WO2016008570A1 - Verfahren zur herstellung einer flächenelektrode - Google Patents

Verfahren zur herstellung einer flächenelektrode Download PDF

Info

Publication number
WO2016008570A1
WO2016008570A1 PCT/EP2015/001349 EP2015001349W WO2016008570A1 WO 2016008570 A1 WO2016008570 A1 WO 2016008570A1 EP 2015001349 W EP2015001349 W EP 2015001349W WO 2016008570 A1 WO2016008570 A1 WO 2016008570A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
ceramic
layer
green body
electrode
Prior art date
Application number
PCT/EP2015/001349
Other languages
English (en)
French (fr)
Other versions
WO2016008570A8 (de
Inventor
Uwe SCHÖLER
Mathias Kraas
Hannes Miersch
Original Assignee
Olympus Winter Ibe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Winter Ibe Gmbh filed Critical Olympus Winter Ibe Gmbh
Priority to US15/314,967 priority Critical patent/US20170196618A1/en
Priority to CN201580037273.6A priority patent/CN106572882A/zh
Publication of WO2016008570A1 publication Critical patent/WO2016008570A1/de
Publication of WO2016008570A8 publication Critical patent/WO2016008570A8/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/0088Material properties ceramic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00148Coatings on the energy applicator with metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00625Vaporization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a method for producing a surface electrode according to the preamble of claim 1.
  • Generic high-frequency surgical instruments are e.g. known from US 6,447,511 B1.
  • Figures 12 and 13 of this document show a bipolar scissors for endoscopic purposes with two formed as cutting blades surface electrodes, which consist in different layer heights of metal, or ceramic.
  • the illustrated surface electrodes each have a middle layer of insulating material and a top and bottom adjacent layer of metal.
  • Each of the two metal layers is connectable to another pole of a high-frequency source, so that these layers in the two cutting blades of different polarity and between them through water or tissue flow a current that produces a cutting action.
  • the other metal layer of the scissors blade is in each case towards the contact surface between the cutting blades and is mainly used because metal is better sanded to insulating material to a sharp edge.
  • the surface electrode is here formed as a surgical vaporization electrode with an electrode head having a working surface and is provided on the back with a ceramic cover, there to prevent the formation of hot plasma against the surrounding liquid.
  • the surface electrode which forms a layer of material which consists of different material at different layer heights.
  • layer height refers to the distance to one of the surfaces of the surface electrode.
  • the surface electrode is composed of layers, which after the
  • the cutting blades can be formed from different partial shells that are stacked on top of one another, wherein bonding takes place, for example, for bonding. Layers of different materials can also be applied one after the other, eg by electrodeposition.
  • the surface electrode is produced as a green body and then sintered.
  • green body is meant an unfired blank, which is still plastically deformable and is formed from the so-called feedstock, a mixture of ceramic powder or metal powder and a binder usually consisting predominantly of a polymer.
  • the feedstock may be sufficiently plastically deformable, e.g. be brought by injection into the desired shape of the then possibly still plastic green body. After binder removal (removal of the binder) and sintering, the desired workpiece of ceramic and / or metal is produced from the green body.
  • the present invention provides for the entire surface electrode first to be produced as a green body and then sintered. This leads to an intimate connection of all parts of the layer structure during the production of the green body. The green body is then sintered in this intimate connection. This results in a workpiece, in which in particular the different Materials are inseparably connected on the different layer heights. This results in particular in an improved mechanical strength, in particular breaking strength and resistance to thermal stresses. The durability increases enormously. Also, the manufacturability is significantly improved because the manufacturing problems are almost entirely relied on work on the green body. However, working on the green body is much easier than on the finished sintered workpiece. The green body can be easily molded and can even be repaired in the event of a malfunction.
  • a green body with layers having different proportions of metal and ceramic is advantageously produced according to claim 2 from green sheets, which are applied one above the other and are each made of feedstock with different proportions of metal and ceramic.
  • very thick-layered surface electrodes can be constructed, which are e.g. consist only of metal, to which then identical existing green metal foils are stacked.
  • films of different materials are applied alternately one above the other, whereby e.g. Surface electrodes, as they are known from the publications mentioned, can be produced, the heights in different layer heights of metal, or ceramic, exist.
  • the green body has a grain mixture of metal and ceramic in which the mixing ratio changes with the layer height. Mixtures of metal and ceramic are good sinterable. The result is a surface electrode in which the metallic and ceramic components with continuous transition into each other. This results in particularly positive durability properties.
  • the mixing ratio may change continuously or preferably stepwise in a structure of many films in which the mixing ratio gradually changes.
  • the surface electrode can be processed after its production, ie after sintering, for example by drilling or grinding.
  • sintering for example by drilling or grinding.
  • the green body is brought into the desired shape prior to sintering, so that machining after sintering omitted.
  • Green bodies may consist of an easily malleable, kneadable material and can therefore be very easily shaped, cut, punched out or otherwise processed.
  • a temperature increase may be helpful, for example when using a thermoplastic binder.
  • FIG. 1 shows a surface electrode according to the invention of a Vaporisationsinstrumentes in
  • FIG. 2 is a side view of a bipolar scissors
  • Fig. 3 is a section along line 3-3 in Fig. 2
  • FIG. 4 shows a detail from FIG. 3 in a modified embodiment
  • FIG. 5 shows a cross section of a surface electrode of a further embodiment.
  • Fig. 1 shows a surgical vaporization electrode, similar to that which is explained in DE 10 2007 054 438 A1.
  • the electrode arrangement shown in FIG. 1 has a surface electrode in the form of an electrode head 1, which is slightly curved, has a surface made of a metal layer 2 and a rear ceramic layer 3.
  • the surface electrode is penetrated by a metallic connecting wire 4, which is electrically conductively connected to the metal layer 2.
  • the lead wire 4 is covered with a protective insulating tube 5, e.g. made of plastic.
  • FIG. 2 A further problem area according to the aforementioned US Pat. No. 6,447,511 B1 is shown in the embodiment of FIG. 2 with a bipolar shears 6, in which surface electrodes in the form of cutting blades 7 are arranged, which are shown in detail in FIG. 3.
  • the cutting blades 7 each consist of a cutting surface 8 lying towards the ceramic layer 13 and one of these adjacent metal layer 12.
  • the invention solves this problem by shifting the connection of the two layers to processing steps on a green body.
  • the surface electrode 1 of FIG. 1 like the cutting blades 7 of FIG. 3, is produced as a green body.
  • green body is meant the blank, which is still plastically deformable and which consists of a mixture of ceramic powder and / or metal powder and a binder. Burning or sintering produces the desired workpiece from the green body.
  • the invention produces the surface electrode, that is to say the electrode head 1 of FIG. 1, or the cutting blade 7 of FIG. 3, as a green body.
  • Green sheets of the same material may be overlaid to form e.g. To produce a very thick surface electrode only of metal.
  • different materials such as metal and ceramic in the example shown, are used.
  • a complicated cup-shaped rounded shape of the surface electrode 1 can be easily produced by molding the still-bendable green body, e.g. very simple in a mold, or by injection molding in the desired shape can be brought.
  • the hole for passing through the connecting wire 4 can be punched very easily. This saves very expensive process steps, which would be required with appropriate processing after sintering.
  • FIG. 4 shows an enlarged detail in the region of the cutting edge of a scissor blade 7 ', similar to the cutting blade 7 of FIG. 3.
  • the layer structure is different. It will be here not three layers, as used in the case of Fig. 3, but three layers, which may be arranged similarly as in the case of the aforementioned US 6,447,511 B1, namely an insulating layer 14 in the middle and two metal layers 15 and 16 abutting above and below Compared with the construction of FIG. 3 with only two layers, the additional metal layer 16 on the cutting surface 8 provides an improved possibility of sharpening the cutting edge 9, which in the construction of FIG. 3, in which this edge is made of ceramic, would be more difficult.
  • FIG. 5 shows a section of an electrode 11 designed as a surface electrode. This can be, for example, a section of the cutting blade 7 of FIG. 3. If one compares with the preceding embodiments, one recognizes the essential difference, namely the material transition that gradually changes with the layer height. As a layer height S here the distance to the cutting surface 8 is referred to.
  • the material of the illustrated electrode 11 different concentrations of metal and ceramic.
  • pure metal is present, at S2 pure ceramics. In between, the mixture of ceramic particles and metal particles is gradually changed.
  • the staircase shown in FIG. 5 next to the electrode 11 is intended to illustrate that the mixture of ceramic particles and metal particles changes stepwise in the electrode 11 from S1 to S2 from 100% metal to 100% ceramic. You can also choose a much finer step division.
  • the steps may in the illustrated embodiment consist of layers of pre-fabricated films.
  • the electrode 11 can change the mixing ratio even with a continuous gradient.
  • the production of the surface electrodes shown in the figures is done as follows:
  • a green sheet based on metal and a ceramic green sheet are produced. These films are produced by mixing a feedstock of ceramic or metal powder with a binder, for example a suitable polymer. The result is the mushy feedstock, for example, by means of a squeegee suitable temperature is spread on a smooth worktop to a film. After cooling, the material is still flexible but can be handled without a carrier and can be removed from the worktop. A foil with metal material and a foil with ceramic material are arranged one above the other. From the double layer of the two layers, the circumference of the surface electrode 1 is then cut out or punched out. In this case, the hole for the connecting wire 4 can be punched.
  • a binder for example a suitable polymer.
  • the surface electrode 1 is brought into the curved shape shown in Fig. 1, for example press in a mold.
  • the finished green body is now sintered, after previously removed from the feedstock of the binder, for example, thermally.
  • the lead wire 4 is then attached and welded, or soldered.
  • the insulating tube 5 is attached.
  • cutting blades 7 are manufactured with a layer structure, as shown in Fig. 3.
  • green sheets for the layers 12 and 13 are again produced, brought together and cut to size.
  • the cutting blades 7 are attached to a prefabricated, commercial scissor handle, as shown by way of example in FIG. 2.
  • the surface electrodes described are to be connected to a high frequency power source.
  • the lead wire 4 of Fig. 1 or the metal layers 12 of the cutting blades 7 are to be contacted with respective connecting leads which are either fixedly connected to the electrodes or e.g. can be attached with couplings.
  • the layer structure shown in FIG. 4 can basically be produced similar to that of FIG. 3.
  • the production is similar if the material mixture is to have the illustrated step gradient. Then, superimposed green sheets of graded composition can be used.
  • the mixing ratio changes continuously with the layer height, ie without grading

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Plasma & Fusion (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Capacitors (AREA)
  • Surgical Instruments (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer Flächenelektrode (1, 7, 11) eines hochfrequenzchirurgischen Instrumentes, die in wenigstens einer Schichthöhe (S1) aus Metall und in wenigstens einer anderen Schichthöhe (S2) aus Keramik besteht, wobei die Flächenelektrode (1, 7, 11) als Grünkörper hergestellt und dann gesintert wird.

Description

Anmelder:
Olympus Winter & Ibe GmbH
Kuehnstraße 61
22045 Hamburg
Verfahren zur Herstellung einer Flächenelektrode
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung einer Flächenelektrode nach dem Oberbegriff des Anspruches 1. Gattungsgemäße hochfrequenzchirurgische Instrumente sind z.B. aus der US 6,447,511 B1 bekannt. Die Figuren 12 und 13 dieser Druckschrift zeigen eine bipolare Schere für endoskopische Zwecke mit zwei als Schneidblätter ausgebildeten Flächenelektroden, die in unterschiedlichen Schichthöhen aus Metall, beziehungsweise Keramik, bestehen. Die dargestellten Flächenelektroden haben jeweils eine mittlere Schicht aus Isoliermaterial sowie eine oben und unten anliegende Schicht aus Metall. Jede der beiden Metallschichten ist an einen anderen Pol einer Hochfrequenzquelle anschließbar, so dass diese Schichten in den beiden Schneidblättern von unterschiedlicher Polarität sind und zwischen sich durch Wasser beziehungsweise Gewebe einen Strom fließen lassen, der eine Schneidwirkung erzeugt. Die andere Metallschicht des Scherenblattes liegt jeweils zur Berührungsfläche zwischen den Schneidblättern hin und wird hauptsächlich deswegen verwendet, weil Metall gegenüber Isoliermaterialien besser zu einer scharfen Schneide schleifbar ist.
Einen anderen gattungsgemäßen Stand der Technik zeigt die DE 10 2007 054 438 A1. Die Flächenelektrode ist hier als chirurgische Vaporisationselektrode mit einem Elektrodenkopf ausgebildet, der eine Arbeitsfläche aufweist und auf der Rückseite mit einer Keramikabdeckung versehen ist, um dort das Ausbilden von heißem Plasma gegenüber der umgebenden Flüssigkeit zu verhindern.
In beiden Fällen liegt eine Flächenelektrode vor, welche eine Materialschicht bildet, die in unterschiedlichen Schichthöhen aus unterschiedlichem Material besteht. Als "Schichthöhe" wird hier der Abstand zu einer der Flächen der Flächenelektrode bezeichnet. Bei den bekannten Konstruktionen ist die Flächenelektrode aus Schichten aufgebaut, die nach dem
BESTATIGUNGSKOPiE Stand der Technik auf unterschiedliche Weise hergestellt werden können. So können z.B. bei einer Schere die Schneid-blätter aus verschiedenen Teilschalen, die aufeinandergelegt werden, gebildet werden, wobei zur Verbindung beispielsweise eine Verklebung erfolgt. Schichten aus unterschiedlichen Materialien lassen sich auch nacheinander aufbringen, z.B. durch galvanische Abscheidung.
Bei der Herstellung solcher Flächenelektroden treten eine Reihe von Problemen auf. Verklebungen aus Teilschalen sind nicht sehr haltbar, vor allen Dingen nicht bei höheren Temperaturen, die jedoch bei hochfrequenzchirurgischen Instrumenten unabdingbar sind. Auch die Bruchfestigkeit stellt ein großes Problem dar. Teilschalen aus Keramik brechen z.B. sehr leicht. Auch das Schärfen von Scherenklingen ist schwierig, weil beim Schleifen häufig die Schichtstruktur beschädigt wird.
Es besteht daher ein großer Bedarf nach Weiterentwicklungen auf dem Gebiet der gattungsgemäßen Verfahren.
Diese Aufgabe wird mit den Merkmalen des Kennzeichnungsteiles des Anspruches 1 gelöst.
Erfindungsgemäß wird die Flächenelektrode als Grünkörper hergestellt und dann gesintert. Unter "Grünkörper" wird ein ungebrannter Rohling verstanden, der noch plastisch verformbar ist und aus dem so genannten Feedstock geformt wird, einer Mischung von Keramikpulver oder Metallpulver und einem üblicherweise überwiegend aus einem Polymer bestehenden Binder. Bei geeignetem Binder kann der Feedstock ausreichend plastisch verformbar sein, um z.B. durch Spritzguß in die gewünschte Form des dann gegebenenfalls immer noch plastischen Grünkörpers gebracht zu werden. Nach Entbindern (Entfernen des Binders) und Sintern entsteht aus dem Grünkörper das gewünschte Werkstück aus Keramik und/oder Metall.
Das Sintern ist auf dem vorliegenden Gebiet nicht unbekannt, wurde aber nur in Teilschritten der Herstellung verwendet, z.B. bei der Herstellung keramischer Teilschalen, die dann verklebt werden. Die vorliegende Erfindung sieht dagegen vor, die gesamte Flächenelektrode zunächst als Grünkörper herzustellen und dann zu sintern. Dies führt dazu, dass bei der Herstellung des Grünkörpers eine innige Verbindung aller Teile des Schichtaufbaues entsteht. Der Grünkörper wird sodann in dieser innigen Verbindung gesintert. Es ergibt sich ein Werkstück, bei dem insbesondere die unterschiedlichen Materialien auf den unterschiedlichen Schichthöhen untrennbar verbunden sind. Daraus ergibt sich insbesondere auch eine verbesserte mechanische Festigkeit, insbesondere Bruchfestigkeit sowie Festigkeit gegenüber thermischen Spannungen. Die Haltbarkeit steigt enorm. Auch die Herstellbarkeit wird wesentlich verbessert, da die Herstellungsprobleme fast gänzlich auf Arbeiten am Grünkörper verlegt werden. Am Grünkörper ist das Arbeiten aber sehr viel leichter als an dem fertig gesinterten Werkstück. Der Grünkörper kann leicht geformt werden und kann sogar bei einer Fehlbearbeitung noch repariert werden.
Ein Grünkörper mit Schichten, die unterschiedliche Anteile von Metall und Keramik aufweisen, wird vorteilhaft gemäß Anspruch 2 aus Grünfolien hergestellt, die übereinander aufgebracht werden und jeweils aus Feedstock mit unterschiedlichen Anteilen von Metall und Keramik hergestellt sind. Dadurch wird die Herstellung sehr vereinfacht, da die Grünfolien z.B. in größeren Chargen vorgefertigt werden können. Mit Grünfolien können sehr dickschichtige Flächenelektroden aufgebaut werden, die z.B. nur aus Metall bestehen, wozu dann identische aus Metall bestehende Grünfolien übereinander angeordnet werden. Vorteilhaft gemäß Anspruch 3 werden jedoch abwechselnd Folien aus unterschiedlichen Materialien übereinander aufgebracht, womit z.B. Flächenelektroden, wie sie aus den eingangs genannten Druckschriften bekannt sind, herstellbar sind, die in unterschiedlichen Schicht-höhen aus Metall, beziehungsweise Keramik, bestehen.
Eine andere sehr interessante Möglichkeit, die das Sintern bietet, ist das Verfahren gemäß Anspruch 4, wobei der Grünkörper eine Kornmischung aus Metall und Keramik aufweist, bei der sich das Mischungsverhältnis mit der Schichthöhe ändert. Mischungen aus Metall und Keramik sind gut sinterbar. Es entsteht eine Flächenelektrode, bei der die metallischen und keramischen Anteile mit kontinuierlichem Übergang ineinander verlaufen. Dadurch ergeben sich besonders positive Haltbarkeitseigenschaften. Das Mischungsverhältnis kann sich dabei kontinuierlich ändern oder vorzugsweise stufenförmig in einem Aufbau aus vielen Folien, bei denen sich stufenweise das Mischungsverhältnis ändert.
Die Flächenelektrode kann nach ihrer Herstellung, also nach der Sinterung, bearbeitet werden, z.B. durch Bohren oder Schleifen. Das ist jedoch wegen der Härte des keramischen Materials schwierig und teuer. Vorzugsweise wird daher gemäß Anspruch 5 der Grünkörper vor dem Sintern in die gewünschte Form gebracht, so dass Bearbeitungen nach dem Sintern entfallen. Grünkörper können aus einem leicht formbaren, knetbaren Material bestehen und lassen sich daher sehr leicht formen, schneiden, ausstanzen oder auf sonstige Art bearbeiten. Dazu kann eine Temperaturerhöhung hilfreich sein, z.B. bei Verwendung eines thermoplastischen Binders.
In den Zeichnungen ist die Erfindung beispielsweise und schematisch dargestellt. Es zeigen:
Fig. 1 eine erfindungsgemäße Flächenelektrode eines Vaporisationsinstrumentes im
Schnitt,
Fig. 2 eine Seitenansicht einer bipolaren Schere, Fig. 3 einen Schnitt nach Linie 3 - 3 in Fig. 2,
Fig. 4 einen Ausschnitt aus Fig. 3 in einer abgewandelten Ausführungsform und Fig. 5 einen Querschnitt einer Flächenelektrode einer weiteren Ausführungsform.
Fig. 1 zeigt eine chirurgische Vaporisationselektrode, ähnlich der, die in der DE 10 2007 054 438 A1 erläutert ist. Die in Fig. 1 dargestellte Elektrodenanordnung weist eine Flächenelektrode in Form eines Elektrodenkopfes 1 auf, die leicht gekrümmt, flächig aus einer Metallschicht 2 und einer rückwärtigen Keramikschicht 3 besteht. Die Flächenelektrode wird von einem metallischen Anschlussdraht 4 durchsetzt, der mit der Metallschicht 2 elektrisch leitend verbunden ist. Der Anschlussdraht 4 ist mit einem schützenden Isolierschlauch 5 überzogen, der z.B. aus Kunststoff besteht.
Bekannte Methoden der Herstellung dieses Elektrodenkopfes, z.B. durch Verkleben vorgefertigter Metallschichten 2 mit Keramikschichten 3, sind schwierig, vor allem aufgrund der geringen Abmessungen von nur wenigen Millimetern Außendurchmesser des Elektrodenkopfes.
Außerdem wird eine solche Elektrode bei bipolarer Hochfrequenzbeaufschlagung in leitender Flüssigkeit verwendet, was zu extremer Temperaturbelastung führt. Dabei kann der Schichtaufbau der Flächenelektrode sehr schnell zerstört werden. Ein weiteres Problemfeld gemäß der eingangs genannten US 6,447,511 B1 ist in der Ausführungsform der Fig. 2 mit einer bipolaren Schere 6 dargestellt, bei der Flächenelektroden in Form von Schneidblättern 7 angeordnet sind, die im Detail aus Fig. 3 ersichtlich sind. Die Schneidblätter 7 bestehen jeweils aus einer zur Schneidfläche 8 hin liegenden Keramikschicht 13 und einer dieser anliegenden Metallschicht 12. Auch hier ergeben sich Probleme der Herstellbarkeit.
Diese Probleme bestehen im Wesentlichen in der Frage, wie man die Metallschicht 2, beziehungsweise 12, mit der Keramikschicht 3, beziehungsweise 13, verbinden soll.
Die Erfindung löst dieses Problem, indem sie die Verbindung der beiden Schichten auf Bearbeitungsschritte an einem Grünkörper verlagert. Die Flächenelektrode 1 der Fig. 1 wird, ebenso wie die Schneidblätter 7 der Fig. 3, als Grünkörper hergestellt. Als "Grünkörper" versteht man den Rohling, der noch plastisch verformbar ist und der aus einer Mischung von Keramikpulver und/oder Metallpulver und einem Bindemittel besteht. Durch Brennen oder Sintern entsteht aus dem Grünkörper das gewünschte Werkstück.
Die Erfindung stellt die Flächenelektrode, also den Elektrodenkopf 1 der Fig. 1 , beziehungsweise das Schneidblatt 7 der Fig. 3, als Grünkörper her. Dabei können jeweils die Metallschicht 2 bzw. 12, und die Keramikschicht 3, bzw. 13, als Grünfolie getrennt angefertigt und durch Übereinanderlegen zum Grünkörper der Flächenelektrode vereinigt werden. Es können Grünfolien desselben Materials übereinandergelegt werden, um z.B. eine sehr dicke Flächenelektrode nur aus Metall herzustellen. Vorzugsweise werden unterschiedliche Materialien, wie im dargestellten Beispiel Metall und Keramik, verwendet.
Wie Fig. 1 zeigt, kann auch eine kompliziert schalenförmig verrundete Formgebung der Flächenelektrode 1 sehr einfach durch Formen des noch biegbaren Grünkörpers hergestellt werden, der z.B. sehr einfach in einer Pressform, oder durch Spritzguß in die gewünschte Form gebracht werden kann. Auch das Loch zum Durchführen des Anschlussdrahtes 4 lässt sich dabei sehr einfach stanzen. Es werden dadurch sehr aufwendige Verfahrensschritte eingespart, die bei entsprechender Bearbeitung nach erfolgtem Sintern erforderlich wären.
Fig. 4 zeigt einen vergrößerten Ausschnitt im Bereich der Schneide eines Scherenblattes 7', ähnlich dem Schneidblatt 7 der Fig. 3. Der Schichtaufbau ist jedoch anders. Es werden hier nicht zwei Schichten, wie im Fall der Fig. 3 verwendet, sondern drei Schichten, die ähnlich angeordnet sein können, wie im Fall der eingangs genannten US 6,447,511 B1 , nämlich eine Isolierschicht 14 in der Mitte und zwei oben und unten anliegende Metallschichten 15 und 16. Gegenüber der Konstruktion der Fig. 3 mit nur zwei Schichten, gibt die zusätzliche Metallschicht 16 an der Schneidfläche 8 eine verbesserte Möglichkeit, die Schneidkante 9 scharf zu schleifen, was bei der Konstruktion der Fig. 3, bei der diese Kante aus Keramik besteht, schwieriger wäre. Auch andere Gründe, wie z.B. Gründe der Potenzialsteuerung, können für einen solchen mehrschichtigen Aufbau sprechen. Fig. 5 zeigt einen Abschnitt aus einer als Flächenelektrode ausgebildeten Elektrode 11. Dies kann z.B. ein Ausschnitt aus dem Schneidblatt 7 der Fig. 3 sein. Vergleicht man mit den vorhergehenden Ausführungsformen, so erkennt man den wesentlichen Unterschied, nämlich den sich mit der Schichthöhe stufenweise ändernden Materialübergang. Als Schichthöhe S wird hier der Abstand zur Schneidfläche 8 bezeichnet.
Bei unterschiedlichen Schichthöhen liegen im Material der dargestellten Elektrode 11 unterschiedliche Konzentrationen von Metall und Keramik vor. Bei der Schichthöhe S1 liegt reines Metall vor, bei S2 reine Keramik. Dazwischen ist die Mischung von Keramikteilchen und Metallteilchen stufenweise verändert.
Die in der Fig. 5 neben der Elektrode 11 dargestellte Treppe soll verdeutlichen, dass die Mischung von Keramikteilchen und Metallteilchen sich in der Elektrode 11 von S1 nach S2 stufenförmig von 100% Metall zu 100% Keramik ändert. Es kann auch eine sehr viel feinere Stufenteilung gewählt werden.
Die Stufen können bei der dargestellten Ausführungsform als Schichten aus vor-fabrizierten Folien bestehen. In nicht dargestellter Ausführungsvariante kann die Elektrode 11 das Mischungsverhältnis auch mit einem kontinuierlichen Gradienten Ändern. Die Herstellung der in den Figuren dargestellten Flächenelektroden geschieht wie folgt:
Bei der Ausführungsform der Fig. 1 wird eine Grünfolie auf Metallbasis und eine Grünfolie auf Keramikbasis hergestellt. Die Herstellung dieser Folien erfolgt durch Anrühren eines Feedstocks aus Keramik-, beziehungsweise Metallpulver, mit einem Binder, z.B. einem geeigneten Polymer. Es entsteht der breiartige Feedstock, der z.B. mittels einer Rakel bei geeigneter Temperatur auf einer glatten Arbeitsplatte zu einer Folie ausgestrichen wird. Nach Erkalten ist das Material noch flexibel aber ohne Träger handhabbar und kann von der Arbeitsplatte abgezogen werden. Eine Folie mit Metallmaterial und eine Folie mit Keramikmaterial werden übereinander angeordnet. Aus der Doppellage der beiden Schichten wird dann der Umfang der Flächenelektrode 1 ausgeschnitten oder ausgestanzt. Dabei kann auch das Loch für den Anschlussdraht 4 gestanzt werden. Anschließend wird die Flächenelektrode 1 in die in Fig. 1 dargestellte gewölbte Form gebracht, z.B. in einer Form presse. Der fertige Grünkörper wird nun gesintert, nachdem zuvor aus dem Feedstock der Binder z.B. thermisch entfernt wurde. Danach wird dann der Anschlussdraht 4 angebracht und verschweißt, beziehungsweise verlötet. Als Letztes wird der Isolierschlauch 5 angebracht.
Im Falle der bipolaren Schere 6, die in Fig. 2 dargestellt ist, werden Schneidblätter 7 mit einem Schichtaufbau hergestellt so, wie er in Fig. 3 dargestellt ist. Dazu werden wiederum Grünfolien für die Schichten 12 und 13 hergestellt, aufeinander gebracht und zugeschnitten. Nach dem Sintern werden die Schneidblätter 7 an einem vorgefertigten, handelsüblichen Scherengriff befestigt, wie er in Fig. 2 beispielhaft dargestellt ist. In nicht dargestellter Weise sind die beschriebenen Flächenelektroden mit einer Hochfrequenzspannungsquelle zu verbinden. Dazu ist der Anschlussdraht 4 der Fig. 1 oder sind die Metallschichten 12 der Schneidblätter 7 mit entsprechenden Verbindungsleitungen zu kontaktieren, die entweder an den Elektroden fest angeschlossen oder z.B. mit Kupplungen ansteckbar sind.
Der in Fig. 4 gezeigte Schichtaufbau kann grundsätzlich ähnlich wie der der Fig. 3 hergestellt werden.
Bei der Elektrode 11 der Fig. 5 ist die Herstellung ähnlich, wenn die Materialmischung den dargestellten Stufengradienten aufweisen soll. Dann können übereinandergelegte Grünfolien abgestufter Zusammensetzung verwendet werden.
Soll sich das Mischungsverhältnis aber mit der Schichthöhe kontinuierlich, also ohne Stufung, ändern, so können z.B. Einstreutechniken verwendet werden, bei denen beim Aufbau einer Feedstockschicht Metall- und Keramikpulver mit sich allmählich veränderndem Mischungsverhältnis in die wachsende Feedstockschicht eingestreut werden.
*****
Bezugszeichenliste
1 Elektrodenkopf
2 Metallschicht
3 Keramikschicht
4 Anschlussdraht
5 Isolierschlauch
6 Schere
7 Schneidblatt
7' Scherenblatt
8 Schneidfläche
9 Schneidkante
11 Elektrode
12 Metallschicht
13 Keramikschicht
14 Isolierschicht
15 Metallschicht
16 Metallschicht
*****

Claims

Patentansprüche
1. Verfahren zur Herstellung einer Flächenelektrode (1 , 7, 11) eines hochfrequenzchirurgischen Instrumentes, die in wenigstens einer Schichthöhe (S1 ) aus Metall und in wenigstens einer anderen Schichthöhe (S2) aus Keramik besteht, dadurch gekennzeichnet, dass die Flächenelektrode (1 , 7, 11) als Grünkörper hergestellt und dann gesintert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Grünkörper aus mehreren Folien (15, 14 ,16) hergestellt wird, die als Grünfolien übereinander angebracht werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass übereinander abwechselnd Folien (15, 14, 16) aus unterschiedlichen Materialien aufgebracht werden.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Grünkörper aus einer Mischung von Metall und Keramik gebildet ist, bei der sich das Mischungsverhältnis mit der Schichthöhe (S) kontinuierlich oder stufenförmig ändert.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Grünkörper vor dem Sintern in die gewünschte Form gebracht wird.
*****
PCT/EP2015/001349 2014-07-17 2015-07-03 Verfahren zur herstellung einer flächenelektrode WO2016008570A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/314,967 US20170196618A1 (en) 2014-07-17 2015-07-03 Method for producing a flat electrode
CN201580037273.6A CN106572882A (zh) 2014-07-17 2015-07-03 平面电极制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014010791.4A DE102014010791A1 (de) 2014-07-17 2014-07-17 Verfahren zur Herstellung einer Flächenelektrode
DE102014010791.4 2014-07-17

Publications (2)

Publication Number Publication Date
WO2016008570A1 true WO2016008570A1 (de) 2016-01-21
WO2016008570A8 WO2016008570A8 (de) 2017-01-12

Family

ID=53776547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/001349 WO2016008570A1 (de) 2014-07-17 2015-07-03 Verfahren zur herstellung einer flächenelektrode

Country Status (4)

Country Link
US (1) US20170196618A1 (de)
CN (1) CN106572882A (de)
DE (1) DE102014010791A1 (de)
WO (1) WO2016008570A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106214247A (zh) * 2016-07-04 2016-12-14 南京微创医学科技股份有限公司 一种双极高频电刀

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11241274B2 (en) 2016-11-04 2022-02-08 Intuitive Surgical Operations, Inc. Electrically insulative electrode spacers, and related devices, systems, and methods
US11040189B2 (en) * 2016-11-04 2021-06-22 Intuitive Surgical Operations, Inc. Electrode assemblies with electrically insulative electrode spacers, and related devices, systems, and methods
DE102018209501A1 (de) 2018-06-14 2019-12-19 Robert Bosch Gmbh Medizinische Resektionselektrode, medizinisches Instrument und Verfahren zur Herstellung einer medizinischen Resektionselektrode
CN112370149B (zh) * 2020-11-14 2022-04-08 重庆金山医疗技术研究院有限公司 一种陶瓷体、环喷式氩气电极及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545590A1 (de) * 1995-12-07 1997-06-12 Bosch Gmbh Robert Ko-gesinterte Cermet-Schicht auf einem Keramikkörper und ein Verfahren zu ihrer Herstellung
WO1999040858A1 (en) * 1998-02-17 1999-08-19 Iti Medical Technologies, Inc. Electrosurgical blade configured for improved cutting ease and reduced smoke generation and eschar adhesion
JP2002283239A (ja) * 2001-03-27 2002-10-03 Miyagi Prefecture 超砥粒カッタ用基板とその製造方法及びその基板を用いた超砥粒カッタ
DE102006016702A1 (de) 2006-04-08 2007-10-18 Man Diesel Se Kraftstoffgespülte Kolbenpumpe
US20090011315A1 (en) * 2005-10-19 2009-01-08 Eidgenossische Technische Hochschule Zurich Thin-Film Composite and a Glass Ceramic Substrate Used in a Miniaturized Electrochemical Device
DE102010060336A1 (de) * 2010-11-04 2012-05-10 Erbe Elektromedizin Gmbh Elektrodeneinrichtung eines elektrochirurgischen Instruments
US20130071282A1 (en) * 2011-09-19 2013-03-21 Tyco Healthcare Group Lp Method For Securing A Stop Member To A Seal Plate Configured For Use With An Electrosurgical Instrument

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447511B1 (en) 1994-12-13 2002-09-10 Symbiosis Corporation Bipolar endoscopic surgical scissor blades and instrument incorporating the same
DE19725948B4 (de) * 1997-06-19 2007-04-26 Roosen, Andreas, Prof. Dr.-Ing. Verfahren zur Verbindung keramischer Grünkörper unter Verwendung eines Klebebandes
DE102007054438A1 (de) 2007-11-13 2009-05-20 Olympus Winter & Ibe Gmbh Chirurgische Vaporisationselektrode mit Elektrodenkopf

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545590A1 (de) * 1995-12-07 1997-06-12 Bosch Gmbh Robert Ko-gesinterte Cermet-Schicht auf einem Keramikkörper und ein Verfahren zu ihrer Herstellung
WO1999040858A1 (en) * 1998-02-17 1999-08-19 Iti Medical Technologies, Inc. Electrosurgical blade configured for improved cutting ease and reduced smoke generation and eschar adhesion
JP2002283239A (ja) * 2001-03-27 2002-10-03 Miyagi Prefecture 超砥粒カッタ用基板とその製造方法及びその基板を用いた超砥粒カッタ
US20090011315A1 (en) * 2005-10-19 2009-01-08 Eidgenossische Technische Hochschule Zurich Thin-Film Composite and a Glass Ceramic Substrate Used in a Miniaturized Electrochemical Device
DE102006016702A1 (de) 2006-04-08 2007-10-18 Man Diesel Se Kraftstoffgespülte Kolbenpumpe
DE102010060336A1 (de) * 2010-11-04 2012-05-10 Erbe Elektromedizin Gmbh Elektrodeneinrichtung eines elektrochirurgischen Instruments
US20130071282A1 (en) * 2011-09-19 2013-03-21 Tyco Healthcare Group Lp Method For Securing A Stop Member To A Seal Plate Configured For Use With An Electrosurgical Instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106214247A (zh) * 2016-07-04 2016-12-14 南京微创医学科技股份有限公司 一种双极高频电刀

Also Published As

Publication number Publication date
CN106572882A (zh) 2017-04-19
US20170196618A1 (en) 2017-07-13
WO2016008570A8 (de) 2017-01-12
DE102014010791A1 (de) 2016-01-21

Similar Documents

Publication Publication Date Title
EP2606997B1 (de) Verfahren zur Herstellung eines Bauteils durch Metallpulverspritzgießen
WO2016008570A1 (de) Verfahren zur herstellung einer flächenelektrode
EP2643111B1 (de) Verfahren zur herstellung von triebwerksbauteilen mit geometrisch komplexer struktur
DE102005055050B4 (de) Segmentierte Faserverbund-Blattfeder und Verfahren zur Herstellung derselben
EP1358855A1 (de) Verfahren zur Herstellung von Produkten durch Freiform-Lasersintern
WO2009062732A2 (de) Mehrkomponentenkühlkörper
EP1533571A2 (de) Verfahren zum Herstellen von keramischen Glühkerzen
DE102005032852B4 (de) Lagerschale und Verfahren zu ihrer Herstellung
DE10205928A1 (de) Verfahren zur Herstellung piezokeramischer Vielschichtaktoren
EP1821351B1 (de) Verfahren zum Herstellen eines piezoelektrischen Bauteils
DE102013114659A1 (de) Vorrichtung zum schneidenden und/oder spanenden Bearbeiten eines Objektes
EP2177303B1 (de) Herstellverfahren für ein Trennwerkzeug und Trennwerkzeug
EP2414132B1 (de) Bauteil mit einer überlappendenden laserspur; verfahren zur herstellung eines solchen bauteils
DE112017006597B4 (de) Poröser Wabenfilter
WO2019173855A1 (de) Verfahren zur herstellung eines sintergefügten verbundkörpers
DE102011053740A1 (de) Verfahren zur Herstellung eines Hartstoff-Körpers, zugehöriges sintermetallurgisches Pulver und daraus herstellbarer Hartstoff-Rohling und Hartstoffkörper
AT404658B (de) Schneidleiste
DE102019002250A1 (de) Verfahren zur Herstellung eines Halbzeuges, insbesondere für ein Gehäuse einer Sanitärarmatur
AT515747A1 (de) Verfahren zur Herstellung einer Baugruppe
DE962000C (de) Verfahren zum Herstellen elektrischer Widerstaende aus Metallkeramik
DE102010035506A9 (de) Verfahren zur Herstellung eines Bauteils
DE202007016232U1 (de) Chirurgisches Instrument
DE102016219109A1 (de) Partikel aus einem feuerfesten keramischen Werkstoff zur Beeinflussung der Rissbildung in Hochtemperaturwerkstoffen und Verfahren zu ihrer Herstellung
EP0325600A1 (de) Verfahren zum herstellen von keramisch-metallischen verbundkörpern, sowie nach dem verfahren hergestellte verbundkörper und deren verwendung
DE10312146B4 (de) Verfahren zur Herstellung dreidimensional gestalteter Sinterbauteile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15745394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15745394

Country of ref document: EP

Kind code of ref document: A1