設けられている。以上のような構成において、走査信号線SLが延びる方向に並んで配置されている4個の画素(16個のサブ画素)が1つのグループとされる。すなわち、4個の画素回路40が1つのグループとされる。そして、表示モードが低解像度モードである時には、各グループに含まれる4個の画素回路40によって1個の画素が形成され、表示モードが高解像度モードである時には、1個の画素回路40によって1個の画素が形成される。
本変形例においては、1つのグループを形成するサブ画素群の構成は図38に示すようなものとなる。但し、図38に示す構成には限定されない。1つのグループを形成する各サブ画素に図39に示すように符号を付したときに、サブ画素A1,B1,C1,およびD1がそれぞれ異なる色用のサブ画素に対応付けられ、かつ、サブ画素A2,B2,C2,およびD2がそれぞれ異なる色用のサブ画素に対応付けられ、かつ、サブ画素A3,B3,C3,およびD3がそれぞれ異なる色用のサブ画素に対応付けられ、かつ、サブ画素A4,B4,C4,およびD4がそれぞれ異なる色用のサブ画素に対応付けられていれば良い。但し、「サブ画素A1~A4」,「サブ画素B1~B4」,「サブ画素C1~C4」,および「サブ画素D1~D4」は、いずれも4色のサブ画素を構成しているものとする。
なお、本変形例においては、各画素回路40に4個の有機EL素子OLEDが含まれているので、エミッション線EMとして第1~第4エミッション線EM1~EM4が表示部500に配設されている。また、これに伴い、エミッションドライバとして第1~第4エミッションドライバが設けられている。
図40は、本変形例における1個の画素回路40の構成を示す回路図である。図41は、本変形例において、1つのグループに含まれる4個の画素回路40(1)~40(4)に含まれるトランジスタT3~T6のゲート端子と第1~第4エミッション線EM1~EM4との接続関係について説明するための図である。なお、図40には、図41における画素回路40(1)の構成を示している。各画素回路40には、4個の有機EL素子OLED(R),OLED(G),OLED(B),およびOLED(W)が含まれている。有機EL素子OLED(W)は、白色光を発する電気光学素子として機能する。また、各画素回路40には、トランジスタT3~T5に加えて、有機EL素子OLED(W)への駆動電流の供給を制御して発光の制御を行う発光制御トランジスタとしてトランジスタT6が設けられている。
各画素回路40に着目すると、トランジスタT3~T6のゲート端子は互いに異なるエミッション線EMに接続されている。また、4つの画素回路40(1)~40(4)と第1~第4エミッション線EM1~EM4とに着目したとき、各エミッション線EMは、4つの画素回路40(1)~40(4)において互いに異なる発光色の有機EL素子OLEDに対応する発光制御トランジスタのゲート端子に接続されている。
以上のような構成において上記第1の実施形態と同様にして表示画像の精細さについての要求度合などに応じて高解像度モードによる画像表示と低解像度モードによる画像表示とを切り替えることによって、各画素回路40に4個の有機EL素子OLED(R),OLED(G),OLED(B),およびOLED(W)が含まれる構成の有機EL表示装置においても、素子の短寿命化を抑制しつつ従来よりも消費電力を低減することが可能となる。
なお、上記第1の変形例と同様にして、低解像度モードの際、データ線DLが延びる方向に連続するk行に対応するk×4個の画素回路40によって1つの画素が形成されるようにしても良い。更に一般化すると、連続するk行(kは2以上の整数)に対応するk個のグループに含まれるk×j個(jは3以上の整数)の画素回路40によって1つの画素が形成されるようにしても良い。この場合、表示モードが高解像度モードである時に表示部500に表示される画像の(k×j)分の1の解像度の画像が表示部500に表示される。
また、1つのグループを形成するサブ画素群の構成に関し、以下のように一般化することができる。各グループに含まれるj個(jは3以上の整数)の画素回路40のそれぞれにおいて走査信号線SLが延びる方向についてp番目(pは1以上j以下の任意の整数)に配置されている有機EL素子OLEDに着目したときに、各グループにおいて着目したj個の有機EL素子OLEDが互いに異なる発光色の有機EL素子OLEDとなるように、サブ画素群が構成されていれば良い。但し、各画素回路40には互いに異なる発光色のj個の有機EL素子OLEDが含まれているものとする。
<1.6.3 第3の変形例>
上記第1の実施形態においては、画素回路40内でトランジスタの劣化や有機EL素子の劣化の程度に偏りが生じることを防止するために、低解像度モードの際に選択状態にするエミッション線EMを一定期間毎に変更していた。しかしながら、本発明はこれに限定されない。例えば、表示モードが高解像度モードから低解像度モードに切り替えられる都度、低解像度モードの際に選択状態にするエミッション線EMを変更するようにしても良い。また、例えば、装置の電源オンの都度、低解像度モードの際に選択状態にするエミッション線EMを変更するようにしても良い。
上記第1の実施形態においては、画素回路40内でトランジスタの劣化や有機EL素子の劣化の程度に偏りが生じることを防止するために、低解像度モードの際に選択状態にするエミッション線EMを一定期間毎に変更していた。しかしながら、本発明はこれに限定されない。例えば、表示モードが高解像度モードから低解像度モードに切り替えられる都度、低解像度モードの際に選択状態にするエミッション線EMを変更するようにしても良い。また、例えば、装置の電源オンの都度、低解像度モードの際に選択状態にするエミッション線EMを変更するようにしても良い。
<2.第2の実施形態>
<2.1 概要>
本発明の第2の実施形態について説明する。近年、表示装置の低消費電力化を図るために、「リフレッシュ期間(書き込み期間)とリフレッシュ期間(書き込み期間)の間に全ての走査信号線を非選択状態にして画像データの書き込み動作を休止する休止期間を設ける」という駆動方法の開発が進められている。このような駆動方法は「休止駆動」などと呼ばれている。休止駆動を採用する表示装置では、休止期間には周辺ドライバの動作を停止させることができるので、消費電力が低減される。有機EL表示装置においても、このような休止駆動が採用されつつある。そこで、休止駆動を採用する有機EL表示装置を本発明の第2の実施形態として説明する。なお、全体構成(図2参照),画素の配列(図1参照),画素回路の構成(図13参照)などについては、上記第1の実施形態と同様であるので、説明を省略する。
<2.1 概要>
本発明の第2の実施形態について説明する。近年、表示装置の低消費電力化を図るために、「リフレッシュ期間(書き込み期間)とリフレッシュ期間(書き込み期間)の間に全ての走査信号線を非選択状態にして画像データの書き込み動作を休止する休止期間を設ける」という駆動方法の開発が進められている。このような駆動方法は「休止駆動」などと呼ばれている。休止駆動を採用する表示装置では、休止期間には周辺ドライバの動作を停止させることができるので、消費電力が低減される。有機EL表示装置においても、このような休止駆動が採用されつつある。そこで、休止駆動を採用する有機EL表示装置を本発明の第2の実施形態として説明する。なお、全体構成(図2参照),画素の配列(図1参照),画素回路の構成(図13参照)などについては、上記第1の実施形態と同様であるので、説明を省略する。
<2.2 駆動方法>
図42は、本実施形態における駆動方法の概要について説明するための図である。本実施形態に係る有機EL表示装置1においても、高解像度モードと低解像度モードとの間で表示モードの切り替えが行われる。本実施形態においては、表示モードが高解像度モードである時には上記第1の実施形態と同様に時分割駆動が行われるが、表示モードが低解像度モードである時には上述した休止駆動が行われる。
図42は、本実施形態における駆動方法の概要について説明するための図である。本実施形態に係る有機EL表示装置1においても、高解像度モードと低解像度モードとの間で表示モードの切り替えが行われる。本実施形態においては、表示モードが高解像度モードである時には上記第1の実施形態と同様に時分割駆動が行われるが、表示モードが低解像度モードである時には上述した休止駆動が行われる。
通常時の表示モードは高解像度モードに設定される。高解像度モードの際には、1フレーム期間を3つのサブフレームSF1~SF3に分割する時分割駆動を行うことによって、動画表示もしくは静止画表示が行われる。時分割駆動で動作しているときに或る定められた期間以上の期間を通じて画像の内容に変化がなかった場合、表示モードが高解像度モードから低解像度モードに切り替えられる(すなわち、時分割駆動から休止駆動に切り替えられる)。
低解像度モードの際には、画素回路40への画像データの書き込みが行われるリフレッシュ期間と画素回路40への画像データの書き込みが休止状態にされる休止期間とが繰り返される。例えば、リフレッシュレート(駆動周波数)が60Hzである一般的な表示装置における1フレーム期間(1フレーム期間は16.67msである。)に相当する長さのリフレッシュ期間と59フレーム期間に相当する長さの休止期間とが交互に現れる。このようにして、低解像度モードの際には、リフレッシュ期間における画像データの書き込みに基づいて、高解像度モード(時分割駆動)のときよりも低いリフレッシュレートで表示部500への静止画の表示が行われる。
図43は、本実施形態において、表示モードが低解像度モードである時の走査信号および発光制御信号の波形を示すタイミングチャートである。なお、表示モードが高解像度モードである時の動作については、上記第1の実施形態と同様であるので、説明を省略する。図43に示すように、低解像度モードの際には、リフレッシュ期間と休止期間とが繰り返される。
リフレッシュ期間が開始すると、エミッションドライバは、まず1行目に対応する全てのエミッション線EMを非選択状態にする。これにより、1行目の画素回路40に含まれる全ての有機EL素子OLEDが消灯状態となる。その後、1行目に関し、エミッションドライバは、第1エミッション線EM1(1)を選択状態にし、かつ、第2エミッション線EM2(1)および第3エミッション線EM3(1)を非選択状態で維持する。また、ゲートドライバ300は、走査信号線SL(1)を選択状態にする。これにより、1行目の各画素回路40において、データ線DLに印加されているデータ電圧に基づいてコンデンサCstが充電される。ゲートドライバ300が走査信号線SL(1)を非選択状態にすると、1行目の各画素回路40において、トランジスタT2がオフ状態となる。そして、1行目の各画素回路40では、ゲート-ソース間電圧Vgsの大きさに応じた駆動電流がトランジスタT1のドレイン-ソース間を流れる。その結果、上記第1の実施形態と同様、画素回路40(1)では有機EL素子OLED(R)が発光し、画素回路40(2)では有機EL素子OLED(G)が発光し、画素回路40(3)では有機EL素子OLED(B)が発光する。その後、エミッションドライバは、第1エミッション線EM1(1)を選択状態で維持する。以上のような動作が2~n行目において順次に行われる。これにより、表示部500に画像が表示される。
休止期間には、エミッションドライバは、全ての第1エミッション線EM1(1)~EM1(n)を選択状態で維持し、全ての第2エミッション線EM2(1)~EM2(n)および全ての第3エミッション線EM3(1)~EM3(n)を非選択状態で維持する。これにより、画素回路40(1)ではトランジスタT3がオン状態で維持され、画素回路40(2)ではトランジスタT4がオン状態で維持され、画素回路40(3)ではトランジスタT5がオン状態で維持される。このため、各画素回路40内の有機EL素子OLEDは、リフレッシュ期間と同様の発光状態を維持する。すなわち、リフレッシュ期間と同様、画素回路40(1)では有機EL素子OLED(R)が発光し、画素回路40(2)では有機EL素子OLED(G)が発光し、画素回路40(3)では有機EL素子OLED(B)が発光する。以上より、リフレッシュ期間に表示された画像が引き続き休止期間にも表示される。
以上より、1つのグループに含まれる3つの画素回路40(1)~40(3)内の有機EL素子OLEDについての発光状態の推移は以下のようになる(図44参照)。画素回路40(1)では、一時的に全ての色用の有機EL素子OLEDが消灯状態になった後、リフレッシュ期間および休止期間を通じて、赤色用の有機EL素子OLED(R)のみが発光状態となる。画素回路40(2)では、一時的に全ての色用の有機EL素子OLEDが消灯状態になった後、リフレッシュ期間および休止期間を通じて、緑色用の有機EL素子OLED(G)のみが発光状態となる。画素回路40(3)では、一時的に全ての色用の有機EL素子OLEDが消灯状態になった後、リフレッシュ期間および休止期間を通じて、青色用の有機EL素子OLED(B)のみが発光状態となる。以上のような状態が、表示モードが低解像度モードになっている期間に繰り返される。すなわち、表示モードが低解像度モードである時には、表示モードが高解像度モードである時とは異なり、各画素回路40において複数の色用の有機EL素子OLEDが順次に発光することがない。以上より、1個の画素が1つのグループに含まれる3個の画素回路40(1)~40(3)で形成されているという状態の画像すなわち1個の画素が9個のサブ画素(但し、3個のサブ画素のみが点灯)で形成されているという状態の画像が表示部500に表示される。
ところで、休止期間には、全ての走査信号線SL(1)~SL(n)は非選択状態で維持される。また、休止期間には、ソースドライバ200からデータ線DLにデータ電圧は印加されない。すなわち、休止期間には、ゲートドライバ300およびソースドライバ200は休止状態となる。このため、休止期間中におけるゲートドライバ300およびソースドライバ200での消費電力はゼロとなる。
なお、上述の例では、リフレッシュ期間および休止期間に第1エミッション線EM1のみが選択状態にされているが、本発明はこれに限定されない。リフレッシュ期間および休止期間に第2エミッション線EM2のみが選択状態にされても良いし、リフレッシュ期間および休止期間に第3エミッション線EM3のみが選択状態にされても良い。また、選択状態となるエミッション線EMを一定期間毎に変更する構成を採用することによって、画素回路40内でトランジスタの劣化や有機EL素子の劣化の程度に偏りが生じることを防止することもできる。
<2.3 効果>
本実施形態によれば、上記第1の実施形態と同様、時分割駆動を採用している有機EL表示装置において、表示不良を引き起こすことなく、素子の短寿命化を抑制しつつ従来よりも消費電力を低減することが可能となる。ここで、本実施形態においては、低解像度モードの際に休止駆動が行われるので、消費電力の低減に関して極めて顕著な効果が得られる。これについて、以下に説明する。
本実施形態によれば、上記第1の実施形態と同様、時分割駆動を採用している有機EL表示装置において、表示不良を引き起こすことなく、素子の短寿命化を抑制しつつ従来よりも消費電力を低減することが可能となる。ここで、本実施形態においては、低解像度モードの際に休止駆動が行われるので、消費電力の低減に関して極めて顕著な効果が得られる。これについて、以下に説明する。
休止駆動が行われているとき、リフレッシュ期間および休止期間における各構成要素の状態は図45に示すようなものとなる。図45から把握されるように、リフレッシュ期間には、ソースドライバ200の動作,ゲートドライバ300の走査動作(走査信号線SLを1本ずつ順次に選択状態にする動作),およびエミッションドライバの走査動作(エミッション線EMを1本ずつ順次に選択状態にする動作)がオン状態となっている。但し、リフレッシュ期間における駆動周波数は、時分割駆動中の駆動周波数の3分の1になっている。また、休止期間には、ソースドライバ200の動作,ゲートドライバ300の走査動作,およびエミッションドライバの走査動作がオフ状態となっている。以上より、図46に示すように、仮に時分割駆動中の周辺ドライバの消費電力の大きさを「9」(単位は任意単位である)とすると、休止駆動中のリフレッシュ期間における周辺ドライバの消費電力の大きさは「3」となり、休止駆動中の休止期間における周辺ドライバの消費電力の大きさはほぼ「0」となる。図47は、時分割駆動中の周辺ドライバの駆動周波数および消費電力と、休止駆動中の休止期間における周辺ドライバの駆動周波数および消費電力とを示す図である。時分割駆動中は一般的駆動を採用している場合に比べて消費電力が3倍になるが、図47より、休止駆動を採用することによって周辺ドライバの消費電力を大きく低減できることが把握される。なお、第1エミッションドライバ401については、リフレッシュ期間および休止期間には全ての第1エミッション線EM1(1)~EM1(n)を選択状態で維持するので直流電流による電力のみが消費される。以上のように、本実施形態によれば、時分割駆動を採用する有機EL表示装置において、従来よりも消費電力を大きく低減することが可能となる。
また、以下に説明するように、画素回路40内のトランジスタにIn-Ga-Zn-O-TFTなどの酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)を採用していることによっても、消費電力の低減に関して極めて顕著な効果が得られる。酸化物TFTは、低温ポリシリコンやアモルファスシリコンなどをチャネル層に用いた薄膜トランジスタに比べてオフリーク電流(オフ状態時に流れる電流)が極めて小さい。例えば、In-Ga-Zn-O-TFTにおけるオフリーク電流はLTPS-TFT(低温ポリシリコンをチャネル層に用いた薄膜トランジスタ)におけるオフリーク電流の1000分の1以下である。このため、In-Ga-Zn-O-TFTなどの酸化物TFTを採用する本実施形態によれば、駆動トランジスタ(図13などにおけるトランジスタT1)のゲート-ソース間電圧Vgsを従来よりも長時間保持することが可能である。従って、休止駆動中の休止期間の長さを長くしてリフレッシュレートを低くすることにより、消費電力を従来よりも大幅に低減することが可能となる。
<2.4 変形例>
本実施形態についても、上記第1の実施形態の第1の変形例のように、低解像度モードの際にデータ線DLが延びる方向に連続するk行に対応するk×3個の画素回路40によって1つの画素が形成されるようにしても良い。また、上記第1の実施形態の第2の変形例のように、各画素回路40に、それぞれ異なる色の発光を行うための4個以上の有機EL素子OLEDが含まれていても良い。
本実施形態についても、上記第1の実施形態の第1の変形例のように、低解像度モードの際にデータ線DLが延びる方向に連続するk行に対応するk×3個の画素回路40によって1つの画素が形成されるようにしても良い。また、上記第1の実施形態の第2の変形例のように、各画素回路40に、それぞれ異なる色の発光を行うための4個以上の有機EL素子OLEDが含まれていても良い。
<3.その他>
本発明は、上述の各実施形態および各変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、上述の各実施形態および各変形例においては有機EL表示装置を例に挙げて説明したが、電流で駆動される自発光型表示素子を備えた表示装置であれば、有機EL表示装置以外の表示装置にも本発明を適用することができる。
本発明は、上述の各実施形態および各変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。例えば、上述の各実施形態および各変形例においては有機EL表示装置を例に挙げて説明したが、電流で駆動される自発光型表示素子を備えた表示装置であれば、有機EL表示装置以外の表示装置にも本発明を適用することができる。
また、上述の各実施形態および各変形例では、画素回路40内のトランジスタとしてnチャネル型のトランジスタを使用しているが、pチャネル型のトランジスタを使用しても良い。
1…有機EL表示装置
7…有機ELパネル
40,40(1)~40(3)…画素回路
45…駆動電流制御部
100…表示制御回路
110…表示モード切替制御回路
120…解像度切替制御回路
130…ソース制御回路
140…ゲート制御回路
200…ソースドライバ
300…ゲートドライバ
401~403…第1~第3エミッションドライバ
500…表示部
T1…駆動トランジスタ
T2…入力トランジスタ
T3~T6…発光制御トランジス
Cst…コンデンサ
OLED(R)…赤色用の有機EL素子(電気光学素子)
OLED(G)…緑色用の有機EL素子(電気光学素子)
OLED(B)…青色用の有機EL素子(電気光学素子)
OLED(W)…白色用の有機EL素子(電気光学素子)
DL,DL(1)~DL(m)…データ線
SL,SL(1)~SL(n)…走査信号線
EM…エミッション線
EM1,EM1(1)~EM1(n)…第1エミッション線
EM2,EM2(1)~EM2(n)…第2エミッション線
EM3,EM3(1)~EM3(n)…第3エミッション線
ELVDD…ハイレベル電源電圧、ハイレベル電源線
ELVSS…ローレベル電源電圧、ローレベル電源線
7…有機ELパネル
40,40(1)~40(3)…画素回路
45…駆動電流制御部
100…表示制御回路
110…表示モード切替制御回路
120…解像度切替制御回路
130…ソース制御回路
140…ゲート制御回路
200…ソースドライバ
300…ゲートドライバ
401~403…第1~第3エミッションドライバ
500…表示部
T1…駆動トランジスタ
T2…入力トランジスタ
T3~T6…発光制御トランジス
Cst…コンデンサ
OLED(R)…赤色用の有機EL素子(電気光学素子)
OLED(G)…緑色用の有機EL素子(電気光学素子)
OLED(B)…青色用の有機EL素子(電気光学素子)
OLED(W)…白色用の有機EL素子(電気光学素子)
DL,DL(1)~DL(m)…データ線
SL,SL(1)~SL(n)…走査信号線
EM…エミッション線
EM1,EM1(1)~EM1(n)…第1エミッション線
EM2,EM2(1)~EM2(n)…第2エミッション線
EM3,EM3(1)~EM3(n)…第3エミッション線
ELVDD…ハイレベル電源電圧、ハイレベル電源線
ELVSS…ローレベル電源電圧、ローレベル電源線
Claims (18)
- 複数の行および複数の列を構成するようにマトリクス状に配置された複数の画素回路と、前記複数の行と1対1で対応するように設けられた複数の走査信号線と、前記複数の列と1対1で対応するように設けられた複数のデータ線とを含む表示部を備えた表示装置であって、
前記複数の画素回路は、比較的低い解像度の画像を前記表示部に表示する低解像度モードによる表示が行われているときに各単位フレームにおいて発光状態となる複数の電気光学素子の間隔が前記複数の走査信号線が延びる方向に関して等間隔になるように、構成されていることを特徴とする、表示装置。 - 各画素回路は、互いに異なる発光色のj個(jは2以上の整数)の電気光学素子を含み、
前記低解像度モードと比較的高い解像度の画像を前記表示部に表示する高解像度モードとの間で、表示モードが切り替え可能に構成され、
表示モードが前記高解像度モードであるときには、1画面分の画像の表示が行われる期間である単位フレームをj個のサブフレームに分割して、各画素回路においてサブフレーム毎に異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
表示モードが前記低解像度モードであるときには、前記複数の走査信号線が延びる方向に連続して配置されているj個の画素回路を1つのグループとし、単位フレーム中に各画素回路において前記j個の電気光学素子のうちの1つを発光状態にし、かつ、単位フレーム中に各グループに含まれるj個の画素回路において互いに異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われることを特徴とする、請求項1に記載の表示装置。 - 表示モードが前記低解像度モードであるときには、前記複数の画素回路への画像データの書き込みを行うリフレッシュ期間と前記複数の画素回路への画像データの書き込みを休止状態にする休止期間とを繰り返すことによって、表示モードが前記高解像度モードであるときよりも低いリフレッシュレートで前記表示部への静止画像の表示が行われ、
前記休止期間には、前記複数の走査信号線および前記複数のデータ線の駆動が停止されることを特徴とする、請求項2に記載の表示装置。 - 各画素回路は、
前記j個の電気光学素子と1対1で対応するように設けられたj個の発光制御トランジスタと、
前記j個の電気光学素子を発光状態にするための駆動電流を制御する駆動電流制御部と
を更に含み、
前記表示部は、各行につきj本ずつ設けられた複数の発光制御線を含み、
各画素回路において、
前記j個の発光制御トランジスタの制御端子は、互いに異なる発光制御線に接続され、
前記j個の発光制御トランジスタの第1導通端子は、前記駆動電流制御部に接続され、
前記j個の発光制御トランジスタの第2導通端子は、それぞれ対応する電気光学素子に接続され、
各グループに含まれるj個の画素回路と当該j個の画素回路に対応するj本の発光制御線とに着目したとき、着目したj本の発光制御線の各々は、着目したj個の画素回路において互いに異なる発光色の電気光学素子に対応する発光制御トランジスタの制御端子に接続され、
表示モードが前記高解像度モードであるときには、各行について前記j本の発光制御線がサブフレーム毎に順次に選択状態とされ、
表示モードが前記低解像度モードであるときには、単位フレーム中に各行について前記j本の発光制御線のうちの1本のみが選択状態とされることを特徴とする、請求項2に記載の表示装置。 - 各行に対応するj本の発光制御線に着目したとき、表示モードが前記低解像度モードであるときに選択状態とされる発光制御線が適宜変更されることを特徴とする、請求項4に記載の表示装置。
- 表示モードが前記高解像度モードから前記低解像度モードに切り替わる毎に、表示モードが前記低解像度モードであるときに選択状態とされる発光制御線が変更されることを特徴とする、請求項5に記載の表示装置。
- 前記複数の画素回路にハイレベルの定電圧を供給する、前記表示部に配設された第1電源線と、
前記複数の画素回路にローレベルの定電圧を供給する、前記表示部に配設された第2電源線と、
前記複数の走査信号線を駆動する走査信号線駆動回路と、
前記複数のデータ線を駆動するデータ線駆動回路と、
前記複数の発光制御線を駆動する発光制御線駆動回路と
を更に備え、
前記駆動電流制御部は、
前記第1電源線と前記第2電源線との間に前記j個の発光制御トランジスタの各々と直列になるように設けられ、前記駆動電流を制御するための駆動トランジスタと、
対応するデータ線と前記駆動トランジスタの制御端子との間に設けられ、対応する走査信号線が前記走査信号線駆動回路によって選択状態にされたときに、対応するデータ線と前記駆動トランジスタの制御端子とを電気的に接続する入力トランジスタと、
前記駆動トランジスタの制御端子と前記駆動トランジスタの一方の導通端子との間に設けられたコンデンサと
を含み、
表示モードが前記低解像度モードであるときには、前記複数の画素回路への画像データの書き込みを行うリフレッシュ期間と前記複数の画素回路への画像データの書き込みを休止状態にする休止期間とを繰り返すことによって、表示モードが前記高解像度モードであるときよりも低いリフレッシュレートで前記表示部への静止画像の表示が行われ、
前記リフレッシュ期間には、
前記発光制御線駆動回路は、各行について前記j本の発光制御線のうちの1本のみを選択状態とし、
前記走査信号線駆動回路は、前記複数の走査信号線を順次に選択状態とし、
前記データ線駆動回路は、各走査信号線が選択状態になるのに応じて、表示モードが前記低解像度モードであるときに前記表示部に表示されるべき静止画像に応じたデータ電圧を前記複数のデータ線に印加し、
前記休止期間には、
前記発光制御線駆動回路は、前記リフレッシュ期間に選択状態にした発光制御線を選択状態で維持するとともにそれ以外の発光制御線を非選択状態で維持し、
前記走査信号線駆動回路および前記データ線駆動回路は、休止状態となることを特徴とする、請求項4に記載の表示装置。 - 前記発光制御線駆動回路は、前記リフレッシュ期間には、各行を構成する画素回路への画像データの書き込みが行われる直前の期間に、当該各行に対応するj本の発光制御線の全てを非選択状態にすることを特徴とする、請求項7に記載の表示装置。
- 前記駆動トランジスタ,前記入力トランジスタ,および前記j個の発光制御トランジスタは、酸化物半導体によりチャネル層が形成された薄膜トランジスタであることを特徴とする、請求項7に記載の表示装置。
- 前記酸化物半導体の主成分は、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(О)から成ることを特徴とする、請求項9に記載の表示装置。
- 表示モードが前記低解像度モードであるときには、1つのグループに含まれるj個の画素回路によって1つの画素が形成され、表示モードが前記高解像度モードであるときに前記表示部に表示される画像のj分の1の解像度の画像が前記表示部に表示されることを特徴とする、請求項2に記載の表示装置。
- 表示モードが前記低解像度モードであるときには、連続するk行(kは2以上の整数)に対応するk個のグループに含まれるk×j個の画素回路によって1つの画素が形成され、表示モードが前記高解像度モードであるときに前記表示部に表示される画像の(k×j)分の1の解像度の画像が前記表示部に表示されることを特徴とする、請求項2に記載の表示装置。
- 前記kの値は、表示モードが前記低解像度モードであるときの各画素の形状が正方形となるように定められていることを特徴とする、請求項12に記載の表示装置。
- 各画素回路に含まれる前記j個の電気光学素子は、赤色の発光色,緑色の発光色,および青色の発光色を有する3個の有機エレクトロルミネッセンス素子であることを特徴とする、請求項2に記載の表示装置。
- 各画素回路に含まれる前記j個の電気光学素子は、赤色の発光色,緑色の発光色,青色の発光色,および白色の発光色を有する4個の有機エレクトロルミネッセンス素子であることを特徴とする、請求項2に記載の表示装置。
- 各グループに含まれるj個の画素回路のそれぞれにおいて前記複数の走査信号線が延びる方向についてp番目(pは1以上j以下の任意の整数)に配置されている電気光学素子に着目したとき、各グループにおいて着目したj個の電気光学素子は互いに異なる発光色の電気光学素子であることを特徴とする、請求項2に記載の表示装置。
- 各画素回路は、互いに異なる発光色のj個(jは2以上の整数)の電気光学素子を含み、
任意の画素回路と、前記複数の走査信号線が延びる方向に前記任意の画素回路の1個隣に配置されている画素回路とでは、前記j個の電気光学素子についての発光色の並びが異なり、
任意の画素回路と、前記複数の走査信号線が延びる方向に前記任意の画素回路のj個隣に配置されている画素回路とでは、前記j個の電気光学素子についての発光色の並びが同じであることを特徴とする、請求項1に記載の表示装置。 - 複数の行および複数の列を構成するようにマトリクス状に配置され互いに異なる発光色のj個(jは2以上の整数)の電気光学素子をそれぞれが含む複数の画素回路と、前記複数の行と1対1で対応するように設けられた複数の走査信号線と、前記複数の列と1対1で対応するように設けられた複数のデータ線とを含む表示部を備えた表示装置の駆動方法であって、
比較的高い解像度の画像を前記表示部に表示する高解像度表示ステップと、
比較的低い解像度の画像を前記表示部に表示する低解像度表示ステップと
を含み、
前記高解像度表示ステップでは、1画面分の画像の表示が行われる期間である単位フレームをj個のサブフレームに分割して、各画素回路においてサブフレーム毎に異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
前記低解像度表示ステップでは、前記複数の走査信号線が延びる方向に連続して配置されているj個の画素回路を1つのグループとし、単位フレーム中に各画素回路において前記j個の電気光学素子のうちの1つを発光状態にし、かつ、単位フレーム中に各グループに含まれるj個の画素回路において互いに異なる発光色の電気光学素子を発光状態にすることによって、前記表示部への画像の表示が行われ、
前記複数の画素回路は、表示モードが前記低解像度モードであるときに各単位フレームにおいて発光状態となる複数の電気光学素子の間隔が前記複数の走査信号線が延びる方向に関して等間隔になるように、構成されていることを特徴とする、駆動方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/326,080 US10339866B2 (en) | 2014-07-15 | 2015-07-08 | Display device and driving method therefor |
CN201580043781.5A CN106663404A (zh) | 2014-07-15 | 2015-07-08 | 显示装置及其驱动方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014144812 | 2014-07-15 | ||
JP2014-144812 | 2014-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016009909A1 true WO2016009909A1 (ja) | 2016-01-21 |
Family
ID=55078405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/069597 WO2016009909A1 (ja) | 2014-07-15 | 2015-07-08 | 表示装置およびその駆動方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10339866B2 (ja) |
CN (1) | CN106663404A (ja) |
WO (1) | WO2016009909A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106847177A (zh) * | 2017-03-13 | 2017-06-13 | 武汉华星光电技术有限公司 | 显示装置及其寿命延长方法 |
CN107452328A (zh) * | 2016-05-31 | 2017-12-08 | 三星显示有限公司 | 显示设备 |
WO2018076745A1 (zh) * | 2016-10-28 | 2018-05-03 | 京东方科技集团股份有限公司 | 像素驱动电路、驱动方法和显示设备 |
WO2018149130A1 (zh) * | 2017-02-17 | 2018-08-23 | 京东方科技集团股份有限公司 | 移位寄存器、栅线驱动方法、阵列基板和显示装置 |
WO2018149116A1 (zh) * | 2017-02-17 | 2018-08-23 | 京东方科技集团股份有限公司 | 移位寄存器、栅线驱动方法、阵列基板和显示装置 |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI606275B (zh) * | 2016-12-29 | 2017-11-21 | 友達光電股份有限公司 | 畫素矩陣及其顯示方法 |
CN106683609B (zh) * | 2017-03-29 | 2020-02-18 | 京东方科技集团股份有限公司 | 一种像素驱动电路及其驱动方法、显示装置 |
CN108269522B (zh) * | 2018-02-11 | 2020-01-03 | 武汉天马微电子有限公司 | 一种显示设备及其图像显示方法 |
CN110391267B (zh) * | 2018-04-19 | 2022-01-18 | 京东方科技集团股份有限公司 | 显示面板及其驱动方法、显示装置 |
CN108847181B (zh) * | 2018-07-13 | 2021-01-26 | 京东方科技集团股份有限公司 | 一种灰阶调节电路和显示装置 |
US10997915B2 (en) * | 2019-01-22 | 2021-05-04 | Joled Inc. | Pixel circuit, method for driving, and display device |
JP7147038B2 (ja) * | 2019-02-20 | 2022-10-04 | 富士フイルム株式会社 | 表示制御装置、撮像装置、表示制御方法、及び表示制御プログラム |
KR20210086338A (ko) * | 2019-12-31 | 2021-07-08 | 엘지디스플레이 주식회사 | 표시 장치 |
CN113077763B (zh) * | 2020-01-06 | 2022-07-05 | 京东方科技集团股份有限公司 | 显示面板、显示装置及驱动方法 |
CN111199713A (zh) | 2020-03-05 | 2020-05-26 | 苹果公司 | 具有多个刷新率模式的显示器 |
KR102156270B1 (ko) * | 2020-04-02 | 2020-09-15 | 주식회사 사피엔반도체 | 동일한 픽셀 메모리를 이용하여 저화질 모드와 고화질 모드로 동작이 가능한 서브 픽셀 구동 회로 및 이를 포함하는 디스플레이 장치 |
WO2021232310A1 (zh) * | 2020-05-20 | 2021-11-25 | 重庆康佳光电技术研究院有限公司 | 一种子像素结构及显示器 |
CN111477166B (zh) * | 2020-05-25 | 2021-08-06 | 京东方科技集团股份有限公司 | 像素电路、像素驱动方法和显示装置 |
TWI753660B (zh) * | 2020-11-19 | 2022-01-21 | 友達光電股份有限公司 | 顯示面板 |
CN112581872A (zh) * | 2020-12-11 | 2021-03-30 | 昆山国显光电有限公司 | 显示面板、显示面板的驱动方法和显示装置 |
US11620954B2 (en) * | 2020-12-16 | 2023-04-04 | Lg Display Co., Ltd. | Display device including a device capable of reducing power consumption in response to exposure of the display panel and method for driving the same |
CN113658541B (zh) * | 2021-08-30 | 2024-04-26 | 深圳市华星光电半导体显示技术有限公司 | 面板结构和显示装置 |
TWI800271B (zh) * | 2021-11-09 | 2023-04-21 | 友達光電股份有限公司 | 顯示裝置及其漏電流偵測方法 |
CN115862542B (zh) * | 2022-12-19 | 2024-03-22 | 惠科股份有限公司 | 显示面板、显示面板的驱动方法以及显示装置 |
CN117456912A (zh) * | 2023-12-25 | 2024-01-26 | 禹创半导体(深圳)有限公司 | 一种微型led数字数据驱动电路 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002175045A (ja) * | 2000-09-29 | 2002-06-21 | Seiko Epson Corp | 電気光学装置及びその駆動方法、有機エレクトロルミネッセンス表示装置、並びに電子機器 |
JP2004198809A (ja) * | 2002-12-19 | 2004-07-15 | Rohm Co Ltd | 自発光型ディスプレイの駆動方法及びバッテリ駆動式情報表示装置 |
JP2005157258A (ja) * | 2003-11-25 | 2005-06-16 | Samsung Sdi Co Ltd | 平板表示装置及びその駆動方法 |
JP2006163371A (ja) * | 2004-12-09 | 2006-06-22 | Samsung Sdi Co Ltd | 画素回路及び発光表示装置 |
JP2007041221A (ja) * | 2005-08-02 | 2007-02-15 | Funai Electric Co Ltd | プラズマテレビ |
JP2009230079A (ja) * | 2008-03-25 | 2009-10-08 | Toshiba Corp | 携帯電話機 |
WO2014162792A1 (ja) * | 2013-04-02 | 2014-10-09 | シャープ株式会社 | 表示装置およびその駆動方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100686334B1 (ko) * | 2003-11-14 | 2007-02-22 | 삼성에스디아이 주식회사 | 표시장치 및 그의 구동방법 |
KR100686335B1 (ko) | 2003-11-14 | 2007-02-22 | 삼성에스디아이 주식회사 | 표시장치 및 그의 구동방법 |
US8994621B2 (en) * | 2010-07-12 | 2015-03-31 | Sharp Kabushiki Kaisha | Display device and method for driving same |
WO2012053462A1 (ja) * | 2010-10-21 | 2012-04-26 | シャープ株式会社 | 表示装置およびその駆動方法 |
CN105336791B (zh) | 2010-12-03 | 2018-10-26 | 株式会社半导体能源研究所 | 氧化物半导体膜以及半导体装置 |
WO2013125458A1 (ja) * | 2012-02-24 | 2013-08-29 | シャープ株式会社 | 表示装置、それを備える電子機器、および表示装置の駆動方法 |
JP6159965B2 (ja) * | 2012-07-31 | 2017-07-12 | 株式会社Joled | 表示パネル、表示装置ならびに電子機器 |
JP6248412B2 (ja) * | 2013-05-13 | 2017-12-20 | ソニー株式会社 | 撮像装置、撮像方法、プログラム |
-
2015
- 2015-07-08 CN CN201580043781.5A patent/CN106663404A/zh not_active Withdrawn
- 2015-07-08 WO PCT/JP2015/069597 patent/WO2016009909A1/ja active Application Filing
- 2015-07-08 US US15/326,080 patent/US10339866B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002175045A (ja) * | 2000-09-29 | 2002-06-21 | Seiko Epson Corp | 電気光学装置及びその駆動方法、有機エレクトロルミネッセンス表示装置、並びに電子機器 |
JP2004198809A (ja) * | 2002-12-19 | 2004-07-15 | Rohm Co Ltd | 自発光型ディスプレイの駆動方法及びバッテリ駆動式情報表示装置 |
JP2005157258A (ja) * | 2003-11-25 | 2005-06-16 | Samsung Sdi Co Ltd | 平板表示装置及びその駆動方法 |
JP2006163371A (ja) * | 2004-12-09 | 2006-06-22 | Samsung Sdi Co Ltd | 画素回路及び発光表示装置 |
JP2007041221A (ja) * | 2005-08-02 | 2007-02-15 | Funai Electric Co Ltd | プラズマテレビ |
JP2009230079A (ja) * | 2008-03-25 | 2009-10-08 | Toshiba Corp | 携帯電話機 |
WO2014162792A1 (ja) * | 2013-04-02 | 2014-10-09 | シャープ株式会社 | 表示装置およびその駆動方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107452328A (zh) * | 2016-05-31 | 2017-12-08 | 三星显示有限公司 | 显示设备 |
WO2018076745A1 (zh) * | 2016-10-28 | 2018-05-03 | 京东方科技集团股份有限公司 | 像素驱动电路、驱动方法和显示设备 |
US10510294B2 (en) | 2016-10-28 | 2019-12-17 | Boe Technology Group Co., Ltd. | Pixel driving circuit, method for driving the same and display device |
WO2018149130A1 (zh) * | 2017-02-17 | 2018-08-23 | 京东方科技集团股份有限公司 | 移位寄存器、栅线驱动方法、阵列基板和显示装置 |
WO2018149116A1 (zh) * | 2017-02-17 | 2018-08-23 | 京东方科技集团股份有限公司 | 移位寄存器、栅线驱动方法、阵列基板和显示装置 |
US10891886B2 (en) | 2017-02-17 | 2021-01-12 | Boe Technology Group Co., Ltd. | Shift register, gate line driving method, array substrate and display device for high and low resolution areas |
US11151918B2 (en) | 2017-02-17 | 2021-10-19 | Boe Technology Group Co., Ltd. | Shift register, gate line driving method, array substrate, and display apparatus |
CN106847177A (zh) * | 2017-03-13 | 2017-06-13 | 武汉华星光电技术有限公司 | 显示装置及其寿命延长方法 |
US10417957B2 (en) | 2017-03-13 | 2019-09-17 | Wuhan China Star Optoelectronics Technology Co., Ltd | Display and method of prolonging lifetime of display |
Also Published As
Publication number | Publication date |
---|---|
US20170200415A1 (en) | 2017-07-13 |
CN106663404A (zh) | 2017-05-10 |
US10339866B2 (en) | 2019-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016009909A1 (ja) | 表示装置およびその駆動方法 | |
JP6076468B2 (ja) | 表示装置およびその駆動方法 | |
US9959801B2 (en) | Display device and method for driving same with light-emission enable signal switching unit | |
JP5611312B2 (ja) | 有機発光ダイオード表示装置及びその駆動方法 | |
EP3367373B1 (en) | Pixel and organic light emitting display device having the pixel | |
US8299986B2 (en) | Driving circuit for display device, and display device | |
CN111326100B (zh) | 电致发光显示装置 | |
CN112992049B (zh) | 具有像素驱动电路的电致发光显示装置 | |
US11341916B2 (en) | Display apparatus having varied driving frequency and gate clock signal | |
US9311895B2 (en) | Display device and method for driving same | |
US11158257B2 (en) | Display device and driving method for same | |
KR20210073188A (ko) | 화소 구동 회로를 포함한 전계발광 표시장치 | |
JP2014029424A (ja) | 表示装置および電子機器、ならびに表示パネルの駆動方法 | |
KR20170074618A (ko) | 유기 발광 표시 장치의 서브-화소 및 이를 포함하는 유기 발광 표시 장치 | |
CN102376244A (zh) | 显示设备以及显示设备的像素驱动方法 | |
KR20140079685A (ko) | 유기 발광 다이오드 표시장치 및 그 구동 방법 | |
KR20090132859A (ko) | 표시 장치 및 그 구동 방법 | |
US11699402B2 (en) | Display device and data driving circuit | |
KR20190074813A (ko) | 유기발광 다이오드 표시장치 및 그 구동 방법 | |
KR20230099171A (ko) | 화소 회로 및 이를 포함하는 표시 장치 | |
JP4628688B2 (ja) | 表示装置およびその駆動回路 | |
JP2013195477A (ja) | 表示パネルおよびその駆動方法、表示装置ならびに電子機器 | |
JP2011191620A (ja) | 表示装置、表示駆動方法 | |
KR20190064267A (ko) | 전계발광 표시장치 | |
KR102710293B1 (ko) | 전계발광 표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15822753 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15326080 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15822753 Country of ref document: EP Kind code of ref document: A1 |